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A B S T R A C T   

Dynamic probabilistic risk assessment (DPRA) is a systematic and comprehensive methodology that has been 
used and refined over the past decades to evaluate risks associated with complex systems. However, current 
approaches to construct and execute DPRA models are challenged by high execution time owing to numerous 
possible scenarios. This issue will affect the execution time of the model, which is in contrast with the aim of 
modeling. DPRA models must be sufficiently fast to assist decision-making processes in the required time. 

In this study, a new method is proposed to enhance the execution times of DPRA models. This method uses 
optimization algorithms to determine failure scenarios and sort scenarios based on their occurrence probabilities. 
The most efficient optimization algorithms, considering the nature of the DPRA models, are mixed-integer 
sequential quadratic programming, modified branch-and-bound algorithm, and modified particle swarm opti
mization, which are then compared and discussed. 

To validate the effectiveness of this method, a simple case study is presented. The results show the effec
tiveness of the method, which has high accuracy and reduces the execution time significantly (e.g. execution time 
of risk assessment of 16,464 possible behavior scenarios after an incident in a dynamic positioning system is one 
fifth of the conventional methods). A detailed supervised DPRA model of dynamic positioning systems and its 
application on three incidents that occurred in the Norwegian offshore sector in previous years is presented in a 
subsequent article (Part 2 of 1) (Parhizkar et. al.). Case study results confirm that the supervised DPRA method 
can be applied to other complex systems so that the dynamic probabilistic risk values can be evaluated quickly 
and accurately.   

1. Introduction 

Probabilistic risk assessment (PRA) is a structured method of quan
titative risk assessment to navigate the design and operation of systems 
for achieving a certain safety or operational goal. The National Aero
nautics and Space Administration [1], International Atomic Energy 
Agency [2], US Nuclear Regulatory Commission [3] have provided 
general guidelines for PRA for managers and practitioners. Recently, 
many research groups have performed PRA for different applications, 
including human health [2], airport airside safety [3], and safety in 
renewable power plants [4]. Mosleh [5] reported the strengths, limita
tions, and possible improvements of PRA. 

The dynamic characteristics and behavior of a system, stochastic 
processes, operator response times, inspection and testing time 

intervals, aging of equipment or components, seasonal changes, 
sequential dependencies of equipment or components, and timings of 
safety system operations affect system PRAs significantly [6]. Generally, 
conventional PRA methodologies have limited capacity for analyzing 
and quantifying the dynamic characteristics of complex systems. 
Therefore, it is important to develop a method that can address 
time-dependent effects in PRAs and provide precise estimations. Dy
namic PRA (DPRA) has been used to understand unintended 
time-dependent interactions between system components, including 
technical, environmental, and organizational factors, over time. Lapp et. 
al. [7] and Kumamoto et al. [8,9] were among the first pioneers of 
proposing dynamic probabilistic risk assessment in real case applica
tions. Different methods have been proposed for considering these sys
tem interactions in risk assessment [10], of which most are based on the 
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dynamic/continuous event tree [11,12,13], dynamic fault tree [14,15], 
dynamic Bayesian network (BN) methodologies [16,17]. In these 
methods, instead of a unique event sequence diagram (ESD) connected 
to specific fault trees (FTs) and BNs, multiple ESDs/FTs/BNs are 
developed for an incident scenario that can be updated over time ac
cording to the environmental and operational characteristics of the 
system. 

Other methods include Monte Carlo [18], Markovian approaches 
[19], Petri nets [20] and genetic algorithms [21]. Aldemir [22] has 
performed a review on different types of dynamic probabilistic safety 
assessment (PSA) methodologies proposed to date. 

As presented, DPRA methods are developed by integrating several 
approaches and are considered as hybrid methods. A hybrid method 
refers to a method that combines two or more methods for modeling risk 
scenarios [23]. Zio [24] has studied the concepts and challenges of 
integrating deterministic and probabilistic safety assessment models. 
Emerging hybrid methods tend to mix fundamentally different repre
sentational and computational techniques. The presented hybrid 
methods can be utilized to generate operational/failure scenarios of 
systems over time. A DPRA for a complete nuclear power plant for severe 
accidents can be performed using a number of computational tools such 
as [21,25,26,27,28]. These methods could have different level of un
certainty depending on the time constraints for the analysis and avail
able information about the system. 

The nature of the complex system behavior is uncertain. As a result, 
the number of possible failure scenarios after an incident increases 
significantly. The ability to handle a large number of scenarios without 
compromising completeness is a challenging problem encountered in 
simulation-based risk assessment methodologies. This challenge is 
explained in more detail through a case study in Section 2. Some of the 
researchers have tried to limit the number of generated/analyzed sce
narios utilizing different methods, in [25,26,27,28] investigate clus
tering machine learning methods and algorithms to analyze the 
generated large time-dependent data sets of accident scenarios from 
simulation. In this method, the scenarios with similar behavior are 
identified. Then each scenario will be associated with a unique cluster. 

Nielsen et. al. [29,30] proposed branch and bound optimization 
method to control the combinatorial state explosion of the DPRA. In 
2015, Nielsen et al. [29] applied a Branch-and-Bound optimization al
gorithm to Dynamic Discrete Event Trees (DDET) in order to address 
combinatorial explosion. This method utilizes LENDIT (L – Length, E – 
Energy, N – Number, D –Distribution, I – Information, and T – Time) as 
well as a set theory to describe system, state, resource, and response 
(S2R2) sets to create bounding functions for the DET. In this study, a 
Phenomenological Identification and Ranking Table (PIRT) methodol
ogy based on optimization of the DET is discussed. This methodology is 
used to evaluate modeling parameters important to safety of those 
failure branches that have a high probability of failure. 

In this study, a supervised DPRA method is proposed that considers 
system dynamics and its dependency upon environmental and organi
zational factors over time to generate sorted failure scenarios based on 
occurrence probabilities and/or risk levels, i.e., this method identifies 
the failure scenarios sequentially based on their probabilities and/or risk 
significance rather than rank ordering them after identifying the com
plete set. This capability results in significantly lower computational 
time. 

The proposed method is based on an optimization model, whose 
generic form is presented in Section 3. Further, the three most suitable 
solution algorithms for dynamic probabilistic risk models are presented 
and discussed. In Section 4, a case study is presented where the proposed 
optimization model is applied to a dynamic positioning system. In Sec
tion 5, results are presented, which show that the execution time of the 
DPRA is reduced significantly in the case study example. 

2. Challenges of DPRA methods for complex systems 

Complex systems (CSs) are mostly nonlinear and nondeterministic 
due to the heavily interdependencies among their elements [31]. 
Considering nonlinearity and stochastic characteristics in risk modeling 
would enable a more accurate analysis and prediction of the complex 
system behavior. Such predictions can provide a valuable basis for de
cision support regarding the need for risk mitigation and accident pre
vention to operators. 

