Information Systems XXX (XXXX) XXX

Contents lists available at ScienceDirect
Innrmouli:‘l;

Information Systems ~ 1S

journal homepage: www.elsevier.com/locate/is

DEEPMATCH2: A comprehensive deep learning-based approach for
in-vehicle presence detection

Magnus Oplenskedal ***, Peter Herrmann ¢, Amir Taherkordi "
2 Norwegian University of Science and Technology (NTNU), Trondheim, Norway

b Forkbeard Technologies, Oslo, Norway
¢ University of Oslo, Oslo, Norway

ARTICLE INFO

Article history:

Received 10 April 2021

Received in revised form 6 October 2021
Accepted 13 October 2021

Available online xxxx

Recommended by Gottfried Vossen

Keywords:

Mobile context

In-vehicle presence detection
Sensor event streams analysis
Deep learning

Event matching

Intelligent transportation

ABSTRACT

The accurate detection of the mobile context information of public transportation vehicles and their
passengers is a key feature to realize intelligent transportation systems. A topical example is in-vehicle
presence detection that can, e.g., be used to ticket passengers automatically. Unfortunately, most existing
solutions in this field suffer from low spatiotemporal accuracy which impedes their use in practice.
In previous work, we addressed this challenge through a deep learning-based framework, called
DEEPMATCH, that allows us to detect in-vehicle presence with a high degree of accuracy. DEEPMATCH
utilizes the smartphone of a passenger to analyse and match the event streams of its own sensors
with the event streams of counterpart sensors provided by a reference unit that is installed inside
the vehicle. This is achieved through a new learning model architecture using Stacked Convolutional
Autoencoders to compress sensor input streams by feature extraction and dimensionality reduction
as well as a deep convolutional neural network to match the streams of the user phone and the
reference device. The sensor stream compression is offloaded to the smartphone, while the matching is
performed in a server. In this paper, we introduce DEEPMATCH2. It is an amended version of DEEPMATCH
that reduces the amount of data to be transferred from the user and reference devices to the server
by the factor of four. Further, DEEPMATCH2 improves the already good accuracy of DEEPMATCH from
97.81% to 98.51%. Moreover, we propose a travel inference algorithm, based on DEEPMATCH?2, to detect
the duration of whole passenger trips in public transport vehicles with a high degree of precision. This
is needed to create intelligent and highly reliable auto-ticketing systems. Thanks to the high accuracy

of 98.51% by DEEPMATCH2, the inferences can be carried out with a negligible error rate.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

However, the next generation of context-aware service within
public transportation will require data sources providing an ex-
tremely high degree of precision and sophistication. In particular,

In recent years, the rapid development of mobile technolo-
gies, IoT and cellular network infrastructures has led to new
unprecedented opportunities for making public transportation a
very environment-friendly mode of travelling more attractive.
The fact that more than 3.8 billion people in the world own
smartphones [1], provides a very worthwhile research and devel-
opment area already utilized by public transportation providers
in many areas of the world, e.g., in Northern Europe. For instance,
smartphone applications, that provide passengers the option to
buy tickets and offer them other context-aware services such as
path-finding and travel planning, are quite common nowadays.

* Corresponding author at: Norwegian University of Science and Technology
(NTNU), Trondheim, Norway.
E-mail addresses: magnukop@ntnu.no (M. Oplenskedal),
herrmann@ntnu.no (P. Herrmann), amirhost@ifi.uio.no (A. Taherkordi).

https://doi.org/10.1016/j.i5.2021.101927

one may consider the mobile context, i.e., all kinds of spatiotem-
poral properties of the participating passengers and vehicles [2].
For example, if we know whether a person is inside a vehicle
or not at a certain time and place, services such as dynamic
vehicle-route planners based on passenger load and route op-
timization can be realized. We can detect this kind of mobile
context by precise in-vehicle detection systems. These systems can
also make the ticketing of passengers considerably simpler. In to-
day’s smartphone applications, the passengers have to remember
buying tickets before starting a ride. Further, they often need in-
depth knowledge about the ticketing system to buy the correct
ticket for the planned trip. In contrast, using a highly accurate
in-vehicle presence detection solution, a so-called Be-In/Be-Out
(BIBO) system |[3], tickets can be issued automatically to the
passengers based on the exact duration of their journey. This way,
the passengers can conveniently enter and leave public transport

0306-4379/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Information Systems (2021) 101927, https://doi.org/10.1016/.is.2021.101927.

Please cite this article as: M. Oplenskedal, P. Herrmann and A. Taherkordi, DEEPMATCcH2: A comprehensive deep learning-based approach for in-vehicle presence detection,

https://doi.org/10.1016/j.is.2021.101927
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://creativecommons.org/licenses/by/4.0/
mailto:magnukop@ntnu.no
mailto:herrmann@ntnu.no
mailto:amirhost@ifi.uio.no
https://doi.org/10.1016/j.is.2021.101927
http://creativecommons.org/licenses/by/4.0/

M. Oplenskedal, P. Herrmann and A. Taherkordi

vehicles without having to deal with planning and purchasing
tickets in advance.

In-vehicle presence detection has attracted the attention of
the research community and industry. Early approaches like [4,5]
utilize communication systems such as Radio Frequency Identi-
fication (RFID) or Bluetooth Low Energy (BLE). While travelling,
temporary connections are built up between the user’s mobile de-
vice and certain fixed vehicle equipment to detect the passengers
presence inside the vehicle. Other approaches, for instance [6,
7], analyse event streams from smartphone sensors for certain
properties. Modern smartphones are equipped with a variety
of sensors such as magnetometers, accelerometers, gyroscopes,
GPS, and barometers which offer unprecedented opportunities
to analyse mobile context information from the user’s environ-
ment. Finally, machine learning techniques have recently been
leveraged to analyse sensor events for detecting mobile contexts,
e.g., [8]. We will argue later that the accuracy of works within the
above categories is still not good enough to make them suitable
for auto-ticketing in practice.

To realize in-vehicle presence detection with a high degree
of accuracy, in our previous work, we proposed a deep learning-
based framework, called DEEPMATCH [9]. Each vehicle is equipped
with a stationary Reference Device (RefDev) (e.g., an Android
phone). We record the streams of sensor events gauged in both,
the RefDev and the smartphones of potential passengers. In a so-
called in-vehicle presence detection process, the stream generated
in a smartphone is then compared with the one from the RefDev
to find out if both devices are in the same vehicle. If that is the
case, the owner of the smartphone is necessarily a passenger
in the vehicle containing the stationary RefDev and can, e.g., be
billed for the journey. The in-vehicle presence detection process
is realized by data compression using Stacked Convolutional Au-
toencoders as well as a deep neural network matching component
that matches compressed sensor samples to find out if they
were taken from within the same vehicle. The data compression
is offloaded to the users’ smartphones and reference devices,
while the matching process is performed in a server that can
be external, e.g., in a cloud, or within the vehicle realizing an
Edge computing solution [10]. By training both parts of our model
together, i.e., the compression and matching parts, we achieve
that the matching process does not need the full smartphone and
reference data for its comparison but can rely on the compressed
versions.

Since the design and development of DEEPMATCH, we continu-
ously iterated and improved our deep learning model to improve
its efficiency and accuracy. Moreover, we enhanced the original
framework with inference algorithms that allow us to deduce
the period of time that passengers travel in public transportation
with a very high accuracy. DEEPMATCH lacks this feature which
is highly needed, e.g, in automatic ticketing. The result of the
improvements is a new version of our deep learning-based frame-
work that we call DEEPMATcH2. It is introduced in this paper. In
contrast to the original framework, DEEPMATCH2 incorporates the
following amendments:

e The efficiency was enhanced by reducing the amount of data
necessary for in-presence detection by a factor of four, i.e.,
from previously 512 float values in DEEPMATCH to just 128
float values in DEEPMATCH?2.

e Considering accuracy, we gradually amended the original
layer structure, and for each change, trained and evaluated
the results using the designated performance metrics. In
spite of the concomitant reduction of the size of the input
parameters, we further managed to increase the accuracy of
DEEPMATCH2 to 98.51% in comparison to the accuracy value
of 97.81% in DEEPMATCH.

Information Systems xxx (XXXX) XXX

e In [9], we provided only a short sketch about how one
can use the results of DEEPMATCH to detect whole trips of
passengers in public transport vehicles with a high degree of
precision. In this paper, we go much deeper into this topic
and discuss travelling user inference systems that are based
on DEEPMATCH2 and can infer if and for which period of time
a passenger makes a trip in a public transportation vehicle
with a very low error rate.

The rest of this paper is organized as follows. In Section 2,
we discuss existing solutions followed by the presentation of
the original method DEEPMATCH in Section 3. In Section 4, we
elaborate on the improvements made in DEEPMATCH2. Thereafter,
we report the experimental evaluation results for the variants of
our deep learning model and some baseline methods in Section 5.
The travelling user inference algorithms that allow us to detect
whole passenger trips, are introduced in Section 6. Finally, we
conclude our paper in Section 7 with a discussion on the results
gained so far and a look at our future plan.

2. Related work

In-vehicle presence detection solutions can be classified into
three different categories. The first category is focused purely
on utilizing communication technologies, while the second one
is based on analysing mobile sensor events to detect in-vehicle
presence. The third category consists of some recent works that
leverage deep learning to analyse mobile contexts. In the follow-
ing, we discuss each category in detail.

2.1. Communication technology-based solutions

Early in-vehicle presence detection systems were imple-
mented using Radio Frequency Identification (RFID) with active
tags carried by the passengers, and a single communication unit
in the centre of a vehicle. To track the RFID devices, contactless,
mid-range radio-based identification and communication pro-
tocols were used. One of the first solutions was EasyRide [4],
developed by the Swiss Railways Association. Allfa [11] is another
RFID-based system, tested in busses, trams and trains in Dresden,
Germany, for half a year. In total, the system covered about
120,000 trips carried out by 2000 users. Unfortunately, testing
these systems proved that they were too unreliable to be used for
in-vehicle presence detection in practice. The main reason for that
is the weak transmitter strengths of the active RFID-tags, which
makes it difficult to detect them reliably in all areas of the vehicle.
As discussed in [4], this affords not only one but a vast number
of readers in the vehicle, at least one at each door. But even that
does not seem to be sufficient to make the passenger assignment
sufficiently predictable. For instance, Allfa has an accuracy rate of
just 68% making it unsuitable for practical use.

Other approaches focus on Bluetooth Low Energy (BLE)-based
automated in-vehicle detection. Compared with active RFID ap-
proaches with battery-powered tags, BLE-based BIBO systems
can utilize smartphones with additional monitoring options, the
possibility to measure signal strengths for proximity determi-
nation, larger distribution channels, etc. One of the early works
on Bluetooth-based public transport ticketing system was car-
ried out by the authors of [12]. Their system was in charge
of collecting only the source and destination of each passenger
journey. The first BLE-based solution is proposed in [3], where the
authors are cautiously optimistic that BLE might work for BIBO
systems. Nevertheless, the chassis of a vehicle does not limit the
accessibility of a BLE transmitter which makes it possible that
somebody close to it, e.g., a person in another vehicle, is wrongly
detected. On the other hand, objects in a vehicle may inhibit a BLE
connection such that devices in the vehicle may not be detected.

M. Oplenskedal, P. Herrmann and A. Taherkordi

This is confirmed by the authors of [13] who found out that BLE
is not well suited for indoor localization. As reasons preventing
connections, they name the position of a device as well as human
body obstacles like the hand carrying the device. The authors
of [14] suggest a ticketing system adding a custom profile on
top of the BLE specification to fulfil the payment procedure. In
SEAT [5], a BLE-enabled smartphone communicates with devices
installed in the vehicles to track the journey for automatic pricing.
The main focus of the authors, however, is on security, perfor-
mance, and battery friendliness but not on the accuracy of the
in-vehicle presence detection. To conclude, BLE-based solutions
are also suffering from low accuracy values making them less
suited for in-vehicle presence detection scenarios.

