
ISBN 978-82-326-6571-6 (printed ver.)
ISBN 978-82-326-5212-9 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:235

Tjerand Aga Silde

Privacy-Preserving
Cryptography from Zero-
Knowledge ProofsD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2022:235
Tjerand Aga Silde

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

Thesis for the Degree of Philosophiae Doctor

Trondheim, August 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Tjerand Aga Silde

Privacy-Preserving Cryptography
from Zero-Knowledge Proofs

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

© Tjerand Aga Silde

ISBN 978-82-326-6571-6 (printed ver.)
ISBN 978-82-326-5212-9 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:235

Printed by NTNU Grafisk senter

Acknowledgments

You are now reading my Ph.D. thesis in cryptography, which con-
cludes my integrated Ph.D.-program in mathematical sciences at the
Department of Mathematics at the Norwegian University of Science
and Technology. I am very grateful to my supervisor Kristian Gjøsteen
for providing me with interesting research problems, always having an
open door, being encouraging, answering all of my questions and for
sharing lessons from academia and life in general. I would also like
to thank my co-supervisor Colin Boyd for his support; I wish our
research interest had intersected more.

Thanks to all of my collaborators Kristian, Diego F. Aranha,
Carsten Baum, Thomas Haines, Johannes Muller, Peter Rønne, Mar-
tin Strand and Thor Tunge for fruitful work on designing and imple-
menting new privacy-preserving protocols and zero-knowledge proofs,
in which this thesis builds upon.

I would like to especially thank Diego and Carsten for hosting me
for one week at Aarhus University in November 2019 and for four
months in the fall of 2020, and Jonathan Katz for hosting me for
five months at the University of Maryland during the winter 2021/22.
I would also like to thank Jonathan, Andreea Alexandru, Anamaria
Costache, Pia Bauspieß and Kamil Doruk Gur for taking part in ex-
citing ongoing research that hopefully will result in new publications
the coming year.

I am very grateful to be a member of the NTNU Applied Cryptol-
ogy Lab, and I consider all of you both colleagues and friends. I have
enjoyed the cabin trips, skiing trips, hikes, grilling in the park, game
nights and parties as well as the reading groups, seminars and confer-

3

4

ence trips during the past few years. You have been an essential part
of my Ph.D. life. I appreciated being a part of the training groups
with Erlend Due Børve, Mayank Raikwar, Magnus Ringerud, Mat-
tia Veroni and, when staying in Aarhus, Matteo Campanelli, Rahul
Rachuri, Nikolaj Schwartzbach, Bas Spitters and Akira Takahashi.
This has been crucial to ensure good mental and physical health dur-
ing the long hours of conducting research these past years. I also
want to thank Roger Antonsen, Bor de Kock, Jonathan Eriksen, Tom
Hanson, Hunter Kippen, Kelsey Moran, Morten Solberg, Eduardo
Soria-Vazquez, Jana Sotakova and Maurice Shih for all the good con-
versations.

I am very fortunate to work with my good colleagues in Pone Bio-
metrics and appreciate being involved in research and development
of on-marked security products, broadening my interest and knowl-
edge about real-life cryptography and security. I am looking forward
to the forthcoming journey. I also learned a lot during the very fruit-
ful collaboration across industry and academia with Martin, Johannes
Brodwall and Henrik Walker Moe when improving privacy of the Nor-
wegian contact tracing app during the fall of 2020.

Last, but not least, I want to thank Dahlia, my family and my
friends for always supporting my work, my interests and my path
in life. A final thanks goes to Ana, Magnus, Mattia and Pia for
proofreading my thesis.

Tjerand Aga Silde
Trondheim, May 2022

Introduction

Many real-world systems require that users are authenticated or that
information is certified while keeping the identity or content secret.
This sounds like a paradox, but when carefully designing new cryp-
tographic protocols, we are able to provide practical solutions to
such applications. Some recent popular examples are anonymous
browsing with spam-protection [DGS+18], anonymous telemetry col-
lection [HIJ+21], privacy-preserving contact-tracing [T+20], anony-
mous broadcasting [CWF13], outsourced computation [LW18] and
electronic voting [Adi08, Gjø11, LPT19], to mention but a few.

Our main tools to construct these systems are so-called zero-
knowledge proofs. These are cryptographic proofs (also called argu-
ments) where a prover can prove statements about secret (encrypted
or committed) data to a verifier without leaking the sensitive infor-
mation itself. Zero-knowledge proofs were developed by Goldwasser,
Micali and Rachoff [GMR89] in 1985, and we have recently seen a dra-
matic increase in interest and development, pushing these protocols
from a rich theory into real-world applications.

In more detail, zero-knowledge proofs have three properties. Com-
pleteness ensures that if the statement is true and the parties follow
the protocol, the proof will be accepted. Soundness ensures that if
the statement is false, then the verifier will not accept a proof from
a cheating prover, except with negligible probability. Zero-knowledge
ensures that the verifier learns nothing from the proof other than the
fact that the statement is true. Many of the basic zero-knowledge
protocols consist of three rounds of communication between a prover
and a verifier. The first message from the prover is then called a com-

5

6

mitment, the next message from the verifier is called a challenge, and
the final message from the prover is called a response. These inter-
active protocols can be turned into a non-interactive protocol where
the challenge is obtained by hashing the statement and the commit-
ment message, leading to a single-message proof that can be pub-
lished without any interaction. This method is called the Fiat-Shamir
Transform [FS87], and is applied to all (except potentially one) of the
zero-knowledge protocols in this thesis.

The applications mentioned above are all built using public-key
cryptography. Today, the security of public-key cryptosystems is
mostly based on hard computational problems such as factoring large
bi-primes [RSA78] or computing discrete logarithms over finite fields
or elliptic curve groups [DH76, Mil86, Kob87]. However, Shor de-
veloped an algorithm [Sho94, Sho97] that, implemented on a large
quantum computer, would efficiently solve these problems. Recent de-
velopments in quantum computing indicate that this is a threat that
should be taken seriously, and over the past decade many researchers
have designed cryptographic protocols that are secure against quan-
tum computers. This is the field of post-quantum cryptography.

It is not obvious which computational problems are secure against
quantum computers, which are not, and what kind of attacks we can
perform by combining the joint forces of classical and quantum com-
puters. However, some problems in the fields of lattices [Ajt96, Reg05],
coding theory [McE78, Nie86], multivariate polynomials [MI88, Pat95],
isogenies of elliptic curves [Sto10, JD11] and more, including construc-
tions based purely on one-way functions [BDH11, BHH+15], give rise
to protocols that are seemingly secure against quantum adversaries.
It is worth noting that these underlying problems have the poten-
tial to support new constructions, e.g. fully homomorphic encryp-
tion [Gen09, BGV12], that do not seem possible to build based on
factoring or discrete logarithms. Hence, this area of research has great
value even if a large quantum computer is never realized.

The main effort within post-quantum cryptography so far has fo-
cused on creating new schemes for key-exchange, encryption and dig-
ital signatures, to replace existing parts in established protocols such

Introduction 7

as TLS1 or the Signal protocol2. These schemes are currently being
standardized by NIST [AASA+20], and will be ready for real-world use
from 2024 and onward3. However, more effort is needed to build prac-
tical cryptographic tools supporting applications such as quantum-safe
anonymous browsing with spam-protection, anonymous telemetry col-
lection, privacy-preserving contact-tracing, anonymous broadcasting,
outsourced computation and electronic voting.

The main research goal of this thesis was to design new protocols
based on zero-knowledge proofs for privacy applications.

The area of lattice-based zero-knowledge proofs has gained a lot
of attention recently, including proofs of linear relations [BKLP15,
BDL+18], amortized proofs of short pre-images [BBC+18], exact proofs
of shortness [YAZ+19, BLS19, Beu20, ENS20], proofs of multiplica-
tion [BKLP15, ALS20], proofs of integer relations [LNS20] and more.
These are essential building blocks and, even though useful on their
own, can be used to prove more complex statements such as correct
shuffle, correct decryption, or other relations. These proof systems
can simultaneously provide anonymity, privacy and correctness for
real-world systems such as electronic voting, anonymous payments,
identification systems or private comparisons.

While there has been tremendous progress on improving lattice-
based zero-knowledge proofs building (practical) anonymous token
systems from quantum-secure assumptions is still an open problem.
The only existing works in this direction is the lattice-based oblivious
pseudo-random function by Albrecht et al. [ADDS21] (mostly a proof
of concept) and the blind signature by Lyubashevsky et al. [LNS21]
(where the running time depends on the number of users in the sys-
tem). A proposed protocol based on isogenies [BKW20] was later
broken [BKM+21].

1datatracker.ietf.org/doc/html/rfc8446
2signal.org/docs
3csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-

cryptography-standardization

8

Anonymous Communication

During the ongoing Covid-19 pandemic, there has been a strong need
to track infected people’s movements to stop the spread of the virus.
However, doing so in an unencrypted manner can significantly violate
the people’s privacy and anonymity.

To avoid this, both Google and Apple made available a Bluetooth
API such that governments across the world could develop mobile
applications that store random identifiers based on which individuals
have met. Such an app then uploads these identifiers to a system
that send notifications to all close contacts of a person who has tested
positive for Covid-19. However, there was a privacy gap in the overall
system. Whenever a person tested positive and uploaded the identi-
fier from the app, these identifiers were tied to that user, and could
potentially expose that person’s locations and social graph.

We, a small team of researchers and software developers, imple-
mented a functionality called anonymous tokens into the Norwegian
contact-tracing app, so that all identifiers were uploaded anonymously
to the central server. This breaks the link between the user and their
stored identifiers. At the height of the pandemic, the app had 1.3
million active users4. Afterwards, we introduced the following im-
provements to the anonymous token protocol.

Paper I Anonymous Tokens with Public Metadata and Applications
to Private Contact Tracing. We developed the first anonymous
token protocol with public metadata, such as expiration dates,
built into the tokens. This allows for mass revocation of unspent
tokens and solves the challenging problem of frequently rotating
the signing and verification keys across several servers. Fur-
thermore, we developed the first publicly verifiable anonymous
tokens, allowing for outsourced delegation of either the token
signing or verification process, solving the problem of splitting
the secret signing key across several servers in the first place.
We show that our tokens improve upon the state-of-the-art in
natural settings by up to 90% in communication. The security
of these protocols is based on discrete logarithm assumptions.

4fhi.no/om/smittestopp/nokkeltall-fra-smittestopp

Introduction 9

Anonymous tokens are additionally deployed on the Internet for
anonymous browsing, spam protection, fraud protection, private file
storage, private click measurements, and more. The Internet En-
gineering Task Force (IETF) is currently standardizing such proto-
cols5, including the extensions described above. Future research di-
rections involve instantiating this framework based on quantum-secure
assumptions and extend this to password-authenticated key-exchange.

Verifiable Shuffles

In some settings we need to break the connection between identities
and ciphertexts. We use verifiable shuffles to achieve this. Common
use-cases are to ensure privacy of votes in electronic voting or provide
anonymity of messages on a communication platform. Here, a server
receives a vector of ciphertexts as input, re-randomizes the ciphertexts
using homomorphic encryption (by adding randomness to them so
that they look different, but decrypt to the same values as before),
and permutes the order of the ciphertexts in the vector. The output is
a new vector of ciphertexts that decrypt to the same set of messages,
but in a different order. If the server does not reveal the randomness
nor the permutation to anyone else, this breaks the link between the
input and the output to the server. To make sure that this is done
honestly, the server must provide a proof of correct computation.

The building blocks described above are often components of a
larger system. In such systems, the trust is usually distributed among
several parties, assuming that none, one or several of those parties can
be trusted to achieve certain properties. A classic example is electronic
voting. Here, a ballot box may receive all the encrypted votes from
the voters. When the voting period is over, the set of ciphertexts is
sent to a series of mixing nodes where each node performs a verifiable
shuffle. Finally, the set of ciphertexts is verifiably decrypted. To
achieve privacy of the votes, we need at least one mixing server to
be honest to break the link between the input ciphertexts and the
decrypted votes. If there is more than one decryption server, we need
at least one server to be honest and not share their decryption key

5datatracker.ietf.org/wg/privacypass

10

with anyone else. For integrity of the system, we need all mix-nodes
and decryption nodes to each provide a proof of correct computation.

Paper II Lattice-Based Proof of Shuffle and Applications to Elec-
tronic Voting. We presented the first practical post-quantum
verifiable shuffle protocol from lattice-based cryptography, show-
ing that this can be computed efficiently in practice. Further-
more, we combined our protocol with a verifiable encryption
scheme to design an electronic voting system similar to the sys-
tem used by Norway for local and national elections in 2011 and
2013. We implemented our system and showed that it was more
efficient than any other post-quantum secure voting system in
the literature.

Paper III Verifiable Mix-Nets and Distributed Decryption for Vot-
ing from Lattice-Based Assumptions. We provided the first com-
plete post-quantum secure electronic voting system using lattice-
based cryptography. We extended the shuffle from the previous
paper into a full mix-node, gave a verifiable distributed decryp-
tion protocol, and combined these into a full voting system. We
also gave concrete parameters for a system with four mix-nodes
and decryption servers, and provided an implementation of each
component in the system.

We remark that the above protocols can also be used for single-
server verifiable decryption; however, we can get more efficient proto-
cols by tailoring new proof systems for this specific purpose.

Verifiable Decryption

Verifiable decryption is used to prove that one or more ciphertexts
decrypt to given messages, without exposing the secret key. This is
essential for decrypting messages in systems for anonymous commu-
nication or electronic voting (in both cases an adversary could break
privacy if they had access to the decryption key and could decrypt
messages before they are mixed). It also has applications to homo-
morphic encryption: for example, a weak client (e.g., a phone) could

Introduction 11

outsource computation to two untrusted and non-colluding entities,
where one entity handles encryption and decryption while the other
entity handles ciphertext computation. This way, the client can out-
source all cryptographic operations. Such applications usually require
the decryption of a large number of ciphertexts. We provide two ef-
ficient and simple protocols for efficiently and verifiably decrypting
large sets of ciphertexts.

Paper IV Verifiable Decryption in the Head. We designed a veri-
fiable decryption protocol using cut-and-choose techniques in-
stead of heavy zero-knowledge proofs. The protocol is very
lightweight in computation and communication, but must be
run many times to reduce the probability of cheating. The setup
is very cheap when amortizing over many ciphertexts, and we
provide an efficient and simple verifiable decryption protocol per
ciphertext compared to the state-of-the-art. We also provide a
proof-of-concept implementation to showcase its practicality.

Paper V Short paper: Verifiable Decryption for BGV. We designed
a direct construction for verifiable decryption using newly de-
veloped zero-knowledge protocols from the literature. This pro-
tocol does not require a heavy setup, and the cost of decryption
itself is very low when working on batches of a few thousand
ciphertexts at once. We also provide a proof-of-concept imple-
mentation to showcase its practicality.

Implementing cryptographic protocols is hard [HLPT20], and we
have seen many attacks both in theory and practice. Both schemes
above are conceptually simpler and easier to understand than the
previous state-of-the-art, making them more straightforward to im-
plement than previous works [LNS21]. They are comparable or better
in communication cost when amortizing over many ciphertexts. Our
proof-of-concept implementations prove their efficiency, and our de-
sign makes them very attractive for practical use.

12

References

[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon,
David Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu,
Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status report
on the second round of the nist post-quantum cryptog-
raphy standardization process, 2020. https://doi.org/
10.6028/NIST.IR.8309.

[ADDS21] Martin R. Albrecht, Alex Davidson, Amit Deo, and
Nigel P. Smart. Round-optimal verifiable oblivious pseu-
dorandom functions from ideal lattices. In Juan Garay,
editor, PKC 2021, Part II, volume 12711 of LNCS, pages
261–289. Springer, Heidelberg, May 2021.

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In
Paul C. van Oorschot, editor, USENIX Security 2008,
pages 335–348. USENIX Association, July / August
2008.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems.
Electron. Colloquium Comput. Complex., 3, 1996.

[ALS20] Thomas Attema, Vadim Lyubashevsky, and Gregor
Seiler. Practical product proofs for lattice commitments.
In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part II, volume 12171 of LNCS, pages
470–499. Springer, Heidelberg, August 2020.

[BBC+18] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël
del Pino, Jens Groth, and Vadim Lyubashevsky. Sub-
linear lattice-based zero-knowledge arguments for arith-
metic circuits. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 669–699. Springer, Heidelberg, Au-
gust 2018.

Introduction 13

[BDH11] Johannes A. Buchmann, Erik Dahmen, and Andreas
Hülsing. XMSS - A practical forward secure signature
scheme based on minimal security assumptions. In Bo-
Yin Yang, editor, Post-Quantum Cryptography - 4th In-
ternational Workshop, PQCrypto 2011, pages 117–129.
Springer, Heidelberg, November / December 2011.

[BDL+18] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky,
Sabine Oechsner, and Chris Peikert. More efficient com-
mitments from structured lattice assumptions. In Dario
Catalano and Roberto De Prisco, editors, SCN 18, vol-
ume 11035 of LNCS, pages 368–385. Springer, Heidel-
berg, September 2018.

[Beu20] Ward Beullens. Sigma protocols for MQ, PKP and SIS,
and Fishy signature schemes. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part III, vol-
ume 12107 of LNCS, pages 183–211. Springer, Heidel-
berg, May 2020.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (Leveled) fully homomorphic encryption with-
out bootstrapping. In Shafi Goldwasser, editor, ITCS
2012, pages 309–325. ACM, January 2012.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hüls-
ing, Tanja Lange, Ruben Niederhagen, Louiza Pa-
pachristodoulou, Michael Schneider, Peter Schwabe, and
Zooko Wilcox-O’Hearn. SPHINCS: Practical stateless
hash-based signatures. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 368–397. Springer, Heidelberg, April
2015.

[BKLP15] Fabrice Benhamouda, Stephan Krenn, Vadim Lyuba-
shevsky, and Krzysztof Pietrzak. Efficient zero-knowledge
proofs for commitments from learning with errors over
rings. In Günther Pernul, Peter Y. A. Ryan, and Edgar R.

14

Weippl, editors, ESORICS 2015, Part I, volume 9326 of
LNCS, pages 305–325. Springer, Heidelberg, September
2015.

[BKM+21] Andrea Basso, Péter Kutas, Simon-Philipp Merz,
Christophe Petit, and Antonio Sanso. Cryptanalysis of an
oblivious prf from supersingular isogenies. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, Advances in Cryp-
tology – ASIACRYPT 2021, pages 160–184, Cham, 2021.
Springer International Publishing.

[BKW20] Dan Boneh, Dmitry Kogan, and Katharine Woo. Obliv-
ious pseudorandom functions from isogenies. In Shiho
Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part II, volume 12492 of LNCS, pages 520–550. Springer,
Heidelberg, December 2020.

[BLS19] Jonathan Bootle, Vadim Lyubashevsky, and Gregor
Seiler. Algebraic techniques for short(er) exact lattice-
based zero-knowledge proofs. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 176–202. Springer, Heidel-
berg, August 2019.

[CWF13] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan
Ford. Proactively accountable anonymous messaging in
verdict. In Samuel T. King, editor, USENIX Security
2013, pages 147–162. USENIX Association, August 2013.

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George
Tankersley, and Filippo Valsorda. Privacy pass: By-
passing internet challenges anonymously. PoPETs,
2018(3):164–180, July 2018.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions
in cryptography. IEEE Transactions on Information The-
ory, 22(6):644–654, 1976.

Introduction 15

[ENS20] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor
Seiler. Practical exact proofs from lattices: New tech-
niques to exploit fully-splitting rings. Cryptology ePrint
Archive, Report 2020/518, 2020. https://eprint.iacr.
org/2020/518.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263
of LNCS, pages 186–194. Springer, Heidelberg, August
1987.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal
lattices. In Michael Mitzenmacher, editor, 41st ACM
STOC, pages 169–178. ACM Press, May / June 2009.

[Gjø11] Kristian Gjøsteen. The norwegian internet voting proto-
col. In E-Voting and Identity - Third International Con-
ference, VoteID 2011, pages 1–18, 2011.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186–208, 1989.

[HIJ+21] Sharon Huang, Subodh Iyengar, Sundar Jeyara-
man, Shiv Kushwah, Chen-Kuei Lee, Zutian
Luo, Payman Mohassel, Ananth Raghunathan,
Shaahid Shaikh, Yen-Chieh Sung, and Albert
Zhang. Dit: De-identified authenticated telemetry
at scale. Technical report, Facebook Inc., https:
//research.fb.com/wp-content/uploads/2021/04/
DIT-De-Identified-Authenticated-Telemetry-at-Scale_
final.pdf, 2021.

[HLPT20] Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and
Vanessa Teague. How not to prove your election outcome.
In 2020 IEEE Symposium on Security and Privacy, pages
644–660. IEEE Computer Society Press, May 2020.

16

[JD11] David Jao and Luca De Feo. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies.
In Bo-Yin Yang, editor, Post-Quantum Cryptography -
4th International Workshop, PQCrypto 2011, pages 19–
34. Springer, Heidelberg, November / December 2011.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics
of computation, 48(177):203–209, 1987.

[LNS20] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. Practical lattice-based zero-knowledge proofs for
integer relations. CCS 2020, 2020.

[LNS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gre-
gor Seiler. Shorter lattice-based zero-knowledge proofs
via one-time commitments. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 215–
241. Springer, Heidelberg, May 2021.

[LPT19] Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague.
Trapdoor commitments in the SwissPost e-voting shuffle
proof, 2019.

[LW18] Fucai Luo and Kunpeng Wang. Verifiable decryption for
fully homomorphic encryption. In Liqun Chen, Mark
Manulis, and Steve Schneider, editors, ISC 2018, vol-
ume 11060 of LNCS, pages 347–365. Springer, Heidel-
berg, September 2018.

[McE78] R. McEliece. A public key cryptosystem based on alge-
braic coding theory. 1978.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic
polynominal-tuples for efficient signature-verification and
message-encryption. In C. G. Günther, editor, EU-
ROCRYPT’88, volume 330 of LNCS, pages 419–453.
Springer, Heidelberg, May 1988.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography.
In Hugh C. Williams, editor, CRYPTO’85, volume 218

Introduction 17

of LNCS, pages 417–426. Springer, Heidelberg, August
1986.

[Nie86] H. Niederreiter. Knapsack-type cryptosystems and alge-
braic coding theory. 1986.

[Pat95] Jacques Patarin. Cryptanalysis of the Matsumoto and
Imai public key scheme of eurocrypt’88. In Don Copper-
smith, editor, CRYPTO’95, volume 963 of LNCS, pages
248–261. Springer, Heidelberg, August 1995.

[Reg05] Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. In Harold N. Gabow and
Ronald Fagin, editors, 37th ACM STOC, pages 84–93.
ACM Press, May 2005.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key cryptosys-
tems. Commun. ACM, 21(2):120–126, February 1978.

[Sho94] Peter W. Shor. Algorithms for quantum computation:
Discrete logarithms and factoring. In 35th FOCS, pages
124–134. IEEE Computer Society Press, November 1994.

[Sho97] P. Shor. Polynomial-time algorithms for prime factor-
ization and discrete logarithms on a quantum computer.
SIAM J. Comput., 26:1484–1509, 1997.

[Sto10] Anton Stolbunov. Constructing public-key cryptographic
schemes based on class group action on a set of isogenous
elliptic curves, 2010.

[T+20] Carmela Troncoso et al. Decentralized privacy-
preserving proximity tracing. https://arxiv.org/abs/
2005.12273, 2020.

[YAZ+19] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu,
Zuoxia Yu, and William Whyte. Efficient lattice-based
zero-knowledge arguments with standard soundness:
Construction and applications. In Alexandra Boldyreva

18

and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 147–175. Springer, Heidel-
berg, August 2019.

Paper i

Anonymous Tokens with Public Metadata
and Applications to Private Contact Tracing

Tjerand Silde and Martin Strand

Accepted at Financial Cryptography and Data Security,
FC 2022. The full version is available at:

eprint.iacr.org/2021/203.pdf.

Anonymous Tokens with Public Metadata and
Applications to Private Contact Tracing

Tjerand Silde1 ID and Martin Strand2 ID

1 Department of Mathematical Sciences
Norwegian University of Science and Technology – NTNU

tjerand.silde@ntnu.no
2 Norwegian Defence Research Establishment – FFI

martin.strand@ffi.no

Abstract. Anonymous single-use tokens have seen recent applications
in private Internet browsing and anonymous statistics collection. We de-
velop new schemes in order to include public metadata such as expiration
dates for tokens. This inclusion enables planned mass revocation of to-
kens without distributing new keys, which for natural instantiations can
give 77 % and 90 % amortized traffic savings compared to Privacy Pass
(Davidson et al., 2018) and DIT: De-Identified Authenticated Telemetry
at Scale (Huang et al., 2021), respectively. By transforming the public
key, we are able to append public metadata to several existing protocols
essentially without increasing computation or communication.
Additional contributions include expanded definitions, a more complete
framework for anonymous single-use tokens and a description of how
anonymous tokens can improve the privacy in dp3t-like digital contact
tracing applications. We also extend the protocol to create efficient and
conceptually simple tokens with both public and private metadata, and
tokens with public metadata and public verifiability from pairings.

Keywords: anonymous tokens · public metadata · contact tracing

1 Introduction

Anonymous credentials have been an active research area since the 1980’s [Cha82,
Cha83], involving schemes such as blind signatures, partially blind signatures,
anonymous tokens, attribute-based credentials, group signatures, ring signatures
etc. This enables more complex systems for e.g., electronic cash or electronic vot-
ing, but also, to protect the privacy of the users in chat applications like Signal.

Recent work by Davidson et al. [DGS+18] presents a very practical protocol,
named Privacy Pass [DGS+], for anonymous single-use tokens. This protocol
allows users to browse anonymously, e.g., using Tor, without having to solve a
CAPTCHA every time they visit a website. Privacy Pass gives the user a set
of randomized tokens whenever they solve a CAPTCHA, which they then later
can redeem instead of solving a new CAPTCHA. This improves the usability
of anonymous browsing. It also gives protection against spam, prevents DDoS

21

attacks and provides fraud resistance without the need for cross-site tracking
or fingerprinting. However, the only way to expire or revoke batches of unspent
tokens is by replacing the private-public key pair in a trusted way, which is
impractical [Dav21].

Privacy Pass has gained a lot of attention, and is currently being integrated
to improve privacy in several applications, e.g., for private file storage3 and for
basic attention tokens (BATs) in the Brave browser4. It can also be used for
private click measurement when making a purchase or signing up for a service5.

Facebook uses partially blind signatures for combating fraud [IT21], and
they have developed an extension of Privacy Pass called DIT: De-Identified Au-
thenticated Telemetry at Scale [HIJ+21], which is used for privately collecting
client-side telemetry from WhatsApp. DIT requires daily key-rotation to pre-
vent DoS attacks, which led to the development of an attribute-based verifiable
oblivious pseudorandom function for transparent key-rotation.

The IETF is currently standardizing Privacy Pass [Int21], while Trust To-
ken [Wor21] is currently being standardized by the World Wide Web Consortium.
Both standardization processes mention private and public metadata, in addi-
tion to public verifiability, as desirable extensions to the Privacy Pass protocol.
Public metadata allows for more efficient key-rotation, and opens for applica-
tions using public labeling and public anonymity sets, while private metadata
allows for allow/deny lists, rate-limiting, or trust-indication. Public verifiability
allows for outsourcing signing or verification of tokens.

Kreuter et al. [KLOR20a] gave the first construction of anonymous tokens
with private metadata, while we give the first construction with public meta-
data. Our construction can also be combined with private metadata or public
verifiability.

Privacy Pass guarantees anonymity for all tokens generated by the same key.
The addition of any metadata reduces the anonymity set. We have designed the
protocol in such a way that the user and the signer must agree on the metadata.
Any application should restrict its use of metadata to generic, predefined values
that would otherwise have triggered a change of keys, e.g., expiry dates. Client
software should validate that the metadata is in accordance to the policy, and
reject any malformed tokens. Furthermore, private metadata bits also reduces
the anonymity set. Our protocol can easily be extended to include more than
one private metadata bit, but this must be done with great care, as it opens for
secretly tracking smaller sets of individual users.

Independently of this work, Tyagi et al. [TCR+21] have proposed a similar
construction to include public metadata, along with a novel hardness assumption
and a reduction to a more conventional problem, to be used in partially oblivious
pseudo-random functions. We discuss their work further in Sections 1.5 and 4.

3 PrivateStorage: medium.com/least-authority/the-path-from-s4-to-privatestorage-
ae9d4a10b2ae.

4 Brave: github.com/brave/brave-browser/wiki/Security-and-privacy-model-for-ad-
confirmations.

5 Private Click Measurement: privacycg.github.io/private-click-measurement.

22 T. Silde and M. Strand

1.1 Background

Adopting the terminology from Privacy Pass [DGS+18], we have the following
informal architecture. A user asks the signer for a one-time anonymous token
in a signing phase, later to be redeemed to a verifier in a redemption phase.

The literature provides many flavors of anonymous credentials. They all come
with some minimal requirements with respect to security, and have a variation
of desirable properties for practical applications.

Unlinkability and Unforgeability. To ensure privacy of users, the anony-
mous token protocol must make sure that the information being transferred
in the attestation phase cannot be correlated with the token being received in
the redemption phase. This is called unlinkability. To ensure the system’s in-
tegrity, the anonymous token protocol must make sure that users cannot forge
tokens, even after receiving valid tokens from the attestation server. This is
called unforgeability. These are the minimal requirements for anonymity and in-
tegrity, and have been handled starting from the first classical constructions of
blind signatures starting with David Chaum in the early 1980’s [Cha82,Cha83]
and subsequent work on anonymous credentials [Oka93,PS96,CL01,CL03,CL04,
CHL05,CG08,GMS10,BL13,CMZ14,CPZ20].

Underlying Primitives. Anonymous token protocols can be built from a va-
riety of cryptographic primitives and assumptions, e.g., factoring [AF96,CL01,
CL03], discrete logarithms [Oka93,AO00,WSMZ06,DGS+18,KLOR20a] or bi-
linear pairings [ZSS03, CHYC05, CZMS06, BPV12]. Protocols based on elliptic
curves are the most efficient, both in terms of size and timings, while other
primitives might more easily provide correctness and verifiability.

Verifiability and Key-Sharing. In situations where the same party is both at-
testing and redeeming tokens [DGS+18,KLOR20a], it is natural for the server(s)
to share a key. In the designated verifier setting, it is necessary for the attesta-
tion server to provide zero-knowledge proofs to ensure that a token is honestly
generated [DGS+18, KLOR20a], while pairings can provide public verifiability
directly [ZSS03].

Key-Rotation and Token-Revocation. To avoid misuse, it is important to
have a mechanism to efficiently expire or revoke batches of tokens. This may
be useful for rate limiting to avoid denial-of-service attacks, or to protect users
from credential stuffing [DGS+18,TPY+19,HIJ+21]. In Privacy Pass [DGS+18],
this is solved by infrequent key-rotation where a few public keys are available at
a public endpoint. DIT [HIJ+21], which rotates their keys every day, solves it
by using a new attribute-based verifiable oblivious pseudorandom function (VO-
PRF). However, both solutions are inconvenient in practice, and add significant
overhead for validating the public keys.

Anonymous Tokens 23

Rounds of Interaction. Blind signatures and anonymous tokens can be at-
tested in only one round of communication, which is optimal. This saves time
and computation for both the client and the server, and the parties does not need
to keep a state. However, the only partially blind signatures achieving one round
of interaction are based on bilinear pairings or factoring [AF96], while protocols
based on discrete logarithms [AO00,WSMZ06] needs two rounds. We note that
there is no one-round single-use anonymous token protocol with efficient revo-
cation in the literature with security based on elliptic curve discrete logarithms
without pairings before this work. Popular schemes such as [CL04,BL13] require
at least two rounds of communication.

1.2 Our Contribution

Our contribution in this paper is threefold: first, we present new definitions
and a new framework for anonymous tokens – extending the work by Kreuter
et al. [KLOR20a] – to also consider public metadata and/or public verifiability.
Secondly, we present three efficient protocols for anonymous tokens with efficient
batched revocation: 1) Privacy Pass [DGS+18] with public metadata, 2) Kreuter
et al. [KLOR20a] with public and private metadata, and 3) a Privacy Pass
inspired protocol using pairings to satisfy public verifiability while including
public metadata. Thirdly, we present contact tracing as a new and important
application for anonymous single-use tokens, and discuss the implementation of
Privacy Pass used in the Norwegian contact tracing app Smittestopp to improve
users’ privacy.

Updated Definitions and New Framework. Several works have asked for
efficient batched revocation of anonymous tokens without key-rotation [DGS+18,
Dav21]. Additionally, there is a need for anonymous tokens with public verifia-
bility [Wor21], so that token generation can be delegated, and verification can
be performed locally for token redemption. We provide updated definitions for
all of these cases: designated verifier anonymous tokens with or without public
and/or private metadata and public verifier anonymous tokens with and without
public metadata. Details can be found in Section 3.

Anonymous Tokens with Public Metadata. We present the first anony-
mous tokens protocols with efficient batched revocation, meaning that the pro-
tocol only requires one round of communication based on lightweight primitives
and that we avoid key-rotation. The key insight in our protocol is conceptually
very simple: all parties locally update the public key based on the hash of the
public metadata, and then execute the protocols with respect to the new key
pair. The main challenge is to sign tokens in a way that does not allow the user to
forge tokens initially signed under metadata md to be valid under metadata md′

instead. Let k be the secret key and let d = H(md) be the hash of the metadata.
Our solution, inspired by Zhang et al. [ZSS03], is to use the inverse e = (d+k)−1

24 T. Silde and M. Strand

as the new signing key. This allows us to replace the secret keys in the previous
protocols in a modular way.

Furthermore, to avoid subliminal channels, the signer needs to prove that
the signed token is computed correctly. This is easily solved for Privacy Pass
[DGS+18]. In the original protocol they use a zero-knowledge protocol to prove,
given generator G, public key K = [k]G, blinded token T ′ and signed token
W ′ = [k]T ′, the equality of discrete logarithms logG K = k = logT ′ W ′ to ensure
correctness. In our updated protocol, including metadata md, updated public
key U = [d]G+K and signed token W ′ = [e]T ′, we prove the equality of discrete
logarithms logG U = d+ k = logW ′ T ′ to ensure correctness.

However, it is not as easy to ensure correctness in the extended version of
the protocol by Kreuter et al. [KLOR20a] including both public and private
metadata. We solve this by combining an OR-proof with two AND-proofs to make
sure that the correct key is used. Further improvement is an open problem.

Next, we give a protocol based on pairings. The protocol is an adapted version
of the partially blind signatures by Zhang et al. [ZSS03], where we tweak it
into the same structure as Privacy Pass. We note that the communication in
the protocol is the same, but in addition to get a more streamlined protocol
structure, we also allow for more efficient instantiation in practice using the
BLS12-381 pairing [BLS03]. Ideally, we would like to avoid pairings altogether,
but this seems necessary in practice. See more details about the protocols in
Section 4.

Finally, we detail the communication efficiency of the protocols in Section 5,
and compare our constructions with the current state of the art with respect to ef-
ficient batched revocation in Table 1. We show that our protocols are much more
efficient in practice. We also make a concrete comparison with DIT [HIJ+21] for
collecting telemetry-data from WhatsApp, and show that our protocol in Fig-
ure 6 would decrease the size of the signed token in a natural setting by 90 %,
saving the Facebook servers up to 1.7 TB of communication every day.

More Private Contact Tracing. Many countries have recently developed con-
tact tracing apps as one of the measurements to battle the ongoing pandemic.
These apps are inherently storing sensitive information about the user, e.g., the
users’ location graph and social graph. To avoid large, centralized databases with
such sensitive information about a large portion of a country’s adult population,
most apps are based on the decentralized Google/Apple Exposure Notification
System (ENS). However, there are still privacy issues with regards to upload-
ing the randomized exposure keys to the central server, as the user would have
to identify themselves to ensure that only people who have tested positive for
COVID-19 are able to upload keys. We implemented Privacy Pass into the Nor-
wegian contact tracing app to improve the users’ privacy. Our code is published
at github.com/HenrikWM/anonymous-tokens, and the Norwegian Institute of
Public Health (NIPH) have made the source code for the contact tracing infras-

Anonymous Tokens 25

tructure publicly available6. We present more details about the contact tracing
infrastructure and improvements in Section 6.

1.3 Comparison to Anonymous Credentials

There is a long line of research on more generalized anonymous credentials with
features such as multi-show, multi-attributes, and revocability – in addition to
the mandatory unlinkability and unforgeability – that allow one to encode expi-
ration dates as attributes.

However, generalized anonymous credentials often depends on stronger as-
sumptions, e.g., strong RSA [CL01, CV02, CL03, CHL05, CG08], strong Diffie-
Hellman [AMO08] or DL assumptions in bilinear groups [CL04, HS21]. Some
schemes only depend on DDH [BL13,PZ13,CMZ14,CPZ20], but these schemes
require larger messages in general. In conclusion, generalized anonymous creden-
tials inherently impose larger parameters, more rounds of communication and
less efficient protocols in practice, resulting in thousands of bits on communica-
tion over multiple rounds.

Finally, more general and complex anonymous credentials make these schemes
less suited for use in simpler single-use systems with many users, which is the
case in our setting. We want to minimize the rounds of communication and data
being sent, in addition to minimizing the local computation and the local state.
Hence, we only compare to one-round single-use efficiently revocable anonymous
credentials with minimal communication in Section 5.

1.4 Related work

Our work achieving designated verification and public metadata extends a long
line of publications. Freedman et al. [FIPR05] introduced oblivious pseudo-
random functions, and Jarecki et al. [JKK14,JKX18] gave an efficient instantia-
tion based on DDH in the random oracle model. Papadopoulos et al. [PWH+17]
gave a verifiable PRF from elliptic curves, and Burns et al. [BMR+17] gave an
oblivious PRF from elliptic curves. Privacy Pass combined these results with an
extended version of the Chaum-Pedersen zero-knowledge protocol [CP93] given
by Henry and Goldberg [HG13,Hen14] to prove knowledge of batches of elements
having the same discrete logarithm, and Kreuter et al. [KLOR20a] added private
metadata to Privacy Pass. In a concurrent work, Tyagi et al. [TCR+21] recently
extended this line of works to partially oblivious PRFs.

To achieve public verifiability we use parings, inspired by the seminal work of
Boneh et al. [BLS01] for short and efficient signatures and a series of construc-
tions of (partially) blind signatures based on pairings [ZSS03,Bol03, CHYC05,
CZMS06,CKS09,BPV12,FHS15,FHKS16].

6 NIPH: github.com/folkehelseinstituttet/?q=Smittestopp.

26 T. Silde and M. Strand

1.5 Chronology

As we report on both an implementation and new protocols, we believe it can
be helpful to lay out the chronology of this work to separate the contributions.

Mid-October 2020, the authors were made aware of a potential privacy weak-
ness in Norway’s upcoming second COVID-19 contact tracing app Smittestopp.
The first iteration had been stopped by the Norwegian Data Protection Agency
in June, due to privacy concerns following from lack of data minimization. The
new app had a set launch date in December.

The issue was that the verification service would collect IDs in order to
automatically verify the infection status, and then send a token to the app which
could then be used for uploading exposure keys. This token would create a hard
link between an ID-based service and the rest of the system, in which the users
are assumed to be anonymous.

Within a few days, we suggested using Privacy Pass in order to remove this
link. Due to lack of capacity, our proposal was acknowledged, but we were
asked to provide the code. We teamed up with Henrik Walker Moe to imple-
ment Privacy Pass in C#, and our implementation was eventually accepted into
Smittestopp along with an improvised solution to rotate keys every three days.

Motivated by this process and the last-minute improvisation, we expanded
the original Privacy Pass protocol to deal with the issues of key-rotation and
revocation. Our initial manuscript was posted on ePrint February 24th, 2021.
We were then made aware of a complication to the security proof, which was
originally from the work by Zhang et al. [ZSS03]. A correct proof was posted
on ePrint by Tyagi et al. [TCR+21] June 24th, 2021. The primary separation
between these two manuscripts are that we were the first to present this protocol
along with its variations, while Tyagi et al. present a correct proof. We also
present the protocols in a way that is compatible to previous work. In this sense,
these works complement each other.

The new protocol has not been implemented in Smittestopp. This is due to
lack of further development of the app, and we do not expect any major changes
to be accepted into the codebase at this stage.

2 Preliminaries

We assume that the reader is familiar with the basics of elliptic curve cryptog-
raphy. To fix notation, let q be a prime and let Fqℓ for some ℓ > 0 be a field of
characteristic q. Let E be all points (x, y) that satisfy the elliptic curve equation
y2 = x3+ax+b in the algebraic closure of Fqℓ , and let E(Fqℓ) denote the set of all
such points in Fqℓ×Fqℓ along with the point at infinity O. By abuse of notation,
we often let E be a group of order p inside E(Fqℓ). Define the group law in the
usual additive way. In particular, let [m] : E → E be the multiplication-by-m
map, which takes the same role as exponentiation in multiplicative groups. Now
follows a brief discussion of the Chosen-Target Gap Diffie-Hellman problem and
some zero-knowledge proofs we will need as primitives.

Anonymous Tokens 27

2.1 The One-More Gap Strong Diffie-Hellman Problem

The strong Diffie-Hellman problem was introduced by Boneh and Boyen [BB04].

Given a sequence g, gx, gx
2

, . . . , gx
q

from a group G of prime order p, output
a pair (c, g(x+c)−1

) with c ∈ Zp. We now present a variant of this game: the
adversary must commit to fixed set of candidates {ci}, and may then query

an oracle for B(sk+ci)
−1

for arbitrary B, along with an oracle for the decision
variant. The adversary wins if it can present ℓ + 1 correct tuples for a chosen
ci, but only having queried ℓ or less. The details are presented in Figure 1. The
definition and game is due to Tyagi et al. [TCR+21].

Game (m,n)-OM-Gap-SDHIGen,A,ℓ(λ)

(G, p, g)← Gen(1λ)

sk←$ Zp

(yi)i∈[m] ←$ Zm
p

(stA, (ci)i∈[n])← A1(p,G)
(
γ, (Zi, αi)i∈[ℓ+1]

)
← ASDH,SDDH

2

(
g, gsk, (gyi)i∈[m]; stA

)

if qγ ≤ ℓ and (i ̸= j → αi ̸= αj) then

return (Zi)i∈[ℓ+1] =
(
gyαi

(sk+cγ)−1
)
i∈[ℓ+1]

Oracle SDH(B, i)

if i /∈ [n] then

return ⊥
qi := qi + 1

Z := B(sk+ci)
−1

return Z

Oracle SDDH(Y, Z, i)

return Z = Y (sk+ci)
−1

Fig. 1. The one-more gap strong inversion Diffie-Hellman security game.

Definition 1 ((m,n)-One-More Gap Strong Inversion Diffie-Hellman).
Let m,n be natural numbers, and let G be a cyclic group of order p with generator
g produced by the algorithm Gen(1λ). Let (m,n)-OM-Gap-SDHI be the game
defined in Figure 1. (m,n)-One-More Gap Strong Diffie-Hellman Inversion holds
for G if for any PPT adversary A and any ℓ ≥ 0,

Advom-gap-sdhi
Gen,A,ℓ (λ) := Pr[(m,n)-OM-Gap-SDHIGen,A,ℓ(λ) = 1] = negl(λ).

Tyagi et al. [TCR+21] have proven that this assumption is implied by the
much simpler q-DL assumption, which asks the adversary to return x, given
g, gx, gx

2

, . . . , gx
q

.

2.2 DDH vs. CDH in Pairings

Let G1 and G2 be two cyclic groups of prime order, written additively, and let
GT be another cyclic group of same prime order, written multiplicatively. A
bilinear pairing ê is a map

ê : G1 ×G2 → GT

such that the following properties hold:

28 T. Silde and M. Strand

Bilinearity For all P1, P2 ∈ G1 and Q1, Q2 ∈ G2, it holds that ê(P1+P2, Q1) =
ê(P1, Q1)ê(P2, Q1) and ê(P1, Q1 +Q2) = ê(P1, Q1)e(P1, Q2).

Non-degeneracy For all P ̸= O, ê(P, P) ̸= 1.
Computability ê can be efficiently computed.

The bilinearity property implies that for scalars a, b, we have ê([a]P, [b]Q) =
ê(P,Q)ab, which is the crucial property used for verification.

Bilinear maps lend themselves to a variant of the well-known Diffie-Hellman
problem, the Chosen-Target Gap Diffie-Hellman problem [BNPS02]. Even if
the adversary is given oracle access to ℓ instances of the Computational Diffie-
Hellman (CDH) problem and arbitrary many queries to a Decision Diffie-Hellman
(DDH) oracle, it should still not be able to compute the final Diffie-Hellman in-
stance ℓ+ 1. We repeat the game and definition by Kreuter et al. [KLOR20a].

Game CTGDHGen,A,ℓ(λ)

Γ = (G, p, G)← Gen(1λ)

x←$ Zp;X := [x]G

q := 0;Q := []

(ti, Zi)i∈[ℓ+1] ← ATarget,Help,DDH(Γ,X)

for i ∈ [ℓ+ 1]

if ti /∈ Q then return 0

Yi := Q[ti]
return (q ≤ ℓ and

∀i ̸= j ∈ [ℓ+ 1], ti ̸= tj and

∀i ∈ [ℓ+ 1], [x]Yi = Zi)

Oracle Target(t)

if t ∈ Q then

Y := Q[t]
else

Y ←$ G
Q[t] := Y

return Y

Oracle Help(Y)

q := q + 1

return [x]Y

Oracle DDH(Y, Z)

return (Z = [x]Y)

Fig. 2. The Chosen-target gap Diffie-Hellman security game.

Definition 2 (Chosen-Target Gap Diffie-Hellman). Let G be a cyclic group
of order p with generator G produced by the algorithm Gen(1λ). Let CTGDH be
the game defined in Figure 2. Chosen-Target Gap Diffie-Hellman holds for G if
for any PPT adversary A and any ℓ ≥ 0,

AdvctgdhGen,A,ℓ(λ) := Pr[CTGDHGen,A,ℓ(λ) = 1] = negl(λ).

2.3 Proof of Equal Discrete Logs

Chaum and Pedersen [CP93] introduced an elegant honest-verifier zero-knowledge
protocol to prove that two group elements have the same discrete logarithm rel-
ative to their respective bases, logG K = k = logT W . We describe the protocol
loosely to ensure the reader is familiar with the idea. Let G be a cyclic group

Anonymous Tokens 29

of prime order p with independent generators G and T , and let K := [k]G,
W := [k]T where k is a scalar private to the prover P.
P.1 Choose a random scalar r in the underlying field, compute A := [r]G and

B := [r]T , and send (A,B) to V.
V.1 Choose a random challenge c modulo p and send it to P.
P.2 Compute the response z := r − ck modulo p, and then send z to V.
V.2 Verify that A = [z]G+ [c]K and B = [z]T + [c]W .

This protocol satisfies unconditional special soundness and special honest-
verifier zero-knowledge. One can make the protocol non-interactive by applying
the Fiat-Shamir transformation [FS87]. The prover queries the oracle on the tu-
ple (G, G, T,K,W,A,B). In addition, one can reduce communication by sending
the oracle response c instead of (A,B), and modifying the final verification step
to querying the oracle on (G, G, T,K,W, [z]G+[c]K, [z]T +[c]W), and then ver-
ify that it indeed returns c. We will use a shorthand notation to refer to this
proof as ΠDLEQ(G,T,K,W ; k), meaning that logG([k]G) = logW T .

The proof can be batched for many instances with respect to the same secret
scalar using the techniques by Henry [Hen14] as showed in [DGS+18, Section
3.2.1].

2.4 AND-Proof of Equal Discrete Logs

Let G be an additive group of prime order p with independent generators
G,H, T, S, and let K := [k0]G + [k1]H and V := [k0]T + [k1]S, where k0, k1
are scalars private to the prover P. We want to prove that V is correctly com-
puted with respect to T and S using the same secret scalars as K with respect
to G and H. We present a simple protocol to prove this relation, by essentially
computing two Chaum-Pedersen proofs in parallel.

P.1 Choose two random scalars r0, r1 modulo p. Compute A := [r0]G+ [r1]H,
B := [r0]T + [r1]S, and send (A,B) to V.

V.1 Choose a random challenge c modulo p and send it to P.
P.2 Compute z0 := r0 − ck0 and z1 := r1 − ck1 modulo p and send them to V.
V.2 Verify that A = [c]K + [z0]G+ [z1]H and B = [c]V + [z0]T + [z1]S.

It is straightforward to verify that this is a sigma protocol with special sound-
ness and special honest-verifier zero-knowledge. As above, we can apply the Fiat-
Shamir [FS87] transformation to get a non-interactive protocol. We will refer to
this proof as ΠDLEQ2(G,H, T, S,K, V ; k0, k1).

2.5 OR-Proof of Equal Discrete Logs

We present the honest-verifier zero-knowledge OR-proof of equal discrete loga-
rithms instantiated by Kreuter et al. [KLOR20b, Appendix B]. Let G be a cyclic
group of prime order p with generators G,H, T, S, and let V0 := [e0,0]G+[e0,1]H
and V1 := [e1,0]G+ [e1,1]H, where ei,j are distinct scalars private to the prover
P. Furthermore, let W := [eb,0]T + [eb,1]S for b ∈ {0, 1}. We want to prove that
W is computed using the same secret scalars as either V0 or V1.

30 T. Silde and M. Strand

P.1 Choose random scalars r0, r1, cb−1, ub−1, vb−1 in the underlying field and
compute the following:

Ab,0 := [r0]G+ [r1]H,

Ab,1 := [r0]T + [r1]S,

A1−b,0 := [ub−1]G+ [vb−1]H − [cb−1]Vb−1,

A1−b,1 := [ub−1]T + [vb−1]S − [cb−1]W.

Finally, send (A0,0, A0,1A1,0, A1,1) to V.
V.1 Choose a random challenge c modulo p and send it to P.
P.2 Compute the responses

cb := c− c1−b, ub := r0 + cbeb,0, vb := r1 + cbeb,1,

modulo p. Send (ci, ui, vi)i=0,1 to V.
V.2 Verify that c = c0 + c1 and that

A0,0 = [u0]G+ [v0]H − [c0]V0,

A0,1 = [u0]T + [v0]S − [c0]W,

A1,0 = [u1]G+ [v1]H − [c1]V1,

A1,1 = [u1]T + [v1]S − [c1]W.

We can make the proof non-interactive using Fiat-Shamir [FS87] like above.
We will refer to this protocol as ΠDLEQOR2(G,H, T, S, V0, V1,W ; eb,0, eb,1).

ΠDLEQOR2 can be batched for many instances with respect to the same secret
scalars using the techniques by Henry [Hen14] as shown in [KLOR20a, Appendix
B.1].

3 Definitions for Anonymous Tokens

Anonymous tokens as used in Privacy Pass are conceptually simple: both is-
suance and verification require the private key, and the final token is uniquely
determined by the token seed t and the private key. Kreuter et al. [KLOR20a]
extended this notion by adding a private bit in the token. We further extend
the definition in two different directions: we want to add public metadata, and
we want to make the token publicly verifiable. Now, private bits do not make
immediate sense in the context of a publicly verifiable token scheme, but public
metadata can be relevant in both settings.

The metadata can for instance be used to indicate an expiry date, replacing
the need for frequent key rotation in certain applications [HIJ+21] as we dis-
cussed in Section 1.1. We model it as a value that the user and issuer must agree
upon, which should restrict the issuer from using arbitrary, identifiable values.

Lending terminology from programming, we would like the definition to pro-
vide backwards compatibility, and handle the notational incompatibility between
private and public verifiability. To this end, we imitate the notion of [optional

Anonymous Tokens 31

arguments] from programming. The notation vk|sk is meant as “at least one of
the public or the secret key”. We align our definitions as close as possible to
those by Kreuter et al. [KLOR20a].

Definition 3 (Anonymous tokens). An anonymous token scheme with zero
or more of private metadata bit, public metadata, or public verifiability
consists of the following algorithms:

– (crs, td) ← AT.Setup(1λ), the setup algorithm that takes as input the se-
curity parameter λ in unary form, and returns a common reference string
crs and trapdoor td. All the remaining algorithms take crs as their first input.

– (pp, sk, [vk]) ← AT.KGen(crs), the key generation algorithm that generates a
signing key sk and optionally a verification key vk along with public param-
eters pp. All the remaining algorithms take pp as their second input.

– σ ← ⟨AT.User(pp, [vk], t, [md]),AT.Sign(sk, [md], [b])⟩, the token issuance pro-
tocol, which involves interactive algorithms AT.User and AT.Sign. The user
algorithm takes as input values the public parameters and the token seed
t ∈ {0, 1}λ, and potentially the verification key vk and the public metadata
md. The signing algorithm takes the private key sk and potentially metadata
md and the private bit b. At the end of the interaction, the issuer outputs
nothing, while the user outputs σ, or ⊥ to indicate error.

– bool← AT.Vf(vk|sk, t, [md], σ), the verification algorithm that takes as input
either the public verification key vk or the private key sk, a token seed t,
metadata md and the signature σ. It returns true if the token was valid.

– [ind ← AT.ReadBit(sk, t, [md], σ)], the private bit extraction algorithm that
takes as input the private key sk and token (t, [md], σ). It returns an indicator
ind ∈ {⊥, 0, 1} which is either the private bit, or ⊥.

The notation of the above definition should be interpreted in a global sense.
If one – for example – wants to use public metadata, it should be included
everywhere it is mentioned. This listing then defines the following six notions:

1. With designated verification:
(a) Anonymous single-use tokens
(b) Anonymous single-use tokens with private metadata bit
(c) Anonymous single-use tokens with public metadata
(d) Anonymous single-use tokens with public and private metadata

2. With public verification:
(a) Anonymous single-use tokens
(b) Anonymous single-use tokens with public metadata

Examples of 1a and 1b are well known from previous work [DGS+18,KLOR20a].
A previous example of 2b is known as a partially blind signature scheme [AO00].

32 T. Silde and M. Strand

We will provide new examples of the last four (2a is implicit in 2b) in Section 4.
We collectively refer to all of these as anonymous tokens.

We follow the convention of dividing the interactive protocol ⟨AT.User,AT.Sign⟩
into the non-interactive algorithms AT.User0, AT.Sign0 and AT.User1.

An anonymous token scheme must satisfy the following properties:

Definition 4 (Token correctness). An anonymous token scheme AT is cor-
rect if any honestly generated token verifies. For any honestly generated crs,
(pp, sk, [vk]), t and [md],

Pr[AT.Vf(vk, t, [md], ⟨AT.User(pp, [vk], t,md),

AT.Sign(sk, [md], [b])⟩) = 1] = 1− negl(λ).

We split correctness of the private metadata bit into a separate definition in
order to reduce notational clutter. This definition only applies in the private-key
setting, and the parameters have been fixed accordingly.

Definition 5 (Correct private bit). An anonymous token scheme AT is cor-
rect with respect to private metadata if the correct bit is retrieved successfully:

Pr[AT.ReadBit(sk, t, ⟨AT.User(pp, t, [md]),

AT.Sign(sk, [md], b)⟩) = b] = 1− negl(λ).

No adversary should be able to redeem other tokens than those that have been
correctly issued. The one-more unforgeability notion has become the common
notion for anonymous credentials. It allows the adversary to claim ℓ tokens from
the issuer, and the adversary should not be able to redeem ℓ + 1 tokens. We
require the tokens to be unique with respect to the value of the seed t.

Game OMUFAT,A,ℓ(λ)

(crs, td)← AT.Setup(1λ)

(pp, sk, [vk])← AT.KGen(crs)

for (b ∈ {0, 1},md), qb,md := 0

(ti,mdi, σi)i∈[ℓ+1] ← ASign,Verify,Read(crs, pp)

return (∀b ∈ {0, 1} ∀md, qb,md ≤ ℓ and

∀i ̸= j in [ℓ+ 1] (ti,mdi, σi) ̸= (tj ,mdj , σj)

and ∃(b,md) ∈ {0, 1} × {md} : ∀i ∈ [ℓ+ 1],

AT.ReadBit(sk, ti, σi) = b and

AT.Vf(sk|vk, ti, [md], σi) = true)

Oracle Sign(msg, [md], [b])

qb,md := qb,md + 1

return AT.Sign0(sk,msg, [md], [b])

Oracle Verify(t, [md], σ)

return AT.Vf(sk|vk, t, [md], σ)

Oracle Read(t, σ)

return AT.ReadBit(sk, t, [md], σ)

Fig. 3. One-more unforgeability with metadata.

