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Accurate prediction of wax deposition is of vital interest in digitalized systems to avoid many issues that
interrupt the flow assurance during production of hydrocarbon fluids. The present investigation aims at
establishing rigorous intelligent schemes for predicting wax deposition under extensive production
conditions. To do so, multilayer perceptron (MLP) optimized with Levenberg-Marquardt algorithm (MLP-
LMA) and Bayesian Regularization algorithm (MLP-BR) were taught using 88 experimental measure-
ments. These latter were described by some independent variables, namely temperature (in K), specific
gravity, and compositions of C1eC3, C4eC7, C8eC15, C16eC22, C23eC29 and C30þ. The obtained results
showed that MLP-LMA achieved the best performance with an overall root mean square error of 0.2198
and a coefficient of determination (R2) of 0.9971. The performance comparison revealed that MLP-LMA
outperforms the prior approaches in the literature.

© 2021 Southwest Petroleum University. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wax deposition is recognized as one of the severe problems that
causes acute issues during the production of hydrocarbon fluids
[1e3]. Wax deposition is mainly resulted from the precipitation of
involved heavy paraffins in gas condensates and crude oils [4]. Many
parts of the production systems, including surface facilities, risers,
pipelines and separators, are exposed to this problem [1]. As the
formation ofwaxoccurs in any part of these systems, the efficiency of
oil production is adversely impacted due to plugging caused by the
deposited wax [5]. Severe economic loss will then follow because of
reduced oil production. Hence,waxmanagement has been one of the
most important tasks in the petroleum industry for decades. Per-
taining to this, there are different approaches that can be employed to
mitigate the problem of wax deposition, such as pigging, thermal
insulation, and injection of chemical [6e8]. However, applying these
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methods undeniably induces additional operating cost and it can be
extravagant for theoil andgascompanies to implement themwithout
meticulous and proper planning. Due to this fact, it is necessary to
determine accurately the parameters that characterize wax and help
in the prediction of its deposition.

To have a better prediction of this problematic phenomenon, it
is essential for us to understand the contributing factors or pa-
rameters that affect the deposition of wax. As Theyab [9] has
counseled, these factors include temperature differential, cooling
rate, flow rate, pressure, composition of crude oil, experimental
time, and surface properties of pipe. Refer to the review discussed
in Ref. [9] for the details. In general, wax deposition will take place
when the conditions of reaching these affecting parameters are
satisfied. From a thermodynamic perspective, these parameters can
be explained by the change in the production conditions, profiles
and the fluid composition [10]. In this context, various terminol-
ogies can be related to this mechanism, among which we can cite
(1) wax appearance temperature (WAT), which is defined as the
threshold temperature below which paraffin crystals are formed
[3]; (2) wax disappearance temperature (WDT), which means the
temperature at which the last deposited paraffin is removed; and
(3) the amount of deposited was also known as the weight percent
of deposited wax. The above-mentioned parameters are viewed as
SolideLiquid Equilibrium (SLE) descriptors, hence, their accurate
determination is of vital role to extend the control of this phe-
nomenon during the production.
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Direct measurements or experimental studies have been one of
the methods employed to determine the SLE parameters. In this
aspect, Dantes Neto et al. [11] used photoelectric signal and
viscometry to find out the WAT in the systems of paraffin and
solvent. Besides that, Jiang et al. [12] successfully determined the
WAT of waxy oil under reservoir condition with the help of ultra-
sonic method. Mansourpoor et al. [13] also illustrated the use of
viscometry and Differential Scanning Calorimetry (DSC) in deter-
mining the WAT of 12 Iranian oil and condensates samples.
Regarding this, Chen et al. [14] also applied the DCS analysis to
determine the wax content of crude oil. Furthermore, Wang et al.
[15] investigated the nucleation processes and the impact of
emulsification properties during the formation of waxy crude oil
emulsion gels. In addition to this, Saxena et al. [16] employed
proton Nuclear Magnetic Resonance (1H NMR) to measure the wax
content of crude oil. Some other equipment, such as cold finger,
flow loop, and pour point tester can be of great interest for
assessing the main descriptive parameters related with wax
deposition. Peruse the review works done in Refs. [17,18] for more
comprehensive discussion about the involvement of experimental
studies in wax characterization. Despite being extensively
employed, the experimental approaches generally incur expensive
costs. Therefore, various thermodynamic models were proposed to
study and predict the parameters of SLE. Ideal solid solution [19],
multi-pure-solid [20], and Countinho's UNIQUAC [21] are among
the leading paradigms in this field. However, although the simple
conception of these models, several studies showed that some of
the aforementioned models may fail in the estimation of the dis-
cussed parameters [1,22].

