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This paper demonstrates that automatic selection of the right interpolation/smoothing method in a GNSS-based network real-
time kinematic (NRTK) interpolation segment can improve the accuracy of the rover position estimates and also the processing
time in the NRTK processing center. The methods discussed and investigated are inverse distance weighting (IDW); bilinear and
bicubic spline interpolation; kriging interpolation; thin-plate splines; and numerical approximation methods for spatial processes.
The methods are implemented and tested using GNSS data from reference stations in the Norwegian network RTK service called
CPOS. Data sets with an average baseline between reference stations of 60–70 kmwere selected. 12 prediction locations were used to
analyze the performance of the interpolation methods by computing and comparing different measures of the goodness of fit such
as the root mean square error (RMSE), mean square error, and mean absolute error, and also the computation time was compared.
Results of the tests show that ordinary kriging with the Matérn covariance function clearly provides the best results. The thin-plate
spline provides the second best results of the methods selected and with the test data used.

1. Introduction

The use of GNSS and network real-time kinematic posi-
tioning to achieve GNSS positions with accuracy at the cm-
level is increasing rapidly these years. This is partly due to
the development and modernization of the GNSS systems
themselves (GPS, GLONASS, Galileo, and Beidou), but it is
also caused by a general quest for better position accuracy in
many user communities.

High-accuracy GNSS positioning is based on the carrier
phase being observable. Using the notation from [1], the basic
observation equation that summarizes the relation between
observations and error sources is given as follows:

Φ = 𝜆
−1

(𝑟 − 𝐼 + 𝑇) + 𝑓 (𝛿𝑡
𝑢

− 𝛿𝑡
𝑠

) + 𝑁 + 𝜀
𝜙

, (1)

where Φ is the phase observation in cycles, 𝜆 is the wave-
length in meters/cycle, 𝑟 is the geometric distance between
the receiver and satellite in meters, 𝐼 is the ionospheric
signal delay in meters, 𝑇 is the tropospheric signal delay in
meters, 𝑓 is the frequency in Hertz, 𝛿𝑡

𝑢

and 𝛿𝑡𝑠 are the clock
errors of, respectively, the receiver and the satellite, 𝑁 is the
initial number of cycles at the first observation epoch (the
ambiguity), and 𝜀

𝜙

is a noise term given in cycles that mainly
accounts for multipath (reflected signals) and receiver noise.

When using the NRTK technique, a network of reference
stations is used to estimate the errors in the positioning
process, that is, the effects of the ionosphere and troposphere
as well as inaccuracies in the satellite position as provided
with the broadcast ephemerids from the satellites.

The accuracy of NRTK positioning systems depends on
the ability to identify and mitigate the error sources in

Hindawi Publishing Corporation
International Journal of Navigation and Observation
Volume 2015, Article ID 346498, 15 pages
http://dx.doi.org/10.1155/2015/346498

http://dx.doi.org/10.1155/2015/346498


2 International Journal of Navigation and Observation

Correction 
generation 

segment

Data 
collection 
segment

Correction 
interpolation 

segment

Correction 
transmission 

segment

Rover 
positioning 

segment

Figure 1: Network real-time kinematic segments.

the system as well as the residual biases. The biases include
residual effects from the space segment, signal propagation,
environment effects, and receiver noise in the reference net-
work.Themitigation process can be carried out bymodeling,
estimation, or combinations of observables.

The NRTK processing chain can be summarized as
follows: the first step is to collect raw measurements from
the network of reference stations, solve for the ambiguities
within the reference network, and generate error estimates.
The next step is to apply the interpolation/smoothing scheme
to generate the RTK corrections for the user location. The
RTK corrections are then transmitted to users who can then
perform real-time positioning with accuracy at the cm-level.

Figure 1 shows all segments involved in the NRTK
processing chain. The figure illustrates the so-called virtual
reference station (VRS) concept, which was developed by
Landau et al. [2]. Other NRTK standards such as for instance
the master auxiliary concept (MAC) also exist [3], but we
limit the discussion in this paper to the VRS concept.

As the GNSS systems and users become more numerous,
the amount of data that needs processing increases as well,
which poses some interesting challenges for the NRTK
system developers and service providers. This paper focuses
on processing large data sets and high quality interpola-
tors/smoothers that can be used to aid the data processing.
Let us consider how the RTK processing is carried out. First
the user sends his/her position to the control center, and
then the network engine chooses a suitable subnetworkwhich
is used to generate corrections, and these corrections are
then transmitted back to the user. The first challenge to
this model is the number of users, since each user has to
be processed independently, and the number of users has
increased dramatically in recent years. The solution to this
is to construct new models and algorithms. These should be
able to process data from large geographical areas, as well as
computing the necessary corrections and quality indicators
ready for use, so that any RTK user that connects will be
served immediately.

In other branches of science and engineering, new anal-
ysis tools that satisfy these requirements have already been
developed: neural networks, machine learning, classification
and regression trees, hierarchical models, and so forth. In
this paper, some existing interpolation/smoothing methods
are applied to real datasets, and the strengths and weaknesses
of each method are identified. The results are then used to
combine these methods and construct models that describe
the observed variations in the data as well as possible.

Interpolationmethods can be divided into two categories:
local methods and global methods. The local methods only

use a subset of the data for interpolation, which implies
that the required processing time is reduced. Conversely, the
global techniques use all the data available to generate pre-
dictions. In this paper, both these approaches are considered.
Referring to Figure 1, the main focus of this paper is directed
at the correction interpolation segment and more specifically
at the automatic selection of the right interpolation algorithm
based on appropriate tests, such that the rover position
estimation will be improved.

The rest of the paper is organized as follows: Section 2
gives a full description of the test data using the Norwegian
GNSS network data, known as CPOS, and introduces the
variational problem in general. Section 3 covers local interpo-
lation algorithms, specifically the inverse-distance weighted
and bilinear/bicubic methods by Akima. Section 4 and the
following sections deal with global interpolation methods.
First, thin-plate splines and the Bayesian model behind the
smoothing are reviewed in this section. Section 5 introduces
numerical approximation schemes for Gaussian random
fields. Section 6 covers spatial interpolation algorithms and
specifically the ordinary kriging method. Section 7: the
performance parameters are defined in this section. Section 8:
the results from Sections 3–6 are generalized in this section.
Section 9 is the conclusion and discussion and covers appli-
cations of the results developed in Sections 3–6.

2. Test Data and Variational Reconstruction

2.1. Test Data. The main success of network real-time kine-
matic positioning has been the reduction of correlated errors
in the network (e.g., ionospheric, tropospheric, and satellite
position errors). This type of errors is collectively referred
to as distance-dependent errors and can be subdivided into
the dispersive errors which depend on frequency and the
nondispersive errors which do not.

The size of the network varies with time, as the individual
reference stations and satellites may not deliver data for
a while, and observations are typically correlated to each
other. Modeling the spatial and temporal variations of such
a process is too complex to capture the covariance structure
of the data, so often we end up imposing stationarity. In this
paper, we apply techniques for handling spatial processes in
order to capture the covariance structure in the data, such that
high quality synthetic data can be provided. The main clue is
to employ the right tool from epoch to epoch, based on some
appropriate criteria.

We prefer to work with real data, and since the real
network error estimates were not made available, we decided
to analyze the ionospheric path delays for CPOS RTK
network, given by absolute TEC values. If the ionosphere
data is replaced with the full network corrections, the same
algorithms should still function very well. Ionospheric path
delay is considered the single largest source of inaccuracy
for positioning and navigation, so the quality of the NRTK
corrections is strongly affected in the case of moderate to
high ionosphere activity. To test the algorithms against each
other, a large ionospheric data set from the Norwegian CPOS
network is investigated. The data is generated by a first-order
geometry-free approach (Section 8.1).
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Figure 2: Norwegian CPOS RTK network. Filled triangles mark
station locations. Height difference between sites up to 1000 meters.

At the time of writing, the CPOS RTK network contains
approximately 180 stations on the Norwegian mainland (for
a listing of stations of the CPOS RTK network, see the
appendix.). The algorithms were tested with different station
configurations (50, 75, and 110 stations), equipped with
geodetic dual frequency GNSS receivers, which track both
GPS and GLONASS satellites. In this investigation, however,
only the GPS portion of the data was used.The distribution of
theCPOSRTKnetwork reference stations is given in Figure 2.