Anonymous Tokens 33

Game UNLINKAT,A,m,[b],[md](λ)

(crs, td)← AT.Setup(1λ)

(st, pp, [vk])← A(crs, [b], [md])

q0 := 0; q1 := 0,Q := ∅
(st, (msgi)i∈Q)← AUser0,User1(st)

if Q = ∅ then return 0

j ←$Q;Q = Q \ {j}
σj ← AT.User1(stj , [vk],msgj , [md])

for i ∈ Q
σi ← AT.User1(sti, [vk],msgi, [md])

ϕ←$ SQ
j′ ← A(st, (tj , σj), (tϕ(i), σϕ(i))i∈Q)

return q0 − q1 ≥ m and j′ = j

Oracle User0()

q0 := q0 + 1

tq0 ←$ {0, 1}λ

(msgq0 , stq0)← AT.User0(pp, [vk], tq0 , [md′])

Q := Q∪ {q0}
return (q0,msgq0)

Oracle User1(j,msg)

if j /∈ Q then

return ⊥
σ ← AT.User1(stj , [vk],msg, [md′])

if σ ̸= ⊥ then

Q := Q \ {j}
q1 := q1 + 1

return σ

Fig. 4. Public-key unlinkability with fixed metadata. If X is a set, then SX is the
symmetric group of X.

Definition 6 (One-more unforgeability). An anonymous token scheme AT
is one-more unforgeable if for any PPT adversary A, and any ℓ ≥ 0:

Advomuf
AT,A,ℓ(λ) := Pr[OMUFAT,A,ℓ(λ) = 1] = negl(λ),

where OMUFAT,A,ℓ is the game defined in Figure 3.

Next, we want to provide user anonymity. The right notion for this is unlink-
ability, which guarantees that even colluding issuers and verifiers are unable to
link tokens. Arbitrary metadata is a strong way of creating a link, and we omit
this problem by only considering fixed public metadata for this notion. Notice
that the adversary may query the user oracles for any public metadata md, but
that we expect the post-processing to implicitly fail if md ̸= md′. This is in line
with for example expiry dates, which would otherwise have been solved in prac-
tice using key rotation, and the definition is (as usual) also using a fixed key.
Private metadata is outside the control of the user, and gives one bit leakage.
We fix it for this game. Note that the adversary controls the keys, and that we
therefore do not need to provide access to signing and verification oracles.

Definition 7 (Unlinkability). An anonymous token scheme AT is κ-unlink-
able if for any PPT adversary A, fixed b, md, and any m > 0,

AdvunlinkAT,A,m,[b],[md](λ) := Pr
[
UNLINKAT,A,m,[b],[md](λ) = 1

]
≤ κ

m
+ negl(λ),

where UNLINKAT,A,m is the game defined in Figure 4.

34 T. Silde and M. Strand

Game PMBβ
AT,A(λ)

(crs, td)← AT.Setup(1λ)

(pp, sk)← AT.KGen(crs)

β′ ← ASign,Sign′,Verify(crs, pp)

return β′

Oracle Sign(msg, [md])

return AT.Sign0(sk,msg, [md], β)

Oracle Sign′(msg, [md], b)

return AT.Sign0(sk,msg, [md], b)

Oracle Verify(t, [md], σ)

return AT.Vf(sk, t, [md], σ)

Fig. 5. Game for private metadata bit for anonymous tokens.

We finally consider the private metadata bit. We give the adversary access
to two signing oracles: One uses the adversary’s chosen private bit, the other is
using a fixed bit for the game. The adversary can also query a verification oracle.
At the end, the adversary outputs its guess for the fixed challenge bit.

Definition 8 (Private metadata bit). An anonymous token scheme AT pro-
vides private metadata bit if for any PPT adversary A,

Advpmb
AT,A(λ) :=

∣∣Pr[PMB0
AT,A(λ)]− Pr[PMB1

AT,A(λ)]
∣∣ = negl(λ),

where PMBβ
AT,A is the game defined in Figure 5.

4 Anonymous Token Protocols

The Privacy Pass protocol [DGS+18] and its siblings [HIJ+21, KLOR20a] are
based on Verifiable Oblivious Pseudo-Random Functions (VOPRF). Here, a user
holds some secret input x and the signer holds a secret key k and they evaluate
the function F obliviously such that the user learns F (x, k) but nothing about
k, and the signer learns nothing about the input x nor the output F (x, k).
Additionally, the user is ensured that the function is evaluated by the correct
secret key.

We give three protocols for Anonymous Tokens (AT) with 1) public metadata,
2) public and private metadata, and 3) public metadata and public verifiability,
respectively, constructed from the same framework.

At the core of our protocols lies a verifiable key transformation. Let d :=
Hm(md) and the curve point U := [d]G+K, where G is a public generator and
K is the public key with a corresponding private key k. Let e = (d + k)−1 be
the new signing key and W ′ = [e]T ′. Notice the relation

KT : logG([d]G+K) = (d+ k) = logW ′ T ′. (1)

Anonymous Tokens 35

4.1 Secure Key Transformation

We argue that the key-transformation from k to e is secure against one-more
unforgeability attacks. Several papers has been written using this transforma-
tion. Boneh and Boyen [BB04] shows that this transformation is secure against
a non-adaptive attacker for arbitrary metadata md when used for signatures.
Furthermore, Dodis and Yampolskiy [DY05] shows that this transformation is
secure against active attackers when the set of possible metadata values is small,
and give applications to PRFs. However, these works only prove security with
respect to a fixed generators, while our construction signs arbitrary new gener-
ators in each execution of the protocol. Recently, Tyagi et al. [TCR+21] proved
that this transformation is secure against an active attacker with respect to arbi-
trary generators and arbitrary set of metadata. They reduce the security of the
transform to a new one-more gap strong inversion Diffie-Hellman problem (see
Section 2.1). They also show that this new problem is equivalent to the simpler
q-DL assumption. We summarize these results in a lemma.

Lemma 1. Let AT be a scheme with keys (pk, vk) with security property P
within adversarial advantage AdvpAT,A(λ), and assume we can prove the relation

in Equation 1 within adversarial advantage AdvrelKT,A(λ). Then A has advantage

AdvpAT,A(λ)+AdvrelKT,A(λ) against property P in the scheme AT with transformed

keys ({e = (md+ sk)−1, [e]G}).

4.2 Anonymous Tokens with Public Metadata

In Figure 6 we present an extension of Privacy Pass [DGS+18] with public meta-
data. The protocol is designated verifier, as the secret key is needed to verify
tokens.

Setup and Key Generation. Let λ be the security parameter, let p be a
prime and let E be an elliptic curve group of order p with generator G. Let
Ht : {0, 1}∗ → E and Hm : {0, 1}∗ → Zp be hash functions, and assume that
group elements and integers can be encoded uniquely as strings. Furthermore,
let metadata md be an element of a public set of valid strings. Finally, let sk :=
k ←$ Z∗

p be the signing key, and let pk := K := [k]G be the public key. We
consider G,E, p, Ht, Hm and K to be implicit knowledge in Figure 6.

Signing and Verification. The anonymous tokens protocol in Figure 6 uses
the ΠDLEQ-protocol defined in Section 2.3. The signer computes a proof πDLEQ :=
(c, z) of equality of discrete logarithms by instantiating the protocol ΠDLEQ(G,T ′,
K,W ′; e). Given the public parameters G and K, and U := [d]G + K, this is
a proof that logG U = d + k = logW ′ T ′. This proves that W ′ = [e]T ′, where
e := (d + k)−1, is computed correctly with respect to d and K. To verify, the
user instantiates the verification algorithm, denoted by V(πDLEQ).

36 T. Silde and M. Strand

—————————— Signing ——————————

User(md, pk) Signer(md, pk, sk)

d := Hm(md) d := Hm(md)

U := [d]G+K U := [d+ k]G

t←$ {0, 1}λ, r ←$ Z∗
p e := (d+ k)−1

T := Ht(t)

T ′ := [r−1]T T ′
W ′ := [e]T ′

if not V(πDLEQ) W ′, πDLEQ πDLEQ ← ΠDLEQ(G,T ′,K,W ′; e)

return ⊥
W := [r]W ′

return (t,md,W)

—————————— Redemption ——————————

User(t,md,W) Verifier(sk)

t,md,W e := (Hm(md) + k)−1

if W = [e]Ht(t)

return true

else

return false

Fig. 6. Designated verifier anonymous tokens with public metadata. Our protocol is a
direct extension of Privacy Pass [DGS+18].

Theorem 1 (Completeness). The anonymous token protocol with public meta-
data in Figure 6 is complete according to Definition 4.

Proof. The completeness follows from expanding W :

W = [r]W ′ = [r][e]T ′ = [r][e][r−1]T = [e]Ht(t).
⊓⊔

Theorem 2 (Unforgeability). The anonymous token protocol with public meta-
data in Figure 6 achieve one-more unforgeability with respect to Definition 6.

Proof. Using the key transformation as described in Lemma 1, the security of
the protocol reduces to the security of the one-more gap strong inversion Diffie-
Hellman game as shown in Figure 1. The advantage of an attacker follows from
Definition 1 and is proven secure by Tyagi et al. [TCR+21, Theorem 1].

⊓⊔

Anonymous Tokens 37

Theorem 3 (Unlinkability). Fix metadata md. Within the set defined by all
tokens using md, the anonymous token protocol with public metadata in Figure 6
achieve unlinkability with respect to Definition 7.

Proof. This proof is identical to [DGS+18, Theorem 1]: As we sample r ←$ Zp

uniformly at random, it follows that our protocol is unconditionally unlinkable.
Since T is a generator of E, then T ′ = [r−1]T is uniformly random and contain
no information about t nor T . As the signer only sees T ′, and the verifier only
receive t, and they are independent, there is no link between the view of the
signer and the view of the verifier.

⊓⊔

4.3 AT with Public and Private Metadata

In Figure 7, we present an extension of the PMBTokens [KLOR20a, Figure 8]
with public metadata. This protocol is also designated verifier, requiring the
secret key for verification.

Setup and Key Generation. Let λ be the security parameter, let p be a
prime and let E be an elliptic curve group of order p with generators G0, G1.
Let Ht : {0, 1}∗ → E, Hm : {0, 1}∗ → Z∗

p and Hs : {0, 1}∗ → Z∗
p be hash-functions,

and assume that group elements and integers can be encoded uniquely as strings.
Furthermore, let metadata md be an element of a public set of valid strings.
Finally, let sk := (k0,0, k0,1, k1,0, k1,1) ←$ (Z∗

p)
4 (all ki,j being distinct) be the

signing key, and let pk := {Ki,j} = {[ki,j]Gi}, for i, j = 0, 1, be the public key.
This is implicit knowledge in the protocol description.

Signing and Verification. The anonymous tokens protocol in Figure 7 uses
the ΠDLEQ2-protocol defined in Section 2.4 twice as a subroutine to ensure that
we afterwards can prove that the signed token W ′ was computed correctly. Given
the generators G0, G1, T

′, S′, the public keys Ki,j := [ki,j]Gi and the elements
Vi := [ei,0]T

′+[ei,1]S
′, for i, j = 0, 1, we want to prove that the following relations

hold:

[
G0 +G1

Vi

]
= [ei,0]

[
[d]G0 +Ki,0

T ′

]
+ [ei,1]

[
[d]G1 +Ki,1

S′

]
.

We instantiate ΠDLEQ2(G0, G1, V0; e0,0, e0,1) and ΠDLEQ2(G0, G1, V1; e1,0, e1,1)
in Figure 7 to get proofs πAND and π′

AND. We denote the verification by V(πAND, π
′
AND).

We also use the ΠDLEQOR2-protocol defined in Section 2.5. The signer com-
putes an OR-proof of equality of discrete logs by instantiating the zero-knowledge
protocol ΠDLEQOR2(G0, G1, T

′, S′, V0, V1,W
′; e0,0, e0,1, e1,0, e1,1). Consider the

generators G0, G1, T
′, S′, hashed metadata d and computed value W ′. The signer

then proves that W ′ is correctly computed, with respect to T ′ and S′, and in

38 T. Silde and M. Strand

—————————— Signing ——————————

User(md) Signer(md, b, sk)

d := Hm(md) d := Hm(md)

t←$ {0, 1}λ, r ←$ Z∗
p e0,0 := (d+ k0,0)

−1, e0,1 := (d+ k0,1)
−1

T := Ht(t) e1,0 := (d+ k1,0)
−1, e1,1 := (d+ k1,1)

−1

T ′ := [r−1]T T ′
s←$ {0, 1}λ, S′ := Hs(T

′||md||s)

V0 := [e0,0]G0 + [e0,1]G1

V1 := [e1,0]G0 + [e1,1]G1

W ′ := [eb,0]T
′ + [eb,1]S

′

πAND ← ΠDLEQ2(G0, G1, V0; e0,0, e0,1)

π′
AND ← ΠDLEQ2(G0, G1, V1; e1,0, e1,1)

S′ := Hs(T
′||md||s)

s, V0, V1,W
′,

πAND, π
′
AND, πOR

πOR ← ΠDLEQOR2(G0, G1, T
′, S′, V0, V1,W

′; eb,0, eb,1)

if not V(πAND, π
′
AND, πOR)

return ⊥
S := [r]S′

W := [r]W ′

return (t,md, S,W)

—————————— Redemption ——————————

User(t,md, S,W) Verifier(sk)

t,md, S,W T := Ht(t), d := Hm(md)

e0,0 := (d+ k0,0)
−1, e0,1 := (d+ k0,1)

−1

e1,0 := (d+ k1,0)
−1, e1,1 := (d+ k1,1)

−1

W0 := [e0,0]T + [e0,1]S

W1 := [e1,0]T + [e1,1]S

if W = W0 and W ̸= W1

return 0

if W ̸= W0 and W = W1

return 1

else return ⊥

Fig. 7. Designated verifier anonymous tokens with public and private metadata, an
adjusted extension of Kreuter et al. [KLOR20a].

Anonymous Tokens 39

the same way as one of the committed values V0 or V1, with respect to G and
H. That is, for either b = 0 or b = 1:

Vb = [eb,0]G0 + [eb,1]G1 ∧ W ′ = [eb,0]T
′ + [eb,1]S

′.

We denote the verification of the proof πOR by V(πOR).

Theorem 4 (Completeness). The anonymous token protocol with public and
private metadata in Figure 7 is complete according to Definition 4 and will,
according to Definition 5, return the correct metadata bit except with negligible
probability.

Proof. If the user submits (t,md, S,W), completeness follows from expanding
Wb:

Wb = [r]([eb,0]T
′ + [eb,1]S

′) = [r]([eb,0][r
−1]T + [eb,1]S

′)

= [eb,0]T + [r][eb,1]S
′ = [eb,0]Ht(t||md) + [eb,1]S.

Furthermore, the probability that this equation holds for both b = 0 and b = 1
is negligible. If that was the case, then

[e0,0]T + [e0,1]S = [e1,0]T + [e1,1]S.

As we require all keys ki,j to be distinct, it follows that all ei,j are distinct. Then,
we have that

T =

[
e1,1 − e0,1
e0,0 − e1,0

]
S.

Since T = Ht(t) is sampled independently and uniformly at random, the proba-
bility that this equation holds is 1/p, which is negligible.

⊓⊔

Theorem 5 (Unforgeability). The anonymous token protocol with public and
private metadata in Figure 7 achieves one-more unforgeability with respect to
Definition 6.

Proof. For fixed metadata md we let the adversary query the signing oracle ℓ
times for both b = 0 and b = 1. Using the key transformation as described in
Lemma 1, the security of the protocol reduces to the security of the one-more gap
strong inversion Diffie-Hellman game as shown in Figure 1. The advantage of an
attacker follows from Definition 1 and is proven secure by Tyagi et al. [TCR+21,
Theorem 1].

⊓⊔

Theorem 6 (Unlinkability). Fix private metadata b and public metadata md.
Within the set defined by all tokens using b and md, the anonymous token protocol
with public and private metadata in Figure 7 achieves unlinkability with respect
to Definition 7.

40 T. Silde and M. Strand

Proof. We note that it is easy to create many different anonymity sets to dis-
tinguish users based on private metadata being b = 0 or b = 1, and in combina-
tion with different values of public metadata md. We restrict the unlinkability
to hold for users within the same anonymity sets based on b and md, both
sampled according to the real distribution of private and public metadata. Let
Ub,md be this set, and select two sessions from Ub,md. Then it follows directly
from [KLOR20a, Theorem 9] that the probability of success of the adversary
will be upper bounded by 2/m+ negl(λ).

⊓⊔

Theorem 7 (Private metadata bit). The anonymous token protocol with
public and private metadata in Figure 7 provides private metadata bit with respect
to Definition 8.

Proof. This statement follows directly from the proof of [KLOR20a, Theorem
10], which describes a hybrid argument to prove that instances with private bit
0 are indistinguishable from instances with private bit 1. Notice in particular
that the extra OR-proofs in our protocol are independent of the private bit b,
and therefore need no additional simulation.

⊓⊔

4.4 Public Verifiability from Pairings

The authors of Privacy Pass [DGS+18] described an application where the issuer
and the recipient of a token would be the same entity, possibly separated by time.
For the application we present in Section 6, those two roles are in fact separate,
and one should therefore have a scheme that supports public verifiability. It
remains an open problem to achieve this without pairings, unless we allow for
two rounds of communication [AO00,WSMZ06].

We move on to provide a new variant of a partially blinded signature by
Zhang, Safavi-Naini and Susilo [ZSS03]. The protocol allows a user and a signer
to generate a signature on a user-private message m and agreed-upon metadata
md. Both the issuance protocol and the signature consists of a single curve point.

We show that the idea underlying this scheme can be viewed as a combina-
tion of Boneh-Lynn-Shacham signatures [BLS01] and Privacy Pass, inheriting
its attractive properties from both.

Setup and Key Generation. Let λ be the security parameter, let ê : G1 ×
G2 → GT be a pairing, where G1, G2 and gT are generators for their respective
prime p order groups. Furthermore, let H1 : {0, 1}∗ → G1 and Hm : {0, 1}∗ → Z∗

p

be hash functions, and assume that group elements and integers can be encoded
uniquely as strings. Also, let md be an element of a public set of valid metadata
strings. Finally, let sk := k ←$ Z∗

p be the signing key, and let pk := K = [k]G2

be the public key. This is implicit knowledge in the protocol description.

Anonymous Tokens 41

Signing and Verification. Recall that the BLS-scheme signs a message m by
hashing it to the group generated by G1 and multiplying it with the secret key
k; W := [k]H1(m). The signature can then be verified by checking that

ê(H1(m),K) = ê(W,G2).

Correctness follows from the linearity of the pairing.

We replace m by a token seed t, and use the same trick as earlier to con-
currently update the key-pair based on metadata. Then we get the following
anonymous token scheme:

Signing The user sends T ′ := [r−1]H1(t) to the issuer, who returns W ′ := [e]T ′,
for e = (d+k)−1. The user can verify that the signature is correct by checking
ê(W ′, U) = ê(T ′, G2), for U := [d+k]G, and then storing (t,md,W = [r]W ′).

Verification The user sends (t,md,W), and the recipient can verify the token
by checking if ê(W,U) = ê(T,G2).

This scheme hides the token similarly to Privacy Pass, it can be verified
without using the private key, and its unforgeability follows directly from BLS.
We note that the check ê(W ′, U) = ê(T ′, G2) ensures that the tokens are signed
correctly with respect to the public key. The complete protocol is listed in Fig-
ure 8. Finally, we note that we can batch-verify n tokens under the same key
and metadata and check for equality by computing

ê

(∑

i

[ci]Wi, U

)
= ê

(∑

i

[ci]Ti, G2

)
,

where c1, . . . , cn are random coefficients. This saves the verifier of 2(n − 1) ex-
pensive pairing-computations, which is especially useful in systems with large
anonymity sets. Note that the verifier computes Ti from the received pre-tokens
ti, making sure that (Ti,Wi) is not just a scaling of a different valid token.

Theorem 8 (Completeness). The anonymous token protocol with public meta-
data and public verifiability in Figure 8 is complete according to Definition 4.

Proof. Completeness follows from expanding ê(W,U):

ê(W,U) = ê([r]W ′, [d+ k]G2) = ê([r][e]T ′, [d+ k]G2)

= ê([r][e][r−1]T, [d+ k]G2) = ê([e]T, [d+ k]G2)

= ê(T,G2)
e·(d+k) = ê(T,G2).

⊓⊔

Theorem 9 (Unforgeability). The anonymous token protocol with public meta-
data and public verifiability in Figure 8 achieve one-more unforgeability with
respect to Definition 6.

42 T. Silde and M. Strand

—————————— Signing ——————————

Client(md) Signer(md, sk)

d := Hm(md) d := Hm(md)

t←$ {0, 1}λ, r ←$ Z∗
p e := (d+ k)−1

T := H1(t)

T ′ := [r−1]T

U := [d]G2 +K T ′
W ′ := [e]T ′

W ′

if not ê(W ′, U) = ê(T ′, G2)

return ⊥
W := [r]W ′

return (t,md,W)

—————————— Redemption ——————————

User(t,md,W) Verifier(k)

t,md,W T := H1(t)

U := [Hm(md)]G2 +K

if ê(W,U) = ê(T,G2)

return true

else

return false

Fig. 8. Anonymous tokens with public metadata and public verifiability by adjusting
Zhang et al. [ZSS03] for asymmetric pairings.

Anonymous Tokens 43

Proof. Assume that we have an adversary who breaks unforgeability. In partic-
ular, this means that they can produce ℓ+1 distinct and valid tuples (ti,md, σi)
but only query the signing oracle at most ℓ times. We use this adversary to con-
struct an adversary against the (m,n)-OM-Gap-SDHI problem in the Random
Oracle Model.

Aom-gap-sdhi
1 Recall that we assume that the user and the signer agrees on the
metadata. Run Om on all acceptable metadata values to get the list {ci},
and return it.

Aom-gap-sdhi
2 Receive the input G,K = [k]G, [yi]G. Set vk = K and the other pa-
rameters appropriately. Reprogram O1 such that it on input t returns [t][yj]G
for the next j, which looks like a random group element. Whenever the ad-
versary queries the Sign oracle, forward the query to the SDH oracle. If the
adversary wins the OMUF game for some metadata value md corresponding
to an index γ, we have ℓ+1 signatures σi = [emd]O1(ti) = [emd][ti][y1]G. Use
the programming of O1 to return (γ, ([t−1]σi, αi)).

The result from Aom-gap-sdhi
2 satisfies the (m,n)-OM-Gap-SDHI conditions.

One can construct a more detailed proof along the lines of [TCR+21, Ap-
pendix B] in order to get concrete bounds.

⊓⊔

Theorem 10 (Unlinkability). Fix metadata md. Within the set defined by all
tokens using md, the anonymous token protocol with public metadata and public
verifiability in Figure 8 achieve unlinkability with respect to Definition 7.

Proof. Observe that given any valid token (t,md,W) and any honestly generated
view (T ′,W ′) there exists a unique value r′ such that both W − [r′]W ′ and
T − [r′]T ′ holds, and hence, T is independent of any W . It follows that the
anonymous token is unlinkable.

⊓⊔

5 Performance and Comparison

In this section, we briefly describe the most efficient anonymous single-use token
protocols with public metadata in the literature, for example, to enable batched
revocation. We only consider protocols with one round of communication. We
compare the protocols with our schemes in Table 1. To streamline the compar-
ison, we assume that all parties know the public metadata, for example that
md is the current date, and assume that this implicit knowledge is not sent.
We instantiate the schemes with λ = 128 bits of security. Finally, we present a
concrete example to show that we can replace DIT with our protocol in Figure 6
to improve both communication size and computational efficiency.

44 T. Silde and M. Strand

5.1 Anonymous single-use Tokens with Public Metadata

Privacy Pass. Our protocol in Figure 6 is inspired by Privacy Pass [DGS+18],
and they have identical structure and communication. The main difference is the
change of private key used for signing, and the updated zero-knowledge proof
with respect to the new public key, both depending on the public metadata. The
zero-knowledge proofs are of the same size, and it follows that the communication
sizes are equal. However, Privacy Pass does not allow public metadata unless we
have one public key for each valid string of metadata, and hence, to allow for
2N possible messages md, Privacy Pass must publish 2N public keys.

DIT: De-Identified Authenticated Telemetry at Scale. DIT [HIJ+21] is
also inspired by Privacy Pass [DGS+18], but uses an attribute-based VOPRF to
generate new public keys on the fly. To allow for 2N strings of public metadata,
there are two main differences: 1) the public key consists of N+2 group elements,
and 2) the token consists of an additional N group elements and zero-knowledge
proofs to ensure that the correct public key is used in the signature.

Tokens from RSA. Abe and Fujisaki [AF96] presents a partially blind sig-
nature scheme based on RSA. The public exponent e must be at least two bits
longer than the public metadata, and we fix this to be of length 130 bits. The
user updates the public key to emd = e · τ(md), for a public formatting func-
tion τ , when they blind the message, and the signer updates the secret key
dmd = (e · τ(md))−1 mod N when signing. Otherwise, the partially blind signa-
ture scheme [AF96] is similar to the blind signature by Chaum [Cha82].

Tokens with Private Metadata. Kreuter et al. [KLOR20a] presents an ex-
tension of Privacy Pass [DGS+18] to include private metadata. They publish two
public keys, and the signer proves in zero-knowledge that the token is signed with
one of the corresponding private keys. To ensure metadata privacy, each token
is randomized based on a fresh seed s that is given to the user, and hence, the
signature consists of a seed, a group element, and a proof. The token consists
of the initial seed t in addition to two group elements. Like Privacy Pass, this
protocol must publish a new pair of public keys for each valid string of metadata.

5.2 Comparison

We present a comparison of schemes in Table 1, where we focus on communi-
cation complexity. We note that both RSA and pairing based cryptography is
usually slower than elliptic curve cryptography, in addition to requiring larger
parameters. We also note that the updated keys in our protocols are only de-
pendent on the secret key and the metadata, and can often be pre-computed.
We conclude that when allowing for batched token-revocation, our protocols are
more efficient than the state of the art in all categories.

While RSA and elliptic curve cryptography are primitives implemented in all
mainstream cryptographic libraries, there are few trustworthy implementations

Anonymous Tokens 45

of pairings. Even though there exists a few implementations7, they are mostly
for academic use, maybe except for the implementation in Rust used by Zcash8.
We refer to [TCR+21, Table 1] for a comparison in computation between some
protocols.

Public Metadata (PM) PubKey Request Signature Token

Privacy Pass [DGS+18] 257 · 2N 257 769 385

DIT [HIJ+21] 257 · (N + 2) 257 769 · (N + 1) 385

Our scheme (Figure 6) 257 257 769 385

PM + Private Metadata PubKey Request Signature Token

Kreuter et al. [KLOR20a] 514 · 2N 257 1921 642

Our Scheme (Figure 7) 1028 257 3203 642

PM + Public Verifiability PubKey Request Signature Token

Abe and Fujisaki [AF96] 3202 3072 3072 3200

Our scheme (Figure 8) 763 382 382 510

Table 1. Size given in bits. We compare the schemes for 128 bits of security, allowing
for 2N strings md of metadata. Token seed t is of size 128 bits, and metadata md is
implicit knowledge. Privacy Pass, DIT, Kreuter et al. and our protocols in Figure 6
and 7 are instantiated with curve x25519 [Ber05], Abe and Fujisaki is instantiated with
RSA-3072 and our protocol in Figure 8 is instantiated with BLS12-381 [YCKS21].

5.3 Telemetry Collection in WhatsApp

DIT [HIJ+21] was designed to allow users of WhatsApp to anonymously report
telemetry data to Facebook. We present a concrete comparison to our protocols
in Table 2. Here, we assume that Facebook wants to update their public keys only
once a year, rotate signing keys every day, and only sign one token per user each
day. We fix a year and encode public metadata as strings “YYYY-MM-DD”.

Privacy Pass [DGS+18] is very efficient in terms of communication, but re-
quires one public key per day. Hence, the public key is of size 93805 bits over
a year of 365 days, that is, approximately 12 KB. An alternative method to
download all keys and store them until usage is to use a Merkle-tree for key-
transparency and give paths corresponding to the current public key as a part
of each signature. Then, the public key consists of the root of size 256 bits, while
each signature consists of ⌈log2(365)⌉ = 9 hashes of 256 bits in addition to the
public key, the token, and the zero-knowledge proof. We give both instantiations
in the table, and denote the alternative protocol as Privacy Pass+.

Our scheme in Figure 6 has the smallest overall communication complexity
of all schemes. It offers much smaller keys than Privacy Pass, and much smaller
signatures than Privacy Pass+ and DIT, saving up to 90 % in communication.
If all 2 billion users of WhatsApp report their telemetry every day, our scheme

7 Pairings: hackmd.io/@zkteam/eccbench
8 Zcash: github.com/zkcrypto/bls12 381

46 T. Silde and M. Strand

in Figure 6 would save more than 1.7 TB of communication for the Facebook
servers on a daily basis compared to the current implementation of DIT.

Our scheme in Figure 8 offers similar improvements to communication, in
addition to public verifiability using pairings, but at the cost of less standardized
cryptography and less efficient computation.

Protocol PubKey Request Signature Token

Privacy Pass [DGS+18] 93805 257 769 385

Privacy Pass+ 256 257 3330 385

DIT [HIJ+21] 2313 257 7690 385

Our scheme (Figure 6) 257 257 769 385

Our scheme (Figure 8) 763 382 382 510

Table 2. Size given in bits. We compare Privacy Pass, DIT, and the protocols in
Figure 6 and Figure 8 with daily key-rotation in a year, signing one token at a time.

6 Application to Contact Tracing

As nations started adopting digital contact tracing during the COVID-19 pan-
demic, privacy experts warned that such systems could enable the collection of
people’s contact graphs. The dp3t protocol [T+20] was eventually adopted as
the de facto method for digital contact tracing through its implementation and
deployment in iOS and Android as the Exposure Notification System (ENS).

We provide a brief overview of the basic dp3t idea in order to put our con-
tribution into context. The protocol is instantiated on each participating phone,
which generates a random key (Temporary Exposure Key, TEK) every day. The
TEK is used to generate new Rotating Proximity Identifiers (RPI) every 10–20
minutes, which is then broadcast from the phone using Bluetooth Low Energy
(BLE). Other phones in the proximity store any RPI they hear.

If Alice tests positive for COVID-19 she can upload her TEKs (now renamed
to diagnosis keys, DK) along with her BLE transmission strength to a health
authority bulletin board. Bob’s phone regularly checks the board to see if there
is a sufficiently large overlap between published the DKs and the RPIs stored
locally, and with sufficiently low difference between transmission strength and
received strength. If this is the case, then Bob is given a suitable alert to let him
know that he most likely has been in close vicinity of an infected individual, and
should follow any advice given by the health authorities.

The process of uploading TEKs should depend on some sort of authorization.
The dp3t documentation describes a simplified model where a doctor receives
the test results, and sends the patient an SMS with a short upload code. Now,
this process may take precious person-hours during a pandemic. Some countries
have therefore opted to connect their exposure notification with already existing
centralized registries of positive test results, e.g., Norway, Denmark, and Estonia.

Anonymous Tokens 47

KDF(k, date)

(kd,Kd)

fetch key

Kd

Initiate()

t, r, T ′

GenerateToken(kd, Kd, T
′)

W ′, (c, z)

T ′

W ′, (c, z)

RandomiseToken(Kd, T
′, W ′, c, z, r)

valid/invalid, W

VerifyToken(kd, t, W)

true/false

t,W

A:App V:Verification service(k) B:Backend service(k)

Fig. 9. A sequence diagram of anonymous tokens in the Norwegian app Smittestopp.

When starting the upload process, the user is prompted to log in to some
government service (“verification”). Once the user has identified herself, the ser-
vice makes a query to the relevant health registry. The service returns an access
token to the app if there exists a recent positive test, which is then used to up-
load the keys to “backend”. Unfortunately, this token may create an identifiable
link from the meant-to-be-anonymous database of DKs, and unique identities in
the health registry. Using anonymous single-use tokens, one can break this link
(up to traffic analysis, e.g., logging timings and network addresses).

The Norwegian Institute of Public Health (NIPH) wanted the tokens to be
timestamped in order to avoid users posting severely delayed keys: this would
have allowed an attacker to get well again, move back out among other people,
and only then upload to the backend service. Notice that merely tying the token
to keys – e.g., by using a hash of the TEKs as the token seed t – would not avoid
this attack, as those could have been generated and stored until the time of the
attack. As a result, it was decided that the keys should be rotated regularly.

The original Privacy Pass protocol was reimplemented as a reusable C# pack-
age, to ease the integration into the Norwegian contact tracing app Smittestopp.
The verification and backend services keep a master secret key k, and generate
daily keys from some KDF(k, date). The public key is posted from the verification
service. The full integration of anonymous tokens is described in Figure 9.

We finally note that this key distribution method suffers from a potential
attack by a dishonest verification service that could serve special public keys to
track individuals. It is, however, detectable by the users if they share their view

48 T. Silde and M. Strand

of the public keys with each other to ensure consistency. The current solution
was accepted by all involved stakeholders due to limited time and a weighting
of the practical risk against the potential reward. The challenges with respect to
key-rotation and key-sharing strongly motivated the authors’ work in Section 4.

7 Conclusion

In this work, we have updated the definitions for anonymous single-use tokens
to also include public metadata, and we have constructed three protocols that
satisfy these definitions. Additionally, we combine public metadata with either
private metadata or public verifiability, and show that all instantiations are
efficient in practice. For situations with frequent key-rotation, we show that
our protocols can save up to 90 % in communication over the state of the art.
Furthermore, our protocols fit nicely into the Privacy Pass framework, which
makes it easy to incorporate our contributions in the ongoing standardization
processes by IETF and W3C, solving an open problem.

We also provide a description of how anonymous one-time tokens can be used
to improve the user’s privacy in contact tracing applications, and implemented
this into the solution used in Norway. The app has more than one million users
at the time of writing9. As the Norwegian app is built on top of the same code
base as the Danish app, we consider it to be easy to extend the adaption of
anonymous tokens to their app, and most likely others as well.

We would also like to suggest new use-cases for anonymous tokens. For ex-
ample, anonymous tokens can improve the privacy of users traveling with public
transport. Bus or train companies may require patrons to verify their period
tickets for each journey, perhaps primarily to analyze traffic data. However, this
can easily reveal the routes of single users while traveling in-between their home
and workplace, but also to the abortion clinic, their church or to a public demon-
stration etc. If all travelers with valid tickets are given a series of tokens (e.g.,
with public metadata being the date or week or month the ticket is valid), then
these can be redeemed when boarding. This way, the companies get the statis-
tics they are interested in, without invading the user’s privacy. In general, any
systems with leveled authenticated login but anonymous actions can make use
of our protocols, e.g., systems with electronic locks that only care if the user has
certain privileges or not. We also note that Tyagi et al. [TCR+21] detail appli-
cations of a construction similar to ours to reduce key management complexity
in the OPAQUE password authenticated key exchange protocol, and to ensure
stronger security for password breach alerting services.

Finally, we would like to see improvements in three directions. Firstly, the
zero-knowledge proofs used by the anonymous tokens protocol with public and
private metadata in Figure 7 are much larger than the ones by Kreuter et
al. [KLOR20a], in contrast to our protocol with public metadata in Figure 6
achieving the exact same communication cost as Privacy Pass [DGS+18]. In

9 Smittestopp: fhi.no/om/smittestopp/nokkeltall-fra-smittestopp, last accessed 2021-
12-01.

Anonymous Tokens 49

particular, we would like to reduce the number of proofs and extra group ele-
ments in the protocol in Section 4.3 . Secondly, we would like to provide protocols
free of zero-knowledge proofs, to reduce the communication and computational
cost, as provided in [KLOR20a, Section 7]. Finally, we would like to extend our
protocols to achieve post-quantum security, continuing the work by Albrecht et
al. [ADDS19] on lattice-based protocols.

Acknowledgments. The authors are very grateful to Henrik Walker Moe (Bekk
Consulting AS) for stellar collaboration during the C# implementation phase.
The final integration into Smittestopp was primarily a collaboration between
Henrik, Johannes Brodwall (Sopra Steria) and Sindre Møgster Braaten (NIPH),
with the authors and others as close consultants. We thank Nirvan Tyagi, Sofia
Celi, Thomas Ristenpart and Christopher Wood for pointing out a flaw in the
security game and unforgeability proof in an earlier version of this paper. The
second author is grateful to the students Teodor Dahl Knutsen and Tallak Man-
num for many useful comments to an earlier version of the manuscript. We would
also like thank the anonymous reviewers at PETS 2021 and Financial Crypto
2022 for their feedback which greatly improved the presentation of this paper.

References

ADDS19. Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-
optimal verifiable oblivious pseudorandom functions from ideal lattices.
Cryptology ePrint Archive, Report 2019/1271, 2019. https://eprint.

iacr.org/2019/1271.
AF96. Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In

Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology
– ASIACRYPT’96, volume 1163 of Lecture Notes in Computer Science,
pages 244–251. Springer, Heidelberg, November 1996.

AMO08. Norio Akagi, Yoshifumi Manabe, and Tatsuaki Okamoto. An efficient
anonymous credential system. In Gene Tsudik, editor, FC 2008: 12th In-
ternational Conference on Financial Cryptography and Data Security, vol-
ume 5143 of Lecture Notes in Computer Science, pages 272–286. Springer,
Heidelberg, January 2008.

AO00. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind sig-
natures. In Mihir Bellare, editor, Advances in Cryptology – CRYPTO 2000,
volume 1880 of Lecture Notes in Computer Science, pages 271–286.
Springer, Heidelberg, August 2000.

BB04. Dan Boneh and Xavier Boyen. Short signatures without random oracles.
In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology –
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 56–73. Springer, Heidelberg, May 2004.

Ber05. Daniel J. Bernstein. Curve25519: high-speed elliptic curve cryptography,
2005. https://cr.yp.to/ecdh.html.

BL13. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013: 20th Conference on Computer and Communications Security,
pages 1087–1098. ACM Press, November 2013.

50 T. Silde and M. Strand

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. In Colin Boyd, editor, Advances in Cryptology – ASI-
ACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages
514–532. Springer, Heidelberg, December 2001.

BLS03. Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic
curves with prescribed embedding degrees. In Stelvio Cimato, Clemente
Galdi, and Giuseppe Persiano, editors, SCN 02: 3rd International Con-
ference on Security in Communication Networks, volume 2576 of Lecture
Notes in Computer Science, pages 257–267. Springer, Heidelberg, Septem-
ber 2003.

BMR+17. Jonathan Burns, Daniel Moore, Katrina Ray, Ryan Speers, and Brian
Vohaska. EC-OPRF: Oblivious pseudorandom functions using elliptic
curves. Cryptology ePrint Archive, Report 2017/111, 2017. https:

//eprint.iacr.org/2017/111.

BNPS02. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. The power of RSA inversion oracles and the security of Chaum’s
RSA-based blind signature scheme. In Paul F. Syverson, editor, FC 2001:
5th International Conference on Financial Cryptography, volume 2339 of
Lecture Notes in Computer Science, pages 319–338. Springer, Heidelberg,
February 2002.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind sig-
natures based on the gap-Diffie-Hellman-group signature scheme. In Yvo
Desmedt, editor, PKC 2003: 6th International Workshop on Theory and
Practice in Public Key Cryptography, volume 2567 of Lecture Notes in
Computer Science, pages 31–46. Springer, Heidelberg, January 2003.

BPV12. Olivier Blazy, David Pointcheval, and Damien Vergnaud. Compact round-
optimal partially-blind signatures. In Ivan Visconti and Roberto De Prisco,
editors, SCN 12: 8th International Conference on Security in Communica-
tion Networks, volume 7485 of Lecture Notes in Computer Science, pages
95–112. Springer, Heidelberg, September 2012.

CG08. Jan Camenisch and Thomas Groß. Efficient attributes for anonymous
credentials. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM
CCS 2008: 15th Conference on Computer and Communications Security,
pages 345–356. ACM Press, October 2008.

Cha82. David Chaum. Blind signatures for untraceable payments. In David
Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, Advances in
Cryptology – CRYPTO’82, pages 199–203. Plenum Press, New York, USA,
1982.

Cha83. David Chaum. Blind signature system. In David Chaum, editor, Advances
in Cryptology – CRYPTO’83, page 153. Plenum Press, New York, USA,
1983.

CHL05. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact
e-cash. In Ronald Cramer, editor, Advances in Cryptology – EURO-
CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
302–321. Springer, Heidelberg, May 2005.

CHYC05. Sherman S. M. Chow, Lucas Chi Kwong Hui, Siu-Ming Yiu, and K. P.
Chow. Two improved partially blind signature schemes from bilinear pair-
ings. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP 05:
10th Australasian Conference on Information Security and Privacy, vol-

Anonymous Tokens 51

ume 3574 of Lecture Notes in Computer Science, pages 316–328. Springer,
Heidelberg, July 2005.

CKS09. Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator
based on bilinear maps and efficient revocation for anonymous credentials.
In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009: 12th Interna-
tional Conference on Theory and Practice of Public Key Cryptography, vol-
ume 5443 of Lecture Notes in Computer Science, pages 481–500. Springer,
Heidelberg, March 2009.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 93–118. Springer,
Heidelberg, May 2001.

CL03. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano,
editors, SCN 02: 3rd International Conference on Security in Communica-
tion Networks, volume 2576 of Lecture Notes in Computer Science, pages
268–289. Springer, Heidelberg, September 2003.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In Matthew Franklin, editor, Advances in
Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science, pages 56–72. Springer, Heidelberg, August 2004.

CMZ14. Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs
and keyed-verification anonymous credentials. In Gail-Joon Ahn, Moti
Yung, and Ninghui Li, editors, ACM CCS 2014: 21st Conference on
Computer and Communications Security, pages 1205–1216. ACM Press,
November 2014.

CP93. David Chaum and Torben P. Pedersen. Wallet databases with observers.
In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, vol-
ume 740 of Lecture Notes in Computer Science, pages 89–105. Springer,
Heidelberg, August 1993.

CPZ20. Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal private
group system and anonymous credentials supporting efficient verifiable en-
cryption. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 2020: 27th Conference on Computer and Communica-
tions Security, pages 1445–1459. ACM Press, November 2020.

CV02. Jan Camenisch and Els Van Herreweghen. Design and implementation of
the idemix anonymous credential system. In Vijayalakshmi Atluri, edi-
tor, ACM CCS 2002: 9th Conference on Computer and Communications
Security, pages 21–30. ACM Press, November 2002.

CZMS06. Xiaofeng Chen, Fangguo Zhang, Yi Mu, and Willy Susilo. Efficient prov-
ably secure restrictive partially blind signatures from bilinear pairings. In
Giovanni Di Crescenzo and Avi Rubin, editors, FC 2006: 10th International
Conference on Financial Cryptography and Data Security, volume 4107 of
Lecture Notes in Computer Science, pages 251–265. Springer, Heidelberg,
February / March 2006.

Dav21. Alex Davidson. Supporting the latest version of the privacy pass proto-
col. https://blog.cloudflare.com/supporting-the-latest-version-

of-the-privacy-pass-protocol, 2021. (Accessed 01-December-2021).

52 T. Silde and M. Strand

DGS+. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Fil-
ippo Valsorda. Privacy pass: A privacy-enhancing protocol and browser ex-
tension. https://privacypass.github.io. (Accessed 01-December-2021).

DGS+18. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Fil-
ippo Valsorda. Privacy pass: Bypassing internet challenges anonymously.
Proceedings on Privacy Enhancing Technologies, 2018(3):164–180, July
2018.

DY05. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function
with short proofs and keys. In Serge Vaudenay, editor, PKC 2005: 8th
International Workshop on Theory and Practice in Public Key Cryptogra-
phy, volume 3386 of Lecture Notes in Computer Science, pages 416–431.
Springer, Heidelberg, January 2005.

FHKS16. Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and Daniel Sla-
manig. Practical round-optimal blind signatures in the standard model
from weaker assumptions. In Vassilis Zikas and Roberto De Prisco, edi-
tors, SCN 16: 10th International Conference on Security in Communica-
tion Networks, volume 9841 of Lecture Notes in Computer Science, pages
391–408. Springer, Heidelberg, August / September 2016.

FHS15. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical
round-optimal blind signatures in the standard model. In Rosario Gen-
naro and Matthew J. B. Robshaw, editors, Advances in Cryptology –
CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Sci-
ence, pages 233–253. Springer, Heidelberg, August 2015.

FIPR05. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Key-
word search and oblivious pseudorandom functions. In Joe Kilian, edi-
tor, TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of
Lecture Notes in Computer Science, pages 303–324. Springer, Heidelberg,
February 2005.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, Heidelberg, August 1987.

GMS10. Jorge Guajardo, Bart Mennink, and Berry Schoenmakers. Anonymous
credential schemes with encrypted attributes. In Swee-Huay Heng, Re-
becca N. Wright, and Bok-Min Goi, editors, CANS 10: 9th International
Conference on Cryptology and Network Security, volume 6467 of Lecture
Notes in Computer Science, pages 314–333. Springer, Heidelberg, Decem-
ber 2010.

Hen14. Ryan Henry. Efficient Zero-Knowledge Proofs and Applications. PhD the-
sis, University of Waterloo, 2014.

HG13. Ryan Henry and Ian Goldberg. Batch proofs of partial knowledge. In
Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Rei-
haneh Safavi-Naini, editors, ACNS 13: 11th International Conference on
Applied Cryptography and Network Security, volume 7954 of Lecture Notes
in Computer Science, pages 502–517. Springer, Heidelberg, June 2013.

HIJ+21. Sharon Huang, Subodh Iyengar, Sundar Jeyaraman, Shiv Kushwah,
Chen-Kuei Lee, Zutian Luo, Payman Mohassel, Ananth Raghunathan,
Shaahid Shaikh, Yen-Chieh Sung, and Albert Zhang. Dit: De-
identified authenticated telemetry at scale. Technical report, Facebook

Anonymous Tokens 53

Inc., https://research.fb.com/wp-content/uploads/2021/04/DIT-De-

Identified-Authenticated-Telemetry-at-Scale_final.pdf, 2021.

HS21. Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends:
Constructing practical anonymous credentials. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’21. Association for Computing Machinery, 2021.

Int21. Internet Engineering Task Force. Privacy pass datatracker. https://

datatracker.ietf.org/wg/privacypass, 2021. (Accessed 01-Dec-2021).

IT21. Subodh Iyengar and Erik Taubeneck. Fraud resistant, privacy preserv-
ing reporting using blind signatures. https://github.com/siyengar/

private-fraud-prevention, 2021. (Accessed 01-December-2021).

JKK14. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only
model. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology
– ASIACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer
Science, pages 233–253. Springer, Heidelberg, December 2014.

JKX18. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asym-
metric PAKE protocol secure against pre-computation attacks. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 456–486. Springer, Heidelberg, April / May 2018.

KLOR20a. Ben Kreuter, Tancrède Lepoint, Michele Orrù, and Mariana Raykova.
Anonymous tokens with private metadata bit. In Daniele Micciancio and
Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,
Part I, volume 12170 of Lecture Notes in Computer Science, pages 308–
336. Springer, Heidelberg, August 2020.

KLOR20b. Ben Kreuter, Tancrede Lepoint, Michele Orru, and Mariana Raykova. Ef-
ficient anonymous tokens with private metadata bit. Cryptology ePrint
Archive, Report 2020/072, 2020. https://eprint.iacr.org/2020/072.

Oka93. Tatsuaki Okamoto. Provably secure and practical identification schemes
and corresponding signature schemes. In Ernest F. Brickell, editor, Ad-
vances in Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Com-
puter Science, pages 31–53. Springer, Heidelberg, August 1993.

PS96. David Pointcheval and Jacques Stern. Provably secure blind signature
schemes. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in
Cryptology – ASIACRYPT’96, volume 1163 of Lecture Notes in Computer
Science, pages 252–265. Springer, Heidelberg, November 1996.

PWH+17. Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor, Jan
Včelák, Leonid Reyzin, and Sharon Goldberg. Making NSEC5 practical
for DNSSEC. Cryptology ePrint Archive, Report 2017/099, 2017. https:
//eprint.iacr.org/2017/099.

PZ13. Christian Paquin and Greg Zaverucha. U-prove cryptographic specifica-
tion v1.1 revision 3, 2013. https://www.microsoft.com/en-us/research/
project/u-prove.

T+20. Carmela Troncoso et al. Decentralized privacy-preserving proximity trac-
ing. https://arxiv.org/abs/2005.12273, 2020.

TCR+21. Nirvan Tyagi, Sofia Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tes-
saro, and Christopher A. Wood. A fast and simple partially oblivious prf,
with applications. Cryptology ePrint Archive, Report 2021/864, 2021.

54 T. Silde and M. Strand

TPY+19. Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan,
Patrick Gage Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek,
Sarvar Patel, Dan Boneh, and Elie Bursztein. Protecting accounts from
credential stuffing with password breach alerting. In Nadia Heninger and
Patrick Traynor, editors, USENIX Security 2019: 28th USENIX Security
Symposium, pages 1556–1571. USENIX Association, August 2019.

Wor21. World Wide Web Consortium. Trust Token API Explainer. https://

github.com/WICG/trust-token-api, 2021. (Accessed 01-December-2021).
WSMZ06. Qianhong Wu, Willy Susilo, Yi Mu, and Fanguo Zhang. Efficient partially

blind signatures with provable security. In Marina Gavrilova, Osvaldo
Gervasi, Vipin Kumar, C. J. Kenneth Tan, David Taniar, Antonio Laganá,
Youngsong Mun, and Hyunseung Choo, editors, Computational Science
and Its Applications - ICCSA 2006, pages 345–354, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

YCKS21. S. Yonezawa, S. Chikara, T. Kobayashi, and T. Saito. Pairing-Friendly
Curves. https://tools.ietf.org/id/draft-yonezawa-pairing-

friendly-curves-02.html, 2021. (Accessed 01-December-2021).
ZSS03. Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. Efficient verifi-

ably encrypted signature and partially blind signature from bilinear pair-
ings. In Thomas Johansson and Subhamoy Maitra, editors, Progress in
Cryptology - INDOCRYPT 2003: 4th International Conference in Cryp-
tology in India, volume 2904 of Lecture Notes in Computer Science, pages
191–204. Springer, Heidelberg, December 2003.

Anonymous Tokens 55

Paper ii

Lattice-Based Proof of Shuffle and
Applications to Electronic Voting

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen,
Tjerand Silde and Thor Tunge

Published at the Cryptographers’ Track RSA Conference,
CT-RSA 2021. The full version is available at:

eprint.iacr.org/2021/338.pdf.

Lattice-Based Proof of Shuffle and
Applications to Electronic Voting

Diego F. Aranha1 ID , Carsten Baum1⋆ ID , Kristian Gjøsteen2 ID ,

Tjerand Silde2 ID , and Thor Tunge2

1 Aarhus University, Denmark
{dfaranha,cbaum}@cs.au.dk

2 Norwegian University of Science and Technology, Norway
{kristian.gjosteen,tjerand.silde}@ntnu.no

Abstract. A verifiable shuffle of known values is a method for proving
that a collection of commitments opens to a given collection of known
messages, without revealing a correspondence between commitments and
messages. We propose the first practical verifiable shuffle of known values
for lattice-based commitments.

Shuffles of known values have many applications in cryptography, and
in particular in electronic voting. We use our verifiable shuffle of known
values to build a practical lattice-based cryptographic voting system that
supports complex ballots. Our scheme is also the first construction from
candidate post-quantum secure assumptions to defend against compro-
mise of the voter’s computer using return codes.

We implemented our protocol and present benchmarks of its computa-
tional runtime. The size of the verifiable shuffle is 22τ KB and takes time
33τ ms for τ voters. This is around 5 times faster and 40 % smaller per
vote than the lattice-based voting scheme by del Pino et al. (ACM CCS
2017), which can only handle yes/no-elections.

Keywords: Lattice-Based Cryptography, Proof of Shuffle, Verifiable En-
cryption, Return Codes, Electronic Voting, Implementation

1 Introduction

A verifiable shuffle of known values is a method for proving that a collection of
commitments opens to a given collection of known messages, without revealing
exactly which commitment corresponds to which message.

One well-known approach is due to Neff [Nef01]: define two polynomials,
one that has the known messages as its roots and another that has the values
committed to as its roots. Since polynomials are stable under permutations of

⋆ This work was funded by the European Research Council (ERC) under the European
Unions’ Horizon 2020 research and innovation programme under grant agreement No
669255 (MPCPRO). Part of this work was done while visiting NTNU in Trondheim.

59

their roots, it is sufficient to prove that these two polynomials have the same
evaluation at a randomly chosen point.

Proving that the second polynomial has a given evaluation at a given point
could be done using multiplication and addition proofs on the commitments.
Usually multiplication proofs for committed values are quite expensive, while it
is somewhat cheap to do proofs of linear combinations of committed values with
public coefficients. Following the idea of Neff, the determinant of a particular
band matrix is the difference of the two polynomials, and we show that the
polynomials are equal by showing that the columns of the matrix are linearly
dependent.

1.1 Our Contribution

Verifiable shuffle of known values. Our main contribution is a verifiable shuffle
of known values for lattice-based commitments. This is the first efficient con-
struction from a candidate post-quantum secure assumption of such a primitive.
As discussed above, our construction is based on techniques originating with
Neff [Nef01], although there are a number of obstacles with this approach in the
lattice-based setting, where we use the commitments of Baum et al. [BDL+18].

First of all, many group-homomorphic commitment schemes allow either di-
rect or very simple verification of arbitrary linear relations. No known commit-
ment scheme secure under an assumption considered as post-quantum secure
has a similar structure, which means that we must use adaptations of existing
proofs for linear relations. Secondly, the underlying algebraic structure is a ring,
not a field. Since we need certain elements to be invertible, we need to choose
challenges from special sets of invertible elements, and carefully adapt the proof
so that the correctness of the shuffle is guaranteed.

In order to make our construction practical, we use the Fiat-Shamir trans-
form to make the underlying Zero-Knowledge proofs non-interactive. We want
to stress that our proof of security only holds in the conventional Random Or-
acle Model, which is not a sound model when considering quantum adversaries.
Constructing a post-quantum secure verifiable shuffle of known values is an in-
teresting open problem.

Voting from lattices. Our second contribution is the first construction of a practi-
cal voting system that is suitable for more general ballots (such as various forms
of ranked choice voting, perhaps in various non-trivial combinations with party
lists and candidate slates) and that is secure under lattice-based assumptions.

We adopt an architecture very similar to deployed cryptographic voting sys-
tems [HR16,Gjø11]. The protocol works as follows:

– The voter’s computer commits to the voter’s ballot and encrypts an opening
of the ballot. The commitment and ciphertext are sent to a ballot box.

– When counting starts, the ballot box removes any identifying material from
the ciphertext and sends this to the shuffle server.

60 D. Aranha et al.

– The shuffle server decrypts the openings, verifies the commitments and out-
puts the ballots. It uses our verifiable shuffle of known values to prove that
the ballots are consistent with the commitments.

– One or more auditors inspect the ballot box and the shuffle server.

For this to work, the voter’s ciphertext must contain a valid opening of the
voter’s commitment. To achieve this, we use the verifiable encryption scheme of
Lyubashevsky and Neven [LN17].

This architecture seems to be an acceptable trade-off between security and
practicality. It achieves privacy for voters under the usual threat models, it pro-
vides cast-as-intended verification via return codes, it achieves coercion-resistance
via revoting, and it achieves integrity as long as at least one auditor is honest.
However, the architecture makes it difficult to simultaneously achieve privacy
and universal verifiability. (We cannot simply publish the ballot box, the de-
crypted ballots and the shuffle proofs, because the shuffle server then learns who
submitted which ballot, breaking privacy.) This is often not a significant prob-
lem, because coercion resistance requires keeping the decrypted ballots secret
when so-called Italian attacks apply, and it is usually quite expensive to achieve
universal verifiability without publishing the decrypted ballots. If Italian attacks
do not apply or coercion resistance is otherwise not an issue, if one is willing to
pay the price, it would be possible to distribute the decryption among two (or
more) players by using nested encryption and nested commitments, after which
everything could be published and universal verifiability is achieved. The cost is
significant, though. Limited verifiability can be achieved in cheaper ways.

Voting with return codes. Our third contribution is the first construction of
a voting system that supports so-called return codes for verifying that ballots
have been cast as intended and that is based on a candidate post-quantum
assumption.

One of the major challenges in using computers for voting is that computers
can be compromised. Countermeasures such as Benaloh challenges do not work
very well in practice, since they are hard to understand3. Return codes can
provide integrity for voters with a fairly high rate of fraud detection [GL16].
Return codes do not work well with complex ballots, but our scheme could be
modified to use return codes only for parts of a complex ballot.

