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Problem Description

Articulated Intervention Autonomous Underwater Vehicles (AIAUVs) have emerged
from swimming snake robots and combine the slender, articulated body of snakes with
the propulsion provided by thrusters. The AIAUVs were recently proposed by the
NTNU snake robotics research group and are now industrialized by the spin-off com-
pany Eelume AS. The AIAUVs combine several benefits and capabilities of Remotely
Operated Vehicles (ROVs) and survey AUVs into one robot: They have advantageous
hydrodynamic properties and can travel long distances, like survey AUVs; they have
hovering capabilities and can perform light intervention tasks, like ROVs. Moreover,
their slender and flexible body provides access that supersedes previously existing
marine robots. AIAUVs therefore mitigate the shortcomings of conventional marine
robots, and thus enable autonomous operations for ocean sustainment and exploration,
including both observation and intervention operations in the same mission, e.g.,
mapping the seabed and collecting sediments, inspecting and repairing the net of an
aquaculture fish cage, and detecting and gathering plastic and other debris polluting
the oceans. These new marine robots are already well on their way towards disrupting
subsea operations.
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Problem definition:
How to avoid collisions along the whole body, not only between the manipulator end and
the environment, but between any point along the body and the environment? And how
to avoid collisions between the robot and itself?

In order for the author to get more familiar to the problem domain at hand and what
related work that has been done the thesis constitutes:

1. Literature study on

(a) collision avoidance for elongated robots, including whole body motion
planning and control.

(b) collision avoidance for floating-base robotmanipulators/vehicle-manipulator
systems with a special emphasis on underwater vehicle-manipulator sys-
tems.

2. Apply and/or extend one of the methods in 1) for of AIAUVs.

3. Implement and validate the proposed control method(s) in simulation for an
AIAUV.
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Abstract

The Articulated Intervention Autonomous Underwater Vehicles (AIAUVs) give access
to more efficient solutions to a wide range of tasks at sea and are especially suited
for missions in cluttered environments. To solve tasks safely and reliably, it is crucial
that the AIAUV neither collide with obstacles in the environment nor with itself. This
thesis provides a pipeline for external collision avoidance in 3-dimensional cluttered
environments. The pipeline consists of off-line global path planners, in form of a
Rapidly Exploring Random Tree (RRT) and an Artificial Potential Field (APF), which
search for the shortest collision-free path from a starting point to a desired target point
in the environment. The AIAUV is guided onto the planned paths by utilization of a 3D
Waypoint Line-of-Sight (WLOS) lookahead-based guidance method that incorporates
slow-regions for safer path following. To optimize the APF’s planned paths efficacy
in combination with the WLOS method, this thesis proposes two different filtering
methods: Bactracking Path planner (BPP) and Straight Lines of Constant Length (SLCL).
In order to follow the guided references from the WLOS method, PID-based autopilot
controllers in combination with feed-forward are utilized for reference tracking in surge,
pitch and heading, while PD-controllers stabilize the joints. The proposed pipeline was
shown to successfully guide the AIAUV from the starting point to the target point,
while simultaneously avoiding collisions.
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Sammendrag

Leddede, autonome undervannsroboter (AIAUVer) baner vei for økt optimalisering av
varierte marine operasjoner og er spesielt egnet for operasjoner i områder med be-
grenset fremkommelighet. For å løse ulike operasjoner på en sikker måte er det ytterst
nødvendig at undervannsrobotene unngår å kollidere med både seg selv og omkring-
liggende hindringer. Dennemasteroppgaven presenterer enmetode for å oppnå ekstern
kollisjonsunngåelse, ved å kombinere ulike off-line baneplanleggere, banefølgingsalgo-
ritmer og kontrollmetoder. To ulike baneplanleggingsmetoder benyttes for å generere
globale kollisjonsfrie baner i kjente, avgrensede 3-dimensjonelle områder fylt med
hindringer: Hurtig-Utforskende Tilfeldige Trær (RRT*) og Kunstige Feltpotensialer (APF).
Baneplanleggerne søker etter korteste kollisjonsfrie bane fra en startlokasjon til en
gitt endelokasjon i omgivelsene. AIAUVen styres til og følger den genererte banen
ved bruk av en veipunkt-siktlinje-basert 3-dimensjonal banefølgingsmetode (WLOS)
som benytter saktegående soner for sikrere banefølging. For å bedre kombinere APF-
metoden og WLOS-metoden benytter denne masteroppgaven to ulike algoritmer for
å filtrere banene fra APFen: Tilbakesporende Baneplanlegger (BPP) og Rette Linjer
med Konstant Lengde (SLCL). For å følge referansene fra WLOS-metoden benyttes
PID-baserte autopilot-kontrollere i kombinasjon med foroverkobling, mens leddene
stabiliseres av PD-kontollere. Den presenterte løsningen oppnådde å styre AIAUVen
kollisjonsfritt fra startlokasjonen til endelokasjonen.
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Chapter 1

Introduction

This introductory chapter starts by motivating the problem to be solved. Secondly, a
literature review is presented, containing previous work related to path following and
collision avoidance for autonomous vessels in general, but with special emphasize on
work related to UVMSs. Note that both Section 1.1 and parts of Section 1.2 originally
stems from the specializations pre-project conducted by the author, but as this thesis
directly builds on the pre-project they are reused here. The scope of the work to be done
in the thesis is then defined through a list of assumptions. Finally, the contributions of
the thesis are defined and elaborated.

1.1 Motivation

The ocean covers approximately 71% of the earth’s surface and is estimated to be 3.8
kilometres deep on average [28]. It’s fair to say that the ocean is huge, and it has been
a part of humans life throughout our history, now more than ever. The ocean has
provided food and minerals, and large oil reservoirs beneath the ocean floor has been
discovered and utilized as a main source of energy all over the world. In addition, the
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majority of all cargo delivered in the world is transported by ships. Even though we
have adequately conquered the ocean surface and proven our capability of gathering
invaluable mineral resources and food hundreds of metres below sea level, there are
still many undiscovered parts of the ocean that may show great potential. In fact, as of
today approximately 80% of the ocean remains undiscovered [5]. Furthermore, many
of the facilities at sea such as fish farms and oil rigs require periodically Inspection,
Maintenance and Repair (IMR). Both further exploration of the ocean and IMR of
existing facilities are very difficult or even impossible for a human being to execute
directly. It would be physically impossible for a human to dive several kilometres
down below sea level without getting crushed by the enormous pressure at that depth.
The utilization of submersible vessels carrying humans, such as submarines, solves
this problem, but being able to explore completely without risking human lives is
unquestionably the top priority. The same arguments could also be given regarding
the IMR tasks. Humans are not biologically built to operate effectively in the sea, and
they may use a lot of time on even a simple task such as inspecting damages of a fish
farm net installed offshore. This is where Underwater Vehicle-Manipulator Systems
(UVMS) greatly improve the possibilities of solving such tasks.

ROVs, seen in Figure 1.1, accommodates the desire of safe operations in terms of
putting no human lives at risk. They are commonly used for vessel hull inspection and
object detection to prevent subsea navigation hazards. They are also equipped with
manipulators, enabling light intervention tasks such as mounting hooks on submerged
infrastructure that needs to be surfaced or collecting sediments at the sea bed. Even
though they are very well suited to solve various subsea tasks they are still controlled
by humans and may not function optimal in terms of both reaction time, precision and
accuracy. To be able to remotely operate the ROVs they are connected to the control
room through a cable, bounding their maximum travelling distance and restricting
their motion in narrow submerged environments such as inside ship wrecks.

AUVs, illustrated in Figure 1.2, demand no real-time input or control from a human
operator, and thus do not have any physical connection to a control room in terms of a
cable. They can be equipped with many various sensors to be able to execute different
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tasks. This makes them suited for large distance surveys, where tasks could range from
looking for ship and plane wrecks to ocean mapping and measuring various states of
the ocean at different locations, e.g. temperature, pollution and ocean currents.

Figure 1.1: A ROV operating at the
sea bed. It has turned on its lights
to be able to see with its cameras
and interact with its manipulators.

Figure 1.2: An illustration of an
AUV scanning the sea bed to map
it or detect certain objects.

The AIAUVs enable further exploration of the ocean and improve the exploitation of
its discovered domain. Through an AIAUV’s capability of executing light-intervention
tasks it is able to interact with its environment in various ways, just like the ROVs.
Such tasks could for instance be inspecting a pipe line, a fish net or a ship wreck,
collecting sediments at and map the ocean floor. Additionally, the AIAUVs have also
inherited advantageous hydrodynamic properties from the AUV, making them able
to travel long distances. In particular, the AIAUV snake robot called Eelume, seen in
Figure 1.3, is very well suited for subsea operations. Its body is articulated, meaning
that the snake robot consists of an ensemble of links connected by joints, giving the
snake robot a large Degrees of Freedom (DOF) and thus the ability to change its shape
according to the task it needs to execute. As a result, AIAUVs are not only capable of
solving a great number of various tasks, they have the potential to solve them in an
optimal manner, both considering time efficiency and energy consumption.

While operating at sea all types of UVMSs need the ability to avoid collisions with
objects in order to be able to execute their main tasks. Collision avoidance is thus a



4 CHAPTER 1. INTRODUCTION

task by itself, one of great importance in terms of operational safety. The potential
colliding objects might be static objects that the UVMSs need to avoid while moving
from one location to another, or dynamic objects that may hit them while they are
standing still and inspect a vessel hull, gather minerals from the sea bed, or execute
any other task. The task of collision avoidance is of the utmost importance, otherwise
the UVMSs might not be able to execute their main goal, resulting in mission failure. In
worst case they might also get severely damaged by larger impacts with other objects.
The task of collision avoidance gets even more complicated for the Eelume snake robot,
due to its high number of DOFs. In addition to the necessity of being able to prevent
collisions with other objects it also needs to be aware of its own links positions relative
to each other in order to not collide with itself. The large DOF of the AIAUV makes it a
nontrivial task to decide how it should move to solve the collision avoidance task. This
motivates the need for developing methods for motion planning and control schemes
in order to prevent collisions, both with other objects and itself, that otherwise would
result in task failure and potentially make damage to the AIAUV and its surroundings.

Figure 1.3: An illustration of the Eelume AIAUV investigating a pipe line. Courtesy of
Eelume AS
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1.2 Literature Review

The collision avoidance task of mobile robots operating in cluttered, dynamically
varying environments has been a research topic for decades. There exist a lot of
useful results that is worth looking into to learn and take advantage of to achieve
collision avoidance for an UVMSs, not only limited to the collision avoidance research
of underwater vessels. Ideas and results from both autonomous land based vehicles
and Unmanned Aerial Vehicles (UAV) are also of great importance, as their solutions
are built with the same goal in mind - collision avoidance. This chapter will present
some earlier research on the matter that is relevant to the work presented in this thesis
and potentially future work to be further investigated.

In [25], a collision avoidance task of a multi-agent system of N wheeled robots, each
called an agent, is considered. The paper considers both collision avoidance between
the agents as well as between an agent and static obstacles. The problem is solved
by exploiting a differential game formulation, a game theoretic approach that enables
numerous objectives, which may or may not be in conflict with each other, to be
considered simultaneously. In [35], Wrzos-Kaminska et al. manage to prevent self
collisions of the different links of an AIAUV changing its configuration. The solution
builds on the differential game approach from [25] to be able to find the optimal control
input to a system of double integrator dynamics. The double integrator dynamics
are obtained through feedback linearization of the snake robot dynamics. To attain
robustness and deal with disturbances due to estimation errors, a mixed H2/H∞

control problem is solved, where the control input and the disturbance act as players
of a differential game. As stated in [24], the mixedH2/H∞ control has shown great
performance in certain situations where it is of interest to seek both optimality and
robustness. The utilization of mixedH2/H∞ control in [35] is based on [24], which
considers H2/H∞ for a general class of nonlinear systems.

A path planner and collision avoidance method utilizing an Artificial Potential Field
(APF) was developed in [15]. The APF is here used to plan a collision free path for an
underwater snake robot to follow, and the operational area consists of obstacles and
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a final target position that the snake robot is trying to reach. The main idea is that
that the obstacles and the target create a potential field. The obstacles repel the snake
robot while the target attracts it, potentially leading to a collision free path that the
snake robot can follow to reach its target. To be able to follow the derived path the
paper propose a number, N , of waypoints along the path that the snake robot should
pass on its way to the target, a method known as Waypoint Guidance (WPG). The
path thus consists ofN − 1 straight lines connecting two waypoints. In order to guide
the snake robot and make it follow the waypoints the paper utilizes the well-known
Line-of-Sight (LOS) lookahead-based guidance law. The control structure developed to
enable the path following consists of an outer-loop controller for the formation of the
reference joints for tracking the desired heading and an inner-loop controller to make
the joints follow their references. The downside of this solution is the fact that the
LOS guidance law does not consider ocean current disturbances, which may prevent
the snake robot from converging to the path. This could be solved by utilizing Integral
LOS (ILOS), which adds integral effect to the guidance law. This ILOS guidance law is
in fact added in [14], where a constant irrotational current is disturbing an underwater
snake robot following a path. Another fact that is worth mentioning is that the paper
only considers movement in a 2D-plane, while the snake robot eventually will be
operating in 3D-space.

Path following and obstacle avoidance are also considered in [17], where a set-based
guidance strategy is utilized for underwater snake robots conducting planar sinusoidal
motion. The idea of the guidance scheme is that the snake robot is set to follow a
straight path, but when it gets to close to an obstacle along that path, in other words
leave the set of where its movements are guaranteed collision free, its task switch to
follow a circular path around the obstacle in order to avoid it. When the snake robot’s
reference velocity vector points out of the circular path it follows, the snake robot may
switch back to the task of following the original straight line path. The limits of this
paper is that it only considers motion in the plane, as was also the case for [15], while
a 3D solution would be needed for most real life tasks of underwater vehicles. The
paper also assumes that the snake robot is not exposed to ocean currents, which is
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rarely the case in real life.

Implementation of path following and collision avoidance controllers in various clut-
tered 3D environments was done in a master thesis [11] for an underwater swimming
manipulator. In this work the LOS guidance law was extended from the 2D case to the
3D case and tested for both straight line and various circular-like paths. The collision
avoidance method of this master thesis is closely related to the solution from [17],
where the collision avoidance task is activated when getting closer to an obstacle
than desired. The difference is that this thesis considers multiple points on the robot,
Collision Avoidance Points (CAP), that may collide and need to be maneuvered in a
collision free manner, while in [17] a circle with a radius considering the length of the
snake robot as well as the radius of the obstacle defines activation of the task, triggered
by the distance between the overall centre of mass of the snake robot and the obstacle
centre.

In [18], a path planner based on Rapidly-exploring RandomTrees (RRTs) was developed
for efficiently solving single-query path planning problems for moving an object from
a start configuration to a goal configuration in a cluttered environment. The method
consisted of two RRTs that grows towards each other, one from start to goal and the
other from goal to start, which when connected to each other creates a path from the
starting configuration to the goal configuration. The algorithm was tested on a 6-DOF
PUMA arm and successfully generated collision-free motions in a 3D work-space.

The RRT algorithm was also utilized in [34], where they developed a specialized RRT
(sp-RRT) algorithm for follow-the-leader motion of hyper-redundant manipulators in
confined spaces. In a follow-the-leader strategy, the end effector moves along a path,
while the rest of the body follows the end effector’s motion, which is discussed in [6].
The method showed to efficiently generate a collision-free path that could be followed
easily and guarantee the final pose of the end effector. In addition, the algorithm was
adaptive to manipulators with different link segments.
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1.3 Assumptions

This section presents the assumptions the author has made in order to accommodate
the scope of this project. The assumptions are:

A1: The AIAUV is fully observable.

A2: The AIAUV has perfect knowledge of its surroundings, i.e knowledge about the
positions of the external obstacles in the 3-dimensional work-space it operates
in.

A3: The external obstacles are assumed to be static, but in general they can be both
static and dynamic.

A4: The AIAUV has the ability to use all its thrusters at any time instant.

A5: The AIAUV is only in transit from A to B, not performing any manipulation
tasks with its end effector.

A6: The AIAUV is not exposed to ocean currents.

A7: The AIAUV is passive stable in roll.

1.4 Contributions

This section presents and briefly elaborates on the contributions of this master’s thesis.
The main contributions are as follows:

C1: The implementation and validation of a Rapidly Exploring Random Tree (RRT)*
and an Artificial Potential Field (APF) for global off-line collision-free path plan-
ning in known cluttered 3-dimensional environments. The APF is implemented
with a random walk mode, giving it the ability to escape local minima and
converge to the target.
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C2: The development of a backtracking algorithm that divides a planned collision-
free path into a shorter piecewise linear path. The algorithm searches for the
smallest number of waypoints that still result in a collision-free path. This path
is further sent to the guidance and control systems of the snake robot for path
following purposes.

C3: The development of a WLOS guidance method that incorporates slow-regions
for safer path following behaviour in cluttered environments.

C4: A simulation study evaluation of the proposed path planners’ performance
in various cluttered environments and the path following performance of the
proposed guidance laws and control method.

