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Abstract  

Aiming to overcome the limitations of conventional offshore field development concepts (dry tree or subsea tree) 

for petroleum production in ultra-deep water, a new alternative offshore field development solution, termed as 

Deepwater Artificial Seabed (DAS) system, is proposed. The DAS system works in concert with dynamic 

positioning (DP) floaters, such as dynamically positioned Floating Production, Storage and Offloading (FPSO) 

vessels. Rather than relying on the passive mooring system, the DP maintains the reliable position of the FPSO with 

steering and propulsion units. Nonetheless, critical DP failures, which has potential to cause the drift-off scenario 

for the FPSO, and poses a serious threat to the structural safety of the DAS system. Therefore, it is crucial to establish 

operational limits for the DP FPSO to prevent such accidents. In this study, a 3-phase probabilistic modelling 

methodology is proposed to predict safety limits for the operation of the DP FPSO. A surrogate model is established 

by the Support Vector Machine (SVM) algorithm so as to decrease the computational cost due to the generation of 

large statistical samples. The statistical distribution of the operational safety limits of FPSO is simulated by the 

successive approximations through the fully-coupled drift-off analysis. The accuracy of the proposed methodology 

is verified by a series of mathematical tests. In order to validate the effectiveness of the methodology, the safety 

limit prediction of the FPSO for the DAS system is taken as a case study. The critical positions of the FPSO are 

predicted in real time and provides ample time and information for operators’ decision-making by the visualization 

of the safe moving range of the FPSO. The study contributes to the safety control of DP operations on floating 

production units in an efficient manner. 
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1. Introduction 

1.1. Background and research motivation 

With fewer remaining easy-to-access oil and gas fields, the offshore petroleum industry has moved into deep 

and ultra-deep water. However, some deep-water oil and gas fields are evaluated to have no commercial value using 

existing conventional oil field development approaches [1], especially in a low oil price environment. These 

conventional oil field development approaches mainly include dry tree units or subsea developments, or a 

combination of both [2]. A new alternative offshore field development solution, termed as the Deepwater Artificial 

Seabed (DAS) system [3-6], is proposed to overcome the technical and commercial limitations of the current 

offshore field development concepts for petroleum production in ultra-deep water. Fig. 1 depicts the general 

arrangement of the DAS system. In contrast to the geological seabed, the artificial seabed, which is positioned 

certain distances below Mean Water Level (MWL) to minimize the adverse effects of the harsh surface environment, 

is established to support the shallow water rated well completion equipment and technology for the development of 

large oil and gas fields in ultra-deep water. The DAS system works in concert with dynamic positioning (DP) floaters, 

such as dynamically positioned Floating Production, Storage and Offloading (FPSO) vessels.  

  
Fig. 1. Arrangement of the DAS system. 

Rather than relying on the passive mooring system, DP system maintains the reliable position of FPSO with 

power, thruster and control systems. Nonetheless, critical DP failures, which has the potential to cause the drift-off 

scenario for FPSO [7, 8], and poses a significant threat to the structural safety of the DAS system. In worst case, 

the situation may escalate into a serious subsurface blowout and further result in a significant downtime of the 

petroleum production and financial losses. Therefore, emergency quick disconnection (EQD), which is an important 

safety barrier [7] to prevent accidents due to the excessive drift of FPSO, should be activated to disconnect the DAS 

system and FPSO. Besides, emergency disconnection sequence (EDS) operations are required to achieve the EQD 

activation. The point of disconnection as well as the associated preparation and initiation points for EDS, defined 

as physical, red and yellow limits respectively, are critical to the success of EQD. Therefore, it is of great importance 



to predict the operational safety limits of FPSO so as to provide operators ample time and information to ensure 

disconnection is completed before any damage occurs to the system. 

The increasing DP failure incidents provoke the stakeholders’ awareness of the importance of establishing the 

operational safety limits. Well Specific Operating Guidelines (WSOG), which is the main tool for the safety 

evaluation and decision making in DP operations [9], specifies that the safety limits of mobile offshore drilling unit 

(MODU) should be determined prior to operation. In accordance with DNV-RP-E307 [10], the safety limit should 

be extracted from the MODU’s riser drift-off analysis for a variety of conditions, including one-year return 

conditions, ten-year winter storm return conditions and where appropriate, specific return conditions such as ten-

year loop current conditions. However, the original estimation, which disregards non-extreme sea states and the 

variation of environmental loads, would be would be conservative and not of sufficient accuracy for practical 

applications. Therefore, a real-time prediction methodology that takes into account the variation in environmental 

loads is on demand to achieve a more accurate operational safety limit.   

1.2. Relevant works and objective 

The existing approaches for safety limit determination mainly focus on MODU, but remarkably little attention 

has been paid on DP FPSO in the production phase even though there is a high position loss potential due to the DP 

failure. The simplest approach is to take a certain percentage of the water depth as the safety limit [11]. It is an 

empirical estimation and disregards the mechanical characteristics of the riser system and vessel motion, and hence 

lacks accuracy. Rustad et al. [12] recommend that the riser analysis should be conducted to determine the safety limit 

using a finite element program, such as Reflex, ABARQUS and Orcaflex. But the effects of the vessel motion and 

the associated time to activate EQD are disregarded. Bhalla and Cao [13] propose a non-coupled analysis approach 

to incorporate the effect of the vessel motion on the riser system. In their work, the vessel’s trajectory over time, 

which should be obtained by a simulation of the vessel motion, is taken as the top boundary condition for the riser 

analysis. However, this approach disregards the effects of the riser system on the vessel motion, such as the drag 

and inertia of riser, as well as the recovery force of riser on the vessel. In view of this, some studies [14-16] propose 

a fully-coupled analysis approach to consider the interactions between the riser system and vessel, thus improving 

the accuracy of result.  