2.2. Variational Reconstruction

2.2.1. Problem Formulation. Let us assume that the observed
noisy measurements {𝑧

𝑖

} at the locations {𝑠
𝑖

: 𝑠
𝑖

∈ R2} is a
random function, with the mean 𝑚(𝑠) and variance 𝜎2. Our
goal is then to predict the value at other locations {𝑠

𝑘

} where
we have no observations, under the assumption that the
predicted values should resemble its neighbors. To achieve
this, we can either interpolate or construct a smooth function
𝑔(𝑠) that represents the variation in the data and is robust
against outliers.

The data that will be modeled is a pure spatiotemporal
process, namely, the absolute total electron count (TEC).
Assuming weak stationarity of the process under study, the
mean and variance are not functions of the spatial location 𝑠.
Themodel used to describe the variation in data in this paper,
however, is assumed to have the form

𝑧 (𝑠) = 𝑚 (𝑠) + 𝜀 (𝑠) . (2)

The mean function 𝑚(𝑠), often referred to as the trend or
deterministic part, determines the large-scale variation in
the data. The function 𝜀(𝑠) is called the random part and
determines the small-scale variation.This process model will
be assumed in the subsequent discussion of all the different
interpolation/smoothing techniques presented in this paper.

Some data analysts prefer theCressie decomposition [4, ch.
3] of the observed random field 𝑍(𝑠), which takes the form

𝑍 (𝑠) = 𝑚 (𝑠) + 𝑇 (𝑠) + 𝜀 (𝑠) , (3)

where 𝑠 ∈ R2 is the spatial location; 𝑍(𝑠) is the observation;
𝑚(𝑠) = 𝑋𝛽 is the trend (the mean component of the model);
𝑇(𝑠) is a stationary Gaussian process with variance 𝜎2 (partial
sill), and a correlation function parameterized in its simplest
formby𝜙 (the range parameter); and finally 𝜀 is an error term,
with a variance parameter 𝜏2 (nugget variance).

2.2.2. Model Parameter Estimations. Once the model is
defined, the next step is to estimate the model parameters. In
general, this is done numerically by minimizing the neg-
ative log-likelihood function. The most used optimization
methods are, respectively, the conjugate gradientmethod, the
quasi-Newtonianmethod, and theNedler-Meadmethod.The
details of these methods will not be treated in this paper, but
the interested reader is referred to references [5, 6].

The algorithm may not converge to correct parameter
values when called with the default options. The user should
therefore try different initial values, and if the parameters
have different orders of magnitude, a scaling of the param-
eters may be necessary. If such problems arise, some possible
workarounds include

(i) rescaling data values by dividing by a constant,

(ii) rescaling coordinates by subtracting values and/or
dividing by constants,

(iii) bootstrapping to accelerate the convergence. This
method is used in our implementation of the kriging
algorithm in Section 6.

2.2.3. Model Validation. In the field of statistical analysis, an
appropriate way of analyzing data is to divide it into three
distinct subsets. The training dataset is used to construct the
model, the validation data is used to check themodel, and the
last data set is used to challenge themodel.Themain purpose
is to determine whether or not our model is an accurate
representation of the real world data. This process is called
the model validation assessment. The most famous methods
are the family of cross-validation, generalized maximum
likelihood (GML) methods, Akaike information criterion
(AIC), Bayesian information criterion (BIC), and so forth.

In our implementation, the generalized cross-validation
is used to determine the optimal smoothing parameter 𝜆
(see Section 4). The computation AIC and BIC are computed
in Section 6, when maximum likelihood estimation is used
instead ofweighted least squares in the kriging algorithm.The
GML methods will be used in future work.
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3. IDW and Akima Interpolation

3.1. IDWInterpolation. Theinverse-distanceweighted (IDW)
scheme is an exact interpolator. It honors the data by
assigning weights to all neighboring points according to their
distance from the prediction location 𝑠

0

. Locations that are
closer to 𝑠

0

receive higher weights, and locations that are far
from 𝑠

0

are given lower weights; this mechanism is adminis-
tered by the parameter 𝑟 in the IDW predictor formula. The
user can freely choose the number of observations used to
perform the interpolation.This is done by defining a radius 𝑅
around the prediction location 𝑠

0

.
The IDW predictor scheme is defined as

𝑧̂ (𝑠
0

) =
∑
𝑁

𝑖=1

𝑧 (𝑠
𝑖

) 𝑑
−𝑟

0𝑖

∑
𝑁

𝑖=1

𝑑
−𝑟

0𝑖

. (4)

Here, 𝑠
0

is the prediction location, 𝑁 is the number of
observations, 𝑧(𝑠

𝑖

) are the neighboring observations, 𝑟 is
the weight decision parameter, and 𝑑 is the distance (either
spherical or Euclidean).

The IDWmethod is originally due to Shepard [7], which
described a global method. All derived IDW methods are
either generalizations or variations of this method. The basic
Shepard’s method can be expressed as

𝐹 (𝑥, 𝑦) =
∑
𝑁

𝑘=1

𝑤
𝑘

(𝑥, 𝑦) 𝑓
𝑘

∑
𝑁

𝑘=1

𝑤
𝑘

(𝑥, 𝑦)

, (5)

where typically the weight 𝑤
𝑘

is the inverse Euclidean
distance 𝑤

𝑘

= 1/𝑑
2

𝑘

= {(𝑥 − 𝑥
𝑘

)
2

+ (𝑦 − 𝑦
𝑘

)
2

}
−1/2. We will

however define a disk with center (𝑥
𝑘

, 𝑦
𝑘

) and a radius 𝑅
and set the weight 𝑤

𝑘

to zero outside of this disk. A natural
scheme suggested by many authors, like, for example, Renka
and Brown [8], is given by the expression

𝑤
𝑘

(𝑥, 𝑦) = {
(𝑅
𝑤

− 𝑑
𝑘

)
+

𝑅
𝑤

𝑑
𝑘

}

2

, (6)

where

(𝑅
𝑤

− 𝑑
𝑘

)
+

= {
𝑅
𝑤

− 𝑑
𝑘

if 𝑑
𝑘

< 𝑅
𝑤

0 if 𝑑
𝑘

≥ 𝑅
𝑤

.
(7)

Impose the constraints such that

(i) the sum of all weights𝑤
𝑘

inside the disk 𝑅
𝑤

should be
normalized to unity, that is, ∑𝑤

𝑘

= 1,
(ii) the predictor is a linear combination of the observa-

tions.

If the variance of the predictor is then controlled such that it is
at a minimum, the IDW behaves almost like the local kriging
interpolator (Section 6); however the covariance structure is
not preserved.

For the implementation, the package gstat from Edzer
Pebesma is used to carry out IDW (see Table 3 for more
information).

3.2. Akima Algorithms. Bilinear or bicubic spline interpo-
lation is applied using different versions of algorithms by
Akima [9, 10]. Given a set of data points in a plane, our
aim is to fit a smooth curve that passes through the given
points considered as reference points. The method is local
and is based on a piecewise function composed of a set
of polynomials and applicable up to the third degree on
each interval. The method produces remarkable results with
minimum processing time. For a detailed mathematical
formulation, please refer to references [9, 10].

3.2.1. Basics of Spline Interpolation/Smoothing. An under-
standing of the basic elementary building blocks of a 1D
spline facilitates the understanding of 2D and 3D splines, for
instance, the TPS (Section 4).

Given real numbers {𝑡
1

, 𝑡
2

, . . . , 𝑡
𝑛

} ∈ [𝑎, 𝑏], a function 𝑔
defined on interval [𝑎, 𝑏] is a cubic spline if and only if the
following conditions are satisfied:

(i) the function 𝑔 is a cubic polynomial on each interval
(𝑎, 𝑡
1

), (𝑡
1

, 𝑡
2

), . . . , (𝑡
𝑛

, 𝑏);
(ii) the function 𝑔 and its first and second derivatives are

continuous at each of the points 𝑡
𝑖

.

Condition (ii) implies that the cubic polynomials from
condition (i) fit together on each 𝑡

𝑖

, where the 𝑡
𝑖

are called
knots. Together these two conditions imply that 𝑔(𝑥) is a
function with continuous first and second derivatives on the
whole interval [𝑎, 𝑏].

