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Abstract 
 

This thesis is a study of unsupervised machine learning techniques for the 

classification and clustering of sub-genres of electronic music. New sub-

genres of electronic music are frequently introduced and most have similar 

audio characteristics, having a proper distinction between them is a 

laborious task. Therefore, it becomes essential to explore tools and 

techniques that help us differentiate between these genres easily and 

efficiently. Two approaches suggested by Barreira and Rauber have been 

employed for the clustering of music. Barreira’s approach uses a model-

based clustering technique by employing Expectation-Maximization for 

Gaussian Mixture Models. Whereas, the Rauber approach uses Growing 

Hierarchical Self Organizing Maps which is an extension of Self Organizing 

Maps. Moreover, Low-level audio features that mathematically show 

characteristics of audio are extracted for feeding into these algorithms. The 

thesis is concluded by reflecting upon the results, evaluating the models, 

discussing limitations, and proposing future works.  
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Music Information retrieval (MIR) is an interdisciplinary field concerned with 

the development of innovative approaches to streamline the plethora of 

digital music and provide easy accessibility by extracting features from 

music (audio signal or noted music) and by developing different search and 

retrieval schemes (Schedl et al., 2014). Given the importance of music in 

our society, it’s surprising that MIR’s research is still relatively new, having 

widely started around two decades ago (Burgoyne et al., 2015), MIR has 

however undergone a transition since then. As a scientific field, it has been 

steadily improving and some of the most crucial reasons for its success are 

(i) the development of audio compression techniques in the late 1990s, (ii) 

increment in the computational prowess of the personal computer which in 

turn resulted into extraction of information by users in a reasonable amount 

of time, (iii) widespread availability of music databases and more recently 

(iv) the emergence of music streaming services like Spotify, Pandora, 

iTunes, etc. As the number of digitalized music being uploaded on the 

internet keeps increasing, consumption of the music is also increasing as 

well as the number of styles, genres, and themes. With this comes the 

challenge of differentiating between these genres and styles. A number of 

different approaches have been proposed under the umbrella of Music 

Information retrieval for the same. Originally introduced as a pattern 

recognization task by (Tzanetakis & Cook, 2002) music genre recognization 

and classification have become a prominently needed tool for easy retrieval 

of music in search engines and music databases. According to a study by 

(Aucouturier & Pachet, 2003), music genre classification is one of the most 

common ways used in managing musical databases. On one hand, music 

may be classified into one or more musical genres, but cultural differences 

and human perceptions make establishing a standard music genre 

taxonomy problematic. An avid listener well familiar with electronic music, 

for example, could categorize between a minimal techno track with a 

melodic house track but for non-listeners, they may all fall into techno, 

house or even just electronic music. The “similarity” in music is difficult to 

describe and particularly complicated due to the numerous elements 

(timbre, melody, rhythm, harmony), which are among the aspects that 

define the viewpoint of music. And it becomes increasingly laborious to 

distinguish  

1 Introduction 
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between music genres if they are similar to each other or if they fall under 

a particular genre of music. 

This thesis aims to cluster the sub-genres of electronic music that have 

similarities in their musical elements by implementing two approaches 

proposed by (Barreira et al., 2011) and (Rauber et al., 2002). These 

approaches have been proposed for clustering and classification of popular 

genres like pop, hip-hop, classical, rock, etc. On the contrary, this thesis 

aims to implement them in sub-genres of electronic music which have a 

considerable amount of similarity between them. The thesis begins with an 

introduction, clarifying the research question and motivation, followed by a 

brief description of the approaches. Secondly, the background is explored. 

Following the methods for choosing the algorithms and the evaluation 

techniques are explained. Then it details the feature extraction pipeline and 

the features to be extracted as proposed in the approaches by Barreira and 

Rauber, followed by a detailed description of the system and the techniques 

employed. Finally, the evaluation results of the applied approaches are 

discussed. The thesis is concluded with a reflection on limitations, future 

work, different scopes, and the influence of the research project. 

 

 

1.1 Research question and motivation 

 

Several clustering and classification techniques have been introduced and 

implemented for the classification of genres of music. Ranging from a 

number of approaches using supervised machine learning techniques 

(Ahmad et al., 2014; Asim & Ahmed, 2017; Bahuleyan, 2018; Tzanetakis 

& Cook, 2002), etc. In these techniques, the model is trained on input data 

that has been labeled in correspondence to a particular output. Moreover, 

some employ semi-supervised classification (Poria et al., 2013; Song & 

Zhang, 2008) approaches which are a combination of supervised and 

unsupervised machine learning approaches. However, these techniques 

necessitate manually tagged data. As a result, these approaches are 

restricted in their ability to evolve with new data, music, and genres, as 

manually constructing and updating a big dataset for machine learning 

models is not always viable. The unsupervised approach is a branch of 

machine learning in which the model is not given any labeled data to train 

itself, rather it autonomously works to find patterns and information. 
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Additionally, it is not constrained since it does not require musically labeled 

data to work and is thus autonomous in classifying musical genres based 

on sample audio attributes, as it takes into account the features related to 

the data. However, just a few solutions have been presented, ranging from 

using hierarchical self-organizing maps(Ahmad et al., 2014), employing the 

Hidden Markov model (Barreira et al., 2011), or more recently using an 

unsupervised artificial neural network(Pelchat & Gelowitz, 2020) (Raval, 

2021). Moreover, these solutions majorly explore the classification of 

relatively easily distinguishable genres which are widely popular like pop, 

hip-hop, rock, classical, etc. The elements that differentiate between them 

are very distinct from each other and have very less overlapping. The 

classification of genres that are similar to each other or have similar 

elements present in them has very minimal exploration, like (Quinto et al., 

2017) wherein classification of subgenres of Jazz music using deep learning 

techniques has been performed.  

Motivated by the concepts of unsupervised machine learning, audio signal 

processing, and feature extraction techniques, as well as identifying the 

lack of, and thus the need to do research exploration of classification of 

similar music type leading to the classification of sub-genres of electronic 

music my research question becomes: How to efficiently implement 

unsupervised machine learning techniques that cluster or classify 

mainstream genres to different sub-genres of electronic music? and 

subsequently enhance and evaluate them. By reflecting upon this question 

my objectives were realized accordingly. Firstly, implementing the 

algorithm proposed by senior researchers in the field that are proven 

successful and applying them to the particulars of my research question, 

secondly choose the most optimum elements (types of algorithm, types of 

features, and evaluation criteria) from the proposed approaches in 

reference to my research question.  

 

1.2 Contribution 

 

The primary goal of this thesis has been to explore unsupervised machine 

learning techniques for the classification and clustering of musical genres 

that have some similarities to them. There are several unsupervised 

approaches that have been implemented and proposed for various 

applications but to narrow the scope of the thesis unsupervised approaches 

presented by (Barreira et al., 2011; Rauber et al., 2002) are applied. This 

study aims to fill the research gap in the field of MIR for music genre 
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classification using unsupervised machine learning techniques. It also aims 

to explore and bolster the features and feature extraction techniques 

presented by the researchers mentioned above and evaluate them on 

different styles of music. Subsequently, the study offers a small 

contribution to the understanding of sub-genres of electronic music, what 

makes them different or common to each other, and their impact on MIR 

as well as societal influence. It also explores the possible ways by which 

the classification between them provides merit to the  MIR society and 

music consumers. Additionally, It's also worth noting that several 

approaches to the problem of music genre classification have been 

proposed in the MIR research timeline. They are based on a variety of 

factors associated with music, such as metadata, the artist or composer, 

the historical period in which the musical composition was created, or the 

geographical area from which the music originated, as well as cultural 

references and connotations. However, to limit the scope of this short-term 

one-semester thesis project, only two types of approaches are considered 

which are based on low-level audio features and widely popular machine 

learning algorithms. In addition to that, only the clustering of data provided 

to the algorithm is performed and no new data has been introduced after 

the models have been generated and implemented.  

By the completion of the thesis project, it aims to provide a valuable 

implementation and assessment of computational tools depicted by the 

researchers Barreira and Rauber for the classification of musical genres and 

that it succeeds in generating a deeper understanding of the complete 

system of machine learning including audio signal processing and other MIR 

fields.   

1.3 System overview 

 

There are two separate systems that are being implemented in this thesis. 

The first system as proposed by (Barreira et al., 2011) uses a model-based 

approach for the classification of genres. In this approach, the clustering 

method consists of a learning approach that clusters the music samples 

only based on their audio features without any previous information about 

the genre of the samples. The first step in this approach is to extract 

features, these features are related to the properties of the audio sample 

such as spectral analysis, timbre, loudness, and melody among others. 

These features when extracted have a large number of dimensions and 

therefore a feature reduction technique is required for optimizing 

computational time, storage space, and redundancy. After standardization 



5 

 

of the features dimensionality reduction technique based on Principal 

Component Analysis (PCA) (Abdi & Williams, 2010) is used. After the 

feature reduction step, Model-Based Clustering Analysis (MBCA) as 

proposed by Fraley and Raftery (Fraley & Raftery, 1998) is implemented in 

which the classification of the music samples is done using EM (expectation-

maximization) algorithm for maximum likelihood, with Gaussian Mixture 

Models, which essentially is a clustering technique in which each sample is 

given a probabilistic assignment to the cluster it may belong to and then is 

joined with the samples which are closest in similarity to the original. 

The second system uses psychoacoustic models and self-organizing maps 

for classification purposes and is proposed by (Rauber et al., 2002). In this 

approach first, the low-level feature from the audio signal is extracted 

which is based on the frequency spectrum. After this, the next step is to 

provide this feature to a neural network, defined by Rauber as Growing 

Hierarchical self-organizing maps(GHSOM) which is essentially an 

extension of Self-organizing maps(SOM). By placing related data items next 

to one other on a map display, this neural network does cluster analysis. 

The GHSOM, in particular, is capable of recognizing hierarchical correlations 

in data and so generates a hierarchy of maps depicting distinct musical 

genres into which the pieces of music are arranged (Rauber et al., 2002). 
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This chapter delineates the previous work and theoretical background 

linked to the system and algorithm given in this thesis. First, an introduction 

and historical view of the Music Information retrieval field is discussed with 

a focus on music genre classification, and electronic music. Then, previous 

and current research in the niche topic of music genre classification is 

explored Subsequently, the audio signal processing field with a focus on 

feature extraction is discussed. After that, a brief description of machine 

learning and how it relates to music and the context of this thesis project 

is given.  