2.2. Mobile sensor data analytics-based solutions

Works in this category analyse the data of the sensors in
user smartphones to detect mobile contexts in transportation.
The authors of [15] focus on context detection using only the
smartphone barometer as it is independent of the phone’s po-
sition and orientation. They demonstrate that the barometer can
be applied to detect user activities of IDLE, WALKING, and VEHI-
CLE at low-power. Likewise, in [16], user activities are classified
using the barometer sensor on smartphones. This approach lever-
ages Bayesian networks, decision trees, and RNN as inference
models to predict user action, e.g., riding or leaving a cable-
car. The authors of [17] demonstrate how the pressure data
collected from a smartphone barometer can be utilized to accu-
rately track driving patterns based on the pressure data collected
from the smart phone’s barometer. By correlating pressure time-
series data against topographic elevation data and road maps for
a given region, a centralized server can estimate the possible
routes through which users have travelled. Another barometer-
based mobile system is HybridBaro [7] that features a hybrid
algorithm to adaptively utilize GPS data to increase the detection
accuracy in flat areas. RoadSphygmo [18] uses the barometer in
smartphones to detect traffic congestion. RideSense [6] is aimed
to match a passenger’s sensor trace against the traces of busses
to determine the riding and leaving times. The authors of [19]
present a vertical location system for vehicles in metropolises.
In particular, they utilize the barometers and gravity sensors of
smartphones to remedy the deficiency of vertical localization
such as GPS. To achieve that, several novel algorithms are used
(e.g., height and angle detection, relative height measurement,
and tracking) to build a highly accurate detection system.

While better than RFID and BLE, the accuracy promised by the
approaches mentioned above is still not good enough to fulfil the
demands of transportation systems. For example, the accuracy of
RideSense [6] collected from five bus lines over more than 20 h,
is between 84 to 98%. As pointed out in [9], only the uppermost
value of 98% would be sufficient for using this technology in
practice.

2.3. Mobile sensor events and deep learning

Recently, deep learning has been leveraged to analyse sen-
sor events for detecting mobile contexts. In [20], the authors
report on the accuracy of models such as RNN, CNN, various
Hybrid models, Restricted Boltzman Machines, and Autoencoders
with respect to their ability to classify human activities from
body-worn sensors. They conclude that, compared to traditional
pattern recognition methods, deep learning reduces the depen-
dency on human-crafted feature extraction and achieves better
performance by automatically learning high-level representations
of the sensor events. The authors also state that, from a technical

Information Systems xxx (XXXX) XXX

viewpoint, there is no model outperforming all the others in gen-
eral. Thus, they recommend to choose the models based on the
requirements of specific scenarios. DeepSense [8] uses CNN and
RNN to provide an estimation and classification framework for
car tracking with motion sensors and human activity recognition.
In [21], DeepSleepNet, a deep learning framework for automatic
sleep stage scoring based on electroencephalogram data, is pro-
posed. The authors show that the model automatically learns fea-
tures for different datasets without utilizing any hand-engineered
features. The model achieves an accuracy that is similar to the
state-of-the-art methods using hand-engineering. Some works in
this category focus on detecting the transportation mode using
machine learning techniques and sensors data on smartphones
such as [22,23]. From the ML-based stream matching perspective,
StreamLearner [24] is a distributed Complex Event Processing
(CEP) system proposed for scalable and low-latency event detec-
tion on streaming data that uses neural networks. It is mainly
designed for systems with multiple event sources causing diverse
patterns in the event streams. As a case study, the authors discuss
anomaly detection (i.e., finding abnormal sequences of sensor
events) in smart factories.

The important finding of most works in this category is that
deep learning can outperform hand-crafted feature extraction
methods when applied to mobile sensor event streams. This can
be used to deduce valuable information about the mobile context.
We aim to exploit this power of deep learning in DEEPMATCH2
to build a model capable of highly accurate in-vehicle presence
prediction solely based on sensor event streams. On the other
side, the limited number of works, yet carried out on machine
learning-based sensor stream matching, focus mainly on the qual-
ity aspects of stream matching, e.g., to provide high throughput.
In contrast to this paper, the efficiency and accuracy of these
approaches are only superficially discussed in most cases.

3. DEEPMATCH

As we will discuss later, our deep learning method DEEP-
MATcH2 enhances its predecessor DEEPMATCH in both, in-vehicle
presence detection accuracy and in the amount of data transfer
needed. Nevertheless, the basic structures of DEEPMATCH and
DEEPMATCH2 are very similar. Therefore, we decided to introduce
the fundamentals for the architecture of both DEEPMATCH and
DEEPMATCH2 in this section. Thereafter, we discuss the changes
leading to DEEPMATCH2 in Section 4.

In the following, we start with a general overview of the
model architecture of our deep learning model, followed by a
discussion of the hardware and software settings, on which our
approach has been built. Thereafter, we describe how DEEPMATCH
conducts the analysis of the mobile data sensed, followed by the
design considerations and architecture of our learning model, and
a discussion on how the learning model is trained. Finally, we
present the design rationale and experimental settings behind the
DEEPMATCH deep learning model.

3.1. Overview

Fig. 1 depicts the equipment needed in a bus' to realize our
approach. The bus is equipped with a Bluetooth Low Energy (BLE)
transmitter as well as a so-called Reference Device (RefDev). The
RefDev can be a smartphone mounted onto the bus or any other
kind of hardware providing the same type of sensors, that can be
found in a modern smartphone. These sensors include but are not
limited to accelerometers, magnetometers, gyroscopes, barometers,

1 The realization of DEEPMATCH in other types of public transport like
subways, trams, or trains is similar.

M. Oplenskedal, P. Herrmann and A. Taherkordi

Information Systems xxx (XXXX) XXX

|
1
Reference
) I
device 1
1

1

L

Fig. 1. DEEPMATCH bus scenario.

and GPS receivers. The passengers travelling with the bus carry
smartphones in which a special application is installed realizing
parts of the DEEPMATCH deep learning model.

The BLE-transmitter continuously transmits a special ID that is
unique to the bus it is installed in. Due to the low signal strength,
this signal can be only detected by devices that are either inside
the bus or nearby. When a passenger’s phone picks up the BLE-
transmitted signal for the first time, its operating system starts
the DEEPMATCH application. From that moment, the sensors of
the phone sample values that are forwarded to the deep learning
model of DEEPMATCH running in the smartphone application.
DEEPMATCH extracts relevant features from the sensed events and
compresses them through dimensionality reduction. Finally, the
compressed data are timestamped and tagged with the IDs of the
BLE-transmitters, the phone is currently receiving.

In a similar way, the RevDef is used to continuously stream
events from its own sensors and compresses them through DEEP-
MATcH. The compressed data is also timestamped and tagged but,
in contrast to the user phones, only the tag of the BLE transmitter
installed in the same vehicle is used.

Both, the RevDef and the user phones send the compressed
sensor data to a server. Following the wishes of the public trans-
port operators, we may realize DEEPMATCH using different hard-
ware configurations. For instance, the server functionality can
be realized using a cloud provider. Alternatively, following the
principle of fog computing [10], it can be a unit locally installed
in the vehicle, e.g., together with the RevDef.

The server matches the data of the RevDef and the user
phones, that carry the same BLE-transmitter IDs and timestamps,
against each other by a special module of DEePMATCH. If the
module reports a match, we assume that both datasets were
sensed within the same vehicle. Since the RevDef can be unam-
biguously allocated to a particular bus, we can then assume that
the smartphone and its carrier are in the same bus.

3.2, Hardware requirements and system settings

As mentioned above, all vehicles using DEEPMATCH to pro-
vide automated in-vehicle presence prediction, require both, a
BLE-transmitter and a Reference Device (RevDef). In contrast
to the communication technology-based approaches discussed
in Section 2, the BLE-transmitter is not directly used for in-
vehicle detection. Instead, we apply it to perform a coarse-grained
guess in which vehicle a passenger might be inside. In this way,
the server only needs to match the user data with those from
RefDevs, that are related to the sensed BLE ID received by the
user phone, and not with the data of all RefDevs in the transport
network. An additional advantage of this approach is that we can
reduce the time DEEPMATCH is required to run on a user phone.
Both Android and iOS provide the ability to awaken applications

in smartphones when detecting a BLE-signal with a pre-defined
ID. This provides us with the ability to run the application only if
the user is either very close to a vehicle, or inside it. Thus, both
computation overhead and battery consumption is at a minimum.

The authors of [25] show that BLE offers a good reliability
also in noisy in-house environments like those we might come
across in public transport vehicles. In their tests, at least 99.45%
of all packets were transmitted within the expected delay bounds.
Based on these numbers we expect that the phone of a passenger
receives a fair number of the packets broadcasted by the BLE-
transmitter within in the first seconds after entering the vehicle.
Therefore, DEEPMATCH will almost certainly be started timely.

As we discuss to greater detail in Section 5.3, we found out
through experiments, that using only the barometric sensor pro-
vides by far the best matching accuracy. Using DEEPMATCH alone
with the barometric sensor provides an accuracy of 97.81% while
no other combination of sensor data exceeds 80.82%. Moreover,
performance tests show that registering barometer events with a
frequency of 10 Hz incurs a very low battery consumption. The
battery drain on the phones we tried in our tests is between
15 and 25 mAh while continuously registering events from the
barometer. This equals a drain of between 0.6% and 0.8% of the
total battery capacity per hour. That is described more closely in
Section 5.8.

In the case that a vehicle enters a dead spot, i.e., an area with no
cellular network coverage, we temporarily store the compressed
data locally until connectivity is regained and the data can be
transmitted to the server for a delayed matching.

3.3. Mobile data analysis

The deep learning model performing the in-vehicle presence
prediction, i.e., the matching of sensor events, is trained on real
sensor events that were collected from Android-based smart-
phones in the public transport systems of the Norwegian cities
Oslo and Trondheim. In the following, we sketch the process of
collecting the data and converting it to training and evaluation
sets.

The datasets used to train the deep learning model were built
from sensor events gathered by the means of an Android appli-
cation, called Datacollector, that we developed for this purpose.
Datacollector registers events from all sensors available in the
phone, timestamps them, and stores them locally as data points.
Further, we can use the application to upload the data points to
our Data Analysis centre. There, the data points can be processed
further into training and testing samples that are used to train
and evaluate our deep learning network.

To allow the parallel collection of sensor data by several
phones, multiple devices running the Datacollector can be con-
nected using a simple client-server communication protocol. This

M. Oplenskedal, P. Herrmann and A. Taherkordi

allows us to synchronize the clocks of the various phones. Further,
we can tag all events registered by the connected devices with
a unique trip ID. When a data collection session is initiated, the
trip ID is generated by the initiating device and propagated to all
devices taking part in the collection.

Android provides developers with a sensor framework where
the sampling rate of each available sensor can be separately
defined. The effective sampling rate, however, comes usually with
a standard deviation of one to two milliseconds. In addition, even
though each sensor is collecting events at the provided sampling
rate, there is often a shift of the exact sensing times (e.g., while
both, the barometer and accelerometer sensors collect data every
20 ms, the exact points of time, the samplings take place, deviate
from each other by a few milliseconds). On the other hand, two
data streams can be matched best when the sensors in both
devices carry out their sampling steps at exactly the same points
of time t. To dissolve this contradiction between precise sam-
pling times and the aforementioned shortcomings of the Android
framework, we implemented an interpolation technique in our
Data Analysis tool which is described in detail in [9].

The deep learning model in DEEPMATCH was created to sup-
port travel times of varying lengths, and to reduce the amount
of data to be transmitted from the devices in the public trans-
port vehicles to the server, as well as the number of operations
required by the server. To fulfil these requirements, we train our
model to perform predictions on smaller segments of the collected
events. In Section 5.4, we report the results from training the
model on segment sizes of five, ten and 15 s. As elaborated in
Section 5.4, our tests showed that the model being trained on
segments consisting of ten seconds of barometer sensor events
provides the best results.

