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SUMMARY: 

This thesis follows the development of an optimization program for single-span suspension bridges. The 
program calculates the aerodynamic stability limit for a parameter configuration and compares this to a pre-
defined criterion. This defines the constraint in the optimization, whereas the objective is to minimize the cost. 
For the time being, the program optimizes the configuration of tower and girder height as the main 
parameters. With the use of advanced regression methods, the program creates surrogate models for the 
aerodynamic derivatives, enabling parametrization of girder section parameters with less extensive wind-
tunnel testing. A parametric Abaqus model is implemented in the program to calculate modal properties. 

The program is tested and developed for the Langenuen crossing as an example. This concept includes an 
aluminum girder, which makes the dynamic performance highly relevant due to its low weight and reduced 
stiffness compared to steel. The program returned the optimal configuration to be a tower height of 220 
meters and a girder height of 3.68 meters, yielding a critical wind speed of 76.4 m/s and a total cost of 2001 
MNOK. Some simplifications are made in the input data for the case example, leaving room for some 
uncertainties in the results. However, the program works within its purpose and shows that there is potential 
in this approach to concept optimization of suspension bridges. 

This potential lies in reducing the resources spent on wind-tunnel testing drastically, as well as bringing 
forward more optimal design solutions. The program can also be expanded to include additional parameters, 
constraints, and objectives to enable more general optimization.  
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Abstract

As bridges become longer and more slender, their aerodynamic behaviour comes to importance
in the design phase. The interaction of wind flow and structure motion introduces aerodynamic
stiffness and damping, which affects the structural properties. In strong winds, instability phe-
nomena can occur, where the increasing response can cause structural failure. The calculations
of these stability limits are rather complex, including wind-tunnel testing to describe the aero-
dynamic characteristics.

The objective of this project was to develop a program to determine the stability limits for
suspension bridge concepts, and use this in a parametric optimization with respect to cost.
With wind-tunnel data for a range of cross-sections, the program creates surrogate models
of the aerodynamic derivatives with the use of Gaussian Process Regression. Together with
modal properties from a parametric Abaqus model, the stability limits could be calculated for
different concept configurations. The stability limit became a constraint in the optimization
function, whereas minimizing the cost was the objective. An automatic optimization could
follow by defining a parameter space for the main parameters, tower and girder height.

The program was developed and tested for the Langenuen crossing. The main span of 1235
meters is supposed to be crossed with an aluminium girder, making it the first of its kind.
The program found the optimal design within the bounds to be a tower height of 220 meters
and a girder height of 3.68 meters. This configuration gave a critical wind speed of 76.4 m/s
and an estimated cost of approximately 2001 MNOK. The results come with some uncertainty,
but prove the potential of this approach to concept optimization. The program is adaptable to
concept studies of other suspension bridges. Additional parameters, constraints, and objectives
can be implemented for a more general optimization.
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Sammendrag

Med bruer som blir stadig lengre og slankere får aerodynamikk en større rolle i designfasen. In-
teraksjonen mellom luftstrøm og bevegelse i bruen medfører aerodynamiske bidrag til systemets
totale stivhet og demping. Ved høye vindstyrker kan instabilitetsfenomener forekomme, med
økende respons som fører til brudd i konstruksjonen. Stabilitetsberegninger av denne typen er
komplekse, og beskrivelse av den aerodynamiske karakteristikken krever testing i vindtunnel.

Målet med dette prosjektet var å utvikle et program for å bestemme stabilitetsgrenser for
hengebrukonsepter, og bruke dette i en parametrisk optimalisering med hensyn til kostnad.
Med vindtunnel data for et utvalg av brutverrsnitt, lager programmet surrugatmodeller av
de aerodynamisk deriverte ved bruk av Gaussian Process Regression. Sammen med modale
egenskaper fra en parametrisk modell i Abaqus kunne stabilitetsgrensene bli beregnet for for-
skjellige konseptkonfigurasjoner. En grenseverdi for kritisk vind samt minimering av kostnad
utgjorde optimaliseringfunksjonen. Ved å sette et parameterrom kunne optimaliseringen bli
utført med hensyn til de to hovedparameterne, tårnhøyde og tverrsnittshøyde.

Programmet ble utviklet og testet for kryssingen av Langenuen. Hovedspennet på 1235 er
forespeilet å skulle krysses med en brukasse i aluminium, noe som gjør det til den første av sin
type. Programmet fant den optimale konfigurasjonen til å være en tårnhøyde på 220 meter og
tverrsnittshøyde på 3.68 meter. Dette ga en kritisk vindhastighet på 76.4 m/s og en estimert
kostnad på 2001 MNOK. Resultatet kommer med noe usikkerhet, men viser et potensial i
denne tilnærmingen til konseptoptimalisering. Programmet kan tilpasses og brukes i lignenede
konseptstudier. Ved å implementere nye parametre, begrensninger og objektiver kan optimal-
iseringen gjøres mer generell.
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Chapter 1

Introduction

With the Tacoma Narrows Bridge collapse in 1940 as an unfortunate example, the need for
knowledge about the aerodynamic behaviour of suspension bridges was addressed [1][2]. The
collapse was, in fact, due to aerodynamic instability, which is a state where the structure loses
its damping or stiffness, and thus, its ability to counteract increasing response [3]. The Nor-
wegian Bridge Designing handbook, N400 Bruprosjektering, requires a control towards such
phenomena in the design of new suspension bridges. Such instabilities result from the inter-
action between the structural static and dynamic responses and the airflow around the girder
section. This makes the calculation a rather demanding exercise, including experimental wind-
tunnel tests. Because of the complexity of these calculations, the optimal design solutions are
difficult to predict only from engineering judgement and previous experience.