 

 

2.1 Music Information Retrieval 

 

Music is and has been a central topic in our society, it has ignited and 

transformed cultures and behaviors, and almost everyone enjoys listening 

to music and many relish creating it as well. Broadly speaking, the 

interdisciplinary research field of Music Information retrieval (MIR) is 

mainly concerned with developing novel approaches to ease the access to 

a large amount of music present around us, by feature extraction and 

inference of relevant information from either the audio signal or symbolic 

representation or from external sources like webpages or even from a giant 

library of metadata which includes information about artists, genres, 

culture, etc as defined by Downie (Downie, 2004). As a consequence MIR 

has facilitated access to music for everyone by lowering the barriers. MIR 

is responsible for innovations such as customized music suggestions, 

software that assesses the key and speed of tracks to aid DJ mixing, 

scanners that turn printed music into electronically modifiable sheets, and 

a variety of additional digital interfaces to musical information. The 

significance of MIR will only increase as more people engage with music 

online (Downie, 2004). 

 

2 Background 
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2.1.1 Importance of MIR 

One of the prominent fields in which the concept of MIR is applied is the 

very popular music genre classification. Its wide popularity can be 

understood in the sense, as the number of huge databases is arising either 

because of the restoration of analog archives in digital format or the 

addition of new content every day it becomes increasingly tough to cater 

to all the new content. As a result, a need for reliable and fast tools to 

organize these datasets becomes imminent. In this context, music genres 

are crucial descriptors since they have been used to organize music in 

catalogs, libraries, music stores, etc for a long time. Despite their 

widespread use, music genres remain a vaguely defined notion, making 

automated categorization a difficult undertaking. Music genres are styles of 

music and categories that have emerged as a result of a complex 

interaction of cultures, artists, geographies, and commercial pressures. As 

described in the survey by (Scaringella et al., 2006), we can see how 

different the requirements that identify a single genre might be, by looking 

at some distinct and extensively utilized music genres. For example: 

• Indian music is geographically defined.  

• Baroque music is related to an era in history while encompassing a 

wide range of styles and a wide geographic region. 

• Barbershop music is defined by a set of precise technical 

requirements.  

• Electronic music is devised by music made using computers which 

can further be classified into several sub-genres. 

Therefore it becomes important to develop approaches that can help in the 

taxonomy of these vast and not so concisely defined descriptors of styles 

of music.  

 

2.1.2 MIR and music analysis  

The research in the field of music analysis however started quite early, even 

before the age of computers to find meaningful information in different 

musical styles. Early research in MIR predominantly focused on working 

with the symbolic representation of music, with development in modern 

statistical methods some scholars and musicians were applying it to the 

music which can be spotted in the work done as early as the beginning of 

the 20th century. Researchers like Myers published in 1907 that larger 

melodic intervals occur less frequently in folk music than smaller melodic 

intervals. As the computer became more widely available and accessible to 

researchers in the mid-20th century, the interest in music computational 
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analysis grew and the terms like computational musicology and Music 

Information Retrieval were introduced in the papers published by (Kassler, 

1966; Logemann, 1967). After some early research in pitch tracking, tempo 

estimation, and timbre analysis  (Moorer, 1975; Slawson, 1968), MIR later 

saw a decline in research opportunities as it became harder to access a 

large amount of digital data due to lack of and also the laborious task of 

gathering pertinent data to analyze with limited computational prowess. In 

the 1990s, as the computational power grew MIR saw a rise again, as along 

with this, digitalized musical data also became available to a large extent. 

Unique research largely confined to the field of MIR started popping up, the 

trendsetter was the ever‐popular query‐by‐humming research by 

(Kageyama, 1993), which appeared in the first half of the decade, followed 

by studies on using audio material to search databases (Wold et al., 1996). 

 

2.1.3 Previous and current research on music genre classification 

and its basis.  

The music genre problem asks for a taxonomy, meaning a structured set 

of divisions that can be overlaid onto a music collection. (Daniel & Cazaly, 

2000) examined a variety of music genre taxonomies used in industries 

and on the internet, demonstrating that constructing such a hierarchy of 

genres is difficult, as music genres are not very accurately defined. 

Moreover, one basic question that can be raised while classification is on 

what basis or element of the music should a classification be built on? Can 

it be the title of the song, the album, or maybe even the artist? If we place 

one song into only one kind of genre, it doesn’t seem to work as some 

songs have elements of different genres. Furthermore, an album can be a 

mix of heterogenous styles or genres of music. Similarly, an artist can make 

different kinds of styles of music which can fall into various genres, so 

limiting a music piece to a genre because one particular artist made it, is 

simply not practical. While some of this metadata can work, they are not 

always universal or reliable. One thing to note here is that some high-level 

representative features of music also work exceptionally more or less 

accurately as compared to low-level features discussed below, typically 

they are, event-like formats such as MIDI or symbolic formats such as 

MusicXML, and many researchers have exploited MIDI data in particular as 

the basis of music analysis and genre classification. 

Even so, exploiting the audio signal's content is a far superior technique., 

as it can offer significant information about the music in terms of timbre, 

pitch, tempo, instruments used, and many more. So it becomes natural to 

use these audio contents as the basis of classification. While using a small 
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timeframe of a sample from a full-length track seems to work it is again 

not the best method since there is a very low level and density of 

information in them. Moreover, a combination of a number of these audio 

samples generates a huge amount of data to be processed. With all of these 

factors in mind, demand for low-level features emerges. Based on these 

factors, research on music genre classification in its nascent stages was 

explored when it was first introduced as a pattern recognization task by 

(Tzanetakis & Cook, 2002). Later, according to a study by (Aucouturier & 

Pachet, 2003), music genre classification was depicted as one of the most 

common ways used in managing musical databases. Numerous works have 

been carried out to understand the similarity in music and then classify 

them, ranging from comparing metadata of the songs (Pérez-Sancho et al., 

2009)  to understanding audio features of the songs (Asim & Ahmed, 2017) 

(Costa et al., 2012) (Keum & Lee, 2006), or by using MIDI data (Cataltepe 

et al., 2007) as the basis of classification. The research studies that 

employed audio content as the foundation of analysis were the most 

successful (Cataltepe et al., 2007; Costa et al., 2012; Pérez-Sancho et al., 

2009; Quinto et al., 2017; Raval, 2021; Wold et al., 1996) 

 

 

2.2 Audio signal processing and feature extraction 

 

The hearing sense provides us with rich information about our surroundings 

and environment concerning the location and characteristics of the sound 

and the sound-producing objects. For example, we can effortlessly absorb 

multiple sounds present in a sonic field like sounds of birds chirping, to the 

traffic noise, while listening to a song on the speakers. By analyzing and 

categorizing measurable sensory inputs, the human auditory system is able 

to comprehend the complex sound mixture hitting our ears and generate 

high-level conceptions of the world. This is also called auditory scene 

analysis which is the process of separating and identifying sources from a 

composite audio signal that has been received (Rao, 2008). It is very easy 

to understand that if this property is implemented in a machine it will be 

very useful in tasks like speech recognition, instrument recognition, and 

other MIR fields. Some important applications of audio processing are audio 

compression, audio synthesis, and audio classification. In the recent past, 

audio compression has been the dominant field in the field of audio signal 

processing with research papers emerging around the 1980s, authors from 

numerous research and development laboratories, including Erlangen-
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Nuremberg University and Fraunhofer IIS, AT&TBell Laboratories, and 

Dolby Laboratories, began presenting audio compression research papers 

at IEEE ICASSP and Audio Engineering Society conferences. Although most 

audio compression algorithms were designed as part of digital motion video 

compression standards, such as the MPEG series, they later became 

essential as stand-alone audio recording and playback technologies. 

Progress in VLSI technology, psychoacoustics, and efficient time-frequency 

signal representations enabled the development of a series of configurable 

real-time compression algorithms for audio and film applications (Spanias 

et al., 2006). In modern times the increasing importance of digital media 

and its management has accelerated growth in the technologies related to 

audio segmentation and classification. Audio classification however is a 

subset of a larger issue of management of audiovisiual data. Speech and 

speaker recognition are classic audio retrieval problems that have gotten 

decades of study attention. On the other hand, the fast-expanding online 

archives of digital music are bringing attention to broader issues of 

nonlinear browsing and retrieval, utilizing more natural methods of 

engaging with multimedia material, most notably music. Because audio 

records (unlike photos) may only be listened to in order, excellent indexing 

is essential for efficient retrieval. Listening to audio bits rather than 

watching video sequences can actually make it easier to traverse 

audiovisual content (Rao, 2008). Therefore within the context of this thesis 

and generally, it becomes essentially important to research and develop 

approaches for audio signal processing, classification, and retrieval.  

 

2.2.1 Audio signal characteristics  

Before we could develop or implement audio classification techniques, it's 

natural to first understand the properties of an audio signal, what it consists 

of and how can we use that information to extract features that will be 

meaningful for our objective of classification. The human auditory system 

is responsive to the sound laying between the frequencies of 20Hz to 

20kHz, and so we mostly deal within this range for our audio application 

purposes. Figure 2.1 shows how the human auditory system responds to 

sounds in the 20 Hz–20 kHz range. It's a graph that shows the relationship 

between sound pressure level (SPL) in decibels and audible frequency range 

(Miller, 1951; Sharma et al., 2020). The graph shows the absolute 

threshold of hearing for different types of sounds. For capturing the sound 

and reproducing it, a microphone speaker pair is ubiquitous. The sound 

captured by the microphone is a time waveform of the variation of the air 

pressure around it in the sonic field in which the microphone is present. 
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The electrical output of the microphone is sampled and quantized 

appropriately to produce a digital audio signal. Although any sampling 

frequency over 40 kHz would be sufficient to record the complete range of 

audible frequencies according to the Nyquist theorem (Landau, 1967), 

44,100 Hz is a popular sampling rate that originated from the necessity to 

coordinate audio with visual data in the past. 44.1 kHz sampled audio 

converted to 16-bit length is called "CD quality." We can broadly categorize 

sound into the following categories: speech, music, environmental sounds, 

and artificial sounds. Most of the interesting sounds change with time, that 

is, they are time-varying sounds and are made of either group of impulse 

sounds or evolving patterns. All of the attributes of a sound can be 

described by a combination of its temporal properties and spectral 

properties. The temporal properties of a sound can be described as the 

properties related to the duration, intensity, and amplitude changes of the 

sounds. Whereas spectral properties can be defined as the ones that are 

related to the frequency of the sound and its strength. These properties are 

obtained by converting the time-based signal into frequency based using 

fourier transform. Audio waveforms as mentioned earlier can be periodic or 

non-periodic. Periodic audio waveforms, with the exception of the basic 

sinusoid, are complex tones comprised of a fundamental frequency and a 

succession of overtones or multiples of the fundamental frequency. The 

color or the “timbre” of the sound is the result of the relation between the 

amplitude and phases of these frequency components. The aperiodic 

waveform on the other hand generally consists of non-harmonically linked 

sine tones and noise frequencies. Generally, the quality of the sound 

depends on the combination of these noise-like and tone-like frequencies 

(Rao, 2008). For example, frequencies in a musical piece since it have a 

melodic sequence of notes that are highly tonal for the most part with both 

fundamental frequencies and their variation varying over a wide range. 