1.5 Outline

The report is organized as follows: In Chapter 2, a general system architecture for
marine crafts is presented, which relates well to the snake robot. In addition, the snake
robot’s mechanical configuration and the physical dimensions used in the simulation
will be presented. In Chapter 3, the kinematic and dynamic models of the snake robot is
presented, and important aspects of kinematic and dynamic modelling are introduced.
Chapter 4 presents the task of planning a collision-free path in cluttered environments,
focusing on the APF and RRT methods. Chapter 5 gives an overview of the path
following task, focusing on the Waypoint Guidance (WPG) method and Waypoint
Line-of-Sight (WLOS) guidance laws. In Chapter 6, the motion control system of the
snake robot is presented. Chapter 7 presents the implementation and simulation of
the aforementioned path planning and control systems for path following tasks, and
discuss the simulation results. In Chapter 8, a conclusion of the work done throughout
the master’s thesis is presented, as well as related future work to be further investigated,
related to the topic of motion planning and control for collision avoidance of the snake
robot.
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Chapter 2

System Architecture and
Mechanical Configuration

As an introduction to the snake robot, this chapter will present a general overview of
the guidance, navigation and control system architecture of a marine craft, which is
well suited for the snake robot. Secondly, in Section 2.2, the mechanical configuration
of the snake robot is presented in order for the reader to get more familiar with its
various components and capabilities. The majority of Section 2.2 was first written by
the author of this thesis as a part of the specialization pre-project, and is restated here
as it is highly relevant for this thesis.

2.1 System Architecture

The system architecture shown in Figure 2.1 gives an overview of the different systems
a general marine craft consists of, which is mainly three systems; guidance, navigation
and control. In addition, a model of the marine craft is included, which is essential to

11
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calculate and predict how the craft will respond to various inputs from the control
system and for estimations of the various states of the marine craft, which for the
snake robot often relates to position, attitude and velocity of its end effector. The
highlighted systems in Figure 2.1 will be focused on throughout this thesis, which
are the guidance and control systems and the marine craft model. The other systems’
signals to these three, which relates to signals from the on-board sensors and the
navigation system, will in this thesis be assumed perfect, as stated in Section 1.3.

Figure 2.1: The system architecture of a general marine craft. Courtesy of [10].

2.2 Snake Robot Mechanical Configuration

The importance of understanding the physical limits and capabilities of a robotic
system is essential to be able to control it in a reasonable manner. First, this section
will present and briefly describe the different modules and joints the snake robot
consists of. Then, an example of the snake robot’s mechanical configuration will be
presented, which originates from [30], the paper that the simulation model used for
this thesis is based on.
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2.2.1 Link Modules and Joints

Serial link manipulators, often referred to as open-chain manipulators, are well known
in the field of robotics. The manipulators consist of rigid body links and actuated
joints, where each joint is connected to a parent and a child link [23]. There exists
various types of joints, where in this thesis only the revolute kind will be used for the
snake robot. The revolute joint allows rotational motion about the joint axis, meaning
that it has only 1 DOF [23]. An illustration of a revolute joint and its parent and child
links is shown in Figure 2.2.

Figure 2.2: Revolute joint and its parent and child links. Courtesy of [23].

The snake robot discussed in this thesis is a type of serial link manipulator, with n
cylindrical links and n− 1 actuated joints in general. Due to the fact that the snake
robot is not mounted to the ground but is free to move in 3D-space, it acts as a floating-
base manipulator. Each joint is actuated by a servo motor that is capable of exerting
a torque up to 10[Nm], and they have the ability to rotate ±65◦ about their axis of
rotation. Even though all the links are considered to be rigid bodies, the snake robot
in general is not, due to its shape-shifting ability. It can change its configuration by
moving its joint angles. Nevertheless, the snake robot can be seen as a rigid body when
the joints are stationary in a period of time.

The snake robot has 6 different module designs for the links, which all have different
functions:
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1. Base module:
This is the rear end of the snake robot, where the tether is connected for remotely
controlled operations. In addition, it is also mounted a camera on this module
for visualization of the snake robot’s surroundings.

2. Coupling module w/o thrusters:
This is a small link module between two revolute joints. The joint mounted on
the backside of the coupling link rotates about its Z-axis, while the joint mounted
at the front rotates about its Y-axis. The two joint variants are illustrated in
Figure 2.4, where also the limit of each joint is shown.

3. Double module back:
This module is equipped with 2 tunnel thrusters, one acting in the Z-axis direc-
tion of the link and the other in the direction of its Y-axis.

4. Center module:
This module is equipped with 3 thrusters, 2 acting in the direction of the link’s
X-axis and 1 tunnel thruster acting in its Z-axis direction.

5. Double module front:
This module is similar to the double module back, except that its tunnel thrusters
positions are interchanged compared to the ones in the double module back.

6. Front module:
This module is the head of the snake robot and is used for operating tools for
various intervention tasks, and is equipped with a camera and lights.

The modular design of the snake robot gives the ability to assemble several variants of
snake robots for different purposes. In the snake robot simulator model, based on [30],
the snake robot consists of 9 cylindrical links of radius 9cm and 8 joints. The links
properties are as shown in Table 2.1. All the mounted thrusters are in the simulation
capable of exerting a force up to 40[N]. The connection of the different links and joints
of the snake robot are visualized in Figure 2.5. In addition, an illustration of how the
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snake robot looks like in real life for the described configuration is shown in Figure 2.3,
which is the same as in [30].

Figure 2.3: A variant of the snake robot Eelume, used as basis for the simulation model.

(a) (b)

Figure 2.4: An illustration of the revolute joints of the snake robot and their physical
limits. (a) Illustrates the joint rotating about its Y-axis. The Y-axis is here pointing
into the sheet, following the right-hand rule. (b) Illustrates the joint rotating about its
Z-axis. The Z-axis is here pointing out of the sheet, following the right-hand rule.
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Link Properties
Link No. Length [m] Mass [kg] Thrusters Module Type

1 0.62 14.3 None Base Module
2, 4, 6, 8 0.10 6.0 None Coupling Module w/o Thrusters

3 0.59 12.7 2: Z, Y Double Module Back
5 0.80 9.8 3: X, X, Z Centre Module
7 0.59 12.7 2: Y, Z Double Module Front
9 0.37 7.8 None Front Module

Table 2.1: Module properties of the snake robot as it is used in the simulation.

Figure 2.5: The snake robot’s different modules and joints used in the simulation. The
numbered rectangles represent links and their module type. The ellipses represent the
joints, where Z and Y describe which axis the joints rotate about.



Chapter 3

Modeling

In order to make any robotic system execute different types of tasks we need to have a
model of its motional behaviour. There exist mainly two models, kinematic and kinetic,
where the kinematic aim to describe the motion of a system without considering the
forces that causes the system to move. Kinetic models, or also called dynamic models,
describes the motion of the system while also accounting for the forces acting on the
system. This chapter will thus present the kinematic and dynamic modeling needed to
describe and further control the motion of the snake robot, which relates to the system
architecture as shown in Figure 3.1.

3.1 Modeling Prerequisits

Before introducing the different parts of the kinematic modeling it is important to
establish some ground concepts that the modeling directly builds on. This relates to
reference frames, pose and velocity of the robotic system, as well as its configuration
and state space representation. In addition, rotation matrices and homogeneous
transformation matrices will be presented. Some of the material in sections 3.1.1, 3.1.2
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Figure 3.1: Snake robot model in the system architecture. Courtesy of [10]

and 3.1.6 is restated from the specialization pre-project.

3.1.1 Reference Frames

Reference frames are important in order to reason about a point or a rigid body’s
position, orientation and motion in space. The reference frames used in this thesis are
cartesian coordinate systems, consisting of an origin and three orthogonal unit axes,
regularly denoted

x = [1, 0, 0]T y = [0, 1, 0]T z = [0, 0, 1]T (3.1)

For ease of notation, frame(s) will from now on mean reference frame(s), unless
otherwise specified. It is common to define an inertial world frame, which is a non-
accelerating frame where the Newtonian laws of motion applies. There exist numerous
ways to define such an inertial frame, where in this thesis the NED-convention is used,
based on [10]. NED stands for norh-east-down, and the axes are defined as
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• xI - axis points towards true North

• yI - axis points towards East

• zI - axis points downwards, normal to the Earth’s surface

following the right-hand-rule. The NED inertial frame is from now denoted FI . The
base frame of the snake robot, denoted Fb, is located at the very back of the snake
robot’s body. Each link has a reference frame, denoted Fl, attached to its Centre of
Mass (CM), where l = 1, ..., n. The joints frames are denoted F̄j , where j = 1, ..., n−1,
while the end effector frame is denoted F̄ee. An illustration of the snake robot and its
frames is shown in Figure 3.2.
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Figure 3.2: The inertial frame and the various frames related to the snake robot. The
end effector is illustrated as a gripper, but could in general be any kind of end effector.
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3.1.2 Pose and Velocity

Every rigid body could be, at any time instant, described by the position and orientation
of its Coordinate Origin (CO) relative to a given frame. Also the rigid body motion,
including linear and angular velocity, from time tk to tk+1, can be relatively described
between two frames. These definitions are extensively discussed for motion relating
a body-fixed frame and an inertial frame in [10], so only a main recapitulation is
presented here.

The pose and velocity of a rigid body wrt to FI are denoted

η =

pIIb
ΘIb

 ∈ R6, νbIb =

vbIb
ωbIb

 ∈ R6 (3.2)

where b denotes a rigid body with body frame Fb attached to it, defining its CO. In
terms of the snake robot the base frame will be the body frame of the whole robot. The
pose vector η consists of the position vector pIIb =

[
xI yI zI

]T and the orientation
vector ΘIb = [ϕ θ ψ]T , which express the position of the body and its orientation
in world frame coordinates. The velocity vector νbIb consists of the linear velocity
vector vbIb = [u v w]T and the angular velocity vector ωbIb = [p q r]T , which are all
expressed in the body frame. Note that the former definition utilize an euler angle
parametrization of the orientation, which is singular for θ = ±π

2 [rad]. An alternative
singular-free parametrization of orientation is possible by utilizing unit quaternions,
which is defined as

qIb =
[
η, ϵT

]T
, ||qIb || = 1, η ∈ R and ϵ ∈ R3 (3.3)

resulting in the pose and velocity vector

η =

pIIb
qIb

 ∈ R7, νbIb =

vbIb
ωbIb

 ∈ R6 (3.4)

For ease of notation, positional vectors and velocity vectors can be assumed expressed
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in world frame and body frame, respectively, when no superscript is added. In addi-
tion, quaternions will always be denoted with sub- and superscript, as was done in
Equation (3.3), in order to distinguish them from joint angles.

For an articulated robot, such as the snake robot, there are also the need for describing
the pose and the velocity of its joints. The joints are rotational about 1 axis and thus
only have 1 DOF, resulting in a joint j being represented by an angle qj ∈ R and
angular velocity q̇j ∈ R. Hence, the overall joint angles and angular velocity vectors
are denoted q = [q1 q2...qn−1]

T and q̇ = [q̇1 q̇2...q̇n−1]
T , respectively. Augmenting

the rigid body pose vector, η, and velocity vector, νbIb, with the joint angles and angular
velocities, respectively, results in a final pose and velocity representation of the snake
robot, denoted

ξ =

η
q

 ∈ R6+(n−1) or R7+(n−1), ζ =

νbIb
q̇

 ∈ R6+(n−1) (3.5)

depending on whether euler angles or unit quaternions are used to represent the
orientation of the base.

3.1.3 Configuration Space

The configuration space, hereafter denoted C-space, is a complete specification of the
location of every point on the snake robot [31]. By knowing the pose of the base link
and joint angles of the snake robot it is possible to determine the location of any point
along the snake robot. The C-space is thus specified by the snake robot’s n+ 5 DOF,
which shows that ξ from section 3.1.2 is in fact representing the snake robot’s C-space.

3.1.4 State Space

The state of a manipulator, here denoted x, is a set of variables that, together with
a description of the manipulator’s dynamics and actuating inputs, are sufficient to
determine any future state of the manipulator [31]. The state space, hereafter denoted
S-space is thus the set of all possible states of the system. The snake robot’s dynamics
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are Newtonian, meaning that it can be described by generalizing newtons second law,
F = ma. The state of the snake robot can be specified by the C-space together with
the linear and angular velocity of the base link and the joint velocities. This results in
the S-space dimension of the snake robot being 2(n+ 5), which shows that the state
vector in the S-space and its derivative with respect to time are given as

x =

ξ
ζ

 , ẋ =

ξ̇
ζ̇

 (3.6)

3.1.5 Rotation Matrix

Rotation matrices are widely used in the field of robotics to represent a body’s ori-
entation wrt a fixed frame or to change the frame in which a vector or a frame is
represented [23]. In this thesis the fixed frame will be FI and a body could be the
snake robot or an obstacle located in the work-space. Rotation matrices consists of 9
elements, denoted

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (3.7)

where each column represents a unit axis. Thus, the matrix could be written more
compactly asR = [x̂, ŷ, ẑ]. In addition to the fact that the columns are of unit length
they must also be orthogonal to each other, which leads to the rotation matrix being
subject to 6 constraints, mathematically represented as

||x̂|| = 1, ||ŷ|| = 1, ||ẑ|| = 1 (3.8)

x̂ · ŷ = 0, x̂ · ẑ = 0, ẑ · ŷ = 0 (3.9)

which may be more compactly represented by the expression

RTR = I3×3 (3.10)
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Note also that by the definition that the frames follow the right-hand-rule, resulting
in det(R) = 1, the rotation matrix is a part of the special orthogonal group SO(3), a
group of matrices satisfying

SO(3) := {R ∈ R3×3 | det(R) = 1,R−1 = RT }

The rotation matrix that describes the orientation of a frame Fk wrt a frame Fi is
denotedRi

k , where the super- and subscript is understood as Rto
from. Thus, a general

vector that is described in frame Fk, denoted vk, can be described in Fi by pre-
multiplying Ri

k . Mathematically this is formulated as

vi = Ri
kv

k (3.11)

To go back to represent vi in Fk

Rk
i v

i = vk (3.12)

whereRk
i =

(
Ri
k

)−1
=
(
Ri
k

)T . If the origins of the two frames do not coincide, we
may also need to express a translational relationship between the two frames, which
is done by utilizing a homogeneous transformation matrix.

3.1.6 Homogeneous Transformation Matrix

Now that the reference frames and the rotation matrix have been established, and a
definition of the pose and velocity vectors of the snake robot have been introduced, it
is necessary to be able to transform vectors expressed in one frame, Fk, to another,
Fi, where the origin of the two frames do not coincide. The position and orientation
of a rigid body is, as discussed in section 3.1.2, expressed in world frame coordinates,
while velocities are expressed in the frame of the body that experience the velocity. To
compute the transformation from one frame to another one utilize a homogeneous
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transformation matrix, generally denoted

Hi
k =

 Ri
k tiik

01×3 1

 ∈ SE(3), (3.13)

where the special euclidean group SE(3) is defined as

SE(3) := {H ∈ R4×4 |R ∈ SO(3), tiik ∈ R3}

The rotation matrix Ri
k is as described in Section 3.1.5 and tiik is a translation vector

indicating the distance from frame Fk wrt to Fi, expressed in Fi-coordinates. To
describe the opposite transformation, i.e the transformation from i to k, the rotation
will be reversed, and the translation goes in the opposite direction and is expressed in
k instead of i

Hk
i =

(Ri
k)
T −(Ri

k)
T tiik

01×3 1

 =

 Rk
i −tkik

01×3 1

 (3.14)

3.1.7 Angular Velocity and Twists

The rotation matrices and homogeneous transformation matrices will in general be
time-varying for a dynamic system, due to the fact that the different frames attached
to the snake robot will move relative to each other and the world frame. In order to
describe a dynamic system’s relative angular and/or linear velocities wrt to various
frames we need to find a relationship between the velocities and the time-varying R

and H .

Angular Velocity
The body-fixed angular velocity, ωbIb, which was introduced in Section 3.1.2, and the
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spatial angular velocity, ωIIb, are shown to relate toRI
b as [9][

ωbIb×
]
= Rb

IṘ
I
b (3.15)

and [
ωIIb×

]
= ṘI

bR
b
I (3.16)

Here, the [.×]-operator transforms a vector into its skew-symmetric matrix represen-
tation, which for a 3-dimensional vector a = [a1 a2 a3]

T is computed as

[a×] =


0 −a3 a2

a3 0 −a1
−a2 a1 0

 (3.17)

Twists
The combined linear and angular velocity vector, ν , which was introduced in Sec-
tion 3.1.2, is often referred to as a twist. In general, a twist can be re-written in matrix
form, as is done in [32]

[ν∧] =

[ω×] v

01×3 0

 ∈ R4×4, (3.18)

where [.∧]-operator is used to transform a velocity vector of dimension R6 into its
twist matrix representation. The body-fixed and spatial-fixed twists are defined in the
same manner as for the angular velocity case, respectively as

[
νbIb∧

]
= Hb

IḢ
I
b (3.19)

and [
νIIb∧

]
= ḢI

bH
b
I (3.20)
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To retrieve the velocity vector from the twist matrix there exists the adjoint action of
the homogeneous tranformation matrixHI

b , written as Ad
(
HI

b

)
: R6 → R6 and in

[30] defined such that [
Ad
(
HI

b

)
νbIb∧

]
= HI

b

[
νbIb∧

]
Hb

I , (3.21)

where it is also stated that for HI
b the adjoint action explicitely looks like

Ad
(
HI

b

)
=

 RI
b [tIIb×]RI

b

03×3 RI
b

 ∈ R6×6 (3.22)

and

Ad
(
HI

b

)−1

= Ad
(
Hb

I

)
=

 Rb
I −Rb

I [t
I
Ib×]

03×3 Rb
I

 (3.23)

From eqs. (3.19), (3.20), (3.22) and (3.23) it is seen that the adjoint operator can be used
to express velocities in different frames, following the explicit relationship

νIIb = Ad
(
HI

b

)
νbIb (3.24)

and
νbIb = Ad

(
Hb

I

)
νIIb (3.25)

3.2 Kinematics

Kinematics is used to describe the relation of a system’s configurations and its velocities,
which for the snake robot means its joint angles and pose of the base link. The model
will enable motion planning through prediction of its configuration trajectories due
to velocity of its base and joint angles in the configuration space. Having introduced
the reference frames, pose and velocity of the snake robot and the transformation
matrix relating the different frames, this section stitch these concepts together to
obtain the kinematic model for the snake robot. For a fixed-base robotic manipulator
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this mainly consists of two parts: forward and differential kinematics of its joints.
For a floating-base manipulator, which the snake robot is, there is also the need to
relate the kinematics of the base expressed in both the body frame and the world
frame. This section will thus introduce these three concepts, and is based on [32] and
[30]. Note that the forward kinematics presented in Section 3.2.1 is restated from the
specialization pre-project.