The E39-project, creating ferry-free connections along the western coast of Norway, includes
several groundbreaking fjord-crossings [4]. A variety of suspension bridges are among the
current suggestions for the crossings, which brings forward the need for design methods that
can optimize the different concepts to lower the cost in an effective manner. For the Langenuen
crossing, the world’s first suspension bridge with an aluminium girder has been suggested. The
light weight, along with the decreased stiffness compared to steel, makes the dynamics of such
a bridge challenging. Aerodynamic behaviour is then highly relevant.

The objective of this project is to develop a program that can be useful in choosing the
optimal concepts for suspension bridges with regard to aerodynamic design and material cost.
The program will be tested with the Langenuen case as an example, but adaptability is a
priority, such that it can be utilized for future concept studies. Another intention is to keep the
program versatile to facilitate further expansions. This project may therefore be regarded as a
pilot project.

The strategy is to create a looping optimization algorithm with two main parameters: tower
and girder height. For each configuration of these parameters, the stability limit as well as the
material cost will be calculated. The stability limit calculations will be done using aerodynamic
derivatives (ADs), which will be determined experimentally with wind-tunnel tests. Surrogate
models are then to be made with the wind-tunnel data to refine the girder height parameter
space. By implementing a parametric FE-model in the loop, the modal properties can be cal-
culated. The idea is then to make a looping algorithm to approach the cheapest parameter

1



2 Bergseth, Myhr: Optimization Program

configuration, which simultaneously passes the stability limit criteria of 76 m/s. The initial
approach to the objective is summed up in Figure 1.1.

Figure 1.1: Initial objective and solution strategy

The optimization is limited to two main parameters. Some parameter dependencies are
planned to be implemented, such as main cable and hanger cross-section. A detailed tower
and foundation design is left out of the scope of this work. The program should not include
aspects beyond the stability limits, material costs, and buffeting response analysis, such that
an optimal design cannot be drawn directly from the optimization. The main priority is to get
the code running. Details are then thought to be compromised to ensure progress towards this
milestone. These details can be further improved when the code is running stable.

In the following chapter, the theory behind the stability limit and buffeting response cal-
culations is presented. Chapter 3 presents the procedure of developing the program, while
Chapter 4 presents its final structure and how it works. In Chapter 5, the results from the case
study of Langenuen are presented, with a discussion on inaccuracies and room for improve-
ment in the program judged from this case example. Chapter 6 concludes the work in the
context of the project purpose, and Chapter 7 suggests further work that can be done from
this.



Chapter 2

Theory

2.1 Suspension bridges

Suspension bridges have been used since the early 1800s with main spans ranging typically
from around 600 to over 2000 meters [2][5]. The main components of a suspension bridge,
as well as their main load-bearing mode, are shown in Figure 2.1.

Figure 2.1: Suspension bridge main components and load bearing mode

In addition to loads such as self-weight and vehicle loading, wind loading is of great import-
ance for the design of suspension bridges [1]. A suspension bridge has a low relative stiffness,
as compared to traditional simple bridges, due to its entirely flexible cable system and lengthy
spans. Dynamic wind loading may then cause large motions in the structure. This gives rise
to a variety of challenges, such as fatigue and aerodynamic stability. The collapse of the Ta-
coma Narrows Bridge in 1940 demonstrated that standard design processes and calculations
were insufficient for such complex structures [2]. The 853 meter spanning bridge collapsed 4
months after its completion, due to large torsional motion in a 19 m/s wind. This provoked
a knowledge development introducing more sophisticated analytical methods, including vi-
bration analysis with a modal approach [1]. Wind-tunnel testing is now used to forecast the
aerodynamic behavior of girder sections. With ever-increasing computational power, detailed
numerical FE-analysis has become the modern approach to the design of suspension bridges.

3
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This allows for longer and more extreme bridge structures, with Çanakkale Bridge in Turkia
as the current world record holder, spanning 2023 meters [5].

2.2 Modal analysis

Modal analysis can be done to describe the general dynamic properties of a structure in the
form of its natural modes [6]. That is, the characteristic displacement patterns of the structure
with the corresponding frequencies at which these mode shapes will occur. For a structural
system, the mode shapes can be described by the DOFs of the structure, which can be both
displacements and rotations at discrete locations. There are as many natural modes as there are
DOFs in the system. Demanding a force-equilibrium for a structural system in free vibration,
we obtain the equation of motion (EOM).

Mr̈(t) +Cṙ(t) +Kr(t) = 0 (2.1)

As can be seen from this, the motion of the structure is dependent on the spatial distribu-
tion of the mass, damping, and stiffness properties [6]. By assuming a harmonic motion, the
eigenvalue problem can be derived from Equation (2.1). For simplicity, damping is neglected
in this demonstration.

(K−ω2M)φ = 0 (2.2)

The natural modes are obtained by looking for non-trivial solutions of this equation. Each of
these solutions consists of a natural frequency, ωn, and a corresponding mode shape vector,
φn.

Such matrix systems are directly applicable only for idealized systems where the mass, stiff-
ness (and damping) is directly connected (lumped) to the DOFs. Continuous systems with
distributed properties are, however, soluble with a so-called generalized SDOF approach [7].
By employing the principle of virtual work to such a system, the generalized properties for
each of the considered mode shapes ϕn(x) can be derived as

Mn =

∫ L

0

m(x)ϕn(x)
2 d x +

k
∑

i=1

miϕn(x i)
2 (2.3)

Cn =

∫ L

0

c(x)ϕn(x)
2 d x +

k
∑

i=1

ciϕn(x i)
2 (2.4)

Kn =

∫ L

0

EI(x)ϕ′′n (x)
2 d x +

k
∑

i=1

kiϕn(x i)
2 (2.5)

The equation of motion can then be solved with respect to the generalized coordinates ηn(t)
for each of the considered modes to obtain the time-scaling of the current mode.