Due to this fact, a new kind of robust modeling techniques based
on artificial intelligent (AI) methods is increasingly getting attention
in the oil industry (including the prediction of flow assurance related
phenomena) due to theirnotable prediction abilities [23e27]. Several
literatures have highlighted the implementation of AI methods to
predict the parameters of SLE. Regarding the prediction of WAT,
Benamara et al. [3] modeled WAT using artificial neural network
(ANN) and gene expression programming (GEP). Besides that, esti-
mating WDT using AI approaches has also been another domain of
discussion articulated in some literatures. In this case, Benamara et al.
[1] applied radial basis function neural network (RBFNN) to predict
WDT. Theyeven coupled theRBFNNwith twodifferentmetaheuristic
algorithms, namely genetic algorithm (GA) and artificial bee colony
(ABC) to perform the prediction. Bian et al. [28] established a WDT
predictive model using support vector regression (SVR). The SVR
model in Ref. [28] was also coupled with a metaheuristic algorithm
that was grey wolf optimizer (GWO) and it showed very accurate
predicted results. Furthermore, Obanijesu and Omidiora [29] built an
ANN model that could forecast the potential of wax deposition of
Nigeria crude oil. Chu et al. [30] implemented a hybrid model based
onneuro fuzzy inference system(ANFIS) coupledwithparticle swarm
optimization (PSO) for modeling wax deposition in oily systems.
Gholami et al. [31] also established a committee machine (CM) by
combining the results of amount of deposited wax estimated by SVR
and ANN. The optimization of contribution of results by each of these
two intelligent models was conducted by using GA. Additionally,
Kamari et al. [5] developed amodel for predicting theweight percent
of depositedwaxusing least square support vectormachine (LSSVM).
In another investigation, Xie and Ying [32] also built a predictive
model of wax deposition rate by applying RBFNN.

The aim of the present work is to establish new accurate pre-
dictive model for estimating the weight percent of deposited wax
under different production conditions. To this end, two distinct
models based on multilayer perceptron (MLP) optimized with
Levenberg-Marquardt algorithm (MLP-LMA) and Bayesian Regula-
rization algorithm (MLP-BR) were established using a
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comprehensive database. The obtained results from our models
were compared with one of the best models in the literature,
namely that developed by Kamari et al. [5].

The main novelty of the present study is the implementation of
a rigorous type of grey-box machine learning techniques, namely
MLP optimized with two robust algorithms, including LMA and BR
for predicting the amount of deposited wax during the production.
As a grey-box type, our best-developed model can be integrated in
other related applications and commercial packages by mimicking
its topology and its associated control parameters, such as weights
and bias of the network.

2. Methodology

2.1. Multilayer perceptron (MLP)

Multilayer perceptron (MLP) is one of the robust types of arti-
ficial neural network (ANN). MLP is recognized with its high pre-
diction ability when modeling many complicated systems with
different degrees of complexity [33,34]. The remarkable perfor-
mance of MLP can be explained by their flexible structure and the
manner of treating the information during the learning process
[35]. An MLP model covers three kind of layers: an input layer from
where the inputs are introduced, one or more hidden layers which
play an important role during the learning; and an output layer
from which the modeling results are delivered. The hidden layers
are characterized with their activation functions which allow the
mapping of the inputs in higher dimensional spaces; and their
number of neurons which differ according to the complexity of the
studied phenomenon. The neurons of each layer are connected to
the ones from the next layer by means of weights.