We again use the commitments and verifiable encryption. The voter’s com-
puter commits to a pre-code and proves that this pre-code has been correctly
computed from the ballot and some key material. It also verifiably encrypts an
opening of this commitment. The pre-code is later decrypted and turned into a
return code, which the voter can inspect.

Implementation of our voting scheme. Our fourth contribution is a concrete
choice of parameters for the system along with a prototype implementation,
demonstrating that the scheme is fully practical. We choose parameters in such

3 Very few members of the International Association for Cryptologic Research use
Benaloh challenges when casting ballots in their elections.

Lattice-Based Proof of Shuffle 61

a way that arithmetic in the used algebraic structures can be efficiently imple-
mented. This gives a fairly low computational cost for the scheme, so the limiting
factor seems to be the size of the proofs. For elections with millions of voters, the
total proof size will be measured in gigabytes, while systems based on discrete
logarithms would produce much smaller proofs. Since we do not try to achieve
universal verifiability, which means that proofs in our architecture are only han-
dled by well-resourced infrastructure players, the proof size is unlikely to matter
much. (If ordinary voters were to verify all the shuffle proofs, this would still not
be infeasible, but it would be more of an issue.)

1.2 Related Work

Verifiable shuffles. The idea for a verifiable shuffle of known values that we use
was introduced by Neff [Nef01]. Since [Nef01], there has been a huge body of
work improving verifiable shuffles of ciphertexts, but not for constructions that
use post-quantum assumptions.

Costa et al. [CMM19] use ZK proofs for lattice commitments to show a correct
shuffle and re-randomization of a collection of ciphertexts. They also adopt some
of the techniques from Neff, but instead of using a linear algebra argument they
use multiplication proofs. This is conceptually simpler than our approach, but
turns out to be less efficient even with the newer, improved multiplication proofs
of [ALS20]. A related concept to the verifiable shuffle of known values is the
decrypting mix-net [Cha81], which proves that the decryption of a collection
of ciphertexts equals a given collection of messages. Decryption mix-nets can
be very fast [BHM20], but these constructions provide guarantees of correct
decryption only if at least one participant in the mix-net is honest at the time of
decryption, unlike our approach which provides proper soundness even if both
the ballot box and shuffle server are compromised at the time of decryption.

Candidate post-quantum cryptographic voting systems. There is a large body of
academic work on cryptographic voting systems, and several systems have been
deployed in practice in Europe in e.g. Estonia [HR16] and Norway [HR16,Gjø11],
while Switzerland [LPT19] also planned to use an e-voting system. All of these
systems make significant efforts to provide so-called cast-as-intended verification,
to defend against compromise of the voter’s computer. For lower-stakes elections,
Helios [Adi08] has seen significant use. All of these systems have roughly the same
architecture, and offer varying levels of verifiability. None of these systems are
secure against quantum computers.

Many real-world political elections have ballots that are essentially very sim-
ple, such as a single yes/no question, or a t-out-of-n structure (even though many
such races can be combined to form a visually and cognitively complex ballot).
However, real-world voting systems can also have more complicated ballots that
cannot be decomposed to a series of simple, independent races. For example, the
Australian parliamentary ballot may encode a total order on all candidates in
a district, and transferable votes make counting quite complex. While work has

62 D. Aranha et al.

been done on homomorphic counting for such elections, the usual approach is to
recover cleartext ballots and count them.

While it is a simple exercise to use existing theoretical constructions to build
a candidate quantum-safe voting system similar to the above deployed systems,
the problem is that these constructions are practically inefficient, either because
they are too computationally expensive or the proofs used are too large to make
verification of many such proofs practical.

del Pino et al. [dLNS17] gives a feasible construction that uses homomorphic
counting, but it is only applicable to yes/no-elections (though it can be extended
to 1 out of n elections, at some cost). The scheme also does not try to defend
against compromise of the voter’s computer, limiting its applicability. Chillotti
et al. [CGGI16] proposed a system based on homomorphic counting, but using
fully homomorphic encryption. Again, this only supports 1 out of n elections, and
practical efficiency is unclear. Gjøsteen and Strand [GS17] proposed a method
for counting a complex ballot using homomorphic encryption. However, their
scheme is not complete and the size of the circuit makes the system barely
practical.

As discussed above, existing verifiable shuffles for candidate post-quantum se-
cure cryptosystems could be used for generic constructions. Costa et al. [CMM19]
uses certain ZK proofs for lattice commitments to show a correct shuffle and re-
randomization of a collection of ciphertexts. The bottleneck of their approach are
the underlying rather inefficient ZK proofs. The faster construct by Strand [Str19]
is too restrictive in the choice of plaintext domain. Even given that shuffle, these
schemes still require a verifiable (distributed) decryption for lattice-based con-
structions. These, currently, do not exist.

1.3 Using Verifiable Shuffles of Known Values

There are many other applications of a verifiable shuffle of known values than
the one that is presented in this work. We give a brief overview of three such
applications.

Verifiable shuffles. One application is to build a verifiable shuffle of ciphertexts of
a homomorphic encryption scheme. The idea is to provide a method for proving
that one collection of ciphertexts is a re-randomization of a second collection of
ciphertexts, without revealing the correspondence of the ciphertexts.

The ciphertexts of such schemes can be re-randomized by adding an encryp-
tion of 0. The idea is then to commit to each homomorphic encryption separately
and use a proof of linearity to show that the committed value is the ciphertext,
plus an encryption of 0. Depending on the commitment and homomorphic en-
cryption scheme, this proof can be very efficient - in particular if proofs of correct
encryption are “cheap” using the commitment scheme. Then, one can perform
a proof of shuffle of known openings on these auxiliary commitments, which
succeeds if a permutation of the re-randomized ciphertexts is revealed.

Lattice-Based Proof of Shuffle 63

Verifiable shuffled decryption. A related concept is verifiable shuffled decryption,
to prove that a collection of ciphertexts decrypt to a collection of messages.

For this, one would create auxiliary commitments to the decryptions of each
ciphertext as well as make a commitment to the secret key. Using the homomor-
phism on the commitments, one can now show that each commitment indeed
contains the correct plaintext. Then, one can apply the proof of verifiable shuffle
of known values to reveal the openings of the commitments in shuffled form.

The efficiency of this approach depends again on the choice of commitment
and encryption scheme, and how good they fit together in terms of homomor-
phically evaluating the decryption function.

Voting with less trust. The above two ideas can be used to construct a cryp-
tographic voting system that does not rely on a single server which performs
decryptions and shuffles together. Each voter would directly encrypt his ballot,
instead of committing to it. These votes are then shuffled and re-randomized
multiple times, before they are verifiably decrypted (using threshold decryp-
tion). Such a system would be less susceptible to attacks against the secrecy of
the votes. The downside is that it needs efficient threshold verifiable decryption
to protect the privacy of the ballot.

2 Preliminaries

2.1 Notation

If Φ is a probability distribution, then z
$← Φ denotes that z was sampled accord-

ing to Φ. If S is a finite set, then s
$← S denotes that s was sampled uniformly

from the set S. The expressions z ← xy and z ← Func(x) denote that z is as-
signed the product of x and y and the value of the function Func evaluated on
x, respectively.

For two matrices A ∈ Sα×β ,B ∈ Sγ×δ over an arbitrary ring S, we denote
by A⊗B ∈ S(α·γ)×(β·δ) their tensor product, i.e. the matrix

B =

b1,1 . . . b1,δ
...

. . .
...

bγ,1 . . . bγ,δ

 , A⊗B :=

b1,1 ·A . . . b1,δ ·A
...

. . .
...

bγ,1 ·A . . . bγ,δ ·A

 .

2.2 The Rings R and Rp

Let p, r ∈ N+ and N = 2r. Then we define the rings R = Z[X]/⟨XN + 1⟩ and
Rp = R/⟨p⟩, that is, Rp is the ring of polynomials modulo XN + 1 with integer
coefficients modulo a prime p. If p is congruent to 1+ 2δ mod 4δ, for N ≥ δ > 1
powers of 2, then XN + 1 splits into δ irreducible factors.

64 D. Aranha et al.

We define the norms of elements f(X) =
∑

αiX
i ∈ R to be the norms of

the coefficient vector as a vector in ZN :

||f ||1 =
∑
|αi| ||f ||2 =

(∑
α2
i

)1/2

||f ||∞ = max
i∈{1,...,N}

{|αi|}.

For an element f̄ ∈ Rp we choose coefficients as the representatives in[
−p−1

2 , p−1
2

]
, and then compute the norms as if f̄ is an element in R. For vec-

tors a = (a1, . . . , ak) ∈ Rk we define the 2-norm to be ∥a∥2 =

√∑ ∥ai∥2, and
analogously for the ∞-norm. We omit the subscript in the case of the 2-norm.

One can show that sufficiently short elements in the ring Rp (with respect
to the aforementioned norms) are invertible.

Lemma 1 ([LS18], Corollary 1.2). Let N ≥ δ > 1 be powers of 2 and p a
prime congruent to 2δ+1 mod 4δ. Then XN +1 factors into δ irreducible factors
XN/δ + rj, for some rj’s in Rp. Additionally, any non-zero y such that

∥y∥∞ < p1/δ/
√
δ or ∥y∥ < p1/δ

is invertible in Rp.

For the remaining part of this paper we will assume that the parameters p, δ and
N are chosen such that Lemma 1 is satisfied. We define a set of short elements

Dβ∞ = {x ∈ Rp | ∥x∥∞ ≤ β∞}.
We furthermore define

C = {c ∈ Rp | ∥c∥∞ = 1, ∥c∥1 = ν} ,
which consists of all elements in Rp that have trinary coefficients and are non-
zero in exactly ν positions, and we denote by

C̄ = {c− c′ | c ̸= c′ ∈ C}
the set of differences of distinct elements in C. The size of C is 2ν

(
N
ν

)
. It can be

seen from Lemma 1 that, for a suitable choice of parameters, we can ensure that
all non-zero elements from the three sets are invertible.

We need a bound on how many roots a polynomial can have over the ring
Rp. The total number of elements in the ring is |Rp| = pN .

Lemma 2. Let N ≥ δ ≥ 1 be powers of 2, p a prime congruent to 2δ+1 mod 4δ
and T ⊆ Rp. Let g ∈ Rp[X] be a polynomial of degree τ . Then, g has at most τ δ

roots in T , and Pr[g(ρ) = 0|ρ $← T] ≤ τ δ/|T |.
Proof. First, by Lemma 1, we divide XN +1 into δ irreducible factors XN/δ+rj .
Each of the irreducible factors contributes at most τ roots to a polynomial
g ∈ Rp[X] of degree τ . Using the Chinese remainder theorem to combine the

roots, we get that g has at most τ δ roots in Rp. If we choose ρ
$← Rp uniformly

at random, the probability that this is a root of g is the total number of roots
divided by the size of the ring. Since T is a subset of Rp, it can contain at most
as many roots as Rp itself. ⊓⊔

Lattice-Based Proof of Shuffle 65

2.3 The Discrete Gaussian Distribution

The continuous normal distribution over Rk centered at v ∈ Rk with standard
deviation σ is given by

ρ(x)Nv,σ =
1√
2πσ

exp

(−||x− v||2
2σ2

)
.

When sampling randomness for our lattice-based commitment and encryption
schemes, we’ll need samples from the discrete Gaussian distribution. This distri-
bution is achieved by normalizing the continuous distribution over Rk by letting

N k
v,σ(x) =

ρkNv,σ(x)

ρkNσ (Rk)
where x ∈ Rk and ρkNσ (Rk) =

∑

x∈Rk

ρkNσ (x).

When σ = 1 or v = 0, they are omitted.

2.4 Knapsack Problems

We first define the Search Knapsack problem in the ℓ2 norm, also denoted as
SKS2. The SKS2 problem is exactly the Module-SIS problem in its Hermite
Normal Form.

Definition 1. The SKS2n,k,β problem is to find a short vector y satisfying [In A′]·
y = 0n for a given random matrix A′. An algorithm A has advantage ϵ in solving
the SKS2n,k,β problem if

Pr

[
∥yi∥2 ≤ β∧ A′ ← R

n×(k−n)
q ;[

In A′] · y = 0n 0 ̸= y = [y1, . . . , yk]
⊤ ← A(A′)

]
≥ ϵ.

Additionally, we define the Decisional Knapsack problem in the ℓ∞ norm
(DKS∞). The DKS∞ problem is equivalent to the Module-LWE problem when
the number of samples is limited.

Definition 2. The DKS∞n,k,β problem is to distinguish the distribution [In A′]·
y for a short y from the uniform distribution when given A′. An algorithm A
has advantage ϵ in solving the DKS∞n,k,β problem if

∣∣∣Pr[b = 1 | A′ ← Rn×(k−n)
q ;y ← Dk

β ; b← A(A′, [In A′] · y)]

− Pr[b = 1 | A′ ← Rn×(k−n)
q ;u← Rn

q ; b← A(A′,u)]
∣∣∣ ≥ ϵ.

3 Lattice-Background: Commitments and ZK Proofs

We first introduce the commitments of Baum et al. [BDL+18], and continue with
a zero-knowledge proof protocol of linear relation over the ring Rp using these
commitments. The protocol is implicitly mentioned in [BDL+18].

66 D. Aranha et al.

3.1 Lattice-Based Commitments

Algorithms. The scheme consists of three algorithms: KeyGenC, Com, and Open

for key generation, commitments and verifying an opening, respectively. We
describe these algorithms for committing to one message, and refer to [BDL+18]
for more details.

KeyGenC outputs a public matrix B over Rp of the form

B1 =
[
In B′

1

]
whereB′

1
$← Rn×(k−n)

p

b2 =
[
0n 1 b′2

]
where (b′2)

⊤ $← R(k−n−1)
p ,

for width k and height n+ 1 of the public key pk := B =

[
B1

b2

]
.

Com commits to messages m ∈ Rp by sampling an rm
$← Dk

β∞ and computing

Com(m; rm) = B · rm +

[
0

m

]
=

[
c1

c2

]
= [[m]].

Com outputs [[m]] and d = (m; rm, 1).

Open verifies whether an opening (m; rm, f) with f ∈ C̄ is a valid opening of
c1, c2 by checking if

f ·
[
c1

c2

]
?
= B · rm + f ·

[
0

m

]
,

and that ∥rm[i]∥ ≤ 4σC

√
N for i ∈ [k] with σC = 11 · β∞ · ν ·

√
kN . Open

outputs 1 if all these conditions hold, and 0 otherwise.

Baum et al. [BDL+18] proved the security properties of the commitment
scheme with respect to the knapsack problems (which in turn are versions of
standard Module-SIS/Module-LWE problems) defined in Section 2.4. More con-
cretely, they showed that any algorithm A that efficiently solves the hiding prop-
erty can be turned into an algorithm A′ solving DKS∞n+1,k,β∞ with essentially
the same runtime and success probability. Furthermore, any algorithm A that
efficiently solves the binding problem can be turned into an algorithm A′′ solving
SKS2

n,k,16σC

√
νN

with the same success probability.

The commitments [BDL+18] have a weak additively homomorphic property:

Proposition 1. Let z0 = Com(m; rm) be a commitment with opening (m; rm, f)
and let z1 = Com(ρ;0). Then z0−z1 is a commitment with opening (m−ρ; rm, f).

The proof follows from the linearity of the verification algorithm.

Lattice-Based Proof of Shuffle 67

3.2 Zero-Knowledge Proof of Linear Relations

Let [[x]], [[x′]] be commitments as above such that x′ = αx + β for some public
α, β ∈ Rp. Then ΠLin in Figure 1 shows a zero-knowledge proof of knowledge
(ZKPoK) of this fact (it is an adapted version of the linearity proof in [BDL+18]).
The proof is a Σ protocol that aborts4 with a certain probability to achieve the
zero-knowledge property. For the protocol in Figure 1 we define

[[x]] = Com(x; r) =

[
c1

c2

]
, [[x′]] = Com(x′; r′) =

[
c′1
c′2

]
.

Prover P Verifier V

y,y′ $← N k
σC

t← B1y, t
′ ← B1y

′

u← α⟨b2,y⟩ − ⟨b2,y′⟩ t, t′, u

d d
$← C

z ← y + dr

z′ ← y′ + dr′

Continue with probability:

∏

(a,b)∈{(r,z),(r′,z′)}
min

(
1,

N k
σC

(b)

M · N k
da,σC

(b)

)
z, z′

return Accept iff

1 : ∥z[i]∥ ,
∥∥z′[i]

∥∥ ≤ 2σC

√
N, i ∈ [k]

2 : B1z
?
= t+ dc1

3 : B1z
′ ?
= t′ + dc′1

4 : α⟨b2, z⟩ − ⟨b2, z′⟩ ?
= (αc2 + β − c′2)d+ u

Fig. 1: Protocol ΠLin is a Sigma-protocol to prove the relation x′ = αx+β, given
the commitments [[x]], [[x′]] and the scalars α, β.

In [BDL+18] the authors show that a version ofΠLin is a Honest-Verifier Zero-
Knowledge Proof of Knowledge for the aforementioned commitment scheme.
This can directly be generalized to relations of the form α · x̃+ β as follows:

Lemma 3. Let α, β, [[x]], [[x′]] be defined as above. Then ΠLin is a HVZK proof
of the relation

RLin =

{
(s, w)

s = (α, β, [[x]], [[x′]],B1, b2), w = (x̃, r̃, r̃′, f),

Open([[x]], x̃, r̃, f) = Open([[x′]], α · x̃+ β, r̃′, f) = 1

}
.

4 This approach is usually referred to as Fiat Shamir with Aborts (see e.g. [Lyu09,
Lyu12] for a detailed description). If the proof is compiled with a random oracle into
a NIZK, then these aborts only increase the prover time by a constant factor.

68 D. Aranha et al.

The proof for this is exactly the same as in [BDL+18], and we do only sketch
it now: assume that we can rewind an efficient poly-time prover and obtain
two accepting transcripts with the same first message t, t′, u but differing d, d
(as well as responses z, z′, z, z′). Then one can extract valid openings (x̃; r̃, f)
and (αx̃ + β; r̃′, f) for [[x]], [[x′]] respectively as follows: From the two accepting
transcripts and the equations checked by the verifier we can set f = d − d,
r̃ = z − z, r̃′ = z′ − z′ where it must hold that

α⟨b2, r̃⟩ − ⟨b2, r̃′⟩ ?
= f(αc2 + β − c′2).

By setting x̃ = c2 − f−1⟨b2, r̃⟩ and x̃′ = c′2 − f−1⟨b2, r̃′⟩, we then have that
αx + β = x′ by the aforementioned equation. The validity and bounds of the
opening follow from the same arguments as in [BDL+18].

Compression. Using the techniques from [GLP12,BG14], as already mentioned
in [BDL+18, Section 5.3], allows to compress the non-interactive version of the
aforementioned zero-knowledge proof. The main idea is that the prover only
hashes the parts of the proof that got multiplied by the uniformly sampled part
B′

1 of B1, and that the verifier only checks an approximate equality with these
when recomputing the challenge. We do the following changes to the protocol.

The prover samples vectors y,y′ of dimension k − n according to σC, then
computes t = B′

1y and t′ = B′
1y

′. Note that u is computed as before, as the
n first values of b2 are zero. Then z and z′ are computed as earlier, but are of
dimension k − n instead of k. The prover computes the challenge d as

d = H(B, [[x]], [[x′]], α, β, u, ⌊t⌉γ , ⌊t′⌉γ),

where γ ∈ N and ⌊·⌉γ denotes rounding off the least γ bits.
To make sure that the non-interactive proof can be verified, we must ensure

that d can be re-computed from the public information. Let t̂ = B′
1z − dc1 and

t̂
′
= B′

1z
′ − dc′1 and observe that t̂[i]− t[i] = dr[i], for each coordinate i ∈ [n],

and similar for t̂
′
and t′. For honestly generated randomness, for each i ∈ [k],

we have that ∥r[i]∥ ≤ β∞
√
N , and since d ∈ C̄, we have that ∥d∥ =

√
ν. It

follows that ∥dr[i]∥∞ ≤ β∞
√
νN , and similar for dr′[i]. When hashing t and t′

to get the challenge d, we then remove the γ = ⌈log β∞
√
νN⌉ lower bits of each

coordinate first, to ensure that both the prover and the verifier compute on the
same value. Hence, before outputting the proof, the prover will also test that

d′ = H(B, [[x]], [[x′]], α, β, û, ⌊B′
1z − dc1⌉γ , ⌊B′

1z
′ − dc′1⌉γ), where

û = α⟨[1 b′2], z⟩ − ⟨[1 b′2], z
′⟩ − (αc2 + β − c′2)d.

The prover then outputs the proof (d, z, z′) if d = d′ and ∥z[i]∥ , ∥z′[i]∥ ≤
2σC

√
N (when setting up the check as in [GLP12, BG14], then the test will

fail with probability at most 1/2), and the verifier will make the same checks
to validate it. The proof size is reduced from k to k − n Gaussian-distributed
ring-elements, making the proof size a total of 2(k − n) log(6σC) bits.

Lattice-Based Proof of Shuffle 69

4 Protocol: Zero-Knowledge Proof of Correct Shuffle

In this section we present the shuffle protocol for openings of commitments. We
construct a public-coin 4 + 3τ -move protocol5 such that the commit-challenge-
response stages require the prover to solve a system of linear equations in order
to prove a correct shuffle. Our construction extends Neff’s construction [Nef01]
to the realm of post-quantum assumptions.

The proof of shuffle protocol will use the commitments defined in Section
3. For the shuffle proof to work, the prover P and verifier V receive commit-
ments {[[mi]]}τi=1. P also receives the set of openings {(mi, ri)}τi=1 as well as a
permutation π ∈ Sτ . Additionally, both parties also obtain {m̂i}τi=1.

The goal is to ensure that the following relation RShuffle holds:

RShuffle =

(s, w)

s = ([[m1]], . . . , [[mτ]], m̂1, . . . , m̂τ , m̂i ∈ Rp),

w = (π, f1, . . . , fτ , r1, . . . , rτ), π ∈ Sτ ,

∀i ∈ [τ] : Open([[mπ−1(i)]], m̂i, ri, fi) = 1

.

To use the idea of Neff, all m̂i messages involved have to be invertible. How-
ever, this may not be the case for arbitrary ring elements. We start by showing
that if V samples a random ρ in Rp then all m̂i − ρ will be invertible with high
probability:

Proposition 2. Let N ≥ δ ≥ 1 be powers of 2, p a prime congruent to 2δ +
1 mod 4δ. Then

Pr
x1,...,xτ∈Rp

[x1 − ρ, . . . , xτ − ρ invertible in Rp | ρ $← Rp] ≥ (1− p−N/δ)δ·τ .

Plugging in realistic parameters (p ≈ 232, , N = 2014, δ = 2, τ = 1, 000, 000)
we see that the probability of of all m̂i − ρ being simultaneously invertible is
essentially 1.

Proof. By assumption, Rp factors into δ irreducible factors. The number of in-
vertible elements in each factor of Rp is exactly pN/δ − 1, and hence, the total
number of invertible elements in Rp is (pN/δ−1)δ. Dividing by the total number
of elements in each factor of Rp and multiplying the probability by itself τ times
then gives us that the probability of all xi− ρ being invertible is bounded below
by

[(pN/δ − 1

pN/δ

)δ]τ
= (1− p−N/δ)δ·τ .

⊓⊔
The first step for our shuffle protocol will be that V picks a random appropri-

ate ρ
$← Rp and sends ρ to P. P and V then locally compute the values M̂i,Mi

5 This is only a theoretical problem as the protocol is public-coin and can therefore
directly be transformed into NIZKs using the Fiat-Shamir transform.

70 D. Aranha et al.

by setting Mi = mi − ρ, M̂i = m̂i − ρ. The proof, on a high level, then shows
that

∏
i Mi =

∏
i M̂i. This is in fact sufficient, as the mi, m̂i can be considered

as roots of polynomials of degree τ . By subtracting ρ from each such entry and
multiplying the results we obtain the evaluation of these implicit polynomials in
the point ρ, and if the m̂i are not a permutation of the mi then these implicit
polynomials will be different. At the same time, the number of points on which
both polynomials can agree is upper-bounded as shown in Lemma 2.

Prover P Verifier V

ρ ρ
$← Rp \ {m̂i}τi=1

M̂i = m̂i − ρ M̂i = m̂i − ρ

Mi = mi − ρ [[Mi]] = [mi]− ρ

θi
$← Rp, ∀i ∈ [τ − 1]

Compute [[Di]] as in Eq. (1), i.e.

[[D1]] = [[θ1M̂1]], [[Dτ]] = [[θτ−1Mτ]],

[[Di]] = [[θi−1Mi + θiM̂i]] for i ∈ [τ − 1] \ {1} {[[Di]]}τi=1

β β
$← Rp

Compute si, ∀i ∈ [τ − 1] as in (3). {si}τ−1
i=1

Use ΠLin to prove that

(1) β[[M1]] + s1M̂1 = [[D1]]

(2) ∀i ∈ [τ − 1] \ {1} : si−1[[Mi]] + siM̂i = [[Di]]

(3) sτ−1[[Mτ]] + (−1)τβM̂τ = [[Dτ]]

i.e. all equations from (2)

return accept iff all instances of ΠLin are accepting

Fig. 2: The public-coin zero-knowledge protocol of correct shuffle ΠShuffle.

Our public-coin zero-knowledge protocol proves this identity of evaluations
of these two polynomials by showing that a particular set of linear relations (2)
is satisfied (we will show later how it is related to the aforementioned product
of Mi and M̂i).

As a first step, P draws θi
$← Rp uniformly at random for each i ∈ {1, . . . , τ},

and computes the commitments

[[D1]] = [[θ1M̂1]]

∀j ∈ {2, . . . , τ − 1} : [[Dj]] = [[θj−1Mj + θjM̂j]]

[[Dτ]] = [[θτ−1Mτ]].

(1)

P then sends these commitments {[[Di]]}τi=1 to the verifier6 V, which in turn
chooses a challenge β ∈ Rp, whereupon P computes si ∈ Rq such that the
following equations are satisfied:

6 P does not show that these commitments are well-formed, this will not be necessary.

Lattice-Based Proof of Shuffle 71

βM1 + s1M̂1 = θ1M̂1

∀j ∈ {2, . . . , τ − 1} : sj−1Mj + sjM̂j = θj−1Mj + θjM̂j

sτ−1Mτ + (−1)τβM̂τ = θτ−1Mτ .

(2)

To verify the relations, P uses the protocol ΠLin from Section 3 to prove that
the content of each commitment [[Di]] is such that Di,Mi and M̂i satisfies the
equations (2). The protocol ends when V has verified all the τ linear equations
in (2). In order to compute the si values, we can use the following fact:

Lemma 4. Choosing

sj = (−1)j · β
j∏

i=1

Mi

M̂i

+ θj (3)

for all j ∈ 1, . . . , τ − 1 yields a valid assignment for Equation (2).

Proof. The correctness of this choice follows directly by considering all three
cases: For the first case, we have that

βM1 + s1M̂1 = βM1 + (−βM1/M̂1 + θ1)M̂1

= θ1M̂1.

In the second case, it holds that

sj−1Mj + sjM̂j = ((−1)j−1β

j−1∏

i=1

Mi/M̂i + θj−1)Mj + ((−1)jβ
j∏

i=1

Mi/M̂i + θ1)M̂j

= θj−1Mj + θjM̂j

where the β-terms cancel. For the third case, since
M1 · · ·Mτ

M̂1 · · · M̂τ−1

= M̂τ so

sτ−1Mτ + (−1)τβM̂τ = ((−1)τ−1β
τ−1∏

i=1

Mi/M̂i + θτ−1)Mτ + (−1)τβM̂τ

= θτ−1Mτ .

⊓⊔

From Lemma 4 it is clear that the protocol is indeed complete. Interestingly,
this choice of sj also makes these values appear random: each sj is formed by
adding a fixed term to a uniformly random private value θj . This will be crucial
to show the zero-knowledge property. For the soundness, we get the following:

Lemma 5. Assume that the commitment scheme is binding and that ΠLin is a
sound proof of knowledge for the relation RLin except with probability t. Then
the protocol in Figure 2 is a sound proof of knowledge for the relation RShuffle

except with probability ϵ ≤ τδ+1
|Rp| + 4τt.

72 D. Aranha et al.

Proof. To prove the statement, we will construct a PPT algorithm E called
extractor which interacts with P∗ in a black-box manner and which will output
a witness w for a statement s such that (s, w) ∈ RShuffle given that P∗ wins for
a given s with more than the stated probability. The expected runtime of E is
poly(τ, t)/ϵ. The extractor algorithm will proceed as follows:

1. Construct sub-extractors Ei which for each i ∈ [τ] do the following:

(a) Run instances with an arbitrary randomness tape for P∗ as well as ar-
bitrary challenges until an accepting transcript is found.

(b) Upon finding an accepting transcript, rewind P∗ until after the first
message in the ith instance of ΠLin was sent. Then probe for a second
challenge for the ith proof that leads to an accepting transcript7.

2. Subtract ρi from all Mi where ρi is the value used by the extractor Ei. Then
for each [[mi]] let the opening be (mi; ri, fi). If the mi are indeed a permu-
tation of the m̂i then output the respective w = (π, f1, . . . , fτ , r, . . . , rτ).

We will first argue why the above algorithm is expected polynomial-time: The
runtime of each Ei is expected polynomial time by a standard heavy-row ar-
gument, as we only need to rewind on a specific instance only. Applying the
heavy-row argument is possible as the success probability of P∗ is above 4t (we
lose a factor of 4 in the heavy-row argument). We now argue why also Step 2 is
polynomial-time i.e. that E outputs a witness.

Let us assume we would create two transcripts for an identical ρ but differing
β, β′ where we rewind P∗. We would then obtain different si, s

′
i such that all the

equations are proven by P∗ with ΠLin. From the soundness of ΠLin we obtain:

1. βM1 + s1M̂1 = D1 and β′M1 + s′1M̂1 = D1,

2. ∀i ∈ [τ − 1] \ {1} : si−1Mi + siM̂i = Di and s′i−1Mi + s′iM̂i = Di,

3. sτ−1Mτ + (−1)τβM̂τ = Dτ and s′τ−1Mτ + (−1)τβ′M̂τ = Dτ .

Subtracting the equations with identical Di on the right-hand side yields the
following system of τ linear equations:

M1 M̂1 0 . . . 0 0

0 M2 M̂2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Mτ−1 M̂τ−1

(−1)τM̂τ 0 0 . . . 0 Mτ

M

β − β′

s1 − s′1
...

sτ−2 − s′τ−2

sτ−1 − s′τ−1

c

=

0

0
...

0

0

. (4)

We can directly see from the above that all Mi, si− s′i must be non-zero and
that therefore si ̸= s′i: From the last equation and the assumption that β ̸= β′

7 One would additionally in parallel run a process that aborts Ei with very small
probability, see e.g. [BBC+18, Lemma 3]. We leave this out for the sake of simplicity.

Lattice-Based Proof of Shuffle 73

we know that Mτ × (sτ−1 − s′τ−1) ̸= 0 as M̂τ is invertible. From the second-to-

last equation and due to the invertibility of M̂τ−1 the same holds for Mτ−1 and
sτ−2 − s′τ−2. By induction, this applies to all values.

By a standard rule from linear algebra, we know that if det(M) ̸= 0 then 0
is the only element in the kernel of M , while c ̸= 0. Therefore, det(M) = 0. We
explicitly compute det(M) using the Laplace expansion obtained by removing
the first column (and then all rows successively). As most of the cofactors are 0,
we obtain 0 = det(M) = M1 · det(M1) + (−1)2τ+1 · det(M2) where

M1 =

M2 M̂2 . . . 0 0

0 M3 . . . 0 0
...

...
. . .

...
...

0 0 . . . Mτ−1 M̂τ−1

0 0 . . . 0 Mτ

, M2 =

M̂1 0 . . . 0 0

M2 M̂2 . . . 0 0

0 M3 . . . 0 0
...

...
. . .

...
...

0 0 . . . Mτ−1 M̂τ−1

.

Clearly det(M1) = M2 · · ·Mτ and det(M2) = M̂1 · · · M̂τ−1 and therefore det(M) =∏τ
i=1 Mi −

∏τ
i=1 M̂j and

∏τ
i=1 Mi =

∏τ
i=1 M̂j ̸= 0. Define the two polynomials

g(X) =
∏τ

i=1
(mi −X), and ĝ(X) =

∏τ

i=1
(m̂i −X),

that is, g(X) and ĝ(X) are the polynomials which have mi and m̂i as their roots,
respectively. If there exists no permutation such that m̂i = mπ(i), ∀i = 1, . . . , τ ,

then g(ρ) = ĝ(ρ) (i.e. det(M) = 0) for at most τ δ choices of ρ according to
Lemma 2. Due to the lower-bound on the success probability of P∗ there must
exist accepting transcripts for more than τ δ choices of ρ with more than one
accepting choice of β where all instances of ΠLin prove correct. Then, by the
above argument and because the commitment scheme is binding, it must hold
that the values extracted by E indeed are a permutation of the m̂i. ⊓⊔

From Lemmas 4 and 5 we get the following theorem:

Theorem 1. Assume that (KeyGenC, Com, Open) is a secure commitment scheme
with ΠLin as a HVZK Proof of Knowledge of the relation RLin with soundness er-
ror t. Then the protocol ΠShuffle is an HVZK Proof of Knowledge for the relation
RShuffle with soundness error (τ δ + 1)/|Rp|+ 4τt.

The proof of completeness and HVZK can be found in Appendix A.

5 Applications to Electronic Voting

We now construct an e-voting protocol by combining the shuffle protocol from
Section 4 with a verifiable encryption scheme and a return code mechanism.

Towards this end, consider the shuffled openings of commitments as the
outcome of the election, meaning that each commitment will contain a vote.

74 D. Aranha et al.

Commitments are not sufficient for a voting system, and we also need encryp-
tions of the actual ballots and these must be tied to the commitments, so that
the shuffling server can open the commitments without anyone else being able
to. We use a version of the verifiable encryption scheme by Lyubashevsky and
Neven [LN17] to verifiably encrypt openings under a public key that belongs to
the shuffle server. We also reuse the verifiable encryption to get a system for
return codes. The return code computation is done in two stages, where the
first stage is done on the voter’s computer, and the second stage is done by an
infrastructure player. The voter’s computer commits to its result and verifiably
encrypts an opening of that commitment for the infrastructure player. Then it
proves that the commitment contains the correct value.

We will now describe the verifiable encryption scheme that we use as well as
the return code mechanism in more detail, before explaining how to construct
the full e-voting protocol.

5.1 Verifiable Encryption

In a verifiable encryption scheme, anyone can verify that the encrypted plaintext
has certain properties. We use a version of [LN17] where we use a generalization
of the [LPR13, BGV12] encryption system. The reason is that in [LN17] the
public key only consists of single polynomials of degree N , requiring that the
plaintext vector must also be a multiple of N - which might not always be the
case as in our setting.

In our setting, the goal is to show that the plaintext is a value µ ∈ Dκ
β∞ such

that
Tµ = u mod p, (5)

for some fixed T ,u and where T ∈ Rλ×κ
p . Using the construction of [LN17], one

can show a weaker version of the statement, namely that decryption yields a
small µ̄ and c̄ ∈ C over Rp such that

T µ̄ = c̄u mod p. (6)

We will see that this will be sufficient for our voting scheme8.
The [LN17] verifiable encryption scheme consists of 4 algorithms: Key gen-

eration KeyGenV , encryption Enc, verification Ver and decryption Dec. We will
first describe the underlying non-verifiable encryption scheme and then explain
how it is made verifiable.

The encryption, verification and decryption algorithms are described in Fig-
ures 3, 4 and 5 respectively. Here, encryption follows [LPR13,BGV12] but ad-
ditionally computes a NIZK that the plaintext is a valid preimage of Equation
5 and also bounded. Ver validates the NIZK, while Dec decrypts to a short
plaintext that is valid under Equation 6.

8 Recently, [ALS20] showed a more efficient HVZKPoK for the respective relation.
Unfortunately, their proof cannot guarantee that c̄ is invertible, which is crucial for
the verifiability of the encryption scheme. Their optimization can therefore not be
applied in our setting.

Lattice-Based Proof of Shuffle 75

To generate a public key (A, t) for the verifiable encryption scheme one
samples A ← Rℓ×ℓ

q uniformly at random as well as s1, s2 ← Dℓ
1, setting t ←

As1 + s2 and outputting (A, t) as public key as well as s1 as private key. To
encrypt a single message µ ∈ Dβ∞ , first sample r, e ← Dℓ

1, e
′ ← D1 and then

compute [
v

w

]
=

[
p(A⊤r + e) mod q

p(⟨t, r⟩+ e′) + µ mod q

]
.

To decrypt a ciphertext (v, w) ∈ Rℓ
q ×Rq compute

w − ⟨v, s1⟩ mod q mod p = (p(⟨r, s2⟩+ e′ − ⟨e, s1⟩) + µ mod q) mod p = µ,

where the last equality holds if ∥p(⟨r, s2⟩+ e′ − ⟨e, s1⟩+ µ)∥∞ < q/2.
To encrypt a vector µ = (µ1, . . . , µκ) ∈ Dκ

β∞ we can abbreviate our equations
in matrix notation in the following way:

[
A⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

]

r

e

e′

µ

 =

[
v

w

]
mod q, (7)

for r, e
$← Dℓ·κ

1 , e′
$← Dκ

1 and where v ∈ Rℓ·κ
q ,w ∈ Rκ

q . For decryption we get:

µ[i] = w[i]− ⟨s1, v̂i⟩ mod q mod p,

where v̂i = [v[(i− 1) · ℓ+1],v[(i− 1) · ℓ+2], . . . , v[i · ℓ]]⊤ which follows from the
definition of the tensor product. For correctness, the aforementioned decryption
bound generalizes to

∥p(⟨r̂i, s2⟩+ e′[i]− ⟨ê, s1⟩) + µ[i]∥∞ < q/2,

where r̂i, êi are analogously defined to v̂i. Using standard bounds on ∞-norms
of products of elements in Rp, this directly translates into the requirement that
q > 2p(2ℓ ·N2 · β∞

2 +N + 1).
To make this verifiable, we will use a NIZK which shows for a ciphertext v,w

that the sender knows r, e, e′,µ that are bounded such that

– r, e, e′,µ are a preimage of v,w modulo q as in Equation 7.
– µ fulfills equation (5) modulo p.

To prove both relations simultaneously we use a standard lattice-based zero-
knowledge proof for the specific relation, and by using the Fiat-Shamir transform
[FS87] this then becomes non-interactive. As mentioned before, the output of Dec
will be a witness for Equation 6, i.e. it will also contain the additional factor c.

We now argue that our modified scheme [LN17] is still secure.
First of all, the encryption scheme (as the authors of [BGV12] show) can

be generalized to work with the generalized M-LWE assumption9. As the actual

9 M-LWE generalizes the Ring-LWE assumption [LS15] and is a more conservative
security assumption for the same dimensions of the matrix.

76 D. Aranha et al.

matrix dimensions for the encryption scheme do not change between our instance
of the verifiable encryption scheme and [LN17] the same security proof still
applies with respect to privacy.

The verifiability and thus decryption of the above construction directly fol-
lows from the original proof, as neither of the conditions of [LN17, Lemma 3.1]
are altered by changing the matrix structure. Furthermore, as we will choose
ℓ = 2 in our setting even this Rq of smaller dimension than in the original work
has a large enough challenge space necessary for the (non-)interactive proofs to
be sound. We will therefore be able to basically rely on the same security anal-
ysis as [LN17] and can essentially re-use their parameters (with some slightly
increased p, q).

There are multiple parameter restrictions in [LN17] in order to achieve secu-
rity. These also apply to our setting:

1. The underlying encryption scheme must safely be able to encrypt and de-
crypt messages from Rκ

p . For this, we obviously need that message and noise,
upon decryption, do not “overflow” modq while the noise at the same time
must be large enough such that the underlying MLWE-problem is hard. For
concrete parameters, the latter can be established by e.g. using the LWE
Estimator [APS15]. For correctness of the decryption alone, we require that
the decryption of a correct encryption must yield10 a value < q/2. This also
means that the decryption algorithm will always terminate for c = 1 in case
the encryptor is honest.

2. The NIZK requires “quasi-unique responses”, which (as the authors of [LN17]
argue) it will have with overwhelming probability over the choice of A as
long as 24σ2

E < q.

Encrypting openings of commitments. We want to make sure that the
voter actually knows his vote, and that the commitment and the opening of the
commitment are well-formed. We also want to ensure that the ciphertext actually
contains a valid opening of the commitment. This can be achieved if the voter
creates a proof that the underlying plaintext is an opening of the commitment.
Then the ballot box can ensure that the shuffle server will be able to decrypt
the vote and use it in the shuffle protocol. Note that the voter may send a well-
formed but invalid vote, but then the shuffle server can publicly discard that
vote later, and everyone can check that the vote indeed was invalid.

Recall that the commitment is of the form

Com(m; rm) =

[
c1

c2

]
=

[
B1

b2

]
· rm +

[
0

m

]
.

The value c1 serves to bind the committer to a single choice of rm, while
c2 hides the actual message using the unique rm. Fixing rm fixes m uniquely,
and m can indeed be recovered using rm only. The idea is to use the verifiable

10 This translates into the requirement that q > 2p(2ℓ ·N2 · β∞
2 +N + 1).

Lattice-Based Proof of Shuffle 77

Input: Public key pk = (A, t, p, q), pair (T ,u),µ ∈ Dκ
β such that

Tµ = u, hash function H : {0, 1}∗ → C,
σE = 11 ·max

c∈C
∥c∥ ·

√
κN(3 + β)

Output: ciphertext (v,w, c, z) ∈ Rℓ·κ
q ×Rκ

q × C ×R(2ℓ+2)κ

1 : r, e
$← Dℓ·κ

1 , e′ $← Dκ
1

2 :

[
v

w

]
←

[
A⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

] [
r e e′ µ

]⊤

3 : y ←
[
yr ye ye′ yµ

]⊤
$← DR(2ℓ+2)κ,0,σE

4 : Y ←

A⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

0λ×(ℓ·κ) 0λ×(ℓ·κ) 0λ×κ T

[
yr ye ye′ yµ

]⊤ mod q

mod q

mod p

5 : c← H

A⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

0λ×(ℓ·κ) 0λ×(ℓ·κ) 0λ×κ T

 ,

v

w

u

 ,Y

6 : s←
[
r e e′ µ

]⊤
c

7 : z ← s+ y

8 : With probability 1−min

(
1,

DR(2ℓ+2)κ,0,σE
(z)

3 ·DR(2ℓ+2)κ,s,σE
(z)

)
goto 3

9 : if ∥z∥∞ ≥ 6σE goto 3, else return e = (v,w, c, z)

Fig. 3: The verifiable encryption algorithm Enc.

Input: Secret key sk = (s1), pair x = (T ,u),

ciphertext t = (v,w, c, z), C = max
c∈C
||c||∞

1 : if Ver(t, x, pk) = 1 then

2 : while

3 : c′
$← C

4 : c← c− c′

5 : m[i]← (w − ⟨s1,vi⟩)c mod q for all i ∈ [κ]

6 : if ||m||∞ ≤ q/2C and ||m mod p||∞ < 12σE then

7 : return (m mod p, c)

Fig. 4: Algorithm Dec for decryption of a ciphertext.

Input: ciphertext t = (v,w, c, z) ∈ Rℓ·κ
q ×Rκ

q ×Rq ×R(2ℓ+2)κ, language element x = (T ,u),

public key pk = (A, t, p, q)

1 : if ∥z∥∞ > 6 · σE then return 0

2 : Z ←

A⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

0λ×(ℓ·κ) 0λ×(ℓ·κ) 0λ×κ T

 z − c

v

w

u

mod q

mod q

mod p

3 : if c ̸= H

A⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

0λ×(ℓ·κ) 0λ×(ℓ·κ) 0λ×κ T

 ,

v

w

u

 ,Z

 then return 0

4 : return 1

Fig. 5: Algorithm Ver for verification of a ciphertext.

78 D. Aranha et al.

encryption scheme to encrypt the opening rm, and prove that the voter knows
a witness for the relation c1 = B1rm mod p where rm is bounded. Any such
randomness could then be used to uniquely open the commitment.

To encrypt the opening rm verifiably, Step 4 in Figure 3 is now the system

v

w

c1

 =

A⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

0λ×(ℓ·κ) 0λ×(ℓ·κ) 0λ×κ B1

 ·

r

e

e′

rm

 .

Note that the encryption of the opening rm now contains two parts: v and
w correspond to the ciphertext of the encryption while c1 corresponds to the
verification of the opening of the commitment.

5.2 Return Codes

In the case of a malicious computer, we need to make sure that the voter can
detect if the encrypted vote being sent to the ballot box is not an encryption of
the correct ballot. We achieve this by giving the voter a pre-computed table of
return codes which he can use for verification. The return codes are generated
per voter, using a voter-unique blinding-key and a system-wide PRF-key.

A commitment to the blinding key is made public. The computer gets the
blinding-key and must create a pre-code by blinding the ballot with the blinding-
key. The computer also generates commitments to the ballot and the pre-code,
along with a proof that the pre-code has been generated correctly. Anyone with
an opening of the pre-code commitment and the PRF-key can now generate the
correct return code without learning anything about the ballot.

Defining the Return Code. Assume that the voters have ω different options in
the election. Let v̂1, v̂2, . . . , v̂ω ∈ Rp be ballots, let aj ∈ Rp be a blinding-key for
a voter Vj and let PRFk : {0, 1}∗ × Rp → {0, 1}n be a pseudo-random function,
instantiated with a PRF-key k, from pairs of binary strings and elements from
Rp to the set of binary strings of length n. The pre-code r̂ij corresponding to
the ballot v̂i is r̂ij = aj + v̂i mod p. The return code rij corresponding to the
ballot v̂i is rij = PRFk(Vj , r̂ij).

Let caj , cj and cr̂j be commitments to the blinding key aj , the ballot
vj ∈ {v̂1, . . . , v̂ω} and the pre-code r̂j = aj + vj mod p. It is now clear that
we can prove that a given r̂j value has been correctly computed by giving a
proof of linearity that aj + vj = r̂j . This can be done either by adding the com-
mitments caj

and cj together directly to get a commitment caj+vj with larger
randomness (if the choice of parameters allows for the sum of the randomness
to be a valid opening of the commitment) and then prove the equality of the
committed messages, or to extend the proof of linearity to handle three terms.
Our return code construction is now straight-forward.

A commitment caj
to voter Vj ’s voter-unique blinding key aj is public. The

voter Vj ’s computer will get the voter-unique blinding-key aj together with the

Lattice-Based Proof of Shuffle 79

randomness used to create caj
. It has already created a commitment cj to the

ballot vj . It will compute the pre-code r̂j = aj + vj , a commitment cr̂j to r̂j and
a proof Πr̂j of knowledge of the opening of that sum. Finally, it will verifiably
encrypt as er̂j the opening of cr̂j with the return code generator’s public key.

The return code generator receives Vj , cr̂j , cj , er̂j and Πr̂j . It verifies the
proof and the encryption, and then decrypts the ciphertext to get r̂j . It computes
the return code as rj = PRFk(Vj , r̂j).

Note that if a voter re-votes (such as when exposed to coercion), the return
code generator would be able to learn something about the ballots involved.
The return code mechanism can be extended for re-voting using higher degree
polynomials to hide the vote.

5.3 The Voting Scheme

We get our e-voting protocol by combining the shuffle protocol with the verifiable
encryption scheme and the return code construction. A complete description of
this protocol can be found in Figure 6 and in Appendix B. All communication
happens over secure channels. We discuss the privacy, integrity and coercion
resistance of the voting scheme in detail in Appendix B.

Registration phase. The only thing that happens in this phase is key generation.
Every player generates their own key material and publishes the public keys and
any other commitments.

The voter’s computer, the return code generator and a trusted printer then
use a multi-party computation protocol11 to compute the ballot-return code
pairs for the voter, such that only the trusted printer learns the pairs. The
trusted printer then sends these pairs to the voter through a secure channel.
We emphasize that for many voters, the registration phase likely requires sig-
nificant computational resources for the return code generator and the trusted
printer. In practice, the voter’s computer will usually play a minor role in this
key generation.

Casting a ballot. The voter begins the ballot casting by giving the ballot vj to
the voter’s computer.

The voter’s computer has the per-voter secret key material, and gets the
ballot vj to be cast from the voter. It computes the pre-code r̂ and generates
commitments cj and cr̂ to the ballot and the pre-code, respectively. It creates
a proof Πr̂ that the pre-code has been correctly computed (with respect to
the commitments). It creates a verifiable encryption ej of an opening of cj to
vj under the shuffle server’s public key, and a verifiable encryption er̂ of an
opening of cr̂ under the return code generator’s public key. It then signs all of

11 Since this happens before the election, speed is no longer essential. Even so, for the
computations involved here, ordinary MPC is sufficiently practical. In a practical
deployment, the voter’s computer is unlikely to be part of this computation. It
would instead be delegated to a set of trusted key generation players.

80 D. Aranha et al.

Vj

v̂1 r1j

v̂2 r2j
...

...

v̂ω rωj

r
?
= rij

D B

F R

S

A

dkS

Shuffle

Generate ΠS

k, caj , dkR

r ← PRFk(Vj , r̂)

Verify Πr̂

aj , caj

r̂ ← aj + vj

cr̂ ← Com(r̂)

er̂ ← Enc(r̂)

cj ← Com(vj)

ej ← Enc(dj)

Generate Πr̂

caj

Verify Πr̂

Key material

Computation

vj cj , ej , idj

cr̂, er̂, Πr̂

cr̂

er̂

Πr̂

{ci}τi=1

r

r

{ci, ei}τi=1

{vπ(i)}τi=1ΠS

{c
i} τ

i=
1

cr̂, er̂, Πr̂

{ci}τi=1

Fig. 6: Complete voting protocol. A voter Vj gives a vote vj to their computer
D. The value dj is the opening of the commitment cj . The public keys for
commitments and encryption are assumed known to all parties. Signatures are
omitted: D signs the vote to be verified by the ballot box B and the return
code server R, while R signs the incoming votes and sends the signature in
return, via B, to D to confirm that the vote is received. Both B and R sends
the commitments of the votes to authorities A to verify consistent views. After
all votes are cast, B forwards them to the shuffle server S, stripping away the
voters id’s and signatures.

these values, together with its identity and every public key and commitment
used to create the proofs. We note that the voter’s identity and relevant keys
and commitments are included in the proofs used. (This is not an artifact of
making the security proof work, but it prevents real-world attacks.)

The computer sends the commitments, encryptions, proofs and signature to
the ballot box. The ballot box verifies the signature and the proofs. Then it
sends everything to the return code generator.

The return code generator verifies the signature and the proofs. Then it
decrypts the opening of er̂ and computes the return code from r̂. It hashes
everything and creates a signature on the hash. It sends the return code to the
voter’s phone and the signature to the ballot box. The ballot box verifies the
return code generator’s signature on the hash. Then it sends the return code
generator’s signature to the voter’s computer.

The voter’s computer verifies the return code generator’s signature and then
shows the hash and the signature to the voter as the transcript. The voter checks

Lattice-Based Proof of Shuffle 81

that the computer accepts the ballot as cast. When the phone displays the return
code r, the voter accepts the ballot as cast if (vj , r) is in the return code table.

Tallying. When the tally phase begins, the ballot box sends everything from
every successful ballot casting to the auditors. It extracts the commitments to the
ballots and the encrypted openings (without any proofs), organizes them into a
sorted list of commitment-ciphertext pairs and sends the sorted list to the shuffle
server. The return code generator sends everything from every successful ballot
casting to the auditors. The shuffle server receives a sorted list of commitment-
ciphertext pairs from the ballot box. It hashes the list and sends a hash to the
auditors. The shuffle server waits for the auditors to accept provisionally.

An auditor receives data from the ballot box and the return code generator,
and a hash from the shuffle server. If the data from the ballot box and the return
code generator agree, the auditor extracts the sorted commitment-ciphertext
pairs from the data, hashes it and compares the result with the hash from the
shuffle server. If it matches, the auditor provisionally accepts.

When the shuffle server receives the provisional accept, it decrypts the com-
mitment openings and verifies that the openings are valid. For any invalid open-
ing, it sends the commitment-ciphertext pair and the opening to the auditors. It
then sorts the ballots and creates a shuffle proof for the ballots and the commit-
ments. It then counts the ballots to get the election result and sends the ballots,
the shuffle proof and the result to the auditors.

An auditor receives the ballots, the shuffle proof and the result from the
shuffle server. It verifies the proof and that the election result is correct. It
extracts the hashes (but not the signatures) signed by the return code generator
from the ballot box data and creates a sorted list of hashes. It signs the hash list
and the result and send both signature and hash list to the shuffle server. Once
the shuffle server has received signatures and hash lists from every auditor, it
verifies that the hash lists are identical and that the signatures verify. It then
outputs the result, the hash list and the auditors’ signatures as the transcript.

Verification. The voter has the transcript output by the voter’s computer and
the transcript output by the shuffle server. It first verifies that the hash from the
computer’s transcript is present in the shuffle server’s hash list. Then it verifies
all the signatures. If everything checks out, the voter accepts.

6 Performance

As outlined in our construction, we are nesting the commitment scheme of
[BDL+18] into the encryption scheme of [LN17]. To determine secure while not
enormously big parameters for our scheme, we need to first make sure that
we have sufficiently large parameters to ensure both binding and hiding of the
commitments for which we will use the “optimal” parameter set of [BDL+18]
(but with twice the standard deviation to keep the probability of abort in the
rejection sampling down to 3 trials for the proofs of linearity) which is both

82 D. Aranha et al.

Parameter Explanation Constraints

N, δ Degree of polynomial XN + 1 in R N ≥ δ ≥ 1, where N, δ powers of two

p Modulus for commitments Prime p = 2δ + 1 mod 4δ

β∞ ∞-norm bound of certain elements Choose β∞ such that β∞ < p1/δ/
√
δ

σC Standard deviation of discrete Gaussians Chosen to be σC = 22 · ν · β∞ ·
√
kN

k Width (over Rp) of commitment matrix

n Height (over Rp) of commitment matrix

ν Maximum l1-norm of elements in C
C Challenge space C =

{
c ∈ Rp | ∥c∥∞ = 1, ∥c∥1 = ν

}

C̄ The set of differences C − C excluding 0 C̄ = {c− c′ | c ̸= c′ ∈ C}
Dβ∞ Set of elements of ∞-norm at most β∞ Dβ∞ = {x ∈ Rp | ∥x∥∞ ≤ β∞}
σE Standard deviation of discrete Gaussians Chosen to be σE = 11 · ν ·

√
κN(3 + β∞)

κ Dimension of message space in encryption Equal to the length of randomness k

ℓ Dimension the encryption matrix Equal to the size of the commitments k − n

λ Dimension of public u in Tµ = u Equal to the height n+ 1 of the commitment matrix

q Modulus for encryption Must choose prime q such that q > 24σ2
E

and q > 2p(2ℓ ·N2 · β∞
2 +N + 1)

and q = 2δ + 1 mod 4δ

τ Total number of votes For soundness we need (τ δ + 1)/|Rp| < 2−128

Table 1: Parameters for the commitment and verifiable encryption schemes.

computationally binding and hiding (see Table 2). The LWE-estimator [APS15]
estimates at least 100 bits of security with these parameters. We then instantiate
the verifiable encryption scheme with compatible parameters, which is possible
due to our generalization of [LN17]. The verifiable encryption scheme will then
yield decryptions with an ∞-norm that is way below the bound for which the
commitment scheme is binding, so any valid decryption which differs from the
original vote would break the binding of the commitment scheme. In general, the
instantiation of the encryption scheme offers much higher security than the com-
mitment scheme, but the choice of parameters are restricted by the constraints
from combining it with the commitments.

6.1 Size

Size of the Votes. Note that each ciphertext e includes both the encrypted
opening (v,w) and the proof of valid opening (c, z). Using a lattice based signa-
ture scheme like Falcon-768 [PFH+17], we have signatures of size ≈ 1 KB. The
voter verifiability protocol requires a commitment, an encryption + proof, and
a proof of linearity. It follows that a vote (cj , ej , cr̂, er̂, Πr̂) is of total size ≈ 240
KB, which means that, for τ voters, the ballot box B receives 240τ KB of data.

Size of the Shuffle Proof. Our shuffle protocol is a 4+3τ -move protocol with
elements from Rp. Each element in Rp has at most N coefficients of size at most
p, and hence, each Rp-element has size at most N log p bits. For every Rp-vector
that follows a Gaussian distribution with standard deviation σ we assume that
we can represent the element using N · log(6σ) bits. Every element from C will
be assumed to be representable using at most 2N bits.