Mnη̈n(t) + Cnη̇n(t) + Knη(t) = 0 (2.6)

As for simple SDOF systems, the natural frequency of each mode is determined by [7]
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ωn =

√

√ Kn

Mn
(2.7)

Then, the principle of superposition can be applied to determine the total motion in the
physical continuous DOFs [7].

r(x , t) =
nmodes
∑

n=1

ηn(t)ϕn(x) (2.8)

The mode shapes of the structureϕn(x), must be known in advance for the generalized SDOF
approach to be applicable [7]. Without going into detail on this, it can be handled analytically
by solving the beam differential equation for the particular system [6]. Alternatively, it can be
estimated numerically with an FE-approach. A simple example is a vibrating string that has
the natural mode shapes

ϕn(x) = sin
nπx

L
(2.9)

Approximately the same shape will appear for simply supported beams with uniformly dis-
tributed stiffness, only that shear strains will cause a little distortion [8]. Thus, similar shapes
are also to be expected for simply supported bridge girders.

In the presence of loading on generalized SDOF systems, its effect on each mode will depend
on how it coincides with the mode shape of the current mode [7]. Analogous to the determ-
ination of the generalized system parameters, Mn, Cn, Kn, the modal load can be calculated
as

Pn =

∫ L

0

p(x , t)ϕn(x) d x +
k
∑

i=1

piϕn(x i) (2.10)

The response to a fluctuating load will also be highly dependent on the frequency of the load
fluctuations. An approach to describe this sensitivity is the Frequency Response Function (FRF)
[9] [7]. An interpretation of this is a recording of the response in a system that is exposed to
a harmonic loading with a constant amplitude, but with varying frequency. The response can
then be plotted in the frequency domain, which results in peaks around the natural frequencies.
The FRF of a linear system is obtained by Fourier transforming the time domain response and
dividing this by the Fourier transform of the time domain input.

H(ω) = [−ω2M+ iωC+K]−1 (2.11)

This relation is very useful, and can be utilized in further frequency domain analysis.

2.3 Spectral analysis

Stochastic processes, like wind loading, can sometimes appear chaotic and be hard to interpret
in the time domain. It can therefore be convenient to Fourier transform the process to study
its frequency compositions.
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The Fourier transform is a mathematical operator that transform a process from the time
or space domain into the frequency domain [10]. The transform is named after the French
mathematician Joseph Fourier and is an important and commonly used operator in structural
dynamics to enter back and forth into the frequency domain. Through integration, the time
domain signal is decomposed into a sum of complex exponentials, each with its associated
phase, frequency, and amplitude, whereas the latter is rendered along the new frequency axis.

For a given function y(t) in the time-domain, the Fourier transform is given by Equation (2.12)
[11]. The inverse Fourier transform is given by Equation (2.13).

Y (ω) =
1

2π

∫ ∞

−∞
y(t)e−iωt d t (2.12) y(t) =

∫ ∞

−∞
Y (ω)eiωt dω (2.13)

For an arbitrary stationary stochastic process y(t), where the mean value and variance are
invariant with absolute time, the condition

∫ ∞

−∞
|y(t)|d t <∞ (2.14)

is not satisfied, and classical Fourier theory cannot be applied [11]. This difficulty can be
overcome by utilizing time-domain process auto-correlation function, which indirectly con-
tains information about the frequencies present in the stochastic process. The auto-correlation
function is defined by Equation (2.15), and describe how correlated a time series is to a lagged
version of itself. For a stationary process, the function depends only on the time separation τ
and not the absolute time t.

R y y = E[y(t)y(t +τ)] (2.15)

The auto-correlation function converges towards zero for large values of τ, and hereby sat-
isfies the condition given in Equation (2.14) [11]. The process can now be transformed into
the frequency domain as shown in Equation (2.16), which renders the auto spectral density
spectrum.

Sy y(ω) =
1

2π

∫ ∞

−∞
R y y(τ)e

iωτdτ (2.16)

The auto spectral density (ASD), sometimes referred to as power spectral density, contains
information about which frequencies that dominates the stochastic process [11]. The area
under the frequency bands is equal to the variance for the process, hence the ASD is always
positive.

If a new stochastic process x(t) is introduced, the same Fourier transform can be used on
the cross-correlation function between the two processes [11]. The cross-correlation function
is defined in Equation (2.17) and describes the correlation between the two processes relative
to each other. The corresponding cross-spectral density (CSD) is defined in Equation (2.18).
The area under frequency bands in the CSD is equal to the co-variance, meaning that the CSD
can contain both positive and negative values.

R y x = E[y(t)x(t +τ)] (2.17)
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Sy x(ω) =
1

2π

∫ ∞

−∞
R y x(τ)e

iωτdτ (2.18)

The ASD and CSD can be used in frequency domain analysis of structural systems subjected
to stochastic loads [11]. The ASD provides information of which frequencies that are most
prevalent in the stochastic loading, while the CSD can describe the load correlation for MDOF
systems. A cross-correlation matrix, containing ASDs on the diagonal terms and CSDs on the
off-diagonal terms, can thereby provide a complete description of the stochastic loading on
an MDOF system. Using a system with two degrees of freedom, y and x, as an example, the
cross-correlation matrix, or load spectra, is read

Sq(ω) =

�

Sy y Sy x
Sx y Sx x

�

(2.19)

The FRF was introduced in Equation (2.40), describing the structural systems sensitivity to
loads with different frequencies [9] [7]. It can be derived that the response spectra can be
calculated as

Sr(ω) = H(ω)∗Sq(ω)H(ω)
T (2.20)

where * denotes the complex conjugated. The variance of the response may be found by in-
tegrating Sr along the frequency axis [11].