3.4. Design and architecture of the learning model

The goal of the deep learning model of DEEPMATCH is to
predict the in-vehicle presence of a device by matching its sen-
sor events against the sensor events generated by the on-board
Reference Device (RefDev). The deep learning model consists of
three modules, an encoder, a decoder, and a matching module.
All three modules are trained jointly as one large neural net-
work. In practice, however, the in-vehicle presence predictions
can be achieved by utilizing only the encoder and the matching
module. Therefore, we use the full model that also includes the
decoder, only during the training phase. When our deep learning
model is sufficiently trained, we extract the encoder and match-
ing modules from it. Copies of the encoder are then used in the
RefDev and the passenger devices, while the matching module is
executed in the server.

The distribution of the modules is depicted in Fig. 2.Here, the
green networks in the passenger and reference devices illustrate
that the encoders are residing on these devices. In contrast, the
blue network illustrates the matching module that runs on the
server.

Fig. 3 provides a sketch of the neural network used in DEEP-
MATcH. The coloured boxes represent layers of the neural net-
work that can be trained while the grey boxes refer to model
layers that do not contain trainable parameters. The green boxes
describe trainable layers of the encoder, the orange ones trainable
layers of the decoder, and the blue boxes trainable layers of the
matching module. The hyperparameters of each layer in the neu-
ral network are represented as numbers next to the description
of the layer. More specifically, in the boxes representing the conv
layers, the size of each filter in the layer is represented as width
x height, whilst the number on the right side of a box refers to
the number of filters used. For instance, in the uppermost layers
of the Stacked Convolutional Autoencoders in Fig. 3, there are

Information Systems xxx (XXXX) XXX

Reference Phone

s

Sensorl Events
(128)

Passenger Phone

s

Sensor. Events
(128)

Encoded Data (8)

Encoded Data (8)

v
In-Vehicle Presence Detection

Fig. 2. Overview of the DEEPMATCH distributed framework. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

128 filters of size 8 x 1. Furthermore, for the dense layers, the
number of neurons in the layer is described by the number at
the end of the layer description, e.g. in the first dense layer in the
matching module the number of neurons is 256. The properties
and utilization of the various layers are discussed below.

Since the matching module has to compare the sensor data
from two devices, the RefDev and a passenger phone, we show
two copies of the encoder and decoder in Fig. 3. This type of
neural network topology is generally known as a Siamese Archi-
tecture and has been successfully used to solve other matching
problems such as face recognition [26], gait recognition for person
identification [27], and signature verification [28].

Configuring the deep learning model as a Siamese architecture
provides the model with the ability to receive two simultaneous
inputs, e.g. sensor data segments X, and X,. Since the two Con-
volutional Autoencoders share the same weights, the mapping
performed by the encoders on the two inputs are identical. In
consequence, two matching input segments, i.e., samples of Class
1, result in latent representations e, and e, that are also matching.
The same is true for not matching samples belonging to Class 0.
Here, the two latent representations are dissimilar as well.

3.5. Encoder and decoder

We use an architecture called autoencoder [29]. This kind of
neural network consists of two parts, that directly reflect our
encoder and decoder. The encoder transforms the input of the
autoencoder into an internal representation often referred to as
the latent representation in latent space, whilst the decoder aims
to reconstruct the original input from its latent representation.

The loss, i.e., the error of encoding and later decoding data,
is calculated by comparing the input with the output of the
autoencoder. The goal of training the autoencoder with a large
set of samples is to keep this error minimal. As depicted in Fig. 3,
autoencoders usually consist of several encoder and decoder lay-
ers through which the input data is sequentially forwarded. The
quality of an autoencoder often depends on the arrangement of
these layers. Usually, the length of the data forwarded between
two layers is restricted such that the neural network needs to
learn to prioritize the most important characteristics of its input,
i.e.,, the encoder must learn which features of its input are most
relevant to perform a correct matching.

This feature extraction, can be seen as a compression algorithm.
Then, the latent representation corresponds to the compressed

M. Oplenskedal, P. Herrmann and A. Taherkordi

Information Systems xxx (XXXX) XXX

segment X, segment X,
,,,,,,,,,,,,,,,,,,, ¢ *

8x1 conv, 128 |

8x1 conv, 128 |

T
' Maxpool
Y

I 8x1 conv, 128

T
Maxpool
A A

| 8x1 conv, 64 | !

T
Maxpool

Upsample
.

| 8x1 conv, 64 |

Stacked Convolutional Autoencoder

H T
H Upsample
' i 4

I 8x1 conv, 128 |

T
Upsample
A 2

T
' Maxpool
Yy

I 8x1 conv, 128

T
Maxpool
A A

| 8x1 conv, 64 | !

T
Maxpool

Upsample
2

| 8x1 conv, 64 |

H T
1 Upsample
' L 3

I 8x1 conv, 128 |

T
Upsample
Y

| 8x1 conv, 128 |

| 8x1 conv, 128 |

8)

¥ ¥
L | 8x1 conv, 1 | ' | 8x1 conv, 1 | '
___________________ # Y .__.__.__.____,._,.#,._,.__._,._,._,._:

|a

recreated segment X',

H |:| Encoder Layers

[H 1
% I Concaienate I D Decoder Layers
2 : l dense 256 I ; Matching

: : Module layers
o ; v ; Y
.E | dense 256 | |:| Layers without
[+ : trainable parameters
=
1] Latent

d 1 &

= D Representation

Predicted Matching Y'

Fig. 3. Original architecture of DEEPMATCH. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

data while the decoder is the corresponding decompression al-
gorithm. In addition, the encoder provides input noise reduction
since the compression forces it to learn the most important
features of its input and to discard irrelevant features.

In DEEPMATCH, the ability to compress data is utilized to
reduce the amount of transmitted information from the user
phones and the RefDev to the external server. To let the autoen-
coder learn to prioritize those parts of the input data, that are
most relevant, we train it together with the matching module
in a single neural network. In this way, it learns to discard only
those parts of the sensor events that are less important for the
in-vehicle presence detection, but to keep all relevant data in the
latent representation. This allows us to run the matching module
based on the latent representation of the sensor such that the
server does not need to decode them first.

As shown in Fig. 3, we created our autoencoder using alter-
nating convolutional (conv) and maxpooling layers in the encoder

part. Here, the conv layers are responsible for the feature extrac-
tion while the maxpool layers reduce the size resp. dimensions of
the input. In the decoder, the conv layers alternate with upsample
layers that are responsible for reverting the maxpool operation in
the decoder.

We use the convolutional layers since they are especially suit-
able to detect and extract time-invariant features in sequences,
see [20,30-32]. Of course, this time-invariance is very important
for our in-vehicle presence detection problem since we want to
find out whether two devices are at the same place, i.e., the
same vehicle, independent from temporal influences like those
caused by the distance between the phones in the vehicle. The
maxpool layers reduce the size of their input data by a factor of
two using the max operator. The upsample layers make it possible
to reverse this process by duplicating each value in its input
sequence, e.g., upsample(x,y,z) = x,x,y,Y, z, z. An autoencoder

M. Oplenskedal, P. Herrmann and A. Taherkordi

segment Xg

: | 18x1 conv, 64 | :

| T
J Maxpool
Y

' | 18x1 conv, 64 l
(: T
Maxpool
y

| 18x1 conv, 32 |

)

H 8x1 conv, 32 |
1 T
' Maxpool

8x1 conv, 16

Maxpool

8x1 conv, 16

Upsample

8x1 conv, 32

Upsample
Y

I 18x1 convy, 32 I

'

18x1 conv, 64 | E

: I ’

Upsample
Y

Stacked Convolutional Autoencoder

| 18x1 conv, 64 |

T
Upsample
Y

I 18x1 cony, 1 |

Information Systems xxx (XXXX) XXX

segment Xp

: I 18x1 conv, 64 | :

H T
' Maxpool
Yy

| 18x1 conv, 64 I

T
Maxpool
y

| 18x1 cony, 32 |

)

: 8x1 conv, 32 |
. T
' Maxpool

8x1 conv, 16

Maxpool

8x1 cony, 16

' Upsample

8x1 conv, 32

Upsample
Y

| 18x1 convy, 32 I

!}

18x1 conv, 64 |

; I :

Upsample
A A

| 18x1 conv, 64 |

T
Upsample
v

I 18x1 convy, 1 |

| Concatenate | I:‘ Encoder Layers
| v '
% : | 18x1 conv, 128 | i D Decoder Layers
el " " B
o : v Matching
i - | 18x1 conv, 64 | D Module layers
= v : l:‘ Layers without
:’:9 | = | trainable parameters
< : H D Latent
v : Representation
: | dense 1 | H
A e * ________________ '

Predicted Matching Y'

Fig. 4. Architecture of DEEPMATCH2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

consisting of conv, maxpool, and sample layers, is called a Stacked
Convolutional AutoEncoder (CAE) [31].

Each layer of our CAE consists of three or four more elemental
machine learning operations. At first, a convolution is carried out
followed by a Rectified Linear Unit (ReLU) activation. If the layer
has maxpooling or upsampling functionality, this is executed after
the RelU. Finally, in each layer a batch normalization is carried
out.

3.6. Matching module
As previously mentioned, the matching predictions to find out

if a smartphone is in the same vehicle as a RefDev, are performed
by the matching module residing in a server. To match the sensor

data previously compressed by the encoders, without having first
to decompress them, the matching module needs to be able to
compare the latent representations. To achieve this, we trained
it to learn an accurate spatiotemporal threshold for separating
instances of Class 1, i.e., sensor events gathered by two devices in
the same vehicle at the same time, from instances of Class 0, i.e.,
a pair of sensor event sequences collected during different trips
or at different locations.

The functionality of the matching module is represented by
the blue boxes in Fig. 3. It consists of two Dense layers using the
ReLU activation function, and finally another dense layer using
the Sigmoid activation function. The Sigmoid function converts
any real number into a value between zero and one. It is used in

M. Oplenskedal, P. Herrmann and A. Taherkordi

DEEPMATCH to describe whether the deep learning model believes
that its input pairs belong to Class 1 or Class O.

3.7. Model training

As discussed above, the three modules of the DEEPMATCH deep
learning model are jointly trained using the configuration shown
in Fig. 3. In our Siamese architecture, we observe two separate
copies of the CAE that compress the sensor data segments X,
and Xj,. Both CAEs share the same set W of trainable parameters
causing the model to perform identical mappings for its two
inputs. The CAEs produce the latent representations e, and e, that
we illustrate as dark green squares in the figure. In the training
phase, the latent representations are propagated through the
layers of the decoders mapping them to the recreated segments
X, and X;. In parallel, e, and e, are also sent to the matching
module that is depicted by the blue boxes in Fig. 3. Here, the
latent representations are being matched and the class prediction
Y’ is being produced. It assigns the value Y’ = 1 if the model
predicts that e, and e, are matches, and Y’ = 0 if they are not.
The values of Y’ correspond to the ground truth labels Y of our
sample pairs since we assign Y = 1 to a pair X, and X, if the
samples are from Class 1. Likewise, for a sample pair of Class 0,
we use Y = 0.

The goal of the training regime is now to train the layers of
the matching module such that their computed values Y’ are
mostly identical to the ground truth labels Y of the training
sample pairs. This kind of training utilizing external information
about the training samples, i.e., the ground truths, is usually called
Supervised Learning. Formally, we describe the deviation between
the ground truth Y and its prediction using the Binary Cross
Entropy L:

L=—Y log(Y)+(1—Y)-log(1—Y") (1)

The goal of the training is to find weights for the layers of the
matching module such that the prediction renders values of L
close to zero.

In the same step, the layers of the encoder and decoder are
trained by reducing the disagreements between the original seg-
ment pairs X, and X, and the recreated ones X, and X;. This
improves the quality of the sample compression and decompres-
sion steps. Since neither the ground truths of the samples nor
other external information is used, this training regime is re-
ferred to as Unsupervised Learning. We quantify the disagreements
between the original and recreated segments using the Mean
Squared Error MSE:

n

1
MSE = — 3 (X;[t] = Xalt])? (2)
t=1

In formula (2), n is the duration of the sensor event sequence X,
while X/[t] is the recreation of the value Xq[t] € X, at time t.