The learning phase of MLP aims at finding the proper weight
values in order tominimized the error between the predictions and
the real measurements. In this study, we have applied Levenberg-
Marquardt algorithm (MLP-LMA) and Bayesian Regularization al-
gorithm (MLP-BR) during the learning phase of MLP. More details
about these algorithms can be found in published literature [35,36].

2.2. Data preparation

A comprehensive experimental database was considered for
establishing the proposed models. This database include 88
experimental points [5]. These latter were reported in the pub-
lished literature [37e39]. The reported data was gained using some
experimental approaches, such as Pulsed NMR and Differential
Scanning Calorimetry. The investigated output is the weight
percent (wt %) of wax deposition at a pressure of 1 bar, while the
considered input parameters correspond to temperature (in K),
specific gravity (SP.GR), compositions of C1eC3, C4eC7, C8eC15,
C16eC22, C23eC29 and C30þ. Table 1 reports a statistical summary
of the collected database.

2.3. Computational procedure

The gathered experimental measurements were normalized
between �1 and 1 using the following expression:

Xn ¼ 2ðXi � XminÞ
ðXmax � xminÞ

� 1 (1)

where Xn points out the normalized value of Xi, Xmax and Xmin
represents the maximum and minimum values of X, respectively.

Afterwards, the database was divided into training (80% of the
points) and testing (the remaining 20%) sets. Trial and errormethod
was used to investigate the proper structure of the models.



Table 1
A statistical summary of the collected database.

C1eC3 C4eC7 C8eC15 C16eC22 C23eC29 C30þ SP.GR T (K) Deposited Wax (wt %)

Min 0.218 3.057 33.468 16.029 0 0 0.872 230 0
Max 2.127 30.952 49.791 57.335 10 13.23 0.963 314.15 13
Avg. 1.316 18.477 44.496 29.005 2.812 3.539 0.919 272.66 3.142
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3. Results and discussions

Before highlighting themainfindings of ourmodeling approach, it
is worth mentioning that trial and error method was carried out to
investigate the proper number of hidden layers, their numbers of
evolved neurons, and the suitable transfer functions. The best resul-
ted MLP models trained with LM and BR algorithms contain three
hidden layers, in each of them, Tansig is the proper activation func-
tion. The numbers of included neurons in each hidden layer are as
follows: 11, 11, and 9 for the first, second and third hidden layer,
respectively.

To assess the prediction performance of the established models,
we have considered both statistical and graphical error analysis.
The statistical evaluation was done using the following criteria:

Coefficient of Determination (R2)

R2 ¼1�
Pn

i¼1

�
Yiexp � Yipred

�2

Pn
i¼1

�
Yipred � Y

�2 (2)
Root Mean Square Error (RMSE)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

�
Yiexp � Yipred

�2
vuut (3)

where Yi represents the weight percent of deposited wax, sub-
scripts exp and pred means the experimental and predicted Y
values, respectively, Y is the average, and n is the number of data
points.

Fig. 1 shows cross plots of the established MLP models, namely
MLP-LMA and MLP-BR. According to this figure, it can be seen that
the predictions of the implemented models are in good agreement
with the real measurements of weight percent of deposited wax.
For a detailed analysis of the performance of the newly proposed
paradigms, Table 2 reports the statistical evaluation of these latter.
As can be seen, MLP-LMA outperformMLP-BRwith an overall RMSE
value of 0.2198. Therefore, this model was kept for further analyses
in this study.
Fig. 1. Cross plots of the established MLP models f
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To extend the examination of the reliability, some other graphical
assessment techniques were applied on the implemented MLP-LMA
model. Fig. 2 illustrates the distribution of the errors achieved by
MLP-LMA model in all of the considered points during the training
and testing phases. The plotted errors correspond to the difference
between the real and predicted amounts of deposited wax. As can be
seen, a satisfactory distribution of the errors associated with the
MLP-LMA predictions is noticed near the zero-error line. In another
evaluation, Fig. 3 depicts the cumulative frequency diagram of the
absolute error related to the predictions of MLP-LMA paradigm.
According to this diagram, it can be deduced that 90% of the data
points can be estimated by our best-model with a small absolute
error of 0.4%. Figs. 2 and 3 confirms again the noticeable integrity of
the MLP-LMA paradigm while predicting the weight percent of
deposited wax under different operating conditions.