2.4 Wind induced response

When a line-like and deformable structure is exposed to wind, a rather complex load situation
will occur [12]. Wind does most often have a time-varying presence, such that the pressure
generated from the wind gives a dynamic load effect. For a deformable structure, this will in-
duce motions that again affect the relative wind velocity and the wind pressure. The wind flow
around the structure is also disturbed by the structure, and phenomenons like vortex shedding
may also produce a significant load contribution. Generally, the effects of wind loading can be
sorted into four categories:

• Mean wind that can be considered as a static load
• Turbulence that generates a fluctuating wind pressure often named buffeting load
• Self-excited forces that are generated from the motion in the structure
• Load effects due to vortex shedding

2.4.1 Buffeting theory

For a line-like structure, such as a bridge girder, it is reasonable to assume that the deforma-
tions in the longitudinal direction are negligible, such that the motion can be described by the
continuous DOFs ry(x , t), rz(x , t) and rθ (x , t) as illustrated in Figure 2.2 [12]. For a defined
time-period the wind is assumed to be stationary, such that the mean wind can be considered
constant, generating a time-independent static load. This results in a time-independent mean
displacement.
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Figure 2.2: The continuous DOFs of a line-like structure

qtot(x , t) = q(x) + q(x , t, r̈, ṙ, r) (2.21) qtot(x , t) =
�

qy qz qθ
�T

(2.22)

rtot(x , t) = r(x) + r(x , t) (2.23) rtot(x , t) =
�

ry rz rθ
�T

(2.24)

The wind fluctuations from the constant mean wind is then the turbulence. The turbulence
can be decomposed to obtain a direct relation to the active DOFs [12]. The lateral turbulence
component, u(x , t), works parallel with the y-axis and the vertical turbulence component,
w(x , t), works parallel with the z-axis. The relative wind velocity is what generates pressure
and hence, the buffeting load on the structure. With reference to Figure 2.3, the following
relations can be established.





qD(x , t)
qL(x , t)
qθ (x , t)



=
1
2
ρV 2

rel





D · CD(α)
B · CL(α)

B2 · CM (α)



 (2.25)

CD, CL and CM are load coefficients that are dependent on the shape of the section of the
structure [12].

The loads can be transferred to the directions of the DOFs using

qtot(x , t) =





qy
qz
qθ





tot

=





cosβ − sinβ 0
sinβ cosβ 0

0 0 1



 ·





qD
qL
qθ



 (2.26)

The relative wind velocity has a horizontal component (V (x)+u(x , t)− ṙy(x , t)) and a ver-
tical component (w(x , t)− ṙz(x , t)). A fair assumption is that the turbulence components and
the structural velocity are much smaller in magnitude than the mean wind [12]. As a simplific-
ation, higher order terms of u(x , t), w(x , t), ṙy(x , t) and ṙz(x , t) are therefore neglected. The
wind pressure and its angle can then be expressed as

1
2
ρV 2

rel =
1
2
ρ[(V (x)+u(x , t)− ṙy(x , t))2+(w(x , t)− ṙz(x , t))2]≈ ρV (

V
2
+u(x , t)− ṙy(x , t))

(2.27)

β ≈ tanβ =
w(x , t)− ṙz(x , t)

V + u(x , t)− ṙy(x , t)
≈

w(x , t)− ṙz(x , t)

V
(2.28)
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Figure 2.3: Illustration of a line-like structure exposed to buffeting load

The load coefficients are dependent on the angle of attack, α. It can be seen from Figure 2.3
that this can be expressed as

α= rθ + rθ + β ≈ rθ + rθ +
w(x , t)− ṙz(x , t)

V
(2.29)

The load coefficients are most often non-linear with respect to α. However, for small angle
variations, a linearization around the mean angle gives a fair approximation [12]. The load
coefficients can then be expressed as





CD(α)
CL(α)
CM (α)



=





CD(α)
CL(α)
CM (α)



+α f





C ′D(α)
C ′L(α)
C ′M (α)



 (2.30)

Denoting




CD(α)
CL(α)
CM (α)



=





C D

C L

C M



 (2.31)





C ′D(α)
C ′L(α)
C ′M (α)



=





C ′D
C ′L
C ′M



 (2.32)

Combining this with Equation (2.34) and (2.26), and utilizing the simplification done in
Equation (2.27) the expression for the total load on the line-like structure is obtained [12].





qy
qz
qθ



= ρV (
V
2
+ u− ṙy)(





DC D

BC L

B2C M



+ (rθ +
w− ṙz

V
)





DC ′D
BC ′L

B2CM



+
w− ṙz

V





−BC L

DC D
0



) (2.33)

This expression consists of static terms, turbulence dependent terms and motion induced
terms [12]. With some sorting, this can be simplified to
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qtot(x , t) = q(x) +Bqv(x , t) +Cae ṙ(x , t) +Kaer(x , t) (2.34)

where

v(x , t) =
�

u w
�T

(2.35) r(x , t) =
�

ry rz rθ
�T

(2.36)

and

Bq =
ρV B

2





2(D/B)C D ((D/B)C ′D − C L

2CL (C ′L + (D/B)C D
2BCM BCM



 (2.37)

Cae(x) = −
ρV B

2





2(D/B)C D ((D/B)C ′D − C L 0
2C L (C ′L + (D/B)C D 0

2BC M BC ′M 0



 (2.38)

Kae(x) =
ρV

2
B

2





0 0 (D/B)C ′D
0 0 C ′L
0 0 BC ′M



 (2.39)

Here, Cae and Kae are denoted as aerodynamic damping and stiffness, respectively. Analog-
ous to structural damping and stiffness, these are proportional to the structural velocity and
displacement. Including these terms, the FRF in Equation (2.11) may now be expanded to

H(ω) = [−ω2M+ iω(C−Cae) + (K−Kae)]
−1 (2.40)

This illustrates that the structural properties are changed in the presence of fluctuating wind.