The disagreements between original and recreated samples as
well as those between the ground truths and the values predicted
by the matching module are used to update the weights of the
neural network through the machine learning technique Stochas-
tic Gradient Descent. In this technique, both the gradients from the
mean squared error calculations and the Binary Cross Entropy loss
functions are backpropagated to the neurons of the encoders. This
enables our encoder to extract both, the most important features
of the input segments for a good recreation and the features that
are relevant for an accurate matching prediction. In consequence,
it is sufficient to use the latent representations e, and e, instead of
the original sample pairs X, and X}, to conduct the matchings. This
is the reason that, when executing DEEPMATCH to detect real in-
vehicle presence of passengers, we only need to use the encoder
of the CAE in passenger smartphones and in the RefDev as well
as the matching module in the server, while the functionality of
the decoder module is not needed.

Information Systems xxx (XXXX) XXX

3.8. Design rationale and experimental settings behind the DEEP-
MATCH model

In our quest to find the best model, we conducted hundreds
of experiments on various model design and hyperparameter
configurations. Our approach relied on starting with smaller, shal-
lower neural networks, before expanding them by adding layers,
filters within the CONV layers, and by increasing the size of
these filters. To keep track of the various experiments, every
configuration and design of the network was evaluated using the
performance metrics described in Section 5.2. During this work,
we also experimented with various activation functions for both
CONV and dense layers. Moreover, we tried swapping the CONV
layers in the Autoencoders with dense layers and exchanging
the Matching Module with a function calculating the Euclidean
Distance between the latent representations, respectively. Fur-
thermore, we experimented on how we trained the modules of
the network, e.g. we tried training the autoencoders separately
from the matching module. This was done by first training the
autoencoders, and thereafter using the autoencoders to create
datasets consisting of encoded samples. These encoded samples
where then used to train the matching module. In addition to
design, architectural, and training experiments, we tested a large
number of hyperparameter settings, e.g. the number of neurons
in each dense layer, the size of batches used during training,
the number of epochs for each training session and so on. From
the experiments conducted for our previous work in [9], the
model architecture shown in Fig. 3, using the hyperparameter
settings described in Section 3.4, gave us the pest performance.
All experiments were conducted on a desktop PC with an Intel
i7 4.00 GHz CPU, 16 GB memory, and a Nvidia GTX 1080 GPU.
The models were created, trained and evaluated using Google
tensorflow 2.0, version 2.0.0-rc0 [33].

4. DEEPMATCH2

Since the original publication of DEEPMATCH in [9], we con-
tinuously iterated and improved our deep learning models. That
has led to several improvements that we could incorporate into
the new version DEEPMATCH2 of our in-vehicle presence detection
system. In particular, we amended the layer structure of the
architecture. In the following, we will discuss the improvements
in greater detail.

4.1. Design rationale and experimental settings of the DEEPMATCH2
model

We started the work on our new model basing it on the orig-
inal architecture of DEEPMATCH, depicted in Fig. 3. We followed
the approach described in Section 3.8 by gradually making incre-
mental changes to the model architecture, and for each change,
training and evaluating the results using the performance metrics
described in Section 5.2. Moreover, we investigated adapting the
numbers of convolutional layers and filters within the CONV
layers as well as changing the sizes of the individual filters.
Thereafter, we experimented with the ratio between the numbers
of CONV and maxpool layers used by the CAEs. In particular, the
structure of the matching module was modified. DEEPMATCH2
uses another method to concatenate the two latent representa-
tions, the module receives from the autoencoders. This is de-
scribed in detail in Section 4.3. Our experiments revealed that
the model architecture and the model parameters depicted in
Fig. 4 yielded the best results. Also for these experiments, we
used the desktop PC and Google tensorflow version described in
Section 3.8.

M. Oplenskedal, P. Herrmann and A. Taherkordi
4.2. Dimensionality reduction

During the initial development of our original deep learning
model, we were not aware that the best in-vehicle detection
accuracy could be achieved using events from the barometer
sensor alone. We learned this fact through the empirical studies
described in Section 5.3, for which a first version of DEEPMATCH
was needed.

After gaining the insight that just barometer events would
be sufficient for inference, we started to refine and restructure
parts of the model in order to better accommodate samples
containing only this type of data. Our aim hereby was to utilize
the limitation to barometer inputs for a reduction of the size of
data transmitted between the distributed computational units. Of
course, this should happen without worsening the accuracy of the
in-vehicle prediction, but rather with an improvement.

Our first major change was to reduce the size of the model
inputs, from previously 512 float values in DEEPMATCH to just 128
float values in DEEPMATCH2. The model of the previous version
was laid out to accept events from multiple smartphone sensors
that publish events at fixed rates but possibly with different
maximum frequencies and varying reading points in time. In each
layer of our model, the maxpool operator reduces the size of
its input by the factor of two such that the input length needs
to be a multiple of two. However, the output of a layer must
also be a multiple of two since it is directly used as the input
for the maxpool operator of the next layer. To guarantee this
property for a number of subsequent layers, we therefore need
the size of the initial encoder input to be an exponent of two.
The highest frequency of the sensors tested in DEEPMATCH was
50 Hz, and the first sample size, we aimed to create, was 10 s
worth of sensor data resulting in 500 events. Considering the
aforementioned requirement that the input must be an exponent
of two, the closest sample size to 500 was 512 events, resulting
in an actual sample size length of 10.24 s.

On the other hand, the barometer sensor conducts its sensing
with a maximum frequency of 10 Hz such that a sample of 10 s
only needs 100 events. To fulfil the demand of using a number
of events that is an exponent of two, we decided to increase
the sample period to 12.8 s such that a sample processed in
DEEPMATCH2 contains 128 barometer events. That is just a quarter
of the original sample size.

4.3. Accuracy improvement

While the accuracy of 97.81% of the original deep learning
model is quite good, we aimed to make it even better in DEEP-
MatcH2. The most impactful change, we made to improve the
accuracy of our deep learning model architecture, was altering
the way the matching module concatenates its two inputs. These
changes are illustrated in Fig. 5. As shown at the top of the figure,
in DEEPMATCH, the two input samples were simply concatenated
along the first axis. That means that two float vectors that both
had the length x, were transformed into one vector of the length
2x. This concatenation, however, usually creates a large spatial
distance between the pairs of values that need to be compared
by the matching module.

To reduce this distance, we altered the concatenation by trans-
forming two input vectors of length x into a matrix with the
size (x, 2) which is shown at the bottom of Fig. 5. This adapta-
tion to the input of the matching module allowed us to replace
some of the dense layers by convolutional layers. As discussed in
Section 3.5, convolutional layers are well suited to handle time-
invariant features in different sequences such that they promise
to be a better fit than the dense layers.

As a result, we achieved the layer structure that is illustrated
by the blue boxes in Fig. 4. Its uppermost layer is a concatenate

Information Systems xxx (XXXX) XXX

Table 1

Smartphones used by volunteers to collect data.
Brand Model

LG Nexus 5X
Huawei Nexus P6
Samsung Galaxy S8
Sony Z3 Compact
Google Pixel XL
Google Pixel 3a

layer that concatenates the inputs from the two encoders by
transferring them into a matrix of the size (x, 2). This matrix
then forms the input of the first of two convolutional layers.
Thereafter, a Flatten layer flattens its n-dimensional input into a
one-dimensional vector. Finally, a dense layer uses the Sigmoid
function explained in Section 3.6. This amended layout led to an
improved accuracy of 98.51% which we discuss in greater detail
in Section 5.6.

5. Evaluating the deep learning models

Our evaluation effort includes three main steps. First, we ex-
plain how we created our training data, and present the perfor-
mance metrics used to evaluate different models. Thereafter, we
report on the experiments carried out to find which sensor data
are best for in-vehicle presence detection and the best segment
size (cf. Sections 5.1—5.4). Second, we evaluate the prediction
performance of both DEEPMATCH and DEEPMATCH2. To this end,
we compare several versions of the original deep learning model
DEEPMATCH with varying sample lengths. This is followed by com-
parison of DEEPMATCH with two well-known baseline methods
and, of course, with our updated version DEEPMATCH2 (cf. Sec-
tions 5.5 and 5.6). Third, we investigate and discuss the execution
time overhead of the matching module on the server, and the
battery consumption as well as the CPU run-time overhead for
the smartphones of the passengers (cf. Sections 5.7—5.9). Note
that the evaluation results, in this step, apply to both versions of
our learning models, namely, DEEPMATCH and DEEPMATCH2.

5.1. Data collection and dataset creation

The data used to develop and evaluate our deep learning
model was collected in various public transportation vehicles (i.e.,
trains, subways, busses and trams) in the Norwegian cities of
Oslo and Trondheim by volunteers. They used different Android
phones that are listed in Table 1. All these phones were provided
with the Datacollector application introduced in Section 3.3 such
that their clocks could be synchronized and common trip IDs
assigned.

In total, our volunteers collected 212,520 s of unique sensor
data events from the magnetometer, accelerometer, gyroscope
and barometer sensors. Segments of sensor events from two
different sources were paired in each dataset sample to model
that DEEPMATCH and DEEPMATCH2 match pairs of sensor data
segments from a user’s phone and a RefDev. Moreover, the pairs
of sensor event segments were classified as illustrated in Fig. 6.
Thus, sensor event segments with identical trip IDs and beacon
identifiers, i.e., segments computed by different devices in the
same vehicle at the same time, were labelled as positive samples,
i.e.,, Class 1. In contrast, event segment pairs with differing trip
IDs or beacon identifiers were fetched at different times or in
different vehicles. Therefore, they are labelled as negative samples,
i.e., Class 0.

Following common practice in machine learning, we shuffled
the samples of our dataset. Thereafter, we normalized the data
using minmax and, finally, we split our samples into training

M. Oplenskedal, P. Herrmann and A. Taherkordi

Information Systems xxx (XXXX) XXX

Old Concatenation

Strategy
C
S eoe TSNS Ayt O
output
0 1 n
(XX} (XX}
Encoder 2 ose 0 1 n 0 1 n
output
0 1 n
New Concatenation
Strategy
Encoder 1]
(XX}
output Com!).arlson
0 1 n — —~
[L]
(LX)
Encoder 2 coe
output 0 1 n
0 1 n

Fig. 5. Old and new matching module input concatenation strategy.

Trip 15, Device 1

Class 0

Trip 15, Device 2

—_———— =

—_———

fannaff=zzxl

. N | Y
. i ! 1) 1
faaa=if==az] < CICIC LS

Class 1

=S
1

Fig. 6. Matching samples created from trip segments.

and testing ones. The training set consisted of around 70% of the
overall data. The other 30% were used to create testing sets for
the purpose of model evaluation. By completely separating the
training from the testing samples, we avoided to use the same
sensor events in both phases. Further, we made sure that the
distribution of Class 1 and Class 0, were about 50/50 in both
datasets.

5.2. Metrics to evaluate learning models

To evaluate the different versions of our deep learning model
with each other and with other methods introduced later, we use
the four metrics precision, recall, accuracy, and F1-score that all are
popular means to evaluate machine learning models. In order to
define these metrics, we use four binary classifiers that describe
if a sample is positive or negative in reality, and if it is correctly
classified:

e Recall (RE): The ratio of correct positive predictions to the
total number of positive samples, ie., out of all samples
in the dataset that are indeed positive, how many were
correctly classified as such by the model:

£ TP
TP +FN
e Accuracy (ACC): This metric states how good the model
classifies samples from all classes, i.e., it describes how many
of all predictions are correct:
3 TP + TN 5)
~ TP +FP+ TN +FN
The accuracy results are usually only reliable if the number
of members from Class 0 and Class 1 are about equal. That
is the reason for using equal representation of Class 1 and

Class 0 in our training and testing sets (see Section 5.1).
e Fl-score (F1): The harmonic mean between precision and

(4)

ACC

e True Positive(TP): A correctly classified positive sample, recall.
o True Negative(TN): A correctly classified negative sample, F1—o. PR-RE ©6)
e False Positive(FP): A negative sample that is falsely classified PR + RE

asa positiv'e one, -)) In the various experiments introduced in the next subsections, we
e False Negative(FN): A positive sample that is wrongly classi- compare the different methods using these four metrics.

fied as a negative one.