However, aforementioned approaches disregard the variation of environmental loads over time. It is necessary 

to update the safety limit in real time with the variation of environmental loads. Gjerde and Chen [17] propose a 

probabilistic methodology based on the Monte Carlo (MC) simulation to predict the statistical distribution of the 

safety limit. But it is also difficult to apply this methodology to the real-time DP operation since numerous numerical 

simulations are required to calculate large statistical samples. The computational cost due to frequent numerical 

simulation will also result in a delay of information transmission to decision makers. 

It is recognized that a new technique to reduce the computational cost is to use surrogate models [18, 19]. The 



surrogate model approximates the data which needs to be simulated with the numerical model and thus reduce the 

calculation cost of the sample set. Therefore, the objective of this study is to propose a 3-phase probabilistic 

modelling methodology to predict the operational safety limits of the DP FPSO, taking into account the variation in 

environmental loads. The proposed methodology is based on integrating the surrogate model and mechanical model 

with the probabilistic methodology to reduce the computational expense. This methodology aims at predicting the 

critical situation of the FPSO-DAS system in real time so as to provide the operator ample time and information for 

the drift-off decision making. 

In view of the the limitations of the aforementioned works, the contribution of this study are as follows: 

 The operational safety limits of the DP FPSO in the production phase are evaluated and predicted in real time. 

 The dynamic responses of DP FPSO, flexible jumper, artificial seabed, rigid riser, taut tether and the 

interconnected relationships among them are taken into consideration globally. 

 The surrogate model is established to reduce the computational cost due to frequent numerical simulation so 

as to provide the operator ample time and information for the drift-off decision making. 

 The statistical model is established to address the uncertainty due to randomness of sea states. 

1.3. Structure of paper 

The rest of paper is organized as follows. Section 2 presents the procedures and associated functions of the 

new probabilistic modelling methodology. Section 3 presents the case study of the FPSO and DAS coupling system 

to describe the application process and validate the accuracy of the proposed methodology. Section 4 presents the 

statistical distributions of the operational safety limits for the dynamic positioning of the FPSO, and compares the 

statistical performance of different operational safety limits.  

2. Methodology 

A 3-phase probabilistic modelling methodology, integrating the mechanical and surrogate models with the 

probabilistic model, is developed to predict the operational safety limits of the DP FPSO in concert with the DAS 

system, as illustrated in Fig.2. The mechanical model is a time domain simulation of the FPSO and DAS coupling 

system, which is used to evaluate the integrity of the FPSO and DAS coupling system and determine the operational 

safety limits of the FPSO. However, the computational cost could be too massive due to the large number of 

statistical samples generated for varying environmental conditions. In order to overcome this limitation, the 

surrogate model is established as an alternative to generate large samples, which is on the basis of small amount 

samples obtained from the mechanical model and thus reduce the computational cost. The probabilistic model is 

built to generate the sample set and simulate the statistical distribution of the operational safety limits, on the basis 



of the MC simulation. In this simulation, the input is the statistical property of environmental conditions while the 

output is the statistical distribution of the operational safety limits for the dynamic positioning of the FPSO. 

 

Fig. 2. Flowchart of the 3-phase probabilistic modelling methodology.  

2.1. Mechanical model  

2.1.1. Governing equations 

The time domain analysis of the fully coupled FPSO-DAS system is conducted to determine the operational 

safety limits for a given environmental load condition. Notably the following governing equations for different 

structures are based on the respective body-fixed coordinate systems. It is assumed that FPSO is rigid and undergo 

six independent degrees of motion——three translational and three rotational. The governing equation of the 

FPSO’s motion is written as follows: 

𝑚𝑥̈ୠ୳୭,௜ + 𝐶௜𝑥̇ୠ୳୭,௜ + 𝑅௜𝑥ୠ୳୭,௜ + 𝐹୨୳୫ + 𝐹ୠ୳୭ = 𝐹୵୧୬ୢ + 𝐹ୡ୳୰୰ + 𝐹୵ୟ୴ୣ + 𝐹஽௉                  (1) 

where the subscript i=1,2,3,4,5,6 refers to the component of six degrees of freedom motion respectively; x is the 

translational or rotational motion along different axes; m is the mass of FPSO; C is the damping term; R is the 

righting moment of FPSO; Fjum is the response force of the flexible jumper; Fbuo is the buoyance of FPSO; Fwind, 

Fcurr and Fwave are the environmental loads caused by wind, current and wave respectively; FDP is the response force 

of the DP system which is set to be 0 as the DP system fails to work in the drift-off scenario. 

Flexible jumper bridges between the FPSO internal turret and gooseneck assembly on artificial seabed. The 



flexibility of flexible jumper, such as elongation and bending, is revealed by the multi-layered structure consisting 

of metallic and polymer layers. Therein, multiple layers play different roles in maintaining a sufficient stiffness for 

tension and preventing excessive bending stress. In this paper, the mechanical model of flexible jumper is simplified 

as a single line model with the equivalent properties of multi-layered structure obtained from existing test data. The 

governing equation of the flexible jumper is written as: 

𝐸𝐼
பమఈ

ப௦మ
sec𝛼 + (𝑤 − 𝑓ୠ୳୭)𝑠 − ∫ ቀ𝑓 ୬୴,୬sec𝛼 + secଶ𝛼 ቀ

ௗఈ

ௗ௦
ቁ ∫ ൫𝑓 ୬୴,୬sin𝛼 − 𝑓 ୬୴,୲cos𝛼൯𝑑𝜉

క

଴
ቁ 𝑑𝑠

௦

଴
= 𝐹 ୤୤tan𝛼 − 𝑄      (2) 

where EI is the equivalent bending stiffness; α is the angle with respect to the horizontal line along the flexible 

jumper; ds and d𝜉 are the differential elements of the arch-length of the flexible jumper ranging from 0 to the total 

length l; fbuo is the buoyance of flexible jumper; fenv is the environmental force according to the Morison equation; 

the subscript n and t refer to the normal and tangential components respectively; w is the wet weight per unit length; 

Feff and Q are the effective tension and shear force respectively.  