2.4.2 Aerodynamic derivatives

By Fourier transforming Equation (2.34), the buffeting theory can also be applicable in fre-
quency domain analysis [12]. The transformation introduces a frequency dependency of the
content in Cae and Kae, which in fact improves the representation, while the buffeting theory
only represents a quasi-static case. The content of Cae and Kae is now replaced with the so-
called aerodynamic derivatives. These are coefficients that are dependent on the frequency of
motion, the mean wind velocity and the cross-section geometry.

Cae =





P1 P5 P2
H5 H1 H2
A5 A1 A2



 (2.41) Kae =





P4 P6 P3
H6 H4 H3
A6 A4 A3



 (2.42)

The coefficients are most often experimentally determined in wind tunnel testing of scaled
cross-section models [12]. The coefficients may be normalized by introducing
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Cae =
ρB2

2
ωn(V ) · Ĉae (2.43) Kae =

ρB2

2
[ωn(V )]

2 · K̂ae (2.44)

where ωn is the resonance frequency corresponding to mode n and Ĉae and K̂ae are the
non-dimensional coefficients

Ĉae =





P∗1 P∗5 BP∗2
H∗5 H∗1 BH∗2
BA∗5 BA∗1 B2A∗2



 (2.45) K̂ae =





P∗4 P∗6 BP∗3
H∗6 H∗4 BH∗3
BA∗6 BA∗4 B2A∗3



 (2.46)

Their relation to the buffeting theory can be seen by















P∗1 H∗1 A∗1
P∗2 H∗2 A∗2
P∗3 H∗3 A∗3
P∗4 H∗4 A∗4
P∗5 H∗5 A∗5
P∗6 H∗6 A∗6















=





















−2C D
D
B (

V
Bωn(V )

) −(C ′L + CD
D
B )(

V
Bωn(V )

) −C ′M (
V

Bωn(V )
)

0 0 0

C ′D
D
B (

V
Bωn(V )

)2 C ′L(
V

Bωn(V )
)2 C ′M (

V
Bωn(V )

)2

0 0 0

(C L − C ′D
D
B )(

V
Bωn(V )

) −2C L(
V

Bωn(V )
) −2C M (

V
Bωn(V )

)

0 0 0





















(2.47)

The term ( V
Bωn(V )

) is called the reduced wind velocity, Vred , and K = V−1
red is the reduced

frequency of motion [13]. The self-exited forces in the DOFs can then be expressed as

qSe
y =

1
2
ρV

2
B(KP∗1

ṙy

V
+ KP∗2

Bṙθ
V
+ K2P∗3 rθ + K2P∗4

ry

B
+ KP∗5

ṙz

V
+ K2P∗6

rz

B
) (2.48)

qSe
z =

1
2
ρV

2
B(KH∗1

ṙz

V
+ KH∗2

Bṙθ
V
+ K2H∗3rθ + K2H∗4

rz

B
+ KH∗5

ṙy

V
+ K2H∗6

ry

B
) (2.49)

qSe
θ =

1
2
ρV

2
B2(KA∗1

ṙz

V
+ KA∗2

Bṙθ
V
+ K2A∗3rθ + K2A∗4

rz

B
+ KA∗5

ṙy

V
+ K2A∗6

ry

B
) (2.50)

By recording the self-exited forces for a defined motion at a certain wind velocity, the AD
coefficients can be determined by minimizing the sum of squares [13]. By running the forced
vibration test at different frequencies of motion, a curve for the AD coefficients can be fitted
to a plot against frequency.

2.4.3 Vortex shedding

When an airflow meets a line-like structure, the flow will separate and vortices will be created
as the airflow is released behind the structure section [12]. This vortex shedding appears to
alternate on each side of the structure section, which again gives rise to alternating vertical
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forces, qz on the structure. As the forces normally have an eccentricity with regards to the
cross-section center, the forces also generate an alternating pitching moment, qθ . These forces
can cause displacement and rotation, which again affects the motion induced forces presented
in the earlier chapters. However, the vortex induced vibrations (VIV) are mainly significant
only in the case of resonance with an eigenfrequency for the particular structure.

Figure 2.4: An illustration of how vortex shedding appears on the cross-section of a line-like structure

The pattern of the flow separation and thus, vortex shedding is characteristic to the cross-
section of the line-like structure [12]. The typical frequency of the alternating forces can be
calculated as

fs = St ·
V
D

(2.51)

where V is the mean wind velocity and D is the cross-section height. St is the so-called Struhal
number, which is characteristic for the cross-section. The alternating forces appear as a narrow-
banded process around this wind velocity dependent frequency. In the case of a bridge girder
as the line-like structure, the load appears to be more or less randomly distributed in the span
direction.

As can be seen from Equation (2.51), the frequency of the load induced by vortex shedding
is assumed to be proportional to the mean wind velocity [12]. Increasing the mean wind from
zero, the frequency of shedding will coincide with the natural frequencies of the structure,
mode by mode. Experiments also show that the structure can get caught in a resonant state for
wind velocities well above the theoretical resonance shedding frequency. This is called lock-in,
and has some unfavourable effects on the structure. Firstly, it can result in a higher correlation
of the vortex shedding load in the span-wise direction. Secondly, the motion resulting from
the vortex shedding load can induce additional unfavourable load. These effects are, however,
self destructive from a certain limit of displacements, such that the structure does not become
unstable. To prevent fatal consequences from vortex shedding, structural damping is effective
in the sense of reducing the motion.
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Figure 2.5: A plot of the vortex shedding frequency in interaction with a structural system

2.5 Motion induced instabilities

Structural instability is defined as a condition where a minor increase in loading results in a
rapid increase in response [12]. For long span suspension bridges, it is common to differentiate
between four different types of unstable behavior:

• Static divergence
• Galloping
• Dynamic instability in torsion
• Flutter (bi- and multi-modal)

The lowest mean wind speed at which one of these behaviors arises is referred to as the critical
wind speed Vcr . The critical wind speed marks the stability limit and can be found by studying
the components of the impedance matrix. The impedance matrix is defined as the inverse of
the frequency response matrix defined in Equation (2.40), and is expressed as