With the help of these classifiers, we can now introduce the
four metrics used to evaluate the models:

e Precision (PR): The ratio of correct positive predictions to the
total number of predicted positive samples, i.e., out of all
samples classified as positive, how many belong to Class 1:

P

R= — (3)
TP + FP

10

5.3. Sensor modality experiments

In a first set of experiments, we wanted to find out which
combinations of smartphone sensors are most suited to be used
in our deep learning model. To be able to compare various sensor
mixes, we created the following seven sensor modality combi-
nations: Accelerometer (A), Magnetometer (M), Barometer (B),
Barometer and Accelerometer (BA), Barometer and Magnetome-
ter (BM), Accelerometer, Magnetometer, and Gyroscope (AMG),

M. Oplenskedal, P. Herrmann and A. Taherkordi

Table 2
Performance comparison between various sensor combinations.

Model PR RE ACC F1

DEEPMATCH 10 A 0.5065 0.9531 0.5122 0.6615
DEEPMATCH 10 M 0.5064 0.9280 05118 0.6553
DEePMATCH 10 B 0.9751 0.9812 0.9781 0.9781
DEePMATCH 10 BA 0.7332 0.9697 0.8082 0.8350
DeepMATCcH 10 BM 0.7081 0.9708 0.7853 0.8189
DEEPMATCH 10 AMG 0.5011 0.9646 0.5020 0.6595
DEepMATCH 10 AMGB 0.7079 0.9892 0.7905 0.8253

Information Systems xxx (XXXX) XXX

Table 3
Performance comparison of the barometer-based DEEPMATCH with various
sample lengths as well as with baseline methods and DEEPMATCH2.

Model PR RE ACC F1

DEEPMATCH 5 0.9408 0.9765 0.9574 0.9583
DEEPMATCH 10 0.9751 0.9812 0.9781 0.9781
DEEPMATCH 15 0.9348 0.9816 0.9566 0.9576
NORM_CORR 09174 0.9595 0.9393 0.9380
DTW 0.9810 0.7350 0.8136 0.8404
DEEPMATCH2 0.9769 0.9935 0.9851 0.9851

and Accelerometer, Magnetometer, Gyroscope, and Barometer
(AMGB).

We trained and tested each of these modality combinations
with our original deep learning method DEEPMATCH using sample
lengths of 10 s. The test results of these experiments are depicted
in Table 2. From the table, we can see that the models trained
on datasets of type DEEPMATCH 10 B containing sensor events
only from the barometer, have a significantly higher precision,
accuracy, and F1-scores than the other models. The recall values
are much closer for all models but also here DEePMATcH 10 B
finishes in the top two, albeit a little behind DEEPMATCH 10
AMGB.

We believe, the reason for the good result of just using the
barometer is that this sensor particularly suited to capture the
movements of the vehicle rather than those of the smartphone
user. For instance, it is position independent, i.e., the precision
of the barometer events is not affected by the location of the
sensor. This is especially important for the use in underground
transportation, e.g., in subways, where the GPS performs poorly.
Further, the barometer is highly resistant to vibrations as well as
movements of the smartphone user. This in stark contrast to the
accelerometer and gyroscope which are more strongly affected by
the movements of the user than by those of the vehicle. Unlike
the barometer, the magnetometer is highly sensitive to magnetic
objects in the environment like the power unit of the vehicle. All
these traits make the barometer perfectly suited to capture just
the movements of the vehicle and to ignore the movements and
immediate surroundings of the carrier of the smart device.

The absence of the mentioned weaknesses of the other sensors
makes it easier for our deep learning model to learn how to
separate instances of Class 1 and Class 0 only using the barometer
events. This is confirmed by the overall good values for DEgp-
MATcH 10 B in comparison to the other sensor combinations. The
fact, that DEEPMATCH 10 AMGB has a little better recall value,
results probably from a tendency to classify samples as positive
even if they are negative in reality. This is not punished by the
recall value but by the precision and accuracy values that are
meager for DEEPMATCH 10 AMGB.

Altogether, our sensor modality experiments led to the de-
cision to consider only the barometer sensor data for our deep
learning method. This is in accordance with most of the other
works introduced in Section 2.2 which also claim that the barom-
eter data are best for classifying in-vehicle detection, e.g., [15,
16].

5.4. Segment size experiments

After deciding to base the deep learning model just on the
barometer input, we wanted to find the sample length for which
DEePMATCH renders the best results. Therefore, we trained and
tested the model with different sample lengths of five, ten, and
15 s. The results are shown in the first three lines of Table 3.

We see that variant DEEPMATCH 10 with its ten seconds long
samples outperforms DEEPMATCH 5, the model trained on match-
ing samples of five seconds. The cause is most likely the greater

11

number of sensor events contained in a DEEPMATCH 10 sample.
This provides a better foundation for training the neural network
in DEEPMATCH 10 than in DEEPMATCH 5.

Following this logic, however, we should expect that DEEP-
MATcH 15, the model trained on 15 s long matching data, out-
performs DEEPMATCH 10 since it has an even higher number of
sensor events available in a sample. Yet, this is not the case for
the precision, accuracy, and F1-score performance metrics, while
the recall values are basically even. Like with DEEPMATCH AMGB
in the tests discussed in Section 5.3, it seems that DEEPMATCH 15
is biased towards classifying samples as positive since it produced
good recall but bad precision values. The most likely reason for
this surprising effect is that we have fewer 15 s long samples
available than shorter ones in our training set. In consequence,
there might be simply too few sample pairs available to train the
neural network well.

Due to the ongoing Covid-19 pandemic, our volunteers were
not able to collect more data from public transport vehicles.
When the pandemic is over, however, we intend to collect a
larger number of longer samples expecting that DEEPMATCH 15
will outperform DEEPMATCH 10 when the new samples can also
be used for training and testing.

5.5. Comparing DEEPMATCH with two baseline methods

In order to get a better comparison of our deep learning
method with other possible approaches, we also employed two
well-known baseline methods that seem to be suited to per-
form sensor event matching for in-vehicle presence prediction.
One of the selected baseline methods is Normalized Correlation
(NORM_CORR). It calculates the correlation between two vectors
by comparing the values in the same position. The other baseline
method is Dynamic Time Warping (DTW). In DTW, all values in
the two vectors are compared by warping the temporal dimen-
sion until the best correlation for any data point is found. In
consequence, DTW does not inherently describe the correlation
between two vectors but the distance between them, and a large
distance equals a small correlation. Thus, to use DTW as a mea-
sure of correlation on par with NORM_CORR, we had to inverse
the results produced by it.

In both baseline methods, we need to find a threshold value «
such that all sample pairs with a correlation c larger than « are
from Class 1 and all others from Class 0. This corresponds to the
following equation:

1 ifc>a
0 else

c=fXe, Xp) Y' = { (7)
Here f represents the baseline method used. To find a good
threshold «, we first applied f to all samples of our training set
and added the resulting c-values to a sorted array. Thereafter, we
searched the sorted array for an optimal delimiting value that
minimizes the number of falsely grouped sample pairs. In the
final step, « was set to this delimiter.

The results of our baseline methods tests are shown in the
fourth and fifth lines in Table 3. We see that, except for the

M. Oplenskedal, P. Herrmann and A. Taherkordi

1600
1400
m
= 1200

2 1000

Execution Tim:
4 o @©
o o (=3
o o o
\\
\

N
=]
=]

10000 20000 30000

Concurrent Calculations

40000 50000

Fig. 7. Execution time to execute matchings in parallel.

precision of DTW, the two baselines are clearly outperformed by
DEePMATCH with the different sample sizes.

The reason for the poor performance of NORM_CORR is most
likely its sensitivity to potential time-lags between its input se-
quences. This is due to the fact that two passengers, who are
at different locations in a public transportation vehicle, register
changes in altitude with a time-lag that corresponds with the
quotient of the spatial distance between them and the speed of
the vehicle. This time-lag produces a lower correlation value for
NORM_CORR even though the passengers are in the same vehicle.

On the other hand, the poor results of DTW are most likely
caused by its insensitivity to the temporal dimension. Warping
the temporal dimension can cause the function to achieve a very
high correlation value for some negative samples which increases
the number of false positives. While this error is rewarded by the
precision metric, it makes it very hard to find a good delimiter
value «. This is the likely reason that the other three metrics are
particularly bad for DTW.

Altogether, it seems that the baseline methods are less suited
to perform in-vehicle presence detection on barometer data than
DEEPMATCH.

5.6. Prediction performance of DEEPMATCH2

We also trained our updated version DEEPMATCH2 with the
available data. The performance results of our tests are listed in
the last row of Table 3. We can see that, except for the precision
value of DTW that was already discussed above, DEEPMATCH2
outperforms all other tested models for all four performance
metrics used. If we take a closer look at the results, we see that
the largest change between DEEPMATCH 10 and DEEPMATCH2 is
the increase of the recall value by more than a percentage point.
The likely reason is that the improvements we made to the model
(see Section 4), increased the ability of DEEPMATCH2 to correctly
classify positive samples of the dataset. This could be achieved
without classifying too many samples as positive, as can be seen
by its precision value that is also slightly better than the one of
DEePMATCH 10.

Achieving good results for both the precision and recall means
that DEEPMATCH2 is good at separating the samples in our eval-
uation dataset. That is also proved by the very high accuracy and
F1-scores of DEEPMATCH2 which are both around 0.7% better than
their counterparts in DEEPMATCH 10. Thus, in spite of increasing
the compression of the sensor data by the factor of four, we
managed to improve the performance metrics of DEEPMATCH2.

5.7. Execution time in the server

Since usually a lot of passengers use public transportation
throughout the day, particularly during the rush hour, the server

12

Table 4

Android phones used in battery tests.

Information Systems xxx (XXXX) XXX

Brand Age Battery capacity
LG nexus 5X 5 years 2700 mAh
Huawei nexus P6 4 years 3450 mAh
Samsung galaxy S8 3 years 3000 mAh
Sony Z3 compact 6 years 2600 mAh
Google pixel 3a 0 years 3000 mAh

Table 5

Battery consumption per hour.
Brand Data collection Learning Complete
Samsung 25 mA 26 mA 31 mA
LG 23 mA 24 mA 26 mA
Huawei 22 mA 23 mA 25 mA
Google 16 mA 17 mA 18 mA
Sony 15 mA 18 mA 21 mA

of a public transport authority performing the matching calcula-
tions of DEEPMATCH or DEEPMATCH2, needs to be able to handle
large amounts of concurrent data simultaneously. To test the
expected load for such a central server, we exploited a feature of
Tensorflow that allows the matching module to accept multiple
inputs. Further, we used the powerful parallel computational
capabilities of Tensorflow that make it possible to calculate the
matchings for all received inputs simultaneously.

Fig. 7 depicts the execution time of the matching module
performing its matches based on latent data, after it has been
extracted from the overall deep learning model of DEEPMATCH2.
It reveals that 50,000 matching calculations can be executed in
parallel in 1560 ms all running on a single five years old GTX
1080 GPU. Due to the fact that the matching calculation is only
performed once for every 12.8 s of collected data per passenger,
a data centre consisting of only three such GPUs could serve a
city like Oslo with its 960,000 daily passenger trips even if all
passengers travel at the same time. Running these calculation
on a newer GPU with improved concurrency and computational
capabilities, would improve these results even further.

5.8. Battery consumption on smartphones

Power consumption is an important issue when using deep
learning models on mobile devices that run on rechargeable
batteries since the models often require a large number of cal-
culations at high speed, which usually demands a lot of power.
Fortunately, we do not require the encoders executed on the
smartphones to run continuously in our approach. Even if the
phone is in close proximity to a BLE-transmitter (see Section 3.1),
we only carry out the encoder in certain intervals corresponding
to the lengths of the samples to be matched, e.g., every 12.8 s
when using DEEPMATCH?2.

In addition to running the deep learning model, the continuous
sensor event generation and the transmission of the compressed
data to the server are power consuming tasks the smartphones
will have to perform. To ensure that our approach does not cause
an excessive drain on the batteries of the smartphones, we con-
structed three test scenarios that reflect the battery consumption
factors mentioned above:

e Complete scenario: All three factors of battery consumption,
i.e., the barometer data collection, data processing by the
encoder, and data transmission,

e Learning scenario: Barometer data collection and data pro-
cessing,

e Data collection scenario: Only barometer data collection.

