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Summary

Electron-magnon interactions in a bilayer of monoatomic metal and a non-collinear spiral
phase ferromagnetic insulator are studied on a triangular lattice, motivated by recent inter-
est in similar systems with simpler collinear magnetic layers. To this intent, a framework
for treating coupling between electrons and non-collinear spins is presented by modifying
existing theory in the case of collinear spin structures based on a canonical transforma-
tion to an effective Hamiltonian. This is achieved using Fishman and Haraldsen’s general
rotation model for non-collinear spin structures. The system’s properties as an unconven-
tional magnon-mediated superconductor are investigated, with an analysis of how magnon
squeezing from the chosen spin structure affects the BCS pairing strength and what type of
symmetries one could expect to find for the superconducting state. With the spiral phase
ferromagnetic insulator, the bilayer is found to in theory host p-wave superconductivity,
although evidence suggests the BCS pairing strength will be weaker than in the case of
a collinear ferromagnetic insulator. The linearised gap equation was solved close to the
Fermi surface using an approximated potential, and an analysis across the whole first Bril-
louin zone was attempted but the k-space resolution was deemed insufficient. However, an
interesting observation is the appearance of interaction terms in the Hamiltonian that could
facilitate electron pair scattering without a spin flip as a result of the non-collinear struc-
ture, giving rise to Sz = ±1 spin polarised Cooper pairs. Such spin polarised Cooper pairs
have interesting applications in spintronics, and while unpolarised terms seem to domi-
nate in the example studied in this thesis there could exist other non-collinear magnetic
structures where the polarised pairs play an important role. The ideas of the framework
presented here can with a bit of effort be extended in order to perform an analysis of more
complicated 3D magnetic structures.
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Sammendrag

Elektron-magnon interaksjoner i et dobbeltlag av monoatomisk metall og en ferromag-
netisk isolator med ikke-kolineær spiralfase er studert på et triangulært gitter, motivert
av nylig interesse i liknende systemer med enklere kolineære magnetiske lag. Med dette
formål presenteres et rammeverk for å beregne kobling mellom elektroner og ikke-kolineære
spin, som er en modifisering av eksisterende teori for kolineære spinstrukturer basert på
en kanonisk transformasjon til en effektiv Hamilton-operator. Dette er gjort ved å ta i
bruk Fishman og Haraldsen sin generelle rotasjonsmodell for ikke-kolineære spinstruk-
turer. Systemets egenskaper som en ukonvensjonell magnon-formidlet superleder er un-
dersøkt, med en analyse av hvordan ”squeezing” av magnonene fra den valgte spinstruk-
turen påvirker styrken av BCS par-dannelse og hva slags type symmetrier man kan for-
vente å finne for den superledende tilstanden. Dobbeltlaget som har en en ferromagnetisk
isolator med ikke-kolineær spiralfase finner vi at kan ha p-bølge superledning i teorien,
men forventer at styrken på BCS interaksjonen blir mindre enn for tilfellet med en ko-
lineær ferromagnetisk isolator. Den lineæriserte gaplikningen ble løst nær Fermiflaten for
et approksimert potensial, og en analyse ble forsøkt for en fullstendig beregning over hele
første Brillouinsone, men oppløsningen i k-rom ble for lav. Derimot var det interessant
å observere at det dukker opp interaksjons-termer i Hamilton-operatoren for spredning av
elektronpar uten spinflip som et resultat av den ikke-kolineære strukturen, hvilket kan gi
opphav til Sz = ±1 polariserte Cooper par. Slike polariserte Cooper par har interessante
bruksområder i spintronikk, og selv om de upolariserte parene dominerer for eksempelet
studert i denne masteroppgaven kunne man tenke seg at det finnes andre strukturer der
de polariserte parene spiller en viktigere rolle. Ideene fra rammeverket presentert i denne
oppgaven kan med litt arbeid generaliseres for å studere mer kompliserte 3D spinstruk-
turer.
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Chapter 1
Introduction

1.1 Background

Since the first experimental discovery of superconductivity by Heike Kamerlingh Onnes
in 1911 [1] the exploration and science of superconducting materials has reigned as one of
the big fields of research within condensed matter physics. It would take almost forty years
until Ginzburg and Landau developed a phenomenological theory of superconductivity in
1950 [2]; only a few years later Bardeen, Cooper and Schrieffer would present a micro-
scopic description in 1957 [3]. A solid theoretical groundwork had been laid. In modern
times, research has focused mainly on high-temperature superconductivity. However, with
the advent of spintronics there has been an increasing interest in materials with tunable
superconducting properties and generating spin-polarised triplet super-currents at material
interfaces [4]. Combined with investigation of unconventional pairing mechanisms for
superconductivity, this has fueled plenty of recent research into magnon-mediated super-
conductivity in material bilayers and trilayers. These studies include experimental findings
of time-reversal symmetry-breaking superconductivity in bismuth/nickel bilayers [5] and
theoretical studies of superconductivity in bilayers and trilayers of metals and topological
insulators together with ferromagnetic insulators (FMI) and antiferromagnetic insulators
(AFMI) [6]–[10]. Consequently one of the new avenues to explore would be magnon-
mediated superconductivity in a bilayer where the ferromagnetic/antiferromagnetic insu-
lator is replaced by a non-collinear spin structure to see how this would influence the
superconductivity of the bilayer system.

Non-collinear magnetic structures are interesting in their own right, for instance in
the realm of topologically protected spin structures such as skyrmions, which could have
applications in novel magnetic storage devices. In fact non-collinear magnetic structures
have already been studied in another context of superconductivity, suggested as a mech-
anism for spin mixing in a magnet/superconductor junction [4]. It is not unreasonable to
think that this idea of spin mixing can also be applied in the case of magnon-mediated su-
perconductivity. Much of the litterature on non-collinear magnets builds on foundational
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Chapter 1. Introduction

works by Dzyaloshinskii and Moriya; the former showing that the relativistic spin lattice
and magnetic moment interactions result in spin canting [11], while the latter identified
that the underlying microscopic mechanism is spin-orbit coupling [12]. This so-called
Dzyaloshinskii-Moryia interaction (DMI), which favours a canting of the spins, allows for
a plethora of different (and sometimes quite exotic) spin structures as it competes with
other interactions on different lattice symmetries.

1.2 Scope
The aim of this thesis is to study a metal/magnet bilayer where the magnetic part has
a non-collinear spin structure and is electrically insulating. Specifically we investigate
how the magnon squeezing coefficients in this case will influence the enhancement of
the BCS potential, motivated by the example of massive enhancement in the case of the
fully uncompensated antiferromagnetic bilayer [7]–[10]. We also look into what kind of
symmetries the superconducting state should have, and how the non-collinearity could
give rise to interactions allowing for spin-polarised triplet pairing through spin mixing.
This thesis is a continuation of work carried out in the author’s project thesis from the
previous semester, where the magnon properties of a certain non-collinear magnet was
studied. Thus it is this particular magnetic structure we limit the bilayer to.

1.3 Thesis structure
The thesis can be divided into roughly two parts; the first part in Chapters 1-3 presenting
some existing theory in order to lay a groundwork for the second part in Chapters 4-6
where the novel work of this thesis is presented. It begins with a discussion of some
preliminary concepts and mathematical methods in Chapter 2 that will be central for cal-
culations and analysis in the remaining chapters. Chapter 3 presents the specific model that
will be studied in this thesis. For the sake of the thesis being self contained, the section
about the magnetic part of the bilayer is a reiteration of parts of the author’s unpublished
project thesis, since the same type of non-collinear magnet will be used in our bilayer here.
The same applies for the first part of Section 2.3 in Chapter 2. In Chapter 4, which is the
main part of this thesis, the magnon-mediated interaction for electron pairing is derived.
The last section of this chapter presents some numerical results for the electron pair in-
teraction. Chapter 5 discusses the generalised BCS theory, what type of symmetries one
can expect from the superconducting order parameter, and presents some numerical results
for an approximation of the linearised gap function in addition to a numerical calculation
of the Eliashberg spectral function. In Chapter 6 we recap the findings of the thesis, and
briefly present some suggestions for future research.

1.4 Conventions and notation
We follow a common convention in condensed matter physics literature by setting the
reduced Planck’s constant ℏ = 1. In several instances it becomes necessary to use notation
with a lot of indices in subscript and/or superscript. In order to avoid confusion about what

2



1.4 Conventions and notation

denotes a vector or matrix element and what denotes the position on the crystal lattice,
carthesian vector and matrix elements are denoted by subscripts x, y and z with their
position in the lattice denoted as a superscript. In the case of fermion and boson operators
all indices are in general written in subscript. The use of ⟨i, j⟩ under a sum denotes a sum
over lattice sites i and their nearest neighbours j. Vectors are denoted in bold font (e.g x),
no special notation is given for operators or matrices. It should be clear from the context
of an equation what quantities are operators and matrices. For matrices and vectors we
denote the transpose as AT , the complex conjugate as A∗, while A† ≡ (A∗)T denotes the
complex conjugate transpose. We use ℜ as notation for the real magnitude of a complex
number, and ℑ as notation for the imaginary magnitude. In some instances we may use
the full phrase of an existing abbreviation for the sake of making the text more verbose.
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Chapter 2
Preliminaries

2.1 Linear spin wave theory
The concept of a particle’s spin is inherently a quantum phenomenon, and while a semi-
classical treatment of spin waves can be performed by considering precession of micro-
scopic magnets [13], a fully quantum mechanical description turns out to be more suited
in the case of this thesis. Spin waves in a magnetic insulator are in this case regarded
as quantised excitations of the localised spins [14], [15]. Such long-lived excitations are
called magnons, named for their analogy to photons and phonons that represent excitations
of the electromagnetic field and lattice vibrations respectively. However while photons and
phonons are bosons of spin 0, magnons carry a quantum spin of 1 as the excitation of an
electron spin requires a spin flip from −1/2 to 1/2. Quantum magnets can be modeled
in terms of spin operators using the Heisenberg model, where each spin is described by
a vector operator Si living on the Bloch sphere. The textbook example is that of a FMI,
described by the Heisenberg model

HFMI = −|J |
∑
⟨i,j⟩

Si · Sj . (2.1)

Since spin waves here are defined as magnetic excitations the magnons are described by
second-quantisation operators for bosons, representing the creation/destruction of such
excitations. In order to study spin waves in a Heisenberg model it is therefore necessary to
perform a mapping from the spin operators to bosonic creation and destruction operators.

2.1.1 Holstein-Primakoff transformation
The Holstein-Primakoff (HP) transformation [16] is one possible way to map spin oper-
ators onto bosonic operators. The idea is that the creation and destruction of a magnon
corresponds to ladder-operators on the Dicke states |s,ms⟩, which are eigenstates of the
spin operators

S2 |s,ms⟩ = ℏ2s(s+ 1) |s,ms⟩ , (2.2)

5
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Sz |s,ms⟩ = ℏms |s,ms⟩ . (2.3)

Furthermore the spin ladder-operators are defined from

S± |s,ms⟩ = ℏ
√
s(s+ 1)−ms(ms ± 1) |s,ms ± 1⟩ . (2.4)

We define the top Dicke state |s, s⟩ to be the spin ground state (spin ”up”), which is equiv-
alent to the vacuum state of spin fluctuations. Note that we could just as well have chosen
the bottom Dicke state to be the magnon vacuum state so that spin ”down” would be the
ground state of the magnet. The magnon creation and destruction operators are then de-
fined as

a† |n⟩ = a† |s, s− n⟩ =
√
n+ 1 |s, s− n− 1⟩ , (2.5)

a |n⟩ = a |s, s− n⟩ =
√
n |s, s− n+ 1⟩ , (2.6)

a†a |n⟩ = a†a |s, s− n⟩ = n |s, s− n⟩ . (2.7)

Setting ms = s − n in Eqs. (2.3) an (2.4) we can relate the boson operators to the spin
operators. Let us demonstrate for the S+ operator

S+ |s, s− n⟩ = ℏ
√
s(s+ 1)− (s− n)(s− n+ 1) |s, s− n+ 1⟩

= ℏ
√
2sn

√
1 +

1− n

2s
|s, s− n+ 1⟩

= ℏ
√
2s
√
n

∞∑
k=0

(−1)k−1(2k)!

4k(k!)2(2k − 1)

(
1− n

2s

)k
|s, s− n+ 1⟩

= ℏ
√
2s

∞∑
k=0

(−1)k−1(2k)!

4k(k!)2(2k − 1)

(
−a

†a

2s

)k
︸ ︷︷ ︸

=

√
1− a†a

2s

√
n |s, s− n+ 1⟩︸ ︷︷ ︸

=a|s,s−n⟩

= ℏ
√
2s

√
1− a†a

2s
a |s, s− n⟩ .

A similar derivation can be performed for S−, while the relation between the Sz operator
and boson number operator is easily seen. The HP transformations are thus given by

S+ = ℏ
√
2s

√
1− a†a

2s
a, (2.8)

S− = ℏ
√
2sa†

√
1− a†a

2s
, (2.9)

Sz = ℏ(s− a†a). (2.10)

The transformations for S± are obviously very nonlinear in bosonic operators, however in
linear spin wave theory only terms up to quadratic order are considered. Therefore the HP
transformations in linear spin wave theory simplify to

S+ ≈ ℏ
√
2sa, S− ≈ ℏ

√
2sa†, Sz = ℏ(s− a†a). (2.11)
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2.2 Schrieffer-Wolff transformation

What we have essentially done is to approximate the magnons as excitations of harmonic
oscillators. Assuming the Bloch sphere is oriented such that the ground state lies along
the z-axis of the spin coordinate system, then the HP transformation can be seen as a
projection down onto the xy-plane (which is the phase space of the harmonic oscillator).
The nonlinear terms we discarded would account for the curvature of the Bloch sphere. It
is obvious that such a projection works well for a system with many Dicke state levels that
is close to the ground state, where the Bloch sphere is essentially flat. However since the
localised electron spins are two-level systems it seems at first glance that a linearisation
of the HP-transformation would be a bad approximation. Luckily it turns out that linear
spin wave theory actually is a reasonably good approximation as long as the system is
restricted to low temperatures, since the average number of spin excitations per lattice
site then becomes very small so that the number-operator term in Eqs. (2.8) and (2.9) can
safely be ignored [17].

2.2 Schrieffer-Wolff transformation
Models that include two-particle interactions appear frequently within the field of con-
densed matter physics, manifested as four-operator interaction terms in the language of
second quantisation. Famously, the microscopic theory of superconductivity by Bardeen,
Cooper and Schrieffer (BCS) uses a Hamiltonian with an attractive four-operator term as
its starting point [3]. As will be seen in later chapters, the BCS theory Hamiltonian is
actually what motivates the use of the Schrieffer-Wolff transformation in this thesis. In
any case, there are situations where one starts out with a Hamiltonian with fermion oper-
ator terms of quadratic order that one wishes to map onto a four-operator model. Indeed
the original application of the Schrieffer-Wolff transformation was to relate the Anderson
model (quadratic in fermionic creation/destruction operators) to the Kondo model (which
has a four-operator interaction term) [18]. Let us now assume we have a very simple model
for coupling between bosonic and fermionic fields denoted by φq and ck respectively

H =
∑
k

ϵkc
†
kck +

∑
q

ωqφ
†
qφq + g

∑
k,q

(
φqc

†
kck + h.c

)
. (2.12)

We want to map this model onto a four-operator theory and get rid of the bosonic operators
because the four-operator model has a better developed framework for computing interest-
ing quantities, so the idea is to perform a canonical transformation of this Hamiltonian to
a new effective Hamiltonian

Heff = eηSHe−ηS , (2.13)

where η is a smallness parameter. The idea is now to choose a generator ηS so that
the canonical transformation results in an effective Hamiltonian where the terms that are
quadratic in fermion operators vanish. To achieve this let us first write the boson-fermion
interaction as a perturbation term in the original Hamiltonian

H = H0 + ηH1, (2.14)

so that in this case

H0 ≡
∑
k

ϵkc
†
kck +

∑
q

ωqφ
†
qφq, ηH1 ≡ g

∑
k,q

(
φqc

†
kck + h.c

)
. (2.15)
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Chapter 2. Preliminaries

Next we use the Baker–Campbell–Hausdorff expansion to write the canonical transforma-
tion as a perturbation series

Heff = H0+ηH1+η[S,H0]+η
2[S,H1]+

1

2
η2[S, [S,H0]]+

1

2
η3[S, [S,H1]]+ ... (2.16)

Having assumed that the parameter η is small, we ignore all terms of order O(η3) and are
left with

Heff ≈ H0 + ηH1 + η[S,H0] + η2[S,H1] +
1

2
η2[S, [S,H0]]. (2.17)

To get rid of the linear bosonic operator terms in the effective Hamiltonian the first order
terms in η should vanish. This means that the generator ηS should take a form such that

ηH1 + η[S,H0] = 0. (2.18)

This constraint tells us that the generator has a similar form to the interaction term ηH1.
By inserting the resulting expression for η[S,H0] into Eq. (2.17) we find that the effective
Hamiltonian can be written as

Heff ≈ H0 +
1

2
[ηS, ηH1] = H0 −

1

2
[ηH1, ηS]. (2.19)

Since both ηH1 and ηS are quadratic in fermion operators the resulting term will indeed
consist of four fermionic operators. The boson-fermion interaction has thus been rewritten
as a two-particle fermion-fermion interaction. The same principle can be applied for more
complicated systems including spinful particles with several boson modes.