For some given real constants 𝑎
𝑖

, 𝑏
𝑖

, 𝑐
𝑖

, 𝑑
𝑖

, the cubic spline
function 𝑔 can be expressed as

𝑔 (𝑡) = 𝑎
𝑖

+ 𝑏
𝑖

(𝑡 − 𝑡
𝑖

) + 𝑐
𝑖

(𝑡 − 𝑡
𝑖

)
2

+ 𝑑
𝑖

(𝑡 − 𝑡
𝑖

)
3

, (8)

where the index 𝑖 = 0, 1, 2, . . . , 𝑛. The end-point knots
correspond to the boundaries of the function domain; that
is, 𝑡
0

= 𝑎 and 𝑡
𝑛+1

= 𝑏.
Finding a smoothing spline is not an easy task. Reinsch

(1967) proposed an algorithm and showed that the solution
of the minimum principle is actually cubic splines. The basic
idea is to construct a nonsingular system of linear equations
of the second derivative 𝜆

𝑖

of 𝑔. The resulting equations are
computationally efficient because of their banded structure.
For an excellent exposition of the material, see also [11].

3.2.2. Output Result from Akima. Figure 3 shows the output
from Akima with bilinear interpolation.

4. Thin Plate Spline Method

4.1. Mathematical Preliminaries. In this section, our main
interest is not to construct a function 𝑚(𝑠

𝑖

) that exactly
interpolates the data 𝑧

𝑖

at 𝑛 distinct points but to find an
attractive way to smooth noisy data.Themethod of thin-plate
splines (TPS) will be used for this purpose.

Duchon [12] was the first to build the theoretical foun-
dation for the TPS method. The name TPS comes from
the physical situation of bending a thin surface, where the
method minimizes the bending energy of a thin plate fixed
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Figure 3: L1-VTEC variation surface generated by AKIMA (bilin-
ear) interpolation. Color scale is expressed in meters. High iono-
spheric activity (year: 2013, doy: 152), 110 reference stations.

at the data sites. For our application, the TPS method is used
to minimize the cost function:

𝐽
𝑚

(𝑓) = ∫
R𝑑

󵄩󵄩󵄩󵄩𝐷
𝑚

𝑓(𝑠)
󵄩󵄩󵄩󵄩

2 d𝑠, (9)

where 𝐷𝑚 is a vector of partial differentiation operators of
order 𝑚. In the two-dimensional case, that is, when 𝑑 = 2,
𝑚 = 2, and 𝑓 = 𝑓(𝑥, 𝑦), the TPS penalty function can be
written as

𝐽
2

(𝑓) = ∬
R2
{(

𝜕
2

𝑓

𝜕𝑥2
)

2

+ 2(
𝜕
2

𝑓

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕
2

𝑓

𝜕𝑦2
)

2

} d𝑥 d𝑦.

(10)

Let Δ4(𝑥, 𝑦) denote the differential operator in the inte-
grand of (10). The thin-plate spline 𝑓(𝑥, 𝑦), which is the
solution to the variational problem ofminimizing the penalty
𝐽
2

(𝑓), can then be found by solving the biharmonic equation
Δ
4

𝑓(𝑥, 𝑦) = 0.
The goal is to find the function 𝑓

𝜆

in Sobolev space [13, p.
250] that minimizes the following expression:

𝑆 (𝑓) = 𝑛
−1

𝑛

∑

𝑖=1

(𝑧(𝑠
𝑖

) − 𝑓(𝑠
𝑖

))
2

+ 𝜆𝐽
2

(𝑓) , (11)

where 𝑛 is the total number of observations, 𝐽
2

is a smooth-
ness penalty (the cost function), and 𝜆 is the smoothing
parameter. The smoothing parameter is a trade-off factor
between the rate of change of the residual error and local
variation. Optimal minimization of 𝑆(𝑓) results in a good
compromise between smoothness and goodness of fit.

Once the curve approximation of the data has been
constructed, generating values at any location, where no
observations are available, is accomplished by simply index-
ing the variables 𝑥 and 𝑦 and fetching the corresponding
value. This is a major advantage of smoothing methods over

interpolation methods; no extra interpolations are required
after the curve has been constructed for a given epoch.

Validation is carried out by the GCV (Section 2.2.3). Let
the cross-validation function 𝑔[𝑘]

𝑛,𝜆

, with 𝑘 = 1, 2, . . . , 𝑛, be
defined as

𝑔
[𝑘]

𝑛,𝜆

= argmin
𝑔∈𝑊

(𝑚)

2

𝑛

∑

𝑖=1

(𝑧
𝑖

− 𝑔 (𝑥
𝑖

))
2

+ 𝜆∫

1

0

{𝑔
(𝑚)

(𝑥
𝑖

)}
2

d𝑥, (12)

where 𝜆 > 0. The OCV (ordinary cross-validation) and OCV
MSE (ordinary cross-validation mean square error) 𝑉

0

(𝜆),
respectively, are defined as

OCV (𝜆) = argmin
𝜆∈R+

𝑉
0

(𝜆) ,

𝑉
0

(𝜆) =
1

𝑛

𝑛

∑

𝑖=1

{𝑔
[𝑘]

𝑛,𝜆

(𝑥
𝑖

) − 𝑧
𝑖

}
2

.

(13)

The determination of the GCV (general cross-validation)
goes as follows. First, the expression for 𝑉

0

has to be
rewritten. There exists an 𝑛 × 𝑛 matrix 𝐴(𝜆), the smooth-
ing/influence/sensitivity matrix with the property. Consider

[
[

[

𝑔
𝑛,𝜆

(𝑥
1

)

.

.

.

𝑔
𝑛,𝜆

(𝑥
𝑛

)

]
]

]

= 𝐴 (𝜆)𝑍, (14)

such that 𝑉
0

(𝜆) can be written as

𝑉
0

(𝜆) = 𝑛
−1

𝑛

∑

𝑗=1

(𝑎
𝑘𝑗

𝑧
𝑗

− 𝑧
𝑘

)
2

(1 − 𝑎
𝑘𝑘

)
2

, (15)

where 𝑘, 𝑗 ∈ {1, 2, . . . , 𝑛} and 𝑎
𝑘𝑗

is element {𝑘, 𝑗} of 𝐴(𝜆).

Definition 1 (generalized cross-validation (GCV)). Let 𝐴(𝜆)
be the smoothing matrix defined in (14); then the GCV
function is given by the expression

GCV (𝜆) = 𝑛
−1

‖(𝐼 − 𝐴 (𝜆)) 𝑧‖
2

{𝑛−1 tr (𝐼 − 𝐴 (𝜆))}2
. (16)

4.2. Estimation of the Smoothing Parameter 𝜆. Thesmoothing
parameter 𝜆 plays a central role in the TPSmethod. By adjust-
ing the value of 𝜆, one can get the desired level of smoothness
at the cost of accuracy at the data sites. When we set this
parameter to zero, the problem is reduced to an interpolation
with no smoothing. On the other hand, when the smoothing
parameter tends to infinity, the method yields a plane which
is least-square fitted to the data. The smoothness penalty
method can be chosen by any criteria, but the most popular
criterion is GCV (generalized cross-validation), also known
as the “left-out one” method. The GCV criterion selects the
smoothing parameter 𝜆 that minimizes the GCV function,
equation (16), that is 𝜆̂ = argmin

𝜆∈R+GCV(𝜆).
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The GCV function 𝑉(𝜆) is the predicted mean square
error and can be viewed as a weighted version of the
OCV(𝜆) = 𝑉

0

(𝜆):

𝑉 (𝜆) =
1

𝑛

𝑛

∑

𝑖=1

{𝑔
[𝑖]

𝑛,𝜆

(𝑥
𝑖

) − 𝑧
𝑖

}
2

𝑊
𝑘

(𝜆) ,

𝑊
𝑘

(𝜆) = {
𝐼 − 𝑎
𝑘𝑘

(𝜆)

𝑛−1 tr (𝐼 − 𝐴 (𝜆))
}

2

.

(17)

In geodesy, it is often interesting to estimate the accuracy
𝑓
𝜆

. Two loss functions are considered: the mean square
prediction error𝑇(𝜆), and the stricter Sobolev error is defined
as𝑊(𝜆) = ‖𝑓

𝜆

− 𝑓‖
2

𝑊

,

𝑊(𝜆) = ∫

𝑏

𝑎

{𝑓
𝜆

− 𝑓}
2 d𝐺 + ∫

𝑏

𝑎

{𝑓
(𝑚)

𝜆

− 𝑓
(𝑚)

}
2

d𝐺. (18)

The performance of an estimator is often well characterized
by the risk function, defined as the expectation value of the
loss function:

𝑅
𝑇

(𝜆) = E (𝑇 (𝜆)) , 𝑅
𝑊

(𝜆) = E (𝑊 (𝜆)) . (19)

In this analysis, the GCV is used to estimate the smooth-
ing parameter 𝜆. Figure 12 shows the smoothed surface
generated by the TPS with GCV.