Lattice-Based Proof of Shuffle 83

Parameter Commitment (I) Encryption (III)

N 1024 1024

p ≈ 232 ≈ 232

q - ≈ 256

β∞ 1 1

σ σC ≈ 54000 σE ≈ 54000

ν 36 36

δ 2 2

k 3 -

n 1 -

ℓ - 2

κ - 3

λ - 2

Proof 9.4 KB 42.4 KB

Primitive 8.2 KB 64.5 KB

Table 2: Parameters for the commitments by Baum et al. [BDL+18] and verifiable
encryption scheme by Lyubashevsky and Neven [LN17].

We analyze how much data we have to include in each step of the shuffling
protocol in Figure 2. Using the Fiat-Shamir transform [FS87], we can ignore the
challenge-messages from the verifier. The prover ends up sending 1 commitment,
1 ring-element and 1 proof of linearity per vote. Using the parameters from Table
2, we get that the shuffle proof is of total size ≈ 22τ KB.

6.2 Timings

We collected performance figures from our prototype implementation written in
C to estimate the runtime of our scheme. Estimates are based on Table 2 and the
implementation was benchmarked on an Intel Skylake Core i7-6700K CPU run-
ning at 4GHz without TurboBoost using clang 12.0 and FLINT 2.7.1 [HJP13].
Timings are available in Table 3, and the source code can be found on GitHub 12.

Our Scheme: Commit Open Encrypt Verify Decrypt Shuffle

Time 1.1 ms 1.2 ms 208 ms 39 ms 6 ms 27τ ms

Table 3: Timings for cryptographic operations. Numbers were obtained by com-
puting the average of 104 consecutive executions of an operation measured using
the cycle counter available in the platform.

12 github.com/dfaranha/lattice-voting-ctrsa21

84 D. Aranha et al.

Elementary Operations. Multiplication in Rp and Rq is usually implemented
when p ≡ q ≡ 1 mod (2N) and XN + 1 splits in N linear factors, for which
the Number-Theoretic Transform is available. Unfortunately, Lemma 1 restricts
parameters and we instead adopt p ≡ q ≡ 5 mod 8 [LN17]. In this case, XN + 1
splits in two N/2-degree irreducible polynomials (XN/2 ± r) for r a modular
square root of -1. This gives an efficient representation for a = a1X

N/2 +
a0 using the Chinese Remainder Theorem: CRT (a) = (a (mod XN/2 − r), a
(mod XN/2 + r)). Even though the conversions are efficient due to the choice of
polynomials, we sample ring elements directly in this representation whenever
possible. As in [LS18], we implement the base case for degree N/2 using FLINT
for polynomial arithmetic [HJP13]. We use SHA256 for hashing to generate chal-
lenges.

Commitment. A commitment is generated by multiplying the matrix B by a
vector rm over Rp and finally adding the message m to the second component
in the CRT domain. Computing and opening a commitment takes 0.9 ms and
1.2 ms, respectively, and sampling randomness rm takes only 0.2 ms.

Verifiable Encryption. Verifiable encryption needs to sample vectors according
to a discrete Gaussian distribution. For an Rq element with standard deviation
σE ≈ 215.7 (for the encryption scheme), the implementation from COSAC [ZSS20]
made available for σ = 217 samples 1024 integers in 0.12 ms using very small
precomputation tables. Each encryption iteration takes 69 ms and, because we
expect to need 3 attempts to generate one valid encryption (line 8 in Figure 3),
the total time of encryption is around 208 ms. For verification, 39 ms are neces-
sary to execute a test; and 6 ms are required for the actual decryption.

Shuffle Proof. The shuffle proof operates over Rp and is thus more efficient.
Sampling uses the same approach as above for σC from the commitment scheme.
Benchmarking includes all samplings required inside the protocol, the commit-
ment, the proof of linearity and, because we expect to need 3 attempts to gen-
erate each of the proofs of linearity to the cost of 7.5 ms, amounts to 27τ ms for
the entire proof, omitting the communication cost.

6.3 Comparison

We briefly compare our scheme with the scheme by del Pino et al. [dLNS17]
from CCS 2017 in Table 4. We note that the scheme in [dLNS17] requires at
least ξ ≥ 2 authorities to ensure ballot privacy, where at least one authority
must be honest. The authorities run the proof protocol in parallel, and the time
they need to process each vote is ≈ 5 times slower per vote than in our scheme.
We only need one party to compute the shuffle proof, where we first decrypt all
votes and then shuffle. Our proof size is at least 14 KB smaller per vote when
ξ = 2, that is, a saving of 40 %, and otherwise much smaller in comparison
for ξ ≥ 3. We further note that both implementations partially rely on FLINT

Lattice-Based Proof of Shuffle 85

Comparison Vote Size Voter Time Proof Size Prover Time

Our Scheme: 120 KB 209 ms 22τ KB 33τ ms

CCS 2017 [dLNS17]: 20ξ KB 9 ms 18ξτ KB 150τ ms

Table 4: Comparing our scheme with the yes/no voting scheme in [dLNS17]

for polynomial arithmetic and were benchmarked on Intel Skylake processors. A
significant speedup persists after correcting for clock frequency differences.

For a fair comparison, we only included the size and timings of the commit-
ment of the vote and the encrypted openings from our scheme. In practice, the
size and timings of the voter will be twice of what it is in the table, because of
the return code mechanism, which is not a part of [dLNS17]. This has no impact
on the decryption and shuffle done by the prover. The work done by the voter is
still practical. For [dLNS17] to be used in a real world election, they would need
to include an additional mechanism for providing voter verifiability, similar to
the one we have constructed.

Finally, we note that [dLNS17] can be extended from yes/no voting to votes
consisting of strings of bits. However, the size and timings of such an extension
will be linear in the length of the bit-strings, and our scheme would do even better
in comparison, as we can handle votes encoded as arbitrary ring-elements.

Thanks

We thank Andreas Hülsing and the anonymous reviewers for helpful comments.

References

Adi08. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van
Oorschot, editor, USENIX Security 2008, pages 335–348. USENIX Asso-
ciation, July / August 2008.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical prod-
uct proofs for lattice commitments. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
470–499. Springer, Heidelberg, August 2020.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
669–699. Springer, Heidelberg, August 2018.

BCG+15. David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
Bogdan Warinschi. SoK: A comprehensive analysis of game-based ballot
privacy definitions. In 2015 IEEE Symposium on Security and Privacy,
pages 499–516. IEEE Computer Society Press, May 2015.

86 D. Aranha et al.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assump-
tions. In Dario Catalano and Roberto De Prisco, editors, SCN 18, volume
11035 of LNCS, pages 368–385. Springer, Heidelberg, September 2018.

BG14. Shi Bai and Steven D. Galbraith. An improved compression technique for
signatures based on learning with errors. In Josh Benaloh, editor, CT-
RSA 2014, volume 8366 of LNCS, pages 28–47. Springer, Heidelberg, Febru-
ary 2014.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, edi-
tor, ITCS 2012, pages 309–325. ACM, January 2012.

BHM20. Xavier Boyen, Thomas Haines, and Johannes Müller. A verifiable and prac-
tical lattice-based decryption mix net with external auditing. In Liqun
Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors, ES-
ORICS 2020, Part II, volume 12309 of LNCS, pages 336–356. Springer,
Heidelberg, September 2020.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
A homomorphic LWE based E-voting scheme. In Tsuyoshi Takagi, editor,
Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
pages 245–265. Springer, Heidelberg, 2016.

Cha81. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981.

CMM19. Núria Costa, Ramiro Mart́ınez, and Paz Morillo. Lattice-based proof of
a shuffle. In Andrea Bracciali, Jeremy Clark, Federico Pintore, Peter B.
Rønne, and Massimiliano Sala, editors, FC 2019 Workshops, volume 11599
of LNCS, pages 330–346. Springer, Heidelberg, February 2019.

dLNS17. Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler.
Practical quantum-safe voting from lattices. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
1565–1581. ACM Press, October / November 2017.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

Gjø11. Kristian Gjøsteen. The norwegian internet voting protocol. In E-Voting and
Identity - Third International Conference, VoteID 2011, pages 1–18, 2011.

GL16. Kristian Gjøsteen and Anders Smedstuen Lund. An experiment on the
security of the Norwegian electronic voting protocol. Annals of Telecommu-
nications, pages 1–9, 2016.

GLP12. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 530–547. Springer, Heidelberg, September 2012.

GS17. Kristian Gjøsteen and Martin Strand. A roadmap to fully homomorphic
elections: Stronger security, better verifiability. In Michael Brenner, Kurt
Rohloff, Joseph Bonneau, Andrew Miller, Peter Y. A. Ryan, Vanessa Teague,
Andrea Bracciali, Massimiliano Sala, Federico Pintore, and Markus Jakob-
sson, editors, FC 2017 Workshops, volume 10323 of LNCS, pages 404–418.
Springer, Heidelberg, April 2017.

HJP13. W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number
Theory, 2013. Version 2.4.0, http://flintlib.org.

Lattice-Based Proof of Shuffle 87

HR16. Feng Hao and Peter Y. A. Ryan, editors. Real-World Electronic Voting:
Design, Analysis and Deployment. CRC Press, 2016.

LN17. Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption
from lattices. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 293–323. Springer,
Heidelberg, April / May 2017.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer, Heidel-
berg, May 2013.

LPT19. Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. Trapdoor com-
mitments in the SwissPost e-voting shuffle proof, 2019.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptography, 75(3):565–599, June 2015.

LS18. Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in
partially splitting cyclotomic rings and applications to lattice-based zero-
knowledge proofs. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part I, volume 10820 of LNCS, pages 204–224. Springer,
Heidelberg, April / May 2018.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 598–616. Springer, Heidelberg, December 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 738–755. Springer, Heidelberg, April 2012.

Nef01. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In
Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages
116–125. ACM Press, November 2001.

PFH+17. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute
of Standards and Technology, 2017. available at https://csrc.nist.gov/

projects/post-quantum-cryptography/round-1-submissions.
Scy. Scytl. Scytl sVote, complete verifiability security proof report - software

version 2.1 - document 1.0. https://www.post.ch/-/media/post/evoting/
dokumente/complete-verifiability-security-proof-report.pdf.

Str19. Martin Strand. A verifiable shuffle for the GSW cryptosystem. In Aviv
Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Federico
Pintore, and Massimiliano Sala, editors, FC 2018 Workshops, volume 10958
of LNCS, pages 165–180. Springer, Heidelberg, March 2019.

ZSS20. Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. COSAC: COmpact
and scalable arbitrary-centered discrete gaussian sampling over integers. In
Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography
- 11th International Conference, PQCrypto 2020, pages 284–303. Springer,
Heidelberg, 2020.

88 D. Aranha et al.

Appendix

A Security Proof of the Shuffle Protocol

We now show how to prove correctness and the zero-knowledge property of the
protocol ΠShuffle as described in Figure 2.

Theorem 2. The shuffle protocol ΠShuffle as described in Figure 2 is complete
for the relation RShuffle if τ ≪ |Rp| and ΠLin is complete.

Proof. Due to the size of Rp there must always exist such a value ρ. Furthermore,
the instances of ΠLin always succeed due to the completeness of the respective
proof if the si indeed fulfill the required linear relations. As Lemma 4 shows that
the respective values for si always exist, the claim follows. ⊓⊔

We prove Special Honest Verifier Zero-Knowledge (HVZK) by a series of
games, as shown in Figure 7. In the first game, we swap the HVZK protocol
ΠLin from Figure 1 with its simulation. Then we change the way we calculate
the initial commitments [[Di]] by instead sampling si uniformly random and
computing what Di should be. In this step we make no use of the values θi.
Next, we let the [[Di]]’s be commitments [[0]], and sample random si’s. Thus, we
do not use any permutation in the last game; the Simulator is indistinguishable
from the Real game. We proceed with the proofs that an adversary cannot
distinguish between any of these games.

Real

1 : θi
$← Rp

2 : Di ← (1)

3 : Send [[Di]]

4 : si ← (2)

5 : Send si

6 : SHVZK

Game 1

1 : θi
$← Rp

2 : Di ← (1)

3 : Send [[Di]]

4 : si ← (2)

5 : Send si

6 : Sim

Game 2

1 : si
$← Rp

2 : θi
$← Rp

3 : Di ← (8)

4 : Send [[Di]]

5 : Send si

6 : Sim

Simulator

1 : [[Di]]← [[0]]

2 : si
$← Rp

3 : Send [[Di]]

4 : Send si

5 : Sim

Fig. 7: Honest Verifier Zero-Knowledge games. We denote by x← (i) that x was
computed according to equation (i). The steps that changes from game to game
are indicated with boxes.

Lemma 6. If there exists an adversary that can distinguish between Real and
Game 1 in Figure 7, then there exists an adversary that can break the HVZK
property of ΠLin.

Lattice-Based Proof of Shuffle 89

Proof. This follows because the only difference between Real and Game 1 is that
we simulate the last step, which is exactly the zero-knowledge proof. ⊓⊔

Lemma 7. The distribution of the transcripts ({[[Di]]}, β, {si}) produced by Game 1
and Game 2 are perfectly indistinguishable.

Proof. We give the argument for one of the equations. The argument is identical

for the remaining equations. In Game 1 we sample θ1
$← Rp, compute

[[D1]] = [[θ1M̂1]],

and then compute s1 according to (3). Since θ1 is uniform, this is a commitment
to a uniformly random value. Also, we know that s1 is uniformly distributed.

In Game 2 we sample a uniformly random s1
$← Rp and then compute

[[D1]] = [[βM̂1 + s1M1]]. (8)

Now, s1 is uniformly random, so [[D1]] is a commitment to a uniformly random
value. Hence, it follows that the transcripts are perfectly indistinguishable. ⊓⊔

Lemma 8. If there exists an adversary A that can distinguish between the tran-
scripts of Game 2 and Simulator, then there exists an adversary A′ who breaks
the hiding property of the commitment scheme.

Proof. The proof is shown in Figure 8.
We use a standard distinguishing game. A commitment oracle will then com-

mit to random values m ∈ Rp or to 0. The oracle will send the challenges {cb,i}
to A′ where b is a bit indicating commitments to 0 or m if b is 0 or 1, respectively.
Then A′ will pick random values si and send the transcript ({cb,i}, β, {si}) to
the distinguishing adversary A. We then use the distinguishing power of A to
decide on a bit b′ and send this back to the commitment challenger.

We now show that the cb,i’s are distributed as A expected. When querying A
on the transcripts, we use the challenges cb,i ← C(mi, ri) for a uniformly random
mi, but A expects the commitments [[Di]] from (8). For the first equation of (8),
we note that the committed message is βM̂1 + s1M1. Since each si is a uniform
sample from Rp, this expression is a uniformly random sample from Rp. Hence,
the distributions of c1,i and [[Di]] (from (8)) are identical. ⊓⊔

This means that we can simulate a transcript of the real protocol without
knowing any of the private information known to P. We summarize this result
in a theorem.

Theorem 3. Assuming that ΠLin is an HVZK proof and that the used commit-
ment scheme is hiding, then the transcripts of Real and Simulator in Figure 7
are indistinguishable.

Proof. This is true by combining Lemma 6, 7 and 8. ⊓⊔

90 D. Aranha et al.

Adversary Breaking the Hiding Property

Commitment Oracle

for i = 1, . . . τ do

m
$← Rp

r
$← Dk

β∞

c0,i ← C(0, r)
c1,i ← C(m, r)

b← {0, 1}

{cb,i}τi=1 Using Adversary

A′ A

si
$← Rp

β
$← Rp

{cb,i}, β, {si}

b′ ← A({cb,i}, β, {si})

b′

b′

if b′ = b then

Return 1

Return 0

Fig. 8: Using an adversary A who can distinguish between Game 2 and Simulator
in Figure 7, we can construct an adversary A′ who can break the hiding property
of the commitment scheme.

Lattice-Based Proof of Shuffle 91

B Security of the Voting Protocol

Our return code mechanism does not fit the standard voting scheme syntax secu-
rity definitions such as [BCG+15]. The usual solution is to define ad hoc security
definitions (see e.g. [Scy] and [Gjø11]). Note that protocols with this [Gjø11] and
similar architectures have been deployed in large-scale national elections.

We follow the standard approach for voting system analysis, which is to
consider a voting system to be fairly simple cryptographic protocol built on top
of a cryptographic voting scheme, which is in some sense similar to a public key
cryptosystem with some very specific functionality.

We begin by describing a verifiable cryptographic voting scheme with return
codes, explain how our voting system can be described as a simple protocol on
top of such a cryptographic voting scheme. We define security notions for this
cryptosystem, sketch the security proof, and then informally discuss the voting
protocol and its security properties in terms of the cryptosystem’s security.

B.1 Verifiable Voting Schemes with Return Codes

A verifiable cryptographic voting scheme in our architecture is usually defined in
terms of algorithms for the four tasks election setup, casting ballots, counting
cast ballots and verifying the count. To support return codes, we need algorithms
for two more tasks: voter registration and pre-code computation.

The setup algorithm Setup outputs a public key pk, a decryption key dk and
a code key ck.

The register algorithm Reg takes a public key pk as input and outputs a voter
verification key vvk, a voter casting key vck and a function f from ballots to
pre-codes.

The cast algorithm Cast takes a public key pk, a voter casting key vck and
a ballot v, and outputs an encrypted ballot ev and a ballot proof Πv.

The code algorithm Code takes a code key ck, an encrypted ballot ev and a
proof Πv as input and outputs a pre-code r̂ or ⊥.

The count algorithm Count takes a decryption key dk and a sequence of en-
crypted ballots ev1, ev2, . . . , ev lt , and outputs a sequence of ballots v1, v2, . . . , vlt
and a proof Πc, or ⊥.

The verify algorithm Verify takes a public key pk, a sequence of encrypted
ballots ev1, ev2, . . . , ev lt , a sequence of ballots v1, v2, . . . , vlt and a proof Πc, and
outputs 0 or 1.

A cryptographic voting scheme is correct if for any (pk, dk, ck) output by
Setup and any (vvk1, vck1, f1), . . . , (vvklV , vcklV , flV) output by Reg(pk), any
ballots v1, . . . , vlV , any (ev i, Π

v
i) output by Cast(pk, vcki, vi), i = 1, 2, . . . , lV ,

and any (v′1, . . . , v
′
lV
, Πc) output by Count(dk, ev1, . . . , ev lV), then:

– Code(ck, vvki, ev i, Π
v
i) = fi(vi),

– Verify(pk, ev1, . . . , ev lV , v
′
1, . . . , v

′
lV
, Πc) = 1, and

– v1, . . . , vlV equals v′1, dots, v
′
lV
, up to order.

92 D. Aranha et al.

We further require that the distribution of ev i only depends on pk and vi, not
vcki. Also, whether Count outputs ⊥ does not depend on the order of the en-
crypted ballots, and if Count outputs ⊥ for some list (ev1, . . . , ev lV) of encrypted
ballots, Count outputs ⊥ for any other list with (ev1, . . . , ev lV) as a prefix.

B.2 Our Scheme

We summarize the scheme from Section 5 in the above terms. The commitment
algorithms are (KeyGenC , Com(,)Open()), the verifiable encryption algorithms are
(KeyGenVE , EncVE , VerVE , DecVE).

– The setup algorithm computes pkC ← KeyGenC , (pkV , dkV) ← KeyGenVE ,
(pkR, dkR)← KeyGenVE . The public key pk = (pkC , pkV , pkR), the decryp-
tion key is dk = (pkC , dkV) and the code key is ck = (pkC , pkV , dkR).

– The register algorithm takes pk = (pkC , pkV , pkR) as input. It samples a
$←

Rp and computes (ca, da)← Com(pkC , a). The voter verification key is vvk =
ca, the voter casting key is (a, ca, da), and the function f is v 7→ v + a.

– The cast algorithm takes pk = (pkC , pkV , pkR), vck = (a, ca, da) and v as
input. It computes (c, d)← Com(pkC , v), r̂ ← a+ v, (cr̂, dr̂)← Com(pkC , r̂),
Π lin

r̂ is a proof that c+ ca (which is a commitment to v + a) and cr̂ satisfy
the relation v + a = r̂. Then it encrypts e = (v,w, c, z) ← EncVE (pkV , d)
and er̂ = (vr̂,wr̂, cr̂, zr̂) ← EncVE (pkR, dr̂). The encrypted ballot is ev =
(c, d,v,w, c), while the ballot proof is Πv = (z, cr̂, er̂, Π

lin
r̂).

– The code algorithm takes ck = (pkC , pkV , dkR), a voter verification key vvk,
an encrypted ballot ev = (c, d,v,w, c) and a ballot proofΠv = (z, cr̂, er̂, Π

lin
r̂)

as input. It verifies Π lin
r̂ , and then verifies (v,w, c, z)) and er̂ using VerVE .

If any verification fails, it outputs ⊥. It then decrypts dr̂ ← er̂ and recovers
r̂ from cr̂ and dr̂, and outputs r̂.

– The count algorithm takes as input dk = (pkC , dkV) and encrypted ballots
(c1,v1,w1, c1), . . . , (clt ,vlt ,wlt , clt). It computes di ← DecVE (dkV ,vi,wi, ci)
and recovers v′i from ci and di. If any decryption fails, it outputs ⊥. Oth-
erwise, it chooses a random permutation π on {1, 2, . . . , lt}, sets vπ(i) = v′i,
and creates a proof of shuffle of known values Πc. It outputs v1, v2, . . . , vlt
and Πc.

– The verify algorithm takes as input pk = (pkC , pkV , pkR), encrypted ballots
(c1,v1,w1, c1), . . . , (clt ,vlt ,wlt , clt), ballots v1, v2, . . . , vlt and a count proof
Πc. It verifies that Πc is a correct proof of shuffle of known values for
c1, c2, . . . , clt and v1, v2, . . . , vlt . It outputs 1 if verification holds, otherwise
it outputs 0.

It is straight-forward to verify that the scheme is correct.

B.3 Our Voting Protocol

Recall the protocol described in Figure 6.

Lattice-Based Proof of Shuffle 93

In the setup phase, a trusted set of players run the setup algorithm Setup.
The derived public key pk is given to every player, the decryption key dk is given
to the shuffler S and the code key ck is given to the return code generator R.

In the registration phase, a set of trusted players run the register algorithm
Reg to generate per-voter keys (vvk, vck, f) for the voter V , making every verifi-
cation key public and giving vck to the voter’s computer. Then the return code
generator chooses key k for PRF, and a set of trusted players compute the return
code table {(vi, PRFk(V, f(vi))} for a relatively small set of ballots v1, . . . , vω.
The voter gets the return code table.

In the casting phase, the voter V instructs the voter’s computer D which
ballot to cast. The voter’s computer D runs the casting algorithm Cast and
sends the encrypted ballot and the ballot proof to the ballot box B. (In practice,
the ballot box will verify the ballot proofs, but it is not necessary.) The ballot box
B sends the encrypted ballot and the ballot proof to the return code generator
R, who runs the code algorithm Code to get the precode r̂. It computes the
return code r ← PRFk(r̂) and sends r to the voter’s phone F , which sends it on
to the voter V . The voter V compares the return code to the code in its return
code table, and accepts the ballot as cast if and only if the codes match.

In addition, the voter’s computer will sign the encrypted ballot and ballot
proof on behalf of the voter. The ballot box and the return code generator will
verify this signature. The return code generator will countersign everything and
return this signature to the voter’s computer via the ballot box. The voter’s
computer will verify the countersignature. (This ensures that if the voter’s com-
puter accepts the ballot as cast, the ballot box and the return code generator
agree that the ballot was indeed cast. If either of them is honest, this gives us a
stronger form of integrity.)

In the casting phase, every player uses fixed-length encodings for messages,
ensuring that every message of a given type has a fixed length that is public
knowledge.

In the counting phase, the ballot box B and the return code generator R
send the encrypted ballots and ballot proofs they have seen to the auditor A.
If the data is consistent, the auditor A approves. The ballot box B then sorts
the list of encrypted ballots and sends this to the shuffler S. (In the event that
some voter has cast more than one ballot, only the encrypted ballot seen last is
included.) The shuffler S uses the count algorithm Count to compute a list of
ballots v1, . . . , vlt and a shuffle proof, which is sent to the auditor A. The auditor
A uses the verification algorithm Verify to verify the shuffle proof against the
encrypted ballots received from B and R.

This concludes the description of the voting protocol in terms of a verifiable
cryptographic voting scheme with return codes.

If some limited verifiability is desired, the ballot box B, return code generator
R and auditor A may make commitments to the encrypted ballots received
public. The voter’s computer can be given the commitment and an opening to
verify the correctness of the commitment to the voter’s encrypted ballot, as well
as its presence in the public record.

94 D. Aranha et al.

Note that more than one auditor can be used in the protocol.

B.4 Security Notions

Our notion of confidentiality is similar to the usual ballot box privacy no-
tions [BCG+15]. An adversary that sees both the contents of the ballot box
and the decrypted ballots should not be able to determine who cast which bal-
lot. This should hold even if the adversary can see pre-codes, learn the code key
and some voter casting keys, and insert maliciously generated ciphertexts into
the ballot box.

Our notion of integrity is again fairly standard, adapted to return codes.
An adversary should not be able to cause an incorrect pre-code or inconsistent
decryption or non-unique decryption, even if the adversary knows all of the key
material.

We define security notions for a verifiable cryptographic voting scheme using
an experiment where an adversary A is allowed to reveal keys, make challenge
queries, create ciphertexts and choose which ballots get counted. This experiment
models both a left-or-right game for confidentiality, and a test query for integrity.
The experiment works as follows:

– Sample b, b′′
$← {0, 1}. Set L to be an empty list.

– (pk, dk, ck) ← Setup. For i = 1, . . . , lV : (vvki, vcki, fi) ← Reg(pk). Send
(pk, vvk1, . . . , vvklV) to A.

– On a voter reveal query i, send (vcki, fi) to A. On a decrypt reveal query,
send dk to A. On a code reveal query, send ck to A.

– On a challenge query (i, v0, v1), compute (ev , Πv)← Cast(pk, vcki, vb), r̂ ←
Code(ck, vvki, ev , Π

v), append (i, v0, v1, ev , Π
v) to L and send (ev , Πv) to

A.
– On a chosen ciphertext query (i, ev , Πv), compute r̂ ← Code(ck, vvki, ev , Π

v).
If r̂ ̸= ⊥, append (i,⊥,⊥, ev , Πv) to L. Send r̂ to A.

– On a count query (j1, . . . , jls), with

L = ((i1, v0,1, v1,1, ev1, Π
v
1), . . . , (ilt , v0,lt , v1,lt , ev lt , Π

v
lt)),

compute result ← Count(dk, ev j1 , . . . , ev jls
) and send result to A.

– On a test query (j1, . . . , jls , v1, . . . , vls , Π
c), compute result ←

Verify(pk, ev j1 , . . . , ev jls
, v1, . . . , vls , Π

c) and send result to A.

Eventually, the adversary outputs a bit b′.
Confidentiality fails trivially for the usual reasons, and in particular, the

count trivially reveals the challenge bit unless the left hand ballots and the
right-hand ballots are identical, up to order. (Recall that the adversary should
figure out who cast which ballots, not what ballots were cast.) For executions
where confidentiality fails trivially, we should not count the adversary’s answer
towards the advantage, so we will compare the adversary’s guess with a secret
random bit. Integrity can fail, either if pre-codes are incorrect, if an outcome

Lattice-Based Proof of Shuffle 95

verifies as correct but is inconsistent with the challenge ciphertexts, or if there
is no unique decryption.

We define events related to confidentiality and integrity. Let Eg be the event
that b = b′ and let Er be the event that b′′ = b′. Let Ef denote the event
that an execution is fresh, which is true if the following are satisfied: there is no
decrypt reveal query; for any i, there is either no challenge query, or at most one
challenge query and no voter reveal query or chosen ciphertext query; if there
is a count query where result ̸= ⊥, then the sequence (v0,j1 , . . . , v0,jls) equals
(v1,j1 , . . . , v1,jls), up to order.

Let Fi (incorrect pre-code) be the event that for some chosen ciphertext
query (i, ev , Πv) where Code(ck, vvki, ev , Π

v) = r̂ ̸= ⊥, we have that either
Count(dk, ev) = ⊥ or Count(dk, ev) = (v,Πc) and fi(v) ̸= r̂. Let Fc (count
failure) be the event that a count query gets result = ⊥. Let Fd (inconsistent
decryption) be the event that a test query (j1, . . . , jls , v1, . . . , vls , Π

c) with L =
((i1, v0,1, v1,1, ev1, Π

v
1), . . . , (ilt , v0,lt , v1,lt , ev lt , Π

v
lt
)) gets result = 1 and there

is no permutation π on {1, 2, . . . , ls} such that vb,k = ⊥ or vb,k = vπ(k) for
k = 1, 2, . . . , ls. Let Fu (no unique decryption) be the event that two test queries
(j1, . . . , jls , v1, . . . , vls , Π

c) and (j1, . . . , jls , v
′
1, . . . , v

′
ls
, Πc′) both get result = 1,

but there is no permutation π on {1, 2, . . . , ls} such that vk = v′π(k) for k =
1, 2, . . . , ls.

The advantage of the adversary is

max{2|Pr[Ef ∧ Eg] + Pr[¬Ef ∧ Er]− 1/2|,Pr[Fi ∨ Fc ∨ Fd ∨ Fu]}.

B.5 Security Proof Sketch

We briefly sketch how a proof to bound the advantage of an adversary against
the cryptographic voting scheme in terms of adversaries against the shuffle of
known values, the underlying commitment scheme or the related linearity proofs,
or the verifiable encryption scheme.

Confidentiality events We begin by analyzing the confidentiality events. Note
that Pr[¬Ef ∧ Er] = (1− Pr[Ef])/2. We must therefore analyze Pr[Ef ∧ Eg] =
Pr[Eg | Ef] Pr[Ef].

The proof would proceed as a sequence of games, where the first is the inter-
action between the experiment and the adversary.

In the next game, we stop the adversary with a forced guess b′ = 0 imme-
diately upon any query that would make the execution non-fresh. Note that a
query that makes the execution non-fresh can be recognized with no secret infor-
mation. This changes nothing, but in the further analysis we may assume that
the execution remains fresh.

We next simulate all the zero knowledge proofs involved, which is straight-
forward in the random oracle model since all our proofs are HVZK.

Next, we change the challenge query so that instead of computing the precode
as r̂ = a+ v, it samples r̂ uniformly at random. If this change is observable, we

96 D. Aranha et al.

create a real-or-random adversary against the commitment scheme by making a
the challenge and getting a commitment that is either a or a random value.

Next, in the count query, instead of decrypting an encrypted ballot from a
challenge query, we use the corresponding left cleartext (regardless of the value
of b). Since the shuffle proof has been simulated, the execution is fresh and the
ballots are permuted randomly, this change is not observable.

Next, in the count query, instead of decrypting an encrypted ballot from a
challenge query, we instead compute the ballot from the corresponding pre-code
r̂ and voter casting key component a as v = r̂−a. This change is only observable
if the linear proof verified in the code algorithm was unsound, that is, if we have
openings of c to v, of ca to a, of c + ca to v + a and cr̂ to r̂, but r̂ ̸= v + a.
Also, the change is observable if the encrypted ballot does not decrypt to an
opening, but since the proof for the encrypted ballot was verified during the
code query, it follows that this results in an adversary against the verifiability
of the encryption scheme.

Observe that at this point, the decryption key dkV is no longer used. Also,
the pre-code encrypted in the challenge query is independent of the challenge
ballots.

In the next game, we encrypt randomness instead of the correct opening of
c. If this change is observable, we get a real-or-random adversary against the
verifiable encryption.

Finally, we commit to a random value instead of the challenge ballot. If this
change is observable, we get a real-or-random adversary against the commitment
scheme.

We can now observe that the challenge query processing is independent of the
challenge bit. The adversary no longer has any information about the challenge
bit, and therefore has no advantage in this game. The claim that the difference
between Pr[Ef ∧Eg] + Pr[¬Ef ∧Er] and 1/2 is appropriately bounded follows.

Integrity events Next, we analyze the integrity events. In this case, the adversary
may have revealed every secret key, and there is no need for the execution to be
fresh.

If a chosen ciphertext query results in an incorrect pre-code, then as above ei-
ther the ciphertext e does not decrypt to an opening of the commitment (in which
case we get an adversary against the verifiability of the encryption scheme), or we
have broken the linearity proof for commitments. It follows that the probability
of Fi happening is appropriately bounded.

In the event that Fc happens, then since every encrypted ballot either origi-
nates with a challenge query or a chosen ciphertext query, we know that either
the ciphertext e will decrypt to an opening of the commitment or we will have
an adversary against the verifiability of the encryption scheme. In either case, it
follows that the probability of Fc happening is appropriately bounded.

In the event that Fd happens, we have openings of the ciphertexts that orig-
inated with challenge queries. Since the shuffle is a proof of knowledge, we get
an adversary against binding for the commitment scheme. It follows that the
probability of Fd happening is appropriately bounded.

Lattice-Based Proof of Shuffle 97

In the event that Fu happens, then since the shuffle is a proof of knowledge,
we get an adversary against binding for the commitment scheme. It follows that
the probability of Fu happening is appropriately bounded.

The claim that Pr[Fi ∨ Fc ∨ Fd ∨ Fu] is appropriately bounded follows.

B.6 Voting System Security Properties

Coercion Resistance A coercer controls the voter during ballot casting. The
appropriate mental image we should have in mind is that the coercer is a “help-
ful” person who observes the voter while the voter is casting a ballot of the co-
ercer’s choice. The coercer may “assist” the voter in the casting process. When
the ballot casting is done, the coercer leaves and the voter is left to their own
devices. (The coercer may return at a later point in time and redo the coercion
process.)

The voter may choose to resist the coercion attempt. This may involve active
steps during the coerced ballot casting (e.g. lying about authentication data).
For remote voting, it will usually also involve recovery after the coercer has left.

The coercer plays a game with a set of voters, some of which may be corrupt.
The coercer may coerce one or more voters, who will either all resist or all accept
coercion. The coercer may also ask voters to cast ballots uncoerced. Eventually,
there is a tally and the coercer receives the outcome (including any transcripts).

A system is coercion resistant if the coercer cannot decide if the voters re-
sisted.

It is generally assumed that a coercer does not control any infrastructure
players and cannot monitor networks, since for remote voting either capabil-
ity usually allows trivial winning strategies for the coercer. In the real world, a
coercer will always be able deduce some information about the success of the
coercion attempt by looking at unavoidable public information such as the elec-
tion result. This applies, regardless of the voting system used (so-called Italian
attacks are an example of this). It is desirable to avoid this class of attacks,
which can be done by having the coercer decide the voting intention of every
voter. The consequence is that the coercer must organize coercion such that it
has no effect on the election result, regardless of whether voters resist or not.

Analysis. Our voting system uses re-voting to resist coercion: after the coercer
has left, the voter casts another ballot, this time according to their true voting
intention. The use of re-voting for coercion resistance is well-understood and
largely independent of the underlying cryptosystem. Since the coercer does not
learn the contents of the ballot box (except possibly for the commitments), nor
any network traffic, it is impossible for the coercer to discover the re-voting.

In summary, the coercer cannot decide if the voter re-voted or not.

Privacy Privacy is modeled as an indistinguishability game between an adver-
sary and a set of voters, some of which may be corrupt. The adversary gives
pairs of ballots to honest voters, and they will all either cast the left ballot or
the right ballot. The adversary must decide which they cast.

98 D. Aranha et al.

Unlike for coercion resistance, the adversary can corrupt infrastructure play-
ers and also control the network. Like for coercion resistance, we want to avoid
adversaries that deduce the honest voters’ ballots from the cast ballots. Again,
we require that the adversary organizes the pairs of ballots given to the honest
voters in such a way that the ballots cast are independent of whether the voters
cast the left or the right ballot. The difference between privacy and coercion is
that for privacy, the adversary learns the ballots cast by compromising infras-
tructure players. For coercion, the coercer only has access to public information
from the infrastructure players, but may have access to private information about
the voter.

The adversary controls the network, but we shall assume that players use
secure channels to communicate. This means that only the fact that players are
communicating and the length of their communications leak. Since message flows
and message lengths are fixed and public knowledge, we can ignore the network
in the subsequent analysis.

Analysis. If some honest voter’s computer D is compromised, the adversary can
trivially win the privacy game.

Next, consider the case that the shuffler S is compromised. If any of B,
R or A is compromised, the adversary can trivially win the game, since B,
R and A all know who submitted which encrypted ballot, while the shuffler
S has the decryption key. If the shuffler S is the only compromised player,
then since the ballot box B sorts the list of encrypted ballots before sending
them to the shuffler and encrypted ballots are independent of the per-voter key
material, the correspondence between the ciphertexts and the voters is lost, so
the encrypted ballots alone reveal only the cast ballots. By assumption, these
ballots are independent of the left-or-right choice of the voters.

If a voter casts more than one ballot, a compromised return code generator
will always be able to decide if they are the same or not by observing the return
code sent to the voter. If the ballots are distinct (e.g. if the voter is resisting
coercion), the return code generator will get information about which ballots
were submitted, and typically learn both ballots.

Suppose the honest voters cast at most one ballot each. Then privacy against
B, R and A follows from confidentiality of the cryptographic voting system, since
the protocol execution can be interpreted as an interaction with the cryptosystem
experiment and our assumptions ensure a fresh execution.

Note that cut-and-paste attacks against confidentiality, which commonly af-
fect this type of voting protocol, do not work against this protocol because the
ballot proof includes an encryption of the return code and a proof that the re-
turn code is correct, which means that the adversary must know the ballot to
make a cut-and-paste attack work.

In summary, privacy holds if none of the honest voters’ computers are com-
promised, and either only the decryption service is corrupted or no honest voter
casts more than one ballot.

Lattice-Based Proof of Shuffle 99

Integrity. Integrity for a voting system is modelled using a game between an
adversary and a set of voters, some of which may be corrupt. The adversary
tells the honest voters what ballots to cast. If the count phase eventually runs
and ends with a result, the adversary wins if the result is inconsistent with the
ballots accepted as cast by the honest voters. (Recall that only the voter’s last
ballot cast is counted, so if the voter first accepts a ballot as cast, and then tries
to cast another ballot and this fails, the end result is that they have not accepted
a ballot as cast.)

We can define a variant notion called ϵ-integrity where we allow a small
error, and say that the adversary wins if the result is inconsistent with any
(1 − ϵ) fraction of the ballots accepted as cast by the honest voters. (We need
this since return codes for a single voter must be human-comparable, and can
therefore collide with some non-negligible probability.)

Analysis. The voter will only accept the ballot as cast if the correct return
code is received. If the correct return code is received, then the correct pre-code
must have been computed at some point (except with some small probability of
collision in the PRF).

If the return code generator R is honest, integrity of the cryptographic voting
scheme implies that this can only happen if the correct ballot has been encrypted.
If the auditor A is honest, the count will only be accepted if the encrypted
ballot has been included in the count by the shuffler S. By the integrity of the
cryptographic voting system, all such ballots must then be included in the count.

If the voter’s computer D, the ballot box B and the auditor A are honest,
the count will only be accepted if the encrypted ballot has been included in the
count by the shuffler S. By the integrity of the cryptographic voting system, all
such ballots must then be included in the count.

If a voter receives a return code without casting a ballot, the voter will no
longer accept their ballot as cast.

In summary, ϵ-integrity holds if the auditor and either the return code gen-
erator, or both the voters’ computers and the ballot box are honest.

Limited Verifiability. In a verifiable voting system voters receive a receipt, the
voting system provides an election proof in addition to the election outcome, and
there is an additional verification algorithm that accepts or rejects the proof and
a voter’s receipt. Roughly speaking, the voting system is verifiable if when all
the receipts accepted by the honest voters verify as accepted with the election
proof, then the outcome is consistent with the honest voters’ cast ballots.

We have limited verifiability if the same claim holds when certain players are
honest during the election.

(Verifiability is a technical property. The practical idea is not that every
voter verifies their ballot. But it can be shown that if a sufficiently large and
random sample of voters separately accept their receipts together with the ballot
proof, then ϵ-integrity holds for the voting system. In our particular system, if
a sufficiently random selection of voters finds their commitments on the public

100 D. Aranha et al.

list, then with high probability almost all the voters would have found their
commitments on the list if they had looked for them.)

Analysis. If the voters’ computers are honest, then a voter’s computer will not
accept the ballot as cast unless it receives a commitment that opens to its en-
crypted ballot. A voter will not accept the result as verified unless the commit-
ment has been made public.

An honest auditor will only make commitments public if both the ballot box
and the return code generator agree on the presence of the encrypted ballot, and
this ballot was given to the shuffler. By the integrity of the cryptographic voting
system, almost all the ballots accepted as cast by honest voters will be among
the ballots output by the decryption service.

In summary, for the variant voting system with limited verifiability, ϵ-integrity
holds if the voters’ computers and the auditor are honest.

Lattice-Based Proof of Shuffle 101

Paper iii

Verifiable Mix-Nets and Distributed
Decryption for Voting from Lattice-Based

Assumptions
Diego F. Aranha, Carsten Baum, Kristian Gjøsteen and

Tjerand Silde

The manuscript is available at IACR ePrint:
eprint.iacr.org/2022/422.pdf.

Verifiable Mix-Nets and Distributed Decryption
for Voting from Lattice-Based Assumptions

Diego F. Aranha1 ID , Carsten Baum1 ID ,

Kristian Gjøsteen2 ID , and Tjerand Silde2⋆ ID

1 Aarhus University, Denmark
{dfaranha,cbaum}@cs.au.dk

2 Norwegian University of Science and Technology, Norway
{kristian.gjosteen,tjerand.silde}@ntnu.no

Abstract. Cryptographic voting protocols have recently seen much in-
terest from practitioners due to their (planned) use in countries such as
Estonia, Switzerland and Australia. Many organizations also use Helios
for elections. While many efficient protocols exist from discrete log-type
assumptions, the situation is less clear for post-quantum alternatives such
as lattices. This is because previous voting protocols do not carry over
easily due to issues such as noise growth and approximate relations. In
particular, this is a problem for tested designs such as verifiable mixing
and decryption of ballot ciphertexts.
In this work, we make progress in this direction. We propose a new verifi-
able secret shuffle for BGV ciphertexts as well as a compatible verifiable
distributed decryption protocol. The shuffle is based on an extension of
a shuffle of commitments to known values which is combined with an
amortized proof of correct re-randomization. The verifiable distributed
decryption protocol uses noise drowning for BGV decryption, proving
correctness of decryption steps in zero-knowledge.
We give concrete parameters for our system, estimate the size of each
component and provide an implementation of all sub-protocols. Together,
the shuffle and the decryption protocol are suitable for use in real-world
cryptographic voting schemes, which we demonstrate with a prototype
voting protocol design.

Keywords: lattice cryptography · verifiable mix-nets · distributed de-
cryption · zero-knowledge proofs · cryptographic voting · implementation

1 Introduction

Mix-nets were originally proposed for anonymous communication [Cha81], but
have since been used extensively for cryptographic voting systems. A mix-net is
a multi-party protocol which gets as input a collection of ciphertexts and outputs
another collection of ciphertexts whose decryption is the same set, up to order.

⋆ Work done in part while visiting Aarhus University.

105

The mix-net will mix the ciphertexts so that the permutation between input and
output ciphertexts is hidden if at least one party is honest.

Mix-nets are commonly used in cryptographic voting. Here, encrypted bal-
lots are submitted to a bulletin board or ballot box with identifying information
attached. These ciphertexts must then be sent through a mix-net before decryp-
tion, to break the identity-ballot correlation.

In addition to breaking the correlation between input and output ciphertexts,
the correctness of the mix-net must be verifiable. In some cases, it is sufficient
that some auditor (possibly distributed) operating at the same time as the mix-
net can verify correctness, but for other applications the mix-net should provide
a proof of correctness that can be verified by anyone at any later point in time.

A shuffle of a set of ciphertexts is another set of ciphertexts whose decryption
is the same as the original set, up to order. A shuffle is secret if it is hard to
correlate input and output ciphertexts. A shuffle is verifiable if there is some
proof for the claim that the decryptions are the same.

If we have a verifiable secret shuffle for some cryptosystem, building a mix-
net is trivial. The nodes of the mix-net receive a set of ciphertexts as input,
shuffle them sequentially and provide a proof of correctness. The mix-net proof
then consists of the sets of intermediate ciphertexts along with the shuffle proofs.
If at least one node in the mix-net is honest, it is hard to correlate the inputs
and outputs.

For applications in cryptographic voting, we also need verifiable decryption
to ensure that the correct result can be obtained. The design of the voting
system must ensure that nobody has both the decryption key and the original
ciphertexts. One simple strategy for this is to use verifiable threshold decryption,
where the decryption key is secret-shared among a committee of decryption
parties.

Verifiable shuffling and verifiable distributed decryption protocols are well-
known for cryptosystems based on discrete log-type assumptions. For example,
Neff [Nef01] proposed the first efficient verifiable secret shuffle for ElGamal-
like cryptosystems. Distributed verifiable decryption can be achieved by giving
uniformly random shares of the secret key to a set decryption nodes, and have
each of them compute a partial decryption together with a proof of equality of
discrete logarithms [CP93] with respect to the secret key share.

Quantum-safety is critical for cryptographic voting systems, since elections
have a long-term need for privacy, and there is an urgent need for progress. Ver-
ifiable secret shuffles and verifiable distributed decryption are two long-standing
obstacles to delivering practical cryptographic voting schemes based on quantum-
safe computational problems such as lattice assumptions.

1.1 Our contributions

In this paper, we design a verifiable secret shuffle for BGV ciphertexts [BGV12]
that is suitable for cryptographic voting systems. The main obstacle to simply
adopting the ideas used by Neff for discrete logarithms to lattices is the lack
of suitable underlying proofs and techniques. We overcome these obstacles by

106 D. Aranha et al.

designing an extended version of the shuffle of commitments to known values
by Aranha et al. [ABG+21]. In our protocol, the shuffler gets input ciphertexts
c1, . . . , cτ . We let the shuffler commit to re-randomization ciphertexts ĉ1, . . . , ĉτ
using a suitable linearly homomorphic commitment scheme Com. Together with
an amortized proof of shortness of the randomness used for the committed re-
randomization ciphertexts, this gives us a verifiable shuffle:

1. First, the shuffler commits to the re-randomization ciphertexts ĉ1, . . . , ĉτ as
Com(ĉi) and shows that they are well-formed.

2. The shuffler computes di = ci+ĉi and sends shuffled elements L = (dπ(i))i∈[τ]
to the receiver.

3. Finally, the prover shows that L is a list of openings of the commitments
obtained from ci + Com(ĉi).

Towards implementing this, we use highly efficient lattice-based commitments
[BDL+18] together with a version of recent amortized proofs of shortness [BLNS21].

As explained, a verifiable secret shuffle on its own is usually not enough to
build a cryptographic voting system. We also need some way to decrypt the out-
put of the mix-net, without compromising the input ciphertexts or allowing a
decryption server to cheat. Our solution is to distribute the decryption operation
in a verifiable way. We hand out key-shares of the secret decryption key to each
decryption server, and all of them perform a partial decryption of each cipher-
text. In addition, we publish commitments to the key shares. The decryption
servers then add noise to the partial decryption to hide information about their
shares, called noise drowning [BD10]. Finally they publish the partial decryp-
tions together with a proof of correctness of the decryption (and boundedness
of the noise used), and the plaintexts are computed in public by combining all
the partial decryptions.

Lattice-based cryptography is very delicate with respect to noise-levels, bounds
and dimensions, and we have to be cautious when combining the sub-protocols
mentioned into a larger construction. Each shuffle adds extra noise to each ci-
phertext, which means that to ensure correctness of decryption we need to choose
specific parameters based on the number of shuffles and the norm of the noise
added in each shuffle. Here, the norm is guaranteed by the zero-knowledge proofs
of shortness accompanying each shuffle. Furthermore, each partial decryption
also adds noise to the ciphertexts to hide the secret key. Because of the noise
drowning technique, the norm must be quite large, influencing both the bounds
of the amortized zero-knowledge proof and the choice of parameters for the over-
all cryptosystem. In particular, it is important when measuring performance to
use parameters suitable for the complete system, not parameters optimized for
individual components only.

In order to provide proper context for our contributions, we provide a sketch
of a full cryptographic voting protocol. A simplified variant could be used as
a quantum-safe Helios [Adi08] variant. We give example parameters suitable
for this protocol with 4 mix-nodes and 4 decryption nodes. We have estimated
the size of each component with respect to the parameters for the full protocol
in addition to implementing all sub-protocols, showing that it can be used for

Voting from Lattice-Based Assumptions 107

large-scale real-world elections where ballots typically are counted and verified
in batches of tens of thousands.

To summarize our implementation results, a ciphertext ballot is of size 80
KB, each mixing proof is of total size 370τ KB and each decryption proof is of
total size 157τ KB, where τ is the number of total ciphertexts. It takes only 2.5
ms to encrypt a ballot, while the mixing proof takes 1024τ ms and the decryption
proof takes 81.4τ ms. Note that the shuffle proof only takes 15.1τ ms, so the
time it takes to mix the ciphertexts is dominated by the time it takes to prove
correct re-randomization, which is 1009τ ms. Verification is much faster, only
20τ ms. These results improve on the state of the art considerably, see details in
Section 7.

1.2 Related work

Aranha et al. [ABG+21] provide a verifiable shuffle of known commitment open-
ings together with concrete parameters and an implementation of a complete
voting protocol. However, their trust model has the limitation that the ballot
box and the shuffle server must not collude to ensure privacy of the ballots, which
is too restrictive for most real-world settings. This is inherent for the protocol
which can not easily be extended to several shuffles unless layered encryption is
used, and this would heavily impact the performance.

Costa et al. [CMM19] design a more general shuffle with a straight-forward
approach similar to Neff [Nef01] based on roots of polynomials. Their protocol
requires committing to two evaluations of a polynomial, and then prove the
correctness of evaluation using a sequence of multiplication proofs which are
quite costly in practice. Farzaliyev et al. [FWK21] implements the mix-net by
Costa et al. [CMM19] using the amortization techniques by Attema et al. [ALS20]
for the commitment scheme by Baum et al [BDL+18]. Here, the proof size is
approximately 15 MB per voter, a factor 40 larger than our shuffle proof, even
for a smaller parameter set that does not take into account distributed decryption
afterwards. We expect our shuffle proof to be an additional factor 10 smaller than
what we presented above with optimal parameters for the shuffle only (q ≈ 232

and N = 1024). Furthermore, their proof generation takes approximately 1.5
seconds per vote, which is approximately 40 % faster than it takes to produce
our shuffle proof (when normalizing for clock frequency), with parameters that
do not take decryption into account.

Recently, Herranz et al. [HMS21] gave a new proof of correct shuffle based
on Benes networks and sub-linear lattice-based proofs for arithmetic circuit sat-
isfiability. However, the scheme is not implemented and the example parameters
do not take the soundness slack of the amortized zero-knowledge proofs into ac-
count. Moreover, [HMS21] does not consider decryption of ballots, which would
heavily impact the parameters of their protocol in practice.

A completely different approach to mix-nets is so-called decryption mix-nets.
The idea is that the input ciphertexts are actually nested encryptions. Each node
in the mix-net is then responsible for decrypting one layer of each ciphertext.
These can be made fully generic, relying only on public key encryption. Boyen

108 D. Aranha et al.

et al. [BHM20] carefully adapt these ideas to lattice-based encryption, resulting
in a very fast scheme. Decryption mix-nets are well-suited to applications in
anonymous communication. However, for voting applications they are often less
well-suited due to their trust requirements. An important goal for cryptographic
voting is universal verifiability: after the election is done, anyone should be able
to verify that the ballot decryption was done correctly without needing to trust
anyone. This trust issue generalizes to any situation where it is necessary to
convince someone that a shuffle has been done, but no auditor is available. Fast
or generic decryption mix-nets such as Boyen et al. [BHM20] need an auditor
(that can be distributed) to verify the mix-net, but the auditor must be trusted
during the mix-net operation. This conflicts with universal verifiability.

del Pino et al. [dLNS17] give a practical voting protocol based on homomor-
phic counting. They only support yes/no-elections, and the total size depends
directly on the number of candidates for larger elections. It was shown by Boyen
et al. [BHM21] that the protocol in [dLNS17] is not end-to-end verifiable unless
all tallying authorities and all voters’ voting devices are honest. This problem is
solved by [BHM21], but their construction still has the downside of only sup-
porting homomorphic tallying. Strand [Str19] built a verifiable shuffle for the
GSW cryptosystem, but this construction is too restrictive for practical use.
Chillotti et al. [CGGI16] uses fully homomorphic encryption, which for the fore-
seeable future is most likely not efficient enough to be considered for practical
deployment.

2 Preliminaries

Let N be a power of 2 and q a prime such that q ≡ 1 mod 2N . We define the
rings R = Z[X]/⟨XN +1⟩ and Rq = R/qR, that is, Rq is the ring of polynomials
modulo XN + 1 with integer coefficients modulo q. This way, XN + 1 splits
completely into N irreducible factors modulo q, which allows for very efficient
computation in Rq due to the number theoretic transform (NTT) [LN16]. We
define the norms of elements f(X) =

∑
αiX

i ∈ R to be the norms of the
coefficient vector as a vector in ZN :

||f ||1 =
∑
|αi|, ||f ||2 =

(∑
α2
i

)1/2
, ||f ||∞ = max

i∈[1,...,n]
{|αi|}.

For an element f̄ ∈ Rq we choose coefficients as the representatives in
[
− q−1

2 , q−1
2

]
,

and then compute the norms as if f̄ is an element in R. For vectors a =

(a1, . . . , ak) ∈ Rk we define the ℓ2 norm to be ∥a∥2 =
√∑∥ai∥22, and analo-

gously for the ℓ1 and ℓ∞ norm. It is easy to see the following relations between
the norms of elements in Rq:

∥f∥∞ ≤ α, ∥g∥1 ≤ β, then ∥fg∥∞ ≤ αβ,

∥f∥2 ≤ α, ∥g∥2 ≤ β, then ∥fg∥∞ ≤ αβ.

We furthermore define the sets Sβ∞ = {x ∈ Rq | ∥x∥∞ ≤ β∞} as well as
C = {c ∈ Rq | ∥c∥∞ = 1, ∥c∥1 = ν} and C̄ = {c− c′ | c ̸= c′ ∈ C} .

Voting from Lattice-Based Assumptions 109

2.1 The Discrete Gaussian Distribution

The continuous normal distribution over Rk centered at v ∈ Rk with standard
deviation σ is given by

ρNv,σ(x) =
1√
2πσ

exp

(−||x− v||2
2σ2

)
.

When sampling randomness for our lattice-based commitment and encryption
schemes, we will need samples from the discrete Gaussian distribution. This
distribution is achieved by normalizing the continuous distribution over Rk by
letting

N k
v,σ(x) =

ρkNv,σ(x)

ρkNσ (Rk)
where x ∈ Rk and ρkNσ (Rk) =

∑

x∈Rk

ρkNσ (x).

When σ = 1 or v = 0, they are omitted. When x is sampled according to Nσ

(see Section 2.1 in [BBC+18]), then,

Pr[∥x∥∞ > γσ] ≤ 2e−γ
2/2 and Pr[∥x∥2 >

√
2γσ] < 2−γ/4.

2.2 Rejection Sampling

In lattice-based cryptography in general, and in our zero-knowledge protocols in
particular, we would like to output vectors z = y+v such that z is independent
of v, and hence, v is masked by the vector y. Here, y is sampled according to
a Gaussian distribution N k

σ with standard deviation σ, and we want the output
vector z to be from the same distribution. The procedure is shown in Figure 1.

Here, 1/M is the probability of success, and M is computed as

max
N k

σ (z)

N k
v,σ(z)

= exp

[
−2⟨z,v⟩+ ∥v∥22

2σ2

]
≤ exp

[
24σ∥v∥2 + ∥v∥

2
2

2σ2

]
= M, (1)

where we use the tail bound from Section 2.1, saying that |⟨z,v⟩| < 12σ∥v∥2 with
probability at least 1 − 2100. Hence, for σ = 11∥v∥2, we get M ≈ 3. This is the
standard way to choose parameters, see e.g. [BLS19]. However, if the procedure
is only done once for the vector v, we can decease the parameters slightly, to the
cost of leaking only one bit of information about v from the given z.