2.3 Bosonic diagonalisation theory
The model that will be discussed in this thesis includes a magnetic layer that is somewhat
more complicated than collinear FMIs and AFMIs. For a treatment of magnons in such lat-
tices with several different directions of magnetisation it is therefore necessary to consider
diagonalisation of more than just one or two bosonic modes, where the diagonalisation
has the constraint that the new operators must still represent bosons. This motivates the
use of a Bogoliuabov transformation that is generalised to an arbitrary number of modes
[19]–[22]. In fact, as the amount increases beyond two or three modes the task of finding
an analytical expression for the transformation that diagonalises the system becomes very
cumbersome, and so one must turn to a numerical treatment instead. The theory presented
in the first part of this section was part of the author’s project thesis [23]. Let us consider
a system where there are m bosonic modes. The Hamiltonian for such a system will in
general require a Hilbert space of dimension 4m, since the bosonic operator basis consists
of creation and destruction operators for both positive and negative momenta for each of
the m modes. However the Hamiltonians we encounter in condensed matter physics can
often be written in the form of a Bogoliuabov Hamiltonian

HBog =

m∑
i,j=1

[
M ij

1 a
†
q,iaq,j+M

ij
2 a

†
q,ia

†
−q,j+M

ij
3 a−q,iaq,j+M

ij
4 a−q,ia

†
−q,j

]
, (2.20)
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2.3 Bosonic diagonalisation theory

which means that the diagonalisation can be described by a 2m basis (thus half the size of
the general case) as suggested by Colpa [20]. The coefficients in Eq. (2.20) are elements of
matrices M1,M2,M3,M4 ∈ Cm×m. The Hamiltonian describing the system is therefore
reduced from a 4m × 4m matrix equation to a 2m × 2m in the smaller basis, reducing
the problem size by a factor 4. In matrix notation the Bogoliuabov Hamiltonian takes the
form

HBog = α†Mα, (2.21)

with

M =

[
M1 M2

M3 M4

]
, α† =

[
a†
q a−q

]
, α =

[
aq

a†
−q

]
. (2.22)

The matrix M is sometimes referred to as the grand-dynamical matrix. As mentioned
briefly in the start of this section, the task is to find a transformation T of the operators α,
α† that diagonalises the Hamiltonian. What this means is that

HBog = α†Mα = α†T †(T †)−1MT−1Tα = A†DA, (2.23)

so that the matrix

D ≡ (T †)−1MT−1 = diag(ω1, ω2, ..., ω2m), (2.24)

is diagonal. The elements of D are different bands in the bosonic energy spectrum. Phys-
ically, the basis for the diagonalised system represents long-lived bosonic excitations; and
so naturally they must also satisfy bosonic commutation relations. This gives us an addi-
tional constraint on the diagonalisation, where in matrix form the transformed vectors A,
A† must satisfy

AA† −
(
(A†)T (A)T

)T
= σ3. (2.25)

Here σ3 is the ”para unit matrix”

σ3 = diag(1, 1, ..., 1,−1, ...,−1), (2.26)

which has a similar form to the Pauli z-matrix generalised to an arbitrary dimension and
therefore motivates the chosen notation for this matrix. Equation (2.25) may be rewritten
in the form

T †σ3 = σ3T
−1. (2.27)

Together with the diagonalisation in equation (2.24) this gives

MT−1 = T †D = σ3T
−1σ3D. (2.28)

Defining σ3D ≡ diag(λ1, λ2, ..., λ2m), we consider equation (2.28) for each column wρ

of T−1. Then the problem of determining the energy bands ω1, ..., ω2m and finding the
corresponding Bogoliubov transformation T essentially boils down to solving 2m eigen-
problems

σ3Mwρ = λρwρ, ρ = 1, 2, ..., 2m. (2.29)

Colpa presents quite an elegant algorithm for finding the Bogoliubov transformation T for
systems of many bosonic modes. This thesis will only deal with problem sizes limited to

9



Chapter 2. Preliminaries

a two-digit amount of bosonic modes, which is too large for an analytic treatment but also
small enough that solving (2.29) directly is not much slower than using Colpa’s algorithm.
As we will discuss in the next chapter, finding normalised eigenvectors of (2.29) using an
eigensolver gives us a simple way to keep track of the energy band ordering. However, the
fact that numerical eigensolvers often only give us the normalised eigenvectors means that
we must enforce the bosonic commutation also after solving the eigensystem. Because
while the columns of the inverse transformation matrix T−1 now have the right shape, the
normalisation from the eigensolver means that they in general have the wrong magnitude.
Luckily this can easily be fixed; we write the correct columns of T−1 as the normalised
eigenvectors times some factor

wρ = Cρŵρ. (2.30)

We can use Eq. (2.27) to determine the correct factors Cρ

σ3 =


C2

1w
†
1σ3w1

C2
2w

†
2σ3w2

. . .
C2

2mw†
2mσ3w2m

 . (2.31)

The eigenvectors of correct magnitude are given by the factorsCρ that satisfy this equation.

2.3.1 Sorting of numerically simulated energy bands
One of the problems we encounter when treating the diagonalisation of a Hamiltonian
numerically over the 1st Brillouin zone (BZ) is that the eigenpairs may not necessarily
follow the same ordering at different points in the BZ. We are in some sense at the mercy
of the eigensolver that only takes some local input and does not know there is some global
band structure that should determine the ordering. Figure 2.1 illustrates this problem and
desired result. For the case where all bands are isolated the solution is trivial, one needs
only to order the eigenpairs according to the magnitude of the eigenvalues. In fact most
eigensolvers will already provide such a sorting. In the case of band crossings things get
more complicated, as it becomes necessary to determine if the bands cross or not.

There is a quite elegant way of dealing with the non-isolated band sorting problem
based on continuity of the eigenvectors [24], [25]. Continuity of the eigenvector tells us
that two eigenvectors belonging to the same band should be approximately equal if located
sufficiently close to one another on the BZ, with their inner product being approximately 1
since we consider them to be normalised (which is the case if we have not yet re-enforced
the bosonic commutation relation). In the case where the two eigenvectors do not belong
to the same band the magnitude of the inner product will be somewhere between 0 and 1,
and our assumption is that this magnitude will be less than if they had belonged to the same
band. The task of sorting the bands correctly therefore becomes an assignment problem
where we order the adjacent eigenvectors in a way that maximises their overlap. This type
of problem is otherwise known as weighted bipartite perfect matching. Let |ψi(q)⟩ be the
i’th normalised eigenvector at point q and |ψj(q + δq)⟩ be the j’th normalised eigenvector
some adjacent point, where we in general let the ordering at the two points be different.
We define the matrix

Wij ≡ −
∣∣ ⟨ψi(q)|ψj(q + δq)⟩

∣∣2. (2.32)
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2.4 Group theory for the triangular lattice

q1 q2 q3

(a)

q1 q2 q3

(b)

Figure 2.1: Illustration of the band sorting problem in a numerically calculated spectrum. Such a
calculation involves solving an eigensystem at each point in the 1st BZ, and in general the eigenpair
ordering can differ at two different points. Figure 2.1a shows an example where the eigenvalues
of different bands (denoted by separate colours) have been mixed. Figure 2.1b shows the correctly
sorted bands.

The task is to find a permutation matrix P of same dimension as W that gives the minimal
”cost”, ie.

argmin
P∈Rm×m

∑
ij

WijPij . (2.33)

For a numerical treatment in Python this can be achieved by using Scipy’s function
scipy.optimize.linear_sum_assignment, which uses the Hungarian algorithm [26].

2.3.2 Phase-differences in the Bogoliubov transformation eigenvec-
tors

Assuming that the Bogoliubov transformation matrix Tq is correctly sorted, there is still
one other problem we encounter when diagonalising numerically rather than analytically.
Although most eigensolvers provide a solution where the eigenvectors are normalised, the
overall phase can still be arbitrary since multiplying the entire eigenvector with f.ex −1
still gives a normalised eigenvector corresponding to that same eigenvalue. In other words,
the eigenvectors are not unique [21]. Suppose that we have a continuous wavefunction in
q for the r’th band is denoted by |ψr(q)⟩, yet our eigensolver gives us

|ψ̃r(q)⟩ = eiθr(q) |ψr(q)⟩ , (2.34)

with some arbitrary θr(q) in each point q. In many applications this is not a problem
we care about. However since we are dealing with wavefunctions across the 1st BZ we
must be a bit careful whenever elements of the magnon transformation matrix appear in
an expression, so that no unphysical phase contributions arise.

2.4 Group theory for the triangular lattice
This section is in most part a reiteration of theory presented in some unpublished notes by
Thingstad [27] and the Master’s thesis of Otnes [28]. The model considered in this thesis
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(which will later be described in detail) has triangular lattice symmetries. Symmetry dis-
cussions for different physical quantities require that we introduce the lattice harmonics
for the given lattice symmetry. The lattice harmonics are basis functions that respect the
symmetry of the lattice, and in the case of a triangular lattice these symmetries are de-
scribed by the point group C6v . There are 12 symmetry operations that form the elements
of this group. These consist of 6 rotation operations (where we have included the iden-
tity operation) and 6 mirror operations. We list all 12 symmetry operations T in the E1

irreducible representation (irrep):

D(E1)(E) =

(
1 0
0 1

)
D(E1)(C2) =

(
−1 0
0 −1

)
D(E1)(C3) =

(
−1/2 −

√
3/2√

3/2 −1/2

)
D(E1)(C−1

3 ) =

(
−1/2

√
3/2

−
√
3/2 −1/2

)
D(E1)(C6) =

(
1/2 −

√
3/2√

3/2 1/2

)
D(E1)(C−1

6 ) =

(
1/2

√
3/2

−
√
3/2 1/2

)
D(E1)(σd1) =

(
−1 0
0 1

)
D(E1)(σv1) =

(
1 0
0 −1

)
D(E1)(σd2) =

(
1/2 −

√
3/2

−
√
3/2 −1/2

)
D(E1)(σv2) =

(
−1/2

√
3/2√

3/2 1/2

)
D(E1)(σd3) =

(
1/2

√
3/2√

3/2 −1/2

)
D(E1)(σv3) =

(
−1/2 −

√
3/2

−
√
3/2 1/2

)

(2.35)

Here each operation takes the form D(E1)(T ). Let us define the projection operator

P(η)
κ =

dη
g

∑
T

D(η)
κκ (T )

∗T, (2.36)

where η is an irrep of dimension dη . Furthermore, D(η)
κκ (T ) is a diagonal matrix element

of the operation T in irrep η and g is the number of elements in the group. In addition
to the two-dimensional irrep E1 for which we listed the group elements, there is another
two-dimensional irrep E2 and four one-dimensional irreps A1, A2, B1 and B2. The group
elements D(E2)(T ) are listed in Table 2.1. For the one-dimensional irreps the label κ is
redundant and D(η)

κκ (T ) is equivalent to the character of the operation (which is defined as
the trace of the operation matrix). The different characters for all irreps and operations are
listed in Table 2.2.

Now assume we have a function f(k) that is periodic on the Brillouin zone of the
triangular lattice, so that it may be written in terms of basis functions that respect the lattice
symmetry. The idea is that this function can be written in terms of functions spanning the
irreducible subspaces [29]

f(k) =
∑
η,κ

f (η)κ (k). (2.37)

Projecting this function onto one of the irreps we get

f (η)κ (k) = P(η)
κ f(k) =

dη
g

∑
T

D(η)
κκ (T )

∗Tf(k). (2.38)
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2.4 Group theory for the triangular lattice

T D(E2)(T ) T D(E2)(T )

E D(E2)(E) C2 D(E2)(E)

C3 D(E2)(C3) C−1
3 D(E2)(C−1

3 )

C6 D(E2)(C−1
3 ) C−1

6 D(E2)(C3)

σd1 D(E2)(σd1) σv1 D(E2)(σd1)

σd2 D(E2)(σd2) σv2 D(E2)(σd2)

σd3 D(E2)(σd3) σv3 D(E2)(σd3)

Table 2.1: Conversion of group elements to the E2 irrep from the E1 irrep elements listed in (2.35).

E C2 2C3 2C6 3σd 3σv
A1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 −2 −1 1 0 0
E2 2 −2 −1 −1 0 0

Table 2.2: Character Table for the C6v group.

Note that we may write a symmetry operation on the function f(k) as Tf(k) = f(Tk).
The periodicity of this function allows us to express the function as a Fourier series

f(k) =
∑
n

fne
iRn·k, (2.39)

where Rn = na1 +ma2 are the real space lattice coordinates with n = (n,m). Thus we
may write

f (η)(k) =
∑
n

dη
g

∑
T

D(η)
κκ (T )

∗fne
iRn·Tk. (2.40)

We consider only functions f(k) that are real, meaning that we can express the projection
in terms of cosines and sines. For the symmetry operation Tk we consider generators in
the E1 irrep so that

f (η)(k) =
∑
n

fn
dη
g

∑
T

D(η)
κκ (T )

∗
(
cos
(
Rn ·D(E1)(T )k

)
+ sin

(
Rn ·D(E1)(T )k

))
.

(2.41)
The function can then be written in terms of the lattice basis functions

f(k) =
∑
η,κ,n

fnB̃
η,κ
n (k), (2.42)
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giving the following expression for the lattice harmonics

B̃η,κn (k) =
dη
g

∑
T

D(η)
κκ (T )

∗
(
cos
(
Rn ·D(E1)(T )k

)
+ sin

(
Rn ·D(E1)(T )k

))
.

(2.43)
These basis functions are orthogonal, but not necessarily normalised. We define the nor-
malised basis functions as

Bη,κn (k) = B̃η,κn (k)/N , (2.44)

where the normalisation factor is determined from

N 2 =

∫
1. BZ

dk B̃η,κn (k)2. (2.45)

We only consider the on-site and nearest neighbour harmonics, yielding a total of seven
unique basis functions listed in Table 2.3. To get an idea of what these harmonics look like
the basis functions have been plotted in Figure 2.2. We can gather the labels η, n, m and κ
that describe unique lattice harmonics into a single labelα ∈ {s, 2s, px, py, dxy, dx2−y2 , f},
where the basis functions satisfy both orthonormality and completeness relations∫

1. BZ
dkBα(k)Bβ(k) = δαβ , (2.46)

∑
α

Bα(k)Bα(k
′) = δkk′ . (2.47)

Symmetry Irrep (n,m) κ Normalised basis function

s A1 (0, 0) 1 1√
ABZ

2s A1 (0, 1) 1
√

2
3ABZ

(
cos (kxa) + 2 cos (kxa2 ) cos (

kya
√
3

2 )
)

px E1 (1, 0) 1 2√
3ABZ

(
sin (kxa) + sin (kxa2 ) cos (

kya
√
3

2 )
)

py E1 (0, 1) 2 2√
ABZ

cos (kxa2 ) sin (
kya

√
3

2 )

dxy E2 (0, 1) 1 −2√
ABZ

sin (kxa2 ) sin (
kya

√
3

2 )

dx2−y2 E2 (1, 0) 2 2√
3ABZ

(
cos (kxa)− cos (kxa2 ) cos (

kya
√
3

2 )
)

f B2 (1, 0) 1
√

2
3ABZ

(
sin (kxa)− 2 sin (kxa2 ) cos (

kya
√
3

2 )
)

Table 2.3: Normalised basis functions for the seven most relevant harmonics on a triangular lattice.
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2 / 3

0

2 / 3

k y
/a

2s f

2 / 3

0

2 / 3

k y
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4 /3 0 4 /3
kx/a

2 / 3

0

2 / 3

k y
/a

dxy

4 /3 0 4 /3
kx/a

dx2 y2

Figure 2.2: Plot of the seven first basis functions without considering normalisation.
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Chapter 3
Bilayer model

The bilayer discussed in this thesis will consist of two layers of monoatomic thickness;
one of the layers just being a normal metal (NM) while the other layer consists of an elec-
trically insulating ferromagnetic material with a non-collinear spin structure. Specifically
we choose to look at a non-collinear magnetic material that has a spiral structure as its
ground state, which we will refer to as a spiral phase ferromagnetic insulator (SPFMI). An
illustration of the complete bilayer system is shown in Figure 3.1.

NM

SPFMI
Figure 3.1: Schematic of the bilayer. Unlike previous studies the magnetic layer (SPFMI part) has
a non-collinear spiral structure.