For implementation, the CRAN package rgcvpack is used
to implement the TPS algorithm (see Table 3 for more
information).

5. Numerical Approximation Methods

Numerical approximation techniques will assist us in pro-
cessing huge data sets with convergence. The main idea is
based on the pioneering work of Besag [14].

Let us assume that our observations at different locations
follow a multivariate Gaussian distribution with mean 𝜇

𝑧

and variance-covariance Σ
𝑧

. Then the continuously Gaussian
fields have the distribution

𝑓 (𝑧) = {2𝜋}
−𝑛/2

󵄨󵄨󵄨󵄨Σ𝑧
󵄨󵄨󵄨󵄨

−1 exp {−1
2
(𝑧 − 𝜇

𝑧

)
𝑇

Σ
−1

𝑧

(𝑧 − 𝜇
𝑧

)} .

(20)

Approximating the continuous Gaussian random field by
the discrete Gauss-Markov random field is accomplished by
introducing the Markov property. This is done as follows: we
say that two locations 𝑠

𝑖

and 𝑠
𝑗

are conditionally independent
if and only if

𝑥
𝑖

⊥ 𝑥
𝑗

| 𝑥
−(𝑖,𝑗)

. (21)

This property is very important when constructing the
precision matrix 𝑄 of the GMRF. That is, if we know what
happens nearby, we can ignore everything that lies further
away. Consider

𝑥
𝑖

⊥ 𝑥
𝑗

| 𝑥
−(𝑖,𝑗)

󳨐⇒ 𝑄
𝑖,𝑗

= 0. (22)

That is, element (𝑖, 𝑗) of𝑄 is zero if the process at location
𝑖 is conditionally independent of a process at 𝑗 given the

5 10 15 20

Longitude

70

65

60

55

La
tit

ud
e

Constrained refined delaunay triangulation

Figure 4: Mesh construction on top of which the GMRF is built.
Red circles represent the configured reference stations. The mesh in
this figure is used to construct the neighborhoods which are key to
specifying GMRF conditional independence structure.

process at all locations except {𝑖, 𝑗}. Figure 4 illustrates the
concept of the GMRF.

The sparse precision matrix makes the GMRF compu-
tationally effective, but it is difficult to construct reasonable
precision matrices. As a conclusion, the GMRF is a Gaussian
field with a sparse precision matrix𝑄 = Σ−1. For an excellent
description of the theory and applications of GMRF, the
reader is referred to, for example, Rue and Held [15].

The integrated nested Laplace approximation (INLA)
method developed by Håvard Rue is used to implement the
GMRF (see Table 3 for more information).

6. Kriging Interpolator

The kriging interpolator is a linear spatial interpolation
algorithm and is primarily used in geostatistics. In recent
years, however, the interpolator has been applied in many
new areas, such as geophysics and climate data analysis.

Given the observations {𝑍(𝑠
𝑖

)}
𝑁

𝑖=1

, we want to predict the
value of 𝑍(𝑠

0

) where no observations have been made. Our
goal is to find an estimator 𝑍

0

= 𝑍(𝑠
0

) = ∑
𝑁

𝑖=1

𝑤
𝑖

𝑍(𝑠
𝑖

) such
that the following requirements are met.
(i) Unbiasedness. This means that E(𝑍(𝑠

0

)) = E(𝑍
0

) and is
accomplished if∑𝑁

𝑖=1

𝑤
𝑖

= 1 and the mean is stationary.
(ii) Minimum Prediction Variance. We make some assump-
tions about the mean value of the random field 𝑍(𝑠). If the
mean is unknown but constant across the entire region of
interest, we have ordinary kriging. Otherwise, the method is
known as simple kriging.

Any estimator that meets the conditions of unbiasedness
and minimum prediction variance is said to be a BLUP
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(best linear unbiasedness predictor). Let us examine the
components of the MSPE (mean square prediction error).
Consider

𝜎
2

𝑆0

= var (𝑍
0

− 𝑍
0

)

= var (𝑍
0

) + var (𝑍
0

) − 2 cov (𝑍
0

, 𝑍
0

)

= 𝜎
2

+ var(
𝑁

∑

𝑖=1

𝑤
𝑖

𝑍
𝑖

) − 2 cov(𝑍
0

,

𝑁

∑

𝑖=1

𝑤i𝑍𝑖)

= 𝜎
2

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑤
𝑖

𝑤
𝑗

cov (𝑍
𝑖

, 𝑍
𝑗

) − 2

𝑁

∑

𝑖=1

𝑤
𝑖

cov (𝑍
𝑖

, 𝑍
0

)

= 𝜎
2

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑤
𝑖

𝑤
𝑗

𝐶
𝑖𝑗

− 2

𝑁

∑

𝑖=1

𝑤
𝑖

𝐶
𝑖0

.

(23)

We want to minimize var[𝑍(𝑠
0

) − 𝑍(𝑠
0

)] subject to the
constraint ∑𝑁

𝑖=1

𝑤
𝑖

= 1.
The procedure is well defined by the method of Lagrange

multipliers. Form the Lagrangian 𝐿,

𝐿 = var (𝑍 (𝑠
0

) − 𝑍 (𝑠
0

))
2

− 2𝜆

𝑁

∑

𝑖=1

(𝑤
𝑖

− 1) . (24)

We then take the partial derivatives of 𝐿 with respect to
the weights 𝑤

𝑖

and to 𝜆, set the equations to be equal to zero,
and solve them; we get

[
[
[
[

[

𝑤
1

.

.

.

𝑤
𝑁

𝜆

]
]
]
]

]

=

[
[
[
[

[

𝐶
11

⋅ ⋅ ⋅ 𝐶
1𝑁

1

.

.

. d
.
.
.

.

.

.

𝐶
1𝑁

⋅ ⋅ ⋅ 𝐶
𝑁𝑁

1

1 ⋅ ⋅ ⋅ 1 0

]
]
]
]

]

−1

[
[
[
[

[

𝐶
10

.

.

.

𝐶
𝑁0

1

]
]
]
]

]

. (25)

Equation (25), which is the kriging equation, is used to
compute the weights. The computation of weights is based
on the covariances among locations in the sample (region of
interest) and the covariances between sample locations and
the location to be predicted. To be specific.

(1) Covariances among the locations in the sample:

𝐶
𝑖𝑗

= 𝐶 (𝑠
𝑖

, 𝑠
𝑗

) = Cov (𝑍
𝑖

, 𝑍
𝑗

) ∀𝑖, 𝑗. (26)

The covariance matrix of the𝑁 sample values read

C = [[
[

𝐶
11

⋅ ⋅ ⋅ 𝐶
1𝑁

.

.

. d
.
.
.

𝐶
1𝑁

⋅ ⋅ ⋅ 𝐶
𝑁𝑁

]
]

]

. (27)

(2) Covariances between the sample locations and the
prediction point:

𝐶
𝑖0

= 𝐶 (𝑠
𝑖

, 𝑠
0

) = Cov (𝑍 (𝑠
𝑖

) , 𝑍 (𝑠
0

)) ∀𝑖. (28)

The vector of covariances between the sample loca-
tions and the prediction point read

c = [𝐶
10

𝐶
20

⋅ ⋅ ⋅ 𝐶
𝑁0

]
T
. (29)

Equation (25) becomes

[
w
𝜆
] = [

C 1
1T 0

]

−1

[
c
1
] , (30)

wherew is 1×𝑁 vector of weights and 1 = [1 ⋅ ⋅ ⋅ 1] is a vector
of the same dimensions.

6.1. Directional Effects. Another form of nonstationarity lies
in the covariance structure. One specific way to relax the
stationarity assumption is to allow directional effects. For
instance, the correlation decay rate at increasing distances
may be allowed to depend on the relative orientation between
pairs of locations. The simplest form of directional effects in
the covariance structure is called geometrical anisotropy. This
arises when a stationary covariance structure is transformed
by a differential stretching and rotation of the coordinate
axes. Hence, geometrical anisotropy is defined by two addi-
tional parameters. Algebraically, a model with geometrical
anisotropy in spatial coordinates 𝑥 = (𝑥

1

, 𝑥
2

) can be
converted to a stationary model in coordinates 𝑦 = (𝑦

1

, 𝑦
2

)

by the transformation

(𝑦
1

𝑦
2

) = (𝑥
1

𝑥
2

) (
cos (𝜓

𝐴

) − sin (𝜓
𝐴

)

sin (𝜓
𝐴

) cos (𝜓
𝐴

)
)(
1 0

0 𝜓
−1

𝑅

) . (31)

𝜓
𝐴

is called the anisotropy angle and 𝜓
𝑅

> 1 the anisotropy
ratio. The direction with the slowest correlation decay is
called the principal axis.