Let ∆α, ∆Feff and ∆Q be the small perturbations of the variables: α, Feff and Q, respectively. The total response 

of the flexible jumper is expressed by: 
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The dynamic equilibrium equation can be derived by substituting Eq. (3) into Eq. (2): 
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where u is the displacement caused by perturbations at s. 

The effective tension of flexible jumper is expressed by: 

𝐹 ୤୤ = 𝑇 + 𝐴୭𝑝୭ − 𝐴୧𝑝୧                                          (5) 

𝑇 = 𝐸(𝐴୭ − 𝐴୧)𝜀                                             (6) 

where T is the actual tension of the flexible jumper; Ao and Ai are the external and internal cross-sectional areas of 

the flexible jumper respectively; po and pi are the corresponding fluid pressures respectively; 𝜀 is the strain of the 

flexible jumper.  

In addition, the bend radius (χ) along the flexible jumper is calculated by: 

𝜒 = (
ௗఈ

ௗ௦
)ିଵ                                              (7) 

The maximum allowable value of Feff and minimum allowable value of χ are utilized as critical parameters to 

evaluate the safety integrity of the DAS system.     

Different from flexible jumper, the deformation of rigid riser is only allowed in a smaller range, which means 

only bending is taken into consideration in the model. The governing equation of the rigid riser is written as: 



பమ

ப௭మ ቂ𝐸𝐼
பమఋ

ப௭మቃ − 𝐹 ୤୤
பమఋ

ப௭మ
− 𝑞

డఋ

డ௭
+ 𝑤

பమఋ

ப௧మ
= 𝑓 ୬୴       (8) 

𝜀 = 𝜎/𝐸ୣ୤୤                                   4           (9) 

where 𝛿 is the deflection along the rigid riser; ε and σ are the strain and stress along the rigid riser respectively; Eeff 

is the effective Young’s modulus. The boundary conditions of the rigid riser and taut tether at the bottom side are 

given by 𝛿 = 0. The maximum allowable value of the compression strain and effective stress are also utilized as 

critical parameters to evaluate the safety integrity of the DAS system. 

2.1.2. Environmental loads 

It is assumed that wind and current are independent of time. The wind, current, and wave loads on FPSO can 

be calculated by: 
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where Cwind,i is the wind drag coefficient for the different motion degree i; Ccurrent,i is the current drag coefficient for 

the different motion degree i; ρair is the air density; Vwind is the magnitude of the relative velocity of the air past 

FPSO and Awind is the projected area of FPSO above the water surface; Vcurrent is the current velocity at the water 

surface, and assumed to be constant with the FPSO’s draft; S(ω) is the wave spectrum; ω is the angular frequency 

of wave; RAO and QTF are the response amplitude operator and quadratic transfer function respectively; β is the 

incident wave direction.  

2.2. Probabilistic model 

It can be envisaged that there are significant variations in the magnitude and direction of environmental loads. 

In general, wind, current and wave loads are random and the correlative parameters which could be described by 

specific statistical properties. It is recognized that the operational safety limits will also be characterized with 

statistical properties. 

Three different Weibull distribution are adopted to express the statistical properties of the mean wind speed 

(Vwind), surface current speed (Vcurrent), and maximum wave height (Hmax) respectively [20-22]. The corresponding 

cumulative distribution functions (CDFs) of Vwind, Vcurrent, and Hmax are expressed by: 
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where cwind (ccurrent, Hc) and kwind (kcurrent, kwave) are the scale parameter and shape parameter of Weibull distribution 



respectively; H0 is the minimum threshold level for different sea areas.  

The relationship between the significant wave height (Hwave) and Hmax is given by [23]: 

𝐻୫ୟ୶ = 𝑘𝐻୵ୟ୴ୣ                                           (16) 

where k is the scale parameter associated with the number of waves. Thus, Hwave and Hmax follow the same Weibull 

distribution for the specific k.  

The relations between Hwave and Twave can be expressed by the power function as: 

𝑇୵ୟ୴ୣ = 𝑏୘𝐻୵ୟ୴ୣ
௞೅                                             (17) 

where bT and kT are the scale and shape parameter respectively, which are deterministic for the specific sea area.  

Therefore, the operational safety limit (expressed by the polar coordinates as R and θ) is the function of Vwind, 

Vcurrent, and Hwave for the DAS system. On the basis of the MC simulation, the unknown CDF of the operational 

safety limit can be expressed by: 
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where 𝛿(x) is the Dirac delta function. When the sample size N approaches infinity, the CDFu will equal to the actual 

CDF: 
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Eq. (19) indicates that N should be large enough to control the error.  

It is assumed that CDFs are random variables with uniform probability density on (0, 1). Based on the inverse 

transform method, the values of Vwind, Vcurrent and Hwave can be obtained by: 

𝑥 = 𝐶𝐷𝐹ିଵ(𝑢)                                          (20) 

where x refers to Vwind, Vcurrent or Hwave; u is a random number sampling from (0, 1). 