3.1 Tight binding normal metal
Seeing as the complete bilayer model will be complex enough as it is with the non-collinear
spin structure in the magnet part of the system, we are motivated to keep the electronic
part as simple as possible. Based on this we choose to let the material layer where the
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Chapter 3. Bilayer model

electrons are conducted be a simple normal metal (NM) described by a tight binding model
of electrons hopping between lattice sites on a triangular grid

HNM = −t
∑
i,j,σ

c†iσcjσ − µ
∑
i

c†iσciσ. (3.1)

To find the electronic spectrum we must diagonalise this system, which is achieved by a
basis of fermionic operators in k-space. We therefore introduce the Fourier transform of
the operators and write the real space operators in terms of these

ciσ =
1√
N

∑
k

ckσe
−ik·ri , (3.2)

so that
HNM =

∑
k,σ

(ϵk − µ)c†kσckσ, (3.3)

where the electron dispersion relation for a triangular grid is given by

ϵk = −2t

(
cos
(
kxa
)
+ 2 cos

(1
2
kxa
)
cos
(√3

2
kya
))

. (3.4)

In the long wavelength regime this can be approximated by a parabolic dispersion relation

ϵk ≈ 3a2t(k2x + k2y)− 6t (3.5)

The density of states is given by

D(ϵ) =
∑
k

δ(ϵ− ϵk + µ) = −N
π
ℑ
[
G(ϵ+ i0+)

]
, (3.6)

and we have introduced the electron Green’s function

G(z) =
1

N

∑
k

1

z − ϵk + µ
. (3.7)

The density of k-states is

D(k) =

√
3Na2k

2π
. (3.8)

At the bottom of the electronic band structure where the dispersion is approximately
parabolic the 2D density of states is constant, with the value

D(ϵ) =

√
3N

12πt
. (3.9)

Calculating the DOS outside the low energy regime as given in Eq. (3.6) involves solving
an elliptic integral of the first kind [30]. For a numerical treatment we calculate the DOS
using the Python library GfTool [31]. The full electron spectrum and DOS is shown in
Figure 3.2.
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M K
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0.0 0.5 1.0
D( )

Figure 3.2: Spectrum and DOS per atom for a triangular tight binding model with t = 1 eV and
µ = 0. The gray stapled line indicates the Van Hove instability.

3.2 Spiral phase ferromagnetic insulator
The second part of the bilayer consists of a non-collinear ferromagnetic insulator, and we
choose specifically to look at a spin structure that the author has studied in his project
thesis [23]. This section is therefore mostly a reiteration of the main results found as a
part of that work. We consider a magnetic ground state with a spin structure arising from
a Dzyaloshinsky-Moriya interaction term in the FMI Hamiltonian, leading to a canting of
the spins [11]. We specifically choose to look at a triangular lattice in two dimensions, and
assume that there exists some feature so that the system breaks inversion symmetry without
having to treat it as a bulk material. This is because the DMI vectors are determined by the
crystal symmetry; the orientation decided by a set of rules found by Moriya [12]. In our
case we require the DMI vectors D to lie in the lattice plane (which we choose to be the xy-
plane) such that Dij

z = 0 in all cases. For simplicity we consider only nearest neighbour
interactions, and we will let all DMI vectors have the same magnitude regardless of their
position on the lattice. We describe our canted ferromagnetic system with the following
Hamiltonian

H = −
∑
⟨i,j⟩

[
JxS

i
xS

j
x + JyS

i
yS

j
y + JzS

i
zS

j
z +Dij · (Si × Sj)

]
. (3.10)

We see from the cross product that the role of the DMI vectors Dij is to twist the spins
toward a perpendicular configuration. They constitute the anti-symmetric part of the ex-
change interaction [12], [32], [33], which becomes clear by writing the Hamiltonian in
terms of a 3× 3 exchange interaction matrix

H = −
∑
⟨i,j⟩

(Si)T

 Jx Dij
z −Dij

y

−Dij
z Jy Dij

x

Dij
y −Dij

x Jz

Sj . (3.11)

First of all, it now has an elegant and compact form which will simplify notation a lot when
introducing HP-transformations for a non-collinear ground state. We see that the DMI con-
tribution to the exchange interaction matrix is indeed the off-diagonal anti-symmetric part.
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i j

D⃗ij

D⃗ji

ŷ

x̂

Figure 3.3: Triangular lattice with Dzyaloshinskii-Moriya interaction vectors (blue) in the lattice
plane. Solid lines denote nearest neighbours with both exchange interactions Dzyaloshinskii-Moriya
interactions, while dashed lines denote only exchange interactions.

In this case the symmetric part is just a diagonal matrix of what we here will refer to as the
”exchange interaction” (which in general is anisotropic) with elements Jx, Jy and Jz . The
non-collinear structure is a result of competition between the exchange interaction favour-
ing parallel spins and the DMI favouring perpendicular spins. In a more general treatment
one would include off-diagonal elements of the symmetric part of the exchange interaction
matrix, which could be included for a system with completely general interactions [33].
One can achieve the more generalised version of the Hamiltonian in Eq. (3.11) by consid-
ering a general many-body problem for interacting electrons in a crystal with spin-orbit
coupling to second order in the hopping parameter [34].

The task is now to express the Hamiltonian in terms of bosonic ladder-operators by
applying the HP transformation, which would be easy if we were considering a simple
collinear FMI since we then could use the same HP transformation everywhere. Our prob-
lem however involves non-collinear spins as a consequence of the DMI, and so the local
spin coordinate axes will be rotated relative to each other according to the so-called gener-
alised rotation model presented by Fishman and Haraldsen [35], [36]. It is therefore nec-
essary to introduce a different HP transformation for each different rotation of the spins.
The theory presented here is an adaptation of Fishman and Haraldsen’s general rotation
model to include DMI while ignoring interactions from external magnetic fields and easy
axis anisotropy. The spin operators S must be rotated to each site’s local spin coordinate
system. We can achieve this by applying a rotation matrix to each spin operator:

S̃i = U iSi. (3.12)

Seeing as we only need two Euler angles θi, ψi to perform a rotation to any point on the
Bloch sphere we let the rotation matrix be as follows

U i =

cos θi cosψi cos θi sinψi − sin θi
− sinψi cosψi 0

sin θi cosψi sin θi sinψi cos θi

 , (U i)−1 = (U i)T . (3.13)
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3.2 Spiral phase ferromagnetic insulator

Eq. (3.11) can now be rewritten in terms of the rotated spins

H = −
∑
⟨i,j⟩

(S̃i)TW ijS̃j , (3.14)

where

W ij =

W ij
xx W ij

xy W ij
xz

W ij
yx W ij

yy W ij
yz

W ij
zx W ij

zy W ij
zz

 = U i

 Jx Dij
z −Dij

y

−Dij
z Jy Dij

x

Dij
y −Dij

x Jz

 (U j)T . (3.15)

The elements of the rotated interaction matrix W ij are listed in appendix A.1 since they
are somewhat lengthy expressions. We now make linearised HP transformations at each
lattice site described in the local coordinates

S̃iz = s− a†iai

S̃i+ ≈
√
2s ai

S̃i− ≈
√
2s a†i .

(3.16)

We can now swap out the spin operators in Eq. (3.14) with terms of boson ladder operators
a, a†. The Hamiltonian then takes the form

H = H(0) +H(1) +H(2), (3.17)

where H(0), H(1) and H(2) are terms in zeroth, first and second order of the boson oper-
ators respectively. Since we are dealing with linear spin wave theory we neglect all terms
of higher order (ie. we consider no boson-boson interactions).

Zeroth order Hamiltonian

The zeroth order terms describe the classical ground state of the system. We assume
that the quantum mechanical ground state is given by magnetic fluctuations around the
classical ground state, in a similar fashion to how one treats the collinear AFMI ground
state as fluctuations around a Néel structure. Having replaced the spin operators with
bosonic ladder operators we get the zeroth order Hamiltonian by grouping the constant
terms together, yielding

H(0) = −s2
∑
⟨i,j⟩

W ij
zz. (3.18)

The task finding the classical ground state means finding the spin angles (θi, ψi) at each
lattice site that minimise Eq. (3.18). Assuming we have N lattice sites this becomes a
problem of finding the minimum of a 2N -variable function. In this thesis we will consider
DMI interactions only between two of the six nearest neighbours as shown in Figure 3.3,
where the DMI interactions all lie on the same line. The result is that all spin rotations
lie in the same plane so that our 2D system actually looks a lot like several connected
”1D spin chains” of rotating spins [37], where the ”connection” between different chains
is just a normal exchange interaction. We mostly chose to work with this system because
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Chapter 3. Bilayer model

it is simple; the ”pseudo-1D” nature of the minimisation problem means we can find an
analytic solution for the classical ground state with the added bonus that we can work
with relatively few different spin orientations. It is one of the simplest non-collinear spin
structures we can study, and the fact that we only get two-dimensional spin spirals will
prove to simplify interactions with the NM massively.

Furthermore, to keep the system relatively simple we choose to look at isotropic ex-
change coupling so that Jx = Jy = Jz which we will simply denote as J . The spin
rotation must obviously be uniform with every spin rotated an angle ∆θ from the adjacent
spins along the direction of rotation. We must however account for the fact that our ”spin
chains” on the triangular lattice are connected, so that two adjacent chains may be rotated
relative to each other to get a lower energy. We take this into account when writing the
single site contribution to the classical energy:

Ei =− 2s2J [2 cos (∆θ) + cos (α) + cos (β) + cos (α−∆θ) + cos (β −∆θ)]

− 4s2|D| sin (∆θ),
(3.19)

where the site i is located on a given ”spin chain” and the angles α and β are the relative
rotations of the two neighbouring chains. We minimise with respect to α, β and ∆θ in
order to find the ground state spin structure. Minimisation w.r.t α

∂Ei
∂α

= 2s2J [sin (α) + sin (α−∆θ)] = 0, (3.20)

yields α = ∆θ/2, and likewise we can show that β = ∆θ/2. Thus we have shown that
our 2D lattice of connected ”spin chains” is actually just two alternating spin spirals with
a relative rotation of ∆θ/2. Inserting what we have found into Eq. (3.19), we get

Ei = −4s2J

[
cos (∆θ) + 2 cos

(
1

2
∆θ

)]
− 4s2|D| sin (∆θ), (3.21)

and subsequently minimising this w.r.t ∆θ provides the following analytical relation be-
tween DMI and exchange interaction for any given spin rotation periodicity

|D|
J

=
sin (∆θ) + sin ( 12∆θ)

cos (∆θ)
. (3.22)

Accordingly the smallest possible spiral period is 5 atoms for a non-zero exchange inter-
action. Having determined the angles (θi, ψi) of our magnetic structure and the relation
|D|
J in order to generate this structure we can start analysing higher order parts of the

Hamiltonian.

First order Hamiltonian

We now move on to look at all the terms that are linear in boson operators ai, a
†
i from our

HP transformations. Grouping them together we find the first order Hamiltonian

H(1) = −s
√
s

2

∑
⟨i,j⟩

[
W ij
xz(ai + a†i ) + iW ij

yz(a
†
i − ai) +W ij

zx(aj + a†j) + iW ij
zy(a

†
j − aj)

]
(3.23)
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3.2 Spiral phase ferromagnetic insulator

Since the total Hamiltonian now is expressed as a function of boson operators H =
H({ai, a†i}) and the ground state is the minimum of this function, it follows that all oper-
ator terms of linear order must necessarily vanish. Since the ground state is a minimum
then differentiation with respect to the operators (ai, a

†
i ) must give zero, and consequently

we have H(1) = 0 at the ground state. We can show that this does indeed hold for our
system by dividing Eq. (3.23) into a real and imaginary part (the elements of the rotated
interaction matrix are purely real numbers). For the linear boson operator terms to vanish
our system must therefore satisfy the following constraints at each site i:∑

⟨j⟩

(W ij
zy +W ji

yz) = 0, (3.24)

∑
⟨j⟩

(W ij
xz +W ji

zx) = 0. (3.25)

Here ⟨j⟩ is the set of nearest neighbours to site i. One can show that these constraints are
equivalent to finding the extrema of equation (3.18), which means that finding the correct
angles {θi, ψi} for the classical ground state automatically ensures the linear operator
terms vanish.

Second order Hamiltonian

Finally we consider the terms of second order in bosonic operators.

H(2) = s
∑
⟨i,j⟩

[
Gij ∗1 aia

†
j +Gij1 a

†
iaj +Gij2 aiaj +Gij ∗2 a†ia

†
j +W ij

zz(a
†
iai + a†jaj)

]
(3.26)

This is the spin wave Hamiltonian and describes fluctuations of the localised spins. While
the zeroth order Hamiltonian was only important for determining the magnetic ground
state and the first order Hamiltonian vanished, the second order Hamiltonian is the part
of the magnetic layer Hamiltonian that we need when describing the magnons and their
interactions with electrons in the NM layer. The operator a†iai gives a count of how many
fluctuations there are at site i, while a†iaj moves a spin fluctuation from i to site j. To
make the notation more tidy we have introduced the coefficients

Gij1 ≡ −1

2
[W ij

xx +W ij
yy − i(W ij

yx −W ij
xy)], (3.27)

Gij2 ≡ −1

2
[W ij

xx −W ij
yy − i(W ij

yx −W ij
xy)]. (3.28)

In general, having such site dependent coefficients complicates diagonalisation of the spin
wave Hamiltonian significantly. In our case the periodicity of the ground state spin struc-
ture allows us to divide the lattice into a certain amount of sub-lattices where each sub-
lattice contains equally oriented spins. We can then characterise a lattice site i instead by
what sub-lattice r it belongs to and its position i′ on that sub-lattice. The nearest neigh-
bours j of this site in general live on different sub-lattices t, each with position j′ on their
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Chapter 3. Bilayer model

given sub-lattice. We therefore rewrite the sum over i and j as a sum over two sub-lattices
r and t and the sites i′ and j′ in each of these sub-lattices

H(2) = s
∑
⟨r,t⟩

∑
⟨i′,j′⟩

[
Gi

′j′rt ∗
1 ai′,ra

†
j′,t +Gi

′j′rt
1 a†i′,raj′,t

+Gi
′j′rt
2 ai′,raj′,t +Gi

′j′rt ∗
2 a†i′,ra

†
j′,t +W i′j′rt

zz (a†i′,rai′,r + a†j′,taj′,t)
]
.

(3.29)

Eq. (3.29) is written in a very general way, but we will see that it simplifies a lot since
the spin angles hidden in the coefficients only depend on the sub-lattice. We introduce the
Fourier transformed boson operators on each sub-lattice aq,r, a†q,r describing collective
excitations with a wavevector q

ai′,r =
1√
Nr

∑
q

aq,re
−iq·ri′ , (3.30)

a†i′,r =
1√
Nr

∑
q

a†q,re
iq·ri′ , (3.31)

whereNr is the number of sites on sub-lattice r. In our case all the sub-lattices contain the
same amount of sites. Writing Eq. (3.29) in terms of these collective bosons rather than
single site operators finally gives us

H(2) = s
∑
q

∑
⟨r,t⟩

[
Γrt ∗1 (q) aq,ra

†
q,t + Γrt1 (q) a†q,raq,t

+ Γrs2 (q) a−q,raq,t + Γrt ∗2 (q) a†−q,ra
†
q,t + 2ζrt a†q,raq,r

]
.

(3.32)

Note that we have defined new q-space coefficients

Γrt1 (q) ≡
∑
j′

Grt1 (drtj′) e
−iq·drtj′ (3.33)

Γrt2 (q) ≡
∑
j′

Grt2 (drtj′) e
−iq·drtj′ (3.34)

ζrs ≡
∑
j′

W rs
zz (drsj′). (3.35)

where {drtj′} is the set of vectors from a site on sub-lattice r to its nearest neighbours on
sub-lattice t. Here the coefficients Gi

′j′rt
1 and Gi

′j′rt
2 have simplified since we look at a

system where DMI is independent of lattice site the coefficients. They are written as as
functions of drtj′ , reflecting the fact that the DMI vectors only depend on the orientation
of the nearest neighbour vectors drtj′ . It now remains to diagonalise H(2). There is some
resemblance of this Hamiltonian to a Bogoliubov Hamiltonian, and it turns out that we can
write it in the form of Eq. (2.20) by performing a few simple steps. We just swap q with
−q for some of the indices and perform some commutations, giving us

H(2) =
∑
q

∑
⟨r,t⟩

[
ηrt(q) a

†
q,raq,t + νrt(q) a−q,raq,t

+ ν∗rt(−q) a†q,ra
†
−q,t + η∗rt(−q) a−q,ra

†
−q,t

]
.

(3.36)
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3.2 Spiral phase ferromagnetic insulator

Constant terms have been ignored seeing as they only shift the ground state energy by
some amount. We write the expression H(2) =

∑
q H

(2)
q in the matrix form we used in

Section 2.3

H(2)
q = α†Mα =

[
a†
q a−q

] [η(q) ν∗(−q)
ν(q) η∗(−q)

] [
aq

a†
−q

]
, (3.37)

whereM is a block matrix constructed from four matrices η(q), η∗(−q), ν(q) and ν∗(−q);
it is the grand-dynamical matrix from Eq. (2.23). The matrix blocks contain the elements

ηrt(q) = sΓrt1 (q) + s
∑
t

ζrtδr,t, (3.38)

νrs(q) = sΓrt2 (q). (3.39)

Using the diagonalisation scheme presented in Section 2.3 we can now find the Bogoliubov
transformation T that diagonalises the Hamiltonian into a basis of long-lived magnons.