6.2. Choice of Covariance Function. The spatial correlation
between measurements at different locations is described by
the semivariogram functions:

𝛾 (ℎ) =
1

2
var (𝑍 (𝑠

𝑖

) − 𝑍 (𝑠
𝑗

))

=
1

2
{var (𝑍 (𝑠

𝑖

)) + var (𝑍 (𝑠
𝑗

))

−2 cov (𝑍 (𝑠
𝑖

) , 𝑍 (𝑠
𝑗

))}

= 𝐶 (0) + 𝐶 (ℎ) ,

(32)

where 𝐶(0) is the variance and 𝐶(ℎ) is the covariance. The
variogram and the covariance contain the same information
and can be used interchangeably.

In this study, the spatial correlation function 𝐶(ℎ) is
defined by the Matérn function and is given by

𝐶 (ℎ) =
𝜎
2

2V−1Γ (V)
(𝜅 ‖ℎ‖)

V
𝐾V (𝜅 ‖ℎ‖) . (33)

ℎ = ‖𝑠
𝑖

− 𝑠
𝑗

‖ ∈ R+ is the Euclidean spatial distance
between locations. 𝐾V is the modified Bessel function of
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Figure 5: An example of the Matérn covariance function, using
data with moderate ionosphere activity. Empirical variogram (small
circles) andMatérnmodel fitted bymaximum likelihood (solid line).
The parameter values used were: smoothness 𝜅 = 0.5, partial sill
𝜎
2

= 0.185, and range parameter 𝜙 = 4.05.

the second kind [16], the order V > 0measures the degree of
the smoothness of the process, and 𝜅 is the scaling parameter
related to the distance of decorrelation (dependency becomes
almost 0).

𝐶(ℎ) is obtained from spectral densities [17, p. 31] of the
form

𝑓 (𝜔) = 𝜙 (𝛼
2

+ 𝜔
2

)
−(V+1/2)

V > 0, 𝜙 > 0, 𝛼 > 0. (34)

Figure 5 shows the empirical semivariogram 𝛾(ℎ) with
the Matérn covariance function, which fits the L1-VTEC
data well. It also works in a wide range of circumstances;
including low, moderate, and high ionospheric activities,
tested with several different reference station configurations,
more specifically 75, 100, and 115 stations.

6.3. Computation of the Inverse Matrix. The kriging equation
(25) requires the inverse of the covariance matrix to be
computed, and this is detrimental to the performance of the
algorithm for large data sets. The operation may occasionally
even fail to invert the matrix. Numerical methods with
optimization algorithms will help us avoid this, for instance,
factorizationmethods, ill-conditioned test, and other suitable
methods.

7. Performance Parameters

In order to carry out the performance analysis of each
individual algorithm, an averaging weighted reference signal
𝑋 was constructed. It is defined as a linear combination of
values generated by algorithms with different weights, that
is, 𝑋 = ∑

5

𝑖=1

𝑤
𝑖

Alg
𝑖

, under the normalization constraint
∑
5

𝑖=1

𝑤
𝑖

= 1. Five algorithms are involved to construct the
reference signal𝑋.

The weights are chosen according to algorithm perfor-
mance measured in terms of minimum value and stability
of variance, functionality, correctness, and processing time.
Figure 6 shows the variance of two algorithms. We see
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Figure 6: The ordinary kriging algorithm (BLUP, pink curve) has a
stable and minimum variance compared to the AKIMA algorithm
(green curve). Normal ionospheric activity (year 2013, doy: 153), 110
reference stations.

Table 1: Definition of algorithm weights.

Algorithm
type Weights Comments

OK 𝑤
1

= .25
Produces trustworthy results with
MCF

TPS 𝑤
2

= .25

A real competitor of kriging, always
delivers, even when the covariance
structure is poor

GMRF 𝑤
3

= .25
Trustworthy results, like OK and
TPS

Akima 𝑤
4

= .15

Handles small variations perfectly.
The weight is reduced compared to
OK, GMRF, and TPS

IDW 𝑤
5

= .10

No covariance structure is
preserved.
The assigned weight is reduced
compared to OK, GMRF, TPS, and
Akima

that ordinary kriging has a minimum and stable variance;
therefore its weight is higher than for the Akima bicubic
spline. Table 1 summarizes the weight assignment for the
algorithms.

7.1. Quality of Service Parameters Definitions. For each one
of the quality of service (QoS) parameters whose values are
negotiable, the worst case performance must be specified.
In some cases, the minimum or the maximum values are
preferable, in other cases the averaged value.

The criteria chosen for performance evaluation in this
paper are based on comparing the reference signal 𝑋 to the
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Table 2: Quality of service (QoS) parameter definitions.

Parameters Explanations
MAE Mean absolute error
MSE Mean square error
RMSE Root mean square error
NSE Nash-Sutcliffe efficiency
KGE Kling-Gupta efficiency
𝑅 Pearson correlation coefficient
𝛽 Changes in locations (mean)
𝛼 Changes in scale (variance)

CT

Computation time is set to 5 seconds. In
NRTK processing the values most used
are:
ionosphere: 10 seconds
geometrical: 15–20 seconds

output 𝑌
𝑘

from algorithm 𝑘. Analysis is based on statistical
monitoring and detecting the changes in spatial location,
scale, and level. The full list is given in Table 2.

The required length of time series before we can carry out
the goodness of fit is a critical parameter. With the data sets
used for testing, values in the range of 100–200 epochs were
acceptable.

All algorithms compete about the QoS, the one with
highest score is selected as the winner, and the corrections
from this algorithm are used. 12 locations (can be regarded as
VRS) are chosen inside the CPOS RTK network for testing,
and one location is chosen randomly for each run to compute
theQoS.Themathematical definitions of the QoS parameters
are given in Table 2.
(i) Mean Absolute Error (MAE). MAE measures the average
absolute error and is defined below. Ideally, this value should
be as small as possible. Consider

MAE = 1

𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑋𝑖 − 𝑌𝑖
󵄨󵄨󵄨󵄨 .

(35)

(ii) Mean Square Error (MSE). This measures the average
squared error and is defined below. This value should also be
as close to zero as possible. Consider

MSE = 1

𝑁

𝑁

∑

𝑖=1

(𝑋
𝑖

− 𝑌
𝑖

)
2

. (36)

(iii) Root Mean Square Error (RMSE). RMSE between refer-
ence signals 𝑋

𝑖

and 𝑌
𝑖

gives the standard deviation of the
algorithm prediction error and minimum value is preferable.
Consider

RMSE = ( 1
𝑁

𝑁

∑

𝑖=1

(𝑋
𝑖

− 𝑌
𝑖

)
2

)

1/2

. (37)

(iv) Nash-Sutcliffe Efficiency (NSE) [18]. NSE determines the
relative magnitude of the noise variance compared to the

observed data variance. Unity means a perfect match, and
zero means that algorithm predictions are as accurate as
the mean of the observed information, while negative values
imply that the observedmean is better than the predicted one.
Consider

NSE = 1 −
∑
𝑁

𝑖=1

(𝑋
𝑖

− 𝑌
𝑖

)
2

∑
𝑁

𝑖=1

(𝑋
𝑖

− 𝑋
𝑖

)
2

. (38)

(v) Kling-Gupta Efficiency (KGE) [19]. KGE was developed by
Gupta et al. as a goodness of fit that decomposes the NSE
to facilitate the analysis of correlation, bias, and variability.
Consider

KGE = 1 − {(𝑅 − 1)2 (𝛼 − 1)2 (𝛽 − 1)2}
1/2

. (39)

Three components are involved in computation of this
index.

(a) 𝑅 is the Pearson product moment correlation coeffi-
cient, which ideally should tend to unity.This quantity
is defined by the expression

𝑅 =
𝑁 (∑𝑋

𝑖

𝑌
𝑖

) − (∑𝑋
𝑖

) (∑𝑌
𝑖

)

{[𝑁∑ (𝑋
𝑖

)
2

− (∑𝑋
𝑖

)
2

] [𝑁∑ (𝑌
𝑖

)
2

− (∑𝑌
𝑖

)
2

]}
1/2

.