Generally, a complex system behavior is affected by human machine 
interactions, and operational and environmental conditions [31]. 
Figure 1 presents an agent-based model of a complex system that in
cludes human behavior, system state, and operational and environ
mental behavior agents, which are interconnected. The edges present 
the interconnections and interactions between 
human-system-environment in real world. 

As presented in Figure 1, each agent consists of multiple sub-agents, 
depending on the modeling approach and abstraction. For instance, the 
system state, presented in Figure 1, has three sub-agents. The state of the 
sub-agents is affected by interaction with other sub-agents and is 
updated over time. The state of sub-agents could take binary or 
continuous variables. For instance, system state agent could have a sub- 
agent as “available time”. This sub-agent evaluates the available time 
before collision happens in a system. In this example, “available time” 
sub-agent could take binary (low/high) or continuous values. 

The type of sub-agent states should be defined based on the scope of 
the study. The same system with different scopes can result in different 
types of sub-agents’ states. For instance, if we are interested in the 
working status of a system, we could have binary states of success or 
failure. However, if we want to know more about the system degrada
tion level, we could have more states such as partially and/or totally 
degraded states. 

The behavior of a CS is updated over time owing to agents’ and 
subagents’ interactions. To capture the behavior of a CS over time, 
system variables should be predicted. System variables include all the 
states of the sub-agents. In some CSs, sensors and monitoring systems 
help to capture the state of one or multi sub-agents. For instance, the 
state of sub-agents presented in “operational and environmental vari
ables” agent could be defined based on the received data from sensors. 

The prediction process tries to predict the unknown sub-agent states 
based on the available information. The prediction process is associated 
with uncertainty; primarily, the probability distribution of a model 
prediction is presented as a suitable basis for evaluating the uncertainty 
of a predicted behavior. To achieve sufficient accuracy, different 
possible alternative scenarios (possible system behavior scenarios) 
should be predicted over time. Each possible alternative has a proba
bility of occurrence. To evaluate the risk level of a CS, all the failure 

Figure 1. Example of a complex system  
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modes of these possible alternative scenarios must be considered. 
The accuracy and execution time of a DPRA model is highly depen

dent on the number of predicted possible scenarios. A limited number of 
predicted scenarios results in an inaccurate model of a system. 
Increasing the number of predicted scenarios enhances the model ac
curacy. However, in some cases, it is complicated and sometimes 
impossible to consider all possible scenarios. 

To demonstrate the complexity of the problem, a dynamic posi
tioning (DP) system is presented as an example. The DP system is a 
computer-controlled system designed for automatically maintaining a 
vessel or rig’s position and heading it using its own propellers and 
thrusters. A DP system comprises mechanical machineries, sensors, and 
human interactions. Figure 2 shows the basic components in a DP 
system. 

As shown, a power generation system, a switchboard, and thrusters 
are connected to the DP control system, which gather data from multiple 
sensors, including the reference system for position, gyro compass for 
heading, motion reference units, and environmental sensors (wind). The 
DP operator (DPO) obtains information from the DP control system 
using a DP desk, which is a man–machine interface that provides useful 
information about the components’ statuses. Furthermore, the DPO can 
access other information through communication systems, system 
alarms, and alarm system traffic light. 

The aim of the example presented herein is to model an operator’s 
behavior during emergency situations. The emergency is any incident 
results in the position loss and/or mechanical damage of the vessel in a 
short time. Three main decision scenarios exist in an emergency.  

1 Keep position: In this scenario, the operator attempts to maintain the 
vessel position. This task can be performed manually or automati
cally. In the automatic mode, the DP system maintains the vessel 
position automatically using a control system and actuators. How
ever, in the manual mode, the operators use a joystick for position 
and heading control. 

2 Disconnection: In this scenario, the DPO cannot maintain the posi
tion. Consequently, the DPO attempts to stop the vessel from oper
ating. This task can be performed manually or automatically. In the 
automatic mode, the DP system is disconnected, and the components 
are stopped automatically. However, in the manual mode, the system 
is controlled and disconnected manually, independent of the DP 
control system.  

3 Recovery action: In some situations, sufficient time exists to recover 
failure components. Generally, after performing the keep position or 

disconnection, the DP system can be in a safe zone and there would 
be sufficient time to safely recover faulty components. Only a limited 
number of recovery actions can be performed during emergency 
situations. Herein, seven recovery action scenarios are considered. 

The agent based conceptual model of the DP system is presented in 
Figure 3. The DP system has three main agents which are interconnected 
including “human behavior”, “system state”, and “operational and 
environmental variable”. The behavior of these agents, and their in
terconnections with other agents is presented by edges that is governed 
by complex rules. The whole DP system is modeled by coupling the el
ements and edges governing principles and rules. 

As shown, the “system state” agent has one subagent, which com
prises components; the “operational and environmental variable” agent 
has three subagents, including the position, available time, and alarm; 
and finally, the “human behavior” agent has 15 subagents, including 
monitoring, three types of detection (alarm, check position and heading, 
other visual detections), two types of keep position execution (automatic 
and manual modes), two types of disconnection execution (automatic 
and manual modes), and seven recovery action execution (change po
sition reference, recalibrate reference origin, deselect faulty sensor, 
recover reference system, tune software, start new generator, and restart 
equipment). 

All these sub-agents are governed by simple rules that could be 
modeled and simulated with acceptable accuracy. Modeling the sub- 
agents and their interactions could simulate the agent’s behavior. 
Having agent’s behavior and the interactions between agents form the 
DP complex system behavior and functionality. 

In this example, sub-agent models are abstracted and each sub-agent 
could take two states in the modeling process; for instance, the alarm 
subagent has on and off states, or the human behavior subagents have 
“completed” and “in progress” states. 

In this example, multiple alternative scenarios could occur after an 
initial undesired event. In an emergency, by detecting an initial event, 
the states of operational and environmental variables can be determined 
according to the sensor data. However, the system and human behavior 
operation modes can achieve different states. Consequently, the number 
of possible scenarios after an incident is equal to all combinations of the 
system and human behavior operation modes, which is equal to 5,376. 

Numberof alternativescenariosatt=Monitoring states×Detection states 
×Disconnection states×Keep position states×Recovery states

×System states=2×6×4×4×14×2=5367
(1) 

Where, the number of monitoring, detection, disconnection, keep 
position, recovery and system states are defined based on the states 
presented in Figure 3. As time progresses, the number of alternative 
scenarios increases significantly and can be calculated using Eq. (2). 