Êη(ω, V ) = Ĥη(ω, V )−1 = I−κae −






ω ·
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· (ζ− ζae)

(2.52)

The normalized modal quantities of aerodynamic stiffness and damping, κae and ζae, are
the components that cause the unstable behavior. I is the identity matrix and ζ is a diagonal
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matrix containing structural damping ratios [12]. The entries of κae and ζae are defined as

κaei j
=

K̃aei j

ω2
i M̃i

=
ρB2

2m̃i
·
�

ωi(V )
ωi

�2

·

∫
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�

ϕT
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�

d x
∫

L

�

ϕT
i ·ϕi

�

d x
(2.53)

ζaei j
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ωi C̃aei j

2ω2
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=
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�

ϕT
i ·ϕi

�
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(2.54)

where ωi(V ) is the mean wind frequency associated with mode i. ωi =ωi(V = 0) is the still-
wind frequency. The stability limit is determined when the determinant of Equation (2.52)
reaches zero. This condition is defined in Equation (2.55), and will theoretically yield an in-
finite response in the system. Since the impedance matrix is complex, the conditions in Equa-
tion (2.56) and (2.57) have to be fulfilled.

|det(Êη(ω, V ))|= 0 (2.55)

Re(det(Ê)) = 0 (2.56) Im(det(Ê)) = 0 (2.57)

The eigenvalue problem has Nmodes roots [12]. Each root consist a pair of ω and V , and
represents a stability limit for its corresponding mode shape, ϕi . However, its the root that
yields the lowest mean wind speed that marks the stability limit, and that will be refereed to
as the critical wind speed Vcr , which is associated with the resonance frequency ωr .

For suspension bridges, the girder is most prone to motion induced instabilities and thus the
unstable behaviours listed in the start of this chapter [12]. The convention for the response
quantities, r(x , t) =

�

ry , rz , rθ
�

, described throughout this chapter is according to Figure 2.2.

2.5.1 Static divergence

Static divergence is a instability behavior in pure torsion [12]. When the mean wind frequency
ωθ (V ) = 0, the problem is static and occurs when the system suddenly looses stiffness in the
torsional direction due to the effect of wind flow. Implementing the torsional mode shape

ϕθ = [0, 0,ϕθ ]
T (2.58)

into Equation (2.52) the impedance matrix is reduced to

Êη(ωθ (V ) = 0, Vcr) = 1−κaeθθ (2.59)

where its seen that the system goes unstable when κaeθθ = 1. The normalized aerodynamic
stiffness term is defined as

κaeθθ =
ρB4

2m̃θ

�

ωθ (V )
ωθ

�2

A∗3

∫

Lex p
ϕ2
θ

d x
∫

L ϕ
2
θ

d x
(2.60)

and can then be used to obtain the critical mean wind velocity for static divergence

Vcr = B ·ωθ
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·
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L ϕ
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(2.61)
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2.5.2 Galloping

Galloping is a dynamic unstable behavior in which the bridge girder is put into oscillating
vertical motion [12]. The mode shape for galloping is defined as

ϕz = [0,ϕz , 0]T (2.62)

which contain only the vertical component with the corresponding frequency ωz(V ). Due to
the isolated motion, Equation (2.52) is reduced to

Êη(ωz(V ), Vcr) = 1− κaezz
− (ωz(V )/ωz)

2 + 2i
�

ζz − ζaezz

�

(ωz(V )/ωz) (2.63)

whereas the aerodynamic stiffness and damping terms are given as

κaezz
=
ρB2

2m̃z

�

ωz (V )
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�2
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∫

Lex p
ϕ2

z d x
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2
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(2.64)
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2
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(2.65)

Furthermore, the stability limit can be found by setting both the real and imaginary part of
Equation (2.63) equal to zero [12]. Using the values for the aerodynamic derivatives presented
in Equation (2.47) where H∗4 is equal to zero, we see that galloping can only occur if H∗1 is
positive. The quasi-static critical wind speed can then be obtained by

Vcr = Bωz
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−
�
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�
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2
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 (2.66)

2.5.3 Dynamic instability in torsion

Like galloping, dynamic instability in torsion is dominated by a SDOF-motion. The mode shape
is defined in Equation (2.58) and have the the associated frequency ωθ (V ) [12]. Again, the
impedance matrix is reduced to

Êη(ωθ (V ), Vcr) = 1− κaeθθ − (ωθ (V )/ωθ )
2 + 2i
�

ζθ − ζaeθθ

�

(ωθ (V )/ωθ ) (2.67)

whereas the aerodynamic stiffness and damping terms are given as

κaeθθ =
ρB4

2m̃θ

�
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∫
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(2.68)

ζaeθθ =
ρB4

4m̃θ
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ωθ
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∫

Lex p
ϕ2
θ

d x
∫

L ϕ
2
θ

d x
(2.69)

Evaluating Equation (2.67), it is then seen that dynamic instability in torsion can only occur
if A∗2 is positive. Since Equation (2.47) yield zero value for A∗2, quasi-static theory cannot be
applied to obtain the stability limit.
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2.5.4 Multi-modal flutter

Flutter is an instability phenomenon where two or more modes with different motion com-
ponents couple and acts simultaneously [12][14]. Due to the fact that flutter is most likely
to occur with rz and rθ , one can simplify calculations by excluding the horizontal compon-
ent in a so-called two-DOF analysis. However, with the ever-increasing computational power,
there is little reason not to include the horizontal component and perform multi-DOF analyses.
The additional horizontal contribution may both have stabilizing and destabilizing effect on
the aerodynamic stability, depending on how the coupling occurs. The multi-DOF approach is
considered to have a slightly more accurate prediction of the critical wind speed than the two-
DOF approach. For multi-modal flutter analysis, all modeshapes are assumed to have motion
consisting of three components, and the notation now reads