M. Oplenskedal, P. Herrmann and A. Taherkordi

Information Systems xxx (XXXX) XXX

Table 6
Run time and CPU overhead.
Brand CPU Mean run time Overhead
Samsung 2.3 GHz + 1.7 GHz, Cortex-A53 49 ms 1-2%
LG 1.4 GHz + 1.8 GHz, 64-Bit Hexa-Core 46 ms 1-2%
Huawei 2.0 GHz + 1.55 GHz, 64-Bit Octa-Core 52 ms 1-2%
Google 2.0 GHz + 1.7 GHz, 64-Bit Octa-Core 19 ms 0-1%
Sony 2.5 GHz Quad-Core, 400 Krait 73 ms 3-4%

Sensor Events
.

Encoder

---»--) e0 e1] e2| |e3||ed |-,
Matching

Encoder

Encoded Events

———

------)eO el (e2| 3| e4r-’
.

Matching Sequence

——

Module

(@) -HEEEE

gL J

User/Reference Device

.
Server

Fig. 8. Matching sequence output from the matching module.

To ensure diversity in our testing devices, we used five An-
droid smartphones from five different manufacturers. To ensure
age diversity, these phones are between zero and six years old,
as can be seen in Table 4. To make sure that the test results were
not influenced by the environments in which the tests were run,
we performed all tests indoors with a constant temperature of
19 °C, representing the indoor temperature of a typical public
transportation vehicle in Norway.

To measure the battery power usage, we used the tools Bat-
terystats and Battery Historian provided by Google to log the
battery consumption of all processes running on an Android
device [34]. The tests were run in the background with the wake
lock parameter enabled. This allowed us to simulate an environ-
ment in which our application retrieving sensor inputs, encoding
them, and forwarding the encoded data to the server, runs in the
background of a user phone.

The results of our tests are depicted in Table 5. They clearly
show that for all devices used in the tests, our learning mod-
els influence the battery consumption on a smart device only
marginally. Considering a passenger travelling with a public
transportation vehicle for over two hours, measuring, encoding
and transmitting barometer sensor events, only around 62 mAh
will be used for the Samsung Galaxy S8, the phone with the
highest power usage. With a battery capacity of 3000 mAh, this
equals to the use of 2.1% of the overall battery capacity. Compared
to the numbers reported in [35], this is substantially lower than
most smartphone applications.

As a result of our tests, we consider that our approach has no
significant negative impact on the overall battery consumption of
the user smartphones. For the reference devices, we expect that
they have a power connection with the battery of the transport
vehicle.

5.9. Computational overhead on smartphones

As mentioned above, deep learning models are often large
complex computational units. Thus, in addition to affecting the
battery consumption of the devices running the model, the com-
putations might influence their CPU usage such that a smart-
phone is not able to support other applications, that the user

13

likes to run in parallel to our learning models DEEPMATCH or
DEEPMATCH2. Therefore, we evaluated also the computational
overhead of the models executed on smartphones. For these
experiments, we used the same five devices listed in Table 4. We
analysed both, the CPU usage and the time, the encoder module
needed to process one sample of input. Table 6 shows the results
of these tests. We can clearly see from the mean run time and
CPU overhead produced for the devices, that the overhead of
our models are barely noticeable and should not impact other
functions executed on the phone in parallel.

6. Travelling user inference

Up to now, DEEPMATCH and DEEPMATCH2 can determine with
a high accuracy whether a person’s smartphone is in the same
public transport vehicle as a RefDev over a fixed time interval
of, e.g., 12.8 s. To make our approach useable for, e.g., automatic
ticketing, however, a solution is required to find out, over which
time period the owner of the phone effectively travels in the
vehicle.

To infer the duration of being in the vehicle, we can utilize
that a normal trip in a city bus may be up to an hour such that
DEEPMATCH2 can conduct hundreds of samples. The samples of
the user’s phone taken on a trip and the corresponding ones
produced by the reference device are paired and merged to a
so-called matching sequence. This is illustrated in Fig. 8.

As an example, let us assume that a passenger travels with
a bus for 20 min. That gives DEEPMATCH2 the necessary time to
generate a matching sequence containing 93 successive matches.
Due to the accuracy of 98.51% for DEEPMATCH2, the likelihood
that all these matches are correctly detected as being in-vehicle
(i.e., Class 1), however, is only 24.76%. Thus, in more than three
quarters of trips with a 20 min duration, at least one matching
will be falsely declared as being out of the vehicle (i.e., Class 0).
Similarly, if a person rides in a car next to a bus for 20 min,
e.g., due to slow moving traffic, the chance that all matches are
Class 0, is also only around 25%. Thus, we need an algorithm that
can infer passenger trips from matching sequences with a high
degree of precision in spite of occasional matching errors. In this
section, we describe how one can develop and evaluate such an
inference algorithm.

M. Oplenskedal, P. Herrmann and A. Taherkordi

6000

5000

4000

3000

Nr of occurrences

2000

1000

——
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290
Duration (s)

Fig. 9. Number of times any vehicle travelled a route segment in x seconds.

In the following, we first describe how we gathered the data
that explains the travel time between two adjacent stops for
busses in Norway’s capital Oslo. Thereafter, we introduce some
concepts based on which the algorithm is designed and pre-
sented. A relevant parameter of this algorithm is the degree of
fault tolerance it supports, which is investigated at the end of this
section.

6.1. Travelling times between adjacent bus stops

To get the travelling times between two adjacent stops for
busses in Oslo, we gathered all real-time data of the bus net-
work of Oslo over twelve hours on a normal Monday. ENTUR,
a government-funded organization, gathers and openly shares
traffic data from all public transportation operators in Norway.
In particular, it offers an API [36] which is based on the SIRI 2.0
standard [37].

The collected data allows us to understand the distribution
of the travelling times between two adjacent stops. To this end,
we aggregated the arrival and departure times for all buses at
all stops throughout the recorded 12-hour slot. From this, we
calculated for all bus trips the times needed to travel between two
adjacent stops. The results were summed up, and we obtained the
distribution depicted in Fig. 9. The x axis refers to travelling times
in seconds while the y axis shows how often busses needed a
particular time segment between two neighbouring stops during
the 12-h slot. As can be seen, the most prevalent travelling time
between two adjacent stops is between 40 s and 50 s. Another
interesting fact is that in less than 2% of the gathered cases, the
travelling time between two stops is less than 40 s. We will show
how these facts can be utilized to provide good results.

6.2. Matching sequences and travel inference algorithms

As introduced above and illustrated in Fig. 8, a matching se-
quence is the sequence of outputs generated by the matching
module of DEEPMATCH2. It is basically a sequence of ones and
zeros that forms the input of the inference algorithm. Based on this
input, the inference algorithm decides whether the user travelled
in the vehicle for the duration of the matching sequence, or not.

To better understand the possible errors that the inference
algorithm could make, we classify its results (in analogy to the
true and false positives and negatives introduced in Section 5.2)
as follows:

e True Travelling user (Tr) denotes an actual passenger who is
correctly inferred as a traveller.

e False Travelling user (Tg) is a person not using the pub-
lic transport vehicle, but who was falsely inferred to be
travelling in it.

14

Information Systems xxx (XXXX) XXX

—
R GEEREEEEEEPEE RS £-->
PI(T) Enters Leaves
L e e e e
-
S $.-»
P2Tp) Did not Enter
Lol JEe e e e e
-
r-
FE UR—— 25
P3NT,) = Did not Enter
Lo Jle e o e gl Jeow
-
~
R GOREEEEEEEPEEERPEEE: £-->
P4(NTF) "{ Enters Leaves
N I [i e

v

Fig. 10. Example travellers and expected matching sequence. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

e True Non-Travelling user (NTr) is a user not travelling with
the vehicle in question who is correctly inferred as being not
in the vehicle.

e False Non-Travelling user (NTg) is an actual travelling user
who was, however, falsely inferred as not travelling with the
vehicle.

In Fig. 10, the four types of travellers are illustrated, where
green dashed lines indicate the time period that the passengers
are inside the vehicle, while red dashed lines refer to the phases
they are outside. The orders of white boxes beneath the dotted
lines represent the matching sequence for each passenger. The
goal of the algorithm is to detect true travelling and true non-
travelling users with a high accuracy. In particular, it should keep
the number of false travelling users very low since billing people
who do not use public transport, may easily lead to complaints,
lawsuits, and bad press for the operator. Moreover, false non-
travelling users shall be avoided since they end up with travelling
for free.

6.3. User travel inference algorithm

In this section, we describe our methodology to design and
evaluate the inference algorithm. It shall take the accuracy of
DEePMATCH2 of 98.51% into account. While this accuracy is rela-
tively high, it is not perfect as matching sequences can occasion-
ally contain a mix of ones and zeros, and the inference algorithm
should be able to perform inference with a high accuracy even
from such mixed sequences. Overall, our goal is to find an infer-
ence strategy that keeps the number of false non-travellers and
false travellers low.

We first need to calculate the accuracy of an inference algo-
rithm based on the accuracy of DEEPMATCH2. We use the binomial
experiment to calculate the likelihood of occurring a certain ratio
of ones and zeros in a matching sequence:

= (7)17"(1 —p)"*
K

P(k) (8)

M. Oplenskedal, P. Herrmann and A. Taherkordi

Here, n denotes the number of trials, i.e., the length of the match-
ing sequence, while k refers to the number of successful trials,
i.e.,, the number of correct matchings in the sequence. Finally,
p states the probability of a successful trial which, in our case,
corresponds to the accuracy of DEEPMATCH?2, i.e., 0.9851.

With the binomial experiment, we can compute the two prob-
abilities that a certain proportion of ones and zeros in a matching
sequence is rightfully inferred to be in or out of the vehicle. From
that, we can easily determine the likelihoods for the four user
types introduced in Section 6.2.

As an example, let us assume that, in fear of inferring false
travelling users, the public transport authority decides to bill a
passenger when all the six entries in the matching sequence are
ones. Using formula (8) leads to the following likelihoods for the
four inference results:

Pr,(6) = 0.9851° = 0.9139

(6) = 1— Pr.(6) = 0.0861
Pr.(0) = (1-0.9851)° = 1.09- 10~ "
Pyr;(0) = 1 — Pyr,(0) = 0.999999999989

The likelihood, that DEEPMATCH2 produced all six Class 1 pre-
dictions wrongly and with that infers a false travelling user, is
Pr,(0) = 1.09 - 10~ '". In correspondence, the likelihood to detect
a true non-traveller is very high since our strategy declares all
passengers who produced at least one zero in their matching
sequences, as not travelling. The corresponding probability is 1 —
Pr,-(0) = 0.999999999989.

The price of this very rigid approach is the relatively high rate
of false non-travelling users which is calculated as 1 — P, (6) =
0.0861. Thus, nearly every twelfth passenger gets a free ride
which might be unacceptable for most operators. In consequence,
the likelihood for a true travelling user is only Pr,(6) = 0.9139.
To avoid such a large rate of false non-travelling users, we need
to bring some tolerance into our inference algorithm. To achieve
that, we extend Eq. (8) for the binomial probability to the so-
called cumulative binomial probability, that is described by the
following formulas:

P(k > M) = Z <Z>p"(1 —pyk

k=M
n
<I >pk(1 _ p)n—k
K

M
Plk<M)=Y"

k=0
In formula (9), M refers to the minimum and in (10) to the
maximum number of trials that have to be successful in order
to accept a trip as in-vehicle. The other symbols used in these
formulas are identical to those introduced for formula (8).