Number of alternative scenarios = (n)k
= 5, 376k (2) 

The number of scenarios after the k iteration is presented in Table 1. 
As shown, the number of scenarios can increase significantly over 

time. Therefore, agent states should be defined appropriately, as the 
model size is proportional to the number of agent states. However, not 
all these combinations are viable, and feasible connections should be 
defined based on the CS operating characteristics, limitations, and study 
scope. Even by considering all possible and feasible scenarios, the 
execution time increases significantly, as numerous possible scenarios 
should be connected to multiple ETs/ESDs/FTs/BNs/MCs to perform 
DPRA. 

The main challenge is that with the growth of the size of the dynamic 
systems and the complexity of the interactions between components, it is 
extremely difficult to enumerate the risky scenarios by traditional ET/FT 
methods. Simulation methods are often used to solve DPRA problems in 
complex systems. Most of the simulation models cannot evaluate system Figure 2. Dynamic positioning system [32]  
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risk level effectively and they are time-consuming. For instance, it is 
widely recognized that Monte Carlo simulation is highly inefficient and 
may result in generating a lot of histories without any information gain 
[33]. 

The execution time of DPRA methods are highly important as DPRAs 
are mostly utilized in emergency situation with a limited timeframe. 
Thus, a high efficiency simulation engine is often essential to treat 
realistic systems. Different methods are utilized to reduce the execution 
time of DPRA methods in complex systems in recent years. However, 
practical applications to large systems are limited and mostly case 
dependent. For instance, Lee et. al. [34] proposed a DPRA approach for 
real-time emergency guidance. This approach is based on a simulation of 
possible nuclear power plant behavior following an initial event and 
predict the probability of different levels of off-site release of radionu
clides based on deep learning techniques. A large number of scenarios 
are simulated and used to train the proposed deep learning model. 

In our study, an optimization method is proposed to generate more 
probable scenarios (or scenarios with high risk level). In this method, 
risky scenarios are analyzed without assessing all possible scenarios. 
Instead, the desired scenarios are generated, and all the evaluation are 
performed for the selected scenarios. 

Different optimization algorithms could be applied to the optimiza
tion model to search over the complex system and find desired scenarios 
without finding/solving all possible options. As the number of scenarios 
under study are limited, the execution time would be reduced signifi
cantly, and this method could be implemented in emergency situations. 

3. Optimal scenario selection 

In this study, a new concept is introduced that generates failure 
scenarios after an incident, considering operation and environmental 
conditions. In this new approach, all alternative possible scenarios need 
not be solved; instead, failure scenarios are derived using an optimiza
tion model. To sort the failure scenarios without considering all possible 
scenarios, an optimization concept is introduced. In the optimization 
concept, an optimization model is developed based on the system’s 
characteristic and constraints to obtain more probable scenarios. In this 
section, the optimization model and related solution algorithms are 
presented. 

3.1. Optimization model 

An optimization problem typically has three main elements. The first 

is an objective function that is to be maximized or minimized according 
to the study objective [35]. The objective of this study is to maximize the 
probability of the scenario occurrence. Maximizing the probability 
means that the optimization model tries to find a scenario with 
maximum occurrence probability among all possible scenarios. 

Maximize (Occurrence probability) (3) 

If we are interested in more than one probable scenario, then the 
optimization model should be run for several times. At the first run, the 
model obtains the most probable scenario; subsequently, at the second 
run, this scenario is saved for later, and the model is executed again to 
obtain the second most likely scenario. The model is executed until all 
desired sorted failure scenarios are derived. 

Depending on the objective of the study, the objective function could 
be modified. For instance, the objective of the most DPRA studies is to 
find scenarios with high risk level, e.g., scenarios with high probability 
and low consequences and scenarios with low probability and high 
consequences. In these cases, the objective function is equal to the risk 
level evaluation. As presented in Eq. (4), in addition to scenario prob
abilities, scenario consequences should be considered in the objective 
function. 

Maximize (Occurrence probability×Consequence) (4) 

In this case, the model obtains a scenario with the highest risk level; 
subsequently, this scenario is saved for later, and the model is executed 
again to obtain the next scenario with the highest risk level. The model is 
executed until all failure scenarios are sorted based on the risk level. 

The second element in an optimization model is decision variables 
that should be optimized to maximize and/or minimize the objective 
function. Two types of continuous and discrete decision variables exist 
[35]. The decision variables in this study are the number and type of 
events in a failure scenario. These variables are discrete and can be 
defined as integer variables in the optimization model. 

x ∈ {0, 1} (5)  

where 1 and 0 represent the existence and non-existence of a connection 
or event in an event sequence diagram, respectively. 

The third element of an optimization problem is a set of constraints, 
which are restrictions on the values that the variables can assume [35]. 
The constraints should be defined according to the system under study. 
A system dynamic model and all applicable logical rules should be 
considered. The constraints can be linear or nonlinear functions. Most 
risk assessment studies have nonlinear constraints. Three mains con
straints that can be considered in risk assessment problems are: 

Logical constraints:  

1 Human cognition rules 

Principle-based constraints: 

Figure 3. Agents and subagents of a dynamic positioning (DP) system  

Table 1 
Number of alternative scenarios at each time step  

Number of time intervals 1 2 3 4 
Number of scenarios 5,376 28e+6 15e+10 83e+13  
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1 Derived from CS simulation model  
2 Principle rules of probability and risk assessment 

System specification and limitations:  

1 Risk criteria  
2 Standards that should be followed. 

Human cognitive rules include governing rules of human behavior. 
For instance, decision making process consists of following steps in 
order: monitoring, detection, diagnosis, decision making and execution. 
This order implies that execution will be performed after decision 
making has been performed or decision-making process will be started 
after diagnosis has been performed. These types of rules should be 
considered as logical constraints in the optimization process. 

Principle based constraints include complex system simulation 
model and principle rules of probability and risk assessment. This type of 
constraints presents governing rules of the system. Governing rules 
could be derived from system physical principle equations and/or data- 
driven models. These rules represent system behavior and evaluate 
system performance based on the objective of the study. 

The last type of constraints present system specification and limita
tions. Design and operational limits of a system are fall into this type of 
constraints, e.g., risk level of the system under operation should always 
be under a critical value. 

Within this broad optimization model, the mathematical properties 
of risk assessment problems include modeling nonlinear equations 
considering integer decision variables. These mathematical properties 
imply that risk assessment optimization problems can be classified as 
mixed-integer nonlinear programming. It is noteworthy that the opti
mization of risk assessment problems has not been studied and that the 
optimization model and the proposed classification are main novelties of 
this study. 