It is assumed that Vwind, Vcurrent, Hwave and β are independent random variables for the MC simulation, and the 

sample size N should obey the following rule to make the sampling error acceptable: 

 𝑁 ≥ ∏ 𝑛௟
௅௅
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where nl is the least sample size satisfying the precision for a single variable and L is the number of random variables.  

2.3. Surrogate model 

As aforementioned, the surrogate model is required to cut down the computational cost due to the frequent 

numerical simulations for the large sample set obtained from the probabilistic model. The methods for surrogate 

models can be further divided into supervised and unsupervised [24]. The unsupervised method performs prediction 

with less manual interference and training labels. However, large training set is required for unsupervised method 

[25], which is contrary to the aims of introducing surrogate model. Among the supervised methods, artificial neural 

network (ANN) and support vector machine (SVM) are prior to others because these two methods possess higher 

precision and efficiency with the same training set [26]. Moreover, SVM can gain higher precision with smaller 



training set than normal ANN. Although the advanced deep learning techniques are proposed to enhance the 

precision of ANN, the limitation of large training set is still unsolved. Thus, SVM is applied in this paper as the 

surrogate model. 

A large sample size is required to cover the sample of the extreme sea state, the occurrence rate of which is 

less than 10-5 [20].
 Nonetheless, the calculation of large sample set results in huge computational cost. In view of 

this, the surrogate model is established on the basis of the support vector machine (SVM) algorithm. SVM is the 

state of the art of surrogate modeling techniques, and it shows a great advantage of reducing the computational 

expense for a complex model [27, 28]. 

Two different SVM models, i.e. support vector classification (SVC) and support vector regression (SVR) 

models are adopted in two phases. The SVC model plays the role of classifying the data by determining whether 

the structure failure of the FPSO and DAS coupling system happens or not in the specific duration, whereas the 

SVR model is utilized to predict the position of the operational safety limit.  

SVC is utilized to perform the classification function by solving the optimization equation as: 
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𝐶 ≥ 𝛼௜ ≥ 0, 𝑖 = 1, … , 𝐿.           

where w is a weight parameter; ξ is the slack variable; i represents the ith sample from the training dataset whose 

size is L; yi∈{0,1} is the output label (0 and 1 referring to not failure and failure respectively) while xi∈RN is the 

training vector; C is the cost parameter pre-defined for adjusting the optimization step size; Q is an L-order matrix, 

and Qij= yi yjK(xi, xj); αi is the Lagrange multiplier. Radial basis function (RBF) is set as the kernel function K(xi, 

xj): 

𝐾൫𝑥௜ , 𝑥௝൯ = exp (−𝛾ୖ୆୊||𝑥௜ − 𝑥௝||ଶ)                                    (24) 

where –γRBF is also the pre-defined parameter for controlling the optimization progress. The final decision function 

is given by solving Eq. (23) as: 
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SVR is utilized to predict the operational safety limits, with the optimization equations given by: 
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where RBF is set as the kernel function of Eq. (27). The final decision function is given as: 

ŷ = ∑ (−𝛼௜ + 𝛼௜
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2.4. Implementation of three models  

Three interconnected models are established sequentially on the basis of the aforementioned equations. It is 

noted that the output of systematic methodology is the statistic distribution of operational safety limits, and the input 

is the specific DAS system coupled with FPSO and the corresponding statistical parameters of sea area. The 

mechanical model is first established based on the specific DAS system as Eq. (1) ~ (12). Then the input 

environmental loads for the mechanical model is provided by a specific training set aiming to establish the surrogate 

model. The outputs of the mechanical model are the failure states and operational safety limits in relation to the 

environmental loads of this training set. The surrogate model is trained by this training set, and SVC and SVR 

models are established as Eq. (22) ~ (28). If the precisions of SVC and SVR models are acceptable, the surrogate 

model will be utilized to predict the failure states and operational safety limits for statistical analysis. On the other 

hand, the statistical parameters of sea area are utilized to establish the Weibull distributions respectively based on 

Eq. (13) ~ (15). Then the random sample sets of environmental loads are generated by inverse transform method as 

Eq. (20), which is the input of the surrogate model for the prediction of operational safety limits and failure states. 

Specific procedures explained by the following algorithms are applied to obtain the specific outputs 

respectively. Algorithm_MEC presents the procedures of the determination of safety limits from the mechanical 

model, which is utilized to obtain the safety limit from the input data of sea states.  

Algorithm_MEC. Determination of safety limits from mechanical model 

Input: 

 Vwind: the magnitude of the relative velocity of the air past FPSO. 

 Vcurrent: the current velocity at the water surface. 

 Hmax: the maximum wave height. 

 β: the incident wave direction. 

Output: 

 Failure states (yi) and operational safety limits. 

Procedures: 

1 Calculate environmental loads with input parameters; 



2 Conduct time domain analysis for the established mechanical model with the environmental loads; 

3 if the structure failure happens in the established mechanical model: 

4 if {yi=1; Obtain different operational safety limits;} 

5 else: yi=0; 

Algorithm_MEC can be utilized to obtain the required operational safety limits for Algorithm_SUR which 

illustrates the procedures of the establishment of SVC and SVR models.  

Algorithm_SUR. Establishment of surrogate models: SVC and SVR 

Input: 

 Training set size. 

 Failure states (yi) and operational safety limits based on the sea states from training set. 