φi =
�

φy ,φz ,φθ
�

(2.70)

Coupling is only possible for shape-wise similar modes, and happens through the off-diagonal
terms in the aerodynamic stiffness and damping matrices, which entries are defined on modal
form in Equation (2.71) and (2.72), respectively [15]. For simplicity, it is now assumed that
L ≈ Lex p.
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=
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 d x (2.72)

The eigenvalue problem can then be assembled to calculate the critical wind speed [14]. Due
to non-linearity introduced by the aerodynamic contributions described above, the process
now demands iterations. This process is described in Section 2.5.5

2.5.5 Eigenvalue problem

The equation of motion with aerodynamic stiffness and damping contributions is defined on
modal form as [14]

M̃η̈+ (C̃− C̃ae(V ))η̇+ (K̃− K̃ae(V ))η= 0 (2.73)

Since damping is of great relevance in-wind, the damping terms cannot be neglected as one
normally would do at this point. Assuming the homogeneous solution to be on the form r =
ψeλt and substituting this into Equation (2.73), the complex and quadratic eigenvalue problem
is obtained as

�

λ2M̃+λ(C̃− C̃ae(V )) + (K̃− K̃ae(V )
�

ψ= 0 (2.74)

where λ denotes the eigenvalues andψ the corresponding eigenvectors. The non-linear effects
are caused by the reduced velocity dependency in C̃ae and K̃ae [16][14]. There are several ap-
proaches to this problem, however this thesis will concentrate on state-space transformation
followed by an iterative solving process. The state space transformation is convenient since it
transforms the system from a second- to first-order system of differential equations. Disreg-
arding the reduced frequency dependency, the state space transformation reads

�

ṙ
r̈

�

+

�

0 −I
M̃−1(K̃− K̃ae) M̃−1(C̃− C̃ae)

��

r
ṙ

�

=

�

0
0

�

(2.75)
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I is the identity matrix. In condensed form, the transformation can be written as

ẏ+Ay= 0 (2.76)

The eigenvalue problem now reads

(A− Iλ)ψ= 0 (2.77)

After the iterative solving, the complex eigenvalue for solution (mode) n of Equation (2.77)
results in:

λn = ζnωn ± iωn

q

1− ζ2
n (2.78)

The in-wind frequency and in-wind damping ratio can then be extracted, and has the following
relations

ωn = |λn| (2.79) ξn = −
Re(λn)
|λn|

(2.80)

As can be seen in Equation (2.80) the system looses damping and becomes unstable when
Re(λn)> 0 [17]. This defines the theoretical stability limit. Figure 2.6 show how the system is
affected by the result in eigenvalues.

Figure 2.6: Illustration of how the system is affected by the change in eigenvalues

2.6 Gaussian Processes Regression

Regression models are used to predict the relationship between one or more variables and
are a commonly used technique to derive forecasts in the medical, financial, and engineer-
ing industries [18]. The way its simplest form, linear regression, differs from interpolation is
demonstrated in Figure 2.7
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Figure 2.7: Illustration of the difference between linear regression and linear interpolation

The interpolation is required to pass through all points, whereas the main goal of a regression
model is to be as close to all points as possible. The regression model therefore has to account
for all the data points when obtaining the mean function. The way regression models process
information about previous data points into their predictions is the reason why GPR is making
its way into machine learning [18].

2.6.1 Gaussian Processes

Gaussian processes are distributions over functions and are fully defined by a mean function
m and a positive definite covariance function k, commonly referred to as the kernel [19][18].
These functions are defined as

m(x) = E [ f (x)] (2.81)

k(xi ,x j) = E
�

( f (xi)−m(xi))( f (x j)−m(x j))
�

(2.82)

Using the formulas above, the prior Gaussian distribution of f (x) is defined

f (x)∼ GP
�

m(x), k(xi ,x j)
�

(2.83)

A fundamental component of the Gaussian processes are multivariate Gaussian distributions
[19]. Given a set of points X= [x1, ..., xn], we can define its multivariate Gaussian distributions
as

X∼Nn(µ,K) (2.84)

where µ is the n-dimensional mean vector

µ= E[X] = [E[X1], ..., E[Xn]] (2.85)

and K is the nxn covariance matrix, with entries

Ki, j = E[(X i −µi)(X j −µ j)] = Cov[X i , X j] (2.86)

Normally, the multivariate Gaussian is limited to a finite number of jointly distributed Gaus-
sian’s, but since the covariance (kernel) of Gaussian processes is defined by a function, each
input variable is correlated with the other variables in the input domain [19]. Hence, a Gaus-
sian process can be thought of as an infinite dimensional Gaussian distribution.
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2.6.2 Kernels

The kernel is a covariance function that describes the covariance of the Gaussian process ran-
dom variables [20]. As mentioned above, the kernel together with the mean function fully
defines the Gaussian process. A valid kernel function should be positive definite, which im-
plies that the kernel matrix is symmetric and invertible. Typically, predefined kernels are used
and selected based on knowledge of the collected data points.

Among the wide variety of kernels, the squared-exponential kernel (SE) is one of the most
common and has the form [18][21]

k(x i , x j) = exp

�

d(x i , x j)2

2l2

�

(2.87)

where l is the characteristic length scale that determines the correlation distance between
input points, and d is the Euclidean distance between input points x i and x j . The SE kernel
is infinitely differentiable and thus very smooth. Stein (1999) argues that the SE kernel is
too smooth and unrealistic for many physical processes [22]. Hence, the Matern kernel is
recommended due to its smoothness parameter ν [23]. The Matern kernel is defined as

k(x i , x j) =
1

Γ (ν)2ν−1

�p
2ν
l

d(x i , x j)

�2

Kν

�p
2ν
l

d(x i , x j)

�

(2.88)

where Kν is a modified Bessel function and Γ (ν) is the gamma function. As ν decreases, the
approximation becomes less smooth, and if ν→∞, the Matern kernel becomes equivalent to
the Squared-exponential kernel.