3.2. Optimization algorithms 

Mixed-integer nonlinear programming (MINLP) addresses a class of 
optimization problems with nonlinearities in the constraints and/or the 
objective as well as integer and/or continuous variables [36]. Multiple 
solution algorithms have been proposed for MINLP problems [37]. Ac
cording to the performance of the solution algorithm, the best suitable 
algorithm was selected for the system under study. In this section, three 
of the most typical algorithms applicable to risk assessment problems 
are presented. 

3.2.1. Mixed-integer sequential quadratic programming (MISQP) 
The sequential quadratic programming (SQP) algorithm is a practical 

solution algorithm for continuous nonlinear optimization problems. 
This algorithm converges globally toward an optimal point, and the 
global minimum can be guaranteed for convex optimization problems 
[38]. 

Every SQP method is based on solving a series of continuous 
quadratic programming (QP) subproblems. At each iteration, a 
quadratic subproblem is constructed by linearizing the constraints at the 
current iterate. The objective of the algorithm is to obtain a quadratic 
approximation of a Lagrangian function that results in an optimal so
lution [38]. Recent developments in SQP have yielded a modified SQP 
that can consider integer decision variables in the optimization process, 
called mixed-integer sequential quadratic programming (MISQP), which 
can efficiently solve MINLP problems [39]. 

As SQP algorithm is developed for continuous nonlinear optimiza
tion problems, MISQP can solve MINPs with limited number of integer 
decision variables. In other words, this algorithm is suitable for the risk 
assessment of systems with a limited number of alternative probable 
scenarios. 

3.2.2. Modified branch-and-bound algorithm 
The branch-and-bound algorithm is originally developed for solving 

mixed-integer linear optimization problems [40]. Branch-and-bound is 
based on branching, bounding, and fathoming. In the first step, the 
problem is iteratively divided into a finite number of subproblems. The 
solution process is based on a series of bounding of the original problem, 
which is easier to solve. During the bounding process, some branches are 
decided as fathomed (pruning the branches) [41,40]. A branch is 
fathomed if its value is less than or equal to p*. p* could be the critical 
occurrence probability or risk level, which should be defined by experts 
for each case under study. At each branching points, scenarios with 
probabilities/risk levels lower than p* would be eliminated. 

The algorithm is expanded to solve convex MINLP problems as well. 
The modified branch-and-bound can consider the nonlinearity of the 
constraints and/or objective function in the optimization process; 
consequently, it can solve MINLP problems [42]. 

Since the branch-and-bound algorithm is developed for solving 
mixed-integer linear optimization problems, it is more suitable for 
problems with low nonlinearities. In fact, this algorithm can perform 
well in the risk assessment of systems with low complexity, i.e., when 
variables are not highly dependent or when dependencies are negligible. 

3.2.3. Modified particle swarm optimization (PSO) 
PSO is a population-based optimization algorithm inspired by the 

social behavior of fish schooling and bird flocking. The PSO algorithm 
shares many similarities with other evolutionary optimization algo
rithms, such as genetic algorithms. A main advantage of the PSO algo
rithm over other evolutionary methods is that only a few parameters 
need to be adjusted in the PSO algorithm. The algorithm starts with a 
population of random solutions and searches for the optimal point by 
updating generations. In other words, the PSO computational method 
optimizes a problem by iteratively improving a candidate solution by 
considering a given measure of quality. The candidate solution is 
affected by the local best-known point, and it is guided toward the best- 
known positions in the search space, which are updated as better posi
tions are discovered by other particles. This process is expected to move 
the candidate solution toward the optimal solution [43]. 

The PSO algorithm is suitable for nonlinear programming with 
continuous decision variables. However, different algorithms are pro
posed to modify PSO for handling mixed-integer nonlinear program
ming. One of the proposed modifications is to adapt random search 
methods to the integer case by adding a round-off instruction to select 
the nearest integer of a given real value [44]. 

Table 2 presents a comparison of solution algorithms based on 
nonlinearity (objective function and constraints) and decision variable 
type. In all algorithms, the decision variables can be an integer and/or 
continuous; however, in the table, the preferred variable that results in a 
shorter convergence time is presented. 

4. Case study 

A DP system is considered as an example in this study. The sche
matics of the agents, subagents, and states of this complex system are 
presented in Figure 3. The objective function is 

Table 2 
Comparison between optimization algorithms   

Nonlinearity Preferred decision 
variable 

Mixed Integer Sequential Quadratic 
Programming 

Low Continuous 

Modified branch-and-bound algorithm Low Integer 
Modified PSO High Continuous  
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k=1

∑m

j=1

∑n

i=1

(
pijk × xijk

)

+
∑l

k=1

∑m

j=1

∑n

i=1

(
pijk− ijk × xijk− ijk

)

t

+
∑l

k=1

∑m

j=1

∑n

i=1

(
pijk− ijk × xijk− ijk

)

t− (t+1),

(6) 

Where the first term presents the occurrence probability of each 
subagents, the second term presents the connection probability between 
subagents at time t, and the last term presents connection probabilities 
between subagents at times t and t + 1.  

• pijk presents the probability of state i for subagent j and agent k.  
• xijk is a binary variable {1,0} that indicates the existence and/or non- 

existence of state i for subagent j and agent k.  
• n is the number of states.  
• m is the number of subagents.  
• l is the number of agents.  
• (pijk− ijk)t presents the connection probability of state i, subagent j, 

agent k with state i, subagent j, agent k at time t.  
• (xijk− ijk)t is a binary variable {1,0} that indicates the existence and/or 

non-existence of the connection between state i, subagent j, agent k 
and state i, subagent j, agent k at time t.  

• (pijk− ijk)t− (t+1), presents the connection probability of state i, subagent 
j, agent k with state i, subagent j, agent k over time t to t+1.  

• (xijk− ijk)t− (t+1) is a binary variable {1,0} that indicates the existence 
and/or non-existence of the connection between state i, subagent j, 
agent k and state i, subagent j, agent k over time t to t+1. 

Table 3 presents the i, j, and k of each agent, subagent, and state for 
the presented case study. 

The first constraint of the case study is that only one active (x = 1) 
state exists at a time. For instance, an alarm on and off signal cannot 
occur simultaneously. This constraint is presented in Eq. (7). 

∑n

i=1

(
xijk

)
= 1 , for j = 1, 2, .., m; k = 1, 2, .., l (7) 

The other constraints including human cognition rules and principle- 
based constraints present the connection probabilities between agent 
states at time t or over time t to t+1. According to the logic of the CS, the 
possible connections between agent states can be defined by experts. 
The connection between agents at time t for the case under study is 
presented in Table 4. These values are considered in the second term of 
the objective function, presented in Eq. (6). 

The dependency rules presented in Table 4 convey the probabilities, 
presented as connection probabilities. These probabilities depend on the 
agent characteristics at time t and could be quantified based on the 
expert judgment and/or Bayesian networks. In this study, it is assumed 
all the connection probabilities are equal to 0.95. 