A trend analysis was performed to testify if MLP-LMAmodel can
follow the trend of weight percent of deposited wax (%) as function
of temperature. The obtained results are shown in subplots a-c of
Fig. 4 for three different samples. Besides, Table 3 states the main
properties of these three samples. As can be seen, the predictions of
MLP-LMA model are in excellent correspondence with the
measured values for different temperature values. Besides, it can be
observed that once the temperature of the systems falls signifi-
cantly below WAT (in the subplots of Fig. 4, the WAT values
correspond to the temperature values at which the deposition of
wax begins, i.e. the first value with wt % > 0%), the amount of
deposited wax increases generally as the decrease in temperature
favors wax to crystallize from the oil [40e43]. However, it is worth
mentioning that in some cases, the amount of deposited wax can
initially increase, then decrease [44].

Lastly, our best established model (MLP-LMA) was compared
with one of the best prior models, namely that proposed by Kamari
et al. [5]. The comparison was done using the above-mentioned
statistical criteria. Table 4 states the comparison results. Accord-
ing to the reported results in this table, it can be said that MLP-LMA
outperforms Kamari et al. [5] model.

4. Conclusions

In the present investigation, two MLP models were developed
based on LMA and BR algorithms to estimate the weight percent of
deposited wax under different production conditions. The proposed
or diffusion weight percent of deposited wax.



Table 2
Performance evaluation of the established MLP models.

MLP-LMA MLP-BR

Training RMSE 0.1840 0.2967
R2 0.9982 0.9947

Test RMSE 0.3589 0.5178
R2 0.9944 0.9914

All RMSE 0.2198 0.3420
R2 0.9974 0.9940

Fig. 2. Error distribution plot for the proposed MLP-LMA model.

Fig. 3. Cumulative frequency diagram of the absolute error for the proposed MLP-LMA model.
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models showed very satisfactory performance, while MLP-LMA was
deemed superior to both MLP-BR and Kamari et al. models. MLP-
LMA exhibited an overall RMSE value of 0.2198. The newly estab-
lished model can contribute in many production systems to detect
the amount of deposited was under different production conditions.
Finally, as the MLP-LMA model can be transformed into an explicit
expression (by taking the proper found weight values as shown in
Appendix. A), this model can be implemented in digitalized system
170
to improve the control of wax deposition.
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Fig. 4. Trend analysis.

Table 3
Properties of the three samples considered in the trend analysis.

C1eC3 C4eC7 C8eC15 C16eC22 C23eC29 C30þ SP.GR

Sample 1 1.778 30.952 47.03 20.183 0 0 0.872
Sample 2 1.595 13.096 33.468 51.534 0 0 0.893
Sample 3 1.553 29.59 45.246 24.108 0 0 0.88

Table 4
Performance comparison.

RMSE R2

MLP-LMA 0.2198 0.9974
Kamari et al. [5] 0.32 0.989
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Appendix A
Table A.1
The main control parameters of the our best-implemented model (MLP-LMA)

Neurons Weight values of connections between the input layer and the first hidden layer