In [LNS21], Lyubashevsky et al. suggest to require that ⟨z,v⟩ ≥ 0, and hence,
we can set M = exp(∥v∥2/2σ2). Then, for σ = 0.675∥v∥2, we get M ≈ 3. In
Figure 1, we use the pre-determined bit b to denote if we only use v once or
not, with the effect of rejecting about half of the vectors before the sampling of
uniform value u in the case b = 1, but allowing a smaller standard deviation.

110 D. Aranha et al.

Rej(z,v, b,M, σ)

1 : if b = 1 and ⟨z,v⟩ < 0: return 1

2 : µ←$ [0, 1)

3 : if µ >
1

M
· exp

[
−2⟨z,v⟩+ ∥v∥22

2σ2

]
: return 1

4 : else : return 0

Fig. 1. Rejection sampling

2.3 Knapsack Problems

We first define the Search Knapsack problem in the ℓ2 norm, also denoted as
SKS2. The SKS2 problem is exactly the Module-SIS problem in its Hermite
Normal Form.

Definition 1 (Search Knapsack problem). The SKS2n,k,β problem is to find

a short non-zero vector y satisfying [In A′] ·y = 0n for a random matrix A′.
An algorithm A has advantage ϵ in solving the SKS2n,k,β problem if

Pr

[
∥yi∥2 ≤ β ∧ A′ ←$ R

n×(k−n)
q ;[

In A′
]
· y = 0n 0 ̸= y = [y1, . . . , yk]

⊤ ← A(A′)

]
≥ ϵ.

Additionally, we define the Decisional Knapsack problem in the ℓ∞ norm
(DKS∞). The DKS∞ problem is equivalent to the Module-LWE problem when
the number of samples is limited.

Definition 2 (Decisional Knapsack problem). The DKS∞n,k,β problem is to

distinguish the distribution [In A′]·y for a short y from a bounded distribution
Sβ∞ when given A′. An algorithm A has advantage ϵ in solving the DKS∞n,k,β
problem if

∣∣∣Pr[b = 1 | A′ ←$ Rn×(k−n)
q ;y ←$ Sk

β∞ ; b← A(A′, [In A′] · y)]

− Pr[b = 1 | A′ ←$ Rn×(k−n)
q ;u←$ Rn

q ; b← A(A′,u)]
∣∣∣ ≥ ϵ.

See [LS15] for more details about hardness problems over module lattices.

2.4 Public Key Encryption

We present definitions inspired by Goldwasser and Micali [GM82] for the secu-
rity of a (slightly additively homomorphic) public key encryption scheme. We
only present chosen plaintext (CPA) security here, as we need to randomize ci-
phertexts in our main protocol. To ensure full security one often requires chosen
ciphertext security, which can be achieved by combining a CPA secure scheme
with zero-knowledge proofs of correct encryption.

Voting from Lattice-Based Assumptions 111

Definition 3 (Public Key Encryption Scheme). A public key encryption
scheme consists of three algorithms: key generation (KeyGen), encryption (Enc)
and decryption (Dec), where

- KeyGen, on input security parameter 1λ, outputs public parameters pp, a
public key pk, and a secret key sk,

- Enc, on input the public key pk and a message m, outputs a ciphertext c,
- Dec, on input the secret key sk and a ciphertext c, outputs a message m,

and the public parameters pp are implicit inputs to Enc and Dec.

Definition 4 (τ-Correctness). We say that the public key encryption scheme
is τ -correct if a sum of τ honestly generated ciphertext with overwhelming prob-
ability decrypts to the sum of the τ encrypted messages. Hence, we want that

Pr

Dec(sk,

∑

i∈[τ]

ci) =
∑

i∈[τ]

mi :
(pp, pk, sk)← KeyGen(1λ)

{ci}i∈[τ] ← Enc(pk, {mi}i∈[τ])

 ≥ 1− ϵ(λ),

where the probability is taken over the random coins of KeyGen and Enc.

Definition 5 (Chosen Plaintext Security). We say that the public key en-
cryption scheme is secure against chosen plaintext attacks if an adversary A,
after choosing two messages m0 and m1 and receiving an encryption c of ei-
ther m0 or m1 (chosen at random), cannot distinguish which message c is an
encryption of. Hence, we want that

|Pr

b = b

′
:

(pp, pk, sk)← KeyGen(1λ)
(m0,m1, st)← A(pp, pk)

b
$← {0, 1}, c← Enc(pk,mb)

b′ ← A(c, st)

−

1

2
| ≤ ϵ(λ),

where the probability is taken over the random coins of KeyGen and Enc.

2.5 Public Key Distributed Decryption

We now present a definition of a secure public key distributed decryption protocol
that is suitable for our voting application.

Definition 6 (Distributed Decryption Scheme). A public key distributed
decryption scheme consists of five algorithms: key generation (KeyGen), encryp-
tion (Enc), decryption (Dec), distributed decryption (DistDec) and combine (Comb),
where

- KeyGen, on input security parameter 1λ and number of key-shares ξ, outputs
public parameters pp, a public key pk, a secret key sk, and key-shares {skj},

- Enc, on input the public key pk and messages {mi}, outputs ciphertexts {ci},
- Dec, on input the secret key sk and ciphertexts {ci}, outputs messages {mi},
- DistDec, on input a secret key-share skj∗ and ciphertexts {ci}, outputs
decryption-shares {dsi,j∗},

- Comb, on input ciphertexts {ci} and decryption-shares {dsi,j}, outputs either
messages {mi} or ⊥,

112 D. Aranha et al.

and the public parameters pp are implicit inputs to Enc, Dec, DistDec and Comb.

Let Psk(u, v) be an efficiently computable predicate that on input secret key
sk = s and a ciphertext c = (u, v) outputs 1 or 0. For example, it outputs 1 if
∥v − su∥∞ < BDec ≪ ⌊q/2⌋ and otherwise 0 for the BGV scheme in Section 3.1.

Definition 7 (Threshold Correctness). We say that the public key distributed
encryption scheme is threshold correct with respect to to Psk(·) if

Pr

Comb({ci}i∈[τ], {dsi,j}i∈[τ],j∈[ξ])

=
Dec(sk, {ci}i∈[τ])

:

(pp, pk, sk, {skj}j∈[ξ])← KeyGen(1λ, ξ)
{c1, . . . , cτ} ← A(pp, pk)
∀i ∈ [τ] : Psk(ci) = 1

∀j ∈ [ξ] : {dsi,j}i∈[τ] ← DistDec(skj , {ci}i∈[τ])

 = 1,

where the probability is taken over the random coins of KeyGen and DistDec.

Definition 8 (Threshold Verifiability). We say that the public key distributed
encryption scheme is threshold verifiable with respect to Psk(·) if an adversary
A corrupting J ⊆ [ξ] secret key-shares {skj}j∈J cannot convince Comb to accept
maliciously created decryption-shares {dsi,j}i∈[τ],j∈J . More concretely:

Pr

Dec(sk, {ci}i∈[τ])
̸=

Comb({ci}i∈[τ], {dsi,j}i∈[τ],j∈[ξ])
̸=
⊥

:

(pp, pk, sk, {skj}j∈[ξ])← KeyGen(1λ, ξ)
({c1, . . . , cτ}, st)← A(pp, pk, {skj}j∈J)

∀i ∈ [τ] : Psk(ci) = 1
∀j ̸∈ J : {dsi,j}i∈[τ] ← DistDec(skj , {ci}i∈[τ])
{dsi,j}i∈[τ],j∈J ← A({dsi,j}i∈[τ],j ̸∈J , st)

 ≤ ϵ(λ),

where the probability is taken over the random coins of KeyGen and DistDec.

Definition 9 (Distributed Decryption Simulatability). We say that the
public key distributed decryption scheme is simulatable with respect to Psk(·) if
an adversary A corrupting J ⊊ [ξ] secret key-shares {skj}j∈J cannot distinguish
the transcript of the decryption protocol from a simulation by a simulator S which
only gets {skj}j∈J as well as correct decryptions as input. More concretely:

|Pr

b = b

′
:

(pp, pk, sk, {sk}j∈[ξ])← KeyGen(1λ, ξ)
({c1, . . . , cτ}, st)← A(pp, pk, {skj}j∈J)

∀i ∈ [τ] : Psk(ci) = 1
{ds0i,j} ← DistDec({skj}j∈[ξ], {ci}i∈[τ])

{ds1i,j} ← S(pp, {skj}j∈J , {ci, Dec(sk, ci)}i∈[τ])

b
$← {0, 1}, b′ ← A({dsbi,j}i∈[τ],j∈[ξ], st)

− 1

2
| ≤ ϵ(λ),

where the probability is taken over the random coins of KeyGen, DistDec and S.

2.6 Commitments

Commitment schemes were first introduced by Blum [Blu84], and have since
become an essential component in many advanced cryptography protocols.

Definition 10 (Commitment Scheme). A commitment scheme consists of
three algorithms: key generation (KeyGen), commitment (Com) and opening (Open),
where

- KeyGen, on input security parameter 1λ, outputs public parameters pp,

Voting from Lattice-Based Assumptions 113

- Com, on input message m, outputs commitment c and opening r,
- Open, on input m, c and r, outputs either 0 or 1,

and the public parameters pp are implicit inputs to Com and Open.

Definition 11 (Completeness). We say that the commitment scheme is com-
plete if an honestly generated commitment is accepted by the opening algorithm.
Hence, we want that

Pr

[
Open(m, c, r) = 1 :

pp← KeyGen(1λ)
(c, r)← Com(m)

]
= 1,

where the probability is taken over the random coins of KeyGen and Com.

Definition 12 (Hiding). We say that a commitment scheme is hiding if an
adversary A, after choosing two messages m0 and m1 and receiving a commit-
ment c to either m0 or m1 (chosen at random), cannot distinguish which message
c is a commitment to. Hence, we want that

|Pr

b = b

′
:

pp← KeyGen(1λ)
(m0,m1, st)← A(pp)

b
$← {0, 1}, c← Com(mb)

b′ ← A(c, st)

−

1

2
| ≤ ϵ(λ),

where the probability is taken over the random coins of KeyGen and Com.

Definition 13 (Binding). We say that a commitment scheme is binding if an
adversary A, after creating a commitment c, cannot find two valid openings to
c for different messages m and m̂. Hence, we want that

Pr

m ̸= m̂
Open(m, c, r) = 1
Open(m̂, c, r̂) = 1

:
pp← KeyGen(1λ)

(c,m, r, m̂, r̂)← A(pp)

 ≤ ϵ(λ),

where the probability is taken over the random coins of KeyGen.

2.7 Zero-Knowledge Proofs

These definitions are based on Goldwasser et al. [GMR85]. Let L be a language,
and let R be a NP-relation on L. Then, x is an element in L if there exists a
witness w such that (x,w) ∈ R. We let P, P∗, V and V∗ be polynomial time
algorithms.

Definition 14 (Interactive Proofs). An interactive proof protocol Π consists
of two parties: a prover P and a verifier V, and a setup algorithm (Setup), where
Setup, on input the security parameter 1λ, outputs public setup parameters sp.
The protocol consists of a transcript T of the communication between P and V,
with respect to sp, and the conversation terminates with V outputting either
1 or 0. Let ⟨P(sp, x, w), V(sp, x)⟩ denote the output of V on input x after its
interaction with P, who holds a witness w.

114 D. Aranha et al.

Definition 15 (Completeness). We say that a proof protocol Π is complete
if V outputs 1 when P knows a witness w and both parties follows the protocol.
Hence, for any efficient sampling algorithm P0 we want that

Pr

⟨P(sp, x, w), V(sp, x)⟩ = 1 :

sp← Setup(1λ)
(x,w)← P0(sp)

(x,w) ∈ R

 = 1,

where the probability is taken over the random coins of Setup, P and V.

Definition 16 (Knowledge Soundness). We say that a proof protocol Π is
knowledge sound if, when a cheating prover P∗ that does not know a witness w
is able to convince a honest verifier V, there exists a polynomial time algorithm
extractor E which, give black-box access to P∗, can output a witness w such that
(x,w) ∈ R. Hence, we want that

Pr

(x,w) ∈ R :

sp← Setup(1λ)
⟨P∗(sp, x, ·), V(sp, x)⟩ = 1

w ← EP∗(·)(sp, x)

 ≥ 1− ϵ(λ),

where the probability is taken over the random coins of Setup, P∗ and E.

Definition 17 (Honest-Verifier Zero-Knowledge). We say that a proof
protocol Π is honest-verifier zero-knowledge if a honest but curious verifier V∗
that follows the protocol cannot learn anything beyond the fact that x ∈ L. Hence,
we want for real accepting transcripts T⟨P(sp,x,w),V(sp,x)⟩ between a prover P and
a verifier V, and a accepting transcript S⟨P(sp,x,·),V(sp,x)⟩ generated by simulator
S that only knows x, that

|Pr

b = b

′
:

sp← Setup(1λ)
T0 = T⟨P(sp,x,w),V(sp,x)⟩ ← Π(sp, x, w)
T1 = S⟨P(sp,x,·),V(sp,x)⟩ ← S(sp, x)

b
$← {0, 1}, b′ ← V∗(sp, x, Tb)

−

1

2
| ≤ ϵ(λ),

where the probability is taken over the random coins of Setup,S and V∗.

An interactive honest-verifier zero-knowledge proof protocol can be made
non-interactive using the Fiat-Shamir transform [FS87].

3 Background: Lattice-Based Cryptography

We start this section by presenting the BGV encryption scheme by Brakerski et
al. [BGV12], and continue by presenting the commitment scheme by Baum et
al. [BDL+18] and it’s respective zero-knowledge proofs of linear relations. Then,
we present two amortized zero-knowledge proofs of knowledge of short preimages.
First, we present a modification of the protocol due to Bootle et al. [BLNS21]
for proving knowledge of many instances when the secrets are very short, say,
all coefficients are ternary, and the proof must be exact. We also provide the
protocol due to Baum et al. [BBC+18] for proving knowledge of many bounded
instances where the proof is approximate.

Voting from Lattice-Based Assumptions 115

3.1 BGV Encryption

Let p≪ q be primes, let Rq and Rp be defined as above for a fixed N , let D be a
bounded distribution over Rq, let B∞ ∈ N be a bound and let λ be the security
parameter. The (plain) BGV encryption scheme follows Definition 3 (in Section
2) and consists of three algorithms: key generation (KeyGen), encryption (Enc)
and decryption (Dec), where:

- KeyGen samples an element a ←$ Rq uniformly at random, samples a short
s ←$ Rq such that ∥s∥∞ ≤ B∞ and samples noise e ← D. The algorithm
outputs public key pk = (a, b) = (a, as+ pe) and secret key sk = s.

- Enc, on input the public key pk = (a, b) and an element m in Rp, samples a
short r ←$ Rq such that ∥r∥∞ ≤ B∞, samples noise e′, e′′ ← D, and outputs
the ciphertext c = (u, v) = (ar + pe′, br + pe′′ +m).

- Dec, on input the secret key sk = s and a ciphertext c = (u, v) in R2
q , outputs

the message m = (v − su mod q) mod p.

The following theorem for the BGV encryption scheme follows from Brakerski
et al. [BGV12, Section 3] and Lyubashevsky et al. [LPR13, Lemma 8.3].

Theorem 1 (Correctness and CPA Security of BGV). The BGV encryp-
tion scheme is 1-correct (Definition 4 in 2.4) if ∥v − su∥∞ ≤ BDec < ⌊q/2⌋, and
the scheme is secure against chosen plaintext attacks (Definition 5 in 2.4) if
the DKS∞N,2,β problem is hard for some β = β(N, q,B∞, σ, p). More general, the
scheme is τ -correct if τ ·BDec < ⌊q/2⌋.

Furthermore, we present the passively secure distributed decryption tech-
nique used in the MPC-protocols by Damg̊ard et al. [BD10,DKL+13,DPSZ12].
Here the KeyGen algorithm for 1 ≤ j ≤ ξ outputs uniformly random shares
skj = sj of the secret key sk = s such that s = s1 + s2 + · · · + sξ. This can be
used to define a passively secure threshold decryption algorithm as follows:

- DistDec, on input a secret key-share skj = sj and a ciphertext c = (u, v)
in R2

q , computes mj = sju, sample some uniform noise Ej ←$ Rq such that
∥Ej∥∞ ≤ 2sec(BDec/pξ) for statistical security parameter sec and noise-
bound BDec = max∥v − su∥∞, then outputs dsj = tj = mj + pEj .

- Comb, on input the ciphertext (u, v) and the set of decryption shares {dsj}j∈[ξ],
outputs the message m = (v− t mod q) mod p, where t = t1+ t2+ · · ·+ tξ.

The following theorem for the distributed decryption protocol follows from
the works by Damg̊ard et al. [DPSZ12, Theorem 4] and [DKL+13, Appendix G].

Theorem 2 (Correctness and Simulatability of Distributed BGV). Let
sec be the statistical security parameter. The distributed BGV encryption scheme
is correct (Definition 7 in 2.5) if ∥v − t∥∞ ≤ (1 + 2sec)BDec < ⌊q/2⌋, and is
decryption simulatable against passive adversaries (Definition 9 in 2.5).

116 D. Aranha et al.

3.2 Lattice-Based Commitments

Let Rq be defined as above for a fixed N and let NσC
be a Gaussian distribution

over Rq with standard deviation σC. The commitment scheme follows Defini-
tion 10 and consists of three algorithms: key generation (KeyGenC), committing
(Com) and opening (Open), where:

KeyGenC outputs a public key pk which allows to commit to messages in Rℓ
q

using randomness in Sk
BCom

. We define

A1 =
[
In A′1

]
whereA′1 ←$ Rn×(k−n)

q

A2 =
[
0ℓ×n Iℓ A′2

]
whereA′2 ←$ Rl×(k−n−ℓ)

q ,

for height n+ ℓ and width k and let pk be A =

[
A1

A2

]
.

Com commits to messages m ∈ Rℓ
q by sampling an rm ←$ Sk

BCom
and computes

Compk(m; rm) = A · rm +

[
0
m

]
=

[
c1
c2

]
= [[m]].

Com outputs commitment [[m]] and opening d = (m, rm, 1).

Open verifies whether an opening (m, rm, f), with f ∈ C̄, is a valid opening of
[[m]] for the public key pk by checking that ∥rm[i]∥ ≤ 4σC

√
N , for i ∈ [k],

and if

f ·
[
c1
c2

]
?
= A · rm + f ·

[
0
m

]
.

Open outputs 1 if all these conditions holds, and 0 otherwise.

For any commitment generated with Com, the algorithm Open will accept
(except with negligible probability) by setting f = 1.

The following theorem for the security of the commitment scheme follows
from Baum et al. [BDL+18, Lemma 6 and Lemma 7].

Theorem 3 (Hiding and Binding of the Commitment Scheme). The
commitment scheme is hiding (Definition 12 in 2.6) if the DKS∞n+ℓ,k,β∞ problem

is hard, and the scheme is binding (Definition 13 in 2.6) if the SKS2
n,k,16σC

√
νN

problem is hard.

The commitments [BDL+18] have a weak additively homomorphic property:

Proposition 1. Let [[m]] = Com(m; rm) be a commitment with opening (m, rm, f)
and let [[m′]] = Com(m′;0). Then [[m]]− [[m′]] has the opening (m−m′, rm, f).

The proof follows from the linearity of the verification algorithm.

Voting from Lattice-Based Assumptions 117

Prover({(mi, ri)}i∈[n̂]; {αi}i∈[n̂−1], {[[mi]]}i∈[n̂]) Verifier({αi}i∈[n̂−1], {[[mi]]}i∈n̂)

yi ←$N k
σC

, i ∈ [n̂]

ti = A1yi, i ∈ [n̂]

u = A2((
∑

i ̸=n̂

αiyi)− yn̂)
{ti}i∈[n̂],u

β β
$← C

zi = yi + βri, i ∈ [n̂] û = u+ β((
∑

i ̸=n̂

αici,2)− cn̂,2)

For all i in [n̂] :

Abort if Rej(zi, βri, σC) = 1.

{zi}i∈[n̂] return Accept iff:

1 : ∀i, j : ∥zi,j∥2
?

≤ B

2 : ∀i : A1zi
?
= ti + βci,1

3 : û
?
= A2((

∑

i ̸=n̂

αizi)− zn̂)

Fig. 2. Protocol ΠLin is a Sigma-protocol to prove the relation RLin.

3.3 Zero-Knowledge Proof of Linear Relations

Assume that there are n̂ commitments

[[mi]] =

[
ci,1
ci,2

]
, for 1 ≤ i ≤ n̂ where ci,2 ∈ Rℓ

q.

For the public scalar vector α = (α1, . . . , αn̂−1) ∈ Rn̂−1
q the prover wants to

demonstrate that the following relation RLin holds:

RLin =

{
(x,w)

∣∣∣∣
x = (pk, {[[mi]]}i∈[n̂],α) ∧ w = (f, {mi, ri}i∈[n̂]) ∧

∀i ∈ [n̂] : Openpk([[mi]],mi, ri, f) = 1 ∧mn̂ =
∑n̂−1

i=1 αimi

}
.

ΠLin in Figure 2 is a zero-knowledge proof of knowledge (ZKPoK) of this
relation (it is a directly extended version of the proof of linearity in [BDL+18]).
The relation RLin is relaxed because of the additional factor f in the opening,
which appears in the soundness proof. It does not show up in the protocol ΠLin,
because an honest prover will implicitly use f = 1.

The bound is B = 2σC

√
N and the ΠLin-protocol produces a proof transcript

of the form πLin = (({ti}i∈[n̂], u), β, ({zi}i∈[n̂])).
The following theorem for the security of zero-knowledge proof of linear re-

lations is a direct adaption of Baum et al. [BDL+18, Lemma 8].

Theorem 4 (Security of Zero-Knowledge Proof of Linear Relations).
The zero-knowledge proof of linear relations is complete (Definition 15 in 2.7)
if the randomness ri is bounded by BCom in the ℓ∞ norm, it is special sound

118 D. Aranha et al.

(Definition 16 in 2.7) if the SKS2
n,k,4σC

√
N

problem is hard, and it is statistical

honest-verifier zero-knowledge (Definition 17 in 2.7). The probability of success
is (1/M)n̂, where the constant M is computed as in Equation 1.

Even though the success probability is (1/M)n̂, we will only use this protocol
for small values of n̂ and choose parameters so that the total rejection probability
is small (around 1/3), which ensures that the protocol is efficient in practice.

When applying the Fiat-Shamir transform [FS87], we let β be the output of
a hash-function applied to the first message and x. Then, the proof transcript
is reduced to πL = (β, {zi}i∈[n̂]) where β is of 2λ bits and each zi is of size
kN log2(6σC) bits. We can compress zi to n̂(k−n)N log2(6σC) bits by checking
an approximate equality instead, as described in [ABG+21, Section 3.2]. We
denote by

πL ← ΠLin({(mi, ri)}i∈[n̂]; ({αi}i∈[n̂−1], {[[mi]]}i∈[n̂])), and

0 ∨ 1← ΠLinV({αi}i∈[n̂−1], {[[mi]]}i∈[n̂];πL),

the run of the proof and verification protocols, respectively, where the verification
protocol ΠLinV reconstructs the first message using β, performs the verification
as in the last step in Figure 2 and then checks that β was computed correctly
with respect to the statement and the first message.

3.4 Exact Amortized Zero-Knowledge Proof of Short Openings

It is well-known that polynomials in Rq can be represented as vectors in ZN
q

and multiplication by a polynomial â in Rq can be expressed as a matrix-vector

product with a nega-cyclic matrix Â in ZN×N
q . Let A be a r × v matrix over

Rq, that is, a rN × vN matrix over Zq. We will now consider how to prove
generically that ti = Asi for a bounded si, which is the same as proving correct
multiplication over the ring Rq of a public polynomial a and a secret and bounded
polynomials si resulting in public polynomials ti.

Bootle et al. [BLNS21] give an efficient amortized sublinear zero-knowledge
protocol for proving the knowledge of short vectors si and ei over Zq satisfying
Asi + ei = ti. Here we adapt their techniques for the case where ei is zero, and
prove that ∥si∥∞ ≤ 1. We further modify their protocol for amortized proofs
to benefit from smaller parameters due to the small bound on si, while their
amortized protocol was optimized for larger bounds3.

We first explain the main idea of [BLNS21] for proving knowledge of one
preimage s of t = As and then how it generalizes to an amortized proof for τ
elements with sublinear communication.

The approach follows an ideal linear commitments-technique with vector
commitments ComL(·) over Zq. The prover initially commits to the vector s as
well as an auxiliary vector s0 of equal length. Implicitly, this defines a vector

3 The authors of [BLNS21] mention that this optimization is possible, but neither
present the modified protocol nor a proof.

Voting from Lattice-Based Assumptions 119

1 : P has input {si}τi=1; (A, {ti}τi=1) while V has input A, {ti}τi=1

2 : P samples s0 ←$ ZvN
q , h←$ Z2vN

q , r0 ←$ Zη
q , rh ←$ Zη

q and

ri,j ←$ Zη
q for each i ∈ [τ], j ∈ {0, 1, 2}.

3 : P computes f(X) =

τ∑

i=0

siℓi(X) and d = −As0 and defines vi,j using

1

ℓ0(X)
·

∏

h∈{−1,0,1}

[
f(X)− h · 1

]
=

2∑

j=0

τ∑

i=1

vi,jℓi(X)ℓ0(X)j

4 : P computes H0 ← Encode(s0,0, r0), H ← Encode(h, rh) as well as

Hi,j = Encode(δj · si,vi,j , ri,j) for each i ∈ [τ], j ∈ {0, 1, 2}.
5 : P computes E = RowsToMatrix(H,H0,H1,0,H1,1, . . . ,Hτ,2),

M = MerkleTree(CommitToColums(E)) and (cd, rd)← ComAux(d).

6 : P sendsM, cd to V

7 : V samples x←$ Z∗
q \ {a1, . . . , aτ} and β0, β1,0, . . . , βτ,2 ←$ Z∗

q and

sends x, β0, β1,0, . . . , βτ,2 to P

8 : P computes f̄ = f(x), r̄f = ℓ0(x)r0 +

τ∑

i=1

2∑

j=0

ℓi(x)ℓ0(x)
jri,j ,

h̄ = h+ β0s0 +

2∑

j=0

τ∑

i=1

βi,j(δj · si,vi,j), r̄h = rh + β0r0 +

2∑

j=0

τ∑

i=1

βi,jri,j

9 : P sends f̄ , r̄f , h̄, r̄h, rd to V

10 : V samples I ←$ [l]η, |I| = η and sends I to P

11 : P computes and sends E|I , MerklePathsI to V

12 : V runs Verify(E|I ,M, MerklePathsI) and checks that

OpenAux(cd,
1

ℓ0(x)
·
(

τ∑

i=1

tiℓi(x)−Af

)
, rd) = 1,

Encode

f̄ ,

1

ℓ0(x)
·

∏

h∈{−1,0,1}

[
f̄ − h · 1

]
, r̄f

∣∣∣
I

?
= ℓ0(x) ·H0

∣∣
I
+

τ∑

i=1

2∑

j=0

ℓi(x)ℓ0(x)
jHi,j |I

Encode
(
h̄, r̄h

) ∣∣∣
I

?
= H + β0H0

∣∣
I
+

τ∑

i=1

2∑

j=0

βi,jHi,j

∣∣
I

Fig. 3. The protocol ΠAEx is an exact amortized zero-knowledge proof of knowledge
of ternary openings. δx is 1 if x = 0 and 0 otherwise. (ComAux, OpenAux) is an arbitrary
commitment scheme.

120 D. Aranha et al.

of polynomials f(X) = s0(X) + s for the prover. Now consider the vector of
polynomials f(X)◦ (f(X)−1)◦ (f(X)+1), where ◦ denote the coordinate-wise
product, then we can see that the coefficients of X0 are exactly s◦(s−1)◦(s+1)
and therefore 0 if and only if the aforementioned bound on s holds. In that case,
each aforementioned polynomial in f(X) ◦ (f(X)− 1) ◦ (f(X) + 1) is divisible
by X. Therefore, the prover computes the coefficient vectors v2,v1,v0 of

1/X · f(X) ◦ (f(X)− 1) ◦ (f(X) + 1) = v2X
2 + v1X + v0

and commits to these. Additionally, define the value d = t−Af = −As0, which
the prover also commits to.

The verifier now sends a challenge x, for which the prover responds with
f = f(x). Additionally, the prover uses the linear property of the commitment
scheme to show that:

1. ComL(s0) · x+ ComL(s) opens to f .

2. ComL(v2) · x2 + ComL(v1) · x+ ComL(v0) opens to
1
x · f ◦ (f + 1) ◦ (f − 1).

The prover additionally opens the commitment to d and the verifier checks that
it opens to 1

x · (t −Af). Here, the first two commitment openings allow us to

deduce that the correct f is sent by the prover and that the values committed
as s are indeed commitments to {−1, 0, 1}. Then, from opening d we get that
the committed s is indeed the preimage of t under A.

The ideal linear commitments in [BLNS21] get realized using an Encode-then-
Hash commitment scheme. In this commitment scheme, the prover commits to
vectors x1, . . . ,xn ∈ Zg

q as follows:

1. Sample n random vectors r1, . . . , rn ∈ Zη
q

2. Let Encode be the encoding function of an [l, g + η, d] Reed-Solomon Code
with code-length l, message length g + η and minimal distance d. Compute
ei ← Encode(xi∥ri) for each i ∈ [n].

3. Construct the matrix E = RowsToMatrix(e1, . . . , en) where ei is row i.

4. Commit to each column of E using a cryptographic hash function, then
compress all m commitments into a Merkle tree rootM.

5. SendM to the verifier.

For the prover to show to the verifier that x is an opening of the linear combi-
nation

∑n
i=1 γixi:

1. The prover computes r =
∑n

i=1 γiri and sends r to the verifier.

2. The verifier chooses a subset I of size η from [l].

3. The prover opens the commitment for each column i ∈ I of E and proves
that it lies in the Merkle treeM by revealing the path.

4. The verifier checks that Encode(x∥r) coincides at position i with the respec-
tive linear combination of all n opened values in column i of E.

Voting from Lattice-Based Assumptions 121

This is a proof of the respective statement due to the random choice of the set I.
Intuitively, if each row of E is in the code4, but they do not sum up to x, then
the linear combination of the codewords in E must differ from Encode(x∥r)
in at least d positions, which is the minimum distance of the code. By the
random choice of I and by setting η appropriately, the verifier would notice
such a disagreeing entry with high probability. At the same time, because only η
columns of E are opened, this leaks no information about the vectors x1, . . . ,xn.

For the case of more than one secret, the prover wants to show that ti = Asi
for τ values ti known to the verifier, subject to si again being ternary vectors.
Here, the goal is to establish the latter for all ti simultaneously while verifying
only one equation and sending only one vector f . Towards this, the prover as
before commits to si as well as an additional blinding value s0. Let a1, . . . , aτ ∈
Zq be distinct interpolation points and define the ith Lagrange interpolation
polynomial

ℓi(X) =
∏

i̸=j

X − aj
ai − aj

.

Additionally, let ℓ0(X) =
∏τ

i=1(X − ai). Then every f ∈ Zq[X]/ℓ0(X) can
be written uniquely as f(X) =

∑τ
i=1 λiℓi(X) and any g ∈ Zq[X]/ℓ0(X)b as a

linear combination of {ℓi(X)ℓ0(X)j}b−1j=0. If we now, more generally, define the
polynomial

f(X) =

τ∑

i=0

siℓi(X),

then we observe that f(X) ◦ (f(X) − 1) ◦ (f(X) + 1) is divisible by ℓ0(X)
iff all ℓi(X)-coefficients of f(X) for i ∈ [τ] are 0. Additionally, since ℓi(X) ·
ℓj(X) = 0 mod ℓ0(X) if i, j ∈ [n], i ̸= j this then also implies that the si are
ternary. Moreover, we only have to commit to additional 3 · τ coefficients of
{ℓi(X)ℓ0(X)j}b−1j=0 to prove well-formedness of any evaluation of f(X) sent by
the prover.

The protocol is described in detail in Figure 3. As our construction substan-
tially deviates from that of [BLNS21] we show that the protocol indeed is a
ZKPoK. Perfect completeness is straightforward, so we focus on soundness and
special honest-verifier zero-knowledge.

Lemma 1 (Soundness in ΠAEx). Let Encode be the encoding function of
a Reed-Solomon code of dimension k′ = vN + η and length l. Furthermore,
let k′ ≤ k ≤ l < q. Suppose that there is an efficient deterministic prover P∗

convincing an honest verifier in the protocol in Figure 3 on input A, t1, . . . , tτ

4 For the proof to work, the verifier additionally has to verify this claim or rather,
that all rows are close to actual codewords. One mechanism to achieve this is to
commit to an additional auxiliary row and also open a random linear combination
of all rows, including the auxiliary row. This will be more clear in the soundness
proof of our protocol.

122 D. Aranha et al.

with probability

ϵ > 2·max

{
2

(
k

l − η

)η

,
1

q − τ
+

(
1− k − k′

6l

)η

, 2 ·
(
1− 2(k − k′)

3l

)η

,
18τ

q − τ

}
.

Then there exists an efficient probabilistic extractor E which, given access to P∗

either produces vectors si ∈ {−1, 0, 1}vN such that ti = Asi for all i ∈ [τ], or
breaks the binding property of the commitment scheme (ComAux, OpenAux), or finds
a hash collision in expected time at most 64T where

T :=
3

ϵ
+

k − η

ϵ/2− (k/(l − η))η

and running P∗ takes unit time.

The proof for Lemma 1 as well as a proof of the zero-knowledge property are
presented in Appendix C. The size of the amortized zero-knowledge proof in
Figure 3 in terms of prover-to-verifier communication is

|cd|+ |rd|+ |M|+ (2vN + (3τ + 4)η) log2 q + λη(1 + log2 l) bits. (2)

Theorem 5 (Security of Amortized Zero-Knowledge Proof of Exact
Openings). The amortized zero-knowledge proof of exact openings is complete
(Definition 15 in 2.7) when the secrets si has ternary coefficients, it is special
sound (Definition 16 in 2.7) if the SKS2r,v,1 problem is hard (see Lemma 1), and
it is statistically honest-verifier zero-knowledge (Definition 17 in 2.7).

3.5 Amortized Zero-Knowledge Proof of Bounded Openings

Let A be a publicly known r × v-matrix over Rq, let s1, s2, . . . , sτ be bounded
elements in Rv

q and let Asi = ti for i ∈ [τ]. Letting S be the matrix whose

columns are si and T be the same matrix for ti, but defined over ZN
q instead

of Rq as in the previous subsection, then Baum et al. [BBC+18] give a efficient
amortized zero-knowledge proof of knowledge for the relation

RANEx =

{
(x,w)

∣∣∣∣
x = (A,T , σANEx, BANEx) ∧ w = S ∧
∀i ∈ [τ] : ti = Asi ∧ ||si,j ||2 ≤ 2 ·BANEx

}
.

The protocol ΠANEx is depicted in Figure 4. We can use a challenge matrix C
with entries sampled from the set CANEx = {0, 1}, then this allows us to choose
the parallel protocol instances n̂ ≥ λ+ 2 for security parameter λ. Denote by

πANEx ← ΠANEx(S; (A,T , σANEx)), and 0 ∨ 1← ΠANExV((A,T , BANEx);πANEx),

the run of the proof and verification protocols, respectively, where the ΠANEx-
protocol, using Fiat-Shamir, produces a proof of the form πANEx = (C,Z), where
C is the output of a hash-function, and the ΠANExV-protocol consists of the two
checks in the last step in Figure 4. NσANEx

is a Gaussian distribution over Z with

Voting from Lattice-Based Assumptions 123

Prover(S; (A,T , σANEx)) Verifier(A,T , BANEx)

∀i, j : yi,j ←$NσANEx

W = AY W

C ←$ CτN×n̂N
ANEx

C

Z ← Y + SC

Abort if Rej(Z,SC, σANEx) = 1.

Z 1 : ∀i, j : ∥zi,j∥2
?

≤ BANEx

2 : AZ
?
= TC +W

Fig. 4. Protocol ΠANEx is the approximate amortized zero-knowledge proof of knowl-
edge of bounded preimages for matrices and vectors over Zq.

standard deviation σANEx, and the verification bound is BANEx =
√
2NσANEx.

Note that σANEx, and hence BANEx, depends on the norm of S (see Section 2.2).
This means that the bound we can prove for each ∥si,j∥2 depends on the number
of equations τ in the statement to be proved.

The following theorem for the security of the amortized zero-knowledge proof
of bounded openings follows from Baum et al. [BBC+18, Lemma 3].

Theorem 6 (Security of Amortized Zero-Knowledge Proof of Bounded
Openings). The amortized zero-knowledge proof of bounded openings is com-
plete (Definition 15 in 2.7) if the secrets in S are bounded by BCom in the ℓ∞
norm, it is special sound (Definition 16 in 2.7) if the SKS2n,k,2kBANEx

problem
is hard, and is statistical honest-verifier zero-knowledge (Definition 17 in 2.7).
The probability of success is 1/M , as computed in Equation 1.

Finally, we note that this protocol can be generalized to check for different
norms (and using different standard deviation) in each row or column of Y and
Z depending on varying norms of the secrets si,j , see [BEPU+20, Section 5] for
details.

4 Verifiable Shuffle of BGV Ciphertexts

The recent work by Aranha et al. [ABG+21] presents an efficient protocol ΠShuf

for a shuffle of openings of lattice-based commitments using zero-knowledge
proofs of linear relations.

124 D. Aranha et al.

More concretely, the authors present a proof for the following relation RShuf:

RShuf =

(x,w)

x = ([[m1]], . . . , [[mτ]], m̂1, . . . , m̂τ),
w = (π, f1, . . . , fτ , r1, . . . , rτ), π ∈ Sτ , m̂i ∈ Rq

∀i ∈ [τ] : fi · [[mπ−1(i)]] = fi ·
[
c1,π−1(i)

c2,π−1(i)

]
= Ari + fi ·

[
0
m̂i

]

∧ ||ri[j]|| ≤ 4σC

√
N

.

In their work, they show the following result:

Theorem 7 (Security of ΠShuf). Assume that (KeyGenC, Com, Open) is a se-
cure commitment scheme with ΠLin as a HVZK Proof of Knowledge of linear
relation with soundness error ϵ. Then there exists a protocol ΠShuf that is an
HVZK PoK for the relation RShuf with soundness error (τ δ + 1)/|Rq|+ 4τϵ.

We now extend their protocol, allowing to verifiably shuffle elements that are
vectors in Rℓ

q instead of the original elements from Rq.

4.1 The Extended Shuffle Protocol

We are now in a situation where both prover and verifier are given a list of
commitments [[m1]], . . . , [[mτ]] as well as potential messages (m̂1, . . . , m̂τ) from
Rℓ

q. The prover additionally obtains openings mi, ri, fi and wants to prove that
the set of plaintext elements are the same set as the underlying elements of
the commitments for some secret permutation π of the indices in the lists. The
protocol of Aranha et al. does not work in this setting, as their technique crucially
requires that the plaintexts are from Rq. Thus, our goal is to prove

Rℓ
Shuf =

(x,w)

x = ([[m1]], . . . , [[mτ]], m̂1, . . . , m̂τ),
w = (π, f1, . . . , fτ , r1, . . . , rτ), π ∈ Sτ , m̂i ∈ Rℓ

q

∀i ∈ [τ] : fi · [[mπ−1(i)]] = fi ·
[
c1,π−1(i)

c2,π−1(i)

]
= Ari + fi ·

[
0
m̂i

]

∧ ||ri[j]|| ≤ 4σC

√
N

.

Towards proving this relation, we observe that instead of proving a shuffle
on the vectors directly, it is sufficient to let the verifier choose a random element
h ←$ Rq. Then instead of proving a shuffle on m1, . . . ,mτ , the prover instead
performs the same proof on ⟨m1, ρ⟩, . . . , ⟨mτ , ρ⟩ where ρ = (1, h, . . . , hℓ−1)⊤.
The problem with this approach is that we must also be able to apply ρ to the
commitments [[m1]], . . . , [[mτ]], without re-committing to the inner product and
proving correctness in zero-knowledge.

Since each commitment [[m]] can be written as

[
c1
c2

]
= Ar +

[
0
m

]
,

we can write c1 = A1r and c2 = A2r + m. From this we can create a new
commitment [[⟨ρ,m⟩]] under the new commitment key pk′ = (A1, ρA2) where

Voting from Lattice-Based Assumptions 125

c′1 = c1 remains the same, while we set c′2 = ⟨ρ, c2⟩. Note that this does not
increase the bound of the randomness of the commitment. Since

A2 =
[
0ℓ×n Iℓ A′2

]
whereA′2 ∈ Rl×(k−n−ℓ)

q ,

it holds that
a′2 = ρA2 =

[
0n ρ⊤ ρA′2

]
.

It is easy to see that breaking the binding property for pk′ is no easier than
breaking the binding property for pk.

Proposition 2. If there exists an efficient attacker A that breaks the binding
property on commitments under the key pk′ with probability ϵ, then there exists
an efficient algorithm A′ that breaks the binding property on pk with the same
probability.

Proof. Assume that A outputs two valid (r1,m1, f1), (r2,m2, f2) for pk′. This
in particular implies that f1c

′
2 = ⟨a′2, r1⟩ + f1m1 and f2c

′
2 = ⟨a′2, r2⟩ + f2m2.

Multiplying the first term with f2 and the second with f1 yields that

0 = ⟨a′2, (f2r1 − f1r2)⟩+ f1f2(m1 −m2).

Since m1 ̸= m2 we have that ⟨a′2, f2r1 − f1r2⟩ ̸= 0.
Let m1 = (f1c2 − A2r1)/f1 and m2 = (f2c2 − A2r2)/f2. It is clear that

(r1,m1, f1) and (r2,m2, f2) are valid openings for pk. We need to show that
indeed m1 ̸= m2.

Towards this, assume that m1 = m2. By multiplying the definition with f1f2
we get that 0 = A2(f1r2 − f2r1). This implies that

⟨ρ,A2(f1r2 − f2r1)⟩ = ⟨ρA2, f1r2 − f2r1⟩ = ⟨a′2, f1r2 − f2r1⟩ = 0

which is a contradiction. ⊓⊔

Shuffle protocol. Given the above, we can now construct the protocol Πℓ
Shuf:

1. Initially, P and V hold {[[mi]], m̂i}i∈[τ] for a public key pk = (A1,A2) while
the prover additionally has {mi, ri}i∈[τ], π ∈ Sτ .

2. V chooses h←$ Rq and sends it to P. Both parties compute ρ← (1, h, . . . , hℓ−1)⊤.
3. P and V for each [[mi]] = (c1,i, c2,i) compute [[⟨ρ,mi⟩]] = (c1,i, ⟨ρ, c2,i⟩).
4. P, V now run ΠShuf on input commitments {[[⟨ρ,mi⟩]]}i∈[τ] and messages
⟨ρ,mi⟩. P uses the same permutation π, randomness ri as before. The com-
mitment key pk′ = (A1,ρA2) is used by both parties.

5. If the protocol ΠShuf accepts then V accepts, otherwise he rejects.

We now show the following:

Lemma 2 (Soundness in Πℓ
Shuf). Assume that ΠShuf that is an HVZK Proof

of Knowledge for the relation RShuf with soundness error ϵ′. Then Πℓ
Shuf is a

HVZK PoK for the relation Rℓ
Shuf with soundness error ϵ = 2ϵ′ + 3

(
ℓ−1
q

)N
.

126 D. Aranha et al.

Proof. Completeness and Zero-Knowledge of Πℓ
Shuf follow immediately from the

same properties of ΠShuf. Thus, we focus now on knowledge soundness.
Let P∗ be a prover that convinces a verifier on input x with probability ν > ϵ.

For the proof, we will use the standard definition of proof of knowledge where
there must exist an extractor E that succeeds with black-box access to P∗ running
in expected time p(|x|)/(ν − ϵ) where p is a polynomial.

Towards constructing a simulator E we know that there exists an extractor
E ′ for ΠShuf. We construct E as the following loop, which restarts whenever the
loop “aborts”:

1. Run random protocol instances with P∗ until a valid protocol instance with
challenge h was generated. Do this at most 2/ϵ steps, otherwise abort.

2. Run E ′ with the fixed h with P∗ until it outputs π, {fi, ri}i∈[τ]. If E ′ aborts,
then abort. In parallel, start a new loop instance until E ′ finishes.

3. Let m̃i = (fic2,i − A2ri)/fi. If m̃π−1(i) = m̂i for all i ∈ [τ] then output
π, {fi, ri}i∈[τ], otherwise abort.

First, by the definition we observe that m̃i = (fic2,i −A2ri)/fi is well-defined
because fi is invertible. If E outputs a value, then the output of E is a witness for
the relation Rℓ

Shuf. We now show a bound on the expected time per loop-instance,
and that each loop with constant probability outputs a valid witness.

In the first step, we expect to find an accepting transcript after 1/ϵ steps.
Since we run this step for 2/ϵ iterations, we will have found an accepting tran-
script with probability at least 1/2 by Markov’s inequality. Consider the matrix
H where the rows are indexed by all choices h and the columns by the choices of
the used shuffle proof. Then, by the heavy-row lemma [Dam10], with probability
≥ 1/2 we will have chosen a value h such that the row of H contains ϵ/2 > ϵ′ 1s.
In that case, E ′ will by definition output a valid witness in an expected number
of p(|x|)/(ν − ϵ′) < p(|x|)/(ν − ϵ) steps, which is within the runtime budget. For
the case it gets stuck, we start another loop which we run in parallel. Once E ′
has found an opening, then the computation in Step 3 is inexpensive. We now
have to compute the abort probability of this step.

First, assume that E ′ outputs the same opening with probability at least
1/2 in 2/3rds of the heavy rows. It can easily be shown that we can otherwise
construct an algorithm that breaks the binding property of the commitment
scheme with an expected constant number of calls to E ′ and by using Proposition

2. Moreover, by a counting argument, there must be > 3
2

(
ℓ−1
q

)N
heavy rows:

Assume to the contrary that there are at most 3
2

(
ℓ−1
q

)N
heavy rows. Let each

of the heavy rows have only ones (verifier always accepts), and each other row

be filled with ϵ/2 ones. This is the maximal case of having only 3
2

(
ℓ−1
q

)N
heavy

rows. But then the acceptance probability can be at most

3

2

(
ℓ− 1

q

)N

+

[
1− 3

2

(
ℓ− 1

q

)N
]
· ϵ/2 <

3

2

(
ℓ− 1

q

)N

+ ϵ/2 < ϵ.

Voting from Lattice-Based Assumptions 127

Assume that E ′ extracts a valid witness π, {fi, ri}i∈[τ] for input commit-
ments {[[⟨ρ,mi⟩]]}i∈[τ] and messages ⟨ρ, m̂i⟩ while the extracted m̃i = (fic2,i −
A2ri)/fi do not form a permutation on the m̂i. Then there exists an i ∈ [τ]
such that

fi · ⟨ρ, c2,π−1(i)⟩ = ⟨ρA2, ri⟩+ fi⟨ρ, m̂i⟩
but

fi · c2,π−1(i) = A2ri + fi(m̂i + δ)

where m̃i = m̂i + δ for a non-zero vector δ. Combining both equations,
we get that 0 = ⟨ρ, δ⟩. This implies that the polynomial

∑ℓ−1
i=0 δ[i]X

i that has
coefficients from δ must be zero at point h whose powers generate the vector
ρ. Since this polynomial is of degree ℓ− 1, by [ABG+21, Lemma 2] it can be 0
in at most (ℓ − 1)N positions without being the 0-polynomial itself. But since
the transcript is extractable and thus accepting for strictly more than (ℓ− 1)N

choices of h (by our choice of the “default witness” from above), we must have
that δ was 0 to begin with. Therefore, Step 3 only aborts if we stumble upon a
witness π, {fi, ri}i∈[τ] for RShuf that is not the “default witness” which occurs
with constant probability only. ⊓⊔

Notation and communication. We denote by

πShuf ← Πℓ
Shuf(({(mi, ri)}τi=1, h); ({[[mi]]}τi=1, {m̂i}τi=1)), and

0 ∨ 1← Πℓ
ShufV(({[[mi]]}τi=1, {m̂i}τi=1);πShuf)

the run of the proof and verification protocols of the shuffle, respectively.
We refer to Section 7 for sizes, parameters and a concrete instantiation of

the shuffle protocol, as parameters depend on the full mix-net protocol and the
decryption protocol, such as the number of servers involved.

4.2 Verifiable Shuffle of BGV Ciphertexts

The following mixing protocol is for the relation RMix:

RMix =

(x,w)

x = (A′′, c1, . . . , cτ , ĉ1, . . . , ĉτ , [[c′1]], . . . , [[c
′
τ]]),

w = (π, r′1, . . . , r
′
τ ,), π ∈ Sτ ,

∀i ∈ [τ] : ci = Enc(pk,mi), c
′
i = Enc(pk, 0),

[[c′i]] = A′′r′i, ∥r′i∥∞ ≤ B∞, ĉπ(i) = ci + c′i

.

If the noise-level in all ci and c′i are bounded by BDec, and 2BDec < ⌊q/2⌋, then
all ci and ĉπ(i) will, for some permutation π, decrypt to the same message mi.

Public parameters. Let p≪ q be primes, let Rq and Rp be defined as above for
a fixed N , let D be a bounded distribution over Rq, and let B∞ ∈ N be a bound.
We assume properly generated keys and ciphertexts according to the KeyGen

and Enc algorithms in Section 3.1.

128 D. Aranha et al.

Let S be the shuffle algorithm. Then S takes as input a set of τ publicly
known BGV ciphertexts {ci}τi=1, where each ciphertext is of the form

ci = (ui, vi) = (ari + pei,1, bri + pei,2 +mi),

where mi in Rp is the encrypted message, ri ←$ Rq is a short element such that
∥ri∥∞ ≤ B∞, and ei,1, ei,2 ← D is some bounded random noise ensuring that the
total noise in the ciphertext is bounded by BDec.

Randomizing. First, S randomizes all the received ciphertexts and creates a new
set of ciphertexts {c′i}τi=1 of the form

c′i = (u′i, v
′
i) = (ar′i + pe′i,1, br

′
i + pe′i,2),

where r′i, e
′
i,1, e

′
i,2 are chosen as above. This corresponds to creating fresh, inde-

pendent encryptions of 0. Observe that S will not publish these c′i.

Committing. S now commits to the c′i. Towards this, we re-write the commit-
ment matrix from Section 3.2 for ℓ = 2 and add the public key of the encryption
scheme to get a (n + 2) × (k + 3) commitment matrix A′′, where 0n are row-
vectors of length n, a1,1,a1,2 are column vectors of length n, a2,3,a3,3 are row
vectors of length k − n− 2 and A1,3 is of size n× (k − n− 2). Then,

Com(u′i, v
′
i) = [[(ar′i + pe′i,1, br

′
i + pe′i,2)]] = A′′r′i

=

In a1,1 a1,2 A1,3 0 0 0
0n 1 0 a2,3 a p 0
0n 0 1 a3,3 b 0 p

ri
r′i
e′i,1
e′i,2

 ,

where ri ∈ Rk
q is the randomness used in the commitment. Further, let [[(ui, vi)]]0

be the trivial commitment to (ui, vi) with no randomness. Then, given the com-
mitment [[(u′i, v

′
i)]] and [[(ui, vi)]]0 we can compute a commitment

[[(ûi, v̂i)]] = [[(ui, vi)]]0 + [[(u′i, v
′
i)]].

Thus, the commitments [[(ûi, v̂i)]] contain re-randomized encryptions of the orig-
inal ciphertexts. S can therefore open a permutation of the (ûi, v̂i) and prove
correctness of the shuffled opening using algorithm Πℓ

Shuf. To ensure correctness
we have to additionally show that each u′i, v

′
i was created such that decryption

is still correct.

Proving correctness of commitments. Let A′′ be the (n + 2) × (k + 3) matrix
defined above. Then S needs to prove that, for all i, it knows secret short vectors
r′i of length k + 3 that are solutions to the following equations:

ti = A′′r′i = [[(ar′i + pe′i,1, br
′
i + pe′i,2)]], ∥r′i∥∞ ≤ B∞.

To show this, S runs the ΠAEx-protocol for the inputs A
′′, {r′i}τi=1, {ti}τi=1. Here,

S uses the Fiat-Shamir transform to ensure non-interactivity of the proof.
We summarize the aforementioned in the following protocol ΠMix:

Voting from Lattice-Based Assumptions 129

1. S obtains as input the ciphertexts {ci}i∈[τ] = {(ui, vi)}i∈[τ].
2. S for each i ∈ [τ] samples r′i, e

′
i,1, e

′
i,2 as mentioned above. It then creates

commitments {[[u′i, v′i]] = [[ar′i + pe′i,1, br
′
i + pe′i,2]]}i∈[τ] using randomness ri

for each such commitment.
3. Let ti = [[u′i, v

′
i]] and r′i = [r⊤i , r

′
i, ei,1, ei,2]

⊤. Then S computes πAEx ← ΠAEx

for matrix A′′, input vectors {r′i}, target vectors {ti} and bound B∞.
4. Let ĉi = (ui + u′i, vi + v′i) and L be a random permutation of {ĉi}i∈[τ].

Then S computes πShuf ← Πℓ
Shuf with input commitments {[[(ûi, v̂i)]]}i∈[τ],

commitment messages {(ui, vi)}i∈[τ], commitment randomness {ri}i∈[τ] and
openings L.

5. S outputs ({ti}i∈[τ], πAEx, L, πShuf).

Given such a string ({ti}i∈[τ], πAEx, L, πShuf) from S as well as ciphertext
vector {ci}i∈[τ] any third party V can now run the following algorithm ΠMixV

to verify the mix step:

1. Run the verification algorithm of ΠAExV for πAEx on inputs A′′, {ti}i∈[τ] and
B. If the verification fails, then output 0.

2. For all i ∈ [τ] set [[(ûi, v̂i)]] = [[(ui, vi)]]0 + ti where (ui, vi) = ci.
3. Run the verification algorithm of Πℓ

ShufV for πShuf on input
{[[(ûi, v̂i)]]}i∈[τ], L. If the verification fails, then output 0.

4. Output 1.

The following theorems refer to definitions of correctness, soundness and
honest-verifier zero-knowledge given in Section 2.7. The protocol ΠMix is essen-
tially a re-randomization and shuffle of a set of ciphertexts augmented with some
commitments and zero-knowledge proofs, carefully composed to give security.

In the following theorems, define the noise bound BDec to be the maximum
level of noise in a ciphertexts c′i = Enc(pk,m′i) when the randomness r′i, e

′
i,1, e

′
i,2

used to create the ciphertexts is bounded by B∞ and m′i is bounded by p in the
ℓ∞ norm. Let BDec satisfy 2BDec < ⌊q/2⌋.

Theorem 8 (Correctness). Let input ciphertexts have noise bounded by BDec,
and let the total noise added in ΠMix be bounded by BDec. Suppose the protocols
ΠAEx and Πℓ

Shuf are complete. Then the mixing protocol is correct.

We sketch the argument. Since 2BDec < ⌊q/2⌋, it follows that decryption is
correct. Furthermore, since ΠAEx and Πℓ

Shuf are complete, the arguments will
be accepted, which means that the mixing proof will be accepted.

Theorem 9 (Special Soundness). Let E1 be a knowledge extractor for the
protocol ΠAEx with success probability ϵ1 and let E2 be a knowledge extractor for
the protocol Πℓ

Shuf with success probability ϵ2. Then we can construct a knowledge
extractor E0 for the mixing protocol that succeeds with probability ϵ0 ≥ ϵ1 + ϵ2.
The runtime of E0 is essentially the same as the runtime of E1 and E2.

We sketch the argument. The main observation is that it is enough that either
of the extractors E1 and E2 succeeds.

130 D. Aranha et al.

If the extractor E1 succeeds, we are able to extract τ randomness vectors r′i
bounded by B∞, which gives us the randomness for both the commitments and
ciphertexts used in the protocol. Then we can directly extract the permutation π
by inspection, and hence, we have an extractor E0 for the mixing protocol ΠMix.

If the extractor E1 succeeds, we are able to extract both the permutation π
and τ randomness vectors ri used in the commitments and, indirectly, also the
committed randomness used to create the encryption of 0. Hence, we have an
extractor E0 for the mixing protocol ΠMix.

If neither of these strategies works, we have an attacker against the binding
property of the commitment scheme.