Whereas speech on the other hand consists of tonal and noisy regions. 

Sound analysis by the human auditory system is carried out by frequency 

analysis of the sound to give inputs to our brain to perform higher cognitive 

tasks. The analysis compasses of evaluation of both the spectral and 

temporal features of the sound, as both of these features, are important 

for the perception and cognition of the sound (Moore & Linthicum, 2007). 

So, it is natural to represent the audio signals through a joint addition of 

time and frequency.  
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Figure 2.1: Absolute threshold of hearing (Sharma et al., 2020) 

 

2.2.2 Digital conversion of the analog audio signal 

Since an audio waveform is a mechanical wave created by the energy 

difference of the environment around the source, it is analog in nature. To 

process and analyze this waveform computationally it should be converted 

into a digital format. While analog signals are continuous in nature and 

when plotted can theoretically have an infinite resolution in terms of the 

amplitude and time of the signal as they are plotted on a real number axis. 

It is not the same with a digital signal, a very high resolution is not practical 

as it requires a huge amount of data storage. Therefore we need to convert 

an analog signal into a digital signal so that we can use it to manipulate or 

extract features and information about the sound. This conversion process 

also called analog to digital conversion(ADC) consists of two sub-steps: 

Sampling and Quantization. Sampling is nothing but acquiring of data 

points across an analog wave or a sound wave at specific points in time. A 

sampling of these data points is done on equidistant points in time and the 

distance between these points is called the sampling period and is denoted 

by 𝑇, consequently, the inverse of this period is called the sampling rate 𝑠𝑟, 

which gives us the information about the number of samples present in one 

second. Now after we have allocated these data points the next step called 

quantization is implemented. Quantization can be described as acquiring 

data points similarly to sampling but instead for the amplitude properties 

of the waveform. In this process, we have a fixed discrete number of 

amplitude values on the y-axis and then at each sample, we just quantize 

the value of amplitude to the closest discrete number, and we reproduce 

the analog sound waveform in a digital format. It is intuitive to understand 
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that the higher the quantization value and the sampling rate the higher the 

resolution of the digital waveform will be.  

 

2.2.3 Audio signal features and their extraction 

Audio features are descriptors of sound which provide us with different 

information about the sound. The goal of these features is to be compact 

and small in size in comparison to the audio signal and still highlight the 

characteristics of the signal. The features are chosen in such a way that 

they considerably reduce the size of a signal while still properly 

characterizing it. The simplified form of the signal is especially important in 

the context of this thesis as it reduces the computational and temporal 

complexity of ML algorithms, making them more appropriate for real-time 

applications. So, feature extraction is a signal dimension reduction 

procedure that makes the signal more amenable for machine learning 

algorithms (Sharma et al., 2020). Audio features as described by (Knees & 

Schedl, 2016) can be broadly categorized into 4 high-level categories:  

• Their Level of extraction 

• Their Temporal scope 

• The Musical aspect they describe 

• The Signal domain they are computed in 

The level of extraction of a feature is usually defined on a 3-level scale: 

Low-level. Mid-level and High-level. As we go from low level to high level 

the conceptual meaning of the feature to the user decreases and the 

closeness of the feature to the raw waveform increases. Low-level features 

are generally straightforward statistical summaries of the waveform 

derived directly from the raw audio waveform. At the highest level features 

are described on the basis of human perception. While low-level features 

can be features like amplitude envelop, energy, zero crossing rates, 

spectral flux, etc, mid-level features are pitch and beat related descriptors, 

note onset, fluctuation patterns, etc, and high-level features are features 

like instruments, chords, melody, tempo, rhythm, etc. 

Features based on their temporal scope can be distinguished as 

instantaneous, segment level, and global level features. Instantaneous 

features are calculated at a particular point in time, Since the temporal 

resolution of the human ear is around 10ms for most healthy persons 

(Madden & Feth, 2018), instantaneous features are mostly calculated in the 

range of at most a few tens of milliseconds. Segment level features are the 

ones that are calculated over a segment of audio and can range from 5 

seconds to sometimes up to 20 seconds, these features are the ones that 
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give us information about say a bar or a musical phrase. Global features 

describe the entirety of the audio or music sample in question like an entire 

song or an audio excerpt  

The features related to the musical aspect intuitively describe the musical 

characteristics of the sound, such as beats, rhythm, tempo, melody, pitch, 

timbre, instrumentation, etc  

Another way to classify music characteristics is by the signal domain in that 

they are calculated. An audio signal can be depicted in the frequency 

domain or in the time domain. The time-domain features indicate the 

amplitude of a signal at each point in time or in other words at each point 

in time when the sample was taken. The frequency-domain features are 

basically the product of the Fourier transform of the signal and give us 

information about the magnitude of the frequencies present in the signal. 

For an illustration of the signals in these two domains, consider the 

following figure 2.2.  

 

 

Figure 2.2: Time-domain representation (left) and frequency domain representation 
(right) (Knees & Schedl, 2016) 

 

The widespread research of audio features began in the 1950s, when 

communication engineers began investigating speech analysis, first 

focusing on time-domain features (Goldman-Eisler, 1958; Miller, 1951; 

Stevens, 1950). Researchers started concentrating on frequency domain 

features after the time domain features arose until the late 1950s. Time-

domain elements have always been significant in audio analysis and 

categorization. Pitch, formants, and other frequency domain properties 

have been developed and used in diverse applications to assess the 
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spectrum of audio signals even in modern research and commercial 

projects. Later in the 1960s, the combined time-frequency features 

extraction techniques started popping up (Gambardella, 1968, 1971; 

Rihaczek, 1968) and have been employed in audio signal processing tasks 

since then. In the recent past, deep features have been applied in audio 

signal processing in the areas of acoustic scene categorization speaker 

recognition, and audio-video analysis as well as other applications since the 

advent of deep learning (Li, Zhang, et al., 2018, 2018; Quinto et al., 2017). 

Even though different techniques have been developed and evolved over 

time, the underlying architecture for most of these techniques remains the 

same. To compute some kind of acoustical audio feature a basic pipeline 

has been implemented as shown in figure 2.3. The process starts with 

capturing the sound from the source using a microphone and converting 

the analog signal into a digital signal, also called analog to digital 

conversion (ADC) using sampling and quantization. As a consequence, the 

audio is represented using so-called pulse code modulation (PCM). In this 

process, the amplitude value is associated with each sample measured at 

a set time interval. Because these samples represent a single moment in 

time, alone they are too short to process and get meaningful information 

from, it can be understood if we take commonly used values for digital 

conversion of the audio signal. If a single sample is considered at a rate of 

44.1kHz and the time duration of a sample is given by, where 𝑇 is the time 

period and 𝑠𝑟 is the sampling rate 

𝑇 =  
1

𝑠𝑟
 

Then the duration of a single sample comes to be around 0.0227ms which 

is very low than the threshold of human perception of sound i.e, 10ms. In 

order to overcome this, we start by concatenating these samples into 

frames. Frames are nothing but audio chunks that are long enough to be 

perceivable. The duration of a frame is given by 

  𝐷𝑓 =  
1

𝑠𝑟
× 𝐾 

where 𝐷𝑓 is the duration of a frame 𝑠𝑟 is the sampling rate and 𝐾 is the 

frame size (no of samples in a frame) 
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Figure 2.3: Simplified representation of a feature extraction pipeline as shown by (Knees 
& Schedl, 2016) 

 

The entirety of the audio signal is thus represented by a number of frames. 

Using this frame representation, it is already possible to calculate time-

domain features. However, for computing frequency domain features an 

additional step called windowing is essential. Windowing is fundamentally 

applying a window function to each frame of the audio signal. This is done 

to reduce the problem called spectral leakage. If the starting and ending of 

a given frame are not periodic the Fourier transform of that frame results 

in the formation of artifacts, which are visible in the higher frequency region 

which is also called spectral leakage. To avoid this a very widely used 

windowing function called the Hann or Hanning function is implemented, 

which eliminates samples at each end of the frame making it periodic, and 

is given as 

𝑤(𝑘) = 0.5 (1 − cos (
2𝜋𝑘

𝐾 − 1
)) , 𝑘 = 1 … 𝐾   
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Here small 𝑘 is sample, 𝐾 is the number of samples in a frame. Moreover 

the windowed signal 𝑠𝑤(𝑘) is given as  

 𝑠𝑤(𝑘) =  𝑠𝑘 × 𝑤(𝑘), 𝑘 = 1 … 𝐾 

Here, 𝑠𝑘 is the signal and 𝑤(𝑘) is the Hann window function.  

 

 

Figure2.4: Windowing a 256 sample frame using the Hann function (Knees & Schedl, 
2016) 

 

After applying the window function and computing the fast fourier 

transform (FFT) of the time domain signal we convert the signal into the 

frequency domain, after which it becomes easy to calculate audio features. 

As each of these features is computed over single frames, they are finally 

combined in order to achieve the feature that represents the entirety of the 

audio segment or music segment under consideration.  