The cumulative binomial probability provides the means to
calculate the probabilities for more fault-tolerant inference algo-
rithms, e.g., accepting matching sequences of the length six as
in-vehicle, when they contain at least five ones. This algorithm
leads to the following results for the four inference results:

Pr,(k > 5) =0.9851° + 6 - 0.9851°(1 — 0.9851) = 0.9968
Pyt = (1 — Pr,(k > 5)) = 0.0032
Pr.(k <1)=(1-0.9851)° + 6 -0.9851(1 — 0.9851)°
=4.35-107°
Pnry = (1 — Pra(k < 1)) = 0.9999999957

(9)

(10)

This more fault-tolerant algorithm reduces the likelihood of false
non-travelling users to just around 0.3%. While the number of
false travelling users is increased by two digits compared to
the more rigid algorithm described above, it is still very low.
Therefore, this more tolerant inference algorithm seems to be

15

Information Systems xxx (XXXX) XXX

— 0.0 %
10.0 %

Probability (%)

30 40 50 60 70 80 90 100

25

N
o

=
v

/

Probability (%)
=
o

8 10

6 12
Matching Sequence Length

14

Fig. 11. Probability of predicting a False Non-Travelling user (Pyr,) over varying
matching sequence lengths. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

a better fit for a billing system than the stricter one discussed
above.

The fact is that we still do not know if this algorithm is the
best, or if more fault-tolerant policies render even better results.
Moreover, for most passenger trips, DEEPMATCH2 produces much
longer matching sequences than ones with just six matching
pairs. Utilizing the data from the public transportation behaviour
analysis discussed in Section 6.1, we conducted several experi-
ments to find out the best inference algorithm solutions, which
are discussed below.

6.4. Considering different forms of fault tolerance

The aforementioned comparison of two algorithms for match-
ing sequences of length six shows that there is a trade-off be-
tween false travellers and false non-travellers based on the de-
gree of fault tolerance—the percentage of zero values that a
matching sequence may contain whilst still being inferred as in-
vehicle. In the rigid example in Section 6.3, the fault tolerance
was 0, while for the second case it was é = 16.6%. The value M
in the cumulative binomial probability formulas (9) and (10) can
be calculated from the fault tolerance as follows:
M = L(l — fault_tolerance) - n + ;J (11)
Thus, the higher the fault tolerance is, the more occasional zeros
are allowed in the matching sequence when the inference algo-
rithm infers that the user is inside the vehicle. In consequence,
by using a higher fault tolerance, we reduce the number of false
non-travellers, albeit at the cost of more false travellers.

To analyse the influence, we calculated the likelihoods of false
non-travellers and false travellers for different fault tolerances
ranging from 0% to 90% in steps of 10% and for all matching
sequence lengths from 1 to 100. Fig. 11 depicts the probabilities
for non-travelling users depending on the lengths of the matching
sequences. The dark blue curve, showing no fault tolerance at
all, rises towards 1 while all other trajectories converge towards
0. The interesting observation is how early the approximation

M. Oplenskedal, P. Herrmann and A. Taherkordi

100
w— 0.0 %
10.0 %
—20.0 %
— 30.0 %
— 40.0 %
—50.0 %
60.0 %
—70.0 %
80.0 %
m—90.0 %

80

60

40

Probability (%)

20

0 10

20 30 40 50 60 70 80 90 100

20

=
w

0 2 4 8 10
Matchmg Sequence Length

Probability (%)
=
o

v

12 14

Fig. 12. Probability of predicting a False Travelling user (Pr,) over matching
sequence lengths.

towards O starts: Even with a fault tolerance of just 10%, the
likelihood for producing non-travelling users is next to nothing
for trips that produce more than 40 matchings. Thus, for trip
lengths longer than nine minutes, this low fault tolerance would
be sufficient.

The curves show that the selection of a good fault tolerance
value is only relevant for short trips for which relatively short
matching sequences are produced by DEEPMATCH2. To make the
differences of the curves for short journeys more legible, we show
a zoomed-in version in the lower part of Fig. 11. In Section 6.1,
we claimed that less than 2% of all time periods between adjacent
bus stops is lower than 40 s. Since passengers can enter and leave
the vehicle only at bus stops, we can therefore assume that for
nearly every trip, at least three matchings are produced. From our
curves, one can see that with a fault tolerance of 40%, it is enough
to produce nearly no false non-travellers.

Fig. 12 shows the same curves for false travelling users. Sim-
ilarly to the false non-travelling users, the likelihood of creating
false travelling users is negligible if a smartphone user is close to a
vehicle for a longer time period. Thus, even with a fault tolerance
of 90%, the inference is enough if the length of the matching
sequence is at least 30, which corresponds to 6.4 min.

Yet, a non-travelling user will usually be close to a vehicle
only for a relatively short time period, e.g., less than a minute.
Therefore, it is particularly important that the inference algorithm
handles those cases correctly. The zoomed-in curves in the lower
part of Fig. 12 show that the fault tolerance of 40%, that we al-
ready mentioned as sufficient for false non-travellers, is very close
to zero for all matching sequences except for those consisting of
just one matching.

Our findings about false non-travelling and false travelling
users provide useful hints for the configuration of the inference
algorithm. Since nearly no distances between two stops are less
than 30 s (cf. Fig. 9), if our algorithm declares all matching
sequences of lengths one and two as out-of-vehicle, it will hardly
affect the overall accuracy of the algorithm. For all matching
sequences of lengths three or larger, the policy may use a fault
tolerance of 40%, which should lead to excellent results with very
few false non-travellers and false travellers.

16

Information Systems xxx (XXXX) XXX

Table 7
Weighted averages for all matching sequences with lengths between one and
21.

Fault PNTF PTF 0.5- PNTF 0.1- PNTF
tolerance +0.5-Pr, +0.9-Pr,
0% 31.22957% 0.15125% 15.69041% 3.25908%
10% 8.49190% 0.15125% 4.32158% 0.98532%
20% 1.73878% 0.15126% 0.94502% 0.31001%
30% 0.95806% 0.15139% 0.55473% 0.23206%
40% 0.46660% 0.15828% 0.31244% 0.18911%
50% 0.15829% 0.46545% 0.31187% 0.43473%
60% 0.15796% 0.48792% 0.32294% 0.45492%
70% 0.15139% 0.96164% 0.55652% 0.88062%
80% 0.15125% 2.54341% 1.34733% 2.30419%
90% 0.15125% 10.11554% 5.13340% 9.11911%

6.5. A more formal look at the trade off between NTr and Tr

The discussion above to determine a good fault tolerance
seems coherent, however, it is not very formal. A public transport
authority that has resilient statistics about the travelling times
of its passengers, can therefore go a step further and determine
the trade offs between NTr and Tr for different fault tolerance
percentages more formally.

To be able to assess false travellers differently than the po-
tentially less problematic false non-travellers, we use a weight
factor w € [0, 1] that describes the weight that T shall have in
comparison to NTr. With Pﬂ (ft msl) and Pﬁ (ft, msl), we state
the probabilities for NTg resp Tr for a certam fault tolerance ft
and message sequence length msl that can be calculated using the
formulas (9), (10), and (11). Moreover, p; refers to the likelihood
that the travelling time of a passenger has a certain length such
that the corresponding matching sequence has [-many entries.
Finally, Max,,;; describes the maximum length of matching se-
quences that can occur in practice. These values can be computed
from the operator’s travelling time statistics. The weighted average
Av between NTr and Tr can be computed as follows:

Max g

ZP!

With formula (12), one can compare different fault tolerances
and select the one ft that gives the lowest value Av(ft, w) for the
desired weight w.

Unfortunately, in spite of an in-depth search and requests to
some public transportation authorities, we could not get access to
meaningful statistics about usual travel durations of passengers.
Thus, we based our calculations on the worst case scenario in
which every passenger travels only between a stop and the ad-
jacent one. We also assume that the number of people travelling
are evenly distributed among the operator’s buses. Then, we can
use the distribution presented in Fig. 9 to calculate the likelihoods
p; for the lengths of the matching sequences.

The result of applying formula (12) to these values and the
10 different fault tolerant values 0% to 90% is listed in Table 7.
The columns show the likelihoods for false non-travellers and
false travellers as well as the weighted averages for the weights
w = 0.5 and w = 0.9. Non-surprisingly, the likelihood for NT¢
is lower if a higher degree of fault tolerance is allowed, while
it is the opposite for Tr. If we weight both error cases equally
(ie., w = 50%), fault tolerances of 40% and 50% render the best
trade off results closely followed by 60%. When we consider false
travellers as more important and set the weight to w = 90%,
the result is much clearer. Here, 40% is the winner followed by
30%. These results foster our assumption from Section 6.4 that
40% seems to be a efficient fault tolerance value.

Av(ft, w) = PL(ED+(1—w)- Pl (ft. 1)) (12)

M. Oplenskedal, P. Herrmann and A. Taherkordi

1.75
—— 50/50 NTf/TF

1.50 === 10/90 NTf/TF

1.25

1.00

Probability of Error (%)

7 9 11 13 15 17 19 21
Matching Sequence Length

Fig. 13. Total number of erroneous travel predictions over MS lengths using a
Fault Tolerance of 40% and the average weight w set to 50% (blue) and 90%
(orange). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

In a final step, we checked the probability of errors for certain
matching sequence lengths [, i.e., w Pﬁ (ft, D+(1—w)- P,(,tTF (ft, D).
The results for the two weights and a fault tolerance of 40% are
shown in Fig. 13. We see in both curves that the two shortest
matching sequence lengths 1 and 2 are responsible for nearly all
of the errors, while all the others give good results. This confirms
the suggestion of our inference algorithm to bill only passengers
for which at least three matchings were generated. The only
losses are for passengers that travel only between two adjacent
stops with less than 40 s distance. Assuming an average bus speed
of 27 km/h between these stops, they are just 300 metres apart.
In reality, people would walk this distance instead of waiting for
a bus.

It would be nice to repeat our trade off calculations based on
real travelling time statistics, and we will do so as soon as we
get our hands on such data. However, we do not expect very
different results since, in reality, the average travelling times will
be much longer than in our thought experiment, and the graphs
in Figs. 11 and 12 show that the inference is becoming better with
longer matching sequences. Therefore, the likelihoods for the
errors would probably be lower than in Table 7. However, based
on the considerations from Section 6.4 and in this subsection, we
still expect that 40% will be the winning fault tolerance value in
most cases.

7. Conclusions and future work

To address the challenge of in-vehicle presence detection as
an important aspect of mobile context analysis, we introduced
our proposed deep learning-based approach, called DEEPMATCH
and its improved version DEEPMATCH2. Our approach utilizes the
sensor event streams of smartphones to predict their presence
inside public transportation vehicles with an accuracy of 98.51%
in the case of DEEPMATCH2. The deep learning model consists
of custom made Stacked Convolutional Autoencoders for feature
extraction and dimensionality reduction configured in a Siamese
architecture, and a matching module consisting of several layers
of stacked Convolutional Layers for event stream matching. The
deep learning model is distributed among the smartphones car-
ried by passengers, a reference device installed in public transport
vehicles, and a central server. The Stacked Convolutional Autoen-
coders allow for compressing the sensor events through feature
extraction and dimensionality reduction on the smartphone and
the reference device, while the event matching is performed on
the server. Through dimensionality reduction, the input data is
reduced by the factor eight such that the bandwidth of the data
transferred to the server is considerably reduced without losing
the information of the data necessary to perform the matching.

17

Information Systems xxx (XXXX) XXX

Furthermore, we discussed how the deep learning-based ap-
proach can be used to create inference algorithms that deduce
the travel time duration for passengers travelling in public trans-
portation with a very high accuracy. In particular, we presented
a theoretical framework that can be used to configure the infer-
ence algorithms to weight the various types of potential erro-
neous inferences, and thus accommodate the needs of the public
transportation providers.

As our future plan, we intend to implement a pilot of DEEP-
MATcH2 together with a public transportation provider in Nor-
way. Moreover, we intend to research on the optimum length of
the data segments and the frequency of data gathering (from the
reference devices and the smartphones) in order to minimize the
amount of data needed for in-vehicle presence detection.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments

This work was supported by the Norwegian Research Council
within the Industrial Ph.D. scheme under Grant 276259 (Mobi-
Track project).

References

[1

BankMyCell, How many smartphones are in the world? 2021,
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world.
Accessed: 2021-04-09.

Seungwoo Kang, Youngki Lee, Chulhong Min, Younghyun Ju, Taiwoo
Park, Jinwon Lee, Yunseok Rhee, Junehwa Song, Orchestrator: An active
resource orchestration framework for mobile context monitoring in sensor-
rich mobile environments, in: IEEE International Conference on Pervasive
Computing and Communications (PerCom), IEEE Computer, Mannheim,
Germany, 2010, pp. 135-144.