Theorem 10 (Honest-Verifier Zero-Knowledge). Suppose the protocol ΠAEx

and Πℓ
Shuf are honest-verifier zero-knowledge, that Com is hiding and that Enc is

CPA secure. Then there exists a simulator for the mixing protocol such that for
any distinguisher A0 for this simulator with advantage ϵ0, there exists an ad-
versary A3 against hiding for the commitment scheme with advantage ϵ3, an
adversary A4 against CPA security for the encryption scheme with advantage
ϵ4, and distinguishers A1 and A2 for the simulators for ΠAEx and Πℓ

Shuf, re-
spectively, with advantages ϵ1 and ϵ2, such that ϵ0 ≤ ϵ1+ϵ2+ϵ3+ϵ4. The runtime
of A1, A2, A3,A4 are essentially the same as A0.

We sketch the argument. The simulator is given the set of messages encrypted
by the input ciphertexts. The simulator simulates the zero-knowledge proofs
ΠAEx and Πℓ

Shuf using the appropriate simulators. It replaces the commitments
to the ciphertexts (u′i, v

′
i) by random commitments and the output ciphertexts

by fresh ciphertexts to the correct messages.
The claim about the simulator follows from a hybrid argument. We begin

with the verifiable shuffle protocol.
First, we replace the ΠShuf arguments by simulated arguments, which gives

us a distinguisher A2 for the ΠLin honest verifier simulator.
Second, we replace the ΠAEx arguments by simulated arguments, which gives

us a distinguisher A1 for the ΠAEx honest verifier simulator.
Third, we replace the commitments to ciphertexts by random commitments,

which gives us an adversary A3 against hiding for the commitment scheme.
Fourth, we replace the output ciphertexts by fresh ciphertexts, which gives

us an adversary A4 against CPA security.
After the changes, we are left with the claimed simulator for the actively

secure protocol, and the claim follows.

5 Verifiable Distributed Decryption

In this section we provide a construction for verifiable distributed decryption.
We combine the distributed decryption protocol from Section 3.1 with zero-
knowledge proofs to achieve an actively secure decryption protocol. In this pro-
tocol, the set of ciphertexts is given to a number of decryption servers each
holding a share of the secret key. All of the servers compute a partial decryption

Voting from Lattice-Based Assumptions 131

of each ciphertext. Finally, they use noise drowning to hide the secret key and
their published shares are added and rounded to output the plaintext. The partial
decryption is a linear operation, and we prove correctness using zero-knowledge
proofs of linear relations from Section 3.3, and we use the amortized proof from
Section 3.5 to prove that the noise is bounded to ensure correct decryption.
Both proofs are computed using the commitment scheme from Section 3.2. We
also provide an optimistic distributed decryption protocol given in Appendix A
which is secure if not all decryption servers are colluding simultaneously.

5.1 The Actively Secure Protocol

Public parameters. Let the ring Rq, the bounded distribution D over Rq, the
statistical security parameter sec and error bounds BCom and BDec be public
system information, together with the plaintext modulus p for the encryption
system. Let A be the public commitment matrix for message size ℓ = 1 over Rq.

– KeyGenA(1
λ, ξ):

1. Compute (pk, sk, s1, . . . , sξ)← KeyGen(1λ, ξ) as in the passive protocol.
2. For each j ∈ [ξ] compute ([[sj]],dj)← Com(sj).
3. Output pkA = (pk, [[s1]], . . . , [[sξ]]), skA = sk and skA,j = (sj ,dj).

– EncA and DecA works just like the original Enc and Dec in the passively
secure threshold encryption scheme, ignoring additional information in pkA.

– DistDec(skA,j , {ci}i∈[τ]) where ci = (ui, vi):
1. For each i ∈ [τ] do the following. First, compute mi,j = sjui.
2. Sample uniform noise Ei,j ← Rq such that ∥Ei,j∥∞ ≤ 2sec(BDec/pξ).
3. Compute the message decryption share ti,j = mi,j + pEi,j .
4. Compute ([[Ei,j]], r

′′
i,j)← Com(Ei,j) and use theΠLin-protocol to compute

a proof for the linear relation ti,j = sjui + pEi,j by computing

πLi,j ← ΠLin(((sj , rj), (Ei,j , r
′′
i,j)); ([[sj]], [[Ei,j]], ti,j), (ui, p)).

5. The commitment to Ei,j is of the form

[[Ei,j]] =

[
In a1,1 A1,2

0n 1 a2,2

]
· r′′i,j +

[
0

Ei,j

]

=

[
In a1,1 A1,2 0
0n 1 a2,2 1

]

︸ ︷︷ ︸
A′′

[
r′′i,j
Ei,j

]
,

where
∥∥r′′i,j

∥∥
∞ ≤ BCom is the randomness used in the commitments. Run

theΠANEx-protocol, denoted asΠANEx({(Ei,j , r
′′
i,j}i∈[τ]); (A′′, {[[Ei,j]]}i∈[τ])),

and obtain the amortized zero-knowledge proof of knowledge πANExj
=

(C ′′,Z ′′) with binary challenge matrix C ′′.
6. Output dsj = ({ti,j}τi=1, πDj

) where πDj
= ({[[Ei,j]]}τi=1, {πLi,j

}τi=1, πANExj
).

132 D. Aranha et al.

– CombA({ci}τi=1, {dsj}j∈[ξ]):
1. Parse dsj as ({ti,j}τi=1, πDj).
2. Verify the proofs πLi,j : 0 ∨ 1← ΠLinV([[sj]], [[Ei,j]], ti,j), (ui, p);πLi,j).
3. Verify the proofs πANExj : 0∨ 1← ΠANExV(A

′′, {[[Ei,j]]}i∈[τ];πANExj).
4. If any verification protocol returned 0 then output ⊥. Otherwise compute

mi = (vi − ti mod q) mod p, where ti = ti,1 + · · ·+ ti,ξ for i = 1, . . . , τ,

and output the set of messages m1, . . . ,mτ .

Remark 1. The randomness r′′i,j has much smaller ℓ∞ norm than Ei,j , and hence,
we will run the ΠANEx protocol with small standard deviation σANEx for rows 1
to k, while row k + 1 will have large standard deviation σ̂ANEx, as noted in 3.5.

The following theorems refer to definitions of threshold correctness, threshold
verifiability and distributed decryption simulatability given in Section 2.5. It
is important to understand that the protocol is essentially a passively secure
distributed decryption protocol augmented with some commitments and some
zero-knowledge proofs, carefully composed to give active security.

In the following three theorems, let the noise bounds BDec and B̂ANEx satisfy
(1 +BDec) · 2sec < 2B̂ANEx < ⌊q/2⌋.

Theorem 11 (Threshold Correctness). Let ciphertexts have noise bounded
by BDec, and let the total noise added in DistDec be bounded by 2secBDec. Sup-
pose the passively secure protocol is threshold correct and the protocols ΠLin and
ΠANEx are complete. Then the actively secure protocol is threshold correct.

We sketch the argument. Since BDec+2secBDec < q/2, it follows that decryp-
tion is correct. Furthermore, since (1 + BDec) · 2sec < 2B̂ANEx < q/2 and ΠLin

and ΠANEx are complete, the arguments will be accepted, which means that the
decryption proof will be accepted.

Theorem 12 (Threshold Verifiability). Let A0 be an adversary against thresh-
old verifiability for the actively secure protocol with advantage ϵ0. Then there ex-
ists adversaries A1 and A2 against soundness for ΠLin and ΠANEx, respectively,
with advantages ϵ1 and ϵ2, such that ϵ0 ≤ ϵ1 + ϵ2. The runtime of A1 and A2

are essentially the same as the runtime of A0.

We sketch the argument. We need only consider ciphertexts with noise bounded
by BDec, so we may assume that the noise in any particular ciphertext is bounded
by BDec.

If the decryption is incorrect for a particular ciphertext, then for some j no
relation ti,j = sjui + pEi,j holds for an Ei,j of norm at most 2B̂ANEx.

This can happen in two ways: Either the argument for the linear combination
of the commitments to Ei,j and sj is incorrect, or the bound on Ei,j is incorrect.

In the former case, we trivially get an adversary A1 against soundness for
ΠLin. Similar for the latter case and ΠANEx.

Voting from Lattice-Based Assumptions 133

Theorem 13 (Distributed Decryption Simulatability). Suppose the pas-
sively secure protocol is simulatable and ΠLin and ΠANEx are honest-verifier
zero-knowledge. Then there exists a simulator for the actively secure protocol
such that for any distinguisher A0 for this simulator with advantage ϵ0, there
exists an adversary A4 against hiding for the commitment scheme5, with advan-
tage ϵ4, and distinguishers A1, A2 and A3 for the simulators for the passively
secure protocol, ΠLin and ΠANEx, respectively, with advantages ϵ1, ϵ2 and ϵ3, such
that ϵ0 ≤ ϵ1 + ϵ2 + ϵ3 + ϵ4. The runtime of A1, A2, A3 and A4 are essentially
the same as the runtime of A0.

We sketch the argument. The simulator simulates the arguments and the pas-
sively secure distributed decryption algorithm, using the appropriate simulators.
Also, it replaces the commitments to the noise Ei,j by random commitments.

The claim about the simulator follows from a straight-forward hybrid argu-
ment. We begin with the distributed decryption algorithm.

First, we replace the ΠLin arguments by simulated arguments, which gives
us a distinguisher A2 for the ΠLin honest verifier simulator.

Second, we replace the ΠANEx arguments by simulated arguments, which
gives us a distinguisher A3 for the ΠANEx honest verifier simulator.

Third, we replace the commitments to the noise Ei,j by random commit-
ments, which gives us an adversary A4 against hiding for the commitment
scheme.

Fourth, we replace the passively secure distributed decryption algorithm by
its simulator, which gives us a distinguisher A1 for the simulator.

After the four changes, we are left with the claimed simulator for the actively
secure protocol, and the claim follows.

We refer to Section 7 for sizes, parameters and a concrete instantiation of the
distributed decryption, combining it with the mix-net described in Section 4.

6 A Cryptographic Voting System

Our voting protocol follows a fairly natural design paradigm of mixing and
threshold decryption. Common voting scheme security definitions such as [BCG+15]
do not model shuffles and distributed decryption. Following other works such as
e.g. [Scy,Gjø11] we therefore define ad hoc security definitions. The high-level
architecture for the counting phase of our protocol is shown in Figure 5.

We follow the standard approach for voting system analysis, which is to
consider a voting system to be fairly simple cryptographic protocol built on top
of a cryptographic voting scheme.

The verifiable cryptographic voting scheme with return codes, shuffles and
distributed decryption is described in Appendix B. It uses our shuffle and ver-
ifiable decryption as described previously as well as other primitives. We now
explain how our voting system can be described as a simple protocol on top of

5 A more careful argument could allow us to dispense with this adversary. We have
opted for a simpler argument, since the commitment scheme is also used elsewhere.

134 D. Aranha et al.

S1 S2 . . . Sι
{c(0)i } {c(1)i } {c(2)i }

πS1 πS2 πSι

D1

...

Dj

...

Dξ

{mi}

{c(ι)i }

{c(ι)i }

{c(ι)i }

{(ti,1, πD1)}

{(ti,j , πDj)}

{(ti,ξ, πDξ)}

Fig. 5. The high level counting phase of our voting protocol. Each shuffle server Sk
receives a set of ciphertexts {c(k−1)

i }, shuffles them, and outputs a new set of ciphertexts

{c(k)i } and a proof πSk . When all shuffle proofs are verified, each decryption server Dj

partially decrypts every ciphertext and outputs the partial decryptions {ti,j} together
with a proof of correctness πDj . All votes can be reconstructed to {mi} from the
partial decryptions. The full voting protocol also includes proofs of known messages
from voters and a return code protocol for verifiability, see details in the Appendix.

this cryptographic voting scheme. We define security notions for this cryptosys-
tem, sketch the security proof, and then informally discuss the voting protocol’s
security properties in terms of the cryptosystem’s security in the Appendix.

6.1 Voting Protocol

The voting protocol requires a trusted set of players to run setup and registration,
a set of voters Vi and their computers Pi, a ballot box B, a return code generator
R, a collection of shuffle servers Sk, a collection of decryption servers Dj and
one or more auditors A.

In the setup phase, a trusted set of players runs the setup algorithm. The key
generation can either be done in a trusted fashion, or in a distributed fashion
using the protocol by Rotaru et al. [RST+22] to get an actively secure robust
threshold sharing of the secret decryption key. The derived public parameters
are given to every participant, while the decryption key shares are given to the
decryption servers Dj . The code key is given to the return code generator R,
who will use the key to derive so-called return codes [CES02,HR16] that are sent
to the voter. (As detailed in the Appendix, these codes are human-verifiable and
can allow the voter to detect a cheating computer tampering with ballots.)

In the registration phase, a set of trusted players run the register algorithm to
generate verification and casting keys for each voter Vi, making every verification
key public and giving the voter casting key to the voter’s computer. Then the

Voting from Lattice-Based Assumptions 135

return code generator chooses a PRF-key, and a set of trusted players compute
the return code table. The voter gets the return code table.

In the casting phase, each voter Vi instructs its computer Pi which ballot
to cast. The computer runs the casting algorithm, signs the encrypted ballot
and the ballot proof on the voter’s behalf, and sends the encrypted ballot, the
ballot proof and the signature to the ballot box B. The ballot box B sends the
encrypted ballot, the ballot proof and the signature to the return code generator
R, who runs the code algorithm. It uses the result to compute the return code
and sends it to the voter’s phone Fi, which sends it on to the voter Vi.

Both the ballot box and the return code generator will verify the voter’s
signature. After sending the return code, the return code generator countersigns
the encrypted ballot, the ballot proof and the voter’s signature, and sends the
countersignature to the ballot box, which in turns sends the countersignature to
the voter’s computer. The computer verifies the countersignature and only then
accepts, showing the encrypted ballot, the ballot proof, the signature and the
countersignature to the voter, which constitutes the voter’s receipt.

The voter Vi accepts the ballot as cast if and only if the computer accepts
with a receipt, and the voter’s phone shows a return code such that the pair is
in the return code table.

In the counting phase, the ballot box B and the return code generator R send
the encrypted ballots, ballot proofs and voter signatures they have seen to the
auditor A as well as every decryption server. The ballot box B then sorts the list
of encrypted ballots {ci} and sends this to the first shuffle server S1 and every
decryption server. In the event that some voter has cast more than one ballot,
only the encrypted ballot seen last is included in this list.

The shuffle servers S1,S2, . . . ,Sι use the shuffle algorithm on the input en-
crypted ballots, passing the shuffled and re-encrypted ballots to the next shuffle
server. They also pass the shuffled re-encrypted ballots and the shuffle proof to
the auditor and every decryption server.

Each decryption server verifies that the data from B and R is consistent
(similar to the auditor A), and that every shuffle proof verifies. Only then they
run the distributed decryption algorithm with their decryption key share and
send their partial decryption shares of each ballot as well as proofs of correct
decryption to the auditor.

If the data is consistent (that is, the same encrypted ballots, ballot proofs
and signatures appear in the same order in the data from both B and R, and
the signatures and the ballot proofs verify), the auditor A approves.

The auditor verifies the data from B and R (the same encrypted ballots,
ballot proofs and signatures appear in the same order in the two data sets,
and the voter signatures and the ballot proofs verify), that the encrypted ballots
received by the first shuffle are consistent with the data from B andR, that every
shuffle proof verifies, and then runs the combining algorithm on the received
ballot decryption shares. If the combining algorithm accepts then the auditor
accepts, otherwise it rejects. Finally, A outputs the complete list of messages
received, including the public key material, as its transcript.

136 D. Aranha et al.

There is a verification algorithm that takes as input a transcript, a result and
optionally a receipt, and either accepts or rejects. The verification algorithm sim-
ply runs the auditor with the public key material and the messages listed in the
transcript, and checks if the auditor’s result matches the input result. If a receipt
is present, it also verifies the countersignature and the voters’ signatures in the
receipt, that the encrypted ballot, the ballot proof and the voters’ signatures are
present in the ballot box data set, and that the encrypted ballots are present in
the first shuffle server’s input.

This concludes the description of the voting protocol in terms of a verifiable
cryptographic voting scheme with return codes.

Note that there are many variations of this protocol. It can be used without
return codes, simply by omitting return codes. Also, depending on the exact
setting and security required, the return code generator can be merged with the
ballot box.

Many comparable schemes are phrased in terms of an ideal (web) bulletin
board, where every player posts their messages. Implementing a bulletin board
is tricky in practice, so instead we have described the scheme as a conventional
cryptographic protocol passing messages via some network.

It is also worth noting that for our concrete scheme anyone can redo the
auditor’s work (since no secret key material is involved) by running the verifi-
cation algorithm (and parts of the code algorithm) on the public data, making
the voting protocol (universally) verifiable.

7 Performance

7.1 Size of the Submission Phase

Each BGV ciphertexts are of size 2N log2 q bits. We assume that the set of
input-ciphertexts to the mixing network are honestly generated. We can ensure
this by using e.g. the exact proofs by Beullens [Beu20] or Baum and Nof [BN20],
the efficient range proofs by Attema et al. [ALS20], or the new techniques from
Lyubashevsky et al. [LNS21,ENS20] to prove that the noise is bounded and that
the user knows the message.

7.2 Size of the Mixing Network

Let ι denote the number of mixing servers and let τ be the number of ciphertexts.
Each ciphertext consists of two elements in Rq, where each element can be
represented by N log2 q bits. The transcript of the mixing phase will contain ι
sets of τ new ciphertexts, and is of size 2ιτN log2 q bits.

For each shuffle the servers must provide a proof of shuffle and an amortized
proof of shortness. Both proofs prove a relation about commitments to the ran-
domization factors added to the old ciphertexts to get the new ciphertexts, and
each commitment is of size (n+ 2)N log2 q bits.

The shuffle proof consists of τ commitment of size (n+1)N log2 q bits, τ ring
elements of size N log2 q bits and a proof of linearity per ciphertext. The proof

Voting from Lattice-Based Assumptions 137

Parameter Explanation Constraints

λ Security parameter At least 128 bits

N Degree of polynomial XN + 1 in R N a power of two

p Plaintext modulus p a small prime

q Ciphertext and commitment modulus Prime q = 1 mod 2N s.t. max∥v − su∥ ≪ q/2

k Width (over Rq) of commitment matrix

n Height (over Rq) of commitment matrix

ν Maximum l1-norm of elements in C
D Bounded distribution for noise in ciphertexts Chosen to be the uniform ternary distribution

σC Standard deviation for one-time commitments Chosen to be σC = 0.954 · ν · β∞ ·
√
kN

σ̂C Standard deviation for reusable commitments Chosen to be σ̂C = 22 · ν · β∞ ·
√
kN

σANEx Standard deviation for the one-time amortized proof Chosen to hide the commitment randomness r′′
i,j

σ̂ANEx Standard deviation for the one-time amortized proof Chosen to hide the noise-drowning values Ei,j

C Challenge space C =
{
c ∈ Rp | ∥c∥∞ = 1, ∥c∥1 = ν

}

C̄ The set of differences C − C excluding 0 C̄ = {c− c′ | c ̸= c′ ∈ C}
Sβ∞ Set of elements of ∞-norm at most β∞ Sβ∞ = {x ∈ Rp | ∥x∥∞ ≤ β∞}
n̂ Dimension of proof in ΠANEx n̂ ≥ λ+ 2

ι, ξ Number of shuffle- and decryption-servers

τ Total number of messages For soundness we need (τ δ + 1)/|Rq| < 2−128

Table 1. System parameters and constraints.

of linearity is of size 2(k − n)N log2(6σC) bits. The shuffle proof is then of size
((n+ 2)N log2 q + 2(k − n)N log2(6σC))τ bits.

The amortized proof of shortness depends on the bound, in our case B = 1,
but also on the ratio between the number of commitments and the size of the
modulus. We denote the proof by πAEx, and discuss it in more detail later based
on concrete parameters. The total bit-size of the mixing is

ι((2n+ 6)N log2 q + 2(k − n)N log2(6σC))τ + ι|πAEx|.

7.3 Size of the Distributed Decryption

Let ξ denote the number of decryption servers and let τ be the number of
ciphertexts. Each partial decryption consists of one element from Rq, which
means that the output of the decryption is of size ξτN log2 q bits.

Additionally, each decryption server outputs a commitment to the added
noise and a proof of linearity per ciphertext, and an amortized proof of shortness
for all the added noise values. Also, each server has a public commitment of their
decryption key-share to be used in the proof of linearity. Each commitment is of
size (n+1)N log2 q bits, and each proof of linearity is of size (k−n)N(log2(6σC)+
log2(6σ̂C) bits (because the partial decryption is given in the clear and one
commitment is re-used in all equations). Finally, each of the amortized proofs is
of size kn̂N log2(6σANEx) + n̂ log2(6σ̂ANEx) bits because of the different norms
of the secret values as noted in Remark 1. As the bounds in the amortized proof
depends on the number of commitments in the statement, we compute batched
proofs of N equations at once to control the growth.

138 D. Aranha et al.

The total size of the distributed decryption is

ξ((n+ 2)N log2 q + (k − n)N(log2(6σC) + log2(6σ̂C))

+kn̂ log2(6σANEx) + n̂ log2(6σ̂ANEx))τ bits.

7.4 Concrete Parameters and Total Size

Standard deviation. We let the success probability of each of the zero-knowledge
protocols to be 1/M ≈ 1/3. The algorithm in Section 2.2 is used for rejection
sampling. We will use the following parameters, where we note that the commit-
ments used in the shuffle and in the amortized proofs are only used once, while
the proof of linearity in the decryption protocol depends on a commitment to
the secret key-share each time. However, that is the only part that is reused,
and we can use a smaller standard deviation for the other commitment.

The proofs of linearity have two terms, which means that each of them must
have a success probability of 1/

√
3. This gives σC = 0.954νβ∞

√
kN . For the

re-usable commitments we get σ̂C = 22νβ∞
√
kN . The amortized proof also

have two checks, and we get standard deviation 0.954
∥∥S′C ′

∥∥
2
, where σANEx

and σ̂ANEx are depending on the norm of the elements in the rows of S′.
For the encryption, we let D be the ternary distribution over Rq, where each

polynomial has coefficients in {−1, 0, 1} sampled uniformly at random. We let
the commitment randomness be bounded by BCom = 1.

Bounding the noise. To be able to choose concrete parameters for the mix-net,
we need to estimate how much noise that is added to the ciphertexts through the
two stages of the protocol: 1) the shuffle phase, and 2) the decryption phase. Each
part of the system contributes the following amount of noise to the ciphertexts:

- Original ciphertext: BStart = p(∥er∥∞ + ∥ei,2∥∞ + ∥−ei,1s∥∞) + ∥m∥∞.

- Additional noise per shuffle: BShuf = p(∥er′∥∞ +
∥∥e′i,2

∥∥
∞ +

∥∥−e′i,1s
∥∥
∞).

- Additional noise in partial decryption: BDistDec = pξ
∥∥E′i,j

∥∥
∞ ≤ 2secBDec,

where BDec = Bstart + ιBShuf is the upper bound of the noise added before the
decryption phase. This means that we have the following bounds on each of the
noise-terms above, when using ternary noise:

∥e∥1 ≤ N, ∥r∥∞ ≤ 1, ∥ei,2∥∞ ≤ 1, ∥ei,1∥1 ≤ N,

∥s∥∞ ≤ 1, ∥r′∥∞ ≤ 1,
∥∥e′i,2

∥∥
∞ ≤ 1,

∥∥e′i,1
∥∥
1
≤ N.

Using the bounds from Section 2, we get upper bounds:

BStart = p(2N + 1) + ⌈(p− 1)/2⌉, BShuf = p(2N + 1),

which for ι shuffles gives us

BDec = (ι+ 1)p(2N + 1) + ⌈(p− 1)/2⌉.

Voting from Lattice-Based Assumptions 139

Finally, we need to make sure that BDec + BDistDec < q/2, where BDistDec =
2pξB̂ANEx because of the soundness slack of the amortized proof of bounded val-
ues from Section 3.5. A honestly generated value Ei,j is bounded by 2sec(BDec/pξ),
but the proof can only guarantee that the values are shorter than some larger
bound 2B̂ANEx (following [BBC+18, Lemma 3]) that depends on the number of
equation in the statement. Define S′′ to be the first k rows of S′ and define S′′′

to be the last row of S′. For batches of N equations we then get that:

BANEx ≤
√
2N · σANEx ≤

√
2N · 0.954 ·max

∥∥S′′C ′
∥∥
2

≤ 1.35 ·
√
N ·max

∥∥S′′
∥∥
1
·max

∥∥C ′
∥∥
∞

≤ 1.35 · k ·
√
N ·N ·BCom,

and, similarly,

B̂ANEx ≤
√
2N · σ̂ANEx ≤ 1.35 ·

√
N ·N · ∥Ei,j∥∞,

with BANEx for rows 1 to k of Z and B̂ANEx for the last.

N p q sec ι ξ n k ν BCom n̂ σC σ̂C σANEx σ̂ANEx B̂ANEx

4096 2 ≈ 278 40 4 4 1 ℓ+ 2 36 1 130 ≈ 212 ≈ 216.5 ≈ 213.5 ≈ 266 ≈ 272.5

Table 2. Concrete parameters estimated for λ ≈ 168 bits of security using the LWE-
estimator by Albrecht et al. [APS15].

We fix plaintext modulus p = 2, statistical security parameter sec = 40,
and need N = 4096 when q is large to provide proper security. This allows for
votes of size 4096 bits, which should be a feasible size for real-world elections.
We let the number of shuffle and decryption servers be ι = ξ = 4. It follows that
BDec < 217 and BDistDec < 276.5. We then set q ≈ 278, and verify that

max
i∈[τ]
∥vi − sui∥ < 2 · (217 + 276.5) < q.

Exact amortized proof. Finally, we must decide on parameters for the exact
proof of shortness from Section 3.4. The soundness of the protocol depends on
the ration between the number of equations and the size of the modulus, see
Lemma 1. We choose to compute the proof in batches of size N instead of
computing the proof for all τ commitments at once. Then we get 18N/(q −
N) ≈ 2−62, and hence, we must compute each proof twice in parallel to achieve
negligible soundness. Furthermore, we choose k ≈ 220, l ≈ 220.3, η = 325 to keep
the soundness ≈ 2−62. The total size of πAEx, by instantiating 2, is ≈ 20τ KB.

Total size. We give a complete set of parameters in Table 2, and the concrete
sizes of each part of the protocol in Table 3. Each voter submit a ciphertext

140 D. Aranha et al.

size approximately 80 KB. The size of the mix-net, including ciphertexts, com-
mitments, shuffle proof and proof of shortness, is approximately 370τ KB per
mixing node Si. The size of the decryption phase, including partial decryptions,
commitments, proofs of linearity and proofs of boundedness, is approximately
157τ KB per decryption node Dj .

c
(k)
i [[Rℓ

q]] πShuf πLi,j πAEx πANEx πSi πDj

80 KB 40(ℓ+ 1) KB 150τ KB 35 KB 20τ KB 2τ KB 370τ KB 157τ KB

Table 3. Size of the ciphertexts, commitments and proofs.

7.5 Implementation

In order to estimate the efficiency of our protocols, we developed a proof-of-
concept implementation to compare with previous results in the literature. Our
performance figures were collected on an Intel Skylake Core i7-6700K CPU ma-
chine running at 4GHz without TurboBoost. The results can be found in Tables 4
and 5, and we intend to release the code publicly in the near future.

First, we compare performance of the main building blocks with an imple-
mentation of the shuffle proof protocol proposed in [ABG+21]. That work used
the FLINT library to implement arithmetic involving polynomials of degree
N = 1024 with 56-bit coefficients, fitting a 64-bit machine word. Their param-
eters were not compatible with the fast Number Theoretic Transform (NTT),
so a CRT decomposition to two half-degree polynomials was used instead. The
code was made available, so a direct comparison is possible.

In this work, the degree is much larger (N = 4096) and coefficients are
multi-word (q ≈ 278), but the parameters are compatible with the NTT. We
implemented polynomial arithmetic with the efficient NFLlib [ABG+16] library
using the RNS representation for coefficients. The arithmetic is accelerated with
AVX2 instructions, especially the NTT transform and polynomial arithmetic. We
observed that our polynomial multiplication is around 19 times more efficient
than [ABG+21] (61, 314 cycles instead of 1, 165, 997), despite parameters being
considerably larger. We also employed the FLINT library for arithmetic routines
not supported in NFLlib, such as polynomial division, but that incurred some
non-trivial costs to convert representations between two libraries. For Gaussian
sampling, we adapted COSAC [ZSS20] and adjusted the standard deviation σ
accordingly.

Computing a commitment takes 0.45 ms on the target machine, which is
2x faster than [ABG+21]. Opening a commitment is slower due to conversions
between libraries for performing the norm test. Our implementation of BGV
encryption is much faster than the 69 ms reported for verifiable encryption

Voting from Lattice-Based Assumptions 141

in [ABG+21], while decryption is improved by a factor of 7. Distributed de-
cryption with passive security costs additional 1.51 ms per party, but the zero-
knowledge proofs for active security increase the cost further. The shuffle proof
performance is at 30 ms per vote, thus close to [ABG+21].

For the other sub-protocols, we benchmarked executions with τ = 1000 and
report the execution time amortized per vote for both prover and verifier in
Table 5. In the case of ΠAEx, we only implement the performance-critical poly-
nomial arithmetic and commitment scheme, since this is already representative
of the overall performance. From the table, we can compute the cost of dis-
tributed decryption with active security as (10.7 + 30 + 15.7 + 25.0) = 81.4 ms
per vote, the cost of ΠMix as (0.45 + 1009 + 15.1) = 1024 ms and the cost of
ΠMixV as (20 + 16.1) = 36.1 ms per vote. This result compares very favorably
with the costs of 1.5 s and 1.49 s per vote to respectively generate/verify a proof
in the lattice-based shuffle proof of [FWK21] in a Haswell processor running at
approximately half the frequency. By considering space-time efficiency as a met-
ric, our total numbers are 1.4 times higher after adjusting for clock frequency
and negligible soundness, while storage overhead is much lower.

Primitive Commit Open Encrypt Decrypt DistDec

Time 0.45 ms 2.3 ms 2.5 ms 0.83 ms 1.51 ms

Table 4. Timings for basic cryptographic operations. Numbers were obtained by com-
puting the average of 104 consecutive executions of an operation measured using the
cycle counter available in the platform.

Protocol ΠLin +ΠLinV Πℓ
Shuf +Πℓ

ShufV ΠANEx +ΠANExV ΠAEx +ΠAExV

Time (10.7 + 15.7)τ ms (15.1 + 16.1)τ ms (30.0 + 25.0)τ ms (1009 + 20)τ ms

Table 5. Timings for cryptographic protocols, obtained by computing the average of
100 consecutive executions with τ = 1000.

8 Concluding Remarks

We have proposed a verifiable secret shuffle of BGV ciphertexts and a verifi-
able distributed decryption protocol. Together, these two novel constructions
are practical and solve a long-standing problem in the design of quantum-safe
cryptographic voting systems.

Verifiable secret shuffles for discrete logarithm-based cryptography has seen
a long sequence of incremental designs follow Neff’s breakthrough construction.
While individual published improvements were often fairly small, the overall im-
provement in performance over time was significant. We expect that our designs
can be improved in a similar fashion. In particular, we expect that the size of
the proofs can be significantly reduced. While it is certainly straight-forward
to download a few hundred gigabytes today (compare with high-quality video
streaming), many voters will be discouraged and this limits the universality of

142 D. Aranha et al.

verification in practice. It therefore seems reasonable to focus further effort on
reducing the size of the proofs.

The distributed decryption protocol does not have an adjustable threshold.
In practice, this is not much of a problem, since the key material will be secret
shared among many key holders. Only when counting starts is the key material
given to the decryption servers. Key reconstruction can then be combined with
a suitable distributed key distribution protocol.

Shuffles followed by distributed decryption is one paradigm for the design of
cryptographic voting systems. Another possible paradigm is to use key shifting in
the shuffles. This would then allow us to use a single party for decryption (though
it must still be verifiable, e.g., using the protocol by Gjøsteen et al. [GHM+21] or
by Silde [Sil22]). Key shifting can be done with many of the same techniques that
we use for distributed decryption, but there seems to be difficulties in amortizing
the proofs. This means that key shifting with just the techniques we use will be
significantly slower and of increased size, as we would have to add an additional
proof of linearity for each new ciphertext in each shuffle.

Finally, we note that our scheme and concrete instantiation using the NTT
is optimized for speed, and that it is possible to slightly decrease the parameters
by instantiating the encryption scheme based on the SKS2 and DKS∞ problems
in higher dimensions k using a smaller, but still a power of 2, ring-dimension N .
We leave this as future work. We also remark that lattice-based cryptography,
and especially lattice-based zero-knowledge proofs such as the recent preprint
by Lyubashevsky et al [LNP22], continuously improves the state-of-the-art, and
we expect future works to improve the concrete efficiency of our protocol.

References

ABG+16. Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet,
Marc-Olivier Killijian, and Tancrède Lepoint. NFLlib: NTT-based fast lat-
tice library. In Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS,
pages 341–356. Springer, Heidelberg, February / March 2016.

ABG+21. Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and
Thor Tunge. Lattice-based proof of shuffle and applications to electronic
voting. In Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of
LNCS, pages 227–251. Springer, Heidelberg, May 2021.

Adi08. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van
Oorschot, editor, USENIX Security 2008, pages 335–348. USENIX Asso-
ciation, July / August 2008.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical prod-
uct proofs for lattice commitments. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
470–499. Springer, Heidelberg, August 2020.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge

Voting from Lattice-Based Assumptions 143

arguments for arithmetic circuits. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
669–699. Springer, Heidelberg, August 2018.

BCG+15. David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
Bogdan Warinschi. SoK: A comprehensive analysis of game-based ballot
privacy definitions. In 2015 IEEE Symposium on Security and Privacy,
pages 499–516. IEEE Computer Society Press, May 2015.

BCG+17. Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad
Hajiabadi, and Sune K. Jakobsen. Linear-time zero-knowledge proofs for
arithmetic circuit satisfiability. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 336–
365. Springer, Heidelberg, December 2017.

BD10. Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-
knowledge proofs for lattice-based cryptosystems. In Daniele Micciancio,
editor, TCC 2010, volume 5978 of LNCS, pages 201–218. Springer, Heidel-
berg, February 2010.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner,
and Chris Peikert. More efficient commitments from structured lattice
assumptions. In Dario Catalano and Roberto De Prisco, editors, SCN 18,
volume 11035 of LNCS, pages 368–385. Springer, Heidelberg, September
2018.

BEPU+20. Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl,
and Juan Ramón Troncoso-Pastoriza. Efficient protocols for oblivious lin-
ear function evaluation from ring-LWE. In Clemente Galdi and Vladimir
Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 130–149.
Springer, Heidelberg, September 2020.

Beu20. Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature
schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part III, volume 12107 of LNCS, pages 183–211. Springer, Heidelberg, May
2020.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, ed-
itor, ITCS 2012, pages 309–325. ACM, January 2012.

BHM20. Xavier Boyen, Thomas Haines, and Johannes Müller. A verifiable and prac-
tical lattice-based decryption mix net with external auditing. In Liqun
Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors, ES-
ORICS 2020, Part II, volume 12309 of LNCS, pages 336–356. Springer,
Heidelberg, September 2020.

BHM21. Xavier Boyen, Thomas Haines, and Johannes Müller. Epoque: Practical
end-to-end verifiable post-quantum-secure e-voting. In IEEE European
Symposium on Security and Privacy, EuroS&P 2021, Vienna, Austria,
September 6-10, 2021, pages 272–291. IEEE, 2021.

BLNS21. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. More efficient amortization of exact zero-knowledge proofs for lwe.
In Elisa Bertino, Haya Shulman, and Michael Waidner, editors, Computer
Security – ESORICS 2021, pages 608–627, Cham, 2021. Springer Interna-
tional Publishing.

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic tech-
niques for short(er) exact lattice-based zero-knowledge proofs. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 176–202. Springer, Heidelberg, August 2019.

144 D. Aranha et al.

Blu84. Manuel Blum. How to exchange (secret) keys. ACM Transactions on
Computer Systems, 1:175–193, 1984.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge argu-
ments for arithmetic circuits and their application to lattice-based cryp-
tography. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages
495–526. Springer, Heidelberg, May 2020.

CES02. e-voting security study. CESG, United Kingdom, July 2002. Issue 1.2.
CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.

A homomorphic LWE based E-voting scheme. In Tsuyoshi Takagi, edi-
tor, Post-Quantum Cryptography - 7th International Workshop, PQCrypto
2016, pages 245–265. Springer, Heidelberg, 2016.

Cha81. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981.

CMM19. Núria Costa, Ramiro Mart́ınez, and Paz Morillo. Lattice-based proof of
a shuffle. In Andrea Bracciali, Jeremy Clark, Federico Pintore, Peter B.
Rønne, and Massimiliano Sala, editors, FC 2019 Workshops, volume 11599
of LNCS, pages 330–346. Springer, Heidelberg, February 2019.

CP93. David Chaum and Torben P. Pedersen. Wallet databases with observers.
In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages
89–105. Springer, Heidelberg, August 1993.

Dam10. Ivan Damg̊ard. On σ-protocols, 2010. https://cs.au.dk/~ivan/Sigma.

pdf.
DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter

Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishon-
est majority - or: Breaking the SPDZ limits. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS,
pages 1–18. Springer, Heidelberg, September 2013.

dLNS17. Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler.
Practical quantum-safe voting from lattices. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 1565–1581. ACM Press, October / November 2017.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 643–662. Springer, Heidelberg, August 2012.

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
exact proofs from lattices: New techniques to exploit fully-splitting rings.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II,
volume 12492 of LNCS, pages 259–288. Springer, Heidelberg, December
2020.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

FWK21. Valeh Farzaliyev, Jan Willemson, and Jaan Kristjan Kaasik. Improved
lattice-based mix-nets for electronic voting. In Information Security and
Cryptology – ICISC 2021. Springer International Publishing, 2021.

GHM+21. Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne, and
Tjerand Silde. Verifiable decryption in the head. Cryptology ePrint
Archive, Report 2021/558, 2021.

Voting from Lattice-Based Assumptions 145

Gjø11. Kristian Gjøsteen. The norwegian internet voting protocol. In Aggelos
Kiayias and Helger Lipmaa, editors, E-Voting and Identity - Third Inter-
national Conference, VoteID 2011, volume 7187 of Lecture Notes in Com-
puter Science, pages 1–18. Springer, 2011.

GM82. Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In Proceedings of
the Fourteenth Annual ACM Symposium on Theory of Computing, STOC
’82, page 365–377, New York, NY, USA, 1982. Association for Computing
Machinery.

GMR85. S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of
interactive proof-systems. In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing, STOC ’85, page 291–304, New York,
NY, USA, 1985. Association for Computing Machinery.

HMS21. Javier Herranz, Ramiro Mart́ınez, and Manuel Sánchez. Shorter lattice-
based zero-knowledge proofs for the correctness of a shuffle. Cryptology
ePrint Archive, Report 2021/488, 2021.

HR16. Feng Hao and Peter Y. A. Ryan, editors. Real-World Electronic Voting:
Design, Analysis and Deployment. CRC Press, 2016.

LN16. Patrick Longa and Michael Naehrig. Speeding up the number theoretic
transform for faster ideal lattice-based cryptography. In Sara Foresti and
Giuseppe Persiano, editors, CANS 16, volume 10052 of LNCS, pages 124–
139. Springer, Heidelberg, November 2016.

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and more
general. Cryptology ePrint Archive, Report 2022/284, 2022. https://ia.
cr/2022/284.

LNS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Juan
Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages 215–241.
Springer, Heidelberg, May 2021.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer, Hei-
delberg, May 2013.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptography, 75(3):565–599, June 2015.

Nef01. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting.
In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001,
pages 116–125. ACM Press, November 2001.

RST+22. Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren,
and Tim Wood. Actively secure setup for spdz. J. Cryptol., 35(1), jan
2022.

Scy. Scytl. Scytl sVote, complete verifiability security proof report - software
version 2.1 - document 1.0.

Sil22. Tjerand Silde. Verifiable decryption for BGV. Workshop on Advances in
Secure Electronic Voting, 2022. https://ia.cr/2021/1693.

Str19. Martin Strand. A verifiable shuffle for the GSW cryptosystem. In Aviv
Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Fed-
erico Pintore, and Massimiliano Sala, editors, FC 2018 Workshops, volume
10958 of LNCS, pages 165–180. Springer, Heidelberg, March 2019.

146 D. Aranha et al.

ZSS20. Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. COSAC: COmpact
and scalable arbitrary-centered discrete gaussian sampling over integers. In
Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography -
11th International Conference, PQCrypto 2020, pages 284–303. Springer,
Heidelberg, 2020.

Voting from Lattice-Based Assumptions 147

Appendix
A Verifiable Decryption Secure Against n − 1 Parties

A.1 Optimistic Decryption

We present a new verifiable decryption protocol secure against n − 1 parties.
The protocol is inspired by the information theoretic MAC used in the MPC-
protocols by Damg̊ard et al. [DPSZ12,DKL+13]. Here we start with an encrypted
message m, sample a secret MAC α as the sum of independent shares αj and
check that the decryption of αm is correct. We use homomorphic encryption and
standard commit-and-open techniques to ensure that the MAC value is honestly
generated. Assuming at least one honest party, then the probability that the
adversary can succeed is to guess the value of α before the decryption of αm is
revealed. This happens with probability 1/|Rp| = 1/pN , which is negligible in
the security parameter λ.

Note that this setting is usually not acceptable in an election, but it might
still have value in at least the two following situations.

Firstly, as the protocol above is expensive both in computational complexity
and memory consumption, it might be interesting to get a preliminary result
of the election quickly by running the more lightweight protocol first and then
heavier protocol afterwards. This way, we can within short time get a result with
good confidence, and later get a proof that the first output was indeed correct.

Secondly, some smaller elections are organized such that each party voting is
also computing a shuffle and a partial decryption, and hence, is both a voter and
an infrastructure player in the election. In this case one has neither privacy nor
integrity if everyone is colluding, and it makes sense to use a more lightweight
protocol to compute the tally.

A.2 Homomorphic Multiplication

We describe additional algorithms to extend the BGV encryption protocol from
Section 3.1 to include homomorphic multiplication of ciphertexts.

- KeyGenExt, runs KeyGen from Section 3 and outputs public key pk = (a, b) =
(a, as+ pe) and secret key sk = (s1, s2) = (s, s2).

- Mult, on input two ciphertexts c1 = (u1, v1) and c2 = (u2, v2), computes
d0 = v1 · v2, d1 = u1 · v2 + u2 · v1 and d2 = u1 · u2, and outputs the product
ciphertext d = (d0, d1, d2).

- DecExt, takes as input a product ciphertext d = (d0, d1, d2) and computes
m′ = (d0 − s1 · d1 + s2 · d2 mod q) mod p. The algorithm outputs m′.

The output of the decryption algorithm is correct if ∥d0 − s1 · d1 + s2 · d2∥∞ =
BDec < ⌊q/2⌋. Furthermore, we present the extended passively secure distributed

148 D. Aranha et al.

decryption technique used in the MPC-protocols by Damg̊ard et al. [DPSZ12,
DKL+13]. When decrypting, we assume that each decryption server Dj , for
1 ≤ j ≤ ξ, has a uniformly random share skj = (s1,j , s2,j) of the secret key
sk = (s1, s2) such that s1 = s1,1 + s1,2 + ...+ s1,ξ and s2 = s2,1 + s2,2 + ...+ s2,ξ.
Then they partially decrypt using the following algorithm:

- DistDecExt, on input a secret key-share skj and a ciphertext d = (d0, d1, d2),
computes mj = s1,j · d1 − s2,j · d2, sample some large noise Ej ←$ Rq such
that ∥Ej∥∞ ≤ 2sec(BDec/pξ), and then outputs tj = mj + pEj .

We obtain the full decryption of the ciphertext d = (d0, d1, d2) as m = (d0 − t
mod q) mod p, where t = t1 + t2 + ...+ tξ. This will give the correct decryption
as long as the noise ∥d0 − t∥∞ ≤ (1 + 2sec)BDec < ⌊q/2⌋.

A.3 Decryption Protocol

We use the same public parameters and ciphertexts as received in the decryption
protocol in Section 5. Each decryption server has a secret key-share as described
in KeyGenExt. Our verifiable decryption protocol works as following.

Partial decryption. Each party Dj run DistDec, as defined in Section 3.1, on
each ciphertext ci to produce partial decryptions ti,j . Output {ti,j}τi=1.

Commit to randomness. Each party samples a random αj ←$ Rp, run Enc with
message αj to produce ciphertext cαi

= (uαj
, vαj

), and commit to the message
and randomness as hj = H(αj , rαj

, eαj
, e′αj

), for a hash-function H. Output hj .

Output MAC shares. When each party Dj has published hj , output cαj .

Compute MAC. Each party gather the encrypted MAC shares {cαj} and sum
them together as cα = cα1 + ...+ cαξ

. Then, for each ciphertext ci, use Mult to
compute the homomorphic multiplication with cα denoted di = (di,0, di,1, di,2).

Commit to partial MAC decryption. Each party Dj runs the DistDecExt on
each ciphertext di to produce partial decryptions tαi,j

. Commit to the partial
decryption as hαj

= H(tα1,j
, ..., tατ,j

). Output hαj
.

Output partial MAC decryption. When each party Dj has published hαi,j , output
the partial MAC αj , randomness rαj , eαj , e

′
αj

and partial decryptions {tαi,j}τi=1.

Verify correct decryption. A verifier computes mi = (vi,0−ti mod q) mod p for
ti = ti,1+ ...+ti,ξ and mαi

= (di,0−tαi
mod q) mod p for tαi

= tαi,1
+ ...+tαi,ξ

for all i = 1, ..., τ . Also compute α = α1 + ... + αξ. Then, check that cαi
was

correctly computed, that hj and hαi,j
have valid openings and that mαi

= mi ·α
in Rp for all i. If all checks holds then output {mi}τi=1 and otherwise output ⊥.

Voting from Lattice-Based Assumptions 149

A.4 Parameters and Size

Bounding the noise. We know from Section 7 that the amount of noise in each in-
put ciphertext ci is bounded by Bc = (ι+1)p(2N+1)+⌈(p−1)/2⌉. Furthermore,
the noise in each ciphertext cαj

is bounded by Bcα
= p(2N +1)+ ⌈(p−1)/2⌉. It

follows from Brakerski et al. [BGV12, Section 5.2] that the noise in each product
ciphertext di is bounded by Bd =

√
N ·Bc ·Bcα

. Using DistDecExt, noise of size
2secBd is added to di. To ensure correct decryption, we must choose q such that
(1+2sec)Bd < q/2. Inserting the parameters from Table 2 we get that Bd < 238,
and hence, we can choose q ≈ 278 as in Section 7.

Total size. Each partial decryption consists of one ring-element, and each ring
element can be represented with N log q bits. Each party Dj only sends two
hashes of size 256 bits and the elements αj , rαj , eαj , e

′
αj

which are of size 2N
bits each to generate the MAC, which is essentially negligible compared to the
ciphertexts and partial decryptions. The total size of the decryption protocol,
not counting the input ciphertexts, is ≈ 2ξτN log q. Using the parameters from
above we get that the concrete size is ≈ 80τ KB per decryption server.

B Security of the Voting Protocol

Here we provide a more formal description of the voting protocol described in
Section 6, give security notions, sketch a security proof and discuss the security
properties of the full voting protocol.

B.1 Verifiable Voting Schemes with Return Codes

A verifiable cryptographic voting scheme in our architecture is usually defined in
terms of algorithms for the tasks of election setup, casting ballots, counting cast
ballots and verifying the count. To support return codes, we also need algorithms
for voter registration and pre-code computation. Finally, to accurately model the
counting process, we need algorithms for shuffling and distributed decryption.

The setup algorithm Setup outputs a public key pk, decryption key shares
dki and a code key ck.

The register algorithm Reg takes a public key pk as input and outputs a
voter verification key vvk, a voter casting key vck and a function f from
ballots to pre-codes.

The cast algorithm Cast takes a public key pk, a voter casting key vck and
a ballot v, and outputs an encrypted ballot ev and a ballot proof πv.

The code algorithm Code takes a code key ck, an encrypted ballot ev and a
proof πv as input and outputs a pre-code r̂ or ⊥. (If the code key ck is ⊥,
the algorithm outputs 0 or 1.)

The shuffle algorithm Shuffle takes a public key pk and a sequence of en-
crypted ballots ev , and outputs a sequence of encrypted ballots ev ′ and a
proof of shuffle πs.

150 D. Aranha et al.

The verify algorithm Verify takes a public key pk, two sequences of en-
crypted ballots ev , and ev ′ and a proof πs, and outputs 0 or 1.

The distributed decryption algorithm DistDec takes a decryption key dki
and a sequence of encrypted ballots ev , and outputs a sequence of ballot
decryption shares svi and a decryption proof πd,i.

The combining algorithm Comb takes a public key pk, a sequence of en-
crypted ballots ev , ballot decryption share sequences sv1, sv2, . . . , svld with
proofs πd,1, πd,2, . . . , πd,ld , and outputs either ⊥ or a sequence of ballots
v1, v2, . . . , vlt .

A cryptographic voting scheme is ls-correct if for any (pk, {dki}, ck) output
by Setup and any (vvk1, vck1, f1), . . . , (vvklV , vcklV , flV) output by Reg(pk),

any ballots v1, . . . , vlV , any (ev
(0)
i , πv,i) output by Cast(pk, vcki, vi), i = 1, . . . , lV ,

any sequence of ls sequences of encrypted ballots ev (j) with proofs πs,j out-
put by Shuffle(pk, ev (j−1)), any ballot decryption shares sv1, . . . , svld with
proofs πd,1, . . . , πd,ld output by DistDec(dki, ev

(ls)), i = 1, 2, . . . , ld and any
(v′1, . . . , v

′
lV
) possibly output by Comb(pk, ev (ls), sv1, . . . , svld), πd,1, . . . , πd,ld),

then:

– Code(ck, vvki, ev i, πv,i) = fi(vi), Code(⊥, vvki, ev i, πv,i) = 1,
– Verify(pk, ev (j−1), ev (j), πs,j) = 1 for j = 1, 2, . . . , ls,
– Comb(pk, ev (ls), sv1, . . . , svld), πd,1, . . . , πd,ld) did not output ⊥, and
– v1, . . . , vlV equals v′1, . . . , v

′
lV
, up to order.

We also require that the distribution of ev i only depends on pk and vi, not vcki.
For any such scheme we define a decryption algorithm Dec that first applies a

number of shuffles (possibly zero) to the single ciphertext, then applies DistDec
and Comb in sequence. Note that this algorithm will not actually be used, but it
simplifies the definition of security.

B.2 Our Scheme

Our voting scheme combines the BGV encryption together with our shuffle (Sec-
tion 4) and distributed decryption (Section 5). We adapt the techniques from
Aranha et al. [ABG+21] to get extractability and code voting, but omit the
details.

– Setup computes pkC ← KeyGenC , (pkV , dkV) ← KeyGenVE , (pkR, dkR) ←
KeyGenVE , as well as key shares dkV,i for every decryption server. The public
key pk = (pkC , pkV , pkR), the decryption share is dk = (pkC , dkV,i) and the
code key is ck = (pkC , pkV , dkR).

– Reg takes pk = (pkC , pkV , pkR) as input. It samples a ←$ Rp and computes
(ca, da) ← Com(pkC , a). The voter verification key is vvk = ca, the voter
casting key is (a, ca, da), and the function f is v 7→ v + a.

– Cast takes pk = (pkC , pkV , pkR), vck = (a, ca, da) and v as input. It com-
putes v ← EncVE (pkV , v), r̂ ← a+ v and w ← EncVE (pkR, r̂), along with a

Voting from Lattice-Based Assumptions 151

proof πv,0 that v and w are well-formed ciphertexts, and that ca is a com-
mitment to the difference of the decryptions. The encrypted ballot is ev = v,
while the ballot proof is πv = (w, πv,0).

– Code takes ck = (pkC , pkV , dkR), a voter verification key vvk, an encrypted
ballot ev = v and a ballot proof πv = (w, πv,0) as input. It verifies πv,0 and
outputs ⊥ if verification fails. Otherwise, it computes r̂ ← DecVE (dkR,w)
and outputs r̂. (If ck = ⊥, it outputs 1 if and only if it accepts πv,0.)

– The shuffle algorithm Shuffle and the verify algorithm Verify are as de-
scribed in Section 4. The distributed decryption algorithm DistDec and the
combining algorithm Comb are as described in Section 5.

It is straight-forward to verify that the scheme is correct.

B.3 Security Notions

Our notion of confidentiality is similar to the usual ballot box privacy no-
tions [BCG+15]. An adversary that sees both the contents of the ballot box,
the intermediate shuffles and the decrypted ballot shares should not be able to
determine who cast which ballot. This should hold even if the adversary can see
pre-codes, learn the code key, some voter casting keys and some decryption key
shares, insert adversarially generated ciphertexts into the ballot box, introduce
adversarially generated intermediate shuffles and publish adversarially chosen
decrypted ballot shares.

Our notion of integrity is again fairly standard, adapted to return codes.
An adversary should not be able to cause an incorrect pre-code or inconsistent
decryption or non-unique decryption, even if the adversary knows all of the key
material.

We define security notions for a verifiable cryptographic voting scheme using
an experiment where an adversary A is allowed to reveal keys, make challenge
queries, create ciphertexts, ask for ciphertexts to be shuffled, create shuffles,
and ask for ballot shares. We use this experiment to define games both for
confidentiality and for integrity. The experiment works as follows:

– Sample b,←$ {0, 1}. Set L,L′, L′′ to be empty lists.
– (pk, {dki}, ck) ← Setup. For i = 1, . . . , lV : (vvki, vcki, fi) ← Reg(pk). Send

(pk, vvk1, . . . , vvklV) to A.
– On a voter reveal query i, send (vcki, fi) to A. On a decrypt reveal query i,

send dki to A. On a code reveal query, send ck to A.
– On a challenge query (i, v0, v1), compute (ev , πv)← Cast(pk, vcki, vb),

r̂ ← Code(ck, vvki, ev , πv), append (i, v0, v1, ev , πv) to L. Send (ev , πv) to A.
– On a chosen ciphertext query (i, ev , πv), compute r̂ ← Code(ck, vvki, ev , πv).

If r̂ ̸= ⊥, append (i,⊥,⊥, ev , πv) to L. Send r̂ to A.
– On a shuffle query ev , compute (ev ′, πs) ← Shuffle(pk, ev), then record

(ev , ev ′, πs) in L′. Send (ev ′, πs) to A.
– On a chosen shuffle query (ev , ev ′, πs), we record it in L′ if and only if

Verify(pk, ev , ev ′, πs) = 1.

152 D. Aranha et al.

– On a ballot decryption share query (i, ev), we then compute (svi, πd,i) ←
DistDec(dki, ev), record (i, ev , svi, πd,i) in L′′ and send (svi, πd,i) to A.

– On a test query (ev , sv1, . . . , svld , πd,1, . . . , πd,ld), then compute the result ←
Comb(pk, ev , sv1, . . . , svld , πd,1, . . . , πd,ld) and send result to A.

Eventually, the adversary outputs a bit b′.
The confidentiality game follows the usual left-or-right game pattern, where

an adversary makes challenge queries and must determine the value of the bit b.
The test query is irrelevant for the confidentiality game.

The integrity game follows the usual pattern where the adversary’s goal is
to achieve certain inconsistencies, either during a code query or during a test
query. The inconsistencies are that a pre-code does not match the encrypted
ballot, that an outcome verifies as correct but is inconsistent with the challenge
ciphertexts chosen for counting, or that there is no unique decryption. (The
test query is not strictly needed. We could have had the adversary output its
encrypted ballots and ballot decryption shares instead of making a test query.
But the test query pattern is convenient in many similar settings, so we include
it.) The bits b, b′ are not really used in the game for integrity, nor is the shuffle
query. The challenge query is used to create honestly encrypted ballots.

Confidentiality fails trivially if the counting phase trivially reveals the chal-
lenge bit. This happens unless the left hand ballots and the right-hand ballots
are identical, up to order. (Recall that the adversary should figure out who cast
which ballots, not what ballots were cast.) Confidentiality also fails trivially if
the adversary makes more than one challenge query or chosen ciphertext query
for any given voter. And confidentiality fails trivially if the adversary reveals too
much key material. We should not count executions where confidentiality fails
trivially towards the adversary’s advantage. Technically, we count this using a
freshness event when evaluating the advantage.