(40)

(b) 𝛽 represents the change in locations. This index is
defined as the ratio between distribution locations
(means), and the ideal value is unity. Consider

𝛽 =
𝜇
𝑂

𝜇
𝐶

. (41)

(c) Variability ratio (VR) represents changes in scale
(variances).This index is defined as the ratio between
distribution standard deviations, and the ideal value
is again unity. Consider

VR =
𝜎
𝐶

/𝜇
𝐶

𝜎
𝑂

/𝜇
𝑂

. (42)

(vi) Computation Time (CT). Algorithms with high quality
data and minimum CT are preferable.
(vii) Coefficient of Determination (R2). 0 ⩽ 𝑅2 ⩽ 1 and gives
the portion of the variance of one variable that is predictable
from the other variable.
(viii) Spearman Correlation Coefficient (𝜌). −1 ⩽ 𝜌 ⩽ 1 is a
nonparametric test used tomeasure the degree of associations
between two variables.

8. Implementation and Analyses

Packages used in the implementation are downloaded from
the Comprehensive R Archive Network (CRAN). Table 3
gives a full description of each package.
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Table 3: Implementation packages.

Algorithm Package name Download Comments

Kriging geoR CRAN

Prediction by OK
(i) AIC computation
(ii) BIC computation
(iii) MLE estimation
(iv) WLS estimation
(v) Anisotropy

GMRF INLA CRAN Prediction by GMRF

TPS rgcvpack CRAN Prediction by TPS
(i) GCV to estimate 𝜆

AKIMA akima CRAN Bilinear interpolation
Bicubic interpolation

IDW gstat CRAN IDW interpolation
Normality Moments CRAN Jarque-Bera normal test
Smoothing KernSmooth CRAN Wand Kernel smoothing

8.1. Data Preprocessing. The data used in this investigation is
ionospheric data obtained from the Norwegian CPOS RTK
network. The TEC values are generated using the GFA
(geometry-free approach) algorithm. The algorithm takes
two steps to process.

(a) From IGS [20], the global ionosphericmodel (GIM) is
available. The ionospheric path delay and differential
code biases (DCBs) for each satellite are retrieved
from the IONEX (IONosphere map EXchange) for-
mat. This information is used to estimate the hard-
ware biases of the reference stations, by using the code
observable.

(b) From the previous step, we then use the biases in
phase measurement and compute the ionospheric
delay.

The procedure is described in more detail in [21].

8.2. Interpretation of Results. The test results show that
ordinary kriging with the Matérn covariance function is
the most appropriate choice under normal circumstances
and produces a smooth solution with acceptable accuracy.
The Matérn covariance function is well-behaved even for
nonstationary fields and is governed by three parameters:
location, scale, and shape.

Stein [17, p. 12] recommended the use of the Matérn
model due to its flexibility (ability tomodel the smoothness of
physical processes and possibility to handle nonstationarity).

The processing time of this algorithm increases as the
number of observations increase. Another approach is to
exclude observations that are far away from the interpolation
points and use only a subset of the data for the interpolation.
This approach is called local kriging.

In order to increase the convergence of OK, we have
incorporated the bootstrapping algorithm on historical data
to get a very good guess for initial values. Figure 9 illustrates
the concept.

One major obstacle of this algorithm is the computation
of the inverse matrix in the kriging equation (25). Using

the numerical approximation of the inverse matrix, the
computation time will improve considerably, as mentioned
previously in Section 6.3.

The WLSE (weighted least square estimation) algorithm
is preferable to maximum likelihood or restricted maximum
likelihood andworks inmost cases, regardless of the distribu-
tion of the observations. If the observations have a Gaussian
distribution, the WLS and ML/REML yield the same results.

We are often faced with a nonstationary process where
we are interested in estimating the spatial covariance for the
entire random field. Guttorp and Sampson [22] proposed a
two-step approach for solving this problem, a nonparametric
algorithm to estimate the spatial covariance structure for
the entire random field without assuming stationarity. The
interested reader is referred to [23, pp. 93–95].

When the covariance structure preserves sparsity, numer-
ical approximation methods are preferable to all other meth-
ods, as they require less memory and computation time.

TPS algorithm is preferred when performing smoothing
rather than interpolating data.

8.3. Algorithms Delay Comparison. In this subsection, the
delays caused by different algorithms are investigated.The test
results are shown in Figure 7. The number of observations
varied between 700 and 3000 ionospheric piercing points
(IPPs).The data used for the plot are the first 255 epochs with
a resolution of 30 seconds from high ionospheric activities,
from the year 2013 and day of year 152.

The delay caused by local methods is shown on the right
of Figure 7 and is much lower compared to global methods.

The GMRF has the highest delay over the OK and the
TPS.The only challenge of TPS is to select a good smoothing
parameter, 𝜆. The modified cross-validation, the generalized
cross-validation, and robust GCV all work well.

The IDWmethods are local interpolation techniques and
use only a subset of the data set to perform the interpolation.
The benefit of these methods is the reduced computation
time.

8.4. QoS Results. Statisticians are usually more interested in
smoothing data than interpolating it. When the data is noisy,
the TPS smoothing scheme works best. Onemajor advantage
of this approach is that once the curve that represents the
variation in the data is constructed, we can retrieve the value
at any other location without reinterpolating the data set.

Figure 8 shows the result for an arbitrary prediction point
with coordinates (lon, lat) = (5.0, 57.0). The reference signal
𝑋 is compared to the predicted values generated by the
ordinary kriging algorithm with MCF.The computed quality
of service parameters (QoS) are presented below the plot.

The results are summarized in Table 4 where the QoS
parameters are provided for each of the interpolation algo-
rithms tested. An arbitrary epoch has been picked for the test.
High scores are highlighted in bold font. The result shows
that the ordinary kriging has the best performance. The TPS
comes in second place and is the only real competitor to
the ordinary kriging for this case. As kriging has the best
performance, the corrections from this algorithmwill be used
to generate synthetic observations of the user in the field.This
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comparison to determine the best interpolation algorithm is
performed for each epoch.

8.5. Practical Considerations

8.5.1. Ordinary Kriging. The library geoR fromCRAN (Com-
prehensive R Archive Network) is used to implement the
spatial interpolation. In order to produce correct results, the

From [00:00:00] resolution 30 seconds
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Figure 9: Bootstrapping to accelerate the convergence ofOK. Partial
sill (𝜎2, blue curve) and range parameter (𝜙, orange curve).

Table 4: Computed QoS by different algorithms.

QoS
Parameters

Akima
bilinear

Akima
bicubic TPS GMRF Kriging

ME −0.050 0.030 0.010 −0.030 0.020

MAE 0.090 0.300 0.070 0.090 0.080

MSE 0.020 0.410 0.020 0.020 0.020
RMSE 0.150 0.640 0.130 0.140 0.140

NSE 0.660 0.440 0.790 0.480 0.740

𝑅2 0.780 0.660 0.820 0.840 0.780

𝜌 .920 .930 .940 .950 .950
KGE 0.925 0.589 0.911 0.955 0.976
𝑅 0.958 0.829 0.953 0.959 0.980
𝛽 0.997 1.002 0.994 1.005 1.001
𝛼 0.937 0.626 1.076 1.016 1.013

data analyst must handle many small exceptions that may
otherwise result in unexpected output.



12 International Journal of Navigation and Observation

2.0

2.5

3.0

3.5

Normal q-q plot

Theoretical quantiles

Sa
m

pl
e q

ua
nt

ile
s

−3 −2 −1 0 1 2 3
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estimate parameters.

(i) Performance Analysis.The variance of the estimated grids
are analyzed. If the variance is very small, this ensures stability
of the algorithm.
(ii) Parameter Estimations. In order to increase/accelerate
the convergence of ordinary kriging, we have incorporated
the bootstrapping algorithm on historical data to get very
good estimates of the initial values. Figure 9 shows the first
255 estimates for the parameters partial sill (𝜎2) and range
parameter (𝜙), for moderate ionospheric activity, and the
network configuration with 75 reference receivers.
(iii) Anisotropy.The optimal estimated kriging weights (neg-
ative weights) and variances are very sensitive to anisotropy.
Our aim is to ensure that the spatial process does not
depend on direction. The geometry anisotropy correction is
applied by transforming a set of coordinates according to the
geometric anisotropy parameters.The package gstat does not
provide automatic fitting of anisotropy parameters, while the
geoR package transforms/backtransforms a set of coordinates
according to the estimated geometric anisotropy parameters.
(iv) Normality Test. The MLE (maximum likelihood estima-
tion) procedure requires that the observations are Gaussian
distributed, this assumption is violated in most cases. There-
fore the Jarque-Bera test is used as a test of the normality and
is based on the third and fourth moments of a distribution,
called skewness and kurtosis coefficients; the interested is
referred to [24]. If the test fails, the weighted least square
method is used to estimate the parameters. Figures 10 and
11 from a configuration with 100 sites and high ionospheric
activity confirm that the L1-VTEC distribution is not nor-
mally distributed.