 

 

2.3 Machine learning and music 

 

The field of machine learning has developed a lot in recent times and has 

seen its application in some of the most widely used and powerful 

technologies of the 21st century, from voice recognition, shopping, music 

recommendation, self-driving cars, identifying diseases, etc. Machine 

learning is nothing but the capacity of a computational system to learn 

patterns and structures from large amounts of the dataset to make 

predictions and identify new data points. Because of its ability to learn and 
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execute patterns, machine learning has sparked a lot of interest in the 

world of music, where musicians and academics have used algorithms to 

create unique styles or have broken the rules to test the system's 

capabilities in unanticipated ways. Many a time musicians borrow the 

existing algorithm to use for pattern recognition tasks, whereas other times 

they use it in unexpected ways for example in music-making, sound design, 

or to establish new relationships between machines and musicians. There 

have been many applications of machine learning in music, (Fiebrink & 

Caramiaux, 2016) discusses machine learning as a creative music tool for 

music-making and explore it within the context of human-computer 

interaction. David cope’s early work (Cope, 1996) in algorithmic learning 

and recreation of western classical music was a pivotal study in music-

making using a machine learning algorithm. Rendering and creation of 

musical scores were explored by (Hiraga et al., 2004), and more machine 

learning approaches that are useful for music creation are investigated in 

the case study (Machine Learning Research That Matters for Music Creation, 

n.d.). In the recent times with the advent of deep learning techniques, 

music-making using the same has also been explored a lot (Sturm et al., 

2016) in which the authors have applied a deep learning model called long 

short term memory networks(LSTM) for music composition, more of such 

music creation applications have been explored in the survey (Briot et al., 

2019). Moreover, machine learning is also widely popular in music 

information retrieval for signal analysis, music recommendation, and mood 

and genre classification. Since the early days of the internet it has been 

studied a lot, (Tzanetakis & Cook, 2002) used rhythmic and harmonic 

contents and used supervised machine learning approaches such as 

Gaussian mixture models and k nearest neighbor classifier. Hidden Markov 

models which are extensively used for speech recognition are also used for 

classification purposes and are explored by (Scaringella et al., 2006; Shao 

et al., 2004). Support vector machines with different distance matrices are 

studied and compared (Mandel & Ellis, 2005)). With the developments in 

deep learning techniques, researchers have employed deep learning 

networks as well for the purpose of classification. (Li, Li, et al., 2018; Quinto 

et al., 2017; Raval, 2021). Most of these techniques follow a fairly standard 

pipeline with minor changes according to the technique applied. First, the 

pre-processing of the data in case its complex in nature is required. The 

complexity could be full quality audio files that are long in duration, or if 

the metadata or MIDI data is used then manipulation of these input points 

to make the next step of feature extraction optimum. After acquiring the 

reduced input, the process of feature extraction is implemented. These 

features sometimes also have high dimensionality or are not standardized, 
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so to reduce these anomalies dimensionality reduction techniques and 

standardization techniques are applied. After getting the simplified feature 

set, they are fed into the machine learning algorithm for training and 

learning processes. Now it depends on the type of algorithm used if they 

need to be given a testing set of data or not. It depends on if the algorithm 

is supervised, unsupervised or semi-supervised. After this, the predictions 

or the results are acquired.  The optimal balance to strike between machine 

learning and expert human knowledge is a crucial topic for MIR and 

machine learning researchers at each phase of the pipeline. In general, the 

balance for feature extraction has shifted toward expert knowledge, 

whereas the balance for inference has shifted toward machine learning. For 

example Researchers working on automatic chord estimation from audio, 

may know ahead of time that a useful feature to extract is the amount of 

sound energy in each pitch class (C, C sharp, D, etc. ), but when inferring 

actual chord labels from these so-called chroma vector features, they may 

prefer to let a machine decide where the thresholds between particular 

chords should be. (Burgoyne et al., 2015). Finally, it should be noted that 

the models applied in this thesis are Expectation-Maximization with 

Gaussian Mixture Models(EM-GMM) for the Barreira’s approach, and Self 

Organizing Maps(SOM) and Growing Heirarchical Self Organizing 

Maps(GHSOM). Detailed descriptiom of both the algorithms are provided in 

the later sections.  

 

 

2.4 Summary 

 

This section established the background information required to understand 

the systems employed in this thesis project. The section dwelled on 

important topics of Music Information retrieval, Audio signal processing, 

and machine learning and its application in music. These are the important 

topics that are heavily applied in this thesis project. The reader should by 

now be familiar with the essential concepts required to understand the 

following sections of the thesis, particularly what is MIR, how are audio 

signals analyzed and processed, and how machine learning is helping in 

various MIR topics including audio and music classification which is the main 

focus of this thesis.   
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The research question of this thesis is to study unsupervised machine 

learning techniques for the classification of musical genres, particularly 

sub-genres of electronic music that are similar to each other in terms of 

their musical elements. Finding answers to this question requires the study 

of unsupervised machine learning techniques as well as supervised machine 

learning techniques to be able to distinguish the process from one other. 

Along with this, a deep dive into audio signal processing is also required. 

As mentioned earlier there have been multiple approaches to the problem 

of music genre classification and new techniques keep getting developed. 

So, it is important to choose algorithms that are worth exploring and can 

give results that can be further implemented into real-world applications. 

A large part of the effort in this thesis has gone into the exploration of these 

techniques to find the optimum one and then implement them in the 

context of the research question. Additionally, another effort-consuming 

task has been to investigate the audio signal processing techniques and 

learn what audio features to extract and how to extract them. Since the 

implementation of these concepts is integral to the research process, the 

research method has been evaluated by emulating approaches widely 

popular in academia and commercially.  

Even though a significant portion of the workload behind this thesis has 

been the implementation of algorithms and software, it is not a software 

engineering project. The software emulated is not being studied in and of 

itself; instead, it is being utilized to generate data that may be used to 

reflect on the research topic. As a result, typical software engineering 

assessment metrics like performance efficiency, code quality, and stability 

aren't as useful in determining the thesis's success. The approaches were 

implemented to study and explore how well the algorithms perform and if 

they are viable for real-world applications. It would likely need to be 

implemented slightly differently if it were to be used in real-world scenarios. 

A possible continuation of this thesis could be to implement the approaches 

presented in the classification of genres for an audio streaming app and 

recommendation system. This continuation would resemble a typical 

software engineering project in which the topic of research could be the 

development of efficient tools for users to have easy access to a large 

archive of heterogeneous music pieces. Such a project would likely benefit 

3 Methods 
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from a redesign, focusing more on the user experience and software 

efficiency to use it in a real-world framework.  

 

 

3.1 Choosing the systems 

 

The approaches executed in this thesis are suggested by (Barreira et al., 

2011) and (Rauber et al., 2002). In which the first approach uses a model-

based approach based on a technique called Expectation-Maximization for 

Gaussian Mixture Model (EM-GMM), while later uses a technique based on 

Self-organizing maps (SOMs) and Grow ing Hierarchical Self-Organizing 

Maps (GHSOMs). Both approaches use low-level audio features to train the 

models. The first approach was chosen because this algorithm can be used 

for complex models with a lot of latent variables included. In this model, 

each cluster formed can have unconstrained covariance. So, the data points 

do not have a hard assignment to any particular cluster but have a 

probabilistic assignment, meaning the algorithm provides us with a 

probability of the data point belonging to a certain cluster and not just 

places a data point into a cluster that is also called as a hard assignment. 

This is useful for this research thesis, as the data points dealt with are sub-

genre of electronic music, and there can be multiple similarities between 

them and also have a subjective classification bias. Therefore, a 

probabilistic assignment helps in the way that if the data point is not 

assigned to one particular but is allocated to multiple clusters. And, if the 

user feels the allocation is not appropriate due to subjective bias, the model 

can be easily redesigned to perform according to the needs of the user. The 

second approach uses psychoacoustic models and self-organizing maps 

(SOM) for classification purposes. Being a decidedly stable and flexible 

model, the SOM has been employed in a wide range of applications, ranging 

from financial data analysis, via medical data analysis, to time series 

prediction, industrial control, and many more. It is generally used in 

applications that have a very high number of distinct data points. It 

basically offers itself to the organization and interactive exploration of high-

dimensional data spaces. Musical genres can be highly high dimensional 

and with new music added every day it can be used very efficiently for 

classification and retrieval purposes. However, due to its topological 

characteristics, the SOM, on the other hand, can also be utilized as an index 

structure in high-dimensional databases, allowing for scalable proximity 

searches. As a result, the SOM combines and makes available in a 
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convenient manner multiple use cases like classification, interactive 

exploration, and indexing and retrieval of information represented in the 

form of high-dimensional feature spaces, where exact matches are either 

impossible due to the fuzzy nature of data representation or the respective 

type of query, or at the very least computationally prohibitive, making them 

particularly suitable for musical databases. 

 

3.2 Database selection 

 

MTG-Jamendo is the name of the dataset utilized in this study (Bogdanov 

et al., 2019). This dataset was chosen as it features high-quality audio for 

55,701 entire songs, each lasting at least 30 seconds, and is in MP3 format 

with a quality of 320kbps and a sample rate of 44.1kHz. This dataset was 

created using music from the Jamendo platform, which is freely available 

under creative commons licenses (website). The tracks in the collection 

have been tagged with 692 tags that include genres, instrumentation, 

moods, and topics. All tags were provided by the artists that contributed 

music to Jamendo; however, the dataset's creators pre-processed them for 

tag purification.  This dataset has an archive of over 250 distinct musical 

genres including a number of sub-genres of music, along with multiple 

instrument tags and mood or theme-based tags, making it advantageous 

for the particulars of this project.  

 

 

3.3 Evaluation techniques 

 

The clustering or classification issue, from an intuitive standpoint, has a 

very obvious goal: accurately grouping a set of unlabeled data. The concept 

of "cluster" cannot be fully defined, despite its intuitive appeal, which 

explains the vast range of clustering methods that have been developed. 

Jon Kleinberg (Kleinberg, 2002) suggests three axioms that emphasize the 

features that a grouping issue should have to be regarded as "excellent," 

regardless of the technique employed to solve it. Scale invariance, 

consistency, and wealth are the three axioms. Scale invariance simply 

means when all distances between points are scaled by the factor defined 

by a constant, this axiom states that a clustering technique should not 

change its results. When the distances inside clusters decrease and/or the 
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distances between clusters rise, a clustering process is "consistent" when 

the clustering results do not alter. Richness or wealth implies that the 

clustering function must be able to create any arbitrary partitioning or 

clustering of the given data set. Given the above three axioms, Kleinberg 

proves the following theorem: For every 𝑛 >=  2, no clustering function 𝑓 

satisfies scale invariance, richness, and consistency altogether. Because 

the three axioms cannot be satisfied at the same time, clustering 

algorithms can be devised to violate one while satisfying the other two. 

When the number of clusters is known ahead of time, clustering algorithms 

may typically meet the characteristics of scale invariance and consistency 

by relaxing their richness. Certain algorithms may be tweaked to meet two 

of the three axioms while ignoring the third (e.g. simple linkage with 

different stopping criteria) (Palacio-Niño & Berzal, 2019). When examining 

clustering results, various factors must be considered to ensure that the 

algorithm's conclusions are legitimate (Kleinberg, 2002; Palacio-Niño & 

Berzal, 2019). They are but are not limited to  

• Determining if the data has a clustering tendency (i.e., whether a 

non-random structure exists). 

• Choosing the right amount of clusters 

• Evaluating the quality of the clustering findings in the absence of 

external data. 

• Using external data to compare the outcomes obtained. 