H(2)
q = A†DA, A = Tα (3.40)

The spin wave Hamiltonian can thus be written

H(2) =
∑
q

m∑
r=1

[
ωr(q)A

†
q,rAq,r + ωr+m(q)A−q,rA

†
−q,r

]
, (3.41)

where m denotes how many sub-lattices our system is partitioned into, while ωr+m(q)
are spectrum bands for magnons with wavevector −q. These are just equal to the positive
momenta bands ωr(q) = ωr+m(−q), so that

H(2) = 2
∑
q

m∑
r=1

ωr(q)

(
A†

q,rAq,r +
1

2

)
. (3.42)

Our magnon spectrum therefore consists of m different bands, each representing a certain
mixing of collective excitations on the m sub-lattices. Our system is however deceptively
large, as the smallest possible spin spiral periodicity was 5 atoms but with two alternating
”spin chains” it means we have at least m = 10 sub-lattices. Since we diagonalise a 2m×
2m system a numerical treatment seems inevitable. We define the inverse transformation
matrix to be

T−1 =

[
Uq V−q

V ∗
q U∗

−q

]
, (3.43)

the choice of notation motivated by the ”textbook” u-v notation often used for simple
cases of m = 1 Bogoliubov transformations. The decision of working with the inverse
transformation T−1 rather than the transformation T itself is a deliberate choice, since
T−1 is the matrix that is calculated in Colpa’s diagonalisation scheme. Furthermore, since
we are interested in replacing the specific sub-lattice excitations with the diagonalised
operators using α = T−1A it becomes natural to only work with T−1. The inverse
transformation is written as the following linear combination

aqr =

m∑
i=1

(
uqriAqi + vqriA

†
−qi

)
, (3.44)
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Chapter 3. Bilayer model

a†−qr =

m∑
i=1

(
v∗−qriAqi + u∗−qriA

†
−qi

)
. (3.45)

Indeed form = 1 we find that the expressions do give the familiar u-v notation [15]. After
calculating the different bands ωr(q) numerically for certain wave vectors q along some
high-symmetry directions we plot the resulting spectrum (shown in Figure 3.4) in the case
of a spiral phase with a 6-atom period and J = 10 meV. There are therefore 12 different
sub-lattices resulting in 12 different magnon bands. A few features of this spectrum should
be highlighted; the particular choice of DMI vector placement in the model results in the
1st BZ for the magnons being rectangular rather than triangular (similar to the situation of
[38]). Also the spectrum has a mass-gap for the excitation of magnons, and some of the
bands become seemingly degenerate on the border of the magnon 1st BZ between the Y
and S point.
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q y
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S
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Figure 3.4: Magnon spectrum along a few high symmetry directions for a SPFMI of uniform rota-
tion with a spin period of 6 atoms and isotropic exchange.

3.3 Exchange coupling in the bilayer interface

Let us remind ourselves what the idea of studying superconductivity in the interface of
SPFMI / NM bilayer was; rather than a traditional phonon-mediated phenomenon the
superconductivity should instead be mediated by magnons in the SPFMI. There must be
some mechanism that allows for interactions between the localised electrons in the SPFMI
layer and the free electrons in the NM layer in order to get this magnon mediated effect,
and a natural idea is to extend the concept of exchange interactions from the magnetic layer
by accounting for exchange interactions between the two layers [6]–[10]. Since we defined
both the SPFMI and NM on triangular grid we have a one-to-one connection between sites
in the two different layers. The exchange interaction between localised spins Si in the
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3.3 Exchange coupling in the bilayer interface

Full 1st BZ

Magnon 1st BZ

Figure 3.5: Comparison of the full 1st Brillouin Zone and the magnon 1st Brillouin Zone.

SPFMI and free electrons on the corresponding site in the NM is written

He−m = −2
∑
i

J̄ic
†
iτ ci · Si. (3.46)

For specific calculations in later sections we will consider the case where the exchange
coupling J̄i between materials is equal at every lattice site, a so-called fully compensated
coupling. In general different sites could have different interaction strengths, making the
coupling uncompensated to a certain extent. Having now defined all the necessary parts
of our SPFMI / NM bilayer model we must choose the size of the different parameters.
The parameters listed in Table 3.1 will be used for the rest of the thesis. As mentioned
earlier it is important to note that the magnon 1st BZ is not the same as the full 1st BZ
(see Figure 3.5), with sums over q and k understood to go over the former and latter BZ
respectively.

Parameter Size
t 1 eV
J 10 meV
J̄ 10 meV
s 1

Table 3.1: Chosen values for certain parameters which are used throughout the thesis.

27



Chapter 3. Bilayer model

28



Chapter 4
Magnon mediated electron-electron
interaction

4.1 Electron-magnon coupling
We now take a closer look at the part of the Hamiltonian that couples the two materials.

He−m = −2
∑
i

J̄ic
†
iτ ci · Si (4.1)

Here we have introduced a notation with the spinors c†i = (c†i↑, c
†
i↓). Since the SPFMI part

has a non-collinear magnetic structure we rewrite Si as a rotation of a spin aligned along
the z-axis in spin space. Like in the derivation of the magnon dispersion this is done in
order to facilitate the introduction of spin fluctuation creation and destruction operators
using the HP transformation, with the same rotation matrix (3.13).

H(Ω)
e−m = −2

∑
i∈Ω

J̄Ωc
†
iτ ci ·

(
U(θΩ, ψΩ)

T S̃i

)
(4.2)

Substituting the spin operators with bosonic creation/destruction operators and performing
the dot product yields a somewhat lengthy expression

H(Ω)
e−m = −2

√
s

2
J̄Ω cos (ψΩ)

∑
i∈Ω,σ

(
ai,Ω(cos (θΩ)− σ)c†iσci,−σ + h.c

)

+ 2

√
s

2
J̄Ω sin (θΩ)

∑
i∈Ω,σ

(
σai,Ωc

†
iσciσ + h.c

)
− 2J̄Ω cos (θΩ)

∑
i∈Ω,σ

σ(s− a†i,Ωai,Ω)c
†
iσciσ

− 2J̄Ω sin (θΩ) cos (ψΩ)
∑
i∈Ω,σ

(s− a†i,Ωai,Ω)c
†
iσci,−σ.

(4.3)
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Chapter 4. Magnon mediated electron-electron interaction

The terms including two boson operators will henceforth be ignored. Since the separate
Hamiltonians of both the FMI and NM are diagonalised in k-space it is reasonable to
also analyse the bilayer system in k-space. Furthermore, since constraints on momenta
are a central part of BCS theory, which will be the focus of the next chapter, it is natural
to consider an analysis in k-space. Thus a Fourier transform of the interaction term is
necessary, where the three-operator terms can then be rewritten using

∑
i∈Ω

aΩ,ic
†
iσciσ′ =

√
NΩ

N

∑
k,q

aΩ,qc
†
k+q,σck,σ′ . (4.4)

We have neglected umklapp processes since this is outside the scope of this thesis. Thus
one obtains

H(Ω)
e−m = −2

√
sNΩ

2N2
J̄Ω cos (ψΩ)

∑
k,q,σ

(
aq,Ω(cos (θΩ)− σ)c†k+q,σck,−σ + h.c

)

+ 2

√
sNΩ

2N2
J̄Ω sin (θΩ)

∑
k,q,σ

(
σaq,Ωc

†
k+q,σck,σ + h.c

)

− 2J̄ΩsNΩ

N

cos (θΩ)
∑
k,σ

σc†k,σck,σ + sin (θΩ) cos (ψΩ)
∑
k,σ

c†k,σck,−σ

 .

(4.5)

Note that σ ∈ {−1, 1} labeling ”spin up” and ”spin down”. A closer look at this expression
is in order. In general there are terms coupling magnons both to electron spin flip processes
and electron scattering without spin flip. Note that when we use the term ”scattering
without spin flip” it is in the context of a global spin space z-axis. A magnon must always
have spin 1 as discussed in Section 2.1 and so there must be a spin flip along some axis
of quantisation, however it does not have to be along the global z-axis. There are also
some purely fermionic terms that correspond to a change in electronic properties of the
NM. This includes the possibility of lifting the energy band degeneracy in the NM and
changing the NM electron eigenstates. These terms may therefore be moved to the NM
part of the Hamiltonian so that

HNM =
∑
k,σ

(
ϵk + µ− 2sσ

N

∑
Ω

J̄ΩNΩ cos (θΩ)

)
c†k,σck,σ

− 2s

N

∑
k,σ

∑
Ω

J̄ΩNΩ sin (θΩ) cos (ψΩ)c
†
k,σck,−σ.

(4.6)

One notices that the new terms in HNM are non-zero if the net magnetisation is non-zero.
In that case the fermionic operators must be re-diagonalised if the magnetisation is not
aligned along the z-axis in spin space. However, the FMI structure we consider is a spiral
with zero net magnetisation, and so it is readily seen that the new contributions to HNM
vanish. Thus there is no need for a re-diagonalisation of the creation/destruction operators
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4.1 Electron-magnon coupling

either. The electron-magnon interaction containing only coupling terms now reads

H(Ω)
e−m =

∑
k,q,σ

(
gΩσ1 aq,Ωc

†
k+q,σck,−σ + gΩσ2 aq,Ωc

†
k+q,σck,σ + h.c

)
, (4.7)

where the magnon-electron coupling strengths for scattering with and without spin-flip are
defined respectively as

gΩσ1 = −2

√
sNΩ

2N2
J̄Ω cos (ψΩ)(cos (θΩ)− σ) (4.8)

and

gΩσ2 = 2

√
sNΩ

2N2
J̄Ωσ sin (θΩ). (4.9)

So far the interactions are written in terms of magnetic excitations contained to each sub-
lattice. These must be rewritten as combinations of the long-lived magnons in the FMI. We
remind ourselves of the Bogoliubov transformation used to diagonalise the FMI Hamilto-
nian

aqΩ =

m∑
Γ=1

(
uqΩΓAqΓ + vqΩΓA

†
−qΓ

)
, (4.10)

a†−qΩ =

m∑
Γ=1

(
v∗−qΩΓAqΓ + u∗−qΩΓA

†
−qΓ

)
. (4.11)

It proves useful to also write this in matrix form:[
aq

a†
−q

]
=

[
Uq Vq
V ∗
−q U∗

−q

]
︸ ︷︷ ︸

T−1
q

[
Aq

A†
−q

]
. (4.12)

The interaction term is therefore written

H(Ω)
e−m =

∑
k,q,Γ
α,α′

(
gαα

′

Ω

(
uqΩΓAqΓ + vqΩΓA

†
−qΓ

)
c†k+q,αck,α′ + h.c

)
, (4.13)

where we have made the notation more compact by introducing

gαα
′

Ω =

{
gΩα1 , α = −α′

gΩα2 , α = α′ . (4.14)

Armed with an electron-magnon coupling written in terms of the diagonalised fermion
operators and diagonalised boson operators we proceed with a derivation of the effective
interaction.
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Chapter 4. Magnon mediated electron-electron interaction

4.2 Effective interaction

There are a few ways of deriving an effective interaction from the electron-magnon cou-
pling in Eq. (4.7). Greens function treatments in either S-matrix perturbation theory or
functional integral formalism are two possibilities [39]. These methods give some nice
physical insight, but are somewhat cumbersome. Instead we take some inspiration from
studies of magnetic impurities and use the Schrieffer-Wolff transformation that we dis-
cussed in Section 2.2, as this gives a somewhat simpler mathematical treatment and has
been used in many previous studies of superconductivity at the interface of other bilayers
or trilayers [6]–[9]. We write the total Hamiltonian as

H = H0 + ηH1, (4.15)

where we have defined the interaction term as a perturbation to an uncoupled system

H0 = HNM +HFMI, ηH1 = He−m. (4.16)

The task is first to find a suitable transformation that should have a similar form as Eq. (4.7).
We make the following ansatz:

ηS(Ω) =
∑
k,q,Γ
α,α′

(
gαα

′

Ω

(
Xαα′

kqΓuqΩΓAqΓ + Yαα
′

kqΓvqΩΓA
†
−qΓ

)
c†k+q,αck,α′ − h.c

)
. (4.17)

In order to find the coefficients Xαα′

kqΓ and Yαα′

kqΓ we make use of a clever trick by introduc-
ing states |n⟩ and |m⟩ describing a single electron having some momentum and spin in the
presence or absence of a Γ-mode magnon [40]. Thus we can use it to pick out individual
terms of H1 in order to find the coefficient of the corresponding term in ηS(Ω), using the
following relation

⟨n| ηH1 |m⟩ = ⟨n| (H0ηS − ηSH0) |m⟩ . (4.18)

The coefficients are found to be

Xαα′

kqΓ =
1

Ek+q,α − Ek,α′ − ωΓ,q
, Yαα

′

kqΓ =
1

Ek+q,α − Ek,α′ + ωΓ,q
. (4.19)

Note that these are indeed the magnon propagators one would find in a Green’s function
treatment [18]. We repeat what the effective Hamiltonian looks like in the Schrieffer-Wolff
transformation:

HEff = H0 −
1

2

∑
Ω,Ω′

[
ηH(Ω)

1 , ηS(Ω′)
]
. (4.20)

We are specifically interested in the electron pair interaction term, which now reads

HPair = −1

2

∑
ΩΩ′Γ

∑
kk′q

∑
αα′

ββ′

8∑
j=1

H(j)
Pair. (4.21)
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4.2 Effective interaction

In order to keep a somewhat readable notation we here have introduced H(j)
Pair to denote the

different operator structure terms

H(1)
Pair =

gαα
′

Ω gββ
′

Ω′ uqΩΓv−qΩ′Γ

Ek′−q,β − Ek′,β′ + ωΓ,q
× c†k+q,αck,α′c†k′−q,βck′,β′ , (4.22)

H(2)
Pair =

−gαα′

Ω gββ
′

Ω′ vqΩΓu−qΩ′Γ

Ek′−q,β − Ek′,β′ − ωΓ,q
× c†k+q,αck,α′c†k′−q,βck′,β′ , (4.23)

H(3)
Pair =

gαα
′

Ω gββ
′

Ω′ u∗qΩΓv
∗
−qΩ′Γ

Ek′−q,β − Ek′,β′ + ωΓ,q
× c†k,α′ck+q,αc

†
k′,β′ck′−q,β , (4.24)

H(4)
Pair =

−gαα′

Ω gββ
′

Ω′ v∗qΩΓu
∗
−qΩ′Γ

Ek′−q,β − Ek′,β′ − ωΓ,q
× c†k,α′ck+q,αc

†
k′,β′ck′−q,β , (4.25)

H(5)
Pair =

−gαα′

Ω gββ
′

Ω′ uqΩΓu
∗
qΩ′Γ

Ek′+q,β − Ek′,β′ − ωΓ,q
× c†k+q,αck,α′c†k′,β′ck′+q,β , (4.26)

H(6)
Pair =

gαα
′

Ω gββ
′

Ω′ vqΩΓv
∗
qΩ′Γ

Ek′+q,β − Ek′,β′ + ωΓ,q
× c†k+q,αck,α′c†k′,β′ck′+q,β , (4.27)

H(7)
Pair =

−gαα′

Ω gββ
′

Ω′ u∗qΩΓuqΩ′Γ

Ek′+q,β − Ek′,β′ − ωΓ,q
× c†k,α′ck+q,αc

†
k′+q,βck′,β′ , (4.28)

H(8)
Pair =

gαα
′

Ω gββ
′

Ω′ v∗qΩΓvqΩ′Γ

Ek′+q,β − Ek′,β′ + ωΓ,q
× c†k,α′ck+q,αc

†
k′+q,βck′,β′ . (4.29)

To simplify notation we will relabel these terms so that they all have the same fermion op-
erator structure as Eqs. (4.22) and (4.23). For Eqs. (4.24) and (4.25) this means relabeling
momenta k → k − q, k′ → k′ + q and spins α ↔ β′, β ↔ α′, followed by swapping
k ↔ k′ and anti-commuting the operators so that

H(3)
Pair →

gβ
′β

Ω gα
′α

Ω′ u∗qΩΓv
∗
−qΩ′Γ

Ek,α′ − Ek+q,α + ωΓ,q
× c†k+q,αck,α′c†k′−q,βck′,β′ , (4.30)

H(4)
Pair →

−gβ
′β

Ω gα
′α

Ω′ v∗qΩΓu
∗
−qΩ′Γ

Ek,α′ − Ek+q,α − ωΓ,q
× c†k+q,αck,α′c†k′−q,βck′,β′ . (4.31)

For Eqs. (4.26) and (4.27) we only need to relabel k′ → k′ − q and β ↔ β′ to get

H(5)
Pair →

−gαα′

Ω gβ
′β

Ω′ uqΩΓu
∗
qΩ′Γ

Ek′,β′ − Ek′−q,β − ωΓ,q
× c†k+q,αck,α′c†k′−q,βck′,β′ , (4.32)

H(6)
Pair →

gαα
′

Ω gβ
′β

Ω′ vqΩΓv
∗
qΩ′Γ

Ek′,β′ − Ek′−q,β + ωΓ,q
× c†k+q,αck,α′c†k′−q,βck′,β′ . (4.33)

For Eqs. (4.28) and (4.29) we must relabel k → k − q and spins α ↔ β, α′ ↔ β′,
and subsequently perform the swaps β ↔ β′ and k ↔ k′. Again we anti-commute the
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Chapter 4. Magnon mediated electron-electron interaction

operators to get

H(7)
Pair →

−gβ
′β

Ω gαα
′

Ω′ u∗qΩΓuqΩ′Γ

Ek+q,α − Ek,α′ − ωΓ,q
× c†k+q,αck,α′c†k′−q,βck′,β′ , (4.34)

H(8)
Pair →

gβ
′β

Ω gαα
′

Ω′ v∗qΩΓvqΩ′Γ

Ek+q,α − Ek,α′ + ωΓ,q
× c†k+q,αck,α′c†k′−q,βck′,β′ . (4.35)

We can then rewrite

HPair =
1

2

∑
kk′q
Γ

∑
αα′

ββ′

[(
A1(q,Γ, α, α

′, β, β′)

Ek+q,α − Ek,α′ − ωΓ,q
− A2(q,Γ, α, α

′, β, β′)

Ek+q,α − Ek,α′ + ωΓ,q

)

+

(
B1(q,Γ, α, α

′, β, β′)

Ek′,β′ − Ek′−q,β − ωΓ,q
− B2(q,Γ, α, α

′, β, β′)

Ek′,β′ − Ek′−q,β + ωΓ,q

)]
× c†k+q,αck,α′c†k′−q,βck′,β′ .