W. Narzt, S. Mayerhofer, 0. Weichselbaum, S. Haselbock, N. Hofler,
Be-In/Be-Out with bluetooth low energy: Implicit ticketing for public trans-
portation systems, in: IEEE 18th International Conference on Intelligent
Transportation Systems, IEEE, Las Palmas, Spain, 2015, pp. 1551-1556.

T. Gyger, O. Desjeux, EasyRide: Active transponders for a fare collection
system, IEEE Micro 21 (6) (2001) 36-42.

C. Sarkar,].J. Treurniet, S. Narayana, R.V. Prasad, W. de Boer, SEAT: Secure
energy-efficient automated public transport ticketing system, IEEE Trans.
Green Commun. Netw. 2 (1) (2018) 222-233.

R. Meng, D.W. Gromling, R.R. Choudhury, S. Nelakuditi, RideSense: Towards
ticketless transportation, in: 2016 IEEE Vehicular Networking Conference
(VNC), IEEE, Columbus, OH, USA, 2016, pp. 1-8.

M. Won, A. Mishra, S.H. Son, HybridBaro: Mining driving routes using
barometer sensor of smartphone, IEEE Sens.]J. 17 (19) (2017) 6397-6408.
Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, Tarek Abdelzaher,
Deepsense: A unified deep learning framework for time-series mobile
sensing data processing, in: 26th International Conference on World Wide
Web, ACM, Perth, Australia, 2017, pp. 351-360.

Magnus Oplenskedal, Amir Taherkordi, Peter Herrmann, DeepMatch: Deep
matching for in-vehicle presence detection in transportation, in: Pro-
ceedings of the 14th ACM International Conference on Distributed and
Event-Based Systems, 2020, pp. 97-108.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, Sateesh Addepalli, Fog computing
and its role in the internet of things, in: 1st Workshop on Mobile Cloud
Computing (MCC), ACM, Helsinki, Finland, 2012, pp. 13-16.

T. Griindel, H. Lorenz, K. Ringat, The ALLFA ticket in Dresden. Practical
experience of fare management based on Be-In/Be-Out & automatic fare
calculation, in: IPTS Conference, Seoul, South Korea, 2006.

V. Kostakos, T. Camacho, C. Mantero, Wireless detection of end-to-end
passenger trips on public transport buses, in: 13th IEEE International
Conference on Intelligent Transportation Systems, 2010.

Andrzej Kwiecieri, Michal Mackowski, Marek Kojder, Maciej Manczyk,
Reliability of bluetooth smart technology for indoor localization system,
in: International Conference on Computer Networks (CN), in: CCIS 522,
Springer-Verlag, Br'unow, Poland, 2015, pp. 444-454.

Sriharsha Kuchimanchi, Bluetooth Low Energy based Ticketing Sys-
tems (Master’s thesis), Aalto University, Espoo, Finland, 2015.

[2

[3

[4

(5

[6

(7

[8

[9

[10]

(1]

[12]

[13]

[14]

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb2
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb3
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb3
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb3
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb3
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb3
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb3
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb3
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb4
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb4
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb4
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb5
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb5
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb5
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb5
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb5
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb6
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb6
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb6
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb6
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb6
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb7
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb7
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb7
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb8
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb8
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb8
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb8
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb8
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb8
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb8
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb10
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb10
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb10
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb10
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb10
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb12
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb12
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb12
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb12
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb12
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb13
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb13
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb13
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb13
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb13
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb13
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb13
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb14
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb14
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb14

M. Oplenskedal, P. Herrmann and A. Taherkordi

[15]

[16]

[17]

[18]

[19]

Kartik Sankaran, Minhui Zhu, Xiang Fa Guo, Akkihebbal L Ananda,
Mun Choon Chan, Li-Shiuan Peh, Using mobile phone barometer for low-
power transportation context detection, in: 12th ACM Conference on
Embedded Network Sensor Systems, ACM, Memphis, TN, USA, 2014, pp.
191-205.

Salvatore Vanini, Francesca Faraci, Alan Ferrari, Silvia Giordano, Using
barometric pressure data to recognize vertical displacement activities on
smartphones, Comput. Commun. 87 (2016) 37-48.

Bo-Jhang Ho, Paul Martin, Prashanth Swaminathan, Mani Srivastava, From
pressure to path: Barometer-based vehicle tracking, in: 2nd ACM In-
ter. Conf. on Embedded Systems for Energy-Efficient Built Environments
(BuildSys), ACM, Seoul, South Korea, 2015, pp. 65-74.

A. Dimri, H. Singh, N. Aggarwal, B. Raman, D. Bansal, KK. Ramakrish-
nan, RoadSphygmo: Using barometer for traffic congestion detection, in:
8th International Conference on Communication Systems and Networks
(COMSNETS), IEEE Computer, Bangalore, India, 2016, pp. 1-8.

X. Wang, L. Kong, T. Wei, L. He, G. Chen,]J. Wang, C. Xu, VLD: Smartphone-
assisted vertical location detection for vehicles in urban environments, in:
2020 19th ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN), 2020.

[20] Jindong Wang, Yigiang Chen, Shuji Hao, Xiaohui Peng, Lisha Hu, Deep

[21]

[22]

[23]

[24]

learning for sensor-based activity recognition: A survey, Pattern Recognit.
Lett. 19 (2017) 3-11.

Yi Zheng, Qi Liu, Enhong Chen, Yong Ge,]. Leon Zhao, Exploiting multi-
channels deep convolutional neural networks for multivariate time series
classification, Front. Comput. Sci. 10 (1) (2016) 96-112.

P. Castrogiovanni, E. Fadda, G. Perboli, A. Rizzo, Smartphone data classifi-
cation technique for detecting the usage of public or private transportation
modes, IEEE Access 8 (2020) 58377-58391, http://dx.doi.org/10.1109/
ACCESS.2020.2982218.

Lin Wang, Hristijan Gjoreski, Mathias Ciliberto, Paula Lago, Kazuya Mu-
rao, Tsuyoshi Okita, Daniel Roggen, Summary of the Sussex-Huawei
locomotion-transportation recognition challenge 2020, in: Adjunct Pro-
ceedings of the 2020 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2020 ACM International
Symposium on Wearable Computers, in: UbiComp-ISWC '20, Association
for Computing Machinery, New York, NY, USA, ISBN: 9781450380768,
2020, pp. 351-358.

Christian Mayer, Ruben Mayer, Majd Abdo, StreamLearner: Distributed
incremental machine learning on event streams: Grand challenge, in: 11th
ACM International Conference on Distributed and Event-Based Systems,
ACM, Barcelona, Spain, 2017, pp. 298-303.

18

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

Information Systems xxx (XXXX) XXX

Michael Spork, Carlo Alberto Boano, Kay Romer, Performance and trade-
offs of the new PHY modes of BLE 5, in: Proceedings of the ACM MobiHoc
Workshop on Pervasive Systems in the IoT Era (PERSIST-IoT), ACM, 2019,
pp. 7—12.

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, Siamese neural net-
works for one-shot image recognition, 2015, p. 8, https://www.cs.cmu.edu/
~rsalakhu/papers/oneshot1.pdf.

Cheng Zhang, Wu Liu, Huadong Ma, Huiyuan Fu, Siamese neural network
based gait recognition for human identification, in: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
Shanghai, China, 2016, pp. 2832-2836.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Sdckinger, Roopak Shah,
Signature verification using a “Siamese” time delay neural network, in:
Advances in Neural Information Processing Systems, Morgan Kaufmann
Publishers, San Francisco, CA, USA, 1994, pp. 737-744.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press,
Cambridge, MA, USA, 2016, pp. 505-528, Chapter Autoencoders. http:
//www.deeplearningbook.org.

Naveen Sai Madiraju, Seid M. Sadat, Dimitry Fisher, Homa Karimabadi,
Deep temporal clustering: Fully unsupervised learning of time-domain
features, 2018, p. 11, arXiv cs, arXiv:1802.01059, Article 1802.01059.
Jonathan Masci, Ueli Meier, Dan Ciresan, Jirgen Schmidhuber, Stacked
convolutional auto-encoders for hierarchical feature extraction, in: Inter-
national Conference on Artificial Neural Networks (ICANN), in: LNCS, vol.
6791, Springer-Verlag, Espoo, Finland, 2011, pp. 52-59.

Akara Supratak, Hao Dong, Chao Wu, Yike Guo, DeepSleepNet: A model
for automatic sleep stage scoring based on raw single-channel EEG, IEEE
Trans. Neural Syst. Rehabil. Eng. 25 (11) (2017) 1998-2008.

Tensorflow, Tensorflow 2.3, 2019, https://www.tensorflow.org/api_docs/
python/tf. Accessed: 2020-11-27.

Battery Historian, Batterystats and battery historian, 2019, https:
//developer.android.com/studio/profile/battery-historian. Accessed: 2019-
10-23.

Xiaomeng Chen, et al., Smartphone energy drain in the wild: Analysis and
implications, ACM SIGMETRICS Perform. Eval. Rev. 43 (1) (2015) 151-164.
Entur, Entur public transport API, 2020, https://developer.entur.org.
Accessed: 2020-10-07.

SIRI, SIRI standard, 2020, http://www.transmodel-cen.eu/standards/siri/.
Accessed: 2020-10-07.

http://refhub.elsevier.com/S0306-4379(21)00129-0/sb15
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb15
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb15
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb15
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb15
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb15
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb15
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb15
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb15
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb16
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb16
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb16
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb16
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb16
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb17
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb17
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb17
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb17
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb17
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb17
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb17
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb18
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb18
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb18
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb18
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb18
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb18
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb18
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb19
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb19
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb19
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb19
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb19
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb19
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb19
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb20
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb20
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb20
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb20
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb20
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb21
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb21
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb21
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb21
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb21
http://dx.doi.org/10.1109/ACCESS.2020.2982218
http://dx.doi.org/10.1109/ACCESS.2020.2982218
http://dx.doi.org/10.1109/ACCESS.2020.2982218
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb23
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb24
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb24
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb24
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb24
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb24
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb24
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb24
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb25
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb25
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb25
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb25
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb25
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb25
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb25
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb27
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb27
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb27
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb27
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb27
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb27
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb27
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb28
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb28
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb28
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb28
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb28
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb28
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb28
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1802.01059
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb31
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb31
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb31
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb31
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb31
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb31
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb31
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb32
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb32
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb32
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb32
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb32
https://www.tensorflow.org/api_docs/python/tf
https://www.tensorflow.org/api_docs/python/tf
https://www.tensorflow.org/api_docs/python/tf
https://developer.android.com/studio/profile/battery-historian
https://developer.android.com/studio/profile/battery-historian
https://developer.android.com/studio/profile/battery-historian
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb35
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb35
http://refhub.elsevier.com/S0306-4379(21)00129-0/sb35
https://developer.entur.org
http://www.transmodel-cen.eu/standards/siri/

	DeepMatch2: A comprehensive deep learning-based approach for in-vehicle presence detection
	Introduction
	Related work
	Communication technology-based solutions
	Mobile sensor data analytics-based solutions
	Mobile sensor events and deep learning

	DeepMatch
	Overview
	Hardware requirements and system settings
	Mobile data analysis
	Design and architecture of the learning model
	Encoder and decoder
	Matching module
	Model training
	Design rationale and experimental settings behind the DeepMatch model

	DeepMatch2
	Design rationale and experimental settings of the DeepMatch2 model
	Dimensionality reduction
	Accuracy improvement

	Evaluating the deep learning models
	Data collection and dataset creation
	Metrics to evaluate learning models
	Sensor modality experiments
	Segment size experiments
	Comparing DeepMatch with two baseline methods
	Prediction performance of DeepMatch2
	Execution time in the server
	Battery consumption on smartphones
	Computational overhead on smartphones

	Travelling user inference
	Travelling times between adjacent bus stops
	Matching sequences and travel inference algorithms
	User travel inference algorithm
	Considering different forms of fault tolerance
	A more formal look at the trade off between NTF and TF

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References