3.2.1 Forward Kinematics

The concept of forward kinematics, also called direct kinematics, of a robotic system
with joints is that by knowing the joint angles vector q one can iterate through all
the attached frames of different parts of the robot. This is done by utilizing the
transformation matrices Hi

k defined in section 3.1.6. What forward kinematics is
mostly used for is to find the pose of the end effector in the world frame [23], but along
the way it also gives the other joints pose relative to the world frame.

The base frame of the snake robot, Fb, is related to the world frame, FI , through a
transformation matrix HI

b , which analogously to the definition from section 3.1.6
gives

HI
b =

 RI
b tIIb

01×3 1

 (3.26)

The base frame and the first joint frame, F̄1, are related by the transformation matrix
Hb

j=1. The relationship between joint j and its following joint j + 1 follows the same
form through the entire snake robot’s body. Thus, the transformation matrix defining
the relationship between joint frame F̄j and F̄j+1 is expressed as

Hj
j+1 =

Rj
j+1 tjj(j+1)

01×3 1

 , (3.27)

where tjj(j+1) is a known constant length from the joint frame F̄j to the joint frame
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F̄j+1. This length is in fact the length of the link between joint j and j + 1, which
expressed in frame F̄j will be aligned with the x-axis of the frame. This means that
the translation expressed in F̄j-coordinates is given as

tjj(j+1) = lle, (3.28)

where e = [1 0 0]T is the basis vector for the x-axis in frame F̄j and ll is the length of
the following link l. In terms of a transformation matrix this translation can be written
as

Hj
j′ =

I3×3 lle

01×3 1

 , (3.29)

where F̄j′ is the intermediate frame after the translation. In addition, joint j + 1

only have 1 DOF, meaning that the orientation of frame F̄j+1 with respect to the
intermediate F̄j′ will only depend on one variable, the angle qj+1. This rotation
transformation in terms of a transformation matrix is written

Hj′

j+1 =

Rj′

j+1 03×1

01×3 1

 , (3.30)

resulting in the transformation between joint frame F̄j and F̄j+1 expressed as

Hj
j+1 = Hj

j′H
j′

j+1 =

I3×3 lle

01×3 1

Rj′

j+1 03×1

01×3 1

 (3.31)

To express the pose of the end effector related to the world frame the procedure is to
multiply all the transformation matrices from the world frame and iterate through the
base frame and all the joint frames of the snake robot’s body.

HI
e = HI

bH
b
e =

 RI
b tIIb

01×3 1

 Rb
e tbbe

01×3 1

 (3.32)
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In the special case of the snake robot in transit from A to B, with all joints following a
reference angle of 0, the transformation matrixHb

e only contains translations. It can
be rewritten as

Hb
e =

I3×3 tbbe

01×3 1

 , (3.33)

where tbbe = [Sl 0 0] and Sl is the total length of the snake robot. This is a relevant
simplification of the forward kinematic if the snake robot is assumed to only move as
an AUV.

3.2.2 Differential Kinematics

The snake robot is a dynamic system with capabilities of moving not just its body
frame relative to a world frame, but also different parts of its body relative to each other.
Thus, the homogeneous transformation matrices that relates the snake robot to the
world frame and different links to each other are time varying. Differential kinematics
relates the velocities between the different links of the snake robot, utilizing these
time varying homogeneous transformation matrices.

Differential Kinematics Between Links
As stated in [32], the body-fixed velocity of the base frame, νbIb, is related to the
transformation matrix HI

b by the twist matrix representation

[
νbIb∧

]
=
(
HI

b

)−1
ḢI

b =

[ωbIb×] vbIb

01×3 0

 ∈ se(3) (3.34)

The same way as for the base link the body-fixed velocity of link l of the snake robot
wrt the world frame FI can be expressed in F̄j , the frame attached to joint j, having
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link l as its child link. This relationship is expressed by[
νjIj∧

]
=
(
HI

j

)−1

ḢI
j

=
(
Hb

j

)−1 (
HI

b

)−1 (
ḢI

bH
b
j +HI

bḢ
b
j

)
= Hb

j

−1 [
νbIb∧

]
Hb

j +
[
νjbj∧

] (3.35)

where the composite transformation relationship HI
j = HI

bH
b
j is used, and the

differentiation result follows from the product rule. The first addend of the last line
in Equation (3.35) is a similarity transform of the base link body-fixed twist in order
to express the twist in F̄j . Then, the transformed twist is added to the body-fixed
twist of link l wrt Fb, expressed in F̄j , resulting in the complete body-fixed twist
representation of link l wrt the world frame, expressed in F̄j . The velocity twist of link
l from Equation (3.35) in vector form can be found by utilizing the adjoint mapping in
Equation (3.23) from Section 3.1.7

νjIj = Ad
(
Hj

b

)
νbIb + νjbj (3.36)

and the same relationship can be utilized to find the body-fixed velocity of the end
effector

νeIe = Ad
(
He

b

)
νbIb + νebe (3.37)

Furthermore, the second addend in both eqs. (3.36) and (3.37) can be computed by
utilizing the relationships

νjbj = Ad
(
Hj

b

)
νbbj = Ad

(
Hj

b

)
J j q̇ (3.38)

and
νebe = Ad

(
He

b

)
νbbe = Ad

(
He

b

)
Jeq̇ (3.39)
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where J j and Je are defined as in [32]

J j(q) :=
[
Ad
(
Hb

j=1

)
X1

1, ...,Ad
(
Hb

j

)
Xj
j ,06×(n−j)

]
(3.40)

Je(q) :=
[
Ad
(
Hb

j=1

)
X1

1, ...,Ad
(
Hb

e

)
Xe
e

]
(3.41)

The Xj
j are the joint twist vectors and given as either Xj

j = [0, 0, 0, 0, 0, 1]T or
Xj
j = [0, 0, 0, 0, 1, 0]T depending on whether the joint rotates about its Z-axis or

Y-axis, which was introduced in Section 2.2. In addition,Xe
e in Equation (3.41) depends

on the end effector mounted on the snake robot. Eventually, eqs. (3.38) and (3.39) can
be inserted into eqs. (3.36) and (3.37), resulting in

νjIj = JH,j(q)ζ, JH,j :=
[
Ad
(
Hj

b

)
, Ad

(
Hj

b

)
J j

]
(3.42)

νeIe = JH,e(q)ζ, JH,e :=
[
Ad
(
He

b

)
, Ad

(
He

b

)
Je

]
(3.43)

Differential Kinematics Between Fb and FI
The relationship of the snake robot’s kinematics expressed in the base frame Fb
relative to being expressed in FI follows the same approach as was done in [10]. The
transformation from Fb-velocity to velocity in FI is denoted

η̇ = Jk(η)ν
b
Ib k ∈ {ΘIb, q

I
b}, (3.44)

where the pose vector η is represented by either euler angles or unit quaternions, as
described in Section 3.1.2, represented in Equation (3.44) by ΘIb and qIb respectively.

From [10] it can be seen that by utilizing euler angles as the orientational parametriza-
tion the linear and angular velocities are denoted

ṗIIb = R(ΘIb)v
b
Ib (3.45)



32 CHAPTER 3. MODELING

and

ωbIb =


ϕ̇

0

0

+RT
x,ϕ


0

θ̇

0

+RT
x,ϕR

T
y,θ


0

0

ψ̇

 := T−1(ΘIb)Θ̇Ib (3.46)

where

T−1(ΘIb) =


1 0 −sθ
0 cϕ cθsϕ
0 −sϕ cθcϕ

 , T (ΘIb) =


1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 (3.47)

and the simplifying notation ca := cos(a), sa := sin(a) and ta := tan(a), with a ∈
{ϕ, θ, ψ}, is used. This leads to the transformation being expressed as

η̇ = JΘIb
(η)νbIb =

R(ΘIb) 03×3

03×3 T (ΘIb)

νbIb (3.48)

The transformation matrix T (ΘIb) suffers from a singularity at θ = ±π
2 [rad], which

is not a problem for surface vessels, but for underwater vessels, like the snake robot,
the need to avoid this singularity might be present during operation.

The unit quaternion representation is a singularity-free representation for orientation
and thus more suited for the snake robot. The linear and angular velocities of the
snake robot expressed in FI while utilizing quaternions are denoted

ṗIIb = R(qIb)v
b
Ib (3.49)

and

q̇Ib =
1

2

 −ϵT

ηI3 + [ϵ×]

ωbIb := T (qIb)ω
b
Ib (3.50)
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where

R(qIb) =


1− 2(ϵ22 + ϵ23) 2(ϵ1ϵ2 − ϵ3η) 2(ϵ1ϵ3 − ϵ2η)

2(ϵ1ϵ2 − ϵ3η) 1− 2(ϵ21 + ϵ23) 2(ϵ2ϵ3 − ϵ1η)

2(ϵ1ϵ3 − ϵ2η) 2(ϵ2ϵ3 − ϵ1η) 1− 2(ϵ22 + ϵ22)

 (3.51)

T (qIb) =
1

2


−ϵ1 −ϵ2 −ϵ3
η −ϵ3 ϵ2

ϵ3 η −ϵ1
−ϵ2 ϵ1 η

 , T (qIb)
TT (qIb) =

1

4
I3 (3.52)

This leads to the kinematic transformation from Fb to FI and vice versa being ex-
pressed as

η̇ = JqI
b
(η)νbIb =

R(qIb) 03×3

04×3 T (qIb)

νbIb (3.53)

νbIb = J−1
qI
b

(η)η̇ =

RT (qIb) 03×3

04×3 4T T (qIb)

 η̇ (3.54)

By having established a relationship between the velocities expressed in Fb and FI
we can now express the transformation between the velocities of the whole C-space as

ξ̇ =

Jk(η) 0

0 I(n−1)×(n−1)

 ζ, (3.55)

where the dimensions of the zero-matrices on the anti-diagonal in Equation (3.55)
depends on whether euler angles or quaternions are utilized for orientational repre-
sentation.
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3.3 Dynamics

The dynamical model of the snake robot considers the forces that acts on the snake
robot as it operates in an underwater environment; added mass forces, dissipative
drag forces, hydrostatic forces and control forces from its actuators. The model for the
snake robot presented in this section is based on [32], [29] and a note on modeling
made by PhD-candidate Henrik Schmidt-Didlaukies in conjunction with creation of
the simulator used in this thesis.

3.3.1 Equations of Motion

The equations of motion for the snake robot can be written as [32]

M(q)ζ̇ +C(q, ζ)ζ +D(q, ζ)ζ + g(q,Rb
I) = τ (q) (3.56)

where

• M(q) is the system inertia matrix

• C(q, ζ) is the coriolis-centripetal matrix

• D(q, ζ) is the hydrodynamic damping matrix

• g(q,Rb
I) is the matrix of gravitational and buoyancy forces

• τ (q) is a vector of actuator forces

Inertia Matrix
The inertia matrix of the snake robot consists of a rigid body part and a hydrodynamic
added mass part, denoted

M(q) = MRB(q) +MA(q), (3.57)

of which themselves also consists of contributions from each cylindrical link of the
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snake robot. Each link has its own inertia matrix, consisting of a rigid body part and a
hydrodynamic added mass part, here given as

M l = MRB,l +MA,l =

M l,11 M l,12

M l,21 M l,22

 , (3.58)

where l = 1, 2, ...n.

The rigid body part of a link’s inertia matrix is calculated from its CO, taken to be the
end of the link. In fact, its CO coincides with joint frame F̄j , where joint j has link l
as its child link, giving the inertia matrix

MRB,l =

 mlI3 −ml[r
j
gj×]

ml[r
j
gj×] ICO

 , (3.59)

where

• ml is the mass of link l

• rjgj is the distance from the link’s CO, i.e F̄j , to its CM, expressed in F̄j

• ICO is the link’s inertia about its CO

It is possible to find the whole snake robot’s rigid body mass, MRB , by adding all the
links rigid body masses, but first they need to be expressed with respect to the base
frame Fb. By noting that the kinetic energy of the CO of link l can be written

Kl =
1

2

(
νjIj

)T
MRB,lν

j
Ij

=
1

2
ζTJTH,j(q)MRB,lJH,j(q)ζ

=
1

2
ζTM∗

RB,l(q)ζ

(3.60)

whereM∗
RB,l(q) = JTH,j(q)MRB,lJH,j(q) is the rigid body inertia matrix of link
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l, expressed with regards to the base frame Fb. From this one can conclude that the
rigid body mass of the whole snake robot is

MRB(q) =

n∑
l=1

M∗
RB,l(q) (3.61)

The hydrodynamic added mass of a single link l, expressed in frame F̄j , is given in
[30] as

MA,l = ρπr2l llCa



αl 0 0 0 0 0

0 1 0 0 0 1
2 ll

0 0 1 0 − 1
2 ll 0

0 0 0 0 0 0

0 0 − 1
2 ll 0 1

3 l
2
l 0

0 1
2 ll 0 0 0 1

3 l
2
l


(3.62)

where ρ is the density of water, rl is the radius of the link, ll is the length of link
l and Ca is added mass coefficient for the cross-section. By performing the same
transformation to the added mass as for the rigid body mass, the added mass of the
whole snake robot can be expressed as

MA(q) =

n∑
l=1

M∗
A,l(q) (3.63)

whereM∗
A,l(q) = JTH,j(q)MA,lJH,j(q). Having transformed both the rigid body

mass and added mass of each link, the expression for the whole snake robot inertia
matrix is

M(q) =

n∑
l=1

M∗
RB,l(q) +

n∑
l=1

M∗
A,l(q) (3.64)
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Coriolis-Centripetal Matrix
The coriolis-centripetal matrix of the snake robot consists of all the contributions from
its links, expressed as

C(q, ζ) =

n∑
l=1

Cl(q, ζ) (3.65)

The coriolis-centripetal matrix of a rigid body can always be parametrized such that
C(ν) = −CT (ν) [10]. For a rigid link l this means that its coriolis-centripetal matrix
can be formulated as

Cl(ν
j
nj) = −

03×3 Cl,11

Cl,21 Cl,22

 , (3.66)

where

Cl,11 = [(M l,11v
j
Ij +M l,12ω

j
Ij)×]

Cl,21 = [(M l,11v
j
Ij +M l,12ω

j
Ij)×]

Cl,22 = [(M l,21v
j
Ij +M l,22ω

j
Ij)×]

As was done for the inertia matrix, the coriolis-centripetal matrix Cl(ν
j
Ij) can be

expressed with regards to Fb as

C∗
l (q,ν

j
Ij) = JTH,j(q)Cl(ν

j
Ij)JH,j(q) (3.67)

From [30] an additional term is added in the coriolis-centripetal matrix, due to the
force on the link when the snake robot change its configuration, expressed in Fb as

Cl(q) = JTH,j(q)M lJ̇H,j(q, q̇) (3.68)

Thus, the coriolis-centripetal matrix of the whole snake robot, expressed in Fb, is
computed as

C(q, ζ) =

n∑
l=1

Cl(q) +C∗
l (q,ν

j
nj) (3.69)
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Damping Matrix
The viscosity of the fluid displaced by the snake robot in motion also causes the
presence of dissipative drag forces on the body [1]. The total drag force of the snake
robot consists of contributions from each of its links. The drag force of a link l consists
of both a linear and a nonlinear term, resulting in the damping matrix of a link l being
expressed as

Dl(ν
j
Ij) = DL,l +DN,l(ν

j
Ij), (3.70)

where the linear part is given in link frame Fl as [30]

DL,l = ρπrlllCd,Lvref



βl 0 0 0 0 0

0 1 0 0 0 1
2 ll

0 0 1 0 − 1
2 ll 0

0 0 0 γlr
2
l 0 0

0 0 − 1
2 ll 0 1

3 l
2
l 0

0 1
2 ll 0 0 0 1

3 l
2
l


, (3.71)

with ρ, rl and ll as described in Equation (3.62). Additionally, Cd,L is the linear cross-
section drag coefficient, γl and βl are the linear drag parameters in roll and surge,
respectively. The nonlinear part of the drag is in general difficult to model accurately
due to it being subject to highly complex hydrodynamic effects, which are out of the
scope of this thesis. In addition, for low speeds the linear drag contribution dominates
the nonlinear part, which will be the case for the snake robot in this thesis.

To find the total amount of drag force acting on the snake robot the drag forces acting
on each link is expressed with regards to Fb and added together, giving the total
damping matrix as

D(q, ζ) =

n∑
l=1

D∗
l (q, ζ), (3.72)
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where D∗
l (q, ζ) = JTH,j(q)Dl(ν

j
Ij)JH,j(q).

Gravitational and Buoyancy Force Vector
The snake robot is subject to both gravitational and buoyancy forces, which acts
through the snake robot’s CM and Centre of Buoyancy (CB), respectively. The gravita-
tional force and buoyancy force are in general denoted [10]

W = mg, B = ρg∇ (3.73)

where g is the gravitational acceleration constant, m is mass and ∇ is the volume
of fluid displaced by the vessel. These two forces works in the vertical plane when
expressed in the inertial world frame FI , with opposite direction

fng = [0 0W ]T , fnb = −[0 0 B]T (3.74)

where the subscripts b and g here refers to the CB and CM of the vessel. Each link of
the snake robot is subject to a gravitational and buoyancy force, and the forces on link
l can be expressed in its CO according to

gl(q,R
j
I) = −

 f jg + f jb

rjgj × f jg + rjbj × f jb


= −

 Rj
I(f

I
g + f Ib)

rjgj ×Rj
If

I
g + rjbj ×Rj

If
I
b

 (3.75)

where the minus sign on the RHS is due to the fact that the forces are moved to the
LHS in the equations of motion, Equation (3.56). The second row of the vector are the
experienced moments about the CO when the reference frame does not coincide with
CM or CB.