(4.36)

with

A1(q,Γ, α, α
′, β, β′) =

∑
ΩΩ′

(
gβ

′β
Ω gαα

′

Ω′ u∗qΩΓuqΩ′Γ + gβ
′β

Ω gα
′α

Ω′ u∗qΩΓv
∗
−qΩ′Γ

)
, (4.37)

A2(q,Γ, α, α
′, β, β′) =

∑
ΩΩ′

(
gβ

′β
Ω gαα

′

Ω′ v∗qΩΓvqΩ′Γ + gβ
′β

Ω gα
′α

Ω′ v∗qΩΓu
∗
−qΩ′Γ

)
, (4.38)

B1(q,Γ, α, α
′, β, β′) =

∑
ΩΩ′

(
gαα

′

Ω gβ
′β

Ω′ uqΩΓu
∗
qΩ′Γ + gαα

′

Ω gββ
′

Ω′ uqΩΓv−qΩ′Γ

)
, (4.39)

B2(q,Γ, α, α
′, β, β′) =

∑
ΩΩ′

(
gαα

′

Ω gβ
′β

Ω′ vqΩΓv
∗
qΩ′Γ + gαα

′

Ω gββ
′

Ω′ vqΩΓu−qΩ′Γ

)
. (4.40)

The entire prefactor in front of the fermion operators can be interpreted as a scattering
matrix element V αα

′ββ′

kk′q so that

HPair =
∑
kk′q

∑
αα′

ββ′

V αα
′ββ′

kk′q c†k+q,αck,α′c†k′−q,βck′,β′ (4.41)

At this point it is prudent to take a closer look at the squeezing parameters that appear
in the coefficients (4.37– 4.40), seeing as these will in general be complex numbers once
we venture beyond the simplest examples of collinear FMIs and AFMIs. We know that
the inverse Bogoliubov transformation T−1

q with squeezing parameters as elements is not
unique, as its columns are made up of eigenvectors that can each be multiplied by any
phase eiθ. We must therefore be very careful to check that no such arbitrary chosen phases
manifest themselves in our electron pair potential, seeing as we perform a numerical cal-
culation of T−1

q at each point q in the 1st BZ. Assume the Γ-th eigenvector wΓ(q) (ie. the
Γ-th column of T−1

q ) is multiplied with the phase eiθΓ(q). It is easy to see that the first
term in each of Eqs. (4.37– 4.40) is the product of an element in wΓ(q) and the complex
conjugate of another element in the same eigenvector such that an arbitrary chosen phase
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4.2 Effective interaction

factor will cancel out. Indeed the same applies for the second term of each coefficient,
however now it can be a bit harder to see. Taking a look at (4.12) we for instance see that
uqΩΓ and v∗−qΩ′Γ are elements of the same eigenvector wΓ(q). Thus any arbitrary applied
phase also cancels for the second term in (4.39), and likewise one can show that the same
holds for the other three coefficients.

4.2.1 BCS pairing
We will focus on the BCS pairing mechanism, where one only considers opposite momenta
scattering processes k′ = −k. Inserting this relation into (4.36) we can get rid of the
redundant momentum variable by relabeling k + q → k and k → k′. We then have

HBCS =
∑
kk′

∑
αα′

ββ′

V αββ
′α′

kk′ c†k,αc
†
−k,βc−k′,β′ck′,α′ , (4.42)

with

V αββ
′α′

kk′ =
1

2

∑
Γ

[(
A1(k − k′,Γ, α, α′, β, β′)

Ek,α − Ek′,α′ − ωΓ,k−k′
− A2(k − k′,Γ, α, α′, β, β′)

Ek,α − Ek′,α′ + ωΓ,k−k′

)
+

(
B1(k − k′,Γ, α, α′, β, β′)

E−k′,β′ − E−k,β − ωΓ,k−k′
− B2(k − k′,Γ, α, α′, β, β′)

E−k′,β′ − E−k,β + ωΓ,k−k′

)]
.

(4.43)

We note that in our case we have an electron dispersion relation that is even in k so that
Ek,α = E−k,α, and since the net magnetisation of the FMI spin structure is zero the
dispersion relation Ek,α = Ek is also independent of spin. Thus the pair scattering matrix
simplifies further into

V αββ
′α′

kk′ =
1

2

∑
Γ

(
A1(k − k′,Γ, α, α′, β, β′) +B2(k − k′,Γ, α, α′, β, β′)

Ek − Ek′ − ωΓ,k−k′

− A2(k − k′,Γ, α, α′, β, β′) +B1(k − k′,Γ, α, α′, β, β′)

Ek − Ek′ + ωΓ,k−k′

)
,

(4.44)

which in turn can be written in a similar form to the canonical BCS potential multiplied
by the factor A(k − k′,Γ, α, α′, β, β′), and with the inclusion of an additional term.

V αββ
′α′

kk′ =
1

2

∑
Γ

(
ωΓ,k−k′

(Ek − Ek′)2 − ω2
Γ,k−k′

A(k − k′,Γ, α, α′, β, β′)

+
Ek − Ek′

(Ek − Ek′)2 − ω2
Γ,k−k′

B(k − k′,Γ, α, α′, β, β′)

)
.

(4.45)

Here we have defined the coefficients

A(k − k′,Γ, α, α′, β, β′) = A1(k − k′,Γ, α, α′, β, β′) +B2(k − k′,Γ, α, α′, β, β′)

+A2(k − k′,Γ, α, α′, β, β′) +B1(k − k′,Γ, α, α′, β, β′).

(4.46)
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Chapter 4. Magnon mediated electron-electron interaction

B(k − k′,Γ, α, α′, β, β′) = A1(k − k′,Γ, α, α′, β, β′) +B2(k − k′,Γ, α, α′, β, β′)

−A2(k − k′,Γ, α, α′, β, β′)−B1(k − k′,Γ, α, α′, β, β′).

(4.47)

We have until now not made any assumptions about the arrangement of spin indices in the
pair scattering matrix. From a physical point of view we must however have a conservation
of spin, which rules out any scattering matrix elements with an odd number of ”spin up”
and ”spin down” indices. Therefore the pair scattering matrix can only be non-zero if
either all indices are the same, or if half of the indices are ”spin up” and the other half are
”spin down”. We separate the Hamiltonian into a part contributing to unpolarised (Sz = 0)
and polarised (Sz = ±1) Cooper pairs respectively

Hunpol
BCS =

∑
kk′

Ṽkk′c†k,↓c
†
−k,↑c−k′,↑ck′,↓, (4.48)

Hpol
BCS =

∑
kk′

(
V ↑↑↑↑
kk′ c†k,↑c

†
−k,↑c−k′,↑ck′,↑ + V ↓↓↓↓

kk′ c†k,↓c
†
−k,↓c−k′,↓ck′,↓

+ V ↑↑↓↓
kk′ c†k,↑c

†
−k,↑c−k′,↓ck′,↓ + V ↓↓↑↑

kk′ c†k,↓c
†
−k,↓c−k′,↑ck′,↑

)
.

(4.49)

Note that we have used the fermionic anti-commutation property in order to gather the
different unpolarised Cooper pair terms into a single term of the same operator structure
as the conventional phonon-mediated BCS theory, where

Ṽkk′ = V ↓↑↑↓
k,k′ + V ↑↓↓↑

−k,−k′ − V ↑↓↑↓
−k,k′ − V ↓↑↓↑

k,−k′ . (4.50)

Now is a good time to take a step back and reflect on what has been found, for unlike
many of the previous studies of magnon mediated superconductivity in bilayers or trilay-
ers with collinear FMIs and AFMIs, we now have terms in our Hamiltonian that could
give rise to the polarised spin triplet states |↑↑⟩ and |↓↓⟩. It is reasonable to assume that
this is a feature of the non-collinear spin structure that we study here, explained by the
fact that the electron-electron interaction is mediated by a nearest neighbour exchange
between two lattice sites of different magnetisation in the SPFMI layer. Non-collinear
spin structures have already been suggested to enable spin polarised Cooper pairs in other
types of superconducting systems [4]. One could picture the electron-electron scattering
as two Stern-Gerlach like measurements, where the act of an electron spin flip is akin
to a ”measurement” of the spin direction. If the incoming electrons scatter at sites with
magnetisation directions of (θ1, ψ1) and (θ2, ψ2), then the resulting spin states after the
scattering will be measured to be

|φ1⟩ = cos (θ1/2) |↓⟩+ eiψ1 sin (θ1/2) |↑⟩ , (4.51)

|φ2⟩ = cos (θ2/2) |↓⟩+ eiψ2 sin (θ2/2) |↑⟩ . (4.52)

Thus there is a possibility for mixing states with different combinations of |↑↓⟩, |↑↑⟩ and
|↓↓⟩, and so one could indeed get polarised triplet states. This is a result of scattering on
the SPFMI spin structure essentially rotating the spins.
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4.3 Collinear AFMI potential
As a way to check the result derived in the previous section we consider the simple example
of a collinear AFMI on a square lattice, which is described by a bipartite lattice with Néel
ordering. The motivation behind looking at such a system is that the magnonic properties
have well known analytical solutions. We label the two sub-lattices Ω ∈ {A,B} and
choose the z-axis as the axis of quantisation. There are equally many sites in the two sub-
lattices such that we may write NA = NB = N/2. The sub-lattice angles are then given
by (θA, ψA) = (0, 0) and (θB , ψB) = (π, π), with the result that all terms with the factor
sin (θΩ) are zero. Thus from Eqs. (4.8) and (4.9) we immediately see that

gA↓
1 = −2

√
s

N
J̄A, gB↑

1 = −2

√
s

N
J̄B , gA↑

1 = gB↓
1 = 0, (4.53)

and
gA↓
2 = gA↑

2 = gB↓
2 = gB↑

2 = 0. (4.54)

As a result of Eqn. (4.54) all terms where α = α′ and/or β = β′ vanish:

V ↑↑↑↑
kk′ = V ↓↓↓↓

kk′ = V ↓↑↑↓
kk′ = V ↑↓↓↑

kk′ = 0. (4.55)

Having ruled out half of the terms we must look at the factors (4.46) and (4.47) for the
other terms. We note that the magnon dispersion relations for the collinear AFMI are
degenerate (ωA = ωB) and isotropic (ωq = ω−q). The inverse Bogoliubov transformation
for the AFMI is

aq = uqAq + vqB
†
−q, bq = uqBq + vqA

†
−q. (4.56)

Here the squeezing parameters uq and vq are real numbers that are even in q. In matrix
form with the more generalised boson operator basis, the inverse Bogoliuabov transforma-
tion reads

T−1
q =


uq 0 0 vq
0 uq vq 0
0 vq uq 0
vq 0 0 uq

 . (4.57)

As a result the only non-zero enhancement factors in the pair scattering matrix are

A1(q, B, ↑, ↓, ↓, ↑) = B1(q, B, ↑, ↓, ↓, ↑) = gB↑
1 gB↑

1 u2q + gB↑
1 gA↓

1 uqvq, (4.58)

A2(q, A, ↑, ↓, ↓, ↑) = B2(q, A, ↑, ↓, ↓, ↑) = gB↑
1 gB↑

1 v2q + gB↑
1 gA↓

1 vquq, (4.59)

A1(q, A, ↓, ↑, ↑, ↓) = B1(q, A, ↓, ↑, ↑, ↓) = gA↓
1 gA↓

1 u2q + gA↓
1 gB↑

1 uqvq, (4.60)

A2(q, B, ↓, ↑, ↑, ↓) = B2(q, B, ↓, ↑, ↑, ↓) = gA↓
1 gA↓

1 v2q + gA↓
1 gB↑

1 vquq. (4.61)

The fact that the magnon dispersion relations are degenerate means that the two non-zero
pair scattering matrix elements can be written

V ↑↓↑↓
kk′ =

1

2

ωk−k′

(Ek − Ek′)2 − ω2
k−k′

∑
Γ

A(k − k′,Γ, ↑, ↓, ↓, ↑), (4.62)
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V ↓↑↓↑
kk′ =

1

2

ωk−k′

(Ek − Ek′)2 − ω2
k−k′

∑
Γ

A(k − k′,Γ, ↓, ↑, ↑, ↓). (4.63)

We define J̄B = J̄ and J̄A = CJ̄ where the parameterC determines the relative difference
of coupling strength to the NM for the two different sub-lattices. The pair scattering part
of the AFMI BCS Hamiltonian is

HAFMI
BCS =

∑
kk′

Ṽkk′c†k,↓c
†
−k,↑c−k′,↑ck′,↓, (4.64)

where

Ṽkk′ = −
(
V ↑↓↑↓
−k,k′ + V ↓↑↓↑

k,−k′

)
= −2sJ̄2

N

ωk+k′

(Ek − Ek′)2 − ω2
k+k′

Ã(k − k′, C), (4.65)

and

Ã(k − k′, C) =
∑
Γ

(A(k − k′,Γ, ↑, ↓, ↓, ↑) +A(k − k′,Γ, ↓, ↑, ↑, ↓))

= 2(1 + C2)(u2q + v2q) + 8Cuqvq.

(4.66)

This result is in exact agreement with the findings of [8] for the BCS potential of an
AFMI / NM bilayer.

4.4 Investigating the pair potential: Numerical analysis
We now find ourselves at an impasse for analytical calculations regarding the pair poten-
tial, seeing as it contains magnon variables that must be treated numerically as discussed
previously. Thus in order to calculate any results for the system we must again turn to
numerical methods. We are for instance interested in knowing what the pair scattering
potential actually looks like and how its enhancement factor compares to the FMI and
AFMI bilayers. To get an idea of what the BCS potential may look like in the case of a
SPFMI / NM bilayer we choose a spiral period of 6 and a certain incoming wavevector
k on the Fermi surface (for a sufficiently low filling so that the Fermi surface is approx-
imately a circle of radius kF = a−1). We then calculate the potential around the Fermi
surface and additionally for a few different high-symmetry directions. The results are
displayed in Figures 4.1 and 4.2.

We observe that for an unpolarised interaction Ṽkk′ is repulsive on the Fermi surface.
It is important to note that a positive valued (repulsive) Ṽkk′ does not necessarily rule out
superconductivity. Even if all the scattering matrix elements are positive, as long as it has
an odd part in k we can have superconductivity from triplet Cooper pairs. However one
would in this case expect singlet Cooper pair superconductivity to be suppressed. Along
the high-symmetry cuts of the BZ we see that there is only a thin strip surrounding the
Fermi surface that actually contributes non-zero values to the pair scattering matrix. The
width of this strip is determined by the highest frequency in the magnon band structure;
each mode gives rise to a singularity in the potential where the energy and momentum dif-
ference of the incoming and outgoing electron matches the corresponding magnon energy
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Figure 4.1: Illustrations of the pair scattering potential for an electron with incoming wavevector
k = [1, 0]. Figure a) shows the incoming wavevector (black dot) and the four different cuts where
the pair potential is analysed (figures b-e)). Figure b) shows Ṽkk′ for outgoing wavevectors k′ on
the Fermi surface (a circle with kF = a−1). Figures c-e) show Ṽkk′ for outgoing wavevectors k′ in
three different high-symmetry directions.

and momentum. Since we have quite a lot of magnon modes the potential becomes quite
messy around the Fermi surface, however since our magnon spectrum in this case has a
small mass gap there is a thin interval surrounding the Fermi surface where there will be
no singularities, defined in this case by the smallest energy in the magnon spectrum.