 Cost parameter set (C), kernel parameter set (γ), Regression parameter set (ν) 

Output: 

 SVC model for the prediction of failure states. 

 SVR model for the prediction of operational safety limits. 

Procedures: 

1 Conduct independence test: several training sets with different sizes are utilized to train the SVC and SVR models; 

2 Obtain the training set with the most applicable size; 

3 Utilize Algorithm_MEC to determine the failure states and operational safety limits for the training set; 

4 for every Ci, γi in C, γdo 

5 if Train SVC model; 

6 if Obtain validation accuracy; 

7 if if the validation accuracy is acceptable and optimal: 

8 if if Obtain the specific SVC model with relative Ci and γi; 

9 for every Ci, γi and νi in C, γ and ν do 

10 if Train SVR model; 

11 if Obtain validation accuracy; 

12 if if the validation accuracy is acceptable and optimal: 

13 if if Obtain the specific SVR model with relative Ci, γi and νi; 

It is noted that lines 4 to 8 are the procedures of establishing SVC model, and lines 9 to 13 are the procedures 

of establishing SVR model. The SVC and SVR models output from Algorithm_SUR will be utilized as the surrogate 

models for Algorithm_PRO which presents the procedures of statistical analysis of safety limits for the specific sea 

area. 

Algorithm_PRO. Statistical analysis of safety limits for specific sea area 

Input: 

 Statistical parameters of specific sea area: scale parameters (cwind, ccurrent and Hc) and shape parameters (kwind, kcurrent and kwave). 

 SVC model for the prediction of failure states. 

 SVR model for the prediction of operational safety limits. 

 Acceptable error index ε. 

Output: 



 Statistical distribution of operational safety limits. 

Procedures: 

1 Obtain CDF(Vwind), CDF(Vcurrent), CDF(Hmax) with scale parameters and shape parameters; 

2 for every sample size ni in N do 

3 if Obtain random sample set X from uniform probability density on (0,1); 

4 foCalculate inverse function values (Vwind, Vcurrent, Hmax) from X based on CDF(Vwind), CDF(Vcurrent), CDF(Hmax); 

5 foCalculate standard deviation values (σsample,wind, σsample, current, σsample, wave) of environmental parameter sets (Vwind, Vcurrent, Hmax); 

6 foObtain PDF(Vwind), PDF(Vcurrent), PDF(Hmax) from CDF(Vwind), CDF(Vcurrent), CDF(Hmax); 

7 foCalculate standard deviation values (σPDF,wind, σPDF, current, σPDF, wave) of PDF(Vwind), PDF(Vcurrent), PDF(Hmax); 

8 if if |σsample,wind-σPDF,wind|/σPDF,wind≤ε: 

9 if if if |σsample,current-σPDF,current|/σPDF,current≤ε: 

10 if if ifif |σsample,wave-σPDF,wave|/σPDF,wave≤ε: 

11 if if ifif Obtain MC sample sets; 

12 Predict failure states and operational safety limits of MC sample sets by SVC model and SVR model; 

13 Obtain statistical distribution of operational safety limits; 

3. Case study  

3.1. Drift-off analysis to establish operational safety limits 

3.1.1. Principle of operational safety limit determination 

The operational safety limits are classified as three level: physical limit, red limit and yellow limit. The related 

definitions and the subsequent operational plans are described as follows. 

 Physical limit: the safety integrity of one or more components of DAS system exceeds the allowable value. 

Operational plan: emergency quick disconnection (EQD) should be completed and the DAS system is 

disconnected to FPSO. 

 Red limit: the safety integrity of one or more components of DAS system is about to exceed the allowable 

value within the critical required time of emergency disconnection sequence (EDS). 

Operational plan: EDS operations should be activated to ensure the success of EQD. 

 Yellow limit: FPSO is about to reach the red limit within the preparation time of EDS. 

Operational plan: preparations for EDS operations should be initiated. 

The principle of the operational safety limit determination for a given environmental condition is illustrated in 

Fig. 3(a). It can be seen from Fig. 3(a) that the physical limit is determined first, on the basis of the safety integrity 

of DAS system. The red limit and yellow limit are determined subsequently through a backward deduction of 

FPSO’s displacement based on the time required for EDS and its preparation respectively. The time required for 



EDS and its preparation is related to operating rules and operators, and should be determined separately. Based on 

the industry standard and guideline, it is recommended to set the time for EDS and its preparation as 40s and 45s 

respectively [29, 30]. Besides, in view of the potential structural damage of the FPSO and DAS coupling system, 

four critical parameters i.e. the maximum effective tension (MET), minimum bend radius (MBR), maximum 

effective stress (MES) and maximum compression strain (MCS) are identified to evaluate the safety integrity of the 

DAS system, as tabulated in Table 1. The MET and MBR are critical parameters to determine whether a structural 

failure occurs to the flexible jumper, while the MES and MCS are critical parameters for the rigid riser. The 

coordinate system used to describe the operational safety limit position and environmental load direction are defined 

in Fig. 3(b). 

 

Fig. 3. (a) Principle of safety limit determination; (b) Coordinate system. 

Table 1. Critical parameters of the DAS system. 

Parameter Allowable value Reference 

MBR 3.3495 m 
Handbook on design and operation of flexible pipes (2017) 

MET 4435 kN 

MES 348 MPa API RP 2RD 

MCS 2.16% DNV-OS-F101 

3.1.2. Operational safety limit determination 

The mechanical model of the FPSO and DAS coupling system is established to determine the operational safety 

limit, and the time domain analysis is conducted by the finite element program. The key design parameters of the 

FPSO and DAS coupling system, which have been verified to satisfy the design requirement in the aspects of 

strength, buckling, stability, etc. [4, 31, 32], are tabulated in Table 2. The parameters associated with environmental 

loads in 1-year, 10-year, and 100-year sea states are tabulated in Table 3 respectively.  