To obtain the hydrostatic forces on the whole snake robot, expressed with regards
to the base frame Fb, Equation (3.75) must be computed for every link, transformed
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to the base frame and added together. This leads to the gravitational and buoyancy
vector of the whole snake robot being expressed as

g(q,Rb
I) =

n∑
l=1

JTH,j(q)gl(q,R
b
I) (3.76)

Actuator Forces
The generalized control forces τ (q) are calculated in order to move the snake robot in
the world frame and change its configuration. It consists of a Thrust Configuration
Matrix (TCM) and force input vector, expressed as in [32]

τ (q) =

τ b(q)
τ q(q)

 =

 B(q) 06×(n−1)

0(n−1)×m I(n−1)×(n−1)

uthr

uq

 (3.77)

where B(q) ∈ R6×m is the TCM and m is the number of thrusters. The inputs
uthr and uq are the thruster forces and joint torques, respectively. As can be seen
from Equation (3.77) the TCM depends on the snake robot configuration. How the
generalized control forces will be distributed over the different actuators of the system
is a control allocation task, which will be introduced in Section 6.2.



Chapter 4

Path Planning for Collision
Avoidance

The snake robot is operating in a subset of the 3D-world, also known as its work-space.
How it moves in the work-space is decided by the guidance and control systems of
the robot. The path planner is an integrated part of the guidance system, shown in
Figure 4.1. The path planner plays an important part in deciding where the snake
robot should move in order to reach its desired target in a collision-free manner. There
exist mainly two types of path planners; global and local. Global planners require
prior information about the environment, i.e. the positions of the obstacles in the
work-space, while local planners in general do not [27]. When planning a path there
are many different objectives to consider; shortest path, both regarding time spent
and/or distance travelled, most energy efficient path and the safest path. This chapter
will cover global path planning, using the Artificial Potential Field (APF) and Rapidly
Exploring Random Tree (RRT) method, focusing on the objective of finding a feasible
collision-free path for the snake robot, leading to the desired target. In addition, the
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ability to find navigable short paths is preferable, as this can lower energy consumption
and save time. First, Section 4.1 introduces the environment and its obstacles. Secondly,
Section 4.2 presents the APF method, where sections 4.2.1 and 4.2.2 are restated from
the specialization pre-project since the APFs applications were studied there and will
be further utilized in this thesis. Lastly, Section 4.3 introduces the RRT path planning
method.

Figure 4.1: Guidance system in the system architecture. Courtesy of [10].

4.1 Environment

The environment the snake robot operates in, hereafter referred to as the W-space, is
defined as the total volume swept out by the end effector as the manipulator executes
all possible motions [31]. In theory, this means that theW-space of the snake robot,
which is a floating-base manipulator, is the whole 3D-space. In practice the snake
robot is not free to move wherever it wants because the domain will often be restricted
by the presence of obstacles, cluttering the environment. For the snake robot’s case
these obstacles might be industrial underwater installations, ship wrecks, rocks or
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even coral reefs. This section presents the cluttered environment used in this thesis,
of which the APF and RRT* path planning algorithms will later be utilized to solve
path planning wrt the collision avoidance task.

4.1.1 Cluttered Environment

The W-space might be cluttered by obstacles in various ways. These obstacles may in
general have any arbitrary shape and size, but in this thesis all obstacles are assumed
to be spheres, due to their simple form and convenience regarding approximating more
complex structures. Thus, each obstacle, denoted Oi, will have positional coordinates,
denoted pOi

, and a radius, denoted rOi
. An example of a typical environment consist-

ing of spherical obstacles is illustrated in Figure 4.2. Even though it is not realistic that
obstacles will be completely spherical in real life, it is practical to work with spheres.
Any obstacle could be approximated by using a number of spheres, which is discussed
in [23]. Depending on how accurate one need to approximate an obstacle and how fast
a collision avoidance algorithm need to be, the amount of spheres and their size vary.
For accurate approximations one need to use many small spheres, but at the expense
of being computationally heavier than less accurate approximations using less and
bigger spheres. An example of different approximations are visualized in Figure 4.4.
This approximation method is utilized in [15] for the planar case, where each 2D rect-
angular obstacle are approximated by a circle enclosing the whole rectangle. Spherical
approximations of obstacles will not be explicitely done in this thesis, but one could
imagine that inside each sphere there exists an obstacle of a different arbitrary shape
that is approximated by the sphere. Additionally, to prevent the snake robot from
getting too close to each obstacle, a safe radius can be added. This is to make sure that
the planned path gives the snake robot some safety margins for maneuvering and stay
clear of the obstacles when following the path. An illustration of the actual obstacle
and the obstacle accounted for by the path planner is shown in Figure 4.3. The larger
the safe radius, the more conservative the path planner will be. It might lead to paths
that are not as optimal in terms of distance, due to the planner excluding more space
for the snake robot to move through, but when a path is found it will be safer in terms
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of potential collisions.

Figure 4.2: Environment consisting of 4 spherical obstacles of different size, the target
position (red) and the starting position (blue).

4.1.2 Configuration Space Obstacle

The snake robot itself occupies a subset of theW-space, denotedA(ξ). HereA denotes
the snake robot and ξ its configuration. The configuration space obstacle, hereafter
denoted CO-space, is defined as the set of configurations for which the robot collides
[31], mathematically denoted

CO =
{
ξ ∈ C | A(ξ) ∩ O ≠ ∅

}
(4.1)

where O is the set of all obstacles in the W-space. By combining the CO-space
and the C-space from Section 3.1.3 we can define the free configuration space as the
complement of the CO-space

Cfree = C\
{
CO
}

(4.2)
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Figure 4.3: Illustration of the safe radius used for path planning. The inner solid sphere
is the actual obstacle and the outer transparent is the sphere seen by the path planner.

Figure 4.4: A lamp represented by spheres. The approximation improves as the number
of spheres used to represent the lamp increases. Courtesy of [12].

4.2 Artificial Potential Fields

The method of creating an APF for collision-free path planning mainly consists of two
parts; the obstacles that are present in the W-space of the snake robot and the desired
target in the same domain. The obstacles and the target are used to create a potential
field, where the obstacles have repelling potential and the target has attractive potential.
This section first presents the choice of potential functions in detail. Secondly, an
explicit potential function for the task at hand will be derived, based on [16], [2] and [7].
Lastly, a more robust path planning variant of the APF, called Randomized Potential



46 CHAPTER 4. PATH PLANNING FOR COLLISION AVOIDANCE

Field (RPF), capable of escaping local minima, is presented.

4.2.1 Potential functions

The potential function is a differentiable real-valued function U : Rm → R [7]. In this
project the W-space of the snake robot is 3-dimensional, i.em = 3. Essentially, the
potential field is an objective function which one seeks to minimize in order to find
a collision-free path between two chosen points in the W-space domain. The field
is a linear combination of several potential functions, both attractive and repelling
ones. An attractive potential function, denoted Ua, is in this context related to the
target, the desired end goal the snake robot wants to reach, while a repelling potential
function, denoted Ur , is related to the obstacles. There only exists one target at a time,
denoted pt, but there might be several obstacles in the domain. The total number of
obstacles is denoted No, and the ith obstacle is denoted Oi, where i = 1, ..., No. Thus,
there only exists one attractive potential function, but there exist o repelling potential
functions. The potential field is defined the same way as in [15] and [2]

U = Ua +

No∑
i=1

U ir (4.3)

Attractive Potential
The attractive potential, Ua, should be designed such that it is differentiable and mono-
tonically decreasing as it approaches pt, meaning that the function value decreases as
the distance to the target decreases. As stated in [7], the simplest choice is the scaled
conic potential, formulated as

Ua(p) = Kad(p,pt) (4.4)

where the d(·) indicates the euclidean distance function, p is the position of a point in
theW-space andKa is a scaling parameter to change the steepness of the potential



4.2. ARTIFICIAL POTENTIAL FIELDS 47

function. The conic potential has the gradient function

∇Ua(p) =
Ka

d(p,pt)
(p− pt) (4.5)

which suffers from numerical problems when approaching the target due to the fact
that

lim
d(p,pt)→0

∇Ua(p) → ∞ (4.6)

The design of another, still very simplistic, potential function deals with this problem,
which is the paraboloide potential

Ua(p) =
1

2
Kad

2(p,pt) (4.7)

that has the gradient function

∇Ua(p) = Ka(p− pt) (4.8)

The benefits from this potential, as stated in [7], is the fact that its gradient is bigger
further away from the target. This makes the snake robot approach the target faster
when it is far away, but slows down when it is closer to the target, which is good for
preventing overshoot when planning a path. The downside of utilizing the paraboloide
function is that if the snake robot starts too far away from the desired target, the
gradient ∇Ua(p) might get very big, due to the fact that it is unbounded. Therefore
one could combine the two variants of potential functions to utilize their strengths.
This combined potential function also needs to be differentiable and monotonically
decreasing when approaching the target, which is satisfied for

Ua(p) =

 1
2Kad

2(p,pt), d(p,pt) ≤ d∗t

d∗tKad(p,pt)− 1
2Ka(d

∗
t )

2, d(p,pt) > d∗t

(4.9)
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having the gradient function

∇Ua(p) =

Ka(p− pt), d(p,pt) ≤ d∗t
d∗tKa

d(p,pt)
(p− pt), d(p,pt) > d∗t

(4.10)

which is well defined at the boundary d∗t , where the two gradient functions have the
same value.

Repulsive Potential
The repulsive potential from an obstacle, Oi, should be a non-negative continuous
and differentiable function that tends to infinity as the snake robot approaches the
obstacle’s surface, as stated in [16]. The influence from the obstacle should be smaller
the farther the distance is between the snake robot and the obstacle. At a certain
distance the influence from the obstacle should also be non-influencing the snake
robot due to the fact that it is located in a safe distance relative to the obstacle. These
attributes are satisfied for

Uor (p) =

 1
2Kr

(
1

do(p)
− 1

Q∗
o

)2
, do(p) ≤ Q∗

o

0, do(p) > Q∗
o

(4.11)

where do(·) is the shortest distance from the robot to the obstacle’s surface,Kr is a
scaling parameter and Q∗

o is a smoothing parameter that defines how the obstacle’s
potential shall fade away as the distance to it increases. Or in other words, it alters the
size of the obstacle’s influence domain. The gradient function is formulated as

∇Uor (p) =

Kr

(
1
Q∗

o
− 1

do(p)

)
1

do(p)2
∇do(p), do(p) ≤ Q∗

o

0, do(p) > Q∗
o

(4.12)

where∇do(p) = p−c
do(p,c)

and c is the closest point on the surface of obstacle Oi to the
snake robot.
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4.2.2 Gradient Descent for Path Generation

The path that essentially leads the snake robot from its current position to the target
position is generated by utilizing the steepest descent algorithm, also known as gradient
descent, to find the minimum of the objective function. The procedure is simple; choose
a starting point and compute the gradient at that point. Then move in the opposite
direction of the gradient to get to the next point and repeat the process. As a result
one will iterate from one point to the other, always lowering the value of the potential
field, until a minimum is found. The algorithm for gradient descent is found in [7],
but is restated in Appendix A.1, where ϵ and α are hyperparameters and thus chosen
dependently on the specific task. The parameter ϵ is chosen in order for the algorithm
to terminate when the gradient is sufficiently small, while α, also called the step
size, decides how fast the algorithm converge. If the value of α is relatively low the
algorithm might get very slow, but if it is too big it might make the whole algorithm
numerically unstable. Thus, this will be a tuning task, which will be looked at in
Section 7.1. Ball park start for α could be 0.1, but there exists methods for choosing α,
which are given in [26].

Local Minima Problem
The gradient descent algorithm suffers from the local minima problem, meaning that
even though the algorithm converge to a minimum it is not guaranteed to be the global
minimum. If there are several local minima, then which of those it converges to is
decided by the initial condition, i.e pstart. The local minima problem is illustrated for
an objective function related to the 1D and 2D case respectively in Figure 4.5, where
the robot can move on a line and a plane. In addition, figs. 4.6 and 4.7 illustrates where
a local minimum could typically occur, and how the resulting path is not connected
to the target. An objective function related to higher dimensional cases is difficult to
visualize, but follows the same principles.

When gradient descent is able to converge to the global minimum of the objective
function, a path from the starting point to the target is created by following/iterate
through the points, and it will be collision-free. An example of such a path is illustrated
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in Figure 4.8.

𝑥

Local minima

Global minimum

𝑓(𝑥)

(a)

Local minimum
Global minimum

𝑓(𝑥, 𝑦)

𝑥𝑦

(b)

Figure 4.5: Illustration of local minima and global minimum of objective functions in
(a) 1D and (b) 2D.

Figure 4.6: Illustration of a planar path trapped by a local minimum due to an obstacle
located right in front of the desired path to the target point.
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Figure 4.7: Illustration of a planar path that stops in a local minimum between two
obstacles located in front of the target.

Figure 4.8: Illustration of a collision-free path in a 2D plane that succeeds to reach the
target.
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4.2.3 Randomized Potential Field

One way to cope with the local minima problem of the APF is described both in [31]
and [20], and a solution is to introduce randomness. If the planned path gets stuck in
a local minimum one could activate a random walk out of it and continue to search
for the target with gradient descent from where the random walk stopped. In order to
utilize this random walk method we need to be able to detect a local minimum when
the path gets trapped in one and define the random walk such that it is able to escape
the local minimum and eventually converge to the target.

Detect Local Minimum
For the case of detecting whether or not the path has been trapped by a local minimum
we can use simple heuristics. When the path changes minimally over a sequence
of iterations there is a high probability that it has been trapped. To detect this it is
sufficient to choose a subset of the latest samples of the path to analyze how much
it has changed. Pick the oldest sample in the subset as a reference and compute the
euclidean distance between this reference and the rest of the samples in the subset.
Choose a threshold value, ϵtrapped, that defines whether or not the path is trapped. If
all the distances are below the threshold it’s quite likely that that the path finds itself
in a local minimum.

RandomWalk
The randomwalk starts from the newest sample added to the path. The path is extended
from this sample by a chosen number of random samples, Nrw, where each DOF in
every sample is restricted to move a given amount ±δrw, where the sign is chosen
based on the outcome of a fair coin toss [20]. How many samples that are needed and
the size of δrw in order to successfully escape the local minimum depends on both
the system and how cluttered the W-space is. A pseudo-code for the random walk
mode is provided in Appendix A.2. An example of how the random walk can escape
local minima is visualized in Figure 4.9. The random walk might lead to paths that
are not well suited for path following because of its random pattern, but methods
for post-processing of the path which filter out a subset of the path as waypoints
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can be used to retrieve a collision-free and feasible path for path following. Such
post-processing methods will be further discussed in Section 5.2. It’s important to
mention that even though the random walk method can be used to escape local minima
it’s not guaranteed to, due to the fact that all the random steps must also be checked
for possible collisions. In particular, if the environment is extremely cluttered around
the local minimum it might be especially tricky for the random walk to navigate out of
it.

Figure 4.9: Illustration of random walk utilized to escape local minima in a 2DW-space.

4.3 Rapidly Exploring Random Trees

The RRT algorithm is a sampling-based method for collision-free path planning.
Sampling-based methods generally give up on the resolution-optimal solutions of
a grid search in exchange for the ability to find satisfying solutions quickly in high-
dimensional spaces, such as the C-space or the S-space [23]. The samples are drawn
randomly from the selected space, here in general referred to as the query-space, and
will eventually, while accounting for obstacles in the domain and motion constraints of
the system, approximate the free space in which the snake robot can move. This section
will give an introduction to the concepts of the RRT algorithm and the more optimal
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version called RRT*, originating from the work done in [19]. Further improvements
and analyses are discussed in [13].

4.3.1 RRT

The RRT algorithm results in a tree, denoted T , that spans a subset of the query-
space’s free space. For ease of notation, the query-space is denoted Q-space, where
Q ∈ {C, S}. Thus, the tree T can be expressed as

T ⊂ Qfree (4.13)

The algorithm starts exploring the domain from a given initial configuration, here
denoted ξinit, looking for a path leading to the goal configuration, denoted ξgoal. Every
sample, denoted ξrand, is drawn randomly from the Q-space, following a probability
distribution of some sort. This could be the uniform distribution, but other distribu-
tions having a bias towards ξgoal are also used [33]. Depending on the distribution
utilized, the algorithm will possess different behaviour towards the target. The initial
configuration is called the root node of T , and the subsequently added samples are
nodes of various branches of T . The newest generated sample is connected to the
nearest node in T , where a metric, ρRRT, is used to define the nearest node. This metric
depends on the units of the system’s configuration space, where the configuration
of the snake robot for instance consists of both units in radians/degrees and metres.
Which configuration is the closest depends on the system’s ability to move from one
configuration to another. Various metrics can be found in [20]. In addition, when ξrand

is generated and the nearest neighbour is selected we have to make sure that the path
from the nearest node to ξrand is in fact feasible for the snake robot to follow. For
collision avoidance purposes the algorithm checks that every sample is in fact inside of
Qfree, rejecting the samples that violates this condition. Additionally, a constraint, or
steering method, on how far away the added sample can be from the nearest neighbour
is also introduced, denoted ϵupper. This constraint ensures that the growth of the tree
does not move too far in a potentially wrong direction related to the goal. How ϵupper

bounds each branch’s distance is visualized in Figure 4.10, and the new sample added
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to the tree follows from

ξnew =

ξnear + ϵupper
ξrand−ξnear

||ξrand−ξnear||
, ||ξrand − ξnear|| > ϵupper

ξrand, otherwise
(4.14)

The main accomplishment of the algorithm, regardless of the choice of distribution, is
that the resulting tree T expands from the root node, covering a greater part of Qfree

for every sample that is added. The number of samples, Ns, to draw from the domain
decides how accurately T will approximate Qfree and whether it converges to ξgoal.
The smaller the allowed distance from on node to another, the higher the number of
samples must be to ensure convergence to the target. An example outcome of the
algorithm is visualized in Figure 4.11.