Based on the tests and checks mentioned above, the
ordinary kriging is assigned a weight of 0.25when computing
the QoS values.

8.5.2. Test Results. Figure 12 shows the smoothed curve
generated by TPS software with GCV. Once the curve is
determined, we can easily retrieve any value inside the
coverage area without extra computation compared to other
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Figure 11: Nonparametric smoothing with an Epanechnikov kernel
is used to determine the L1-VTEC distribution. The distribution
is not Gaussian. The weighted least square is used in this case to
estimate parameters.
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of Norway

Figure 12: L1-VTEC variation surface generated by the TPS algo-
rithm. The modes are well represented in this case.

interpolation methods. In addition, this describes the varia-
tion very well.

Once the smoothing parameter 𝜆 is determined by GCV,
TPS is the real competitor of the kriging algorithm and the
weight assigned to it is 0.25.

9. Conclusion

A significant improvement of the rover position estima-
tion can be achieved by applying the right interpola-
tion/smoothing algorithm at the NRTK interpolation seg-
ment. This will reduce the information loss under prediction
of the user error level and will provide high quality of virtual
reference station data from epoch to epoch.

Five methods have been suggested to generate the rover
correction.The study shows that the kriging interpolator, the
ordinary kriging with the Matérn covariance function, is the
most appropriate choice for weighted spatial linear interpo-
lation, while TPS is a strong competitor of OK when the aim
is to smooth, not to interpolate, the data. After performing
matrix sparsity tests, the GMRF is computationally effective,
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Table 5: CPOS network reference station characteristics.

Site name 4chars ID Lon Lat Receiver Antenna
Aas aasc 189 10.78 59.66 NETR9 TRM57971.00
Adamselv adac 147 26.70 70.41 NETR9 TRM57971.00
Akrahamn akrc 13 5.19 59.26 NETR9 TPSCR3 GGD
Alesund ales 135 6.20 62.48 NETR8 TRM55971.00
Alta altc 70 23.30 69.98 NETR5 TRM55971.00
Alvdal alvc 51 10.63 62.11 NETR5 TRM55971.00
Andenes ande 69 16.13 69.33 NETR5 TRM55971.00
Ardal arda 177 7.70 61.24 NETR9 TRM57971.00
Arendal arec 27 8.71 58.41 NETR9 TRM55971.00
Arnes arnc 99 11.48 60.12 NETR5 TRM55971.00
Asane asac 169 5.34 60.47 NETR9 TRM57971.00
Balsfjord balc 71 19.23 69.24 NETR5 TRM55971.00
Bardu barc 64 18.35 68.86 NETR5 TRM55971.00
Batsfjord batc 132 29.73 70.64 NETR5 TRM57971.00
Bergen brgs 150 5.27 60.29 NETR8 TRM55971.00
Berkak berc 23 10.01 62.83 NETR5 TRM55971.00
Bjarkoy bjac 63 16.57 69.00 NETR5 TRM55971.00
Bjorli bjoc 127 8.20 62.26 NETR9 TRM57971.00
Bjugn bjuc 61 9.81 63.77 NETR5 TRM55971.00
Bleikvassli blec 40 13.81 65.89 NETR5 TRM55971.00
Bo boec 2 14.47 68.68 NETR5 TRM55971.00
Bodo bod3 121 14.43 67.29 NETR8 TRM55971.00
Bomlo bmlc 142 5.20 59.80 NETR5 TRM55971.00
Breivikbotn brec 134 22.30 70.59 NETR5 TRM57971.00
Bygland bygc 28 7.80 58.83 NETR5 TRM55971.00
Dagali dgls 160 8.50 60.42 NETR8 TRM55971.00
Dombas doms 140 9.11 62.07 NETR8 TRM55971.00
Donna donc 90 12.47 66.10 NETR5 TRM55971.00
Drevsjo drec 144 12.03 61.88 NETR5 TRM55971.00
Eidsvoll eids 176 11.26 60.33 NETR9 TRM57971.00
Etne etne 178 5.93 59.66 NETR9 TRM57971.00
Fauske faus 183 15.39 67.26 NETR9 TRM57971.00
Fet fetc 173 11.17 59.92 NETR9 TRM57971.00
Finnoy fioy 180 5.87 59.17 NETR9 TRM57971.00
Finnsnes finc 65 17.99 69.23 NETR5 TRM55971.00
Flisa flic 98 12.01 60.61 NETR5 TRM55971.00
Floro floc 42 5.04 61.60 NETR5 TRM55971.00
Folling folc 91 11.62 64.12 NETR5 TRM59800.00
Forde forc 168 5.89 61.46 NETR9 TRM57971.00
Fredrikstad frec 143 10.94 59.21 NETR9 TRM57971.00
Froya froc 60 8.66 63.87 NETR5 TRM55971.00
Gjora gjoc 12 9.11 62.55 NETR9 TRM57971.00
Gloppen gloc 41 6.19 61.77 NETR5 TRM55971.00
Grong groc 3 12.31 64.46 NETR5 TRM55971.00
Hammerfest hamc 137 23.66 70.67 NETR5 TRM57971.00
Hansnes hanc 72 19.63 69.97 NETR5 TRM55971.00
Hardbakke harc 38 4.84 61.08 NETR9 TPSCR3 GGD
Haukeli hauc 79 7.20 59.81 NETR5 TRM55971.00
Havoysund havc 141 24.66 71.00 NETR5 TRM57971.00
Hedalen hedc 31 9.74 60.61 NETR5 TRM55971.00
Heggenes hegc 50 9.07 61.15 NETR5 TRM55971.00
Hellesylt helc 18 6.76 62.04 NETR5 TRM55971.00
Hemne hemc 59 9.08 63.29 NETR5 TRM55971.00
Holasen holc 45 11.18 63.70 NETR5 TRM55971.00
Honefoss hfs4 1 10.25 60.14 NETR5 TRM59800.00

Table 5: Continued.

Site name 4chars ID Lon Lat Receiver Antenna
Honningsvag hons 111 25.96 70.98 NETR8 TRM59800.00
Horten horc 158 10.47 59.41 NETR9 TRM57971.00
Hustad husc 15 7.14 62.97 NETR5 TRM55971.00
Ibestad ibec 153 17.18 68.78 NETR9 TRM55971.00
Innfjorden innc 17 7.55 62.50 NETR5 TRM55971.00
Jostedalen josc 167 7.28 61.66 NETR9 TRM57971.00
Karasjok karc 139 25.52 69.47 NETR5 TRM57971.00
Kautokeino kaus 112 23.02 69.02 NETR8 TRM59800.00
Kirkenes kirc 129 30.04 69.73 NETR5 TRM57971.00
Kjopsvik kjoc 82 16.39 68.10 NETR5 TRM55971.00
Kobbelv kobc 83 15.89 67.58 NETR5 TRM55971.00
Kongsvinger konc 172 12.00 60.19 NETR9 TRM57971.00
Koppang kopc 52 11.04 61.57 NETR5 TRM55971.00
Kristiansand krss 185 7.91 58.08 NETR8 TRM55971.00
Kristiansund krsu 162 7.73 63.11 NETR9 TRM57971.00
Kvanangsbotn kvac 73 22.06 69.72 NETR5 TRM55971.00
Kvikne kvic 122 10.32 62.56 NETR5 TRM57971.00
Kyrkjebo kyrc 58 5.90 61.16 NETR5 TRM57971.00
Lakselv lakc 138 24.96 70.05 NETR5 TRM57971.00
Lauvsnes lauc 14 10.90 64.50 NETR5 TRM55971.00
Leikanger leic 6 6.86 61.18 NETR5 TRM55971.00
Leknes lekc 136 13.61 68.15 NETR5 TRM57971.00
Leksvik leks 186 10.63 63.67 NETR9 TRM57971.00
Lierne liec 30 13.65 64.40 NETR5 TRM59800.00
Lillehammer lilc 32 10.44 61.14 NETR5 TRM55971.00
Lindas linc 37 5.16 60.73 NETR9 TPSCR3 GGD
Lista lstc 24 6.69 58.09 NETR9 TPSCR3 GGD
Lodingen lodc 62 15.99 68.41 NETR9 TRM55971.00
Lofoten lofs 119 13.04 67.89 NETR8 TRM55971.00
Lom lomc 126 8.57 61.84 NETR8 TRM57971.00
Lonsdal lonc 88 15.46 66.74 NETR5 TRM55971.00
Loppa lopc 74 22.35 70.24 NETR5 TRM55971.00
Loten lotc 163 11.35 60.82 NETR9 TRM57971.00
Luroy lurc 48 13.01 66.51 NETR5 TRM55971.00
Lysefjorden lysc 9 6.39 59.03 NETR9 TRM55971.00
Mare mare 184 11.43 63.93 NETR9 TRM57971.00
Maurset mauc 124 7.33 60.41 NETR5 TRM57971.00
Maze mazc 149 23.67 69.45 NETR9 TRM57971.00
Mebonden mebc 46 11.03 63.23 NETR5 TRM55971.00
Mehamn mehc 133 27.85 71.04 NETR5 TRM55971.00
Mo i Rana moic 49 14.14 66.31 NETR5 TRM55971.00
Moelv moec 174 10.70 60.93 NETR9 TRM57971.00
Molde mldc 159 7.15 62.73 NETR9 TRM57971.00
Moldjord molc 84 14.57 67.01 NETR5 TRM55971.00
Mosjoen mosj 188 13.20 65.84 NETR9 TRM55971.00
Myre myrc 67 15.09 68.91 NETR5 TRM55971.00
Mysen mysc 97 11.33 59.57 NETR5 TRM55971.00
Namsos nams 187 11.51 64.47 NETR9 TRM57971.00
Narvik narc 66 17.43 68.44 NETR5 TRM55971.00
Olderdalen oldc 75 20.53 69.60 NETR5 TRM55971.00
Opera opec 4 10.75 59.91 NETR5 TRM55971.00
Ornes ornc 47 13.73 66.86 NETR9 TRM55971.00
Oslo osls 175 10.37 59.74 NETR8 TRM55971.00
Osterbo ostc 81 7.51 60.83 NETR5 TRM55971.00
Overbygd ovec 152 19.29 69.03 NETR9 TRM55971.00
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Table 5: Continued.