Next we take a look at the BCS potential enhancement factors that we defined in
Eqs. (4.46) and (4.47). Since these coefficients are dependent on the magnon mode we
must also take the magnon dispersion part of the BCS potential into account, which for the
collinear FMI and AFMI cases is unnecessary as the magnon bands in both those cases are
degenerate. For a comparison of the different systems we therefore find the enhancement
factors multiplied by the magnon dispersion since the electron-magnon energy difference
in the denominator of Eq. (4.45) should be regarded to have the same form for all modes
close to the allowed energies (given by the propagator singularities). We plot these BCS
potential enhancement factors along some high-symmetry directions to get an idea of their
magnitude in the NM / SPFMI bilayer, in addition to see what modes contribute at different
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Figure 4.2: Illustrations of the pair scattering potential for an electron with incoming wavevector
k = [1/2,

√
3/2]. Figure a) shows the incoming wavevector (black dot) and the four different cuts

where the pair potential is analysed (figures b-e)). Figure b) shows Ṽkk′ for outgoing wavevectors
k′ on the Fermi surface (a circle with kF = a−1). Figures c-e) show Ṽkk′ for outgoing wavevectors
k′ in three different high-symmetry directions.

magnon momenta. It turns out that the contributions from the factors (4.47) vanish, and so
we are left with a potential that indeed does have the canonical BCS form, at least for the
magnetic spiral structures considered in this thesis. As for the factors (4.46), values for
different magnon momenta are shown in Figures 4.3, 4.4, 4.5 and 4.6. It is interesting to
note how the sum of all the different mode contributions seems to be a very well-behaved
function of the magnon momentum, even as many different modes appear and disappear
when the momentum varies. The type of switching between modes could be related to a
crossing of the two different mode bands, and these transitions have a surprising likeness
to q-dependent phonon factors in a Master’s thesis by Lockert (see Figure 6.4 in [41]).
Another interesting observation is the fact that only one mode seems to contribute along
the path between the points Γ and Y in the case of scattering without spin flip. Note that
even though some modes seem to have discontinuous contributions this is not the case, as
one will see by just ”zooming” close enough in. The contributions do however appear to
not be smooth at the Y -point.
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Figure 4.3: BCS potential enhancement factor along some high-symmetry directions of a spin
flip scattering process for two incoming/outgoing opposite spin electrons for the different magnon
modes. Here the SPFMI has a spin periodicity of 6 atoms. The sum of all mode contributions is
indicated by the black dotted line.

We know already that a bilayer with a collinear AFMI will give the optimal enhance-
ment, since the squeezing coefficients in this special case diverge in the magnonic long
wavelength limit. We do not see any sort of divergences in our case. Comparing to the
collinear FMI enhancement [6] for similar exchange parameters (see Table 3.1)

48JJ̄2s2

N

(
1− 1

6

∑
d

eiq·d

)
≤ 4.8 · 10−5

N
eV3, (4.67)

we get a somewhat larger upper limit to the enhancement in the case of the FMI as opposed
to our bilayer with a SPFMI. Of course without a large gap in the FMI spectrum there will
be areas with much smaller enhancement at long magnon wavelengths, while the SPFMI
enhancement remains on the same order of magnitude across the magnon BZ. In any case
it seems like the squeezing parameters from our chosen non-collinear spin structure do not
help to enhance the superconductivity, possibly making it slightly worse.
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Figure 4.4: BCS potential enhancement factor along some high-symmetry directions of a scattering
process without spin flip for two incoming/outgoing opposite spin electrons for the different magnon
modes. Here the SPFMI has a spin periodicity of 6 atoms. The sum of all mode contributions is
indicated by the black dotted line.
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by the black dotted line.
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Chapter 5
Superconductivity

5.1 Generalised BCS theory
The starting point of the BCS theory is a Hamiltonian consisting of a single particle occu-
pation energy and a two-particle scattering term

H =
∑
k,σ

ϵkc
†
kσckσ +

1

2

∑
k,k′

∑
σ1,σ2,σ3,σ4

Ṽ σ1σ2σ3σ4

kk′ c†kσ1
c†−kσ2

c−k′σ3ck′σ4 . (5.1)

The system must be diagonalised to find the electron excitation spectrum, and in order to
deal with the four-operator terms we make use of a mean field approximation. Defining
the Cooper pair mean field as the ensemble average

bkσσ′ = ⟨c−kσckσ′⟩, (5.2)

with a fluctuation
δbkσσ′ = c−kσckσ′ − ⟨c−kσckσ′⟩, (5.3)

we write the four-operator term as

HPair =
1

2

∑
k,k′

∑
σ1,σ2
σ3,σ4

Ṽ σ1σ2σ3σ4

kk′ (b†kσ2σ1
+ δb†kσ2σ1

)(bk′σ3σ4 + δbk′σ3σ4). (5.4)

Making the approximation that

δb†kσ2σ1
δbkσ3σ4

≈ 0, (5.5)

we find that the BCS Hamiltonian can be written in terms of only two-operator interactions
[15]

H =
∑
k,σ

ϵkc
†
kσckσ − 1

2

∑
k

∑
σ1,σ2

(
∆kσ1σ2

c†kσ1
c†−kσ2

+∆†
kσ1σ2

c−kσ1ckσ2

)
+

1

2

∑
k

∑
σ1,σ2

∆kσ1σ2
b†kσ2σ1

,

(5.6)
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where we have introduced the following quantities

∆kσ1σ2 = −
∑

k′σ3σ4

Ṽ σ1σ2σ3σ4

kk′ bk′σ3σ4 , (5.7)

∆†
kσ1σ2

= −
∑

k′σ3σ4

Ṽ σ3σ4σ1σ2

kk′ b†k′σ3σ4
. (5.8)

These are the superconducting order parameters; more well known as the gap functions
since they describe the onset of a gap in the dispersion relation of a superconducting phase.
They can be written as elements of a 2× 2 matrix

∆̂(k) =

[
∆k↑↑ ∆k↑↓
∆k↓↑ ∆k↓↓

]
. (5.9)

The fact that these are order parameters is evident from Eqn. (5.6). In the case where
⟨c−kσckσ′⟩ = 0 there are on average no Cooper pairs and Eqn. (5.6) is already diago-
nalised in the NM phase. However for ⟨c−kσckσ′⟩ ≠ 0 the system is no longer diago-
nalised in the old electron operator basis, meaning that a transition from the NM phase
to a new phase must have occurred. The new phase is ordered in the sense that electrons
pair up in bound k-space states called Cooper pairs. The phase transition occurs at some
critical temperature Tc for which the lack of thermal fluctuations allows the electrons to
condensate into Cooper pairs that are energetically favourable. In order to determine this
critical temperature it is necessary to diagonalise the system (for example by the means of
a Bogoliubov transformation) and then minimise the free energy with respect to the order
parameter. This yields a self-consistent equation

∆kσ1σ2
= −

∑
k′σ3σ4

Ṽ σ1σ2σ3σ4

kk′ ∆kσ4σ3
χk(T ), (5.10)

with

χk(T ) =
1

2Ek
tanh

(
Ek

2kBT

)
, Ek =

√
ϵ2k +

1

2
Tr∆̂(k)∆̂†(k), (5.11)

in the case of a unitary order parameter matrix ∆̂(k) [42].

5.1.1 Spin symmetry of the Cooper Pair scattering matrix
Taking a look at the scattering potential operator in the BCS Hamiltonian (5.1)

V =
1

2

∑
k,k′

∑
σ1,σ2,σ3,σ4

Ṽ σ1σ2σ3σ4

kk′ c†kσ1
c†−kσ2

c−k′σ3ck′σ4 , (5.12)

we see that the pair scattering matrix elements are given by [42]

Ṽ σ1σ2σ3σ4

kk′ = ⟨k, σ1;−k, σ2| 2V |−k′, σ3;k
′, σ4⟩ . (5.13)
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Anti-commutation of the fermionic operators therefore requires that the scattering matrix
must have the following structure

Ṽ σ1σ2σ3σ4

k,k′ = −Ṽ σ2σ1σ3σ4

−k,k′ = −Ṽ σ1σ2σ4σ3

k,−k′ = Ṽ σ2σ1σ4σ3

−k,−k′ . (5.14)

The first obvious result of this is that all the spin polarised scattering matrix elements must
be odd in k

Ṽ ↑↑↑↑
k,k′ = −Ṽ ↑↑↑↑

−k,k′ Ṽ ↓↓↓↓
k,k′ = −Ṽ ↓↓↓↓

−k,k′

Ṽ ↑↑↓↓
k,k′ = −Ṽ ↑↑↓↓

−k,k′ Ṽ ↓↓↑↑
k,k′ = −Ṽ ↓↓↑↑

−k,k′ .
(5.15)

Again we can gather all the unpolarised spin terms together in the form of Eqn. (4.48)
with

Ṽkk′ =
1

2

(
Ṽ ↓↑↑↓
k,k′ + Ṽ ↑↓↓↑

−k,−k′ − Ṽ ↑↓↑↓
−k,k′ − Ṽ ↓↑↓↑

k,−k′

)
, (5.16)

where we have written Ṽkk′ in terms of scattering matrix elements that obey (5.14). This
is the same quantity we defined in (4.50), however we note that in the previous case it was
written as a sum of matrix elements that had not been balanced in order to satisfy (5.14).
We will later find it useful to define this potential in terms of the even and odd parts in k

Ṽ
E(k)
kk′ =

1

2

(
Ṽkk′ + Ṽ−kk′

)
, (5.17)

Ṽ
O(k)
kk′ =

1

2

(
Ṽkk′ − Ṽ−kk′

)
. (5.18)

Using the fact that Ṽ ↓↑↑↓
kk′ = Ṽ ↑↓↓↑

k,k′ together with Eqns. (5.14) and (5.16) we can now write

Ṽ
E(k)
kk′ = Ṽ ↓↑↑↓

kk′ + Ṽ ↓↑↑↓
−kk′ = Ṽ ↑↓↓↑

k,k′ + Ṽ ↑↓↓↑
−k,k′ , (5.19)

Ṽ
O(k)
kk′ = Ṽ ↓↑↑↓

kk′ − Ṽ ↓↑↑↓
−kk′ = Ṽ ↑↓↓↑

k,k′ − Ṽ ↑↓↓↑
−k,k′ . (5.20)

These relations will prove useful when discussing the superconducting order parameter.

5.1.2 The superconducting order parameter
The superconducting order parameter can in general take quite a complicated form, as we
have seen that the inclusion of triplet Cooper pairs makes it necessary to consider an order
parameter described by a matrix rather than just a scalar. The triplet pairings can further-
more give a non-unitary order parameter matrix which complicates the diagonalisation of
the BCS Hamiltonian considerably. As can be seen from Eqn. (5.10) the gap function
matrix elements are described by four pairwise coupled equations. It turns out that we can
decouple the two unpolarised gap matrix elements by introducing order parameters that
are odd and even in spin labeling

∆
O(s)
k,↑↓ ≡ ∆k,↑↓ −∆k,↓↑, (5.21)

∆
E(s)
k,↑↓ ≡ ∆k,↑↓ +∆k,↓↑. (5.22)
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Inserting the two unpolarised gap functions into these relations and using the relations
(5.19) and (5.20) it is quite easily shown (see Appendix C.1) that

∆
O(s)
k,↑↓ = −

∑
k′

Ṽ
E(k)
kk′ ∆

O(s)
k′,↑↓ χk′ , (5.23)

∆
E(s)
k,↑↓ = −

∑
k′

Ṽ
O(k)
kk′ ∆

E(s)
k′,↑↓ χk′ . (5.24)

In the case of the polarised gaps we already know that only triplet pairing is involved, and
that we are restricted to odd potentials in k. We therefore do not decouple these two matrix
elements, but rather write them as a single matrix equation(

∆k,↑↑
∆k,↓↓

)
= −

∑
k′

(
Ṽ ↑↑↑↑
kk′ Ṽ ↑↑↓↓

kk′

Ṽ ↓↓↑↑
kk′ Ṽ ↓↓↓↓

kk′

)(
∆k′,↑↑
∆k′,↓↓

)
χk′ . (5.25)

In the case where Ṽ ↑↑↑↑
kk′ = Ṽ ↓↓↓↓

kk′ and Ṽ ↑↑↓↓
kk′ = Ṽ ↓↓↑↑

kk′ this simplifies to a scalar equation

∆
(p)
k = −

∑
k′

Ṽ
(p)
kk′∆

(p)
k′ χk′ , (5.26)

where we denote ∆
(p)
k = ∆k,↑↑ = ∆k,↓↓ and Ṽ (p)

kk′ = Ṽ ↑↑↑↑
kk′ + Ṽ ↑↑↓↓

kk′ .

5.1.3 Momentum symmetry channels for the pair potential
In order to get an idea of the symmetry of the superconducting state it is natural to explore
the k-space symmetry of the pair potential given the relation between the two quantities
described by the gap function. We can already make a few observations based on the
results from Section 4.4, where it was found that the unpolarised part of the pair potential
is purely positive for scattering events restricted to the Fermi surface. This would suggest
that there should not be any s-wave superconductivity. Thus we must investigate other
symmetry channels in our search for superconductivity which are described by the lattice
harmonics presented in Section 2.4. The potential in this case originates from a system
of triangular lattices, and so it is reasonable to assume that the shape of the potential
reflects this lattice symmetry and therefore can be expanded in terms of the triangular
lattice harmonics as follows

Vkk′ =
∑
α

ΓαBα(k)Bα(k
′), (5.27)

with the different lattice harmonics labeled here by α [43]. As of yet we have not made
any assumptions whether the potential Vkk′ describes a spin singlet or triplet state, and in
the latter case if it is spin polarised or not. We will however define Vkk′ to be indepen-
dent of the lattice size (for example Vkk′ = NṼkk′ in the case of an unpolarised Cooper
pair). Multiplying both sides by basis functions Bβ(k) and Bβ(k′) before taking a double
integral over the 1st BZ gives an expression for the symmetry coefficient

Γβ =

∫
BZ
dkdk′ Vkk′Bβ(k)Bβ(k

′), (5.28)
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where we have utilised the orthonormality of the basis functions. Similarly, the supercon-
ducting gap can be expanded in terms of the lattice harmonics

∆k =
∑
α

∆αBα(k), (5.29)

where ∆α is a coefficient determining the contribution of the symmetry α to the supercon-
ducting gap. Inserting the symmetry expanded expressions of the potential and supercon-
ducting gap into the gap function we find∑

α

∆αBα(k) = −
∑
k′

∑
α

ΓαBα(k)Bα(k
′)
∑
β

∆βBβ(k
′)χk′ . (5.30)

Again we make use of the orthonormality by multiplying with a basis function on both
sides and taking the integral over the 1st BZ∑
α

∆α

∫
dkBα(k)Bζ(k)︸ ︷︷ ︸

=δαζ

= −
∑
k′

∑
α,β

∫
dkBα(k)Bζ(k)︸ ︷︷ ︸

=δαζ

ΓαBα(k
′)∆βBβ(k

′)χk′ .

(5.31)
Thus we end up with the following expression for the gap coefficients

∆ζ =
∑
β

(
−
∑
k′

ΓζBζ(k
′)Bβ(k

′)χk′

)
∆β =

∑
β

Mζβ∆β . (5.32)

Note that each gap coefficient can in general have contributions from several symmetries,
however even (odd) symmetries cannot contribute to odd (even) coefficients since χk′ is
isotropic and therefore even in k such that the sum vanishes in the case where only one
of α and β is odd. We could therefore choose to decouple Eq. (5.32) into two separate
equations; where one contains the even coefficients while the other contains the odd coef-
ficients.

5.2 Analysis on the Fermi Surface
It is now time to calculate some results from the expressions derived previously in this
chapter, and again this requires a numerical treatment. We note however that the size of the
problem is much larger than a lot of our previous simulations as a result of there being two
momentum labels in the BCS potentials. For example, calculating a result for Eq. (5.28)
requires a double integral over the entire 1st BZ, which is a sizable computational task if
one wishes to have a good resolution of points in k-space. Looking back at the results
from Section 4.4 there is a lot of variation in the potential close to the Fermi surface
since there are so many magnon modes. Thus one expects that a very good sampling
resolution is needed around the Fermi surface for a complete analysis of the pair potential
symmetry and superconducting gap, and we should indeed be wary of any result where
the k-space might be insufficient. Rather than looking at the entire BZ we follow the
example of [8] and restrict ourselves to scattering events where k and k′ both lie on the
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Fermi surface, with the intention of getting some idea what the actual results may look
like. It should therefore be made clear that the results of this section serve only as rough
approximations, however in this case we are able to bypass the k-space resolution problem.
For very low temperatures we can argue that this approximation is valid when discussing
the superconducting gap since the function χk is dominated by momenta situated on the
Fermi surface.