Figure 4.10: The process of randomly draw a new sample and add it to the tree,
following the constraint set by ϵupper. Courtesy of [18], with small notational changes
made by the author.

4.3.2 RRT*

Although the plain RRT algorithm converges to a path leading to ξgoal it’s almost
surely a non-optimal path [13]. The RRT* version of the RRT algorithm is essentially
built to avoid this problem and obtain optimality. To obtain optimality a cost function
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Figure 4.11: The resulting tree T projected in the 2D space, showing how the tree
expands from the initial configuration (red dot) to the goal (green dot), while avoiding
the obstacles (blue dots). The resulting path is visualized in orange. Courtesy of [19],
with added obstacles and path by the author.

is introduced, which one seeks to minimize. As for all optimization problems, the cost
function depends on the objective of the task. This could for instance be related to
shortest distance travelled, shortest time used from ξinit to ξgoal, least amount of fuel
consumed along the path etc. In this thesis a shortest feasible path in the 3-dimensional
W-space will be searched for, and thus the cost function seeks to minimize the distance
travelled. A pseudo-code of the RRT* algorithm is provided in Appendix A.4, based on
the one from [13].



Chapter 5

Path Following

Having planned a desired path or trajectory that the snake robot shall follow, the task
is to steer the snake robot onto and follow it in an acceptable manner. For a path this
means that the snake robot must be able to move onto the path, in general preferred
without too large overshoot, and stay on the path. For a trajectory there is also the
essence of time, the snake robot needs to be at a specific point at a specific time as
well. This chapter will focus on the path following part, which relates to the system
architecture as shown in Figure 5.1. First, in Section 5.1 a Waypoint Guidance (WPG)
method is introduced, where piecewise linear paths are utilized for path following
purposes. Section 5.2 subsequently presents two methods for dividing paths into a
sparser number of waypoints. Lastly, Section 5.3 presents a LOS guidance law, as
described in [10] and applied in [15]. In addition, an extension to guidance in 3D is
presented, where a Waypoint Line-of-Sight (WLOS) guidance law will be introduced
to make the snake robot follow a desired 3D path, based on the work done in [21]
and [4]. Note that parts of Section 5.1 and sections 5.3.1 and 5.3.2 are reused from the
specialization pre-project.
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Figure 5.1: Guidance system in the system architecture. Courtesy of [10]

5.1 Waypoints and Straight Line Paths

Waypoint Guidance (WPG) is a widely used method to steer AUVs onto a desired path,
and the method could also be utilized for the snake robot, as it inherits the slender
body characteristics of an AUV. The path consists of several waypoints that are used
to indicate changes in direction, speed and altitude along the desired path, as stated in
[10]. Each waypoint is parametrized by cartesian coordinates in the world frame, FI ,
denoted

wpi = [xi yi zi]
T ∈ R3, i = 1, 2, ..., Nwp (5.1)

where Nwp is the total number of waypoints. The common way of connecting the
waypoints is by using straight lines and/or inscribed circles, and straight lines will
be used in this thesis due to their simplicity. The waypoint guidance scheme will
be utilized the same way as in [15], where the desired path is already planned. The
planned path is split into Nwp waypoints, which is connected by Nwp − 1 straight
lines. The path is hereafter denoted P and the straight line betweenwpi andwpi+1
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is denoted Pi. Thus, the entire path P can be described as

P =

Nwp−1⋃
i=1

Pi (5.2)

It is important to note that the number of waypoints and their locations can not be
chosen arbitrarily on the original path, as this procedure will inevitably change the
shape of the path. In worst case we could end up with a new path that deviates a
lot from the original collision-free path, which might not be collision-free. How the
waypoints can be chosen will be further discussed in Section 5.2.

The snake robot will follow the waypoints in a predefined order defined by the path.
To mark the current waypointwpi+1 as visited and move on to the next one it utilizes
a method called sphere of acceptance [10], formulated as

(xi+1 − x)2 + (yi+1 − y)2 + (zi+1 − z)2 ≤ r2soa,i+1 (5.3)

where rsoa,i+1 is a pre-decided radius of a sphere, with the waypoint wpi+1 as its
centre. A guideline is to choose rsoa,i+1 = 2L, where L is the length of the marine
craft, but in the case where the followed path needs to be accurately followed in order
to prevent collisions with obstacles, the sphere of acceptance might need to be smaller,
depending on how cluttered the environment is and the safety margins used in the
path planner. This will be further addressed in Section 5.2. A 3D path made of straight
lines, with visualization of the sphere of acceptance at every waypoint succeeding the
starting point, is illustrated in Figure 5.2.

A straight line Pi in R3 has an azimuth angle, χPi
, and a flight path angle, γPi

. They
will be the desired heading and pitch of the snake robot, relative to the inertial reference
frame FI , when following the line Pi. The relative azimuth angle and flight path angle
for a straight line Pi between waypoint wpi and wpi+1 are formulated as

χPi = atan2 (yi+1 − yi, xi+1 − xi) ∈ S = [−π, π] (5.4)
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γPi = atan2
(
−(zi+1 − zi),

√
(xi+1 − xi)2 + (yi+1 − yi)2

)
∈ S = [−π, π] (5.5)

where atan2(a, b) is in general the four-quadrant version of arctan
(
a
b

)
∈ [−π

2 ,
π
2 ], as

stated in [4]. The line Pi can be parametrized by a scalar value, denoted ω̄ ∈ R, giving
the following expression for an arbitrary point on the line

pPi
(ω̄) = wpi + ω̄

wpi+1 −wpi
||wpi+1 −wpi||

(5.6)

In order to steer the snake robot onto the line Pi a LOS guidance law will be utilized,
which will be further discussed in Section 5.3.

Figure 5.2: An example of a piecewise linear path of waypoints. The spheres visualize
the sphere of acceptance.

5.2 Waypoint Generation

The waypoints used for the WLOS guidance scheme are generated from an already
planned path, created by the APF path planner presented in section 4.2. This originally
planned path normally consists of a huge amount of points, hereafter called redundant
waypoints. The large number is caused by the small step length α used in gradient
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descent, needed to make the path feasibly converge to the target. When generating the
waypoints the idea is that the majority of these redundant waypoints are filtered out,
and only some of them are used as final waypoints. It is important that the resulting
straight line path P is also collision-free, as mentioned in section 5.1. In addition, there
might be of interest to simultaneously search for a shortest straight line path in order
for the snake robot to travel a minimum distance from A to B while still avoiding the
obstacles. A third attribute of the path P to keep in mind is that the more complex the
structure, the harder and more energy consuming the maneuvering executed by the
snake robot must be to follow the path. For instance, paths with sharp corners and
small distances between waypoints may be difficult to follow without larger deviations
or the need for the snake robot to move very slowly to sufficiently visit each waypoint
and reach the target. In this subsection two different waypoint generators will be
presented.

5.2.1 Straight Lines of Constant Length

The waypoints created by using Straight Lines of Constant Length (SLCL) builds on
the known physical dimensions of the snake robot. Every waypoint on the path are
connected by two straight lines of a constant length, except the starting point and
target point which are only connected to one straight line. This length is chosen to be
equal to the half of the snake robot’s length. The method ensures that the piecewise
linear path is not violating the demand of being collision-free, due to the fact that the
original path is already incorporating a safe radius that gives room for straight line
adjustments, and the concept is visualized in Figure 5.3. This method might lead to
many waypoints, and will not result in the most optimal path in terms of distance,
due to its simple heuristic. Additionally, the snake robot also needs to maneuver onto
a potentially large number of line segments and this might not be the most energy
efficient solution either. The sphere of acceptance can’t be chosen larger than half of the
length of each line segment, or else the path could in practice change shape because
subsets of waypoints are inside the same sphere of acceptance and seen as visited. Then
the path is no longer known to be collision-free and therefore the sphere of acceptance
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must be chosen according to the length of the line segments.

Figure 5.3: Visualize how the resulting piecewise linear path (dashed grey lines) from
the SLCL-filtering algorithm will look like in 2D. The red line is the original path. Note
that the safe radius rsafe is omitted from the illustration.

5.2.2 Backtracking Path Planner

The Bactracking Path planner (BPP) algorithm for waypoint generation is essentially
searching for the minimum amount of waypoints needed to transform the original path
into a collision-free piecewise linear path. In this way the resulting path P consists
of less and longer straight lines that might ease the maneuvering task for the snake
robot while following the path. Thus, it tries to create shorter and potentially less
energy consuming paths for path following. A similar approach, utilizing a breadth-
first search, was conducted in [22]. Conceptually, the BPP algorithm checks that the
straight line path between two waypoints does not intersect with any of the obstacles
in the W-space. It starts by checking the straight line between the start point and
the target point. If the line is collision-free the resulting path will only consist of one
simple straight line between the starting point and the target point. If it does intersect
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with an obstacle the algorithm moves along the path to the waypoint preceding the
target point, checking whether this waypoint forms a collision-free straight line with
the starting point. When it finds a suitable waypoint it considers this as a new virtual
starting point and resumes its search for straight lines, but now from this virtual
starting point to the target point. Eventually, the algorithm has found a number of
waypoints connected by straight lines that make up a path P from the starting point
to the target point. By always accepting the first collision-free straight line it finds
the algorithm can be classified as greedy. A greedy algorithm always make the choice
that looks best at the moment [8]. In this case it could be that the resulting piecewise
linear path is not the shortest path possible, but the algorithm finds a shorter path
than the SLCL algorithm from section 5.2.1. A pseudo-code of the algorithm is given
in Appendix A.3. An example of a possible outcome of the algorithm is visualized in
Figure 5.4.

Figure 5.4: Visualize how the resulting piecewise linear path (dashed grey lines) from
the BPP-filtering algorithm could look like in 2D. The red line is the original path.
Note that the safe radius rsafe is omitted from the illustration.

In order to check for possible intersections between a straight line Pi the algorithm



64 CHAPTER 5. PATH FOLLOWING

utilizes the scalar product, in general formulated as

aT b = |a||b|cos(θ), θ ∈ [0, π] (5.7)

where a and b are 3-dimensional column vectors, θ is the angle between them and | · |
is the euclidean norm of a vector. In the algorithm, the straight line Pi in question is
seen as a vector from wpi to wpi+1, which will be the a-vector in the scalar product.
The b-vector will be the straight line from wpi to an obstacle in the W-space. By
utilizing Equation (5.7) we are able to find θ, which is needed to compute the orthogonal
projection of b onto a as well as the projected distance of b onto a. Mathematically,
these distances are computed as

dorth = ||b||sin(θ) (5.8)

dproj = ||b||cos(θ) (5.9)

Now, deciding whether the straight line stays clear of an obstacle Oi can be divided
into 2 cases:

C1: If dorth > rOi
+ rsafe

C2: If dproj > ||a||+ rOi
+ rsafe

These cases are also visualized in figs. 5.5 and 5.6.
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Figure 5.5: Visualizing how dorth can be used to decide if the straight line Pi stays clear
of the obstacle.

Figure 5.6: Visualizing how dproj can be used to decide if the straight line Pi stays clear
of the obstacle.
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5.3 Line of Sight Guidance

Line-of-Sight (LOS) guidance is classified as a three-point guidance method since it
involves a reference point, the intercepting marine craft and the target, as stated in [4].
In this thesis the intercepting marine craft will be the snake robot, the reference point
will be the previously visited waypoint wpi and the target will be the next waypoint
wpi+1. The guidance law that will be utilized to guide the snake robot onto the
straight line path is called lookahead-based guidance. Before presenting the lookahead-
based approach a path-tangential reference frame and along-track, cross-track and
vertical-track errors will be introduced.

5.3.1 Path-Tangential Reference Frame and Track-Errors

As the snake robot moves onto the piecewise linear path, its current position will
deviate from the path at the beginning. The distance to the previous visited waypoint
can be calculated in FI as

pIe = pIIb(t)−wpIi . (5.10)

The error can also be expressed in a path-fixed reference frame, a frame from now
on referred to as FPi . The current straight line the snake robot is following, Pi, has
an orientation described by the azimuth angle and flight path angle, as mentioned
in section 5.1. By rotating an angle χPi about the path-tangential reference frame’s
z-axis we will obtain an intermediate reference frame, denoted FPi

′ . If we further
rotate an angle γPi

about the y-axis of FPi
′ we obtain the same orientation as the

inertial reference frame FI . The orientational transformation from the inertial frame
to the path frame is thus as shown in Figure 5.7. Mathematically, the orientation of
frame FPi

wrt FI is formulated as in [4]

R(χPi , γPi) := R(χPi)R(γPi), (5.11)
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where the right hand side rotation matrices are explicitly expressed as

R(χPi
) :=


cχPi

−sχPi
0

sχPi
cχPi

0

0 0 1

 , R(γPi
) :=


cγPi

0 sγPi

0 1 0

−sγPi
0 cγPi

 (5.12)

where ca := cos(a) and sa := sin(a), a ∈ [χPi
, γPi

]. From this relationship it is
possible to express the error coordinates in FPi

by the transformation

pPi
e (t) = R(χPi

, γPi
)TpIe (5.13)

where pPi
e (t) = [s(t), e(t), h(t)]T ∈ R3 are the along-track, cross-track and vertical-

track errors relative to the origin of FPi . The x-axis of FPi coincides with the path,
thus for path-following purposes the along-track error can be set to 0, i.e s(t) = 0.

Figure 5.7: The orientational relationship from FI to FPi

5.3.2 Lookahead-Based Guidance

The lookahead-based guidance method builds on the idea of having a point on the
straight line path that the marine craft is guided towards. The lookahead distance
is denoted ∆ and represents the distance of the point relative to the origin of the
path-tangential reference frame, directed along its x-axis. The lookahead distance is
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a tuning parameter that decides how the marine craft shall encounter and converge
onto the path. If ∆ is very small, the craft will encounter the path with a large angle,
meaning that it must be highly maneuverable or lower its speed to prevent large
oscillations onto the path. If ∆ is chosen very large, the craft will slowly converge
onto the path. For the 3D-case, the lookahead-based approach is separated into two
parts, as stated in [4]. The desired azimuth angle and flight path angle are formulated
as

χd(χPi
, γPi

, χr, γr) = atan2 (f(χPi
, γPi

, χr, γr), g(χPi
, γPi

, χr, γr)) (5.14)

γd(γPi
, χr, γr) = arcsin (sinγPi

cosχrcosγr + cosγPi
sinγr) , (5.15)

where

f(χPi
, γPi

, χr, γr) = cosχPi
sinχrcosγr − sinχPi

sinγPi
sinγr+

sinχPicosγPicosχrcosγr
(5.16)

g(χPi , γPi , χr, γr) = − sinχPisinχrcosγr − cosχPisinγPisinγr+

cosχPicosγPicosχrcosγr
(5.17)

and

χr(e(t)) := −arctan
(
e(t)

∆

)
, ∆ > 0 (5.18)

γr(h(t)) := arctan
(

h(t)

µ
√
e(t)2 +∆2

)
, µ,∆ > 0 (5.19)

The reference angles in eqs. (5.18) and (5.19) are used to make the snake robot converge
towards the xz-plane and xy-plane of FPi

, respectively. Here, ∆ and µ shape the
references, i.e. decide how the snake robot will converge onto the path, both hori-
zontally and vertically. The µ parameter gives more freedom regarding tuning of the
convergence onto the xz-plane, where a larger µ results in slower convergence than
a smaller µ. An illustration of the lookahead-based 3D-LOS guidance for the snake
robot is shown given in Figure 5.8, inspired by the one in [4].
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Figure 5.8: The path-tangential reference frame FPi
wrt FI , along with the main

steering variables for 3D-LOS. The snake robot base frame origin is the grey circle at
the top of the box. The blue arrow is the velocity vector of the snake robot.

5.3.3 Sideslip Angle and Angle of Attack

The desired angles χd and γd are calculated wrt the projection of the base frame
velocity νbIb in the xy-plane and the xz-plane of the body frame Fb. Thus, they give
the desired course and flight-path angles the snake robot should follow. We want to
control the heading and pitch angles in order to also make the snake robot’s body
align well with the path. The benefits of aligning with the path is that sensors such as
cameras can provide data about the environment in the direction the snake robot is
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headed. In order to utilize χd and γd for this purpose it is important to account for the
sideslip angle and angle of attack, respectively denoted βss and αaoa. They appear when
the ship is subject to external disturbances, or during turning, making a discrepancy
between χd and ψd, and between γd and θd. The relationship between these angles
are given as in [3]

ψd = χd − βss (5.20)

θd = γd − αaoa (5.21)

where the sideslip angle and angle of attack are given as

βss = arcsin(v/
√
(u2 + v2)) (5.22)

αaoa = arctan(w/u) (5.23)

The angles are found from the geometrical relationship visualized in figs. 5.9 and 5.10,
inspired by the ones in [10].