1 �0.1214 �0.7935 �0.3627 �1.0351 1.4440 2.0783 �0.2775 1.4533
2 0.6609 0.5975 0.3440 1.7943 �0.0103 �1.3599 �0.0461 �1.9975
3 0.6688 0.9695 0.2183 �0.4358 �0.1012 �1.1552 0.4860 1.5155
4 0.2662 �0.2106 0.0404 1.0236 0.3581 �0.0534 �0.0328 �3.2874
5 1.2762 �0.1689 0.7062 1.5947 0.2833 �0.6174 �0.6830 1.0171
6 �0.9120 �0.4208 1.3372 �0.3453 �0.5025 0.8163 1.4224 �0.3890
7 �1.5168 �1.5450 �0.5102 �0.0054 �1.1530 �0.7092 0.3792 �0.1601
8 1.4824 0.5366 �0.4177 0.3972 0.0815 1.4090 1.0723 �0.0860
9 1.1732 0.8334 0.3609 �1.2791 0.2466 �0.3886 0.9322 �0.6190
10 �0.8071 0.1291 0.2619 0.7442 �0.4795 0.9668 1.2444 �0.3287
11 1.3875 0.4443 �0.8075 �0.6100 0.6461 �0.5918 �1.1210 �0.6522
Bias terms of the first hidden layer
0.6953 �0.3310 �0.9787 �1.7627 �0.6242 0.9180 0.7564 �0.9147 0.9480 �2.0770 1.5620
Neurons Weight values of connections between the first and second hidden layers
1 0.3829 0.8408 �0.1083 1.4572 �0.5591 0.7641 �0.1911 0.7094 �0.8279 0.4351
2 0.6321 0.5957 0.6752 0.5062 0.1669 �0.6181 �0.2281 0.5931 �0.5619 0.3920
3 �0.3877 �1.2796 0.7158 0.2388 �0.0266 0.4227 �0.1846 �0.1184 1.2166 �0.3854
4 0.4237 �0.9387 0.3096 �0.3533 0.1224 �0.8354 �0.2425 �1.2610 �0.7577 0.3340
5 �0.0459 �1.3333 �0.2203 0.0125 1.1403 0.0148 �0.8348 �0.7273 �0.7961 �0.9085
6 �0.6766 0.4687 1.4289 �1.4857 0.1003 �0.2032 �0.4281 �0.9322 �0.4617 �0.0834
7 1.4952 �0.8383 �0.1024 �0.9197 �1.0372 1.3168 1.0521 1.0569 0.2789 �0.6061
8 �0.0410 �0.1225 0.6522 �0.8638 0.9254 0.3953 �0.6003 0.0989 �0.4896 �0.1573
9 �0.7697 0.8000 0.1846 �0.0007 �1.0467 �0.7395 �0.6051 �0.6789 �0.4604 �0.1867
10 0.2688 �0.5839 0.2236 �1.6047 �1.7157 �1.9485 �0.1589 �0.4583 �1.7549 �0.3709
11 �0.4181 0.0036 0.4732 0.9965 0.0625 0.1145 0.7338 0.6856 �0.7725 0.3370
Bias terms of the second hidden layer
�1.6721 �1.3771 1.3076 �1.1178 �0.6449 �0.0681 0.6274 �1.3515 �1.2979 1.1520 �1.8261
Neurons Weight values of connections between the second and third hidden layers
1 0.7388 �0.4607 0.7969 �0.0310 �0.4606 0.5422 �0.1570 0.2270 0.9858 �0.5638
2 �0.9902 �0.6687 0.0948 0.4541 1.0639 0.5418 0.8991 0.8121 �0.2644 0.5763
3 0.5900 0.3975 0.7154 0.1798 0.5994 �0.0687 0.5279 �0.0035 0.6780 �0.9412
4 0.0100 0.0448 1.0183 �0.4257 0.6855 0.4583 �0.2671 �0.8440 �0.8323 �0.3671
5 �0.0810 �0.0403 �0.7112 0.1446 �0.1155 0.9299 �0.1762 �0.1470 0.0012 �0.6535
6 1.0286 1.0525 �0.5007 0.6508 0.3176 0.5069 0.3146 0.4810 �0.2330 �0.2308
7 0.4502 0.5403 0.1055 0.5745 1.4392 �0.1121 0.1431 0.0383 1.3192 1.8207
8 0.6118 0.2054 �1.5423 �0.7277 �1.0007 �0.6809 �0.9584 0.0675 �0.7194 �0.0757
9 �0.3295 0.2517 0.5186 1.3445 0.6233 0.4833 0.0277 0.9035 0.0195 �0.2006
Bias terms of the third hidden layer
�2.0410 1.0622 �1.0964 �0.4074 �0.2095 0.0925 0.5220 1.4944 �2.0117
Weight values of connections between the third hidden layer and the output layer
0.1502 �0.8264 �0.4557 1.1625 0.6109 �0.1344 0.0226 1.0628 �0.3375 0.1502
Bias term of the output layer
�0.48574
Transfer function of each of the hidden layers: Tansig
Transfer function of the output layer: Pureline
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