In addition to connections at time t, agents can be connected to other 
agents at time t + 1. For instance, if the detection is completed, keep 
position, disconnection, or recovery actions should be performed. The 
dependency rules over time are presented in Table 5. These probabilities 
are applied to the third term of the objective function, presented in Eq. 
(6). 

The probabilities of events and connections are a function of the 
operational and environmental conditions in question. Based on the 
ESD, FTs, BNs and simulation model of the system under study, the 
probabilities are quantified. In this example, the probability of events 
(sub-agents work properly) is assumed to be equal to 0.95. The quan
tification process of the events probability and connection probabilities 
are elaborated for a DP complex system in the subsequent article (Part 2) 
[45]. 

In addition, the state of some agents can be defined based on sensor 
data and operating conditions. An example of operating conditions over 
four time interval is presented in Figure 4. Generally, these values are 
sensor information from a DP system and time intervals presents the 
intervals that we get data from sensors. 

The operating conditions presented in Figure 4 are x values related to 
the subagents at each time interval. For instance, at the first time 
interval: 

x131 = 1(Alarm is On) (8) 

Table 3 
Parameters definition  

Agent Sub-agent State 

k=1 
Operational & environmental 
variables 

j=1 Position i=1 Ok/ i=2 Lost 
j=2 Available time i=1 Low/ i=2 High 
j=3 Alarm i=1 On/ i=2 Off 

k=2 
Human behavior 

j=1 Monitoring i=1 Done/ i=2 In 
progress 

j=2 Detection type 1 
j=3 Detection type 2 
j=4 Detection type 3 

i=1 Done/ i=2 In 
progress 

j=5 Disconnection type 
1 
j=6 Disconnection type 
2 

i=1 Done/ i=2 In 
progress 

j=7 Keep position type 
1 
j=8 Keep position type 
2 

i=1 Done/ i=2 In 
progress 

j=9 Recovery action 
type 1 
j=10 Recovery action 
type 2 
j=11 Recovery action 
type 3 
j=12 Recovery action 
type 4 
j=13 Recovery action 
type 5 
j=14 Recovery action 
type 6 
j=15 Recovery action 
type 7 

i=1 Done/ i=2 In 
progress 

k=3 
System state 

j=1 Components i=1 Faulty/ i=2 
Healthy  

Table 4 
Agent dependency rules at time t  

State of agent at time t Activated agent at time t Connection 
probability 

Alarm (Off) Keep position (In progress) (P231-242)t 

Alarm (On) Detection (In progress) (P131-222)t 

Available time (High) Recovery action execution (In 
progress) 

(P221-252)t 

Components (Faulty) (P113-252)t 

Available time (Low) Disconnection execution (In 
progress) 

(P121-232)t 

Components (Faulty) (P113-232)t 

Alarm (On) Keep position (In progress) (P131-242)t 

Components (Healthy) (P213-242)t 

Position (Lost) Keep position (In progress) (P211-242)t 

Components (Healthy) (P213-242)t 

Position (Lost) Disconnection execution (In 
progress) 

(P211-232)t 

Components (Faulty) (P113-232)t 

Keep position (In 
progress) 

Recovery (In progress) (P242-252)t  

Table 5 
Agent dependency rules over time  

State of agent at 
time t 

Activated agent at time t+1 Connection 
probability 

Detection (Done) Execution (keep position, disconnection, 
recovery actions) 

(P122-2j2)t-(t+1) 

Execution (Done) Monitoring (P1j2-212)t-(t+1)  
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x111 = 1(Position is OK) (9)  

x221 = 1(Available time is High) (10) 

According to Eq. (7): 

x231 = 0(Alarm is Off) (11)  

x211 = 0(Position is Lost) (12)  

x121 = 0(Available time is Low) (13) 

At each time interval, x and p are generated according to Table 4, 
Table 5, and Figure 4. As shown, at the first level, the alarm is on, the 
position is “OK”, and the time is sufficient. According to Table 4, at this 
time interval, detection would be activated. At the next time step, the 
outcomes of the first time interval are used as inputs; in addition, ac
cording to the dynamic simulation, the alarm is off, the position is “lost,” 
and the available time is high. According to this information, the 
possible activated subagents are generated accordingly. All possible 
subagents for all the time intervals are presented in Table 6. The number 
of alternative scenarios of each subagent (presented in Figure 3) is 
shown in parentheses. 

According to Table 6, the numbers of possible scenarios corre
sponding to each time interval are 3, 7, 14, and 2. At each time interval, 
one scenario could exist. Therefore, the number of all combinations of 
these scenarios in this duration (four time interval) is the multiple of the 
number of possible scenarios at each time interval which is equal to 588. 

Number of possible scenarios after 4 time intervals =
∏4

i=1
Number of scenarios at time intervali = 3 × 7 × 14 × 2 = 588 (14) 

As time progresses, the number of scenarios increases significantly. 
In all the conventional methods, the probability of all the generated 
scenarios should be evaluated, which could result in a long execution 
time. However, in the proposed concept, an optimization algorithm is 
applied to the model. 

In the optimization process, optimal x values for all subagents are 

generated to obtain the most probable failure scenario. The optimal x 
values are binary values that determine the existence and nonexistence 
of the subagent states of the most probable scenario. After defining the 
most probable scenario, the optimization model is executed again to 
obtain the second most probable scenario and corresponding x values 
are generated. The process is repeated until all failure scenarios are 
generated. It is noteworthy that in this method, failure scenarios are 
generated and sorted without solving all possible scenarios. Conse
quently, the “optimal” scenarios, the most likely scenarios, can be 
generated in a short execution time. 

Figure 5 presents the modified PSO optimization algorithm for the 
case under study. First, PSO parameters are initialized and random po
sition and velocity are selected for each particle. Then, the fitness 
function for each particle is evaluated. The fitness function is the pre
sented objective function in Eq. (6). Based on the obtained values, the 
velocity and position of each particle is evaluated. Optimal position and 
velocity at the time iteration t, is the local optimal point that guides the 
next iteration toward global optimal solution in the study timeline. This 
iterative process is repeated until the stopping criteria are met. The 
derived optimal x values are recorded as optimal values of interval t 
(mission duration). 

5. Results and discussion 

To evaluate the effectiveness of the proposed optimization method, 
an example is presented based on the case study discussed in Section 4. 
The connection probabilities provided in Tables 4 and 5 are considered 
as a function of system and environmental characteristics (Figure 4). In 
section 5.1, more probable failure scenarios after different time intervals 
are presented, and performance of the proposed method is compared 
with conventional methods. In Section 5.2 a sensitivity analysis on DP 
system characteristics is performed and presented. 