Site name 4chars ID Lon Lat Receiver Antenna
Pasvik pasc 148 29.69 69.37 NETR9 TRM57971.00
Porsgrunn prgc 171 9.66 59.14 NETR9 TRM57971.00
Portor porc 7 9.43 58.80 NETR5 TPSCR3 GGD
Prestasen prec 10 6.25 59.49 NETR9 TPSCR3 GGD
Rauland rauc 55 8.05 59.70 NETR9 TRM55971.00
Rena renc 33 11.37 61.14 NETR5 TRM55971.00
Roan roac 92 10.30 64.21 NETR5 TRM55971.00
Roros rorc 123 11.39 62.58 NETR5 TRM55971.00
Rosendal rosc 35 6.01 59.98 NETR9 TPSCR3 GGD
Royrvik royc 19 13.53 64.90 NETR5 TRM59800.00
Sandvika svic 151 10.52 59.89 NETR9 TRM55971.00
Seljord selc 43 8.63 59.49 NETR5 TRM55971.00
Sirevag sirc 11 5.79 58.50 NETR9 TPSCR3 GGD
Skaland skac 154 17.30 69.45 NETR9 TRM57971.00
Stjordal stjc 170 10.92 63.47 NETR9 TRM57971.00
Sulitjelma sulc 86 16.08 67.12 NETR9 TRM55971.00
Sveindal svec 26 7.47 58.49 NETR5 TRM55971.00
Svolvar svoc 87 14.56 68.23 NETR5 TRM55971.00
Tana tanc 131 28.19 70.20 NETR5 TRM55971.00
Terrak terc 57 12.38 65.09 NETR5 TRM55971.00
Tingvoll tinc 16 8.21 62.91 NETR5 TRM55971.00
Tjome tjmc 68 10.40 59.13 NETR5 TRM55971.00
Tonstad tnsc 34 6.71 58.67 NETR5 TRM55971.00
Tregde tgde 96 7.55 58.01 NETR9 AOAD/M T
Treungen trec 25 8.52 59.02 NETR5 TRM55971.00
Trofors troc 39 13.39 65.54 NETR5 TRM55971.00
Tromso tro1 115 18.94 69.66 NETR8 TRM59800.00
Trondheim trds 125 10.32 63.37 NETR8 TRM55971.00
Trysil trys 145 12.38 61.42 NETR8 TRM55971.00
Tyin tyic 89 8.23 61.18 NETR5 TRM55971.00
Tysvar tysv 179 5.40 59.43 NETR9 TRM57971.00
Ulefoss ulec 8 9.28 59.28 NETR5 TPSCR3 GGD
Ulsak ulsc 54 8.62 60.84 NETR5 TRM55971.00
Vadso vadc 130 29.74 70.08 NETR5 TRM57971.00
Valle valc 78 7.48 59.25 NETR5 TRM55971.00
Vardo vars 110 31.03 70.34 NETR8 TRM59800.00
Vega vegs 118 11.96 65.67 NETR8 TRM59800.00
Veggli vegc 44 9.17 60.04 NETR9 TRM55971.00
Vikna vikc 56 11.24 64.86 NETR5 TRM55971.00
Vinstra vinc 53 9.75 61.60 NETR5 TRM55971.00
Volda vold 181 6.08 62.14 NETR9 TRM57971.00
Voss vssc 128 6.42 60.63 NETR9 TPSCR3 GGD
Skjervoy skjc 76 20.98 70.03 NETR5 TRM55971.00
Skollenborg skoc 5 9.68 59.62 NETR9 TPSCR3 GGD
Skreia skrc 29 10.93 60.65 NETR5 TRM55971.00
Smola smol 182 7.96 63.51 NETR5 TRM55971.00
Smorfjord smrc 146 24.95 70.52 NETR9 TRM57971.00
Stadt stac 20 5.32 62.12 NETR5 TRM55971.00
Stavanger stas 165 5.60 59.02 NETR8 TRM55971.00
Steigen stgc 164 15.02 67.78 NETR5 TRM55971.00

requires less memory, and produces good results as TPS and
OK.

For local methods the covariance structure is in general
not conserved. For gentle variation in data, the Akima with

3000

2500

2000

1500

1000

500

0

2002 2004 2006 2008 2010 2012 2014

600

500

400

300

200

100

0

Number of CPOS users

N
um

be
r o

f C
PO

S 
us

er
s

N
um

be
r o

f c
on

ne
ct

ed
 C

PO
S 

us
er

s

Max connected users

Statistics of CPOS users

Figure 13: Number of Norwegian CPOS RTK users (blue curve)
increased from 1 to ∼3000 and the users connected to the system
at the same time (red curve) increased from 1 to ∼500.

bicubic method is an appropriate choice because it is the real
spline method. While IDW is stable, it is inaccurate and in
addition does not conserve the covariance structure of the
process under study.

One major benefit of these techniques is that there is no
need for any prior estimation of the spatial dependency, as in
the case of Bayesian analysis (e.g., Kalman filter).

10. Discussions

(1) As we mentioned in the Introduction, processing
large data sets is a challenge of the future, and our
suggestion for how to handle this is formulated as
follows. First of all, we already have enough math-
ematical tools to do the job, so we do not need to
develop new ones. These tools can be considered
as elementary building blocks in the hands of the
data analyst/modeler. The main challenge is to know
that the right tools exist, what they can do for us,
what their strengths and weaknesses are, and how
to combine them in appropriate ways to describe
the observed variations as well as possible. Figure 13
shows the number of users connected at the same
time and the historical data of the users using the
CPOS services in Norway. Both curves increase
exponentially in a period of one decade, and if the
development continues to follow the samepattern, the
existing tools will not be sufficient to process the large
data sets.

(2) Data quality and quantity are important to perform
reliable statistical analysis, and elementary checks are
necessary before starting analysis.
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(3) In geodesy and geophysical data analysis, the Gauss-
Markov model and Kalman Filter are often consid-
ered when modeling and when state estimation is
necessary. Since new navigation satellite system (e.g.,
Galileo, Beidou) in addition to the old GPS and
GLONASS becomes operation,massive data sets need
to be processed in real-time, so we are experiencing a
computational paradigm shift.

(4) To avoid information loss between the correction and
interpolation segments, picking the right algorithm
for the job is essential for improving the user position
errors.

Appendix

CPOS Station Characteristics

See Table 5.
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