Table 2. Key design parameters of the system. 

FPSO Flexible jumper Rigid riser 

Length, L (m) 224 Horizontal span, s (m) 366 Length, h (m) 2797.5 



Board, B (m) 41.5 Submerged depth, d (m) 200 Outer diameter (CP), Dc (m) 0.3239 

Depth, D (m) 24 Length, l (m) 696 Weight per unit, w (kN/m) 1.999 

Draught, d (m) 16 Weight per unit, w (kN/m) 0.186 Top tension factors 1.7 

Centre of gravity, Hg (m) 13.5 Outer diameter, Do (m) 0.276 Bend stiffness, EIt (kN∙m2) 4.62×104 

Capacity, Δ (tons) 125700 Inner diameter, Di (m) 0.203 Axial stiffness, EAt (kN) 3.78×106 

  Bend stiffness, EIj (kN∙m2) 34.2 Water depth, H (m) 3000 

  Axial stiffness, EAj (kN) 3.27×104   

Table 3. Environmental parameters associated with different sea states. 

  1-year-condition 10-year-condition 100-year-condition 

Wind velocity, Vwind (m/s) 16.40  18.60  39.00  

Wave height, Hwave (m) 13.24  15.72  17.35  

Wave period, Twave (s) 13.11 14.20 14.87 

Current velocity, Vcurrent (m/s) 1.22  1.38  1.78  

Load direction, β (°) 0; 180 

Fig. 4 illustrates the time histories of the critical parameters for the 1-year environmental condition with the 

load directions of 0° and 180° respectively. It can be seen from Fig. 4 that the MBR and MET of the flexible jumper 

increase over time, whereas the MES and MCS of the rigid riser are nearly constant. This reflects the decoupled 

effect of the flexible jumper can isolate the response of the DAS system from the FPSO’s motion effectively, which 

is in consistent with the existed research [6].  

It is shown in Fig. 4 that the structure integrity of the flexible jumper dominates the physical limit determination. 

For the load direction 0°, MBR of flexible jumper reaches the allowable value first when the drift-off time is 364.3 

s. Therefore, EDS should be completed before this time. The corresponding time to failure is 322.9 s for the load 

direction 180°, which is also determined by the MBR failure. The physical limits for the two cases are illustrated in 

Fig. 5. It is noteworthy that, for the load direction 0°, the MBR failure, which occurs at the joint-point between the 

bend stiffener and flexible jumper, is caused by the over-pulling of the flexible jumper. On the contrary, for the load 

direction 180°, the MBR failure occurs at the overhanging point of the flexible jumper due to the over-bending of 

the flexible jumper. For this reason, the physical limit of FPSO, with respect to the load direction 0°, is located at 

the far end, but when FPSO is subject to 180-degree environmental loads, the physical limit is located at the near 

end.  



 

Fig. 4. Time history of critical parameters (1-year-condition). 

 

 

Fig. 5. Position of physical limit (1-year-condition). 

3.1.3. Sensitivity analysis 

In order to investigate the influences of environmental loads on each operational safety limit and determine the 



relevance between associated parameters and safety limits, an importance analysis for parameters is conducted. Fig. 

6 depicts the rate-of-change of these parameters on the positions of each operational safety limit, in a polar 

coordinate system (where R and θ refer to radius and angle coordinates respectively). It can be seen from Fig. 6 that 

the direction of environmental loads dominates the variation in the angle coordinate of the safety limit. The wave 

height and current velocity have limited effect on the physical limit for the reason that the physical limit is mainly 

determined by the structure integrity of the flexible jumper. However, the wave height and current velocity have 

significant influences on red and yellow limits due to their contribution to the time to failure. It can also be seen 

from Fig. 6 that the wind velocity has insignificant effect on each operational safety limit, in comparison with other 

parameters. Therefore, the wind velocity can be ignored when establishing the surrogate model, because irrelevant 

input parameters in the training set will lead to disturbance for prediction. 

 

 

Fig. 6. The relative importance of parameters on the operational safety limits and time to failure. 

3.2. Statistical properties of environmental loads 

The statistical properties of environmental loads for a specific sea area in South China Sea are listed in Table 

4. It is assumed that the probability density function (PDF) of β is the uniform probability density on (0, 180). To 

meet the accuracy requirement, the 1,000,000 samples of environmental loads are generated randomly in accordance 

with Eq. (20).  

Table 4 Statistical properties of Vcurrent and Hwave (see definition of parameters in Eq. 14-16) 



Item Parameter Vcurrent Hwave 

Shape parameter kcurrent, kwave 0.01 1.20 

Scale parameter ccurrent, Hc 0.6 1.84 

Threshold level H0 - 0.08 

3.3. Prediction of operational safety limits 

3.3.1. Establishment of SVM 

Based on the importance analysis of the parameters in Section 3.1.3,  the wave height, current velocity and 

load direction are set as the inputs of the SVM model.  

The SVM model consists of one SVC model and six SVR models for the classification of the failure states and 

the prediction of the operational safety limits respectively. The training set of the SVC model is predefined by 

dividing cases into two categories, i.e. failed and safe, with the output label assigned 1 and 0 respectively. The 

training set with output label 1 will be further utilized as the training set of the SVR models. Therefore, the output 

of the SVC model is the failure state, while the outputs of the SVR models are the positions of physical, red and 

yellow limits respectively. 