5.1. Performance evaluation 

In this section, the proposed optimization method is utilized to 
generate failure scenarios related to operating and environmental con
ditions, presented in Figure 4. The modified PSO algorithm is used as the 
solution algorithm, and the failure scenarios are sorted based on their 
occurrence probability. According to Table 6 and Figure 4, the numbers 
of possible scenarios corresponding to each time interval are 3, 7, 14, 
and 2. 

The total number of alternative scenarios after two time interval is 
equal to the combination of 3 and 7 states, which is 21 scenarios. In 
order to find more probable scenarios, modified PSO algorithm is 
applied to the objective function, and optimal x values are derived with 
considering all constraints (equations and assumptions presented in 
Section 4). X values could take 0 and 1; values equal to one indicate 
active states at each time interval that result in higher failure 

Figure 4. Operating conditions over time for the example  

Table 6 
Possible scenarios at each time interval  

Time interval 1 Time interval 2 Time interval 3 Time interval 4 

Detectiona (3) Keep positionb (2) 
Detection (3) 
Disconnectionb (2) 

Keep position (2) 
Detection (3) 
Recoveryc (7) 
Disconnection (2) 

Keep position (2)  

a : Three types including alarm, check position and heading, and other visual 
detections. 

b : Two types including automatic and manual. 
c : Seven types including change position reference, recalibrate reference 

origin, deselect faulty sensor, recover reference system, tune software, start new 
generator, and restart equipment. 
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probabilities. 
Table 7 presents the optimal active scenarios after two time intervals. 

Time intervals are predefined1 and presented in Figure 4. At each time 
interval, environmental and operational conditions of the system are 
updated according to Figure 4; and, most probable scenarios (active 
states of each sub-agent) will be derived using the optimization algo
rithm. As the objective function is maximizing failure probability, the 
derived scenarios are sorted based on the failure probabilities. 

The six presented scenarios are sorted failure scenarios in the two 
time intervals. After the initiating event, the operator is informed 
regarding the situation in three different methods (alarm detection, 
position check, and/or other visual detection methods), which are pre
sented in Figure 3. The information from this level is used in the next 
level, which is execution (Table 5). As mentioned in Section 1, the keep 
position execution in DP systems comprises two modes: automatic and 
manual. All combinations of these scenarios in time intervals 1 and 2 
generate six scenarios, as presented in Table 7. 

As shown, the most probable failure scenario (number 1) is that after 
the initiating event, the operator has checked the position and heading 
properly; however, in the next time interval, the manual keep position is 
failed. In the least likely failure scenario (number 6), the operator per
forms visual detections well; however, at the next time interval, the 
automatic keep position is failed. 

As time progresses, the number of scenarios (possible system be
haviors) increases (Table 6). The total number of alternative scenarios 
after three time interval is equal to the combination of 3, 7, 14 states, 
which is 294 scenarios; and the total alternative scenarios after four 

Figure 5. the modified PSO optimization algorithm  

Table 7 
Failure scenarios after two time intervals  

No. Time interval 1 Time interval 2 

1 Position checked properly Failure of manual keep position 
2 Alarm detected Failure of manual keep position 
3 Position checked properly Failure of auto keep position 
4 Alarm detected Failure of auto keep position 
5 Visual detection done perfectly Failure of manual keep position 
6 Visual detection done perfectly Failure of auto keep position  

Table 8 
Failure scenarios after three time intervals  

No. Time interval 1 Time interval 2 Time interval 3 

1 Alarm detected Auto DC Failure of change position 
reference 

2 Alarm detected Auto DC Failure of recalibrate reference 
origin 

3 Alarm detected Auto DC Failure of deselect faulty sensor 
4 Alarm detected Auto DC Failure of reference system 

recovery 
5 Alarm detected Auto keep 

position 
Failure of change position 
reference 

6 Alarm detected Auto keep 
position 

Failure of recalibrate reference 
origin 

7 Alarm detected Auto keep 
position 

Failure of deselect faulty sensor 

8 Alarm detected Auto keep 
position 

Failure of reference system 
recovery 

9 Position checked 
properly 

Auto DC Failure of change position 
reference 

10 Position checked 
properly 

Auto DC Failure of recalibrate reference 
origin  1 Time intervals present the intervals that we get data from sensors 
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interval is 588 (combination of 3, 7, 14, and 2 states at each time in
terval). Tables 8 and 9 present more probable failure scenarios after 
three and four time intervals, respectively. 

It should be noted that the more probable scenarios after two 
(Table 7), three (Table 8), and four (Table 9) time intervals are mutually 
exclusive. The optimization model takes the time span as an input and 
according to the corresponding operating and environmental conditions 
(Figure 4) generates more probable failure scenarios with the same 
duration as the input time span. For instance, in a time span consisting of 
two intervals, the optimal results present more probable failure sce
narios that last two time intervals. This could be seen in the last column 
of the above mentioned tables which presents a failure state. 

As presented in Table 8, in more probable failure scenarios, an alarm 
is detected; subsequently, a vessel is disconnected automatically. After 
the disconnection, different recovery actions are performed and failed. 
In scenarios 5–8, an alarm is detected; subsequently, automatic keep 
position is performed. Next, failure in recovery actions occurs. It is 
assumed that the incident and alarm are related to the reference system; 
hence, as shown, most of the failure modes are related to the reference 
system. 

In order to show the effectiveness of the proposed methodology, a 
comparison between execution time of a conventional DPRA (dynamic 
ESD) and the supervised (optimization based) DPRA methods is per
formed. These two methods are applied to the presented case study in 
section 4, and execution times at different time intervals are recorded. 
The operating and environmental conditions of both methods are 
considered to be the same. 

In the conventional DPRA method, all possible scenarios are gener
ated at each time interval. The probability of each scenario is calculated 
using the dynamic ESD/FT/BN of the DP system [46,47], and the sce
narios are sorted based on their occurrence probability. In the super
vised DPRA method, more probable scenarios are generated using the 
modified PSO based optimization algorithm, then failure probabilities 

are evaluated using the same (as conventional method) dynamic 
ESD/FT/BN of the DP system [46,47]. In these cases, the cut-off value is 
set to 0.001; and ten more probable scenarios are generated as the 
probabilities of the two last scenarios (9 and 10), in all cases, are less 
than 0.001. 

Table 10 presents the execution time of these two methods for 
different time intervals (K). As can be seen, the execution time of the 
optimization-based method (supervised DPRA) is almost the same for all 
time intervals. In addition, as presented, at lower time intervals, the 
execution time of the conventional methods is lower. That is primarily 
because of the lower number of possible scenarios in these time in
tervals. As the number of possible scenarios increases, the execution 
time of the conventional method (dynamic ESD) increases significantly. 
However, the execution time of the optimization method increases 
slightly. In this example, the modified PSO is used as the solution al
gorithm. However, it should be mentioned that other solution algo
rithms would result in almost the same execution time owing to the 
simplicity of the presented example. In more complex systems, an effi
cient solution algorithm should be selected based on the model char
acteristics and algorithm features. Table 2 presents a guideline for 
selecting the solution algorithm based on the system nonlinearity level 
and decision variable type. 