5.3.4 Forward Speed Law

In addition to the guidance laws, the snake robot also needs to be fed a desired speed
to track, in order to move along the path. The desired speed should be possible to
achieve while still being able to stay on the path. Therefore it should somehow be
related to the lookahead distances and how far away the snake robot is from the path,
which is in fact done in [3]

ud = κ
√
µ2(e2 +∆2) + h2, (5.24)

where κ > 0 is a constant gain parameter that gives the ability to adjust the desired
speed wrt the kinematic abilities of the vessel used. From Equation (5.24) we can see
that the desired forward speed is higher the farther away the snake robot is from the
path, which relates to larger cross-track error and vertical-track error. The smaller the
lookahead distance parameters∆ and µ are, the smaller the desired forward speed gets.
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Figure 5.9: The horizontal ocean triangle, with the snake robot’s base as the grey
rectangle. The figure shows the horizontal velocity component of the base, decomposed
in surge and sway. The relationship between the course angle χ, heading angle ψ and
sideslip angle βss are also shown.

This relationship between the desired forward speed and the guidance parameters
allows the snake robot to move faster when it is farther away from the path or has
a less aggressive convergence onto it. On the other side, it prevents the snake robot
from moving too fast and overshoot the path when it is close to and converges more
aggressively onto it.

Slow-Regions
The reasonable forward speed of the snake robot depends on the environment and
the shape of the path it’s following. The shape of the path is defined by how cluttered
the environment is and the algorithm used to obtain the path. When the snake robot
is closing in on a waypoint, its velocity should be smaller in order to prevent large
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Figure 5.10: The vertical ocean triangle, with the snake robot’s base as the grey rectan-
gle. The figure shows the longitudinal velocity component of the base, decomposed in
surge and heave. The relationship between the flight-path angle γ, pitch angle θ and
angle of attack αaoa are also shown.

an overshoot when switching from the currently followed line segment, Pi, to the
next line segment, Pi+1. This depends on the angle between Pi and Pi+1, and the
approaching speed should be smaller for a bigger change in both desired pitch and
desired heading. If the snake robot overshoots too much it might collide with an
obstacle or pass by a waypoint without visiting it, which would lead to failure in
terms of leading the snake robot to the desired target. The forward speed law from
Equation (5.24) does not consider the transition from Pi to Pi+1, which could result
in undesirable overshooting behaviour around waypoints. To cope with the potential
problem of approaching waypoints with too large speed, slow-regions are implemented
as spheres around each waypoint. In order to decrease the desired forward speed
inside these regions we can divide the current output obtained from Equation (5.24)
by a value proportional to the angle between Pi and Pi+1. If the line segments are
close to parallel the desired forward speed shouldn’t change much, but the sharper the
angle the more the speed need to decrease in order to prevent large overshoot. Thus,
we can define a mapping from the angle between Pi and Pi+1, given as

Ksr =
π − θ

π
(Ksr,upper − 1) + 1, (5.25)
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whereKsr ∈ [1,Ksr,upper] is a scaling factor and θ is here defined as the angle between
the two line segments, not to be misunderstood as the pitch angle. The new desired
forward speed is thus

ud =
ud
Ksr

(5.26)

The size of each slow-region’s sphere, denoted rsr, and how much the speed should
decrease inside a slow-region depends on the situation, and thus both rsr andKsr,upper

need to be tuned according to the path and the environment.

5.3.5 Smoothing References

The references from the guidance laws will be discontinuous in the transition from Pi
to Pi+1 when the snake robot switch from waypoint wpi to wpi+1. This will result
in huge velocity references, which in turn demands the actuators to provide large
forces in order to follow the references. It’s not desirable to have actuators operating
at their max performance unless absolutely necessary, due to wear and tear of the
equipment and high energy consumption. To cope with this problem the references are
fed through a low-pass filter [10], which smooths the references in the transition from
following line Pi to following line Pi+1. Thus, the new references from the guidance
laws are given as

ψd = hlpψd (5.27)

θd = hlpθd (5.28)

where hlp is the transfer function of a suitable low-pass filter to make the references
smooth and feasible for the snake robot to track, without demanding too large outputs
from its thrusters.
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Chapter 6

Control System

The snake robot’s desired trajectories and paths from the guidance system need to be
followed sufficiently in order for the snake robot to execute its tasks, which for this
thesis is collision avoidance. For this purpose a control system is needed, consisting
of a motion control system and control allocation. The control allocation calculates
the control inputs, which are fed to the snake robot’s actuators in order to execute
the desired motions, which is shown in Figure 6.1. This chapter will mainly cover
the motion control system in the form of Proportional, Integral and Derivative (PID)-
controllers, and control allocation will be briefly explained.

6.1 PID Motion Control System

The motion control system of a dynamic system, such as the snake robot, can be
designed in various ways, depending on the dynamical characteristics of the system
and the applications of which the system will be used for. The performance of various
controller techniques depends on the parametric uncertainties of the model, distur-
bances acting on the system and unmodelled dynamics. For this thesis, where the

75
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Figure 6.1: Control system in the system architecture. Courtesy of [10].

application is collision avoidance for a snake robot with assumed known parameters
and not subject to environmental disturbances, we will utilize basic PID-controllers as
our motion control system. In general, the commanded generalized force calculated by
PID-controllers in combination with additional feed-forward terms are formulated as

τc(t) = τFF(t) + τPID(t) = τFF(t)− kpe(t)− kdė(t)− ki

∫ t

0

e(ρ) dρ (6.1)

where kp, kd, ki ≥ 0, depending on the type of PID-controller utilized. In addition, τFF
is the feed-forward term and e(t) := x(t)−xd(t) is defined as the error of some state x
of the system, relative to its desired value xd. For ease of notation, the time-dependency
of each state and the control inputs are omitted for the rest of this chapter.

The feed-forward term and the proportional (P), integral (I) and derivative (D) terms
serves different purposes in the control system [36], and will be briefly recapitulated
here:
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• The feed-forward term’s purpose is to eliminate the effects of disturbances before
they create control errors. Thus, in order for the feed-forward method to work
it requires that the disturbances are measured and a model of the system to be
controlled. As this term handles disturbances before they have created errors the
response time of the system is often faster than when utilizing integral action,
and the need for integral action is smaller.

• The proportional term is proportional to the error e. It’s purpose is to ensure a
desirable response time of the system and handles sudden changes.

• The integral term is proportional to the integral of the error e. Integral action
is added to the controller in order to remove steady-state offsets that occurs
when the system experience some form for disturbance. Thus, this term handles
slowly varying changes.

• The derivative term is proportional to the derivative of the error e. It’s purpose
is to improve the stability of the closed-loop system, and it does so by predicting
the system output and provide additional damping to the system.

6.1.1 Forward Speed Autopilot

The task of the forward speed autopilot is to control the surge of the snake robot’s
base frame. In the form of a PID-controller with feed-forward, the autopilot does in
general look like this

τc,u = τFF − kp,uũ− kd,u ˙̃u− ki,u

∫ t

0

ũ(ρ) dρ, (6.2)

where ũ := u − ud and ˙̃u := u̇ − u̇d. The feed-forward term for the forward speed
autopilot is provided in order to cancel the gravitational and buoyancy forces that
acts in the x-axis of the base frame and is thus given as the first component of the
gravitational and buoyancy vector in Section 3.3.1, g(q,Rb

I).
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6.1.2 Pitch Autopilot

The task of the pitch autopilot is to control the pitch of the snake robot’s base frame.
In the form of a PID-controller with feed-forward, the autopilot does in general look
like this

τc,θ = τFF − kp,θ θ̃ − kd,θ
˙̃
θ − ki,θ

∫ t

0

θ̃(ρ) dρ, (6.3)

where θ̃ := θ − θd and ˙̃
θ := θ̇ − θ̇d. The feed-forward term for the pitch autopilot is

provided in order to cancel the moment about the y-axis of the base frame created by
the gravitational and buoyancy forces. The fifth component of g(q,Rb

I) provides the
moment about the y-axis, and is thus fed forward to prevent larger control errors in
the pitch motion.

6.1.3 Heading Autopilot

The task of the heading autopilot is to control the heading of the snake robot’s base
frame. In the form of a PID-controller with feed-forward, the autopilot does in general
look like this

τc,ψ = τFF − kp,ψψ̃ − kd,ψ
˙̃
ψ − ki,ψ

∫ t

0

ψ̃(ρ) dρ, (6.4)

where ψ̃ := ψ − ψd and ˙̃
ψ := ψ̇ − ψ̇d. The feed-forward term for the pitch autopilot

is provided in order to cancel the moment about the z-axis of the base frame, created
by the gravitational and buoyancy forces. The sixth component of g(q,Rb

I) provides
the moment about the z-axis, and is thus fed forward to prevent larger control errors
in the heading motion.

6.1.4 Joint Controllers

The joint controllers are implemented in order to calculate the joint torques needed to
follow the desired joint trajectories, and each controller is formulated as

τc,q = −kp,q q̃ − kd,q ˙̃q, (6.5)
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where q̃ := q − qd and ˙̃q := q̇ − q̇d.

6.2 Control Allocation

Control allocation is in general the process of distributing the generalized control
forces τ to the actuators in terms of the control inputs u [10]. For the snake robot this
relates to the generalized control forces from itsm thrusters, which for the snake robot
in this thesis is seven. The thrusters are used to actuate the snake robot, wrt to the
motion of the base frame Fb. The relationship between the generalized control forces
for the thrusters of the snake robot’s base frame, τ b ∈ R6, and the control inputs,
uthr ∈ R7, are given as

τ b = B(q)uthr, (6.6)

whereB(q) is the TCM from Section 3.3.1. Due to the fact that the number of thrusters
is bigger than the DOFs of the snake robot’s base, the thrust allocation problem is an
overactuated control problem. In general, overactuated control problems can be solved
by utilizing the right Moore-Penrose pseudoinverse [10], denoted

uthr = B(q)
†
τ b, B(q)

†
= B(q)

T
(
B(q)B(q)

T
)−1

(6.7)

Because the snake robot can change its configuration, leading to B(q) being time-
dependent, the TCM may become singular. This needs to be dealt with, otherwise we
lose control of the snake robot. A simple but effective strategy for solving this is to
utilize the damped pseudoinverse

uthr = B(q)
†
τ b, B(q)

†
= B(q)

T
(
B(q)B(q)

T
+ λ2

)−1

(6.8)

where λ is the damping factor. In near-singular thruster configurations this method
will allow the thrusters to deviate from the commanded thrust, which would otherwise
lead to excessively high thrust to solve the task. This method was used in [32], and
will be utilized for control allocation in this thesis.
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Chapter 7

Implementation and
Simulation

This chapter will introduce the results from the implementation of path planning and
control for collision avoidance of the snake robot in a static cluttered environment.
First, Section 7.1 presents the results from planning 3-dimensional global collision-
free paths. To plan the paths the APF and RRT* planners will be utilized for global
path planning, and their ability to find feasible paths will be evaluated. Secondly, in
Section 7.2 the snake robot is set to follow the created paths from the planners by
utilizing the WLOS guidance method, which additionally incorporates slow-regions,
in order to avoid the obstacles in the environment. The resulting path following
performance will be compared in terms of the snake robot’s ability to follow the paths
in a collision-free manner. In addition, the snake robot’s energy consumption will also
be considered, indicating how demanding the paths are to be followed.
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7.1 Path Planning

The global path planning task in a 3-dimensional W-space will be solved by the RRT*
algorithm and the APF algorithm, incorporating a random walk mode. As the planned
path from the APF is quite dense it is filtered into a much smaller number of waypoints
to simplify the maneuvering needed to follow the path, which could lead to less energy
consuming paths. The dense path is filtered by the use of both the BPP-filter and
SLCL-filter from Section 5.2.

7.1.1 Environment

The three environments that the path planners are tested on are visualized in Figure 7.1,
and the specifications of the environments, i.e the obstacles, target location and the
start position of the snake robot, are listed in tables 7.1 to 7.3. The upper and lower
bounds of all the environments are set to ±25[m] in all three directions; north, east
and down, except for environment 3, where a flat square approximation of the ocean
floor is added at −4[m] in the down direction. The initial position of the snake robot
in all the simulations is

pIIb(0) = [−1.7 0 0]T

ENVIRONMENT 1
Obstacle type Position [m] Radius [m]

Target N/A [20, 5, 6] 0.5
Obstacle 1 Sphere [5, 1, 4] 2
Obstacle 2 Sphere [4, -4, 0] 3
Obstacle 3 Sphere [10, -1, 3] 1
Obstacle 4 Sphere [15, 5, 0] 3

Table 7.1: Obstacles and target specifications of environment 1.
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ENVIRONMENT 2
Obstacle type Position [m] Radius [m]

Target N/A [16, 0, 0] 0.5
Obstacle 1 Sphere [7, 3, 0] 2
Obstacle 2 Sphere [12, -5, 0] 3

Table 7.2: Obstacles and target specifications of environment 2.

ENVIRONMENT 3
Obstacle type Position [m] Radius [m]

Target N/A [20, 5, 6] 0.5
Obstacle 1 Sphere [5, 1, 4] 2
Obstacle 2 Sphere [4, -4, 0] 3
Obstacle 3 Sphere [10, -1, 3] 1
Obstacle 4 Sphere [15, 5, 0] 3
Obstacle 5 Sphere [7, 4, 2] 2
Obstacle 6 Sphere [17, -2, 4] 3
Obstacle 7 Sphere [5, 8, -2] 1

Table 7.3: Obstacles and target specifications of environment 3.
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(a) (b)

(c)

Figure 7.1: The three environments used to test the different path planners’ perfor-
mance. (a) Shows environment 1, consisting of 4 spherical obstacles, the target (red
dot), and the snake robot (orange line) in its initial configuration. (b) Shows environ-
ment 2, consisting of 2 spherical obstacles, the target (red dot), and the snake robot
(orange line) in its initial configuration. (c) Shows environment 3, consisting of 7
spherical obstacles, the target (red dot), and the snake robot (orange line) in its initial
configuration. In addition, the lower bound is created by the ocean floor, which is
illustrated as a grey square.
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7.1.2 APF Path Planner

The APF path planner implemented here consists of three parts; a potential field, the
gradient descent algorithm and a random walk for escaping local minima, based on
Section 4.2. For the APF planner to obtain a collision-free path it needs to be tuned.
The tuning process is usually based on trial and error, which is stated in [7]. The most
important aspect is to find sufficient numerical values for the hyperparameters, in
order for the planned path to be collision-free and navigable for the snake robot.

Tuning
The hyperparameters for the APF algorithm, including the hyperparameters for the
potential field, gradient descent and the random walk, need to be tuned for acceptable
path planning. The numerical values are given in Table 7.4 and an elaboration follows
here:

• Step size, α. There are a few criterias to be considered for choosing the appro-
priate α for this task. Due to the fact that the step size is determining how far
gradient descent will travel every iteration, it should be chosen such that the
distance between every iteration avoids moving through or too close to the
obstacles. If it moves through an obstacle, the path is in practice useless, or if
it moves too close to an obstacle, where the repulsive potential is big, it might
result in the next step being pushed far from the previous one and possibly in
a non-optimal direction, leading away from the target. The approximate value
where this non-desirable behaviour emerges is denoted αzig-zag. Such behaviour
complicates the task of subsequently dividing the path into useful waypoints,
and is thus avoided. Another criteria is the desire of implementing a planner
which finds a path in a reasonable amount of time. Thus, α ∈ (αslow, αzig-zag) is
the acceptable set of α, preventing slow run-time and undesirable paths. From
trial and error α = 0.1. Illustrations of the discussed problems with α > αzig-zag,
leading to so called zig-zag paths and paths that travels through obstacles, are
shown in fig. 7.2, for α = 1 and α = 2.
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• Gradient tolerance, ϵ. This parameter is used for terminating the gradient descent
algorithm. For these simulations ϵ is chosen to be 0.1.

• Random steps, Nrw. The total number of random steps to execute during the
random walk procedure, which together with the length of each step defines
how far the random walk is allowed to travel. For planning in environment
1-3 the total step size is set to 60.

• Random step length, δrw. The length to travel in each direction for every random
step in the random walk, which together with the total number of random steps
defines how far the random walk can travel. Since every random step is also
checked for collisions it is beneficial to not make the step length too big, in order
to avoid collisions and rather have a larger number of total steps in order to
travel a longer distance. Thus, the random step length is set to 0.15[m].

• Local minimum threshold, ϵtrapped. The threshold value determines whether
or not the APF planner has been trapped by a local minimum. The four latest
samples are chosen to check whether a local minimum is present. If the euclidean
distance between the oldest sample and the other three samples are all below
ϵtrapped, a local minimum is detected. The threshold is set to 0.2[m].

• Potential gain,Ka. This parameter decides the size of the gradient, and is set to
1.

• Repulsive gain,Kr . This parameter decides the size of the gradient, and is set to
5.

• Switching distance, d∗t . The switching distance decides whether the attraction
function should be a conical or paraboloide function. It is set to 25[m], in practice
making the attractive potential solely a paraboloide function. This is due to the
fact thatKa is not too large and theW-space domain is not big enough in order
for the gradient to grow too large, which was the reason for using the conical
function.
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• Smoothing obstacle gradient, Q∗
o. The last hyperparameter for the repulsive

functions, Q∗
o , is after trial and error chosen to be 15. This makes a more gently

increasing gradient relatively close to an obstacle, preventing the next step
of gradient descent to be pushed far away from the last one, and perhaps in a
non-optimal direction.

• Safe radius, rsafe. The safe radius is here chosen to be half of the snake robot’s
length in order to give the snake robot some path following margins. This results
in a path that does not demand the snake robot to follow the path with 100%

accuracy at all time to avoid collisions.

Hyperparameter Numerical value Unit
α 0.1 1
ϵ 0.1 m
Ka 1 1
Kr 5 1
d∗t 25 m
Q∗
o 15 1

rsafe 1.7 m
Nrw 60 1
δrw 0.15 m

ϵtrapped 0.2 m

Table 7.4: Hyperparameter values for the APF path planner. The "1" in theUnit column
specifies dimensionless quantities.