5.2.1 The pairing symmetry coefficient
We start off with a calculation of Eq. (5.28), which now is modified to be a double sum
over the Fermi surface

Γα(ϵF ) =

∫
FS
dkdk′ Vkk′Bα(k)Bα(k

′). (5.33)

Notice that Γα is now a function of the Fermi energy; in other words how large the filling
factor is. In the case of a spin singlet we use the even part of the unpolarised pair scattering
matrix so that

Γα(ϵF ) ≈
〈〈
NṼ

E(k)
k,k′ Bα(k)Bα(k

′)
〉〉

FS,k,k′
, α ∈ {s, 2s, dxy, dx2−y2}. (5.34)

Since we are dealing with a finite number of points in k-space the integral is rewritten as
a double average over the Fermi surface which we denote by ⟨⟨. . .⟩⟩FS,k,k′ (defining the
Fermi surface average over Nsamp sampled points as ⟨xk,k′⟩FS,k,k′ =

∑
FS xk,k′/Nsamp,

with k,k′ ∈ FS). The coefficients Γα for some different spin singlet symmetries have
been plotted in Figure 5.1 for different Fermi energies. We restrict ourselves to values up
to ϵF = 0.5 eV where the Fermi surface does not deviate too much from a circle since
we have neglected any umklapp processes. Note that for the spin singlet symmetries the
coefficients are always positive. From Eq. (5.32) and the shape of the triangular lattice
harmonics we see that a positive Γα is typically linked to suppression of superconductiv-
ity in the symmetry channel α, since most of the lattice harmonics will be approximately
orthogonal on the Fermi surface (at least as long the Fermi surface is nearly circular). An
exception is coupling between the s and 2s symmetries since these will not be close to
orthogonal on the Fermi surface, so that the sign of Γα will not tell the entire story. How-
ever from Section 4.4 we found that the unpolarised pair scattering matrix was positive
everywhere on the Fermi surface, and so we would still expect singlet pairing to not play
an important role in any emergent superconducting state.

Similarly in the case of the unpolarised triplet we take the double average over the
Fermi surface, this time with the odd part of the potential

Γα(ϵF ) ≈
〈〈
NṼ

O(k)
k,k′ Bα(k)Bα(k

′)
〉〉

FS,k,k′
, α ∈ {px, py, f}. (5.35)

The polarised triplet symmetry coefficients can be found by swapping Ṽ O(k)
k,k′ in Eq. (5.35)

with a scattering matrix element for the polarised terms. In the case of spin triplet pairing
all the symmetry channels are nearly orthogonal on the Fermi surface so that the matrix
in Eq. (5.32) is dominated by the diagonal terms. If we follow the example of [43] by
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Figure 5.1: Symmetry coefficient for unpolarised spin scattering, with singlet pairing in a) and
triplet pairing in b).

approximating Eq. (5.32) as decoupled equations then there is a direct link between the
sign of Γα and existence of a superconducting gap for the symmetry channel α. Looking
at Figure 5.1 we see that there is a possibility for p-wave superconductivity, mainly in the
py channel in the case for unpolarised triplet pairing. At large Fermi energies there also
seems to be a small contribution to the f -wave channel. For the polarised triplet pairing
the results displayed in Figure 5.2 indicate that only the px channel would contribute. Note
however that it is an order of magnitude smaller than the unpolarised coefficient.
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Figure 5.2: Symmetry coefficient for two polarised spin scattering matrix elements. Figure a) shows
the symmetry coefficient for Ṽ ↑↑↑↑

k,k′ , b) shows the symmetry coefficient for Ṽ ↑↑↓↓
k,k′ .

5.2.2 The linearised gap equation
In general it is not a simple case of just solving the self consistent gap in Eqs. (5.23) and
(5.24), since these are large systems of nonlinear equations that may have many non-trivial
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solutions. However, if we allow the temperature approach Tc from below the gap vanishes.
Treating ∆k as an eigenvector, the norm approaches zero at the critical temperature, al-
though ∆k still has some structure. This motivates removing the gap dependence of χk′

so that the gap structure is determined by the linear equation

∆k = −
∑
k′

Vkk′ ∆k′
1

2|ϵk′ |
tanh

(
|ϵk′ |
2kBTc

)
. (5.36)

Here we let the sum go over a thin strip in k-space with energies between ϵF − ωc and
ϵF +ωc, where ωc is a cutoff energy. Here we choose ωc to be the maximum energy in the
magnon spectrum. We now make an approximation in the spirit of the Bardeen, Schrieffer
and Cooper’s original treatment of conventional superconductors [3]; we assume that the
potential does not vary in the radial direction on the strip, but is defined only by its value
on the Fermi surface. In a sense we have made the ”textbook” constant potential approxi-
mation in the radial direction, while keeping the full potential structure tangentially along
the Fermi surface. Parameterising the momentum in terms of polar coordinates we write
the potential as Vkk′ = V (k, φ, k′, φ′). We rewrite the sum as an integral in polar coor-
dinates and make a change of integration variable from momentum to energy by using the
relation D(ϵ) dϵ = D(k) dk

∆(φ) = − N

ABZ

∫ 2π

0

dφ′ V (φ,φ′)∆(φ′)

∫ ωc

−ωc

dϵ
k′D(ϵ)

D(k′)

1

2|ϵ|
tanh

(
|ϵ|

2kBTc

)
. (5.37)

Inserting the expression for k-space DOS on a triangular lattice and making the approx-
imation that D(ϵ) equals the Fermi surface density of states D0 in the relevant energy
range, we arrive at the expression

∆(φ) = −D0 ⟨V (φ,φ′)∆(φ′)⟩FS,φ′

∫ ωc

−ωc

dϵ
1

2|ϵ|
tanh

(
|ϵ|

2kBTc

)
, (5.38)

where we have written the angular part of the integral into an average over angles on the
Fermi surface

⟨V (φ,φ′)∆(φ′)⟩FS,φ′ =
1

Nsamp

∑
φ′

V (φ,φ′)∆(φ′). (5.39)

Here Nsamp is the number of points sampled on the Fermi surface. We now introduce the
coupling constant λ, which we define as follows [8]

1

λ
=

∫ ωc

−ωc

dϵ
1

2|ϵ|
tanh

(
|ϵ|

2kBTc

)
≈ ln

(
1.14ωc
kBTc

)
. (5.40)

Thus the linearised gap function is an eigenvalue equation of the form

λ∆(φ) = D0 ⟨V (φ,φ′)∆(φ′)⟩FS,φ′ , (5.41)

which can be formulated in terms of a matrix equation where the chosen angles φ, φ′

correspond to indices of the vector/matrix elements.
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Figure 5.3: Coupling coefficient for scattering on the Fermi surface as a function of Fermi energy in
the case of both unpolarised (blue) and polarised (yellow) spin triplet Cooper pairs. The gray stapled
line indicates the Van Hove instability.

In order to get an idea of how the coupling constant λ varies with filling factor we
solve the linearised gap eigenvalue problem for different Fermi energies, and the results
are shown in Figure 5.3. Again we have chosen to look at the example where the SPFMI
spin period is 6 atoms. Since the even part of the pair scattering matrix is always positive
all eigenvalues should be negative for superconducting states that are even in momentum,
so we ignore spin singlet pairing and focus only on spin triplets. For both unpolarised and
polarised triplets the coupling increases with increasing Fermi energy, and we note that
for low filling there seems to be a phase transition at ϵF ≈ −2.5 eV where the polarised
triplet coupling becomes zero and consequently stops contributing to the superconductiv-
ity. While a positive valued λ tells us that we have a superconducting state, to determine
what type of symmetry it has we must look at the structure of the eigenvector ∆k. We
plot the eigenvector structure for the unpolarised triplet in Figure 5.4, and note that it has
a py-wave symmetry at high filling, as predicted from our results in Figure 5.1b. At low
filling it turns out to have a px-wave symmetry.

It is also interesting to see how the coupling coefficient varies for different spin spiral
periodicities in the SPFMI layer. Recalling that the smallest possible period of our system
is 5 atoms we compute the coupling for a few larger periods in addition to 5, plotting the
results for both unpolarised and polarised spin triplet pairs in Figure 5.5 at ϵF = −1 eV.
While the polarised triplet coupling quickly vanishes for increasing periodicities; again
indicating some phase transition; the unpolarised triplet pairing seems to increase linearly
at larger periods. Such a linear trend can obviously not continue indefinitely, at some
point the spin period becomes so large that the magnetic system approaches something
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Figure 5.4: Gap structure on the Fermi surface for an unpolarised triplet state at the critical temper-
ature. The normalised magnitude of ∆k is plotted in a) and b), with the colour indicating the sign
difference (red/blue). Figure a) shows the px-wave structure at low filling (ϵF ≤ −5.5 eV), while
b) shows a py-wave structure at high filling (solid line: ϵF = −5 eV, dashed line: ϵF = 0 eV, dotted
line: ϵF = 0.5 eV). Figure c) shows the gap projection onto both p-wave symmetry channels on the
Fermi surface.

that looks like a collinear FMI. There is a point where the spin period is large enough that
the assumption of a net-zero magnetisation not contributing to the NM spectrum becomes
questionable. In any case, we see that the coupling coefficients for our system are very
small and the resulting critical temperatures for these simulations would basically be zero
given Tc’s exponential dependence on λ. However, this extreme sensitivity to the coupling
constant consequently makes critical temperature calculations very unreliable, and so for
a qualitative understanding it is better to just analyse the variation of λ. The reason we
get very small coupling constants in our approximation on the Fermi surface could be the
fact that the magnon spectrum mass gap eliminates any divergences of the potential on
the Fermi surface, unlike the FMI and AFMI examples of [6], [8] where there is no such
magnon mass gap. In the case of a fully uncompensated collinear AFMI, the magnon
squeezing parameters additionally provide the potential with an enormous enhancement
factor for low-energy magnons.
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Figure 5.5: Coupling coefficient for scattering on the Fermi surface at ϵF ≈ −1 eV as a function
of the spin period in the SPFMI. Figures a) and b) show the cases of unpolarised and polarised spin
triplet Cooper pairs respectively.

5.2.3 Remarks on a full BZ analysis of the superconducting gap
It is important to state that our results for the superconducting gap should be regarded as
qualitative; a consequence of the rather severe approximation of ignoring the singularities
in the BCS potential. A more correct treatment of the superconducting gap would be to
follow the example of Thingstad et al. [44] by computing the gap function as an eigen-
value problem over the entire 1st BZ with additional sampled points closely around the
Fermi surface where the BCS potential has a nontrivial structure. The continuum limit
gap function which is described by an integral can be calculated numerically for such
a non-uniform grid of k-points by approximating the integral as a weighted sum; with
the weights given by a Delaunay triangulation. While such a treatment worked well for
Thingstad et al. since they could invoke symmetry in order to analyse only a twelfth of
the BZ in addition to considering no more than 4 bosonic modes, our problem becomes
significantly more complicated. We made no assumptions of the symmetry of the super-
conducting state, as it is one of the things we would like to determine, and so we must
analyse the entire BZ. Also, we have more than 10 magnon modes making the structure
of the BCS potential very complicated in addition to it being significantly weaker than the
phonon-mediated interaction studied in [44]. In order to faithfully capture the details of
the potential we would therefore need a very good resolution of k-points close to the Fermi
surface. It is also essential that one has sufficient resolution to resolve the shape of χk′ at
Tc [45]. Although an attempt was made by using approximately 4000 points on the BZ
(most of them on an annulus around the Fermi surface) it seems like a significantly better
resolution is required.

5.3 The Eliashberg electron-boson spectral function
An alternative method of describing superconductivity is through Eliashberg theory, where
one of the central quantities is the electron-boson spectral function α2F (ω) (sometimes
just called the Eliashberg function). The electron-boson spectral function is defined as a
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double average of the electron-boson coupling matrix over the Fermi surface [46]–[49],
often written as

α2F (ω) =
1

D0

∑
k,k′,ν

∣∣gνk,k′

∣∣2 δ(ϵk)δ(ϵk′)δ(ω − ωk−k′,ν). (5.42)

Here D0 is the density of states at the Fermi surface. We find the electron-boson coupling
matrix gνk,k′ from the electron-boson interaction in the Hamiltonian, which in general takes
the form

He−b =
∑
k,q,ν

∑
σ,σ′

(
gνk,q,σ,σ′φq,νc

†
k+q,σck†,σ′ + h.c

)
. (5.43)

Whatever boson of mode ν and wavevector q chosen to mediate this interaction is created
and annihilated by the operators φq,ν and φ†

q,ν respectively. As we have seen, the magnon
modes of a non-collinear FMI can couple to several different electron spin structures.
Typically phonon-mediated superconductivity is studied where there is only a single spin
structure so that this is not a problem. We therefore generalise Eqn. (5.42) to include
different spin structure coupling strengths

α2F (ω) =
1

D0

∑
k,k′,ν

∑
α,α′

∣∣gνk,k′,α,α′

∣∣2 δ(ϵk,α)δ(ϵk′,α′)δ(ω − ωk−k′,ν). (5.44)
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Figure 5.6: Schematic of the possible BCS scattering processes in the case of electron bands that
are non-degenerate in spin quantum number.

With our choice of only opposite-momenta scattering processes there cannot be any
contribution from unpolarised Cooper pairs if the single electron dispersion relation is non-
degenerate for different spin (the possible scattering processes in this case are illustrated
in Figure 5.6). In our case the electron dispersion is degenerate so that all pairings may
contribute. We rewrite Eqn. (4.13) so that it resembles Eqn. (5.43)

H(ρ)
e−m =

∑
k,q,ν
α,α′

[(
gαα

′

ρ uqρν + gα
′α

ρ v∗−qρν

)
Aqνc

†
k+q,αck,α′ + h.c

]
. (5.45)
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Determining gνk,q,σ,σ′ in Eqn. (5.44) is now simply a matter of reading out the coefficient
from Eqn. (5.45), which yields the following expression for the SPFMI / NM electron-
magnon spectral function

α2F (ω) =
1

D0

∑
k,k′,ν

∑
α,α′

(∑
ρ,ρ′

(
gαα

′

ρ gαα
′

ρ′ (uqρνu
∗
qρ′ν + v∗−qρνv−qρ′ν)

+ gα
′α

ρ gαα
′

ρ′ (v∗−qρνu
∗
qρ′ν + uqρνv−qρ′ν)

))
× δ(ϵk)δ(ϵk′)δ(ω − ωq,ν).

(5.46)

For notation purposes we have kept the label q = k − k′. There are some problems to
address before a numerical calculation of this expression can be done. Even though the
delta functions in single particle electron dispersion restricts the sum of k’s to momenta on
the Fermi surface one cannot hope to achieve a sufficient resolution so that a delta function
in magnon dispersion gives correct results. Consequently we approximate δ(ω−ωk−k′,ν)
by instead using a narrow rectangular function of unit area. We must also get rid of the
system size dependence in order to perform an analysis in the continuum limit. Looking
at the form of D0 and gαα

′

ρ we see that in total the sum has a factor of 1/N2, so we may
rewrite the sum to an integral that is independent of N

α2F (ω) =
N2

D0

∑
α,α′,ν

∫
FS

dkdk′

A2
BZ

(∑
ρ,ρ′

(
gαα

′

ρ gαα
′

ρ′ (uqρνu
∗
qρ′ν + v∗−qρνv−qρ′ν)

+ gα
′α

ρ gαα
′

ρ′ (v∗−qρνu
∗
qρ′ν + uqρνv−qρ′ν)

))
× 1

∆ω
rect

(
ω − ωq,ν

∆ω

)
.

(5.47)

In a similar fashion to Eq. (5.38) we find here that the expression can be calculated as
an average of sampled points over the Fermi surface. One of the important quantities we
can calculate from the electron-boson spectral function is the Eliashberg electron-boson
coupling constant

λ = 2

∫ ∞

0

dω

ω
α2F (ω). (5.48)

Figure 5.7 shows a numerical calculation of the Eliashberg electron-boson spectral func-
tion and coupling constant. Here we again get a quite small coupling strength, albeit a bit
larger than that calculated from the gap function eigenvalue problem on the Fermi surface.
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Figure 5.7: Eliashberg electron-boson spectral function and coupling constant for a SPFMI / NM
bilayer with a spin period of 6 atoms at an approximately circular Fermi surface of radius kF = a−1.
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Chapter 6
Conclusion and Outlook

We have utilised the general rotation model presented by Fishman [35] to develop a frame-
work for working with magnon mediated superconductivity at the interface of a metal and
a non-collinear in-plane magnetic structure of zero net magnetisation. Although the thesis
limits itself to studying a 2D magnetic structure the same principles can easily be gen-
eralised to 3D skyrmion lattices, with the downside of yielding a theory of much uglier
mathematical expressions. Furthermore we have tested that the framework in the specific
case of a collinear antiferromagnetic insulator gives a description that agrees with previ-
ous studies [8]. The framework was also applied to a bilayer with a spiral spin structure
on a triangular grid, for which both electronic and magnonic spectra were found and in-
corporated into an effective interaction describing the magnon mediated electron-electron
coupling. This bilayer model was found to in theory allow for p-wave superconductivity
with the addition of polarised Sz = ±1 Cooper pairs. However, the magnon mediated
coupling for superconductivity in this specific system is estimated to be very weak even
without considering Coulomb interactions, with the unpolarised triplet pairs dominating;
although as a result of the complicated form of the pair potential the findings should be
treated in a mostly qualitative manner. This was a necessary consequence of approximat-
ing the BCS potential to be constant in k-space magnitude, and while such approximations
seem common in BCS theory there is the danger of losing too much information about the
pair interaction. It would be desirable to perform a more complete calculation of the su-
perconducting gap as done by Tingstad et al. [44], but with our significantly weaker and
more complicated interaction a sufficient sampling of k-points was hard to achieve. An
investigation of the Eliashberg electron-magnon spectral function provided further indica-
tions that the superconducting coupling constant will indeed be quite weak. We conclude
that the spiral spin structure in a triangular lattice is not optimal for electron-magnon cou-
pling, but the emergence of polarised triplet pairs is interesting. We attribute the creation
of polarised triplet pairs to rotation of the spins as they scatter on the non-collinear spin
structure.