Expansion of the training set will increase the accuracy of the SVM model, but accuracy will gradually 

converge to a stable level. Thus, the independence test of the training set size is conducted to determine a suitable 

size to ensure acceptable computational cost and fitting goodness as well. The validation accuracy of SVC and the 

minimum R2 of SVR for three typical training sets are listed in Table 5 while these datasets are obtained from the 

numerical simulation. The Dataset 2 is selected as the training set based on the trade-off between the computational 

cost and fitting goodness. 

Table 5 Characteristics of three training sets in independence test. 

Item Dataset 1 Dataset 2 Dataset 3 

Case number for Vcurrent 5 7 9 

Case number for Hwave 5 7 9 

Case number for β 7 9 11 

Training set size  175 441 891 

Validation accuracy (%) 97.14 99.54 100.00 

Minimum R2 0.9524 0.9997 0.9999 

3.3.2. Validation of SVM 

As aforementioned in Section 2.3, three parameters, i.e. C, γRBF and ν, which can affect the precision of the 

SVM model to a large extent, should be pre-defined before training the SVM model. To avoid overfitting and 

underfitting, the suitable values for these parameters are searched from a specific interval, as listed in Table 6. 

Table 6 Searching interval of user pre-defined parameters for SVM models. 

Item SVM model Interval Optimized result 



Cost parameter C SVC & SVR 2-16 ~ 216 2 

Kernel parameter γRBF SVC & SVR 2-10 ~ 210 32 

Regression parameter ν SVR 0.00 ~ 0.99 0.50 

The accuracy of the SVC model is verified by the comparison of the training label (yi) and predicting label (ŷi), 

as depicted in Fig. 7. It can be seen from Fig. 7 that most of the samples in the predicting set are consistent with the 

training set, except for two samples marked with the specific color and size. Meanwhile, the regression fitness of 

SVR models are verified, as depicted in Fig. 8. It can be seen from Fig. 8 that the training result is in highly consistent 

with the testing result for every SVR model, with the value of R2 larger than 0.9997. Therefore, the accuracy of the 

SVM model has been validated, and this model can be further adopted for the prediction of the operational safety 

limit position. 

 

Fig.7. Validation of the accuracy for the SVC model. 

 



Fig.8. Validation of the accuracy for the SVR models. 

4. Results and discussions 

4.1. Statistical analysis of operational safety limit 

On the basis of 1,000,000 samples of environmental loads, the predicted results of SVR models as different 

operational safety limits are obtained and summarized. The occurrence rates of 1,000,000 obtained results (physical 

limits, red limits and yellow limits) are depicted in Figs. 9~11 respectively and defined as the “frequency” of 

operational safety limits. These figures are the 3-d illustration of the statistical distribution of obtained operational 

safety limits. The area marked with dark red means the range of operational safety limits which possesses the highest 

frequency, while the area marked with dark blue means the range with lowest frequency. 

It is noteworthy that eighteen percent of samples are safe cases where the structural failure did not occur 

throughout the drift-off process, due to the encountered wave and current with the slight amplitude. It is shown in 

Fig. 9 that more than 80% physical limits are concentrated within the radius between 600~750 meters, because 

physical limits are mainly determined by the safety integrity of the flexible jumper. This is in consistent with the 

results of the importance analysis and verifies the effectiveness of the proposed methodology. It can be seen from 

Fig. 10 and Fig. 11 that most of red and yellow limits are scattered within the radius between 600~700 meters, but 

the congregated area of the high-frequency points for yellow limits is smaller. 

 

Fig. 9. Frequency contours of physical limits. 



 

Fig. 10. Frequency contours of red limits. 

 

Fig. 11. Frequency contours of yellow limits. 

Aiming at systematically investigating the distribution regularities of the operational safety limits, the angle 

range between 0 and 180 degrees is evenly divided into 8 intervals. The frequencies of the operational safety limits 

for different angle intervals are illustrated in Figs. 12~14 respectively. It can be seen from Fig. 12 that in the angle 

range between 22.5 and 157.5 degrees, a frequency peak occurs at around 700 meters, due to the MBR failure at the 

connection between the flexible jumper and bend stiffener. In the interval of 157.5~180 degrees, the frequency peak 

is at around 40 meters due to the MBR failure at the overhanging point of the flexible jumper. It is noteworthy that 

in the interval of 0~22.5 degrees, there are two frequency peaks occurring at around 720 and 30 meters, 



corresponding to the different failure sites of the flexible jumper.  

It can be seen from Fig. 13 that a frequency peak of red limit occurs at around 670 meters in the interval of 

22.5~157.5 degrees, except for the range of 90~112.5 degrees where the frequency peak occurs at around 690 meters. 

On the other hand, another frequency peak in the interval of 0~22.5 degrees is located at around 70 meters. In the 

interval of 157.5~180 degrees, the frequency peak is located at around 40 meters. Likewise, it can also be seen from 

Fig. 14 that a frequency peak of yellow limit occurs at around 660 meters in the interval of 22.5~90 degrees. The 

frequency peak in the intervals of 90~112.5 degrees, 112.5~135 degrees, 135~157.5 degrees and 157.5~180 degrees 

are located at around 680 meters, 580 meters, 640 meters and 40 meters respectively. Partial results of red limit and 

yellow limit reveals stronger randomness than physical limit because of the difference between the initial FPSO 

orientation and direction of environmental loads. 