5.2. Sensitivity analysis 

Sensitivity analysis can identify the dependency of outputs on a 
particular input. In other words, sensitivity analysis determines the ef
fect of the fluctuation of an independent variable (model input) on a 
particular dependent variable (model output) under a given set of as
sumptions. Sensitivity analysis can be performed to explore the 
robustness and accuracy of a new methodology. Hence, one of the model 
parameters was changed assuming all the other parameters remained 
constant; the method was executed, and the changes in outputs were 
analyzed [48]. 

In this section, it is assumed that the DP system exhibits technical 
problem (initiating event), and a component has failed. This assumption 
affects ESD, FTs and BNs of the system and it will update events and 
connections probabilities. As mentioned before, in Section 5.1, the re
sults are derived based on the assumption that sub-agents including 
“components” work properly with the probability of 0.95. In this sec
tion, it is assumed that the probability of “components” sub-agent works 
properly is 0.10, i.e., “components” sub-agent fails with the probability 
of 0.90. 

With this assumption, the PSO based optimization model is executed 
and the results (more probable scenarios) for two, three, and four time 

Table 9 
Failure scenarios after four time intervals  

No. Time interval 1 Time 
interval 2 

Time interval 3 Time interval 4 

1 Alarm detected Auto DC Change position 
reference 

Failure of 
manual kp* 

2 Alarm detected Auto DC Recalibrate 
reference origin 

Failure of 
manual kp* 

3 Alarm detected Auto DC Deselect faulty 
sensor 

Failure of 
manual kp* 

4 Alarm detected Auto DC Reference system 
recovery 

Failure of 
manual kp* 

5 Alarm detected Auto kp* Change position 
reference 

Failure of 
manual kp* 

6 Alarm detected Auto kp* Recalibrate 
reference origin 

Failure of 
manual kp* 

7 Alarm detected Auto kp* Deselect faulty 
sensor 

Failure of 
manual kp* 

8 Alarm detected Auto kp* Reference system 
recovery 

Failure of 
manual kp* 

9 Position checked 
properly 

Auto DC Change position 
reference 

Failure of 
manual kp* 

10 Position checked 
properly 

Auto DC Recalibrate 
reference origin 

Failure of 
manual kp*  

* : kp refers to keep position 

Table 10 
The number of possible alternative scenarios and execution time at each time interval  

Number of intervals K=1 K=2 K=3 K=4 K=5a K=6b 

Number of possible scenarios 3 21 294 588 8232 16,464 
Execution time Conventional method <10s <10s ∼10s  ∼1min  ∼2min  ∼5min  

Optimization based method 10s<t<1min  

a : It is assumed that after interval four, the interval three is repeated. The number of alternative scenarios is equal to the combination of 3, 7, 14, 2, and 14. 
b : It is assumed that after interval four, interval three and four are repeated. The number of alternative scenarios is equal to the combination of 3, 7, 14, 2, 14, and 2. 

Table 11 
Failure scenarios after two time intervals  

No. Time interval 1 Time interval 2 

1 Alarm detected Failure of auto keep position 
2 Alarm detected Failure of manual keep position 
3 position and heading checked properly Failure of auto keep position 
4 position and heading checked properly Failure of manual keep position 
5 visual detection done perfectly Failure of auto keep position 
6 visual detection done perfectly Failure of manual keep position  
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intervals are presented in Tables 11, 12, and 13, respectively. The 
optimal results after two, three and four time intervals present more 
probable failure scenarios that last two, three and four time intervals, 
respectively. 

As shown in Table 7, the failure of the manual keep position has a 
higher occurrence probability compared with the automatic keep posi
tion. However, in the presented example in this section with higher 
component failure rates, the failure of automatic keep position has a 
higher occurrence probability compared with the manual mode, as 
presented in Table 11. This is because in the automatic keep position, 
more technical components are involved compared with the manual 
mode. As the components have higher failure probability, the automatic 
keep position failure rate increases. Consequently, the automatic keep 
position has a higher occurrence probability than manual mode. 

Table 12 presents the failure scenarios after three time intervals. 
When comparing this table with Table 8, it is clear that most of the 
successful disconnections and keep positions presented in Table 12 are 
performed manually. However, in Table 8, successful automatic mode 
scenarios are more frequent owing to the higher reliability of the 
components. 

The failure scenarios after four time intervals are presented in 
Table 13. When comparing this table with Table 9, it is clear that manual 
modes are more frequent at time interval 2, and the automatic modes are 
more frequent at time interval 4. As mentioned before, time interval 2 
presents successful scenarios; therefore, the manual modes have a higher 
success probability compared with the automatic modes owing to high 
technical failure rates. Meanwhile, time interval 4 presents the failure 
scenarios; as shown, automatic modes are more likely to occur, as pre
sented in Table 13. 

6. Discussion 

6.1. Model applicability domain 

In this study, an optimization method to assist DPRA models is 
introduced. The proposed method is applicable to DPRA modeling 
methods, such as the dynamic fault tree, dynamic Bayesian belief 
network, dynamic event sequence diagram, and hybrid methods (Sec
tion 1). The optimization algorithm searches among the possible oper
ation scenarios of a complex system and finds the more desirable ones. 
Depending on the scope of the study, the objective function to generate 
desired scenarios is defined. The objective could be set to find the more 
probable scenarios or scenarios with high consequences (Section 3.1.). 

After defining the objective function, the optimization algorithm 
search over all possible scenarios and find more desired ones, without 
evaluating the risk level of all feasible scenarios. Then, the desired 
scenarios could be further analyzed using any probabilistic risk assess
ment methods (Section 4). 

The optimization algorithm helps to reduce the execution time of any 
DPRA models by reducing the number of scenarios under study (Section 
5.1.). Hence, it is highly valuable for risk-informed decision making in 
emergencies and situations with time restrictions. 