Performance of the APF planner
When all the hyperparameters are chosen, the path planner is tested on the envi-
ronments visualized in Figure 7.1. The planner manages to find a collision-free path
for environment 1 and environment 2, which can be seen from figs. 7.3 and 7.4,
indicating that the APF path planner is indeed capable of finding collision-free paths in
a cluttered environment, after tuning of its hyperparameters. In addition, it managed
to escape a local minimum in environment 2. Environment 3 proved to be much



88 CHAPTER 7. IMPLEMENTATION AND SIMULATION

(a) (b)

(c)

Figure 7.2: Different tuning of α results in different paths, where some might be
impracticable. (a) and (b) shows impracticable paths generated with α = 1 and α = 2,
respectively. (c) shows a feasible path with α = 0.1.

trickier to converge to the target, the APF planner seemed to get stuck in several local
minima and failed to reach the target. Thus, even though the random walk manages to
help the APF planner in converging to the target it can be really hard when the number
of obstacles increase and the number of local minima grows. In addition, the more
obstacles that are present, the harder it gets to find feasible collision-free steps during
the random walk. For the succeeding paths, the waypoints are successfully filtered out
by utilization of both the BPP-filter and SLCL-filter from Section 5.2, still resulting in
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collision-free paths. The filtered paths in both environment 1 and environment 2
are shown in Figure 7.3 and Figure 7.4, respectively. In Figure 7.4 we can see that the
resulting SLCL-filtered path inherit some of the random pattern from the random walk
while the BPP-filtered path does not. In the scenario where a local minimum appears
and the original path from the APF planner gets a random pattern the BPP will make
better suited paths for path following due to its ability to literally go straight through
the random walk areas and obtain paths that need less aggressive maneuvering to be
followed.
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(a) (b)

(c)

Figure 7.3: The planned paths in environment 1, based on the APF planner. The
starting and target points are visualized as blue and red dots, respectively. (a) Path
from the APF planner. (b) The APF path filtered by the BPP-filter. (c) The APF path
filtered by the SLCL-filter. We can see that the path in (b) is simpler than the other
two, which ease the path following task for the snake robot.
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(a) (b)

(c)

Figure 7.4: The planned paths in environment 2, based on the APF planner. The
starting and target points are visualized as blue and red dots, respectively. (a) Path
from the APF planner. (b) The APF path filtered by the BPP-filter. (c) The APF path
filtered by the SLCL-filter. We can see that the path in (b) is the most suitable for path
following purposes.
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Figure 7.5: The APF planner fails to plan a path in environment 3 because of the high
obstacle density.
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7.1.3 RRT* Path Planner

The RRT* path planner implemented for the snake robot acting as an AUV is explicitely
searching for a collision-free path in the W-space, a subset of R3. When searching
for a path, the algorithm needs to consider the length of each branch in the tree and
the angle between two branches, resulting in a feasible path for the snake robot to
follow. To achieve this, the hyperparameters are tuned as shown in Table 7.5, and an
elaboration follows here:

• Branch lower bound, ϵlower. The minimum euclidean distance between two con-
nected nodes of the tree. This parameter is set to twice the length of the snake
robot, aiming for a path P that is easier to follow with the WLOS guidance
method than for paths consisting of smaller line segments.

• Branch upper bound, ϵupper. The maximum euclidean distance between two
connected nodes of the tree. The distance is set to 15[m], which is to prevent
the random samples to be placed too far from the target in a potentially wrong
direction.

• Angle lower bound, υlower. The minimum angle between two following edges.
The smaller the angle the harder it is to prevent overshoot when switching
between two lines Pi and Pi+1. This parameter is set to 120◦ to create a path
that does not demand aggressive turn during switching.

• Neighbourhood radius, rnh. The algorithm searches for close nodes that might
lead to a shorter path, and is here set to 8[m].

Hyperparameter Numerical value Unit
ϵlower 6.8 m
ϵupper 15 m
υlower 120 deg
rnh 8 m

Table 7.5: Hyperparameter values for the RRT* path planner.



94 CHAPTER 7. IMPLEMENTATION AND SIMULATION

The RRT* planner manages to plan collision-free paths for all the environments, which
is shown in Figure 7.6. Their efficacy in a path following scenario will be further
investigated in Section 7.2.

(a) (b)

(c)

Figure 7.6: The planned paths in all three environments, based on the RRT*-planner.
(a) Shows the planned path in environment 1. (b) Shows the planned path in envi-
ronment 2. (c) Shows the planned path in environment 3.

7.1.4 RRT* vs APF as Global Path Planners

The APF and RRT* has been tested on three environments with different number of
obstacles. Both the RRT* planner and the APF planner managed to plan collision-
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free paths for environment 1 and environment 2, but only the RRT* successfully
accomplished it for environment 3. Thus, it seems that the RRT* is better than
APF for global path planning the more cluttered the environment is. This makes
sense as the APF tends to move straight towards the target, and the more obstacles
that lies close to this path, the more it gets pushed away from it. The probability of
getting trapped by a local minimum, which is one of the biggest drawbacks of the
APF, rapidly increases with the number of obstacles. Even though the random walk
mode could solve the problem, it was shown in Figure 7.5 that this need not be the
case. The RRT* implemented here does not suffer from a local minimum problem,
and it is able to exploit the whole domain better than the APF due to its exploring
behaviour. Eventually, this is what makes RRT* more suited for path planning in
cluttered environments, and the better choice for path planning in environment 3.

The APF planner tends to converge straight to the target and create curved paths
around the obstacles when it gets close to them. The SLCL-filter and BPP-filter are
both trying find waypoints along the path, resulting in a piecewise linear path that is
better suited for WLOS guidance. The BPP-filter is additionally filtering the original
path with the objective of finding a shorter path that is still collision-free. This method
also makes it suited for filtering APF paths where the random walk mode has been
activated, which the SLCL-filtering does not handle well. The RRT* is also searching
for and converges towards the shortest path, but whether or not it finds it depends
on the tuning of its hyperparameters, which is not easy to tune in order to find the
theoretically shortest feasible path. For environment 1 and environment 2, where
both the APF and RRT* planners managed to plan collision-free paths, the shortest
distance of a path is in fact planned by the APF planner with BPP-filtering, as shown
in table 7.6. In terms of the path distance, the APF planner with BPP-filtering seems to
be the best.

Thus, for a sparse cluttered environment, choosing to utilize the APF planner with
BPP-filtering would create a shorter and more effective path towards the goal, but the
more cluttered the environment gets the better it is to utilize the RRT* planner in favor
of the APF planner.
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PATH DISTANCES [m]
Environment 1 Environment 2

APF (BPP) 22.9 17.9

APF (SLCL) 23.6 24.6

RRT* 26.2 25.6

Table 7.6: Distances of the paths planned in environment 1 and environment 2 by
the APF planner with filtering and the RRT* planner.
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7.2 Path Following

Having planned the path, the next step is to make the snake robot sufficiently follow
it. The snake robot in this section will follow the path while being straight at all times,
meaning that its joint angles will follow a desired angle of 0. To accomplish this task,
the guidance laws from Section 5.3 and the controllers from Section 6.1 need to be
tuned appropriately. Essentially, we want the snake robot to reach the target and
stay clear of the obstacles, and to achieve this the snake robot needs to stay close to
the collision-free path at all times. Thus, we aim for guidance laws and controllers
that together effectively steer the snake robot onto the path, without too large an
overshoot and with fast convergence towards the path. The centre link’s CM frame
will be used for guidance purposes, which is beneficial in the area of switching from
one waypoint to another. If the base frame or the end effector frame were used, the
switching would respectively occur later or earlier, relative to when the centre link is
used. This would introduce more deviations between the planned path and the actual
path travelled by the snake robot, which is closely related to the matter of selecting
an appropriate sphere of acceptance, addressed in Section 5.2. The numerical values
for both the guidance laws and the controllers after the tuning process are given in
tables 7.7 and 7.8, respectively. In addition, each joint is controlled by a PD-controller,
with gains given as in Table 7.9. The tuning parameters were found through trial and
error in order to make the snake robot’s behaviour meet the criteria mentioned above,
and they are the same for all case simulations, to enable a fair comparison. The paths
created in environment 1 from Section 7.1.1 will be used for path following in all
the simulations because the path planning results in this environment were the best
for comparison of the path following task. In addition, the subsequent simulations
in sections 7.2.1 to 7.2.3 will make use of the slow-region concept from Section 5.3.4,
while in Section 7.2.4 the slow-regions are absent.



98 CHAPTER 7. IMPLEMENTATION AND SIMULATION

Tuning parameters Numerical value Unit
∆ 6.8 m
µ 0.5 1
κ 0.05 1
rsoa 0.5 m

Ksr,upper 8 1
rsr 2 m

Table 7.7: Tuning parameters values for the guidance and forward speed laws. The "1"
in the Unit column specifies dimensionless quantities.

Tuning parameters Numerical values

Forward autopilot
kp,u 70

ki,u 5

kd,u 0

Pitch autopilot
kp,θ 30

ki,θ 0

kd,θ 60

Heading autopilot
kp,ψ 25

ki,ψ 0

kd,ψ 60

Table 7.8: Tuning parameters values for the autopilot controllers.

Tuning parameters Numerical value
kp,q 300

kd,q 20

Table 7.9: Tuning parameters values for the joint PD-controllers.
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7.2.1 Case 1: Following BPP-Filtered Path

The results from the path following method executed on the planned path from the
BPP-filtering are summarized through figs. 7.7 to 7.11. In Figure 7.7 it is seen that the
snake robot is able to follow the planned path quite accurately, which is necessary to
avoid the obstacles. The distances from the obstacles to each link’s rear end and the
end effector are visualized in Figure 7.8, which shows that the snake robot is in fact
avoiding all the obstacles while following the path. Furthermore, Figure 7.9 shows
how the snake robot is able to track the desired surge, pitch and heading along the
path. Note that when the snake robot enters the low velocity region it slows down
in order to better follow the path and avoids large overshooting behaviour onto the
path. Additionally, Figure 7.10 shows that the joints are kept close to 0◦ during the
whole path following operation and the joint torques do not exceed their 10[Nm] limit.
There are tiny motions in some of the joint angles when the snake robot performs
larger turns, where the magnitude of the thruster forces are greatest, but they are kept
within 1◦ and do not hinder the path following operation’s overall performance. The
thruster forces seen in Figure 7.11 shows that the thrusters are never demanded to
provide excessively high forces and operate within their 40[N] limits at all times.
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Figure 7.7: The BPP-filtered path and the actual path of the centre link’s CM. (a)
The whole 3D environment. (b) The projection onto the North-East plane. (c) The
projection onto the North-Down plane. (d) The projection onto the East-Down plane.
The sphere of acceptance is visualized as black ellipses in each plane. Note that the
difference in the axes make the circles appear elliptical.
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Figure 7.8: The closest distance between the obstacles in theW-space and the links
and end effector of the snake robot. It is seen that all the links and the end effector
keep their distance from the obstacles when following the BPP-filtered path. Note
that since the longest link is 0.8 metres, collision avoidance is guaranteed, as each
calculated distance is above 0.8.
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Figure 7.9: The desired and actual surge, pitch and heading states of the snake robot
while following the BPP-filtered path. It is seen that their respective autopilots are
tuned such that snake robot are able to follow the references in a reasonable amount
of time.
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(a)

(b)

Figure 7.10: The joint angles and joint torques during path following of the BPP-filtered
path. (a) Shows that the joint angles are kept relatively close to 0◦ during the whole
path following operation. When the snake robot use its thrusters to turn one can see
some of the joints move slightly, but are kept within 1◦. (b) Shows the joint torques
used to keep the joints close to 0◦.
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Figure 7.11: The thruster forces during path following of the BPP-filtered path. It is
seen that thrusters Z1 and Z3 are the most active, in order to follow the demanded
change in pitch about 40◦ after approx. 80 seconds.
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7.2.2 Case 2: Following SLCL-Filtered Path

The results from the path following scheme executed on the planned path from the
SLCL-filtering are summarized through figs. 7.12 to 7.16. In Figure 7.12 it is seen that
the snake robot is also here able to follow the planned path quite accurately. The
distances from the obstacles to each link’s rear end and the end effector are visualized
in Figure 7.13, which shows that the snake robot is in fact avoiding all the obstacles
while following the path. Furthermore, Figure 7.14 shows how the snake robot is able
to track the desired surge, pitch and heading along the path, but note that the reference
values change more frequently than the ones in Figure 7.9. This is due to the fact
that the SLCL-filtered path consists of a higher number of waypoints, which in turn
demands the snake robot to execute more maneuvers to follow the path, compared
to what was needed for following the BPP-filtered path. Due to the smaller distance
between the waypoints, the angle between Pi and Pi+1 vary less across the entire
path, which makes the scaling factor Ksr in the slow-region vary less. Thus, the
resulting difference between the highest and lowest desired speed is smaller than
for the BPP-filtered path, which is seen by comparing the desired surge in Figure 7.9
and Figure 7.14. Additionally, Figure 7.15 shows that the joints are kept close to 0◦

during the whole path following operation and the joint torques do not exceed their
10[Nm] limit. Similar to the path following of the BPP-filtered path in Section 7.2.1,
some of the joint angles deviate from the reference when the snake robot performs
large turns, where the magnitude of the thruster forces are greatest. The deviations
are kept small and do not hinder the path following operation’s overall performance.
The thruster forces seen in Figure 7.16 shows that the thrusters are not demanded
to provide excessively high forces and operate within their 40[N] limits at all times.
Nevertheless, they are larger and more varying than the ones seen in Figure 7.11. This
makes sense because the snake robot needs to execute more turning maneuvers to
adequately follow the path.
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Figure 7.12: The SLCL-filtered path and the actual path of the centre link’s CM. (a)
The whole 3D environment. (b) The projection onto the North-East plane. (c) The
projection onto the North-Down plane. (d) The projection onto the East-Down plane.
The sphere of acceptance is visualized as black ellipses in each plane. Note that the
difference in the axes make the circles appear elliptical.
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Figure 7.13: The distance between the obstacles in the W-space and the links and end
effector of the snake robot. It is seen that all the links and the end effector keep their
distance from the obstacles when following the SLCL-filtered path. Note that since
the longest link is 0.8 metres, collision avoidance is guaranteed, as each calculated
distance is above 0.8.
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Figure 7.14: The desired and actual surge, pitch and heading states of the snake robot
while following the SLCL-filtered path. It is seen that it manages to obtain the desired
surge, pitch and heading values without lagging much behind.
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(a)

(b)

Figure 7.15: The joint angles and joint torques during path following of the SLCL-
filtered path. (a) Shows that the joint angles are kept relatively close to 0◦ during the
whole path following operation. When the snake robot use its thrusters to turn we can
see some of the joints move slightly, barely past 1◦ for q2. (b) Shows the joint torques
used to keep the joints close to 0◦.
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Figure 7.16: The thruster forces during path following of the SLCL-filtered path. It is
seen that thrusters Z1 and Z3 are the most active, in order to follow the demanded
change in pitch of about 40◦ after approx. 80 seconds.
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7.2.3 Case 3: Following RRT* Path

The results from the path following scheme executed on the planned path from the
RRT* algorithm are summarized through figs. 7.17 to 7.21. In Figure 7.17 we see that
the snake robot sufficiently follows the planned path, and as a direct result avoids
the obstacles. The distances from the obstacles to each link’s rear end and the end
effector are visualized in Figure 7.18. Furthermore, Figure 7.19 shows how the snake
robot is able to track the desired surge, pitch and heading along the path. Note that
when the snake robot enters the slow-region it slows down proportionally to the size
of the angle between Pi and Pi+1 in order to better follow the path and avoid large
overshooting behaviour onto it. Additionally, fig. 7.20 shows that the joints are kept
close to 0◦ during the whole path following operation and the joint torques do not
exceed their 10[Nm] limit. There are tiny motions in some of the joint angles when the
snake robot makes large turns, where the thruster forces are large, but they are kept
within 1◦ and do not hinder the path following operation’s overall performance. The
thruster forces seen in Figure 7.21 are not at any point demanded to output excessively
high forces and operate within their 40[N] limits at all times.
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Figure 7.17: The RRT* path and the actual path of the centre link’s CM. (a) The whole
3D environment. (b) The projection onto the North-East plane. (c) The projection onto
the North-Down plane. (d) The projection onto the East-Down plane. The sphere of
acceptance is visualized as black ellipses in each plane. Note that the difference in the
axes make the circles appear elliptical.
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Figure 7.18: The distance between the obstacles in the W-space and the links and end
effector of the snake robot. It is seen that all the links and the end effector keep their
distance from the obstacles when following the RRT* path. Note that since the longest
link is 0.8 metres, collision avoidance is guaranteed, as each calculated distance is
above 0.8.
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Figure 7.19: The desired and actual surge, pitch and heading states of the snake robot
while following the RRT* path.
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Figure 7.20: The joint angles and joint torques during path following of the RRT* path.
(a) Shows that the joint angles are kept relatively close to 0◦ during the whole path
following operation. When the snake robot use its thrusters to turn one can see some
of the joints moves slightly, but are kept within 1◦. (b) Shows the joint torques used to
keep the joints close to 0◦.
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Figure 7.21: The thruster forces during path following of the RRT* path. Note that the
thruster forces are largest at the beginning and the end of the path, where the snake
robot’s orientation vary the most from the desired orientation of the line segment it’s
set to follow.
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7.2.4 Case 4: Absence of Slow-Region

In this case the same paths from sections 7.2.1 to 7.2.3 are used for path following, but
here the slow-region is absent. For all three path following scenarios the consequence
is that the resulting paths in total deviates more from the planned path compared
to the path following results presented in sections 7.2.1 to 7.2.3, which is seen in
Figure 7.22, Figure 7.24 and Figure 7.26. The BPP-filtered path is experiencing its worst
overshooting behaviour at the last line segment, while the SLCL-filtered path has more
or less the same overshooting behaviour through the whole path. Even though the
path following task for these two scenarios overshoot and oscillates more about the
planned path, they still manages to follow the path and reach the target. They also
avoid colliding with obstacles, which is seen in Figure 7.28, though the distances to
the objects are slightly closer compared to the results from sections 7.2.1 and 7.2.2.
This is expected, as the closer the snake robot follows the path, the bigger the distance
to the obstacles will be. When the speed is increased, the more difficult it is to stay
on the path, leading to smaller distances to the obstacles. Staying close to the path is
especially difficult when switching from one line segment to another, where bigger
turning maneuvers are required. The biggest deviations from the planned path is thus
found around the waypoints. Note that WLOS guidance method barely manages to
guide the snake robot to the target while following the SLCL-filtered path. This could
be seen from figs. 7.24 and 7.25, where the snake robot almost fails to visit some of
the waypoints and struggles to follow the heading reference, respectively. The RRT*
planned path experience the same increase in overshooting behaviour, but in this
case it results in the snake robot not being able to respond fast enough to enter the
sphere of acceptance and fails to reach the target. Thus, it is seen that if both the angle
between the lines Pi and Pi+1 and the length of Pi+1 are too small at the same time,
the snake robot could fail to visit the waypoint. If this happens, the WLOS method
fails in guiding the snake robot towards the target. A solution could be to have a
larger sphere of acceptance radius, but here the task is to avoid obstacles by following a
collision-free path, thus we would not want the radius to be too big. If the radius is too
big the actual path would deviate more from the planned path due to the switching
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from Pi to Pi+1 happens earlier. The presence of a slow-region is thus shown to make
the WLOS guidance method more robust regarding the shape of the paths planned.
This is accomplished because the snake robot is set to slow down according to the size
of the angle between the lines Pi and Pi+1.