• Choosing between two sets of clusters to see which is superior. 

 

Clustering is considered to be good when it has a high separation between 

clusters and high cohesion within clusters (Handl et al., 2005), rather than 

dealing with distinct metrics for cohesion and separation, several metrics 

attempt to quantify separation and cohesion in a single measure. Based on 

these factors various evaluation metrics have been employed for evaluating 

the two approaches used in this research project are detailed below as 

described by (Palacio-Niño & Berzal, 2019). 

 

Silhouette coefficient: The silhouette coefficient is the most frequent 

method for combining cohesion and separation measures into a single 

statistic. It is given as :  

𝑆(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
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where 𝑎(𝑖) is the average distance of 𝑖 from all other points in its cluster 

and 𝑏(𝑖) is the lowest average distance of 𝑖 from all other points in its 

cluster. For example, if there are only three clusters A, B, and C, and 𝑖 

belongs to cluster C, 𝑏(𝑖) is computed by measuring 𝑖’s average distance 

from each point in cluster A, then calculating 𝑖's average distance from each 

and every point in cluster B, and picking the lowest value. The global 

silhouette coefficient is just the average of the particular silhouette 

coefficients for each example.  

It is defined in the interval [−1, 1] for each example in the data set. 𝑆(𝑖) 

being close to zero means that the points are uniformly distributed 

throughout the Euclidian space, negative values indicate that the clusters 

are mixed with each other and are overlapped and positive values indicate 

high separation between the clusters.  

 

Calisnki-Harabasz coefficient: The variance ratio criteria, often known 

as CH, is a metric based on the premise that clusters that are compact and 

well-spaced from one another are desirable clusters. The variance of the 

sums of squares of individual object distances to their cluster center is 

divided by the sum of squares of the distance between the cluster centers 

to determine the index. The better the clustering model, the higher the 

Calinski-Harabasz Index score. It is defined as  

𝐶𝐻𝑘 =
𝐵𝐶𝑆𝑀

𝑘 − 1
×

𝑛 − 𝑘

𝑊𝐶𝑆𝑀
 

Here, 𝑘  denotes the number of clusters and n denotes the number of 

records in the dataset. The 𝐵𝐶𝑆𝑀  (between cluster scatter matrix) 

determines cluster separation, whereas the 𝑊𝐶𝑆𝑀 (within-cluster scatter 

matrix) estimates cluster compactness. 

There are many more evaluation metrics that can be used to determine the 

efficiency of the clustering techniques like the Davies-Bouldin Index, F1 

score, Accuracy score or confusion matrix, etc. But for the purpose of this 

research, only the above two explained metrics are used.  
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This chapter presents a description of the two approaches to the problem 

of unsupervised music genre classification applied to the sub-genres of 

electronic music. They are approaches suggested by (Barreira et al., 2011) 

and (Rauber et al., 2002).  In this chapter, firstly the process of data 

acquiring, and data pre-processing is discussed, secondly, the features that 

are to be extracted are presented for both the approaches followed by the 

extraction pipeline. Finally, the implementation and in-depth description of 

both systems, including the algorithms applied in each of them are 

discussed.  

 

 

4.1 Data acquiring and pre-processing 

 

The dataset used in this project is called MTG-Jamendo dataset (Bogdanov 

et al., 2019). It contains audio for 55,701 full songs, with a duration of at 

least 30 seconds, is in the MP3 format, and has the quality of 320kbps at 

the sampling rate of 44.1kHz. This dataset is built using music publically 

available under creative commons licenses on the platform called 

Jamendo(website). The tracks in the dataset are annotated with 692 tags 

encompassing genres, instrumentation, moods, and themes that have been 

applied to the music in the dataset. All tags were given by the artists that 

submitted music to Jamendo, however, they were preprocessed by the 

dataset's producers with the purpose of tag cleansing. This dataset has 

been released recently and is a great addition for training and developing 

various models for all kinds of MIR research. This dataset was chosen as it 

has a very wide range of genres available, also it has 16,480 tracks in the 

category of Electronic genre alone with several sub-genres. Therefore a 

pre-processing of the dataset is essential to better suit the need of this 

project. The sub-genres chosen for this project are: “house”, “trance”, 

“funk” and “minimal”. Now since there are thousands of tracks present in 

the electronic genre category and a few hundred in each subcategory, it 

4 System description and 

Implementation 
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becomes crucial to extract a limited amount of tracks for the testing and 

training of the algorithm, therefore, to save computational expenses, 100 

tracks from each genre are selected randomly. Furthermore, to make it 

more optimum all the tracks are down sampled to 22,050 Hz and are turned 

into mono tracks. Finally, the full-length tracks are sliced into a duration of 

30 seconds clip is taken for extracting the features and standardization of 

duration, considering not every track has an equal duration. After the 

preprocessing is completed, the next step is to extract features from these 

audio samples. 

4.2 Feature extraction 

 

As mentioned earlier, features are the descriptors of the sound extracted 

from the audio sample, that acquire less storage space and dimensions, but 

still provide an accurate representation of the characteristics of the audio. 

In this section, features proposed by Barreira and Rauber for classification 

purposes are delineated, and some similar features may be seen between 

the two. The fundamentals discussed previously in the feature extraction 

techniques are applied here. The python libraries librosa, SciPy, and NumPy 

are used for the extraction. Features proposed by Barreira and Rauber are 

discussed in the following sections. The features proposed by Barreira are 

classified into two categories, the first one is called computational features, 

meaning they do not represent any musical information but only describe 

the mathematical analysis of the signal and give important information 

about the characteristics of the sound. The second category is called 

perceptual features, these features mathematically represent musical 

properties based on the human hearing system. To limit the context of this 

project, only computational features are considered. Computational 

features are widely employed and have been used in a number of research 

on automated music genre classification (Cataltepe et al., 2007; Koerich & 

Poitevin, 2005; Lidy & Rauber, n.d.; McKinney & Breebaart, 2003; 

Tzanetakis & Cook, 2002) and more. They used the features proposed by 

(Tzanetakis & Cook, 2002) which are, spectral centroid, spectral roll-off, 

spectral flux, Mel frequency cepstral coefficients, root mean square energy, 

and spectral bandwidth and are described below. Moreover, the spectral 

properties are calculated over each window of the spectrogram and a mean 

is taken of the calculated values to get one value for the entirety of the 

audio sample. The features suggested by Rauber are Specific loudness 

sensation also called Sone that shows the relationship between phon and 

sone values and Rhythm patterns per frequency band. To simplify the 

calculations and focus more on the model, another loudness descriptor 
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called RMS energy values is used instead of Sone values, along with this it 

is also paired with other widely used features like Mel frequency cepstral 

coefficients, zero-crossing rate, and power spectral value. 

 

4.2.1 Spectral Centroid (SC) 

The spectral centroid represents the center of gravity of the magnitude 

spectrum. In other words, the frequency band where most of the energy 

is concentrated (Knees & Schedl, 2016). This property is used to 

determine the "brightness" of a sound, and so is related to music timbre. 

The value of spectral centroid is the average frequency weighted by 

amplitudes, divided by the sum of the amplitudes, and is the individual 

centroid of a spectral frame, or 

𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =  
∑ 𝑘𝐹[𝑘] 𝑁

𝑘=1

∑ 𝐹[𝑘]𝑁
𝑘=1

   

Here, 𝐹 [𝑘] is the amplitude corresponding to bin 𝑘 in the discrete fourier 

transform (DFT) spectrum. 

  

4.2.2 Spectral roll-off 

It is defined as the frequency at which a certain proportion (cutoff), 

generally taken at 85%, of the spectrum's total energy, is stored. The roll-

off frequency can be used to distinguish between harmonic (below roll-off) 

and noisy sounds (above roll-off) (Peeters, 2004). 

∑ 𝑎2 (𝑓) = 0.85 ∑ 𝑎2 (𝑓)

𝑠𝑟/2

0

𝑓𝑐

0

 

Here 𝑓𝑐 is the spectral roll-off frequency and 𝑠𝑟/2 is the Nyquist frequency.  

 

4.2.3 Spectral flux:  

The spectral flux is a measure that indicates how quickly a signal's spectral 

content changes over time. The squared difference between the normalized 

magnitudes of the spectra of two subsequent short-term windows is used 

to calculate spectral flux, which measures the spectral change between two 

frames. It is therefore a frequency domain feature and is computed using 

the following equation, where 𝐷𝑡  is the frame by frame normalized 

frequency distribution in frame 𝑡 (Knees & Schedl, 2016).  
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𝑆𝐹𝑡 =  ∑(𝐷𝑡(𝑛) −  𝐷𝑡−1(𝑛))
2

𝑁

𝑛=1

 

 

4.2.4 Zero-crossing rate (ZCR): 

The zero-crossing rate is one of the simplest and easiest features to 

calculate. It measures the number of times the amplitude value changes 

its sign within the frame 𝑡 under consideration (Knees & Schedl, 2016). In 

other terms, it's the number of instances the signal shifts from positive to 

negative and vice versa, divided by the frame duration. The ZCR is 

calculated using the following formula: 

𝑍𝐶𝑅𝑡 =
1

2
× ∑ |𝑠𝑔𝑛(𝑠(𝑘)) − 𝑠𝑔𝑛(𝑠(𝑘 + 1))|

(𝑡+1)×𝐾−1

𝑘=𝑡×𝑘 

 

Where 𝑠𝑔𝑛(. ) is the sign function, i.e.  

𝑠𝑔𝑛[𝑥𝑖(𝑛)] =  {
1,   𝑥𝑖 ≥ 0

−1, 𝑥𝑖 < 0  
 

The ZCR can be understood as a metric for signal noise. In the event of 

noisy signals, for example, it frequently has greater values. It also has uses 

in speech recognition and the detection of percussive sounds, as speech 

signal typically has lower ZCR value and percussive sounds have higher 

ZCR values.  