In an execution of this experiment, we say that a sequence of encrypted
ballots ev is valid if tuples (i1, v01, v11, ev1, πv,1), . . . , (ilc , v0lc , v1lc , ev lc , πv,lc) in
L and L′ contains a sequence of tuples (ev (j−1), ev (j), πs,j), j = 1, 2, . . . , ls,
such that ev (0) = (ev1, . . . , ev lc) and ev (ls) = ev . In this case we also say
that ev derives from (i1, v01, v11, ev1, πv,1), . . . , (ilc , v0lc , v1lc , ev lc , πv,lc). A valid
sequence ev is honest if at least one of the tuples (ev (j−1), ev (j), πs,j) originated
with a shuffle query. A valid sequence ev is balanced if the ballot sequence
(v01, . . . , v0lc) equals (v11, . . . , v1lc), up to order.

We define events related to confidentiality and integrity. Let Eg be the event
that b = b′. Let Ef denote the event that an execution is fresh, which is true
if the following are satisfied: there is no decrypt reveal query for at least one i;
for any i, there is either no challenge query, or at most one challenge query and
no voter reveal query or chosen ciphertext query; and for any ballot decryption
share query (·, ev), the sequence ev is balanced and honest at the time of the
ballot decryption share query.

Let Fi (incorrect pre-code) be the event that for some chosen ciphertext
query (i, ev , πv) where Code(ck, vvki, ev , πv) = r̂ ̸= ⊥, we have that either
Dec({dki}, ev) = ⊥ or Dec({dki}, ev) = v and fi(v) ̸= r̂.

Voting from Lattice-Based Assumptions 153

Let Fc (count failure) be the event that a test query gets result = ⊥ when
ev is valid and (ev , svi, πd,i) is in L′′ for i = 1, . . . , ld.

Let Fd (inconsistent decryption) be the event that a test query (ev , sv1, . . . ,
svld , πd,1, . . . , πd,ld) with result = (v1, . . . , vlc), where ev derives from (i1, v01, v11,
ev1, πv,1), . . . , (ilc , v0lc , v1lc , ev lc , πv,lc), there is no permutation π on {1, 2, . . . , lc}
such that vb,k = ⊥ or vb,k = vπ(k) for k = 1, 2, . . . , lc. Let Fu (no unique de-
cryption) be the event that two test queries (ev , sv1, . . . , svld , πd,1, . . . , πd,ld)
and (ev , sv′1, . . . , sv

′
ld
, πd,1

′, . . . , πd,ld
′) for some valid ev get results result and

result ′ that are not equal up to order, and neither of which are equal to ⊥. The
advantage of the adversary is

max{2 · |Pr[Eg ∧ Ef]− Pr[Ef]/2|,Pr[Fi ∨ Fc ∨ Fd ∨ Fu]}.

B.4 Security Proof Sketch

We briefly sketch a proof for how to bound the advantage of an adversary against
the cryptographic voting scheme in terms of adversaries against the shuffle,
the distributed decryption scheme, the commitment scheme or the encryption
scheme.

Confidentiality. We begin by analyzing the confidentiality event Pr[Eg ∧ Ef].
The proof would proceed as a sequence of games, where the first game is the

interaction between the experiment and the adversary.
In the next game, we stop the adversary with a forced guess b′ = 0 imme-

diately upon any query that would make the execution non-fresh. Note that a
query that makes the execution non-fresh can be recognized with no secret infor-
mation, and at the time the query is made. A brief computation shows that this
changes nothing, but in the further analysis we may assume that the execution
remains fresh.

We next simulate all the zero knowledge proofs involved, which is straight-
forward in the random oracle model since all our proofs are HVZK.

Next, we change the challenge query so that instead of computing the precode
as r̂ = a+ v, it samples r̂ uniformly at random. If this change is observable, we
get an adversary against hiding for the commitment scheme.

Next, for any ballot decryption share query for a sequence (ev1, . . . , ev lc),
we decrypt ev i to vi, then use the HVZK simulator from Section 5 to simulate
the decryption share given the decryption vi. This change is unobservable. (To
get an adversary, we guess a decryption key share i for which the adversary
will never make a decrypt reveal query, and simulate the other decryption key
shares as random shares. When the adversary makes a ballot decryption share
query for i, we compute the ballot decryption shares for the other decryption
key shares and compute the ith ballot decryption share to give the correct result
when combined.)

Next, for chosen ciphertext queries, we decrypt the w using dkR and subtract
a to recover v, and then record (i, v, v, ev , πv) instead of (i,⊥,⊥, ev , πv). By the

154 D. Aranha et al.

soundness of the ballot proof (details omitted), we now have that every tuple
(i, v0, v1, ev , πv) in L satisfies Dec(dkV , ev) = vb.

Next, for any ballot decryption share query for an honest and balanced se-
quence (ev1, . . . , ev lc) deriving from (·, v01, v11, ·, ·), . . . , (·, v0lc , v1lc , ·, ·), sample
a permutation π on {1, 2, . . . , lc} and use vi = v0π(i) instead of decrypting ev i.
If this change is observable, we either get an adversary against soundness for
the shuffle (when the decryption of the output of a shuffle is not equal to the
decryption of the input to the shuffle, up to order) or an adversary against the
encryption scheme (when the adversary notices that the ballot decryption shares
are inconsistent with the encrypted ballots). The latter adversary re-randomizes
the shuffle with random values instead of encryptions of zero.

At this point, the decryption key shares {dki} are no longer used. Also, the
pre-code encrypted in the challenge query is independent of the challenge ballots.

Finally, for challenge queries we encrypt a random ballot instead of the left
or right ballot. If this change is observable, we get a real-or-random adversary
against the encryption scheme.

At this point, the challenge bit b is no longer used. It follows that the adver-
sary has no advantage in this game. By the above arguments, the claim that the
difference between Pr[Eg ∧ Ef] and Pr[Ef]/2 is appropriately bounded follows.

Integrity. Next, we analyze the integrity events. In this case, the adversary may
have revealed every secret key, and there is no need for the execution to be fresh.

If a chosen ciphertext query results in an incorrect pre-code, then we immedi-
ately get an adversary against the soundness of the ballot proof (details omitted).
It follows that the probability of Fi happening is appropriately bounded.

In the event that Fc happens, note that every encrypted ballot either origi-
nates with a challenge query or a chosen ciphertext query, the shuffles applied to
the encrypted ballots originate with shuffle queries or chosen shuffle queries, and
the ballot decryption shares all originate with ballot decryption share queries. By
the completeness and soundness of the various arguments, and the bound on the
number of shuffles, we get that the probability of Fc happening is appropriately
bounded.

In the event that Fd happens, then either the output of some shuffle does
not decrypt to the same as the input to the shuffle, in which case we get an
adversary against the soundness of the shuffle, or the distributed decryption does
not decrypt correctly, in which case we get an adversary against the soundness
of the distributed decryption. It follows that the probability of Fd happening is
appropriately bounded.

In the event that Fu happens, then either the decryption of the encrypted
ballots is not unique, in which case we get an adversary against the soundness of
the proofs ensuring valid ciphertexts (in the ballot proofs and the shuffle proofs),
or one or both results are incorrect, in which case we get an adversary against
the soundness of the shuffle. It follows that the probability of Fu happening is
appropriately bounded.

The claim that Pr[Fi ∨ Fc ∨ Fd ∨ Fu] is appropriately bounded follows.

Voting from Lattice-Based Assumptions 155

B.5 Voting System Security Properties

Integrity. Integrity for a voting system is modeled using a game between an
adversary and a set of voters, some of which may be corrupt. The adversary
tells the honest voters what ballots to cast. If the count phase eventually runs
and ends with a result, the adversary wins if the result is inconsistent with the
ballots accepted as cast by the honest voters. (Recall that only the voter’s last
ballot cast is counted, so if the voter first accepts a ballot as cast, and then tries
to cast another ballot and this fails, the end result is that they have not accepted
a ballot as cast.)

We can define a variant notion called ϵ-integrity where we allow a small
error, and say that the adversary wins if the result is inconsistent with any
(1 − ϵ) fraction of the ballots accepted as cast by the honest voters. (We need
this since return codes for a single voter must be human-comparable, and can
therefore collide with some non-negligible probability.)

Analysis. The voter will only accept the ballot as cast if the correct return code
is received. If the correct return code is received, then the correct pre-code must
have been computed at some point (except with some small probability due to
collisions in the PRF).

If the return code generator R is honest, integrity of the cryptographic voting
scheme implies that this can only happen if the correct ballot has been encrypted.
If the auditor A is honest, the result will only be accepted if the encrypted ballot
has been included among those sent to the first shuffler. By the integrity of the
cryptographic voting system, all such ballots must then be included in the result.

If the voter’s computer P and the ballot box B and the auditor A are honest,
the the encrypted ballot will be included among those sent to the first shuffler.
By the integrity of the cryptographic voting system, all such ballots must then
be included in the result.

If a voter receives a return code without casting a ballot, the voter will no
longer accept their ballot as cast.

In summary, ϵ-integrity holds if the auditor and either both the voters’ phones
and the return code generator are honest, or both the voters’ computers and the
ballot box are honest.

Verifiability. In a verifiable voting protocol, every voter gets a receipt after ac-
cepting a ballot as cast. Also, the auditor outputs a result and a transcript. Also,
there is an algorithm for verifying either a transcript, a result and optionally a
receipt.

Consider an execution of the voting protocol where the auditor outputs a
result and a transcript. Then there is a set of honest voters with honest computers
that accept their ballot as cast with some receipt, and for which the verification
algorithm accepts the transcript, the result and their receipt. We say that a
system is verifiable if the result is consistent with the list of these voters’ ballots
being included in the result.

156 D. Aranha et al.

Note that verifiability in and of itself does not guarantee anything about
the correctness of the result. Instead, verifiability is best thought of as a tool
that can be used to achieve trust in election integrity under fairly weak trust
assumptions. For instance, one can prove that if a sufficiently large and hard to
guess subset of voters run the verification algorithm on the transcript, result and
their receipt, then the overall election has ϵ-integrity for some ϵ. (The “hard to
guess” part is instrumental in proving this result. If the set of voters verifying an
election is not hard to guess, achieving election integrity is much more difficult,
at least without strong trust assumptions.)

Note also that we assume that the honest voter’s computer is honest in the
definition. If the voter’s computer is corrupted, we are left with considering
integrity as above, which can be achieved conditional on other players being
honest.

Analysis. Verifiability for our protocol follows by integrity for the underlying
cryptosystem, since the execution of our protocol can be thought of as an inter-
action with the experiment for the underlying cryptosystem, where the honest
computer’s actions correspond to challenge queries, and part of the verifica-
tion algorithms’ work correspond to a test query. The structure of the protocol
then ensures that if the result output by a test query is inconsistent with cor-
responding ballots output by challenge queries, integrity fails for the underlying
cryptosystem.

In summary, if the underlying cryptosystem has integrity, the voting protocol
is verifiable.

Privacy. Privacy for a voting protocol is modeled as a left-or-right game with
an adversary and a set of voters, some of which may be corrupt. The adversary
gives pairs of ballots to honest voters, and they will all either cast the left ballot
or the right ballot. The adversary must decide which they cast. (This essentially
amounts to deciding who cast which ballot.)

The adversary can corrupt players and also control the network. We shall
assume that players use secure channels to communicate. This means that only
the fact that players are communicating and the length of their communications
leak. Since message flows and message lengths are fixed and public knowledge,
we can ignore the network in the subsequent analysis.

We want to avoid adversaries that deduce the honest voters’ ballots trivially
from the result, so we require that the adversary organizes the pairs of ballots
given to the honest voters in such a way that the ballots cast by the honest
voters are independent of whether the voters cast the left or the right ballot.

Analysis. If some honest voter’s computer P is compromised, the adversary can
trivially win the privacy game.

If every shuffle server is compromised, the adversary learns the correspon-
dence between decrypted ballots and voters, and can trivially win the privacy
game.

Voting from Lattice-Based Assumptions 157

If every decryption server is compromised, the adversary learns the decryp-
tion key, and can trivially win the privacy game.

If a voter casts more than one ballot, a compromised return code generator
or voter phone will always be able to decide if they are the same or not by
observing the return code sent to the voter. If the ballots are distinct, the return
code generator will learn information about which ballots were submitted, and
typically learn both ballots. (We could prove privacy when the voter casts more
than one ballot and the return code generator and the voter phone are both
honest, but this requires adding a restricted challenge query that does not reveal
the precode to the cryptosystem experiment.)

Suppose the honest voters cast at most one ballot each, their computers re-
main honest, and at least one shuffle server and one decryption server is honest.
Then privacy follows from confidentiality of the cryptographic voting system,
since the protocol execution can be interpreted as an interaction with the cryp-
tosystem experiment and the protocol together with our assumptions ensure a
fresh execution.

Note that cut-and-paste attacks against confidentiality, which commonly af-
fect this type of voting protocol, do not work against this protocol because the
ballot proof includes an encryption of the return code and a proof that the return
code is correct which is tied to the voter’s public key material. Cut-and-paste
attacks would anyway constitute a valid attack on the cryptosystem.

In summary, privacy holds if the honest voters’ computers are honest, there
is at least one honest shuffle server and one honest decryption server, and no
honest voter casts more than one ballot.

C Proofs for Amortized Exact ZKPoPK

C.1 Proof of Lemma 1.

Proof. First, we construct an extractor E as in [BLNS21] which does the following
8 times:

1. First, run P∗ on random challenges from V until an accepting transcript is
found. Abort if none is found after 8/ϵ steps.

2. Let I1 be the challenge set where P∗ responded and let E|I1 , MerklePathsI1
be the opened columns and Merkle tree paths. Fixing the other challenges, E
adaptively reruns the proof for different challenges I2, I3, . . . that contain so
far unopened columns and collects these. If any collision in the Merkle tree
is found then E outputs the hash collision and terminates, otherwise it con-
tinues until it collected a set J of at least k columns, or until 8 k−η

ϵ/2−(k/(l−η))η
time passed.

3. Finally, E re-runs P∗ 16/ϵ times with completely fresh challenges, obtaining
new E|I , MerklePathsI . If for some of these instances the accepting tran-
script contains a hash collision in the Merkle tree (colliding with J) or cd is
opened with a different opening than in the first step, then output the hash
collision or the respective two different openings of cd.

158 D. Aranha et al.

Using a standard heavy-row argument, [BLNS21] show that E ’s total runtime
is bounded by the term mentioned in the Lemma. Moreover, define S as the
event that P∗ outputs a valid proof in the last step and C be the event that
the values P∗ outputs to E in the last step of the extractor are consistent (i.e.
no hash collisions and the commitment was not opened differently than before).
Then [BLNS21] show that it must hold that Pr[S ∧C] > ϵ/2. We now show that
if we cannot use J to decode to a valid witness, then the success probability of
P∗ must be lower than the given bound.

Define C ′ to be the RS code obtained from C (generated by Encode) when
restricted to the indices of J . As |J | = k, C ′ has length k and minimum distance
d′ = k − k′ + 1. For any x ∈ Zk

q we define the minimum distance of x to C ′ as
d′(C ′,x) = minc∈C′ d(c,x).

Let E∗ := E|J be the matrix that was extracted by the extractor and let
d∗ be the opening message of the commitment. Assume that there exists x ∈
Z3τ+4
q such that d′(C ′,xE∗) ≥ d′/3. Then by [BCG+17, Appendix B], any

random linear combination of E∗ (in particular, we compute and output such
a combination in the proof as h) has distance ≥ d′/6 from C ′ except with
probability 1/(q − τ). Similar as in [BLNS21] we can use this to deduce that in
such a case, it must hold that

ϵ/2 <
1

q − τ
+

(
1− k − k′

6l

)η

which contradicts the bound on ϵ in this lemma. Therefore, each row of E∗ must
be within d′/3 of C ′, meaning that it is efficiently decodable. Let h∗, s∗0, s

∗
i,j ,v

∗
0,v
∗
i,j

be the respective decoded values and r∗h, r
∗
0, ri,j∗ be the randomness. We con-

sider the composition of the aforementioned row values as V and the randomness
used in the encoding as R, By applying another result from [BCG+17, Appendix
B] we have that for any vector y ∈ Z3τ+4

q it holds that d′(EncodeJ(yV ,yR),yE∗) <
d′/3. In other words, any linear transformation y when applied to the possibly
noisy codewords E∗ is within distance d′/3 of the codeword obtained from en-
coding V ,R after applying the same transformation y. That means that f is
constructed from s∗0, s

∗
i,j as we would expect.

Similar as in [BLNS21, Corollary 3.7] one can show that if there are ≤
(ϵ/4)(q − τ) choices of x such that

f = ℓ0(x)s
∗
0 +

τ∑

i=1

2∑

j=0

ℓi(x)ℓ0(x)
js∗i,j (3)

1

ℓ0(x)
· f̄ ◦

[
f̄ − 1

]
◦
[
f̄ + 1

]
= ℓ0(x)v

∗
0 +

τ∑

i=1

2∑

j=0

ℓi(x)ℓ0(x)
jv∗i,j (4)

Voting from Lattice-Based Assumptions 159

then ϵ < 4(1− 2(k−k′)
3l)η, contradicting the bound on ϵ in the lemma. By multi-

plying 4 with ℓ0(X) we obtain the equation

f̄ ◦ (f̄ − 1) ◦ (f̄ + 1)− ℓ0(X)2v∗0 −
τ∑

i=1

2∑

j=0

ℓi(X)ℓ0(X)j+1v∗i,j = 0. (5)

Replacing f̄ according to Equation 3 means that the above expression is of degree
at most 9 · τ . But it is 0 for more choices of x because ϵ > 36τ/(q− τ), meaning
that the expression itself must be the zero-polynomial. Reducing Equation 5
modulo ℓ0(X) and knowing that all ℓi(X) are independent, it follows that for
all i ∈ [τ] the value s∗i,0 is in {−1, 0, 1}vN .

Additionally, we have that

d∗ =
1

ℓ0(X)
·
(

τ∑

i=1

tiℓi(X)−Af

)

and replacing again f̄ with Equation 3 yields

d∗ = −As∗0 +
1

ℓ0(X)
·

τ∑

i=1

tiℓi(X)−A

τ∑

i=1

2∑

j=0

ℓi(x)ℓ0(x)
js∗i,j

Since d∗ has been committed to before x is chosen, it must be that d∗ is the
constant of the polynomial on the right, so we have that d∗ = −As∗0 and there-
fore

τ∑

i=1

2∑

j=0

ℓi(x)ℓ0(x)
jAs∗i,j =

τ∑

i=1

tiℓi(X).

Again reducing modulo ℓ0(X) reveals that

τ∑

i=1

ℓi(x)As∗i,0 =
τ∑

i=1

tiℓi(X)

and by the independence of the ℓi(X) modulo ℓ0(X) we have that ti = As∗i,0
for all i ∈ [τ], which proves the claim. ⊓⊔

C.2 Zero-Knowledge

Lemma 3. There exists an efficient simulator S which, given x, β0, β1,0, . . . , βτ,2, I
outputs a protocol transcript of the the protocol in Figure 3 whose distribution
is indistinguishable from a real transcript between an honest prover and honest
verifier.

Proving Honest-Verifier Zero-Knowledge is sufficient for our application, as we
will use the Fiat-Shamir transform to generate the challenges in ΠAEx.

Proof. Towards constructing a simulation, observe that

160 D. Aranha et al.

1. M and its opened paths do not reveal any information about the unopened
columns as the commitment scheme used in creatingM is hiding.

2. f̄ , r̄f , h̄, r̄h are uniformly random due to the uniform choice of s0, r0,h, rh.
3. Each encoded row of E uses η bits of randomness, so revealing η columns

does not leak any information about the message being committed in the
respective row.

Thus, for the proof we let S choose uniformly random f̄ , r̄f , h̄, r̄h. This allows
the prover also to compute d consistently as 1

ℓ0(x)
· (∑τ

i=1 tiℓi(x)−Af), which

has the same uniform distribution as in the real protocol, and thereby fix cd.
Next, we let S choose all but the first two rows of E|I uniformly at random.
The second row will be computed according to x thus fulfilling the check on the
encoding of f̄ , r̄f , while the first row is computed according to β0, βi,j for the
encoding of h̄, r̄h. S now fixes the remaining columns of E as 0 and commits
honestly to these as in the protocol. ⊓⊔

Voting from Lattice-Based Assumptions 161

Paper iv

Verifiable Decryption in the Head
Kristian Gjøsteen, Thomas Haines, Johannes Muller,

Peter Rønne and Tjerand Silde

Accepted at the Australasian Conference on Information
Security and Privacy, ACIPS 2022. The full version is available

at: eprint.iacr.org/2021/558.pdf.

Verifiable Decryption in the Head

Kristian Gjøsteen1 ID , Thomas Haines1,2, Johannes Müller3 ID ,

Peter Rønne3,4 ID , and Tjerand Silde1 ID

1 Norwegian University of Science and Technology
{kristian.gjosteen,tjerand.silde}@ntnu.no

2 Australian National University
thomas.haines@anu.edu.au
3 University of Luxembourg
johannes.mueller@uni.lu

4 Université de Lorraine, CNRS, LORIA
peter.roenne@gmail.com

Abstract. In this work we present a new approach to verifiable decryp-
tion which converts a 2-party passively secure distributed decryption
protocol into a 1-party proof of correct decryption. To introduce our
idea, we present a toy example for an ElGamal distributed decryption
protocol that we also give a machine checked proof of, in addition to
applying our method to lattices. This leads to an efficient and simple
verifiable decryption scheme for lattice-based cryptography, especially
for large sets of ciphertexts; it has small size and lightweight computa-
tions as we reduce the need of zero-knowledge proofs for each ciphertext.
We believe the flexibility of the general technique is interesting and pro-
vides attractive trade-offs between complexity and security, in particular
for the interactive variant with smaller soundness.
Finally, the protocol requires only very simple operations, making it easy
to correctly and securely implement in practice. We suggest concrete
parameters for our protocol and give a proof of concept implementation,
showing that it is highly practical.

Keywords: verifiable decryption · distributed decryption · lattice-based
crypto · MPC-in-the-Head · zero-knowledge proof · implementation

1 Introduction

There are many applications where we not only need to decrypt a ciphertext, but
also prove that we have decrypted the ciphertext correctly without revealing the
secret key. This is called verifiable decryption. Examples include mix-nets used
for anonymous communication [SSA+18], decryption of ballots in electronic vot-
ing [HM20], and various uses of verifiable fully homomorphic encryption [LW18].
In particular, such applications usually require the decryption of a large number
of ciphertexts.

It is well-known how to do verifiable decryption for public-key encryption
schemes based on discrete logarithms (for ElGamal, proving the equality of two

165

discrete logarithms [CP92] will do). Except for the recent publication by Lyuba-
shevsky et al. [LNS21] (which provides a rather complicated decryption proof by
combining proofs of linear relations, multiplications and range proofs), no effi-
cient and straight-forward zero-knowledge proofs of correct decryption are known
for lattice-based cryptography or other post-quantum encryption schemes. This
state-of-affairs is unsatisfying, in particular because many applications that re-
quire zero-knowledge proofs of correct decryption should also be secure in the
face of quantum computers which are becoming increasingly more powerful. For
example, the electronic voting system Helios [Adi08] and the Estonian voting
protocol [HW14] are using classical encryption schemes and decryption proofs
with corresponding quantum threats to the long-term privacy of the voters.

On the contrary, there do exist efficient and straightforward passively secure
lattice-based encryption schemes with distributed decryption. In such a scheme,
the decryption key is shared among several players. Decryption is done in a
distributed fashion by each player creating a decryption share, which can be in-
dividually verified, and a reconstruction algorithm can recover the message from
the decryption shares. Distributed decryption allows more general methods to
recover the message, such as general multi-party computation. There are many
useful and efficient lattice-based threshold cryptosystems and distributed decryp-
tion schemes [BD10,BS13,DPSZ12,DOTT21,DHRW16,BKS19]. In particular,
if the security requirements are relaxed, lattice-based distributed decryption can
be very straight-forward.

Our main idea is to use MPC-in-the-head [IKOS07] in conjunction with a
2-party passively secure distributed decryption scheme to construct a very sim-
ple verifiable decryption scheme; however, we shall see that there are various
technical challenges. To achieve the desired level of security, we run the 2-party
decryption scheme on the ciphertexts many times locally, and then reveal a ran-
dom subset of keys, one for each run, allowing others to verify that it was done
correctly.

1.1 Contribution

Our main contribution is a transformation from a 2-party passively secure dis-
tributed decryption scheme to a 1-party verifiable decryption scheme. To achieve
this, we use MPC-in-the-head with the 2-party decryption scheme. The idea is
that the prover runs the 2-party decryption protocol many times and reveals the
resulting decryption shares. The interactive verifier will then, for each run of the
decryption scheme, ask to see one of the two decryption keys and any randomness
involved in creating the corresponding decryption shares. With this information,
it is straight-forward for the verifier to ensure that half of the decryption shares
were generated honestly.

As usual, the idea is that if the prover cheats, the verifier will have probability
(close to) 1/2 of detecting this in each round. If a cheating prover is consistently
successful, we can use rewinding to extract both secret shares. Furthermore, if
the 2-party decryption scheme is passively secure, revealing one share will not
reveal anything about the secret key itself.

166 K. Gjøsteen et al.

There are four remaining obstacles, two easy and two somewhat trickier. The
first easy obstacle is that in a threshold public key encryption scheme or dis-
tributed decryption scheme, the decryption key shares are generated as part of
key generation. We already have a decryption key, but we need to create many
independent sharings of that key. For discrete logarithm-based schemes like El-
Gamal, this is usually trivial. For the schemes we consider, it is still not hard, but
it follows that we do not have a fully general reduction from 2-party distributed
decryption to (1-party) verifiable decryption. The second easy obstacle is that
given both secret key shares we want to recover the secret key. We solve this
by extending the notation of a distributed decryption function with a function
which recovers the key from the shares. This is easy to satisfy in practice.

The third obstacle is that the verifier needs to make sure that the revealed
key share is correct. For ordinary threshold decryption schemes, this can often
be avoided, either because the dealer is trusted or replaced by some multi-party
computation. Therefore, we need to use a non-generic solution here. For batched
decryption, the main observation is that we only verify the key once for each
run of the 2-party decryption scheme, not once per ciphertext in the batch. The
number of runs essentially corresponds to the security parameter, which in many
applications will be significantly smaller than the number of ciphertexts.

The final obstacle is related to our security proof. We need to simulate shares
of the decryption key, any auxiliary information related to them, and decryption
shares. Although similar techniques are common in the construction of threshold
public key encryption scheme, the security definitions do not actually require
their presence. Since we need them, our approach is again somewhat non-generic.

On the other hand, since we intend to verify correctness of decryption shares
by revealing decryption key shares and any randomness involved, we can make
do with a passively secure distributed decryption scheme, simplifying our work.

The result is a construction from a somewhat specialized 2-party distributed
decryption scheme to a verifiable decryption scheme. Since the security require-
ments for the distributed decryption scheme are shifted compared to traditional
threshold decryption schemes, this will allow us to use very simple threshold
decryption. This means that it can be very efficient, both with respect to com-
putational time and size of the decryption shares. Even though the decryption
is run many times, the result will still be efficient compared to the alternatives.

Note that in an interactive setting, it may make sense to use a very small
security parameter, making the protocol extremely cheap. For instance, in any
system where detected cheating will have a significant penalty, rational actors
will be deterred by even a small chance of detection. However, when the protocol
is made non-interactive, this clearly does not work.

We prove in the interactive theorem prover Coq [BCHPM04] a simplified
variant of our transform and an ElGamal toy example. Regrettably, we are un-
able to prove the full transform and the lattice example due to limitations in the
interactive theorem prover. Indeed, to our knowledge, no interactive theorem
prover exists which provides adequate support. Nevertheless, the proof of the
simplified variant increases confidence in the result.

Verifiable Decryption in the Head 167

It is worth emphasizing that our protocol is very simple to implement (using
Stern-based zero-knowledge proofs [KTX08,LNSW13] to ensure that key-shares
are well-formed), lowering the bar for deploying our scheme in practice. We note
that lattice-based zero-knowledge proofs in general can be very complicated, in-
volving a combination of proofs of linear relations, proofs of shortness and range
proofs, in addition to Gaussian sampling, rejection sampling and optimizations
exploiting partially splitting rings and automorphisms [ALS20,LNS21]. Correctly
and securely implementing voting systems using primitives based on discrete log-
arithms is hard [HLPT20], and lattice-based primitives makes it harder. In our
protocol we only need to sample uniformly random or short elements in any ring
of our choice, and use standard cut-and-choose techniques to open committed
values, making it easy to use in practice. Concretely, this means that we are
not vulnerable to side-channel attacks against Gaussian sampling [BHLY16] or
rejection sampling [EFGT17].

Combined with the main contribution, this gives us a verifiable decryption
scheme for a lattice-based public key encryption scheme that is very efficient
when the number of ciphertexts is much larger than the security parameter.
The protocol is fast and simple, and the proof size is small. We give concrete
parameters and a proof of concept implementation of our protocol in Section 7.

1.2 Related Work

Verifiable decryption for ElGamal can be done by proving the equality of two
discrete logarithms [CP92], and can be batched for significantly improved per-
formance when decrypting many ciphertexts [Gor98,PBD07].

The ”dual” Regev system [LPR13] can be used by making the randomness
public. However, this is not zero-knowledge and opens for so-called ”tagging-
attacks” to de-anonymize users in privacy-preserving applications (e.g., e-voting).

Threshold encryption schemes [DF90] and distributed decryption schemes
are now well-understood, and many constructions exist [BD10], in particular
those related to SPDZ [DKL+13,DPSZ12,KPR18]. When only passive security
is required, these schemes can be quite efficient. Threshold decryption with active
security implies verifiable decryption when the verification of decryption shares
is a public operation. The problem is that it is often costly to provide a threshold
decryption scheme with active security. Our approach gives away a decryption
key share and randomness involved, and it is trivial to verify that the key share
has been used correctly.

We compare more in detail with recently developed verifiable decryption
protocols [BD10,BCOS20,LNS21,Sil22] in Section 8.

2 Passively Secure 2-party Decryption

A distributed decryption scheme enables a set of players to distribute the decryp-
tion of ciphertexts, in such a way that only authorized subsets of players can do
the decryption. Usually, the decryption key shares are created once during key

168 K. Gjøsteen et al.

generation. As discussed in the introduction, we will generate independent de-
cryption key sharings repeatedly, so we need to define the syntax of our variant
of distributed decryption schemes precisely.

Consider a public key cryptosystem with key generation algorithm KeyGen,
encryption algorithm Enc and decryption algorithm Dec. We extend the notation
with a predicate KeyM for key-matching which takes as input a public and secret
key. We require for all matching public and secret keys pk, sk and all messages
m, that Dec(sk,Enc(pk,m)) = m (with overwhelming probability).

A distributed decryption protocol for this public key cryptosystem consists of
four algorithms, a dealer algorithm, a verify algorithm, a player algorithm, and
a reconstruction algorithm. We consider only two parties where both decrypt.

The dealer algorithm (Deal) takes as input a public key and corresponding
secret key and outputs two secret key shares and some auxiliary data aux.

The verify algorithm (Verify) takes as input a public key, auxiliary data, an
index and a secret key share and outputs yes (1) or no (0).

The player algorithm (Play) takes as input a secret key share and a cipher-
text and outputs a decryption share ds.

The reconstruction algorithm (Rec) takes as input a ciphertext and two de-
cryption shares and outputs either ⊥ or a message.

Intuitively, the protocol is correct if Play and Rec collectively recover the
encrypted message and verification accepts when the dealer is honest.

Definition 1 (Correctness). A distributed decryption protocol is correct if for
any key pair (pk, sk) s.t. KeyM(pk, sk) = 1, all c = Enc(pk,m), any (sk0, sk1, aux)
output by Deal(pk, sk), then, for i = 0, 1, Verify(pk, aux, i, ski) = 1, and

Pr [m← Dec(sk, c);Rec(c,Play(sk0, c),Play(sk1, c)) = m] ≥ 1− negl.

For a distributed decryption protocol, we must trust the dealer for privacy,
but not for integrity. The integrity property below says that if both secret shares
given by the dealer are valid (according to the Verify algorithm), then the Play
and Rec will collectively recover the encrypted message.

Definition 2 (Integrity). A distributed decryption protocol has integrity if
there exists an efficient algorithm (named FindKey which takes as input the public
key, the two secret key shares and the auxiliary information, and returns a secret
key) such that for all public keys pk, ciphertexts c = Enc(pk,m), secret key shares
(sk1, sk2), and auxiliary data aux and sk output by FindKey(pk, sk0, sk1, aux) sat-
isfying Verify(pk, aux, i, ski) = 1, for i = 0, 1, we have that

Pr [KeyM(pk, sk) ∧ Rec(c,Play(sk0, c),Play(sk1, c)) = Dec(sk, c)] ≥ 1− negl.

Verifiable Decryption in the Head 169

For threshold cryptosystems and distributed decryption, security is typically
defined through the usual security games for public key cryptosystem, allowing
the adversary access to the decryption key shares through decryption share ora-
cles. This security notion is not very convenient for us, so we shall instead rely on
a variant of simulatability, namely we must be able to simulate both decryption
key shares and decryption shares in a consistent fashion.

Expddp−sim−0
A (pk, sk)

(i, (c0, ..., cτ), (m0, ...,mτ))← A(pk)
(sk0, sk1, aux)← Deal(pk, sk)

∀j : dsj ← Play(sk1−i, cj)

b = A(aux, ski, (ds0, ..., dsτ))
return b

Expddp−sim−1
A (pk)

(i, (c0, ..., cτ), (m0, ...,mτ))← A(pk)
(ski, aux)← DealSim(pk, i)

∀j : dsj ← PlaySim(pk, ski, cj ,mj)

b = A(aux, ski, (ds0, ..., dsτ))
return b

Fig. 1. The passively secure experiment for distributed decryption protocols.

Definition 3 (Simulatability). Consider a pair of algorithms DealSim and
PlaySim and an adversary A playing the experiments from Figure 1, where A al-
ways outputs c = (c0, ..., cτ),m = (m0, ...,mτ) such that {mj = Dec(sk, cj)}τj=1.
The simulatability advantage of A is

Advddp−sim(A, pk, sk) =
|Pr[Expddp−sim−0A (pk, sk) = 1]− Pr[Expddp−sim−1A (pk) = 1]|,

where the probability is taken over the random tapes and (pk, sk) output by
KeyGen. We say that a distributed decryption protocol is (t, ϵ)-simulatable (or
just simulatable) if no t-time algorithm A has advantage greater than ϵ.

2.1 Toy Example: Distributed ElGamal

We briefly recall ElGamal encryption for a given cyclic group G of prime order
p with generator g and give a toy decryption example.

Key generation (KeyGen) samples x from Z∗p and return (gx, x).
Encryption (Enc) takes as input a public key pk ∈ G and message m ∈ G,

samples r from Z∗p, and returns (gr, pkrm).
Decryption (Dec) takes as input a secret key x ∈ Z∗p and ciphertext (c1, c2),

and returns c2/c
x
1 .

Keymatch (KeyM) takes as input a public key pk ∈ G and a secret key x ∈ Z∗p
and returns 1 if gx = pk and otherwise 0.

170 K. Gjøsteen et al.

We will now give a distributed decryption protocol for ElGamal. This uses a
(2, 2)-secret sharing of the decryption key, and it works because of ElGamal’s
key-homomorphic property.

The dealer algorithm (Deal) takes as input a public key gx and corresponding
secret key x, samples x0 from Z∗p, sets x1 = x−x0 and returns (x0, x1, aux =
(gx0 , gx1)).

The verify algorithm (Verify) takes as input a public key pk, auxiliary data
aux = (aux0, aux1), an index i and a secret key share xi and outputs 1 iff
(gxi = auxi) ∧ (pk = aux0aux1).

The player algorithm (Play) takes as input a secret key share xi and a ci-
phertext (c1, c2) and outputs decryption share cxi

1 .
The reconstruction algorithm (Rec) takes as input a ciphertext (c1, c2) and

decryption shares (t0, t1) and outputs c2/(t0t1).

Correctness. Substituting ElGamal into the definition of correctness, for (gx, x)
and (x0, x1, (g

x0 , gx1)) ← Deal(gx, x), we get that the verify algorithm accepts
both secret key shares and for any ciphertext (gr, gxrm), we get that

((gx)rm)/((gr)x0(gr)x1) = (gr)xm(gr)−x0−x1 = m,

so correctness holds unconditionally.

Integrity. FindKey takes as input two key shares x0, x1 and outputs x = x0+x1.
Again, if the verify algorithm accepts both secret key shares, then we know that
gx = gx0gx1 and unconditional integrity follows from the computations above.

Privacy. Simulators DealSim and PlaySim work as follows:

– DealSim takes the public key pk and a bit i, samples xi from Z∗p and returns
(wlog.) (xi, (g

xi , pk/gxi)). It is clear that the auxiliary data and secret key
from the simulator have the same distribution as the Deal.

– PlaySim takes as input public key pk, secret key xi, ciphertext (c1, c2), and
message m and returns a decryption share c2/(c

xi
1 m). Since m is the message

encrypted in the ciphertext this is a perfect simulation if m is the correct
decryption.

Note that these simulators are perfect due to ElGamal’s elegant homomorphic
structure, both with respect to keys and messages.

3 Verifiable Decryption from Distributed Decryption

We will now construct a (batch) zero-knowledge proof system of correct decryp-
tion from the distributed decryption protocol. The protocol is given in Figure 2.
More precisely, our proof system is a sigma protocol with completeness, special
soundness, and honest verifier-zero knowledge.

Verifiable Decryption in the Head 171

For any public key cryptosystem, a public key output by the key generation
algorithm uniquely defines a decryption function that for all messages agrees with
the decryption algorithm for any ciphertext output by the encryption algorithm,
except those that lead to decryption failure.

Recall that for a batched verifiable decryption protocol the statement consists
of a public key, a vector of ciphertexts and a vector of messages, where the
ciphertexts have been output by the encryption algorithm. The statement is in
the language if and only if the messages correspond to the decryption function
applied to the ciphertexts. The secret key (witness) satisfies the relationship with
the statement if it corresponds to the public key and the message vector is the
decryption of the ciphertexts with the secret key.

The protocol works as follows: the prover creates λ sharings of the secret
key by calling the Deal algorithm λ times. For each sharing and each ciphertext,
the prover uses the Play algorithm to construct the decryption share. The prover
sends the auxiliary information from Deal and all the shares to the verifier. Then,
the verifier returns a challenge which is a binary vector of length λ. The prover
finally reveals the corresponding parts of the shares as well as any randomness
used in the Play algorithms with this key share. The prover checks that (1) all the
revealed shares verify, (2) the decryption shares are consistent with the revealed
key shares, and (3) the messages correspond to the decryption shares.

Completeness. Up to the possible negligible error introduced by decryption fail-
ures, completeness follows immediately by construction and the correctness of
the underlying distributed decryption protocol.

Special Soundness. By rewinding, any cheating prover with a significant suc-
cess probability can be used to create two accepting conversations (w,β, z) and
(w,β′, z′), with β ̸= β′. From this it follows that β[k] ̸= β′[k] for at least one
k, and the verify algorithm has accepted both secret key shares and every de-
cryption share in this round has been correctly created using the Play algorithm.
Then, since the ciphertexts are encryptions of the first message vector, integrity
implies that FindKey will recover a witness which matches the public key and
for which the messages match the output of the decryption function.

Honest-Verifier Zero-Knowledge. Our simulator works as follows, given the state-
ment (pk, {cj}τj=1, {mj}τj=1) and the challenge β: First, for i = 1, ..., λ, we
let (auxi, skβ[i],i) ← DealSim(pk,β[i]) and, for j = 1, ..., τ , we let dsβ[i],j,i ←
PlaySim(pk, skβ[i],i, ci,mi) and ds1−β[i],j,i ← Play(pk, skβ[i],i, ci). The proof tran-
scripts is then ((pk, {cj}τj=1, {mj}τj=1), (auxi, ds0,j,i, ds1,j,i),β, skβ[i],i). This is com-
putationally indistinguishable from the honest transcripts if the distributed de-
cryption protocol is simulatable.

4 Machine Checked Proofs

We adopt the definition of a sigma protocol from [HGT19] but do not require
that the simulator always produces accepting transcripts when the statement is

172 K. Gjøsteen et al.

ΠZKPCD

Prover((pk, {cj}τj=1, {mj}τj=1); (sk)) Verifier(pk, {cj}τj=1, {mj}τj=1)

k = 1, ..., λ :

(sk0,k, sk1,k, auxk)← Deal(pk, sk)

i = 0, 1:

j = 1, ..., τ :

dsi,j,k ← Play(ski,k, cj ; ρi,k,j)

w ← ({auxk, {ti,j,k}})

w

β ←$ {0, 1}λ

β

z ← ({skβ[k],k}k, {ρβ[k],k,j}k,j)

z

k = 1, ..., λ :

Verify(pk, auxk,β[k], skβ[k],k)
?
= 1

j = 1, ..., τ :

Play(skβ[k],k, cj ; ρβ[k],k,j)
?
= dsβ[k],j,k

Rec(cj , ds0,j,k, ds1,j,k)
?
= mj

Fig. 2. Proof of correct decryption. ρi,k,j denotes the random tape used by the Play
algorithm to create the ith share of the jth ciphertext in the kth run of the protocol.

not in the language. This does not affect on our intended use cases but prevents
us from applying the standard transform to a disjunctive proof.

– We formally define an encryption scheme along the lines above in the paper
but with perfect correctness. This can be found in the attached source in the
Module Type EncryptionScheme.

– We formally define a distributed decryption schemes as a functor on encryp-
tions schemes as above in the paper. However, we require perfect correctness,
integrity and simulatability. (Module Type DistributedDecryption)

– We describe the transform for an arbitrary distributed decryption scheme
and prove that the result is a sigma protocol for correct decryption. (Module
ProofOfDecryption)

– We define the ElGamal cryptosystem and distributed decryption protocol
and prove they satisfy the respective definitions. (ElGamal, DDElGamal).

Verifiable Decryption in the Head 173

The source code written in Coq is available online†.
We are unable to do better because no interactive theorem provides good

support for cryptographic arguments and support for lattice primitives. Never-
theless, our work is an important step in the direction of proving the full result
if and when interactive theorem provers are ready.

5 Background: Lattice-Based Cryptography

5.1 The Cyclotomic Ring Rq

LetN be a power of 2 and q a prime such that q ≡ 1 mod 2N . Then we define the
rings R = Z[X]/⟨XN +1⟩ and Rq = R/qR, that is, Rq is the ring of polynomials
modulo XN + 1 with integer coefficients modulo q. This way, XN + 1 splits
completely into N irreducible factors modulo q, which allows for very efficient
computation in Rq due to the number theoretic transform (NTT) [LN16].

We define the norms of elements

f(X) =
∑

αiX
i ∈ R

to be the norms of the coefficient vector as a vector in ZN :

||f ||1 =
∑
|αi|, ||f ||2 =

(∑
α2
i

)1/2

, ||f ||∞ = max{|αi|}.

For an element f̄ ∈ Rq we choose coefficients as the representatives in
[
− q−1

2 , q−1
2

]
,

and then compute the norms as if f̄ is an element in R. For vectors a =
(a1, . . . , ak) ∈ Rk we define the norms to be

∥a∥1 =
∑
∥ai∥1, ∥a∥2 =

(∑
∥ai∥22

)1/2

, ∥a∥∞ = max{∥ai∥∞}.

5.2 Knapsack Problems

We first define the Search Knapsack problem in the ℓ2 norm, also denoted as
SKS2. The SKS2 problem is exactly the Ring-SIS problem in its Hermite Normal
Form.

Definition 4. The SKS2N,q,β problem is to find a short vector x of ℓ2 norm less
than or equal to β in R2

q satisfying [a 1] ·x = 0 for a given uniformly random

a in Rq. An algorithm A has advantage ϵ in solving the SKS2N,q,β problem if

Pr

[
[a 1] · x = 0 a←$ Rq;
∧ ∥xi∥2 ≤ β 0 ̸= x ∈ R2

q ← A(a)

]
≥ ϵ.

Additionally, we define the Decisional Knapsack problem in the ℓ∞ norm denoted
as DKS∞. The DKS∞ problem is equivalent to the Ring-LWE problem when the
number of samples is limited.

† www.dropbox.com/s/mn9gfmw3utkffyq

174 K. Gjøsteen et al.

Definition 5. The DKS∞N,q,β problem is to distinguish the distribution [a 1] ·
x, for a short x, from the uniform distribution when given uniformly random a
in Rq. An algorithm A has advantage ϵ in solving the DKS∞N,q,β problem if

∣∣Pr[b = 1 | a←$ Rq;x←$ R2
q s.t. ∥x∥∞ ≤ β; b← A(a, [a 1] · x)]

− Pr[b = 1 | a←$ Rq;u←$ Rq; b← A(a, u)]| ≥ ϵ.

See [LM06,LPR10] for more details about knapsack problems.

5.3 BGV Encryption

We present a plain version of the BGV encryption scheme by Brakerski, Gentry
and Vaikuntanathan [BGV12]. Let p≪ q be primes, let Rq and Rp be polynomial
rings modulo the primes q or p and XN + 1 for a fixed N , let B∞ ∈ N be a
bound and let κ be the security parameter. The encryption scheme consists of
three algorithms: key generation, encryption and decryption, where

- KeyGen samples an element a ←$ Rq uniformly at random, samples short
s, e ←$ Rq such that max(∥s∥∞, ∥e∥∞) ≤ B∞. The algorithm outputs the
public key pk = (a, b) = (a, as+ pe) and the secret key sk = (s, e).

- Enc, on input the public key pk = (a, b) and an element m in Rp, samples
short r, e′, e′′ ←$ Rq such that the norm max(∥r∥∞, ∥e′∥∞, ∥e′′∥∞) ≤ B∞,
and outputs the ciphertext c = (u, v) = (ar + pe′, br + pe′′ +m) in R2

q .

- Dec, on input the secret key sk = (s, e) and a ciphertext c = (u, v), outputs
the message m = (v − su mod q) mod p in Rp.

The decryption algorithm is correct as long as the norm max∥v − su∥∞ = BDec <
⌊q/2⌋. It follows that the BGV encryption scheme is secure against chosen plain-
text attacks if the DKS∞N,q,β problem is hard for some β = β(N, q, p,B∞).

Furthermore, we present the passively secure distributed decryption tech-
nique by Bendlin and Damg̊ard [BD10] used in the MPC-protocols by Damg̊ard
et al. [DKL+13, DPSZ12]. When decrypting, we assume that each decryption
server Dj , for 1 ≤ j ≤ ξ, has a uniformly random share skj = sj of the secret
key sk = (s, e) such that s = s1 + s2 + ... + sξ. Then they partially decrypt in
the following way:

- DistDec, on input a secret key-share skj = sj and a ciphertext c = (u, v),
computes mj = sju, sample some large noise Ej ←$ E ⊂ Rq such that
∥Ej∥∞ ≤ 2sec(BDec/pξ) for some statistical security parameter sec and up-
per error-bound max∥v − su∥∞ ≤ BDec, then outputs dsj = tj = mj + pEj .

We obtain the full decryption of the ciphertext (u, v) as m ≡ (v − t mod q)
mod p, where t = t1 + t2 + ...+ tξ. This will give the correct decryption as long
as the noise max∥v − t∥∞ ≤ (1 + 2sec)BDec < ⌊q/2⌋ (see [DKL+13, Appendix
G]). Here, t will be indistinguishable from random except with probability 2−sec.

Verifiable Decryption in the Head 175

5.4 Lattice-Based Commitments

We first define a commitment scheme and its security.

Definition 6 (Commitment Scheme). A commitment scheme consists of
three algorithms: key generation (KeyGen), commitment (Com) and opening (Open),
where

- KeyGen, on input security parameter 1λ, outputs public parameters pp,
- Com, on input message m, outputs commitment c and opening r,
- Open, on input m, c and r, outputs either 0 or 1,

and the public parameters pp are implicit inputs to Com and Open.

Definition 7 (Completeness). We say that the commitment scheme is com-
plete if an honestly generated commitment is accepted by the opening algorithm.
Hence, we want that

Pr

[
Open(m, c, r) = 1 :

pp← KeyGen(1λ)
(c, r)← Com(m)

]
= 1,

where the probability is taken over the random coins of KeyGen and Com.

Definition 8 (Hiding). We say that a commitment scheme is hiding if an ad-
versary A, after choosing two messages m0 and m1 and receiving a commitment
c to either m0 or m1 (chosen at random), cannot distinguish which message c
is a commitment to. Hence, we want that

|Pr

b = b

′
:

pp← KeyGen(1λ)
(m0,m1, st)← A(pp)

b
$← {0, 1}, c← Com(mb)

b′ ← A(c, st)

−

1

2
| ≤ negl,

where the probability is taken over the random coins of KeyGen and Com.

Definition 9 (Binding). We say that a commitment scheme is binding if an
adversary A, after creating a commitment c, cannot find two valid openings to
c for different messages m and m̂. Hence, we want that

Pr

m ̸= m̂
Open(m, c, r) = 1
Open(m̂, c, r̂) = 1

:
pp← KeyGen(1λ)

(c,m, r, m̂, r̂)← A(pp)

 ≤ negl,

where the probability is taken over the random coins of KeyGen.

We note that the public key in the BGV encryption scheme is essentially
a commitment to the secret key. In general, ignoring the constant p, the value
b = as + e is a commitment to a short random secret s with randomness e if e
is short and a is a uniformly random public element.

More formally, let q be a prime, let Rq be defined as above for a fixed N and
let B∞ ∈ N be a bound. These are the public parameters pp. The commitment
scheme consists of three algorithms: key generation (KeyGen), commit (Com) and
open (Open), where

176 K. Gjøsteen et al.

- KeyGen samples an element a′ ←$ Rq uniformly at random and outputs the
public commitment key pk′ = a′.

- Com, on input the public key pk′ = a′ and a pseudo-random message m in Rq

such that ∥m∥∞ ≤ B∞, samples a short rm ←$ Rq such that ∥rm∥∞ ≤ B∞,
outputs commitment cm = a′m+ rm and opening dm = (m, rm).

- Open, on input a commitment cm and an opening dm = (m, rm), checks if
max(∥m∥∞, ∥rm∥∞) ≤ B∞ and cm = a′m+rm, and outputs 1 if both checks
hold and otherwise 0.

It follows directly that the commitment scheme is (computationally) hiding if
DKS∞N,q,B∞ is hard and (computationally) binding if SKS2

N,q,
√
2N ·B∞

is hard.

5.5 Zero-Knowledge Proof of Shortness

We present the Stern-based [Ste94] zero-knowledge proof of knowledge protocol
by Kawachi et al. [KTX08] and Ling et al. [LNSW13]. We will later use this to
prove that we know a valid opening dm of a commitment cm without leaking
any information about the message nor the randomness. We denote the protocol
by ΠZKPoS.

Note that multiplication with a polynomial a′ in Rq can be re-written as a
matrix-vector product by a negacyclic N × N -matrix A′ over Zq. Define A =
[A′ IN], and let B∞ = 1 for simplicity (it can be generalized to any B∞,
see [LNSW13]). We give a zero-knowledge protocol for the following relation:

RDKS∞
N,q,1

= {((A,y);x) : Ax = y mod q ∧ ∥x∥∞ = 1}.

Furthermore, let Bm be the set of all vectors x̂ of length 3m withm coordinates of
each element in {0, 1,−1}. It is then trivial to extend any witness x of the relation
RDKS∞

N,q,1
to a vector x̂ in B2N by appending values and extending the matrix

A to the matrix Â = [A 0N×4N]. It follows that Ax = y mod q∧∥x∥∞ = 1

if and only if Âx̂ = y mod q∧ x̂ ∈ B2N . Let S6N be the set of permutations on
6N symbols. The full protocol is given in Figure 3.

This protocol has soundness 2/3, and hence, must be repeated µ = λ ·
ln(2)/ ln(3/2) times to achieve soundness 2−λ. However, the protocol is very sim-
ple and lightweight in computation. We observe that the commitments c1, c2, c3
are commitments to random values, and the commitments does not need any
structure. Hence, we can compute the commitments as plain hashes of the com-
mitted values. Furthermore, we only need to sample a uniformly random per-
mutation π from S6N and a uniformly random vector r from Z6N

q . Compared to
other lattice-based zero-knowledge protocols, there are no Gaussian sampling,
no rejection sampling, no use of partially splitting rings or automorphisms.

We restrict permutations π to lie in the subgroup H generated by sign swaps
and the transpositions {(i i + 6N) | for i from 1 to 6N}. This subgroup has
86N elements which can be represented by 18N bits. Each vector in Z6N

q can
be represented by 6N log q bits, each vector in B2N can be represented by 12N
bits, and each commitment can be represented by 2κ bits. As β is uniformly

Verifiable Decryption in the Head 177

ΠZKPoS

Prover((A,y);x) Verifier(A,y)

expand (A,x) to (Â, x̂)

π ←$ S6N , r ←$ Z6N
q

c1 ← Com(π, Âr)

c2 ← Com(π(r))

c3 ← Com(π(x̂+ r))

w = (c1, c2, c3)

β ←$ {1, 2, 3}

β

if β = 1:

z = (s = π(x̂), t = π(r))

if β = 2:

z = (ϕ = π,u = x̂+ r)

if β = 3:

z = (ψ = π,v = r)

z ΠZKPoSV :

if β = 1:

parse z as s and t

if c2
?
= Com(t) and c3

?
= Com(s+ t) and s ∈ B2N

return 1

if β = 2:

parse z as ϕ and u

if c1
?
= Com(ϕ, Âu− y) and c3

?
= Com(ϕ(u))

return 1

if β = 3:

parse z as ψ and v

if c1
?
= Com(ψ, Âv) and c2

?
= Com(ψ(v))

return 1

return 0

Fig. 3. Zero-knowledge proof of shortness.

178 K. Gjøsteen et al.

distributed we estimate the proof size assuming that each response will appear
a third of the times each. The total proof, denoted πS , is of size

|πS | = (6κ+ 16N + 6N log q)µ bits. (1)

We finally note that the protocol can be improved using the combinatorial exten-
sions by Beullens [Beu20], reducing the size of the proof by a factor 10 without
much extra computational work nor increased complexity in the implementa-
tion.

6 Zero-Knowledge Protocol of Correct Decryption

6.1 Lattice-Based Distributed Decryption

Setup. We will be working over the ring Rq = Zq[X]/⟨XN + 1⟩ together with a
modulus p≪ q, both prime. These are the public parameters of the protocol, to-
gether with security parameter κ, soundness parameter λ, bound B∞ and max-
imal ciphertext error-bound BDec. We define commitments, their security and
give a concrete instantiation based on lattices in the full version of this paper.
The commitments are both computationally hiding and computationally bind-
ing, in addition to being linearly homomorphic. Finally, let (ΠZKPoS, ΠZKPoSV)
be a non-interactive zero-knowledge protocol for the following relation:

RDKS∞
N,q,1

= {((A,y);x) : Ax = y mod q ∧ ∥x∥∞ = 1}.

Scheme. We present a distributed decryption version of the BGV encryption
scheme [BGV12], where KeyGen, Enc and Dec are defined in Section 5.3.

The dealer algorithm (Deal) takes as input a public key pk = (a, b) and cor-
responding secret key sk = (s, e), samples uniform s0 and e0 from Rq, and
computes s1 = s−s0 and e1 = e−e0. Then it commits to the values as csi =
Com(si), cei = Com(ei), and computes bi = asi+pei so that b = b0+b1. Finally,
it computes non-interactive zero-knowledge proofs πSi proving that the sums
s0 + s1 and e0 + e1 are short (see details in Section 7). It outputs key shares
sk0 = (s0, e0), sk1 = (s1, e1) and aux = (b0, b1, cs0 , cs1 , ce0 , ce1 , πS0

, πS1
).

The verify algorithm (Verify) takes as input a public key pk = (a, b), an index
i, a secret key share ski = (si, ei), openings dsi and dei , and aux. It outputs

1 if and only if (bi
?
= asi + pei) ∧ (b

?
= b0 + b1) ∧ Open(csi , dsi) ∧

Open(cei , dei) ∧ (ΠZKPoSV(ski, aux, πSi
)), and 0 otherwise.

The player algorithm (Play) takes as input a key share ski = (si, ei), a ci-
phertext c = (u, v), samples bounded Ei and outputs dsi = ti = siu+ pEi.

The reconstruction algorithm (Rec) takes as input a ciphertext c = (u, v),
decryption shares (t0, t1), and outputs m = (v − t0 − t1 mod q) mod p.

Verifiable Decryption in the Head 179

6.2 Security

Theorem 1 (Correctness). The distributed decryption scheme in 6.1 is cor-
rect with respect to Definition 1 when max∥v − t∥∞ ≤ (1 + 2sec)BDec < ⌊q/2⌋.