 It is noteworthy that most of the operational safety limits are located at the far end and near end relative to 

the artificial seabed, and the operational safety limits located within 0~90 degrees possess higher frequencies than 

that within 90~180 degrees, because of the impact of the second-order wave drift force on the FPSO motion 

amplitude. The drift force varies with the wave load direction due to the variation of the entrance section shape. In 

the oblique waves ranging from 0 to 90 degrees, the entrance section of wave is mainly located at the bow which is 

characterized with the prominent streamline shape, resulting in much smaller vertical drift force than horizontal 

component, and thus the sway motion of FPSO is negligible in comparison with the surge motion. For this reason, 

the FPSO drifts towards the far end relative to the artificial seabed, reaching to far-end safety limits. In the oblique 

waves ranging from 90 to 180 degrees, the streamline shape of stern is insignificant, resulting in the more sway 

motion of FPSO than the surge motion, and thus safety limits are located at the far end and within 0~90 degrees as 

well. However, when the wave load direction is 180 degrees, the surge motion dominates the drift of FPSO, and 

thus results in near-end safety limits. 



 

 

 

 
Fig. 12. Frequency of physical limit for different angle interval. 

 

 

 

 
Fig. 13. Frequency of red limit for different angle interval. 



 

 

 

 
Fig. 14. Frequency of yellow limit for different angle interval. 

4.2. Application of methodology to offshore sites 

Environmental loads in different sea sites can influence the prediction of operational safety limit. The design 

information of the specific offshore site should be provided first before establishing the numerical mechanical model. 

Concurrently, the statistical data of the service sea area are collected to determine the probability distributions of 

environmental loads. Thereafter, the predictions of frequency contour of operational safety limit can be provided 

for warning signal and supporting decision makings. 

Once the drift-off scenarios occurred on the offshore site due to the failure of DP system, the on-time location 

of FPSO should be provided to be compared with the frequency contour of operational safety limit, and the 

possibilities of FPSO breaking through different operational safety limits are obtained.  

When FPSO breaks through the yellow limit with the highest possibility revealed in the frequency contour, 

preparations for EDS operations should be initiated. If FPSO continues to drift off and breaks through the red limit 

with the highest possibility, EDS operations should be activated to ensure EQD is completed before FPSO breaks 

through the physical limit. 

It should be noted that the extreme sea conditions which happens with extremely low probability could cause 

catastrophic accident. If the drift-off scenario happens in the extreme sea conditions, the aforementioned operational 

plans incorporated with the provided predictions will possess higher risk than expectation. It is a limitation of the 

proposed methodology, as we assume that FPSO only be on service in normal sea state. 



5. Conclusion 

This study focuses on the prediction of the operational safety limits of dynamically positioned FPSO for the 

DAS system in the drift-off situation. A 3-phase probabilistic modelling methodology, which integrates the surrogate 

model and mechanical model with the probabilistic model, is proposed. The statistical distributions of operational 

safety limits are simulated by the successive approximation of the drift-off analysis for the FPSO and DAS coupling 

system. The accuracy of methodology is verified by a series of mathematical tests. The proposed methodology is 

successfully applied to the case study and reduced the computational cost without sacrificing accuracy or detail.  

The structure integrity of the flexible jumper dominates the physical limit determination since the MBR failure 

of flexible jumper is the main cause for the structural failure of the DAS system. The MBR failure occurs at the 

connection between the flexible jumper and bend stiffener when FPSO drifts away from the DAS system to 

straighten the flexible jumper, whereas it occurs at the overhanging point of the flexible jumper when FPSO drifts 

close to the DAS system to bend the flexible jumper. For this reason, whether FPSO moving in the direction away 

from or close to the DAS system, there is a potential failure that requires the operators' attention.  

In accordance with statistical results, most of operational safety limits are concentrated in two specific areas 

along the radius thus circling the safe moving range of FPSO, which is capable of guiding the DP operation in the 

drift-off scenario. This emphasizes the importance of the online monitoring of the FPSO position during the 

production operation. When the FPSO position is outside the safe moving range, a warning should be issued to 

inform operators that a drift-off might occur, and a series of preventive or contingency measures should be 

conducted in accordance with associated warning criteria.  

The proposed methodology is a useful tool for the prediction of the critical position of dynamically positioned 

FPSO in real time. It visualizes the safe moving range of the FPSO, and thus provides ample time and information 

for operators to support drift-off decision-making. The study contributes to the safety control of the DP operations 

on floating production units. However, there still exist several limitations as following aspects: 

 The mechanical model, surrogate model and probabilistic model should be re-established if the proposed 

methods are applied to different offshore sites. 

 The extreme sea conditions which happen with extremely low probability can hardly be included in the 

statistical result. It is assumed that FPSO only be on service in normal sea state. 

 The amplitudes of environmental loads are not included in the frequency contour of operational safety limit. 

In the future work, actual field data will be utilized to be incorporated with the proposed methodology and 

further address these limitations. 
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Acronyms 

 

ANN    Artificial Neural Network 

CDF    Cumulative distribution function 

DAS    Deepwater Artificial Seabed 

DP    Dynamic positioning 

EDS    Emergency disconnection sequence 

EQD    Emergency quick disconnection 

MBR    Minimum bend radius 

MC    Monte Carlo 

MCS    Maximum compression strain 

MES    Maximum effective stress 

MET    Maximum effective tension 

PDF    Probability density function 

QTF    Quadratic transfer function 

RAO    Response amplitude operator 

RBF    Radial basis function 

SVC    Support Vector Classification 

SVM    Support Vector Machine 

SVR    Support Vector Regression 

WSOG   Well Specific Operating Guidelines 
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