 

4.2.5 Mel frequency cepstral coefficients (MFCC) 

The MFCC of a signal is a set of features that describes the overall shape of 

the spectrum. Successfully used by Davis and Mermelstein in speech 

recognition tasks for the first time in 1980 (Davis & Mermelstein, 1980), 

the MFCC coefficients characterize the cepstrum energies on a non-linear 

scale called the Mel-scale. Mel frequency scale can well reflect the non-

linear characteristics of the human auditory system. The cepstrum is the 

logarithm of the spectrum's Fourier Transform (or Discrete Cosine 

Transform DCT). The Mel-cepstrum is a cepstrum calculated using Mel-

bands rather than the Fourier spectrum, and the MFCC are the coefficients 

of the Mel cepstrum. This feature is very useful in speech recognition and 

is also used for determining the timbre of the sound. To calculate MFCC, 

the first step is to compute the DCT of the frame. Secondly, Mel-spaced 

filter banks are calculated, these are a group of triangle bandpass filters 

that simulate the characteristics of the human ear and are applied to the 
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spectrum of the speech signal. You then take the logarithm of this band 

and finally the DCT is taken to obtain the MFCC coefficient. The coefficients 

can be expressed as: 

𝐶𝑗 = ∑ 𝑋𝑗 cos (𝑗(𝑖 − 1)/2
𝜋

𝐾
)

𝐾

𝑗=1

 

Here 𝐶𝑗  is the MFCC coefficient, 𝑋𝑗 is the power spectrum of Mel frequency, 

𝑗 = 1, 2, 3, …, 𝐾 (𝐾 is the number of desired coefficients). 

 

 

Figure 4.1: [Top]signal spectrum and mid-ear filtered spectrum(dashed line)[middle]Mel 
band spectrum and MFCC spectrum(dotted line) [bottom]MFCC coefficients (Peeters, 

2004) 

 

4.2.6 Root mean square (RMS) energy 

Also called RMS level or RMS power, it is a time-domain feature and is used 

to describe the average amplitude value of the signal. It is used as loudness 

estimation and as an indicator for new events in the audio sample It is 

given by: 

𝑅𝑀𝑆𝑡 = √
1

𝐾
× ∑ 𝑠(𝑘)2

(𝑡+1)×(𝐾−1)

𝑘=𝑡×𝐾
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The amplitude of an audio transmission can be both positive and negative. 

The negative numbers would counterbalance the positive ones and the 

result would be zero if we calculated the arithmetic mean of a sine wave. 

This method provides no information about the average signal strength. 

Here's when the RMS level comes in handy. It uses a signal's magnitude as 

a metric for signal intensity, irrespective of if the amplitude is positive or 

negative. The magnitude is obtained by first squaring each sample value 

(to make them all positive), then calculating the signal average, and 

ultimately the square root operation. 

 

4.2.7 Bandwidth 

Bandwidth (BW), sometimes also called Spectral Spread (SS), is a 

frequency domain characteristic that is generated from the spectral 

centroid. The spectrum range of the signal's important components, i.e. the 

regions surrounding the centroid, is indicated by spectral bandwidth. It can 

be regarded as a deviation from the signal's mean frequency (Knees & 

Schedl, 2016). The average bandwidth of a music piece may serve to 

describe its perceived timbre. (An Introduction to Audio Content Analysis, 

2012). It is given as: 

 

𝐵𝑊𝑡 =
∑ |𝑛 − 𝑆𝐶𝑡| ∙ 𝑚𝑡(𝑛)𝑁

𝑛=1

∑ 𝑚𝑡(𝑛)𝑁
𝑛=1

 

 

4.2.8 Power spectral density 

The power spectral density (PSD) or power density (PD) or power density 

spectrum is the frequency domain distribution of the average power of a 

signal 𝑥(𝑡). The PSD function is indicated by 𝑆(𝜔). We may discover the 

range of power across which the signal frequencies operate by looking at 

the PSD, which indicates the power of various frequencies contained in the 

signal. The PSD profile is just a plot of power against frequency. 

𝑆(𝜔) =  lim
𝜏→∞

|𝑋(𝜔)|2 
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4.3 Barreira system description  

 

An overview of the system proposed by Barreira is shown in figure 4.2. 

After extracting the above-mentioned features suggested in the (Barreira 

et al., 2011) approach to clustering of music, a matrix of the features 

concerning the audio samples is created followed by standardization and 

feature reduction techniques. Finally, the clustering is obtained by the 

Expectation-Maximization with the Gaussian mixture model algorithm.  

 

 

Figure 4.2: System pipeline (Barreira et al., 2011) 

 

4.3.1 Feature matrix and Standardization 

First, we start by creating a matrix (𝑀) of the features whose columns 

correspond to characteristics and whose lines belong to music samples in 

the training set. Now to set all the features to equal value and scale, 

standardization of Matrix 𝑀 is performed, and a new matrix 𝑇 is created 

with the same dimension as matrix 𝑀, that is, both matrices are (𝑁 ×  𝐹 ), 

where 𝑁 is the number of samples in the training set and 𝐹 is the number 

of features. Now the standardized value of a feature present in the cell 𝑡𝑠,𝑓 

of this new matrix 𝑇 is given by, 

𝑡𝑠,𝑓 =
𝑚𝑠.𝑓 −  𝑚.,𝑓

√𝑣𝑎𝑟(𝑀𝑓)
 

Here, 𝑚.,𝑓 is the mean value of the 𝑓𝑡ℎ column of matrix 𝑀, that is, 
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𝑚.,𝑓 =
1

𝑁
∑ 𝑚𝑖,𝑓

𝑁

𝑖=1

 

and the variance of feature  𝑣𝑎𝑟(𝑀𝑓) is obtained from 

𝑣𝑎𝑟(𝑀𝑓) =
1

𝑁 − 1
∑(𝑚𝑖,𝑓 − 𝑚.,𝑓)2

𝑁

𝑖=1

 

 

4.3.2 Dimensionality reduction using Principal Component Analysis 

(PCA) 

After this standardization process, a dimensionality reduction technique 

called principal component analysis (PCA) is implemented. Its implemented 

to further reduce the number of features and obtain the ones that provide 

the best description of the samples and are most helpful for the process of 

classification. The earliest research published on PCA dates back to the 

early 1900s (Hotelling, 1933; Pearson, 1901). Its concept is 

straightforward: lower the dimensionality of a dataset while keeping as 

much 'variability' (statistical information) as feasible. To achieve this goal, 

PCA computes new variables called principal components which are 

generated as linear combinations of the original variables. The first principal 

component must have the greatest possible variance (i.e., inertia), so this 

component will 'explain' or 'extract' the majority of the data table's inertia. 

The second component is computed with the requirements of being 

orthogonal to the first and having the greatest achievable inertia as 

explained by (Abdi & Williams, 2010). In the same way, more components 

are computed.  

 

4.3.3 The Clustering stage 

After extracting the features, and performing dimensionality reduction and 

standardization, we have the inputs prepared for the clustering stage. At 

the clustering stage, Model-based Clustering Analysis (MBCA) as proposed 

by (Fraley & Raftery, 1998) is employed. This method makes no 

assumptions concerning the number of clusters, their structure, or their 

orientation. It displays the data using a variety of models, each with its own 

set of geometric features. This method uses a mixture model to describe 

data, with each element corresponding to a distinct cluster calculated 

similarly. The cluster formation is done using the EM (expectation-

maximization) algorithm for maximum likelihood, based on Gaussian 

mixture models.   
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As explained by (Fraley & Raftery, 1998), in model-based clustering, the 

data are considered to be created by a mix of underlying probability 

distributions, each of which represents a separate group or cluster.  To 

explain the clustering process, first Gaussian mixture models are delineated 

followed by the Expectation and Maximization steps to generate clusters.  

4.3.3.1 Gaussian Mixture Models 

A Gaussian mixture model (GMM) is a probabilistic model in which all data 

points are created by combining a set amount of Gaussian distributions with 

uncertain variables. In other words, the data points are not given hard 

assignments in one mode. Rather they are assigned to multiple models and 

are given a probabilistic value of their assignment for the corresponding 

model. As explained by (Guo et al., 2012) a Gaussian Mixture Model is a 

model that linearly combines various Gaussian distributions. The following 

is a representation of a GMM with K Gaussian components: 

𝑝 (𝑥𝑛) =  ∑ 𝑤𝑘 𝐺(𝑥𝑛|𝜇𝑘, 𝜃𝑘)

𝐾

𝑘=1

 

Here, 𝑥𝑛 = (𝑥𝑛1, 𝑥𝑛2, … , 𝑥𝑛𝐷) is an 𝐷-attribute vector that represents a data 

instance. It may be thought of as a point in the Euclidean space of 𝐷 

dimensions. 𝐺(𝑥𝑛|𝜇𝑘 , 𝜃𝑘) is a Gaussian probability density controlled by a 

mean vector 𝜇𝑘 = (𝜇𝑘1, 𝜇𝑘2, … , 𝜇𝑘𝐷)  and covariance matrix 𝜃𝑘 . Now the 

probability density function for a GMM can be mathematically defined by  

𝐺(𝑥𝑛|𝜇𝑘, 𝜃𝑘) =  
exp {

−1
2

(𝑥𝑛 −  𝜇𝑘)𝑇 𝜃𝑘
−1(𝑥𝑛 −  (𝑥𝑛 −  𝜇𝑘)) }

(2𝜋
𝑑
2 ×  |𝜃|𝑘

1/2
)

 

The probability function 𝐺(𝑥𝑛|𝜇𝑘, 𝜃𝑘) is also referred to as the 𝑘𝑡ℎ Gaussian 

component of the GMM. Finally, 𝑤𝑘  is the mixture coefficient of the 𝑘𝑡ℎ 

Gaussian component. The mixture coefficients 𝑤1, … , 𝑤𝑘  must be non-

negative numbers satisfying 

∑ 𝑤𝑘 = 1

𝐾

𝑘=1

 

To summarize, three-parameter sets drive a Gaussian mixture model: 

mixture coefficients 𝑤𝑘, mean vectors 𝜇𝑘 and covariance matrix  𝜃𝑘.  
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4.3.3.2 Expectation-Maximization for GMMs 

The method suggested in the research by  (Barreira et al., 2011) for 

parameter estimation of GMM is called the Expectation-Maximization 

algorithm, which is a popular way of parameter estimation in machine 

learning applications. The Expectation-Maximization for Gaussian Mixture 

Models(EM-GMM) algorithm iteratively evaluates the parameters of a GMM. 

We start by taking an initial parameter set randomly, then update it by 

alternating between the two Expectation-Maximization stages. In other 

words, we first start by randomly choosing some points as the center of the 

clusters, then for each data point, we calculate the probability of being in 

each cluster, this is called as Expectation stage. Lastly, using this 

probability we recalculate the means and variances of the clusters this is 

the maximization step. We do these iterations until a convergence criterion 

is met. The Expectation-Maximization steps are mathematically explained 

below. 