Theorem 2 (Integrity). Suppose the protocol ΠZKPoS is (computationally)
sound and that Com is (computationally) binding. Let A0 be an adversary against
integrity of the distributed decryption scheme with advantage ϵ0, and let λ be
the number of rounds in the protocol. Then there exists adversaries A1 and A2

against soundness of ΠZKPoS and binding of Com, respectively, with advantages
ϵ1 and ϵ2, such that ϵ0 ≤ ϵ1+ϵ2+2−λ. The runtime of A1 and A2 are essentially
the same as the runtime of A0.

Proof. We sketch the argument. There are essentially three possible ways to
attack the integrity of the protocol: an attacker that knows the secret decryption
key but correctly guess the challenge in each round is able to decrypt to arbitrary
messages, and otherwise, if the attacker does not know the secret key, needs to
break the underlying schemes. The guessing attack has success probability 2−λ.

For Verify to accept for both i = 0 and i = 1, we need that b = b0 + b1,
b0 = as0 + pe0, b1 = as1 + pe1 and that the zero-knowledge proof of shortness
πS of the sums s0 + s1 and e0 + e1 are accepted. If either of the key shares are
incorrect then Verify accept with probability 0, and if the key shares are correct,
then Rec outputs m except with negligible probability. An attacker can choose
s0, s1, e0 and e1 such that all equations are correct, but the sums are not short.
The soundness of Verify then reduces to the soundness of the zero-knowledge
protocol, and an attacker A0 against this part of the protocol with advantage ϵ0
can be turned into an attacker A1 against ΠZKPoS with the same advantage.

The last option is for the attacker to produce commitments to a true but un-
related statement with respect to the secret key used in the encryption scheme.
This allows the attacker to produce a valid proof of shortness without cheating,
but for an unrelated key. However, Verify only accepts if both the opening of
the commitments are correct and the zero-knowledge proof of shortness verifies.
Hence, and attacker A0 that is able to produce valid openings and proofs with
advantage ϵ0 can be turned into an attacker A2 against Com with the same advan-
tage by rewinding the prover for the zero-knowledge proof of knowledge of short
openings and then extract two different but valid openings to the commitment.

⊓⊔
Theorem 3 (Privacy). Suppose the protocol ΠZKPoS is (statistically) honest-
verifier zero-knowledge, that Com is (computationally) hiding and that Enc is
(computationally) CPA secure. Then there exists a simulator for the verifiable
decryption protocol such that for any distinguisher A0 for this simulator with
advantage ϵ0 there exists an adversary A2 against hiding for the commitment
scheme with advantage ϵ2, an adversary A3 against CPA security for the en-
cryption scheme with advantage ϵ3, and a distinguisher A1 for the simulator of
ΠZKPoS with advantage ϵ1, such that ϵ0 ≤ ϵ1 + ϵ2 + ϵ3. The runtime of A1, A2

and A3 are essentially the same as the runtime of A0.

180 K. Gjøsteen et al.

Proof. Let SimShort be a simulator for ΠZKPoS. We present a simulator DealSim
for the Deal-algorithm and a simulator PlaySim for the Play-algorithm in Figure 4.

DealSim(pk = (a, b), i)

i = 0, 1: s∗i ←$ Rq, e∗i ←$ Rq

b∗i = as∗i + pe∗i , b∗1−i = b− b∗i
c∗si ← Com(s∗i), c

∗
s1−i

← Com(s1−i)

c∗ei ← Com(e∗i), c
∗
e1−i

← Com(s1−i)

π∗
S ← SimShort(c

∗
si , c

∗
s1−i

, c∗ei , c
∗
e1−i

)

aux∗ ← (b∗0, b
∗
1, c

∗
s0 , c

∗
s1 , c

∗
e0 , c

∗
e1 , π

∗
S)

return (sk∗i = (s∗i , e
∗
i), aux

∗)

PlaySim(sk1−i = (s1−i, e1−i), c = (u, v), i,m)

E1−i ←$ E
t1−i = s1−iu+ pE1−i

t∗i = v −m− t1−i mod p

return (ds∗i = t∗i)

Fig. 4. Simulators DealSim and PlaySim.

DealSim: We create the simulator in three steps. We first replace πS by the
simulated proof π∗S produced by SimShort. An attacker A0 with advantage ϵ0
against this change can be turned into an attacker A1 against the simulator
SimShort of protocol ΠZKPoS with the same advantage.

Next, we replace the key shares by uniformly random key-shares s∗i and e∗i
that give correctness, that is, the public key-shares b∗0 and b∗1 sum to b, but s∗0
and s∗1 does not need to sum to a short key s∗ and e∗0 and e∗1 does not need to
sum to short noise e∗. This ensures that Verify outputs 1. An attacker A0 with
advantage ϵ0 against this change can then be turned into an attacker A3 against
CPA security of the encryption scheme with the same advantage.

Finally, we replace the commitments to unopened values by commitments to
random values. This way, none of the values in the protocol any longer depends
on the secret key in the protocol, and b∗i are simulated perfectly. An attacker A0

with advantage ϵ0 against this change can then be turned into an attacker A2

against hiding of the commitment scheme with the same advantage.
PlaySim: we start by sampling bounded E1−i from E and computing t1−i =

s1−iu+ pE1−i. Then we find ti such that (v− t0− t1 mod q) mod p = m. This
ensures that Rec outputs the message m when reconstructing the shares. Here,
the values are sampled according to the exact same distribution as in the real
protocol, and the statistical distance is negligible in the security parameter κ.

⊓⊔

6.3 Zero-Knowledge Proof of Verifiable Decryption

We present the different phases of our sigma protocol for proving correct decryp-
tion. The protocol is given in Figure 5. The security of the construction follows
directly from the results in Section 3 in combination with Theorem 1, 2 and 3.

Verifiable Decryption in the Head 181

Setup. We are given a honestly generated public key pk = (a, b = as+pe), where
max(∥s∥∞, ∥e∥∞) ≤ B∞. The secret key sk = (s, e) is given to the prover. We are
given a set of honestly generated ciphertexts {(uj , vj) = (arj + pe′j , brj + pe′′j +
mj)}τj=1, where max(∥r∥∞, ∥e′∥∞, ∥e′′∥∞) ≤ B∞, and set of messages {mj}τj=1.

Commit phase. For soundness parameter λ, the prover does the following for
k = 1, ..., λ. First, it runs the Deal algorithm on sk and pk to produce sk0,k, sk1,k
and auxk. It uses ΠZKPoS to prove that the shares are correctly computed.
Then, for i = 0, 1 and each j = 1, ..., τ , it runs the Play algorithm on each
key-share ski,k and ciphertext cj to produce t0,j,k and t1,j,k. Finally, it sends

w ← ({auxk, {ti,j,k}1,τi=0,j=1}λk=1) to end the commitment phase.

Challenge phase. The verifier independently samples a random binary challenge
vector β of length λ. It sends β to the prover.

Respond phase. The prover sends openings z = ({dsβ[k],k
, deβ[k],k

}), for each of
the commitments to each index k of β, to the verifier.

Verification phase. For each k = 1, ..., λ, the verifier runs the Verify algorithm to
make sure that the openings of sβ[k],k and eβ[k],k are valid, check that all shares
of the public key are computed correctly as bβ[k],k = asβ[k],k+peβ[k],k, verify the
public key b = b0,k + b1,k and ensure that each πSi,k

is valid. Further, for each
j = 1, ..., τ , the verifier runs the Rec algorithm to make sure that all decryption
shares are correct and that all messages are decrypted correctly. It outputs 1 if
all checks hold, and 0 otherwise.

Fiat-Shamir. To make the scheme non-interactive we can use the Fiat-Shamir
transform [FS87] by hashing the output of the commit phase and use the hash as
challenge, before outputting the response. We note that this can be done similarly
to the optimizations described for estimating the size in the next section. We also
note that the soundness parameter λ initially can be very small in the interactive
case, while it should be (approximately) as large at the security parameter κ in
the non-interactive setting, increasing the size of the proof of decryption.

Hybrid proof. We note that the interaction in the protocol opens for a hybrid
proof: if we wish for a quick result to get confidence in the decrypted ciphertexts
but at the same time can wait longer to be completely certain, we can ask for
two proofs. First, we ask the prover for a proof where λI = 10 or λI = 20, and
sample a random challenge ourselves. If we accept the proof, we ask the prover
to compute a non-interactive proof for the same statement but with λN = 100.
This proof can be received, stored and verified later, knowing already that the
messages most likely are correctly decrypted. The interactive proof also allows
the verifier to arbitrarily increase λI by sending more challenges on the fly, where
we tell the prover when we are done, and he creates the proofs of shortness in
the end. This is particularly useful in real-world applications, e.g., e-voting.

182 K. Gjøsteen et al.

ΠZKPCD

Prover(((a, b), {(uj , vj)}τj=1, {mj}τj=1); (s, e)) Verifier((a, b), {(uj , vj)}τj=1, {mj}τj=1)

k = 1, ..., λ :

Deal :

(s0,k, s1,k)←$ ⟨s⟩
(e0,k, e1,k)←$ ⟨e⟩
i = 0, 1:

(csi,k , dsi,k)← Com(si,k)

(cei,k , dei,k)← Com(ei,k)

bi,k ← asi,k + pei,k

j = 1, ..., τ :

Play :

Ei,j,k ←$ E
ti,j,k = siuj + pEi,j,k

πS0,k ← ΠZKPoS(cs0,k , cs1,k); (ds0,k , ds1,k))

πS1,k ← ΠZKPoS(ce0,k , ce1,k); (de0,k , de1,k))

w ← ({bi,k, csi,k , cei,k , πSi,k , {ti,j,k}j}i,k)

w

β ←$ {0, 1}λ

β

z ← ({dsβ[k],k
, deβ[k],k

}k)

z

k = 1, ..., λ :

Verify :

Open(csβ[k],k
, dsβ[k],k

)
?
= 1

Open(ceβ[k],k
, deβ[k],k

)
?
= 1

1
?← ΠZKPoSV(cs0,k , cs1,k , πS0,k)

1
?← ΠZKPoSV(ce0,k , ce1,k , πS1,k)

bβ[k],k
?
= asβ[k],k + peβ[k],k

b
?
= b0,k + b1,k

j = 1, ..., τ :

Rec :

pEβ[k],j,k = tβ[k],j,k − ujsβ[k],k

∥pEβ[k],j,k∥∞
?

≤ 2sec−1BDec

vj − t0,j,k − t1,j,k
?≡p mj

Fig. 5. Zero-knowledge proof of correct decryption.

Verifiable Decryption in the Head 183

7 Performance

In this section, we shall carefully analyze the performance of our decryption
proof. Along the way, we make several easy optimizations with respect to the
protocol in Figure 5. In particular, we use a commitment in the first message,
and then send only the values that the verifier cannot recompute himself in the
second message. Finally, we compute the zero-knowledge proofs of shortness in
the response phase instead of the commit phase, reducing the number of proofs
by a factor of two in each round of the protocol.

7.1 Proof Size

Each element in Rq is of size N log q bits, which might be large, and each element
in Rp is of sizeN log p bits, which will be small. Short elements bounded by B∞ is
of size N logB∞ bits. We let H be a collision resistant hash-function with output
of length 2κ. Note that the soundness parameter λ may be chosen independently
of, and in particular smaller than, the security parameter κ.

Commit phase. To reduce the number of ring elements being sent, we commit to
the output of the commit phase using a hash-function, and send the hash instead.
More concretely, we let w = H({b0,k, b1,k, cs0,k , cs1,k , ce0,k , ce1,k , {ti,j,k}1,τi=0,j=1}λk=1).

Challenge phase. The verifier sends the vector β consisting of λ independently
sampled bits to the prover.

Respond phase. Note that we do not need to send the partial decryptions tβ[k],j,k,
because they can be computed uniquely from uj , sβ[k],k and Eβ[k],j,k, and we can
let a uniform binary seed ρβ[k],k of length 2κ bits can be used to deterministically
generate the randomness used in each round. Next, we also note that bβ[k],k can
be computed directly from sβ[k],k and eβ[k],k, and b1−β[k],k from b and bβ[k],k.

It follows that, for each k = 1, ..., λ, the prover sends sβ[k],k and eβ[k],k,
commitments cs1−β[k],k

and ce1−β[k],k
together with the openings dsβ[k],k

and
deβ[k],k

, and the partial decryptions {t1−β[k],j,k}τj=1. Since the commitments to
the sharings of s and e are used in the zero-knowledge proof of shortness, these
commitment is computed using lattice-based commitments. We observe that
csk = cs1−β[k],k

+Com(sβ[k],k) and cek = ce1−β[k],k
+Com(eβ[k],k), with randomness

zero, are commitments to sβ[k],k + s1−β[k],k and eβ[k],k + e1−β[k],k, which are
short. Then we use the zero-knowledge proof of shortness to prove that we know
openings of csk and cek to get πS0

and πS1
. Denote all proofs of shortness by πS .

Total communication. The total proof size sent by the prover is

2κ+ λN(4 log q + 2κ+ 2 logB∞) + λτN log q + |πS | bits.

184 K. Gjøsteen et al.

Zero-knowledge proof of shortness. There are many options for πS , proving
knowledge of valid openings of the commitments csk and cek . We can use the
Fiat-Shamir with aborts framework [Lyu09, Lyu12], but this would give us a
large soundness slack, that is, we prove knowledge of a vector that might be
much larger than what we started with. This would increase the parameters to
be used in the overall protocol. Other alternatives are the exact proofs using
MPC-in-the-head techniques by Baum and Nof [BN20] or the range proofs by
Attema et al. [ALS20]. However, we note that even though these are efficient,
both protocols are very complex and are complicated to implement correctly for
use in the real world. Another approach is to use generic proof systems such as
Ligero [AHIV17] or Aurora [BCR+19], adding more complexity to the overall
protocol. We can also use the amortized proof by Bootle et al. [BBC+18] to
prove that all λ executions are done correctly at the same time. This is the most
efficient proof system for these relations today.

However, assuming that the soundness parameter λ is much smaller than
the number of ciphertexts τ , the size of the proofs of shortness does not matter
much. To keep the protocol as simple as possible, to make it easier to implement
the protocol and avoid bugs in practice, we choose to use the Stern-based proofs
by Kawachi et al. [KTX08] and Ling et al. [LNSW13] in our implementation and
estimates.

Concrete parameters. For a concrete instantiation, we use the example parame-
ters in Table 1, estimated to κ = 128 bits of long-term security using the LWE-
estimator [APS15] with the BKZ.qsieve cost-model. Inserting these parameters
into the proof of shortness, then each proof πSi,k

is of size ≈ 87µ KB. This makes
|πS | ≈ 175µλ KB. Furthermore, using the improvements by Beullens [Beu20] we
can shrink the proofs down to 18µλ KB. If we replace πS with the amortized
proof by Bootle et al. [BBC+18] we get a proof of total size 520 KB⋆. However, if
the number of ciphertexts τ is very large, we can ignore all other terms and get
a proof of correct decryption πD of size ≈ 14λτ KB. See Table 1 for details. The
ciphertext modulus q is chosen to be large enough to ensure correct decryption.

7.2 Implementation

We wrote a proof of concept implementation of our scheme in C++ using the
NTL-library [Sho21]. The implementation was benchmarked on an Intel Core i5
running at 2.3 GHz with 16 GB RAM. We ran the protocol with λ = 40, τ =
1000, µ = 68. The timings are given in Table 1. The implementation is very
simple, and consists of a total of 400 lines of code. Our source code is available
online ⋆⋆. We note that our implementation does not use the number theoretic
transform for fast multiplication of elements in the ring to reduce complexity.
A rough comparison to NFLlib [ABG+16], where they show clear improvements

⋆ Setting m = 2048, log q = 55, r = 90, b = 3, τ = 50, k = 2398, l = 5000 and h = 100
for soundness 2−45 and run the protocol twice, see [BBC+18, Section 4.1] for details.

⋆⋆ github.com/tjesi/verifiable-decryption-in-the-head.

Verifiable Decryption in the Head 185

Parameter Explanation Constraints Value

N Dimension Power of two 2048
q Ciphertext modulus BDec ≪ q ≡ 1 mod 2N ≈ 255

p Plaintext modulus 2
κ Security parameter Long-term privacy 128
sec Statistical security 40
λ Soundness parameter 10, ..., 128
µ Repetitions of ΠZKPoS µ ≥ λ · ln(2)/ ln(3/2) 17, ..., 218
B∞ Bounds on secrets 1
BDec Decryption bound ∥v − su∥∞ ≤ BDec ≈ 213

Size of πD Timings for πD Size of πS Timings for πS

14λτ KB 4λτ ms 175λµ KB 30λµ ms

Table 1. Notation, explanation, constraints and concrete parameters for the protocol.
We also provide size and timings for decryption proof πD and proofs of shortness πS .

compared to NTL, indicates that an optimized implementation should provide
a speedup by at least an order of magnitude.

8 Comparison

8.1 Comparison to DistDec (TCC’10)

We sketch an extension of the passively secure distributed decryption protocol
ΠDistDec given by Bendlin and Damg̊ard [BD10], which is used in SPDZ [DKL+13,
DPSZ12]. The main difference compared to our protocol is that this protocol
requires zero-knowledge proofs to ensure correct computation at each step of the
protocol to achieve active security instead of repeating the decryption procedure
several times. The protocol works roughly as following:

1. Each party Di samples uniform Ei,j such that ∥Ei,j∥∞ ≤ 240BDec/ξp (for 40
bits statistical security) and computes the partial decryptions ti,j = siuj +
pEi,j for each ciphertext cj = (uj , vj).

2. Each party Di publish a zero-knowledge proof πLi,j
of the linear relation for

ti,j , using the lattice-based commitments together with their zero-knowledge
proof of linear relations by Baum et al. [BDL+18].

3. Each party Di use the amortized proof by Baum et al. [BBC+18] for size N
to prove that each Ei,j is bounded by 2secBDec/ξp, for commitments cEi,j .

4. The verifier checks the relations (vj − t0,j − t1,j mod q) ≡ mj mod p and
that all the zero-knowledge proofs are valid.

Elements tj and commitments cEi,j
are N log q and 2N log q bits, respectively.

Each proof of linearity πLi,j
is 6N log(6σ̄) bits. The amortized proof is 540 log(6σ̂)

186 K. Gjøsteen et al.

bits. The total size, for each Di, is

(3N log q + 6N log(6σ̄) + 540 log(6σ̂))τ bits.

Then one party can split the key into ξ = 2 shares, run ΠDistDec on each key-
share locally, and return the outputs from both D1 and D2 together with an
additional proof that the key-splitting was correct. We based the estimate on
the parameters from Table 1, with σ̄ ≈ 216 and σ̂ ≈ 266 (see e.g. Aranha et
al. [ABGS22] for details about proofs and sizes). However, the amortized proof
is not exact, which means that we must increase q to q ≈ 278 to ensure correct
decryption. For security κ = 128 we also need to increase N to N = 4096. The
proof is then of size ≈ 363τ KB. We conclude that ΠZKPCD is of equal size as
ΠDistDec for λ = 26 and otherwise larger.

We do not have access to timings for this protocol. However, as the modulus is
much larger, the dimension is twice the size, the zero-knowledge proofs include
Gaussian sampling and rounds of aborts, we expect the protocol to be much
slower than ours despite the large number of repetitions in our construction.

8.2 Comparison to Boschini et al. (PQ Crypto’20)

Boschini et al. [BCOS20] presents a zero-knowledge protocol for Ring-SIS and
Ring-LWE. Their protocol can be used to prove knowledge of secrets or plain-
texts, or prove correct decryption given a message and a BGV ciphertext. Con-
crete estimates for the latter are not given in the paper, but the number of
constraints is higher for decryption than for the former. For a slightly smaller
choice of parameters, a single proof of plaintext knowledge is of size 87 KB and
takes roughly 3 minutes to compute. We conclude that the proof system by Bos-
chini et al. will provide decryption proofs of equal size as protocol when λ = 6
and smaller otherwise. The time it takes to produce such a proof are several
orders of magnitude slower than ours, making the system impossible to use in
practice even for moderate sized sets of ciphertexts.

8.3 Comparison to Lyubashevsky et al. (PKC’21)

A recent publication by Lyubashevsky, Nguyen and Seiler [LNS21] gives a veri-
fiable decryption protocol for the Kyber encapsulation scheme [SAB+20]. Here,
the encryption is over a rank 2 module over a ring of dimension N = 256 and
modulus q = 3329 with secret and noise values bounded by B∞ = 2. The proof
of correct decryption of binary messages of dimension 256 is of size 43.6 KB,
which of equal size as in our protocol for λ = 3. We note that the message space
is smaller than in our protocol, mostly because we are forced to choose larger
parameters to ensure correct decryption, and hence, we can not provide a proof
of verifiable decryption for Kyber in particular. They do not provide timings,
but we notice that the proof system use Gaussian sampling, rejection sampling,
partially splitting rings and automorphisms – making the protocol very difficult
to implement correctly and securely in practice.

Verifiable Decryption in the Head 187

8.4 Comparison to Silde (VOTING’22)

Silde [Sil22] presents a direct verifiable decryption of BGV ciphertexts. The
parameters are similar to our scheme, and the proof is of 43.6 KB per ciphertext.
This the same as in our scheme for λ = 3, ignoring the setup cost, while smaller
for larger λ. The timing of the decryption protocol is 76 ms per ciphertext, which
is equal to our timings for λ = 19 and otherwise up to 7 times faster for λ = 128.

9 Conclusion and Future Work

9.1 Summary and Conclusion

We have defined a passively secure distributed decryption protocol, and show
how this can be used to construct an interactive zero-knowledge protocol for cor-
rect decryption. This is the first both efficient and simple single-party verifiable
decryption protocol for lattice-based cryptography when instantiated with the
BGV encryption scheme.

The size and efficiency of the protocol is a small factor times λτ , for arbitrary
soundness parameter λ and number of ciphertexts τ . The long-term privacy pa-
rameter of the protocol κ can be set independently of, and in particular larger
than, λ. This allows an interactive instantiation of the protocol to be very ef-
ficient, both in size and computation. For κ = 128 we estimate the decryption
proof to be of size ≈ 14λτ KB and the proof/verification time to be only 4λ ms
per ciphertext, when τ is much larger than λ.

Altogether, our new lattice-based proof of decryption provides a unique com-
bination of efficiency and simplicity that make our proof system an interesting
candidate for real-world applications.

9.2 Future Improvements and Extensions

Remove the ZK-proofs of shortness. The Deal-algorithm outputs a zero-knowledge
proof proving that the sum of the shares of the secret key and noise used to com-
pute the public key are short. This is to ensure the correctness and security of
the encryption scheme. However, ElGamal does not require such a proof, and it
might be infeasible to find key-shares that are correct, but not short, that de-
crypts consistently for all BGV-ciphertexts. We would need to conduct a more
careful analysis to ensure that our construction is secure also without the zero-
knowledge proofs.

Instantiations based on other primitives. A natural future step is to apply our
transformation to other encryption schemes, also with other underlying hardness
assumptions. As an example, a threshold scheme has was recently constructed
based on isogenies [DM20].

Thanks

We thank Carsten Baum and the anonymous reviewers for helpful comments.

188 K. Gjøsteen et al.

References

ABG+16. Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet,
Marc-Olivier Killijian, and Tancrède Lepoint. NFLlib: NTT-based fast
lattice library. In Kazue Sako, editor, Topics in Cryptology – CT-
RSA 2016, volume 9610 of Lecture Notes in Computer Science, pages
341–356. Springer, Heidelberg, February / March 2016.

ABGS22. Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde.
Verifiable mix-nets and distributed decryption for voting from lattice-
based assumptions. Cryptology ePrint Archive, Report 2022/422, 2022.
https://ia.cr/2022/422.

Adi08. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot,
editor, USENIX Security 2008: 17th USENIX Security Symposium, pages
335–348. USENIX Association, July / August 2008.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venki-
tasubramaniam. Ligero: Lightweight sublinear arguments without a
trusted setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Com-
puter and Communications Security, pages 2087–2104. ACM Press, Octo-
ber / November 2017.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical prod-
uct proofs for lattice commitments. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part II, vol-
ume 12171 of Lecture Notes in Computer Science, pages 470–499. Springer,
Heidelberg, August 2020.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II, vol-
ume 10992 of Lecture Notes in Computer Science, pages 669–699. Springer,
Heidelberg, August 2018.

BCHPM04. Yves Bertot, Pierre Castéran, Gérard Huet, and Christine Paulin-
Mohring. Interactive theorem proving and program development : Coq’Art
: the calculus of inductive constructions. Texts in theoretical computer
science. Springer, 2004.

BCOS20. Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner.
Efficient post-quantum SNARKs for RSIS and RLWE and their applica-
tions to privacy. In Jintai Ding and Jean-Pierre Tillich, editors, Post-
Quantum Cryptography - 11th International Conference, PQCrypto 2020,
pages 247–267. Springer, Heidelberg, 2020.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct argu-
ments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lecture Notes
in Computer Science, pages 103–128. Springer, Heidelberg, May 2019.

BD10. Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-
knowledge proofs for lattice-based cryptosystems. In Daniele Micciancio,

Verifiable Decryption in the Head 189

editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of
Lecture Notes in Computer Science, pages 201–218. Springer, Heidelberg,
February 2010.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner,
and Chris Peikert. More efficient commitments from structured lattice
assumptions. In Dario Catalano and Roberto De Prisco, editors, SCN
18: 11th International Conference on Security in Communication Net-
works, volume 11035 of Lecture Notes in Computer Science, pages 368–
385. Springer, Heidelberg, September 2018.

Beu20. Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy sig-
nature schemes. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, Part III, volume 12107 of Lecture Notes
in Computer Science, pages 183–211. Springer, Heidelberg, May 2020.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, ed-
itor, ITCS 2012: 3rd Innovations in Theoretical Computer Science, pages
309–325. Association for Computing Machinery, January 2012.

BHLY16. Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval
Yarom. Flush, gauss, and reload - A cache attack on the BLISS lattice-
based signature scheme. In Benedikt Gierlichs and Axel Y. Poschmann,
editors, Cryptographic Hardware and Embedded Systems – CHES 2016,
volume 9813 of Lecture Notes in Computer Science, pages 323–345.
Springer, Heidelberg, August 2016.

BKS19. Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing
from lattices without FHE. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, Part II, volume 11477 of
Lecture Notes in Computer Science, pages 3–33. Springer, Heidelberg, May
2019.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge argu-
ments for arithmetic circuits and their application to lattice-based cryp-
tography. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020: 23rd International Conference on The-
ory and Practice of Public Key Cryptography, Part I, volume 12110 of
Lecture Notes in Computer Science, pages 495–526. Springer, Heidelberg,
May 2020.

BS13. Slim Bettaieb and Julien Schrek. Improved lattice-based threshold ring
signature scheme. In Philippe Gaborit, editor, Post-Quantum Cryptogra-
phy - 5th International Workshop, PQCrypto 2013, pages 34–51. Springer,
Heidelberg, June 2013.

CP92. David Chaum and Torben P. Pedersen. Wallet databases with observers.
In CRYPTO, volume 740 of Lecture Notes in Computer Science, pages
89–105. Springer, 1992.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture
Notes in Computer Science, pages 307–315. Springer, Heidelberg, August
1990.

DHRW16. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs.
Spooky encryption and its applications. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016,

190 K. Gjøsteen et al.

Part III, volume 9816 of Lecture Notes in Computer Science, pages 93–122.
Springer, Heidelberg, August 2016.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishon-
est majority - or: Breaking the SPDZ limits. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, ESORICS 2013: 18th European Sym-
posium on Research in Computer Security, volume 8134 of Lecture Notes
in Computer Science, pages 1–18. Springer, Heidelberg, September 2013.

DM20. Luca De Feo and Michael Meyer. Threshold schemes from isogeny as-
sumptions. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020: 23rd International Conference on The-
ory and Practice of Public Key Cryptography, Part II, volume 12111 of
Lecture Notes in Computer Science, pages 187–212. Springer, Heidelberg,
May 2020.

DOTT21. Ivan Damg̊ard, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi.
Two-round n-out-of-n and multi-signatures and trapdoor commitment
from lattices. In Juan Garay, editor, PKC 2021: 24th International Con-
ference on Theory and Practice of Public Key Cryptography, Part I, vol-
ume 12710 of Lecture Notes in Computer Science, pages 99–130. Springer,
Heidelberg, May 2021.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
643–662. Springer, Heidelberg, August 2012.

EFGT17. Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Ti-
bouchi. Side-channel attacks on BLISS lattice-based signatures: Exploit-
ing branch tracing against strongSwan and electromagnetic emanations
in microcontrollers. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on
Computer and Communications Security, pages 1857–1874. ACM Press,
October / November 2017.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, Heidelberg, August 1987.

Gor98. Daniel M. Gordon. A Survey of Fast Exponentiation Methods. J. Algo-
rithms, 27(1):129–146, 1998.

HGT19. Thomas Haines, Rajeev Goré, and Mukesh Tiwari. Verified verifiers for
verifying elections. In CCS, pages 685–702. ACM, 2019.

HLPT20. Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague.
How not to prove your election outcome. In 2020 IEEE Symposium on
Security and Privacy, pages 644–660. IEEE Computer Society Press, May
2020.

HM20. Thomas Haines and Johannes Müller. SoK: Techniques for verifiable mix
nets. In Limin Jia and Ralf Küsters, editors, CSF 2020: IEEE 33st Com-
puter Security Foundations Symposium, pages 49–64. IEEE Computer So-
ciety Press, 2020.

HW14. Sven Heiberg and Jan Willemson. Verifiable internet voting in Estonia.
In 6th International Conference on Electronic Voting: Verifying the Vote,
EVOTE 2014, 2014.

Verifiable Decryption in the Head 191

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and
Uriel Feige, editors, 39th Annual ACM Symposium on Theory of Comput-
ing, pages 21–30. ACM Press, June 2007.

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of
Lecture Notes in Computer Science, pages 158–189. Springer, Heidelberg,
April / May 2018.

KTX08. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently se-
cure identification schemes based on the worst-case hardness of lattice
problems. In Josef Pieprzyk, editor, Advances in Cryptology – ASI-
ACRYPT 2008, volume 5350 of Lecture Notes in Computer Science, pages
372–389. Springer, Heidelberg, December 2008.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact Knap-
sacks are collision resistant. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, ICALP 2006: 33rd International Col-
loquium on Automata, Languages and Programming, Part II, volume 4052
of Lecture Notes in Computer Science, pages 144–155. Springer, Heidel-
berg, July 2006.

LN16. Patrick Longa and Michael Naehrig. Speeding up the number theoretic
transform for faster ideal lattice-based cryptography. In Sara Foresti and
Giuseppe Persiano, editors, CANS 16: 15th International Conference on
Cryptology and Network Security, volume 10052 of Lecture Notes in Com-
puter Science, pages 124–139. Springer, Heidelberg, November 2016.

LNS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Juan
Garay, editor, PKC 2021: 24th International Conference on Theory and
Practice of Public Key Cryptography, Part I, volume 12710 of Lecture
Notes in Computer Science, pages 215–241. Springer, Heidelberg, May
2021.

LNSW13. San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved
zero-knowledge proofs of knowledge for the ISIS problem, and applica-
tions. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013: 16th
International Conference on Theory and Practice of Public Key Cryptog-
raphy, volume 7778 of Lecture Notes in Computer Science, pages 107–124.
Springer, Heidelberg, February / March 2013.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances
in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 1–23. Springer, Heidelberg, May / June 2010.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 35–54. Springer, Heidelberg, May 2013.

LW18. Fucai Luo and Kunpeng Wang. Verifiable decryption for fully homomor-
phic encryption. In Liqun Chen, Mark Manulis, and Steve Schneider,
editors, ISC 2018: 21st International Conference on Information Secu-
rity, volume 11060 of Lecture Notes in Computer Science, pages 347–365.
Springer, Heidelberg, September 2018.

192 K. Gjøsteen et al.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Com-
puter Science, pages 598–616. Springer, Heidelberg, December 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 738–755. Springer, Heidelberg, April 2012.

PBD07. Kun Peng, Colin Boyd, and Ed Dawson. Batch zero-knowledge proof and
verification and its applications. ACM Trans. Inf. Syst. Secur., 10(2):6,
2007.

SAB+20. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor
Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical report,
National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-3-submissions.
Sho21. Victor Shoup. Ntl: A library for doing number theory, 2021. https:

//libntl.org/index.html.
Sil22. Tjerand Silde. Verifiable Decryption for BGV. Workshop on Advances in

Secure Electronic Voting, 2022. https://ia.cr/2021/1693.
SSA+18. Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar,

Michael Backes, and Claudia Diaz. A survey on routing in anonymous
communication protocols. ACM Comput. Surv., 51(3), June 2018.

Ste94. Jacques Stern. A new identification scheme based on syndrome decoding.
In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93,
volume 773 of Lecture Notes in Computer Science, pages 13–21. Springer,
Heidelberg, August 1994.

Verifiable Decryption in the Head 193

Paper v

Short Paper: Verifiable Decryption for BGV
Tjerand Silde

Accepted at the Workshop on Advances in Secure Electronic
Voting, VOTING 2022. The paper is available at:

eprint.iacr.org/2021/1693.pdf

Short Paper: Verifiable Decryption for BGV

Tjerand Silde ID

Department of Mathematical Sciences
Norwegian University of Science and Technology

tjerand.silde@ntnu.no

Abstract. In this work we present a direct construction for verifiable
decryption for the BGV encryption scheme by combining existing zero-
knowledge proofs for linear relations and bounded values. This is one of
the first constructions of verifiable decryption protocols for lattice-based
cryptography, and we give a protocol that is simpler and at least as
efficient as the state of the art when amortizing over many ciphertexts.
To prove its practicality we provide concrete parameters, resulting in
proof size of less than 44τ KB for τ ciphertexts with message space 2048
bits. Furthermore, we provide an open source implementation showing
that the amortized cost of the verifiable decryption protocol is only 76
ms per message when batching over τ = 2048 ciphertexts.

Keywords: lattice cryptography · verifiable decryption · zero-knowledge

1 Introduction

Many privacy preserving applications require one to prove that a ciphertext is
correctly decrypted without revealing the secret key. This is called verifiable de-
cryption, formalized by Camenisch and Shoup [CS03]. Example use-cases are
electronic voting [Adi08], mixing networks [HM20], DC-networks [CWF13] and
fully homomorphic encryption [LW18]. These applications usually require de-
crypting a large number of ciphertexts.

Unfortunately, the above systems are either not secure against quantum com-
puters or very inefficient. Recent works in lattice-based cryptography are leading
towards voting protocols achieving security even against quantum adversaries,
see, e.g., the shuffles by Aranha et al. [ABG+21], Costa et al. [CMM19] and
Farzaliyev et al. [FWK21]. However, few constructions provides verifiable de-
cryption for lattice-based encryption schemes.

1.1 Contribution

We present a new and efficient verifiable decryption protocol for batches of ci-
phertext using the lattice-based encryption scheme by Brakerski, Gentry and
Vaikuntanathan [BGV12]. The protocol is direct; the decryption procedure con-
sists of computing a linear equation involving the ciphertext and the key, and

197

then the message is extracted by rounding the result modulo the plaintext mod-
uli. This procedure gives the correct result if the noise-level in the ciphertext is
bounded. We use lattice-based commitments to commit to the secret key, and
then we prove two relations in zero-knowledge: 1) we prove that the linear equa-
tion holds with respect to a fresh commitment to the ciphertext-noise, and 2)
prove that the noise is bounded. Together, this leads to an efficient verifiable de-
cryption protocol. We give concrete parameters and estimate the size in Sec. 4.1
and give timings from our proof-of-concept implementation in Sec. 4.2.

1.2 Related Work

We compare to the works on verifiable decryption for lattices by Lyubashevsky et
al. [LNS21], Gjøsteen et al. [GHM+22] and Boschini et al. [BCOS20] in Sec 4.3.

2 Lattice-Based Cryptography

Let N be a power of 2 and q = 1 mod 2N a prime. We define the ring Rq =
Zq[X]/⟨XN + 1⟩. For f ∈ Rq we choose coefficients as the representatives in[
− q−1

2 , q−1
2

]
, and compute inner products ⟨·, ·⟩ and norms as vectors over Z:

∥f∥1 =
∑
|αi|, ∥f∥2 =

(∑
α2
i

)1/2

, ∥f∥∞ = max{|αi|}.

We furthermore define the sets Sβ∞ = {x ∈ Rq | ∥x∥∞ ≤ β∞} as well as

C = {c ∈ Rq | ∥c∥∞ = 1, ∥c∥1 = ν} and C̄ = {c− c′ | c ̸= c′ ∈ C} .

2.1 Rejection Sampling

We want to output vectors z = y+v such that z is independent of v, and hence,
v is masked by the vector y. If y is sampled according to a Gaussian distribution
N k

σ with standard deviation σ, then we want z to be from the same distribution.
1/M is the success probability for rejection sampling, and M is computed as

max
N k

σ (z)

N k
v,σ(z)

= exp

[
−2⟨z,v⟩+ ∥v∥22

2σ2

]
≤ exp

[
24σ∥v∥2 + ∥v∥

2
2

2σ2

]
= M,

so that |⟨z,v⟩| < 12σ∥v∥2 with probability at least 1 − 2−100. Hence, for σ =
11∥v∥2, we get M ≈ 3. This is the standard way to choose parameters. If the
procedure is only done once for the vector v, we can decrease the parameters,
to the cost of leaking only one bit of information about v from the given z.

Lyubashevsky et al. [LNS21] suggest to require that ⟨z,v⟩ ≥ 0. Then we can
set M = exp(∥v∥2/2σ2). For σ = 0.675∥v∥2, we get M ≈ 3, with the effect of
rejecting about half of the vectors up front. See [LNS21, Figure 2] for details.

198 T. Silde

2.2 Hardness Assumptions

We first define the Search Knapsack problem in the ℓ2 norm, also denoted as
SKS2. The SKS2 problem is the Ring-SIS problem in its Hermite Normal Form.

Definition 1. The SKS2N,q,β problem is to find a short vector x of ℓ2 norm less
than or equal to β in R2

q satisfying [a 1] ·x = 0 for a given uniformly random

a in Rq. An algorithm A has advantage ϵ in solving the SKS2N,q,β problem if

Pr

[
[a 1] · x = 0 a←$ Rq;
∧ ∥xi∥2 ≤ β 0 ̸= x ∈ R2

q ← A(a)

]
≥ ϵ.

We also define the Decisional Knapsack problem (DKS∞) in the ℓ∞ norm. DKS∞

is equivalent to the Ring-LWE problem when the number of samples is limited.

Definition 2. The DKS∞N,q,β∞ problem is to distinguish the distribution [a 1]·
x, for a short x, from the uniform distribution when given uniformly random a
in Rq. An algorithm A has advantage ϵ in solving the DKS∞N,q,β∞ problem if

|Pr[b = 1 | a←$ Rq;x←$ Sβ∞ ; b← A(a, [a 1] · x)]
− Pr[b = 1 | a←$ Rq;u←$ Rq; b← A(a, u)]| ≥ ϵ.

See [LM06,LPR10] for more details about knapsack problems over rings.

2.3 BGV Encryption

Let p ≪ q be primes, let Rq and Rp be defined as above for a fixed N , let
D be a bounded distribution over Rq, let β∞ ∈ N be a bound and let λ be
the security parameter. The (plain) BGV encryption scheme [BGV12] consists
of three algorithms: key generation (KGen), encryption (Enc) and decryption
(Dec), where

- KGen samples a←$ Rq uniformly at random, samples a short s←$ Sβ∞ and
samples noise e← D. It outputs keys pk = (a, b) = (a, as+ pe) and sk = s.

- Enc, on input pk and a message m in Rp, samples a short r ←$ Sβ∞ , samples
noise e′, e′′ ← D, and outputs ciphertext c = (u, v) = (ar+pe′, br+pe′′+m).

- Dec, on input sk = s and c = (u, v), outputs m = (v − su mod q) mod p.

The decryption is correct if max∥v − su∥∞ = BDec < ⌊q/2⌋. The encryption
scheme is CPA-secure if the DKS∞N,q,β problem is hard for some β = β(N, q, p, β∞).

2.4 Lattice-Based Commitments

Let NσC be a Gaussian distribution over Rq with standard deviation σC. The
commitment scheme by Baum et al. [BDL+18] consists of three algorithms: key
generation (KGen), committing (Com) and opening (Open), where

Verifiable Decryption for BGV 199

- KGen outputs a public key pk to commit to messages in Rq. We define

A1 =
[
In A′

1

]
whereA′

1 ←$ Rn×(k−n)
q

a2 = [0n 1 a′
2] wherea′

2 ←$ R(k−n−1)
q ,

for height n+ 1 and width k and let pk be A =

[
A1

a2

]
.

- Com commits to messages m ∈ Rq by sampling rm ←$ Sβ∞ , and computes

Compk(m; rm) = A · rm +

[
0
m

]
=

[
c1
c2

]
= [[m]].

Com outputs commitment [[m]] and opening d = (m, rm, 1).
- Open verifies whether (m, rm, f), with f ∈ C̄, is a valid opening of [[m]] with

respect to pk by checking that ∥rm[i]∥2 ≤ 4σC

√
N , for i ∈ [k], and if

f ·
[
c1
c2

]
?
= A · rm + f ·

[
0
m

]
.

Open outputs 1 if all these conditions holds, and 0 otherwise.

The commitment scheme is hiding if the DKS∞N,q,β∞ problem is hard and it is

binding if the SKS2
N,q,16σC

√
νN

problem is hard, see [BDL+18, Section 4].

2.5 Zero-Knowledge Proof of Linear Relations

Let [[y]], [[y′]] be commitments such that y′ = αy + β for some public values
α, β ∈ Rq. The protocol ΠLin in [ABG+21, Figure 1] is a zero-knowledge proof

of knowledge, with ℓ2 bound BC = 2σC

√
N on the responses zi, for the relation:

RLin =

{
(x,w)

x = (α, β, [[y]], [[y′]]), w = (y, ry, ry′ , f, f ′) :
Open([[y]], y, ry, f) = Open([[y′]], α · y + β, ry′ , f ′) = 1

}

When applying the Fiat-Shamir transform [FS87], we let the challenge c ∈ C
be the output of a hash function applied to the full transcript. Then, we get
the proof πL = (c, z1, z2), where each zi is of size kN log2(6σC) bits. We can
compress each zi to get a proof of total size 2(k−n)N log2(6σC) bits by checking
an approximate equality instead [ABG+21, Section 3.2]. We denote by

πL ← ΠLin((y, ry, ry′ , fy, fy′); (α, β, [[y]], [[y′]])), and

0 ∨ 1← ΠLinV((α, β, [[y]], [[y
′]]);πL),

the run of the proof and verification protocols, respectively, where the verification
protocol ΠLinV performs the checks as in the last step in [ABG+21, Figure 1] and
also verifies that c was computed correctly with respect to the transcript. ΠLin

is a sound proof of knowledge in the ROM if the SKS2N,q,2BC
problem is hard.

200 T. Silde

2.6 Amortized Zero-Knowledge Proof of Bounded Openings

Let A be a publicly known r × v-matrix over Rq, let s1, s2, . . . , sτ be bounded
elements in Rv

q and let Asi = ti for i ∈ [τ]. Letting S be the matrix whose
columns are si and T be the equivalent matrix for ti, Baum et al. [BBC+18]
give a efficient amortized zero-knowledge proof of knowledge for the relation:

RA =

{
(x,w)

∣∣∣∣
x = (A,T), w = S :

∀i ∈ [τ] : ti = Asi ∧ ||si||2 ≤ 2 ·BA

}

The protocol ΠA is depicted in [BBC+18, Figure 1]. We use a challenge
matrix C with entries sampled from CA = {0, 1}. For security parameter λ, we
define the number of parallel protocol instances to be n̂ = λ+ 2. Denote by

πA ← ΠA(S; (A,T)), and 0 ∨ 1← ΠAV((A,T);πA),

the run of the proof and verification protocols, respectively, where the ΠA-
protocol, using Fiat-Shamir, produces a proof of the form πA = (C,Z), where
C is the output of a hash-function applied to the full transcript, and the ΠAV-
protocol consists of the two checks in the last step in [BBC+18, Figure 1]. The
verification bound on each column of Z is BA =

√
2NσA. Note that σA, and also

BA, depends on the norm of S (see rejection sampling in Section 2.1). Hence,
the bound we can prove depends on the number of equations in the statement.
ΠA is a sound proof of knowledge in the ROM if SKS2N,q,2BA

is hard.

3 The Verifiable Decryption Protocol

The protocol is direct. The prover starts by decrypting the ciphertext (u, v)
to obtain the underlying plaintext m as m = (v − us mod q) mod p. Then, he
commits to the noise d (= er+e′′−se′) in the ciphertexts as [[d]]. Finally, he proves
two statements in zero-knowledge: 1) the linear relation p[[d]] = v−m−u[[s]] holds
modulo q with respect to the noise and a public commitment to the secret key,
and 2) the value committed to in [[d]] is shorter than some bound B < q/2p.

More precisely, we present a proof protocol for the following relation:

RDec =

 (x,w)

x = ((a, b), [[s]], (u1, v1), . . . , (uτ , vτ),m1, . . . ,mτ),
w = (s, rs, fs) such that Open([[s]]; s, rs, fs) = 1
∧ ∀i ∈ [τ] : pdi = vi −mi − uis ∧ ∥di∥∞ < q/2p.

Here, we assume that either a trusted dealer generated the public key and
secret key together with a commitment to the secret key, or that the prover
already has proved in zero-knowledge that the public key is well formed and that
the secret key is committed to in [[s]], using any exact proof from the literature.

The verifiable decryption protocol ΠDec, for prover P, goes as following:

1. P takes as input a set of ciphertexts (u1, v1), . . . , (uτ , vτ) and ([[s]], s, rs, fs).
2. P runs Dec on input s and (ui, vi) for all i ∈ [τ] to obtain messagesm1, . . . ,mτ .

Verifiable Decryption for BGV 201

3. P extracts noise di by computing di = (vi−mi−uis)/p mod q for all i ∈ [τ].
4. P commits to all di as [[di]], and proves p[[di]] = vi −mi − ui[[s]] using ΠLin.
5. P uses protocol ΠA to prove that all ∥di∥2 are bounded by BA ≤

√
2vNσA.

6. P outputs messages {mi}τi=1, commitments {[[di]]}τi=1 and proofs {πLi
}τi=1, πA.

A verifier V runs the verification protocol ΠDecV which checks that all proofs
{πLi
}τi=1 and πA are valid with respect to (a, b), {(ui, vi)}τi=1 and {mi}τi=1.

Theorem 1. The verifiable decryption protocol ΠDec is a complete, sound and
zero-knowledge proof protocol in the ROM for relation RDec when BA < q/(4p).

Proof. We argue each of the properties as following:

Completeness. It follows directly that ΠDec is complete if the encryption scheme
is correct, which is the case when ∥v − su∥ < q/2, and the protocols ΠLin and
ΠA are complete. Hence, we only need to make sure that ∥v − su∥ < q/2. The
protocol ΠA guarantees that the noise is bounded as ∥di∥2 ≤ 2BA. It follows
that if BA < q/(4p) then ∥di∥∞ < q/2p, and the decryption is correct.

Special soundness. The soundness of the protocol follows directly from the un-
derlying zero-knowledge protocols ΠLin and ΠA. With the use of rewinding we
can either extract the secret key s or the noise di (which reveals the secret key)
or some short vectors breaking the SKS2 problem for the given parameters.

Honest-verifier zero-knowledge. The zero-knowledge property follows directly
from the underlying zero-knowledge protocols ΠLin and ΠA, which are both
honest-verifier zero-knowledge. Hence, with input messages m1, . . . ,mτ we can
simulate the decryption proof by sampling uniformly random values di, commit-
ting to them as [[di]] and then simulating all the proofs πLi

and πA subsequently.
⊓⊔

4 Performance

4.1 Parameters and Size

From the verifiable decryption protocol in Section 3 we get that the statement
consists of τ ciphertexts (ui, vi) and messages mi. Each element ui and vi are
uniformly elements in Rq of size N log2 q bits each. The messages are elements
in Rq with coordinates modulo p, and hence, are of size N log2 p bits. Each proof

πL are of size 2(k−n)N log2(6σC) bits, for σC = 11νβ∞
√
kN , and the proof πA

is of size (k+1)n̂N log2(6σA) bits. However, the norm bound BA depends on the
number of equations being proved at once, and hence, if τ is large it is beneficial
to prove smaller batches, e.g., of size N , instead of all equations at once.

As a concrete example, we set p = 2, β∞ = 1 and let D be the ternary
distribution over Rq. It then follows that, for honestly generated ciphertexts,

202 T. Silde

p q N β∞ M k n n̂ ν σC BC σA BA

2 ≈ 244 2048 1 3 3 1 130 36 ≈ 215.9 ≈ 222.4 ≈ 228 ≈ 240.5

Table 1. Example parameters for the verifiable decryption protocol with more than 128
bits of security against quantum adversaries ensuring correct decryption for honestly
generated ciphertexts. Rejection sampling success probability is set to be ≈ 1/3.

∥v − us∥∞ ≤ p(2N + 1). Furthermore, we get the following bound for ∥di∥∞:

∥di∥∞ ≤ 2BA =
√
8NσA ≤

√
8N · 0.675

∥∥S′C ′∥∥
2
≤ 2
√
N ·

∥∥S′∥∥
1

∥∥C ′∥∥
∞

≤ 2
√
N · (β∞kN + p(2N + 1)N)τ.

Thus, setting k = 3, n = 1, n̂ = 130, ν = 36 and τ = N = 2048 gives us
∥di∥∞ ≤ 241.5, and we can safely set q ≈ 244 to get correctness. We claim more
than 128 bits security against a quantum adversary for these parameters using
the LWE estimator by Albrecht et al. [APS15] with the BKZ.qsieve cost model.
A smaller N results in smaller noise, but the size of q would give lower security.

Message mi Ciphertext (ui, vi) Commitment [[di]] Proof πLi Proof πA Proof πDec

0.256 KB 22.6 KB 22.6 KB 19 KB 2τ KB 43.6τ KB

Table 2. Sizes for parameters p = 2, q ≈ 244 and N = 2048 computing proof πDec =
({[[di]], πLi}τi=1, πA), where shortness proofs πA is amortized over batches of size 2048.

4.2 Implementation and Timings

We provide a proof-of-concept implementation of our protocol in C++ using the
NTL-library [Sho21]. The implementation was benchmarked on an Intel Core i5
running at 2.3GHz with 16 GB RAM. The timings are given in Table 3. The
implementation is very simple, consists of a total of 350 lines of code, and is
available online⋆. A comparison of NTL to NFLlib [ABG+16] indicates that an
optimized implementation could provide speedup by an order of magnitude.

Noise [[di]] Proof ΠLin Verification ΠLinV Proof ΠA Verification ΠAV Proof πDec

5τ ms 47τ ms 12τ ms 24τ ms 12τ ms 76τ ms

Table 3. Amortized time per instance over τ = 2048 ciphertexts.

4.3 Comparison

We compare to the verifiable decryption protocols by Lyubashevsky et al. [LNS21]
and Gjøsteen et al. [GHM+22]. As noted by [GHM+22, Section 8], the protocol
by Boschini et al. [BCOS20] give proof sizes of approximate 90 KB, which is
roughly twice the size of πDec. Furthermore, the run time is several minutes per
ciphertext, which would deem it unusable for larger sets of ciphertexts.

⋆ github.com/tjesi/verifiable-decryption-BGV.

Verifiable Decryption for BGV 203

Comparison to Lyubashevsky et al. (PKC 2021). They give a verifiable
decryption protocol for the Kyber encapsulation scheme for a ring of dimen-
sion N = 256 and modulus q = 3329 with secret and noise values bounded by
β∞ = 2. The proof of correct decryption is of size 43.6 KB. We observe that
our proof is of exactly the same size but with a plaintext space of 2048 bits
instead of only 256 bits. We expect our proof size to be smaller than theirs for
ciphertexts encoding larger messages, but note that they can provide efficient
proofs for single ciphertexts for small moduli while our protocol is only efficient
in the amortized setting for ciphertext moduli at least 44 bits. Furthermore, our
protocol is much simpler, as [LNS21] make use of partially splitting rings and
automorphisms by combining proofs of multiplication and range proofs – making
the protocol difficult to implement in practice. They do not provide timings.

Comparison to Gjøsteen et al. (ACISP 2022). They give a verifiable
decryption protocol ΠZKPCD for the BGV encryption scheme. However, because
of their noise drowning techniques, they are forced to use a moduli of at least
q ≈ 255. Their proof size is also depending on the soundness parameter λ, giving a
proof of size 14λ KB per ciphertext. For an interactive protocol with λ = 10 they
get a proof of size 3.2× larger than our proof, and for a non-interactive protocol
with λ = 128 their proof size is 41× larger than ours. They have implemented
their protocol, and give a cost of at least 4λ ms per ciphertext using NTL, which
is similar to our protocol for λ = 19 and otherwise slower.

They also sketch a protocol ΠDistDec [GHM+22, Section 8], requiring q ≈ 278

and N = 4096. This protocol gives a proof of size ≈ 363 KB per ciphertext, a
factor 8 larger than our proof. They do not provide timings for this protocol.

References

ABG+16. Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-
Olivier Killijian, and Tancrède Lepoint. NFLlib: NTT-based fast lattice
library. In Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages
341–356. Springer, Heidelberg, February / March 2016.

ABG+21. Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and
Thor Tunge. Lattice-based proof of shuffle and applications to electronic
voting. In Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of
LNCS, pages 227–251. Springer, Heidelberg, May 2021.

Adi08. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van
Oorschot, editor, USENIX Security 2008, pages 335–348. USENIX Asso-
ciation, July / August 2008.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 2015.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
669–699. Springer, Heidelberg, August 2018.

BCOS20. Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner.
Efficient post-quantum SNARKs for RSIS and RLWE and their applications
to privacy. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum

204 T. Silde

Cryptography - 11th International Conference, PQCrypto 2020, pages 247–
267. Springer, Heidelberg, 2020.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assump-
tions. In Dario Catalano and Roberto De Prisco, editors, SCN 18, volume
11035 of LNCS, pages 368–385. Springer, Heidelberg, September 2018.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, edi-
tor, ITCS 2012, pages 309–325. ACM, January 2012.

CMM19. Núria Costa, Ramiro Mart́ınez, and Paz Morillo. Lattice-based proof of
a shuffle. In Andrea Bracciali, Jeremy Clark, Federico Pintore, Peter B.
Rønne, and Massimiliano Sala, editors, FC 2019 Workshops, volume 11599
of LNCS, pages 330–346. Springer, Heidelberg, February 2019.

CS03. Jan Camenisch and Victor Shoup. Practical verifiable encryption and de-
cryption of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 126–144. Springer, Heidelberg, August 2003.

CWF13. Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. Proactively
accountable anonymous messaging in verdict. In Samuel T. King, editor,
USENIX Security 2013, pages 147–162. USENIX Association, August 2013.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

FWK21. Valeh Farzaliyev, Jan Willemson, and Jaan Kristjan Kaasik. Improved
lattice-based mix-nets for electronic voting. Cryptology ePrint Archive,
Report 2021/1499, 2021. https://ia.cr/2021/1499.

GHM+22. Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne, and
Tjerand Silde. Verifiable decryption in the head. ACISP, 2022. https:

//eprint.iacr.org/2021/558.pdf.
HM20. Thomas Haines and Johannes Müller. SoK: Techniques for verifiable mix

nets. In Limin Jia and Ralf Küsters, editors, CSF 2020 Computer Security
Foundations Symposium, pages 49–64. IEEE Computer Society Press, 2020.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact Knap-
sacks are collision resistant. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, ICALP 2006, Part II, volume 4052 of
LNCS, pages 144–155. Springer, Heidelberg, July 2006.

LNS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Juan
Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages 215–241.
Springer, Heidelberg, May 2021.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010.

LW18. Fucai Luo and Kunpeng Wang. Verifiable decryption for fully homomorphic
encryption. In Liqun Chen, Mark Manulis, and Steve Schneider, editors,
ISC 2018, volume 11060 of LNCS, pages 347–365. Springer, Heidelberg,
September 2018.

Sho21. Victor Shoup. Ntl: A library for doing number theory, 2021. https://

libntl.org/index.html.

Verifiable Decryption for BGV 205

ISBN 978-82-326-6571-6 (printed ver.)
ISBN 978-82-326-5212-9 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:235

Tjerand Aga Silde

Privacy-Preserving
Cryptography from Zero-
Knowledge ProofsD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2022:235
Tjerand Aga Silde

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

	Blank Page
	Blank Page