6.2. Optimization model extension 

6.2.1. Objective function 
The proposed optimization method can generate and sort failure 

scenarios without solving all possible alternative scenarios after an 
incident occurs. In this study, the objective function of the optimization 
model defines the more likely scenario. However, the objective function 
can be updated according to the goal of the study, such as obtaining the 
least probable scenarios or scenarios with high risk levels (considering 
consequences as well). In these cases, the methodology remains the 
same, but the objective function should be updated according to the goal 
of the system (Section 3.1.). For instance, to obtain high-risk scenarios, 
the objective function is 

Maximize (Occurrenceprobability×Consequence) (15)  

6.2.2. Constraints 
All the principle rules, constraints, and limitations in the system 

should be considered as optimization model constraints. As the number 
of constraints increases, the feasible region of possible scenarios would 
be restricted. Meanwhile, increasing the number of constraints can in
crease the nonlinearity of the problem, resulting in multiple local (not 
global) optimal solutions, which necessitate using evolutionary opti
mization algorithms. Constraints affect the solution algorithm and 
execution time significantly. Hence, experts should define and simplify 
system constraints to decrease model nonlinearity while reflecting the 
complex system behavior with acceptable accuracy (Section 3.1). 

6.2.3. Decision variable 
The decision variable of the optimization model is the probable 

failure scenario. This variable is an integer value, e.g., existence and/or 
non-existence of an event in a scenario. Therefore, mixed-integer 
nonlinear programming is proposed as a practical solution algorithm 

Table 12 
Failure scenarios after three time intervals  

No. Time interval 1 Time interval 2 Time interval 3 

1 Alarm detected Manual DC Failure of change position 
reference 

2 Alarm detected Manual DC Failure of deselect faulty 
sensor 

3 Alarm detected Manual DC Failure of reference system 
recovery 

4 Alarm detected Manual keep 
position 

Failure of change position 
reference 

5 Alarm detected Manual keep 
position 

Failure of deselect faulty 
sensor 

6 Alarm detected Manual keep 
position 

Failure of reference system 
recovery 

7 Position checked 
properly 

Manual DC Failure of change position 
reference 

8 Position checked 
properly 

Manual DC Failure of deselect faulty 
sensor 

9 Position checked 
properly 

Manual DC Failure of reference system 
recovery 

10 Position checked 
properly 

Manual keep 
position 

Failure of change position 
reference  

Table 13 
Failure scenarios after four time intervals  

No. Time interval 1 Time 
interval 2 

Time interval 3 Time interval 4 

1 Alarm detected Manual DC Recalibrate 
reference origin 

Failure of auto 
kp* 

2 Alarm detected Manual DC Start new generator Failure of auto 
kp* 

3 Alarm detected Manual kp* Recalibrate 
reference origin 

Failure of auto 
kp* 

4 Alarm detected Manual kp* Start new generator Failure of auto 
kp* 

5 Alarm detected Manual DC Recalibrate 
reference origin 

Failure of 
manual kp* 

6 Alarm detected Manual DC Start new generator Failure of 
manual kp* 

7 Alarm detected Manual kp* Recalibrate 
reference origin 

Failure of 
manual kp* 

8 Alarm detected Manual kp* Start new generator Failure of 
manual kp* 

9 Position checked 
properly 

Manual DC Recalibrate 
reference origin 

Failure of auto 
kp* 

10 Position checked 
properly 

Manual DC Start new generator Failure of auto 
kp*  

* : kp refers to keep position 
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(Section 3.1). 

6.2.4. Solution algorithm 
The solution algorithm depends on equation linearity and decision 

variable type. As most risk assessments are performed on complex sys
tems, which include high levels of nonlinearity, evolutionary algorithms 
are the best methods. In this study, three main evolutionary algorithms 
that can handle nonlinear integer decision variables are proposed. These 
three algorithms are presented as examples of applicable optimization 
algorithms in this field. However, other evolutionary algorithms that 
converge to a global optimal solution faster may exist, depending on the 
complexity of system behavior (Section 3.2). 

6.3. Future of DPRA models 

The future of DPRA is presented in [49]. A main challenge is related 
to the development of the DPRA in a complex system, as outlined in 
Section 2. Risk assessment models are well stablished for cases with 
considerable data and system behavior information. In this regard, 
multiple statistical and probabilistic tools can be used to provide valu
able information for decision support in many types of application [47]. 

However, a risk-informed decision-making process is primarily 
regarding situations characterized by large uncertainties. These situa
tions necessitate the assessment of multiple alternative possible sce
narios and, occasionally, unknown scenarios (Table 1). It is a key 
challenge for the risk field to develop frameworks for this purpose. 

DPRA has garnered increasing attention in recent years. Chang et al. 
[50] performed an in-depth study on this concept, in particular the effect 
of human factor uncertainty over time in risk assessment. According to 
their study, possible alternative scenarios increase with uncertainties 
and time. In the current study, an optimization concept was introduced 
to generate the most and/or least probable scenarios without consid
ering all alternative scenarios. This concept decreases the execution time 
of risk assessment significantly. Consequently, risk-informed decision 
making can be performed in a short time and in emergency situations, 
with the required acceptable accuracy. 

The proposed concept is applicable to systems under uncertainty. 
However, risk-informed decision-making is, to an increasing extent, 
regarding unknown situations, such as incidents in a self-learning 
complex system. Consequences and recovery plans in these systems 
change over time. In these situations, system behavior and principle 
rules are updated continuously. We must further develop PRA models 
that can capture changes linked to the system historical data and gov
erning principles. The available probabilistic dynamic risk approaches 
and methods would not be feasible in this regard [33]. Risk assessment 
methods need not be extended in a predictive manner, including 
attention to system behavior over time. Prediction methods and analysis 
can be considered as new approaches for improving DPRA methods. 

7. Conclusion 

A new method utilizing optimization algorithms to generate and sort 
the failure scenarios of a system after an incident is presented herein. 
The main challenges of DPRA methods are extensive execution time 
owing to system complexity, component interdependency, and dynamic 
behavior of the system. Hence, the new method was proposed, and three 
optimization algorithms were suggested based on the nature of the 
DPRA models, which are based on mixed-integer nonlinear program
ming methods. 

The method is applied to a simple case study, and results indicate the 
usefulness of the method, as it reduced the execution time significantly. 
Furthermore, the results showed as the time period increased, the dif
ference in execution time between the conventional and proposed 
methods increased significantly, e.g., the execution time of the proposed 
method was one-fifth that of the conventional methods after six time 
intervals, with 16,464 possible scenarios. 

Moreover, the method is utilized to model a dynamic positioning 
complex system, presented in the subsequent article (Part 2) [45], and 
the developed model is applied to three incidents that occurred in the 
Norwegian offshore sector. The results, presented in part 2, show that 
the model can predict the most probable scenarios with an acceptable 
accuracy in a very short time. 

This added capability to the DPRA methods would enable a more 
complete understanding of incidents and their probable consequences. A 
successful implementation of the method would enable the method to 
simulate and obtain the risk level of complex systems accurately in a 
short execution time. Furthermore, using this method, operators could 
monitor the risk level of all possible failure scenarios in real time as well 
as make better decisions in emergency situations. 
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