Expectation step: Using the current parameter value estimation that is, 

mixture coefficients 𝑤𝑘 , mean vectors 𝜇𝑘  and covariance matrix  𝜃𝑘 , 

compute a responsibility value 𝑟𝑛𝑘 for each data instance 𝑥_𝑛 with regard to 

each Gaussian component 𝑘. So the responsibility value 𝑟𝑛𝑘 can be defined 

as 

𝑟𝑛𝑘 =  
𝑤𝑘𝐺(𝑥𝑛|𝜇𝑘, 𝜃𝑘)

∑ 𝑤𝑗𝐺(𝑥𝑛|𝜇𝑗, 𝜃𝑗)𝐾
𝑗=1

 

Maximization step: We estimate new parameter sets that are updated, 

mixture coefficients 𝑤𝑘
+, mean vectors 𝜇𝑘

+ and covariance matrix  𝜃𝑘
+, 

𝑤𝑘
+ =

𝑁𝑘

𝑁
 

𝜇𝑘
+ =  

∑ 𝑟𝑛𝑘𝑥𝑛
𝑁
𝑛=1

𝑁𝑘
 

𝜃𝑘
+ =  

∑ 𝑟𝑛𝑘(𝑥𝑛 − 𝜇𝑘
+)(𝑥𝑛 − 𝜇𝑘

+ )𝑇𝑁
𝑛=1

𝑁𝑘
, 𝑤ℎ𝑒𝑟𝑒 𝑁𝑘 =  ∑ 𝑟𝑛𝑘

𝑁

𝑛=1
 

 

We iterate these steps until convergence is obtained. The MBCA approach 

suggested by (Fraley & Raftery, 1998) after following the creation of all 

models, MBCA employs the Bayesian Information Criterion (BIC), which 

gives an estimation of how good is the GMM in terms of clustering the data 

points. This is done to assess the evidence of clustering for each pair 

(model, number of clusters), with the bigger the BIC value, the stronger 
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the evidence for the pair. Following these steps, clusters are automatically 

formed.  

 

 

4.4 Rauber system description 

 

The system described by Rauber (Rauber et al., 2002) uses a widely 

popular neural network algorithm called Self Organizing Maps (SOM) 

(Kohonen & Somervuo, 1998), along with its extension called Growing 

Hierarchical - Self Organizing Maps (GHSOM) (Dittenbach et al., 2000). As 

mentioned in the feature extraction section, The features recommended by 

Rauber are specific loudness sensation, also known as Sone, which depicts 

the link between phon and sone values, and rhythm patterns per frequency 

band. Instead of Sone values, another loudness descriptor termed as RMS 

energy values is utilized to simplify the computations and focus more on 

the model, along with Mel frequency cepstral coefficients and the zero-

crossing rate which were also used in the Barreira approach, and the power 

spectral value is used as well. After extracting these features, they are fed 

into the SOM and GHSOM algorithms. Before we feed the features input 

into these algorithms, it is essential to understand the fundamentals of SOM 

and GHSOM, which are delineated in the following sections. 

 

4.4.1 Self Organizing Maps (SOM) 

The self-organizing maps were first proposed by Kohonen in the 1980s 

(Kohonen, 1982) and have been widely applied since then, and are one of 

the most distinguishable models of unsupervised artificial neural networks. 

Inspired by the biological models of neural systems from the 1970s, SOM 

uses an unsupervised learning technique and a competitive learning 

algorithm to train its network. SOM is used in clustering and mapping (or 

dimensionality reduction) techniques to map multidimensional data onto 

lower-dimensional data, making it easier to grasp complicated situations. 

It essentially does cluster analysis by mapping high-dimensional input data 

into a typically 2-dimensional output space while retaining as many 

topological links between the input data items as feasible. To put it another 

way, the SOM projects the data space onto a two-dimensional map space 

in such a way that related data items on the map are close to each 

other.(Dittenbach et al., 2000; Kohonen, 1982; Rauber et al., 2002) 
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The SOM is, in more formal terms, consists of two layers. The input layer 

is the first layer and has all the feature points, and the second one is the 

output layer which is also known as the output lattice. This output layer 

consists of a set of units 𝑖 which are ordered according to some topology, 

with a two-dimensional grid being the most prevalent choice. A model 

vector 𝑚𝑖 is assigned to each of the units 𝑖, having the same dimension as 

the input data. Starting with randomly initializing the weight to vectors, the 

mapping phases of SOM begin. Following that during each learning step 𝑡 , 

an input pattern 𝑥(𝑡) is randomly selected from the set of input vectors and 

presented to the map. Next, the unit showing the most similar model vector 

with respect to the presented input signal is selected as the winner 𝑐, where 

Euclidean distance is a popular choice for computing similarity. 

𝑐(𝑡) ∶ ||𝑥(𝑡) − 𝑚𝑐(𝑡)|| =  min
𝑖

{||𝑥(𝑡) − 𝑚𝑖(𝑡)||} 

Adaptation of the weights occurs at each learning iteration and is defined 

as a steady decrease of the difference between the input vector and the 

model vector's corresponding components. The degree of adaptation is 

governed by a monotonically declining learning rate, resulting in big 

adaptation steps at the start of the training session, followed by a fine-

tuning phase at the conclusion. Units in a time-varying and the steadily 

shrinking neighborhood surrounding the winner are also modified. This 

allows for a spatial organization of the input patterns, with similar inputs 

being mapped to locations in the grid of output units that are adjacent to 

one other. As a result of the self-organizing map's training process, the 

input patterns are ordered topologically. The neighborhood of units around 

the winner is described using a neighborhood kernel ℎ𝑐𝑖, which takes into 

account the distance between the unit 𝑖 under examination and the current 

learning iteration's winner unit 𝑐. A popular representation to define the 

structure of the neighborhood kernel is the Gaussian model, which ensures 

the units closest to the winning unit have the most adaptation of weight. It 

is common at the beginning stages to select the kernel large enough to 

cover a wide area of the units in the map, which is then gradually shortened 

in such a way that only the winner unit is adapted in the end and neighbor 

units remain more or less untouched.  

By combining the principles mentioned above, the learning rule can be 

given as:  

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝛼(𝑡) ∙ ℎ𝑐𝑖(𝑡) ∙ [𝑥(𝑡) − 𝑚𝑖(𝑡)] 
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Here, 𝛼  represents the time-varying learning rate, ℎ𝑐𝑖  represents the 

neighborhood updating with time, 𝑥 is the input pattern presented in the 

current iteration and 𝑚𝑖 defining the model vector assigned to unit 𝑖.   

A simple graphical explanation of the architecture of the self-organizing 

map is given by (Rauber et al., 2002) and is shown in the figure below. 

 

Figure 4.3: A simple depiction of SOM training and model vector adaptation (Rauber et 
al., 2002) 

The output space in this figure is made up of a square of 36 units, shown 

as circles, producing a grid of 6 × 6 units. One input vector 𝑥(𝑡) is chosen 

randomly and is mapped on the grid of the output units. The winner c with 

the greatest activation level is chosen. Consider the winning unit, which is 

illustrated in the figure as the black unit. The model vector 𝑚𝑐(𝑡) is then 

moved towards the input vector, as shown in the figure by the arrow in the 

input space. As a result of this adjustment, the unit 𝑐 will produce an even 

higher activation function with respect to the input pattern 𝑥 at the next 

learning iteration, 𝑡 + 1, because the unit’s updated model vector 𝑚𝑐(𝑡 + 1) 

is now nearer to the input pattern 𝑥 in terms of the input space. Aside from 

the winner, surrounding units are also subjected to alteration. The graphic 

depicts units that are subject to adaptation as shaded units. The level of 

adaptation, and hence the spatial breadth of the neighborhood kernel, is 

shown by the coloring of the different units. In general, units in close 

proximity to the winner are more firmly adapted, and as a result, they are 

portrayed in the image with a darker hue. In this way by rearranging the 

input vectors around the winning processing unit, the clusters are formed. 
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4.4.2 Growing Hierarchical Self Organizing Maps 

 

As described by (Dittenbach et al., 2000), the Growing Hierarchical Self-

Organizing map (GH-SOM) is based on the usage of a hierarchical structure 

with numerous levels, each of which includes a collection of separate Self-

Organizing Maps (SOMs). At the top of the hierarchy, one SOM is utilized. 

A SOM might be added to the next tier of the hierarchy for each unit in this 

map. This approach is replicated with the GHSOM's third and subsequent 

levels. We choose to utilize an incrementally expanding version of the SOM 

because one of its drawbacks is its fixed network design. This spares us the 

task of determining the network size ahead of time, as this is done during 

the unsupervised training phase. We begin with layer 0, which is made up 

of just one unit. The mean of all input data is used to establish the weight 

vector of this unit. The training procedure begins with a small map in layer 

1 of, say, 2 × 2 units that self-organizes using the usual SOM training 

method. 

To briefly summarize the SOM training method, a randomly chosen input 

pattern is supplied to the neural network. The distance between each unit's 

weight vector and the input vector determines its activation. The unit with 

the shortest distance, i.e. the winner, as well as a number of units near the 

winner, are modified. The difference between the vector's components is 

gradually reduced throughout the adaptation. After adaptation, the winner 

will resemble the input pattern more closely. This training procedure is 

performed for a predetermined number of iterations defined as 𝜆. After 𝜆 

training repetitions, the unit with the greatest difference between its weight 

vector and the input vector represented by this unit is chosen as the error 

unit. A new row or column of units is introduced between the error unit and 

its most different neighbor in terms of the input space. These new units' 

weight vectors are set to the average of their neighbors. 

The quantization error 𝑞𝑖  is a straightforward criterion for guiding the 

training procedure. It's determined as the total of the distances between a 

unit 𝑖 weight vector and the input vectors mapped onto that unit. It can 

also be used to assess a SOM's mapping quality based on the mean 

quantization error (MQE) of all units on the map. The better the map is 

trained, the lower the QE value. A map expands until its MQE is reduced to 

a fraction 𝜏1 of the 𝑞𝑖 of the unit 𝑖 in the hierarchy's previous layer. As a 

result, the map now depicts the data that was mapped onto the upper layer 

unit 𝑖 in more detail. 
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As previously stated, the GHSOM's basic architecture comprises one SOM. 

In the case of heterogeneous input data being mapped on a single unit, this 

design is enlarged by another layer. A relatively large quantization error 𝑞𝑖, 

which is over a threshold 𝜏2, identifies these units. As a percentage of the 

original quantization error at layer 0, this threshold fundamentally specifies 

the required resolution level of data representation. A new map will be 

introduced to the hierarchy in this scenario, and the input data mapped on 

the relevant upper layer unit will be self-organized in this new map. It again 

rises until its MQE is reduced to a fraction 𝜏1 of the quantization error 𝑞𝑖 of 

the upper layer unit in question. It should be noted that this does not always 

result in a balanced hierarchy. The hierarchy's depth will represent the 

unpredictability that should be expected in real-world data sets. Based on 

the desired proportion 𝜏1 of MQE minimization, we may end up with a very 

deeper hierarchy of tiny maps, a shallow structure with huge maps, or – in 

the worst-case scenario – simply one enormous map. When there are no 

more units available for expansion, the hierarchy's growth comes to an end. 