It should also be mentioned that as an alternative to introducing a slow-region, the
lookahead-distances ∆ and µ can also be tuned different to deal with the problem
encountered here. If for instance ∆ is lowered compared to its value in these sim-
ulations the more aggressively the snake robot steers onto each line segment. The
more aggressive the tuning, the more oscillating the snake robot’s convergence onto
the path will be, which could lead to collisions if the oscillations are too big. If this
method is utilized the speed should be smaller to prevent overshooting behaviour.
In addition, there exists methods utilizing time-varying lookahead-distances for the
purpose of fast convergence onto the path and at the same time avoid overshooting
behaviour [10]. The slow-region concept was instead implemented here to cope with
the problem in a smaller area around the waypoints, where the overshooting behaviour
occured. The slow-region also utilizes information about the shape of the path to slow
down accordingly, which was shown to improve the WLOS guidance method’s overall
performance in these path following cases.

The slow-region and varying lookahead-distances are both possible solutions to prevent
the WLOS method of failing. An alternative to these solutions could be to combine
the WLOS path following method with a set-based method, as was done in [17]. The
snake robot could start in WLOS mode and follow the planned path, but if it fails to
visit a waypoint it could potentially collide with obstacles while trying to navigating
back to the path. In these situations, the snake robot could switch to a set-based mode,
which leads it back to the unvisited waypoint unharmed. The set-based method does
not necessarily need to guide the snake robot back to the lost waypoint, but could
choose from any of the waypoints or even go straight towards the target. What would
be the best solution depends on the task. Such a method is not implemented in this
thesis, but could definitely make the guidance method more robust and safer in terms
of obstacle avoidance and reaching the target.
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In the cases presented in this subsection, the WLOS guidance scheme successfully
guided the BPP-filtered and the SLCL-filtered paths to the target, but failed for the
RRT* planned path. This is related to how the paths are formed and the tuning of the
guidance laws, including the sphere of acceptance. As the desired size of the sphere of
acceptance is relatively small in order for the WLOS guidance scheme to closely follow
the path, the relation between the hyperparameters of the RRT* planner need to be
more carefully considered when the slow-region is absent. The APF planner creates a
more deterministic curved path that can easily be divided into feasible waypoints to
be used in the WLOS guidance, through either BPP-filtering or SLCL-filtering, which
performs better without slow-regions than the paths created by RRT*.
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Figure 7.22: The BPP-filtered path and the actual path of the centre link’s CM when
the slow-region is absent. (a) The whole 3D environment. (b) The projection onto the
North-East plane. (c) The projection onto the North-Down plane. (d) The projection
onto the East-Down plane. The sphere of acceptance is visualized as black ellipses in
each plane. Note that the difference in the axes make the circles appear elliptical.
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Figure 7.23: The desired and actual surge, pitch and heading states of the snake robot
when following the BPP-filtered path and the slow-region is absent. Notice that the
desired surge is constant after 10 seconds.
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Figure 7.24: The SLCL-filtered path and the actual path of the centre link’s CM when
the slow-region is absent. (a) The whole 3D environment. (b) The projection onto the
North-East plane. (c) The projection onto the North-Down plane. (d) The projection
onto the East-Down plane. The sphere of acceptance is visualized as black ellipses in
each plane. Note that the difference in the axes make the circles appear elliptical.
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Figure 7.25: The desired and actual surge, pitch and heading states of the snake robot
when following the SLCL-filtered path and the slow-region is absent. Notice that the
desired surge is constant after 10 seconds and that its magnitude results in the heading
barely reaching its desired value before a new heading reference is demanded.



124 CHAPTER 7. IMPLEMENTATION AND SIMULATION

(a)

-1 0 1 2 3 4 5 6 7

East [m]

-5

0

5

10

15

20

25

N
o

rt
h

 [
m

]

North-East plane

Planned Path

Actual Path

(b)

-5 0 5 10 15 20 25

North [m]

-1

0

1

2

3

4

5

6

7

8

9

D
o

w
n

 [
m

]

North-Down plane

Planned Path

Actual Path

(c)

-1 0 1 2 3 4 5 6 7

East [m]

-1

0

1

2

3

4

5

6

7

8

9

D
o

w
n

 [
m

]

East-Down plane

Planned Path

Actual Path

(d)

Figure 7.26: The RRT* path and the actual path of the centre link’s CM when the
slow-region is absent. (a) The whole 3D environment. (b) The projection onto the
North-East plane. (c) The projection onto the North-Down plane. (d) The projection
onto the East-Down plane. Note that the snake robot fails to enter the green sphere of
acceptance, which causes the WLOS guidance to fail.



7.2. PATH FOLLOWING 125

Figure 7.27: The desired and actual surge, pitch and heading states of the snake robot
when following the RRT* path and the slow-region is absent. Notice that the desired
surge is constant after 10 seconds.
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Figure 7.28: The distance between the obstacles in the W-space and the links and
end effector of the snake robot when the slow-region is absent. It is seen that all the
links and the end effector keep their distance from the obstacles when following (a)
BPP-filtered path, (b) SLCL-filtered path and (c) RRT* path. Note that since the longest
link is 0.8 metres, collision avoidance is guaranteed, as each calculated distance is
above 0.8.
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7.2.5 RRT* vs APF for Path Following

The three planned paths in environment 1, created by the RRT* planner and the
APF planner with both BPP-filtering and SLCL-filtering, have been used for path
following throughout Section 7.2. The WLOS guidance method, which incorporated a
slow-region for safer path following, was utilized together with PID-based autopilot
controllers for surge, pitch and heading, respectively in the form of PI, PD and PD. The
path following task was satisfyingly executed as the snake robot was able to closely
follow the paths while travelling from its starting position to the target position,
without colliding with the obstacles. Thus, all the paths were proven functional in
combination with the proposed guidance and control methods to solve the collision
avoidance task. We also want to compare them in terms of energy efficiency because
this matter is of high practical importance. Being energy efficient while executing
various tasks, for instance travelling safely from A to B, saves fuel and money. If
the path chosen also is one of the shortest possible and easy to follow, we may also
save a significant amount of time. In Table 7.10 we see the total work done by the
thrusters throughout the three path following tasks, from where we can conclude that
the BPP-filtered path is best wrt energy efficient operation for this environment. It
is important to emphasize that it’s the best option for this exact environment and
tuning choice of the hyperparameters, as another environment and other values of
the hyperparameters could make the paths look very different. Nevertheless, the
BPP-filtering in combination with the APF worked as intended, creating an easy to
follow and short path, resulting in being the most energy efficient.

Total thrust work [J] Path distance [m] Work pr. metre [J/m]
Case 1 1240 24.1 51.5

Case 2 3140 25.3 124.1

Case 3 4180 30.9 135.3

Table 7.10: Total thruster work, path distance and work done pr.metre from start
position to target position for Case 1-3.
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Chapter 8

Conclusion and Future Work

This chapter first provides a summary of the results obtained in this thesis. Secondly,
Section 8.2 elaborates on potential future work that can enhance the effectiveness of
the solutions presented and other required measures to acquire self-collision avoidance.

8.1 Conclusion

In this thesis, the collision avoidance task for a snake robot operating in 3-dimensional
cluttered environments was conducted. The task of collision avoidance for the snake
robot was two-fold; avoiding obstacles in an environment and self-collision avoidance.
A solution to the obstacle avoidance problem was provided and analyzed for the given
environments, while the self-collision avoidance remains an unresolved problem.

The three cluttered environments investigated in the thesis consisted of a various
number of spherical objects and flat surfaces. To solve the obstacle avoidance task in
these environments, this thesis aimed at planning straight line paths for path following,
by utilization of the WLOS guidance method in combination with autopilot controllers.

129
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To plan the paths both the APF wit random walk mode and RRT* algorithms were used
as path planners, creating collision-free paths from a starting point to a desired target
point in the environments. In addition, the planners searched for easily navigable and
short paths, as they would be better suited for the WLOS method and more optimal
regarding energy consumption and time efficiency. To suit these criteria, the APF
planned paths were filtered by two methods; the BPP-filter and the SLCL-filter. The
APF planner with random walk mode managed to plan paths for 2/3 environments,
failing at the most cluttered environment. In the environments where the APF planner
managed to plan feasible paths, the BPP-filter was shown to provide shorter and easier
navigable paths than the SLCL. Additionally, the SLCL-filter failed to create navigable
paths where the random walkmode had been activated. The RRT* was shown to handle
all three environments well, in terms of finding a collision-free path, but the paths
were longer than the ones planned by the APF-filters. In sum, whe comparing the APF
and RRT* methods, the APF planner was better at finding shorter paths in sparser
environments, but the RRT* performed better the more cluttered the environments
were. The paths were subsequently followed by the snake robot, utilizing a WLOS
lookahead-based guidance law in combination with PID-based autopilot controllers for
surge, pitch and heading, all with feed-forward, and PD-controlled joints. The WLOS
method incorporated a slow-region, which was shown to increase the path following
performance and the method’s robustness and ability to handle different paths. The
guidance laws and the controllers were shown capable of guiding the snake robot from
the starting point to the target point, without colliding with the obstacles. The ability
to efficiently follow the paths were also analyzed, where the BPP-filtered path was
shown to be the most energy efficient in the environments investigated.

The main results from this thesis are the ability to off-line plan global collision-free
piecewise linear paths, which in turn can be utilized to guide the snake robot from its
starting point to a desired target point in a collision avoiding manner.
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8.2 Future Work

The proposed method shows it’s collision-free guidance capability in a 3-dimensional
cluttered environment. Even though it shows promising results, the problem of the
WLOS method when missing a waypoint should be handled to ensure safe operations.
To make the proposed pipeline more robust, a suggested solution is to incorporate set-
based methods, like the ones in [17], as was discussed in Section 7.2.4. Furthermore, in
order to exploit the shape-shifting ability of the snake robot, two approaches should be
further investigated. The first one suggests implementing a follow-the-leader approach,
based on [34] and [6], where the constraints of the snake robot in configuration space
is explicitly accounted for in the planning process, and thus handles both collision
avoidance with obstacles in the environment and self-collisions. The second approach
utilizes the exact same path planning process as was used in this thesis, but here the
task is also to minimize the path-to-end-effector and the path-to-base errors. In order
to prevent self-collisions while navigating on the path in this manner, it would be
interesting to utilize a reactive-based form of the APF-method, where each link of the
snake robot sees the other links as dynamic obstacles in the environment. By utilizing
such an approach the path planning margins can be smaller, making the proposed
planners able to plan paths in even more confined spaces.
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Appendix A

Algorithms

This appendix contains pseudo-code for the gradient descent, random walk, BPP and
RRT* algorithms used for the implementation of the path planner.

A.1 Gradient Descent
Algorithm 1 Gradient Descent

Input: A means to compute the gradient∇U(p) at a point p
Output: A sequence of points {p(0),p(1), ...,p(i)}

p = empty array
p(0) = pstart
i = 0
while ||∇U(p(i))|| > ϵ do

p(i+ 1) = p(i) + α(i)∇U(p(i))
i = i+ 1

end while
return p
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A.2 RandomWalk
Algorithm 2 Random Walk

Input: A point trapped in local minimum ptrapped, number of steps to walk Nrw,
random step length δrw, obstacles O and safe radius rsafe
Output: A sequence of random points, {p(0),p(1), ...,p(i)}, leading out of
the local minimum

p = empty array of dimension Nrw × 3
p(0) = ptrapped
i = 1
while i < Nrw do

prandom = p(i− 1) + randomStep(δrw)
llength = ||p(i− 1)− prandom||
ldirection =

p(i−1)−prandom
llength

if noCollisions(p(i− 1), l,O, rsafe) then
p(i) = prandom
i = i+ 1

end if
end while
return p



A.3. BACKTRACKING PATH PLANNER (BPP) 135

A.3 Backtracking Path Planner (BPP)

Algorithm 3 Backtracking Path Planner (BPP)
Input: Collision free path P , obstacles O and safe radius rsafe
Output: A sequence of waypoints {wp(0),wp(1), ...,wp(i)}

wp = empty array
wp1 = start point of P
wp2 = end point of P
llength = ||wp2 −wp1||
ldirection = (wp2−wp1)

llength

add wp1 to wp

j = size of path P
while wp1 ! = end point of P do

if noCollisions(wp1, l,O, rsafe) then
add wp2 to wp
wp1 = wp2

wp2 = end point of P
j = size of path P

else
j = j − 1
wp2 = point j on P
llength = ||wp2 −wp1||
ldirection = (wp2−wp1)

llength

end if
end while
return wp



136 APPENDIX A. ALGORITHMS

Algorithm 4 noCollisions
Input: Waypoint wp1, line l between wp1 and wp2, obstacles O
and safe radius rsafe
Output: Boolean value {TRUE, FALSE}, stating whether a collision occurs

collision_free = FALSE
valid_obstacles = 0
for all obstacles in O do

if noCollision(wp1, l,Oi, rsafe)) then
valid_obstacles = valid_obstacles+ 1

else
break out of for loop

end if
end for

if valid_obstacles == size of O then
collision_free = TRUE

end if
return collision_free

Algorithm 5 noCollision
Input: Waypoint wp1, line l between wp1 and wp2, obstacle Oi

and safe radius rsafe
Output: Boolean value {TRUE, FALSE}, stating whether a collision occurs

collision_free = FALSE
length = ||obstacle_position−wp1||
direction = obstacle_position−wp1

length

scalar_product = lTdirection ∗ direction
θ = arccos(scalar_product) ▷ ∈ [0, π]
distanceorth = length ∗ sin(θ)− obstacle_radius− rsafe
distanceproj = length ∗ cos(θ)− obstacle_radius− rsafe

if θ > π
2 or distanceorth > 0 or distanceproj > llength then

collision_free = TRUE
end if
return collision_free
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A.4 RRT*
Algorithm 6 Body of RRT*

Input: Initial configuration ξinit, target configuration ξt, obstacles O,
constraints ϵ, neigbourhood search radius rnh, number of nodes Ns and
safe radius rsafe
Output: A random tree of nodes and branches (V,E), avoiding obstacles
and violation of constraints

V = ξinit
E = empty edge list
i = 0
while i < Ns do

T = (V,E)
ξrandom = randomSample(i)
(V,E) = Extend(T, ξrandom,O, ϵ, rnh, rsafe)

end while
return (V,E)
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Algorithm 7 Extend
Input: Random configuration ξrandom, node and edge list (V,E), obstacles O,
constraints ϵ, neigbourhood search radius rnh, and safe radius rsafe
Output: An extended tree of nodes and branches (V ′, E′)

V ′ = V
E′ = E
ξnearest = nearest((V ′, E′), ξrandom, rnh)
ξnew = steer(ξnearest, ξrandom, ϵ)
l = line(ξnearest, ξnew)
if noCollisions(ξnearest, l,O, rsafe) then

V ′ = V ′ ∪ {ξnew}
ξmin = ξnearest
Ξnear = near((V ′, E′), ξnew, |V |) ▷ Ξnear is a set of near configurations
for all ξnear ∈ Ξnear do

l = line(ξnear, ξnew)
if noCollisions(ξnear, l,O, rsafe) then

c′ = cost(ξnear) + cost(l)
if c′ < cost(ξnew) then

ξmin = ξnear
end if

end if
end for
E′ = E′ ∪ {(ξmin, ξnew)}
for all ξnear ∈ Ξnear\ξmin do

l = line(ξnear, ξnew)
if noCollisions(ξnearest, l,O, rsafe) and
cost(ξnear) > cost(ξnew) + cost(l) then

ξparent = parent(ξnear)
E′ = E′\{(ξparent, ξnear)}
E′ = E′ ∪ {(ξnew, ξnear)}

end if
end for

end if
return (V ′, E′)
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