Even if the specific non-collinear structure studied here with our given parameters may
not give the best superconducting attributes this does not rule out other non-collinear struc-
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tures being good superconducting mediators, and finding such a structure could be the fo-
cus of future investigations. One of the most interesting properties of the non-collinearity
was the possible appearance of spin polarised Cooper pairs, which could be applied in
spintronic logic devices, motivating the search for a bilayer with non-collinear structure
where the polarised terms dominate. Another interesting avenue to explore would be a
metal coupled to an insulating skyrmion crystal with topological magnonic states [50], or
using a topological insulator instead of a metal, with the aim of finding a tunable ”topo-
logical superconductivity”. For an experimental study of such systems the metallic part
should consist of a non-magnetic metal that does not become a superconductor at low tem-
peratures, allowing us to be sure that any measured superconductivity is indeed mediated
by magnons in the magnetic part. Some suggestions would be monoatomic layers of cop-
per, silver or gold [13]. As for the non-collinear magnetic insulator part, a typical material
seems to be Cu2OSeO3 [51], [52].
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Appendix A
Non-collinear magnet

A.1 Elements of the rotated interaction matrix
The elements of W ij are as follows:

W ij
xx = (Jx cos θi cosψi −Dij

y sin θi −Dij
z cos θi sinψi) cos θj cosψj

+ (Jy cos θi sinψi +Dij
x sin θi +Dij

z cos θi cosψi) cos θj sinψj

+ (Jz sin θi −Dij
x cos θi sinψi +Dij

y cos θi cosψi) sin θj ,

(A.1)

W ij
xy = (Jy cos θi sinψi +Dij

x sin θi +Dij
z cos θi cosψi) cosψj

− (Jx cos θi cosψi −Dij
y sin θi −Dij

z cos θi sinψi) sinψj ,
(A.2)

W ij
xz = (Jx cos θi cosψi −Dij

y sin θi −Dij
z cos θi sinψi) sin θj cosψj

+ (Jy cos θi sinψi +Dij
x sin θi +Dij

z cos θi cosψi) sin θj sinψj

− (J sin θi −Dij
x cos θi sinψi +Dij

y cos θi cosψi) cos θj ,

(A.3)

W ij
yx = (Jy cosψi −Dij

z sinψi) cos θj sinψj

− (Jx sinψi +Dij
z cosψi) cos θj cosψj

− (Dij
y sinψi +Dij

x cosψi) sin θj ,

(A.4)

W ij
yy = (Jx sinψi +Dij

z cosψi) sinψj + (Jy cosψi −Dij
z sinψi) cosψj , (A.5)

W ij
yz = (Jy cosψi −Dij

z sinψi) sin θj sinψj

− (Jx sinψi +Dij
z cosψi) sin θj cosψj

+ (Dij
x cosψi +Dij

y sinψi) cos θj ,

(A.6)
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W ij
zx = (Jx sin θi cosψi +Dij

y cos θi −Dij
z sin θi sinψi) cos θj cosψj

+ (Jy sin θi sinψi −Dij
x cos θi +Dij

z sin θi cosψi) cos θj sinψj

− (Jz cos θi +Dij
x sin θi sinψi −Dij

y sin θi cosψi) sin θj ,

(A.7)

W ij
zy = (Jy sin θi sinψi −Dij

x cos θi +Dij
z sin θi cosψi) cosψj

− (Jx sin θi cosψi +Dij
y cos θi −Dij

z sin θi sinψi) sinψj ,
(A.8)

W ij
zz = (Jx sin θi cosψi +Dij

y cos θi −Dij
z sin θi sinψi) sin θj cosψj

+ (Jy sin θi sinψi −Dij
x cos θi +Dij

z sin θi cosψi) sin θj sinψj

+ (Jz cos θi +Dij
x sin θi sinψi −Dij

y sin θi cosψi) cos θj .

(A.9)
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Appendix B
Effective interaction

B.1 Schrieffer-Wolff transformation
We identify the different parts of the interaction Hamiltonian

ηH(Ω)
1 =

∑
k,q,Γ
α,α′

gαα
′

Ω

(
uqΩΓAqΓc

†
k+q,αck,α′︸ ︷︷ ︸
(1)

+vqΩΓA
†
−qΓc

†
k+q,αck,α′︸ ︷︷ ︸
(2)

+ u∗qΩΓA
†
qΓc

†
k,α′ck+q,α︸ ︷︷ ︸
(3)

+v∗qΩΓA−qΓc
†
k,α′ck+q,α︸ ︷︷ ︸
(4)

)
,

(B.1)

and write our ansatz for the corresponding generator of a canonical transformation that
should give an effective Hamiltonian where the terms of linear order in boson operators:

ηS(Ω) =
∑
k,q,Γ
α,α′

gαα
′

Ω

(
X (1)uqΩΓAqΓc

†
k+q,αck,α′ + X (2)vqΩΓA

†
−qΓc

†
k+q,αck,α′

+ X (3)u∗qΩΓA
†
qΓc

†
k,α′ck+q,α + X (4)v∗qΩΓA−qΓc

†
k,α′ck+q,α

)
.

(B.2)

The Hamiltonian describing isolated NM and SPFMI layers is

H0 =
∑
kα

Ekαc
†
k,αck,α +

∑
q

ωqΓa
†
qΓaqΓ (B.3)

The task is to determine the unknown coefficients in the generator, which we can find by
using the fact that it has a similar form as the interaction Hamiltonian. This is done by
projecting Eq. (2.18) onto certain states that count the number of fermions and bosons
with quantum numbers matching the terms of the interaction Hamiltonian.

⟨n| ηH(Ω)
1 |m⟩ = ⟨n|

(
H0ηS

(Ω) − ηS(Ω)H0

)
|m⟩ . (B.4)

We now analyse term by term.
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Term (1)

Let
⟨n| = ⟨k + q, α; 0| ,

|m⟩ = |k, α′; q,Γ⟩ .

Then

⟨n|
(
H0ηS

(Ω) − ηS(Ω)H0

)
|m⟩ = (Ek+q,α − Ek,α′ − ωqΓ) ⟨n| ηS(Ω) |m⟩ , (B.5)

so that

⟨n| ηS(Ω) |m⟩ = X (1) ⟨n| ηH(Ω)
1 |m⟩ = ⟨n| ηH(Ω)

1 |m⟩
Ek+q,α − Ek,α′ − ωqΓ

(B.6)

Term (2)

Let
⟨n| = ⟨k + q, α;−q,Γ| ,

|m⟩ = |k, α′; 0⟩ .

Then

⟨n|
(
H0ηS

(Ω) − ηS(Ω)H0

)
|m⟩ = (Ek+q,α + ω−qΓ − Ek,α′) ⟨n| ηS(Ω) |m⟩ , (B.7)

so that

⟨n| ηS(Ω) |m⟩ = X (2) ⟨n| ηH(Ω)
1 |m⟩ = ⟨n| ηH(Ω)

1 |m⟩
Ek+q,α − Ek,α′ + ωqΓ

(B.8)

Term (3)

Let
⟨n| = ⟨k, α′; q,Γ| ,

|m⟩ = |k + q, α; 0⟩ .

Then

⟨n|
(
H0ηS

(Ω) − ηS(Ω)H0

)
|m⟩ = (Ek,α′ + ωqΓ − Ek+q,α) ⟨n| ηS(Ω) |m⟩ , (B.9)

so that

⟨n| ηS(Ω) |m⟩ = X (3) ⟨n| ηH(Ω)
1 |m⟩ = −⟨n| ηH(Ω)

1 |m⟩
Ek+q,α − Ek,α′ − ωqΓ

(B.10)
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Term (4)

Let
⟨n| = ⟨k, α′; 0| ,

|m⟩ = |k + q, α;−q,Γ⟩ .

Then

⟨n|
(
H0ηS

(Ω) − ηS(Ω)H0

)
|m⟩ = (Ek,α′ − Ek+q,α − ω−qΓ) ⟨n| ηS(Ω) |m⟩ , (B.11)

so that

⟨n| ηS(Ω) |m⟩ = X (4) ⟨n| ηH(Ω)
1 |m⟩ = −⟨n| ηH(Ω)

1 |m⟩
Ek+q,α − Ek,α′ + ωqΓ

. (B.12)

We determine the coefficients to be

Xαα′

kqΓ = X (1) = −X (3) =
1

Ek+q,α − Ek,α′ − ωΓ,q
(B.13)

Yαα
′

kqΓ = X (2) = −X (4) =
1

Ek+q,α − Ek,α′ + ωΓ,q
(B.14)

B.2 Collinear AFMI enhancement factors
The inverse Bogoliubov transformation for an anti-ferromagnet has the well-known form
of Eq. (4.56) which can be expressed as

T−1
q =


uqAA uqAB vqAA vqAB
uqBA uqBB vqBA vqBB
v∗−qAA v∗−qAB u∗−qAA u∗−qAB

v∗−qBA u∗−qBB u∗−qBA u∗−qBB

 =


uq 0 0 vq
0 uq vq 0
0 vq uq 0
vq 0 0 uq

 , (B.15)

in the framework of Colpa [20]. from this matrix we read out the expressions in Eqs. (4.37),
(4.38), (4.39) and (4.40) to be

A1(q, A, α, α
′, β, β′) =

∑
ΩΩ′

(
gβ

′β
Ω gαα

′

Ω′ u∗qΩAuqΩ′A + gβ
′β

Ω gα
′α

Ω′ u∗qΩAv
∗
−qΩ′A

)
= gβ

′β
A gαα

′

A u2q + gβ
′β
A gα

′α
B uqvq

(B.16)

A1(q, B, α, α
′, β, β′) =

∑
ΩΩ′

(
gβ

′β
Ω gαα

′

Ω′ u∗qΩBuqΩ′B + gβ
′β

Ω gα
′α

Ω′ u∗qΩBv
∗
−qΩ′B

)
= gβ

′β
B gαα

′

B u2q + gβ
′β
B gα

′α
A uqvq

(B.17)
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A2(q, A, α, α
′, β, β′) =

∑
ΩΩ′

(
gβ

′β
Ω gαα

′

Ω′ v∗qΩAvqΩ′A + gβ
′β

Ω gα
′α

Ω′ v∗qΩAu
∗
−qΩ′A

)
= gβ

′β
B gαα

′

B v2q + gβ
′β
B gα

′α
A vquq

(B.18)

A2(q, B, α, α
′, β, β′) =

∑
ΩΩ′

(
gβ

′β
Ω gαα

′

Ω′ v∗qΩBvqΩ′B + gβ
′β

Ω gα
′α

Ω′ v∗qΩBu
∗
−qΩ′B

)
= gβ

′β
A gαα

′

A v2q + gβ
′β
A gα

′α
B vquq

(B.19)

B1(q, A, α, α
′, β, β′) =

∑
ΩΩ′

(
gαα

′

Ω gβ
′β

Ω′ uqΩAu
∗
qΩ′A + gαα

′

Ω gββ
′

Ω′ uqΩAv−qΩ′A

)
= gαα

′

A gβ
′β
A u2q + gαα

′

A gββ
′

B uqvq

(B.20)

B1(q, B, α, α
′, β, β′) =

∑
ΩΩ′

(
gαα

′

Ω gβ
′β

Ω′ uqΩBu
∗
qΩ′B + gαα

′

Ω gββ
′

Ω′ uqΩBv−qΩ′B

)
= gαα

′

B gβ
′β
B u2q + gαα

′

B gββ
′

A uqvq

(B.21)

B2(q, A, α, α
′, β, β′) =

∑
ΩΩ′

(
gαα

′

Ω gβ
′β

Ω′ vqΩAv
∗
qΩ′A + gαα

′

Ω gββ
′

Ω′ vqΩAu−qΩ′A

)
= gαα

′

B gβ
′β
B v2q + gαα

′

B gββ
′

A vquq

(B.22)

B2(q, B, α, α
′, β, β′) =

∑
ΩΩ′

(
gαα

′

Ω gβ
′β

Ω′ vqΩBv
∗
qΩ′B + gαα

′

Ω gββ
′

Ω′ vqΩBu−qΩ′B

)
= gαα

′

A gβ
′β
A v2q + gαα

′

A gββ
′

B vquq

(B.23)

We use that gA↑
1 = gB↓

1 = 0 to show

Aν(q,Ω, ↑, ↓, ↑, ↓) = 0, Bν(q,Ω, ↑, ↓, ↑, ↓) = 0 (B.24)

Aν(q,Ω, ↓, ↑, ↓, ↑) = 0, Bν(q,Ω, ↓, ↑, ↓, ↑) = 0 (B.25)

for ν ∈ {1, 2}, Ω ∈ {A,B}. Furthermore

A1(q, A, ↑, ↓, ↓, ↑) = A1(q, B, ↓, ↑, ↑, ↓) = 0 (B.26)

A2(q, B, ↑, ↓, ↓, ↑) = A2(q, A, ↓, ↑, ↑, ↓) = 0 (B.27)

B1(q, A, ↑, ↓, ↓, ↑) = B1(q, B, ↓, ↑, ↑, ↓) = 0 (B.28)

B2(q, B, ↑, ↓, ↓, ↑) = B2(q, A, ↓, ↑, ↑, ↓) = 0 (B.29)

The only non-zero coefficients end up being

A1(q, B, ↑, ↓, ↓, ↑) = B1(q, B, ↑, ↓, ↓, ↑) = gB↑
1 gB↑

1 u2q + gB↑
1 gA↓

1 uqvq (B.30)

A2(q, A, ↑, ↓, ↓, ↑) = B2(q, A, ↑, ↓, ↓, ↑) = gB↑
1 gB↑

1 v2q + gB↑
1 gA↓

1 vquq (B.31)

A1(q, A, ↓, ↑, ↑, ↓) = B1(q, A, ↓, ↑, ↑, ↓) = gA↓
1 gA↓

1 u2q + gA↓
1 gB↑

1 uqvq (B.32)

A2(q, B, ↓, ↑, ↑, ↓) = B2(q, B, ↓, ↑, ↑, ↓) = gA↓
1 gA↓

1 v2q + gA↓
1 gB↑

1 vquq (B.33)
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Appendix C
BCS theory

C.1 Gap functions

We remind ourselves of the gap function for unpolarised pairs along with the unpolarised
spin singlet and triplet superconducting order parameters.

∆kσ1σ2 = −
∑

k′σ3σ4

Ṽ σ1σ2σ3σ4

kk′ ∆k′σ4σ3χk(T ) (C.1)

∆
O(s)
k,↑↓ = ∆k,↑↓ −∆k,↓↑ (C.2)

∆
E(s)
k,↑↓ = ∆k,↑↓ +∆k,↓↑ (C.3)

We can then show that the even part in k of the unpolarised potential gives us a gap function
for the singlet pair

∆
O(s)
k,↑↓ = −

∑
k′

[
V ↑↓↓↑
kk′ ∆k′,↑↓ + V ↑↓↑↓

kk′ ∆k′,↓↑ − V ↓↑↓↑
kk′ ∆k′,↑↓ − V ↓↑↑↓

kk′ ∆k′,↓↑

]
χk′

= −
∑
k′

[ (
V ↑↓↓↑
kk′ + V ↑↓↓↑

−kk′

)︸ ︷︷ ︸
=V

E(k)

kk′

∆k′,↑↓ −
(
V ↓↑↑↓
kk′ + V ↓↑↑↓

−kk′

)︸ ︷︷ ︸
=V

E(k)

kk′

∆k′,↓↑

]
χk′

= −
∑
k′

V
E(k)
kk′ ∆

O(s)
k′,↑↓ χk′

(C.4)
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while the odd part in k of the unpolarised potential gives us a gap function for the unpo-
larised triplet pair

∆
E(s)
k,↑↓ = −

∑
k′

[
V ↑↓↓↑
kk′ ∆k′,↑↓ + V ↑↓↑↓

kk′ ∆k′,↓↑ + V ↓↑↓↑
kk′ ∆k′,↑↓ + V ↓↑↑↓

kk′ ∆k′,↓↑

]
χk′

= −
∑
k′

[ (
V ↑↓↓↑
kk′ − V ↑↓↓↑

−kk′

)︸ ︷︷ ︸
=V

O(k)

kk′

∆k′,↑↓ +
(
V ↓↑↑↓
kk′ − V ↓↑↑↓

−kk′

)︸ ︷︷ ︸
=V

O(k)

kk′

∆k′,↓↑

]
χk′

= −
∑
k′

V
O(k)
kk′ ∆

E(s)
k′,↑↓ χk′

(C.5)
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