A graphical representation as presented by (Dittenbach et al., 2000)of the 

architecture of GHSOM is shown in figure 4.4 below.  

 

Figure 4.4: Architecture of a GHSOM (Dittenbach et al., 2000) 

 

The figure has one map in layer 1 consisting of 3 × 2 units and It gives a 

rough arrangement of the input data's key clusters. The second layer's six 

separate maps provide a more thorough look at the data. To offer adequate 

input data representation, two units from one of the second layer maps 

were further enlarged into third-layer maps. A global orientation of the 
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newly added maps may be achieved by employing suitable initialization of 

the maps added at each tier in the hierarchy depending on the parent unit's 

neighbors. As a result, comparable data will be discovered on surrounding 

map boundaries in the hierarchy.  

 

4.4.3 The Clustering stage 

After extracting the feature vectors that were mentioned above, a 

dimensionality reduction technique, principal component analysis, that was 

applied in the approach suggested by (Barreira et al., 2011) is applied here 

as well. After following these procedures, first, a SOM is trained and results 

are obtained. Followed by it GHSOM is trained to gain a hierarchical map 

interface to the music archive by feeding in the reduced feature data 

obtained by PCA. The GHSOM can be used to create flat maps, similar to 

traditional SOMs, or to build linear tree structures in addition to hierarchical 

representations. However, in this project, the experiments are done on the 

MTG-Jamendo dataset by choosing 4 different sub-genres of electronic 

music, and results are obtained. 
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This section presents the performance evaluation of the two approaches 

executed in this project. Firstly, the feature selection is reflected upon and 

the process of their extraction is reflected. Later the results and findings of 

the two approaches are described. As mentioned in the Methods section the 

evaluation is done based on two metrics Silhouette coefficient and the 

Calisnki-Harabasz coefficient. Moreover, 3D figures showing clustering are 

also presented. In the following sections, the experiments done and the 

results obtained are outlined for both the approaches 

Both of the approaches start by drawing out 100 songs of each genre 

“house”, “trance”, “funk” and “minimal” from the MTG Jamendo’s dataset. 

These songs are diced and limited to the first 30 seconds. Moreover, they 

are downsampled into 22050Khz quality and are turned into mono 

configuration. Following this procedure, they are sent to the feature 

extraction pipeline. Once in the pipeline, the computational features 

mentioned in the system description are evaluated. A graph between the 

features “RMS” and “MFCC” is plotted to visualize the distribution of the 

dataset for both the approaches and can be seen in figure 5.1 given below 

 

 

Figure 5.1: Dataset distribution based on audio samples RMS and MFCC values 

 

5 Experiments and Results 
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Additionally, the same distribution is also plotted in 3-Dimension for better 

visualization. This time the features selected are root mean square energy 

(RMS), zero-crossing rate (ZCR), and Mel frequency cepstral coefficients 

(MFCC). These features are chosen because of their accuracy in showing 

the audio characteristics like amplitude value, speech content, and Timbre 

of the sound respectively. This can be seen for both the approaches in figure 

5.2 given below 

 

 

Figure 5.2: Dataset distribution in 3D based on audio sample’s RMS, ZCR, and MFCC 
values 

 

Following this visualization, a standardization of the feature set and a 

dimensionality reduction technique, principal component analysis (PCA) is 

employed and a feature set with the most optimum two features is 

obtained. It should be noted that both the models are fitted and trained on 

the same data. 

 

5.1 Barreira’s model-based approach 

After getting the reduced and optimized datasets, the models are built and 

fitted. Then, the evaluation metrics are obtained. The silhouette coefficient 

for Barreira’s approach is computed to be 0.46. Note that the silhouette 

coefficient lies between -1 to 1. Where values close to zero indicate that 

the points are evenly dispersed across Euclidian space, whereas negative 
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values indicate that the clusters are mixed and overlapped, and positive 

values show that the clusters are well separated.  

Moreover, the Calisnki-Harabasz(CH) coefficient for Barreira’s method is 

calculated to be approximately 883.5. The higher the value of the CH 

coefficient the better the clustering algorithm is. By observing the values 

of both the evaluation metrics and matching them to other successful 

research projects using the same evaluation metrics, it is acknowledged 

that the approach has above-average performance and is very successful 

in clustering the sub-genres of electronic music provided. Moreover, a 

visual classification obtained by projecting the predicted labels on a 3D 

plane is given in the figure 5.3 below. In the figure, the distinction between 

the clusters is easily observed.  

 

 

Figure 5.3: Clusters generated by Barreira’s clustering approach (EM-GMM) 

 

5.2 Rauber’s Self Organizing Maps and the Growing 

hierarchical Self Organizing Maps 

 

In this approach first Self Organizing Maps are employed, followed by the 

proposed Growing Hierarchical Self Organizing Maps. Since both the models 

are fitted on the same data The silhouette coefficient for the Rauber’s 
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approach has a lower value in comparison to the Bareirra’s approach and 

is calculated to be approximately 0.25, while the Calisnki-Harabasz(CH) 

coefficient is 642.5 approximately.  

Moreover, the Growing hierarchical Self Organizing Maps (GHSOM) is 

evaluated based on the mean square error obtained after fitting the data, 

and the lower the error value the better the clustering is, and in the case 

of GHSOM the value is turned out to be 1.728 which is very high from zero 

error. Therefore it can be observed that with the current hyperparameter 

values GHSOM has performed poorly in comparison to the easier SOM as 

well as Barreira’s model-based approach. A significant overlap between the 

clusters is observed. This is also evident in the visualization of the clusters 

as can be seen in figure 5.4 given below 

 

 

Figure 5.4: Clusters generated by Rauber’s clustering approach (SOM) 

 

 

A comparison between the evaluation metrics of both approaches is given 

in table 5.1 below. It can be observed that with the current hyperparameter 

standards Expectation-Maximization with Gaussian Mixture Models is more 

accurate and efficient in the classification and clustering task in comparison 

to the Self Organized Maps and Growing Heirarchihcal Self Organizing 

maps. 
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 Silhouette 

coefficient 

Calisnki-

Harabasz(CH) 

coefficient 

Barreira’s Expectation-

Maximization with 

Gaussian Mixture 

Models(EM-GMM) 

 

0.46 

 

883.5 

Rauber’s Self Organizing 

Maps       (SOM) 

 

0.25 

 

642.5 

 

Table 5.1: Comparison between evaluation metrics of both the approaches 
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The objective of this research thesis was to explore unsupervised machine 

learning techniques for music genre clustering and classification and apply 

them to a much niche context, which is, the clustering of sub-genres of 

electronic music. These kinds of unsupervised approaches are 

advantageous because they do not need any information about the labels 

of data, thereby removing the laborious task of manually tagging the data. 

Therefore, this method is beneficial as it is totally free from the influences 

of human bias. Since the tagging of intricate data points such as musical 

genre can be very subjective, previously labeled data might not provide an 

accurate representation of the dataset needed to be classified. 

Furthermore, unsupervised techniques are very advanced in finding new 

patterns so they can be helpful in finding new genres that are very vague 

to be classified by humans, which is not achievable with supervised 

algorithms due to their more static nature. Additionally, it is important to 

note that there are several approaches that can be used for the problem of 

genre classification and only a few are explored in this short-term thesis 

project.  

For the categorization of music genres, several clustering and classification 

approaches have been devised and used. However, the two unsupervised 

classification techniques applied in this research paper are proposed by 

Barreira and Rauber. The first one uses a model-based approach that 

employs an algorithm based on a Gaussian mixture model whose 

hyperparameters are estimated by the Expectation-Maximization method. 

The latter approach uses Self Organizing Maps and its extension Growing 

Hierarchical Self Organizing Maps for the purpose of clustering and 

classification. The feature set fed into both of these algorithms comprises 

of low-level audio feature set, also referred to as computational features, 

which are mathematical representations of the characteristics of the audio 

sample and are therefore for the most part fortified from human biases. 

Moreover, these approaches are used because the algorithm proposed by 

Barreria is based on probabilistic assignment, therefore useful for the vague 

nature of genre distinction. On the other hand, Rauber’s approach is very 

6 Conclusions 
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useful in the classification and retrieval of large datasets, thereby useful for 

the ever-increasing music database and genre categories.  

It is observed that both the approaches are successful in clustering the 

dataset, with one performing better than the other. Barreira’s model-based 

approach has shown better performance with optimum desired values of 

the evaluation metrics. It is also evident in the visualization of the clusters 

generated. Moreover, Rauber’s approach has shown poor results for the 

clustering tasks, when employed with the current hyperparameters. The 

time limitation and scope made it increasingly difficult to employ any 

hyperparameter techniques for the computation of a better hyperparameter 

set. This limitation is also discussed in the later section. 

 

6.1 Limitations and Future Work 

 

With limited prior knowledge of machine learning and audio signal 

processing techniques, the core challenge of the project was to thoroughly 

understand the algorithms and audio features so that an optimum 

implementation can be achieved. With only one semester to conduct the 

research, these difficulties were magnified, resulting in a number of 

technical and methodological compromises. Although both the techniques 

were successful to a large extent in the classification of the given four 

different types of sub-genres of electronic music. It should be noted that 

the dataset fed into the system was still quite small and the approaches for 

future work, need to be tested on larger datasets with more data points as 

well as a greater number of subgenres of electronic music. Additionally, 

hyperparameter tuning and optimization are highly required to make the 

models and algorithms robust and perform even better. Moreover, applying 

them to sub-genres of other popular genres like Classical, Jazz, Rock, etc 

can also yield interesting results. Redesigning the approaches so that they 

can be deployed and migrated in a real-life application should be seen as 

an aspect of future development. Such that they can be used in distinct 

Music Information Retrieval concepts like a song retrieval system based on 

genres, or for building a personalized music recommendation system.  
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Appendix 
 

This appendix just acts as a placeholder for links to the two digital 

appendices: the source code repository and the concluding blog post. 

▪ Source code repository: https://github.com/abhishekneerr/Master-

Thesis 

▪ Blogpost:  

https://mct-master.github.io/masters-thesis/2022/06/02-abhishec-

thesis-unsupervised-classification.html 

 

https://github.com/abhishekneerr/Master-Thesis
https://github.com/abhishekneerr/Master-Thesis
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