2.6.3 Regression predictions

For any regression, the goal is to model the function f based on observed data points [18][19].
The prior distribution defined in Equation (2.83) represents all the possible outputs of f, and is
usually not interesting to sample from due to its infinite number of functions and hence large
uncertainty. Updating the prior with the observed data points yields a joint distribution of the
known values f and the unknown values f∗, defined as

�

f
f∗

�

∼N
��

m(X)
m(X∗)

�

,

�

K(X,X) +σ2
nI K(X,X∗)

K(X∗,X) K(X∗,X∗)

��

(2.89)

whereσ2
nI is the noise variance for equally distributed Gaussian noise. When the observed data

is implemented, the posterior distribution is derived from the conditional distribution over f∗,
resulting in

f∗|X, f,X∗ ∼N
�

f̄∗, cov(f∗)
�

(2.90)

where the predictive mean, f̄∗, and covariance matrix and cov(f∗) are defined as

f̄∗ = K(X∗,X)[K(X,X) +σ2
nI]−1 · f (2.91)

cov(f∗) = K(X∗,X∗)− K(X∗,X)[K(X,X) +σ2
nI]−1K(X,X∗) (2.92)

The predicted mean drawn both from the prior and posterior distribution is shown in Fig-
ure 2.8, where the Matern kernel is used. The posterior distribution contains only the functions
that fit the observed data points.
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Figure 2.8: Illustration of the predicted mean drawn both from the prior and posterior distribution

2.7 Optimization

2.7.1 SciPy Optimize

The Python library Scientific Python (SciPy) offers modules for minimizing and maximizing
objective functions [24]. Scipy.minimize is a commonly used function that enables minimizing
scalar single or multivariate functions. The minimize-function includes several methods for ap-
proaching the minimum of the objective function, where one commonly used method, BFGS,
can be mentioned. BFGS handles both linear and non-linear constraints, as well as bounds.
The method uses a quasi-Newton approach to suggest new parameters, and may therefore be
considered as a gradient-based method [25]. This means that it gains and utilizes information
about the gradient (Jacobian matrix) and the curvature (Hessian matrix) of the objective func-
tion to approach its minimum. The method is, however, only able to locate local minimums. A
remedy to obtain the global optimum could then be to run the algorithm over a space of initial
guesses. However, this will further increase the number of iterations, which is a drawback for
computationally expensive objective and constraint functions.

2.7.2 Bayesian Optimization

Bayesian Optimization is especially appropriate for costly objective functions, where lowering
the number of iterations is a priority [26]. The method is based on creating and updating a sur-
rogate model for the objective function, and may therefore be considered as a derivative-free
method. While a surrogate model is created for the whole search space, the global optimum
can be found. It handles multivariate problems, and is considered well-suited up to 20 dimen-
sions. A drawback is the difficulty of implementing expensive-to-handle constraint functions.
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The surrogate models are made by utilizing Gaussian Process Regression on a number of pre-
samples [26]. The surrogate model is then improved iteration by iteration by adding samples
to the regression. The sampling points are carefully chosen with an acquisition function to
obtain the best possible surrogate model with, theoretically, as few iterations as possible.
There are several types of acquisition functions, of which the Expected Improvement, denoted
EI(x1, x2, ..., xn), is one commonly used. This utilizes the fact that the GPR returns a confid-
ence interval on the predicted objective function which can be seen from Figure 2.8. Where
µ f (x) is the mean value of the GPR over x, σ f (x) is the standard deviation of the GPR, the
expected improvement is found by

EI(x) =

¨

(µ f (x)− f (x+)− ξ)Φ(Z) +σ f (x)φ(Z) if σ f > 0

0 if σ f = 0
(2.93)

Z =
µ f (x)− f (x+)− ξ

σ f (x)
(2.94)

where f (x+) is the current objective function optimum, judged from the previous GPR, Φ
and φ are the cumulative- and normal probability distributions, respectively. The parameter ξ
weights how much the algorithm should prioritize to explore regions with high uncertainty. So
basically, the algorithm will sample in areas where the surrogate model is promising or where
the uncertainty is high. The expected improvement function is then a scalar function that can
be maximized to find the next sampling point, with the use of i.e. the BFGS method. Figure 2.9
shows an example on how an expected improvement function is found from a GPR of samples.
It illustrates how the algorithms seeks areas where the surrogate model is promising, but avoids
the previous sampling points where the confidence interval is equal to zero.

Figure 2.9: Plots showing one iteration of the Bayesian Optimization algorithm
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Methodology

3.1 General workflow

The general objective of this project was to develop a program that can be useful in choosing
the optimal design when considering the aerodynamic stability of a suspension bridge. The
program will initially be made for the Langenuen crossing as a case study, but should also be
adaptable to other projects. This is done by running an optimisation function on a parametric
study. The objective function that governs the optimisation algorithm is a material cost func-
tion. A requirement for the design is to overcome the design criterion for the critical wind
speed at 76 m/s [27]. The aerodynamic stability limit is accessed by studying the interaction
between modal properties and aerodynamic design. This is then regarded as a constraint in
the optimisation function.

To simplify the process, it was decided to limit the parameter study to two main parameters.
The tower height, together with the girder cross-section was regarded as the most important
parameters for the aerodynamic properties and the total material use. The girder cross-section
parametrisation was restrained to one parameter, namely the girder height, which was then the
second main parameter in the optimisation. The main idea of the project was to develop a fully
automatic and efficient optimisation program, that could be expanded to include additional
parameters, constraints, and objectives.

The program was developed in a workspace in the code editor Visual Studio Code [28], using
the programming language Python. The idea was to build it as a loop where the optimisation
function generated appropriate input parameters for each iteration. Looping through a global
modal analysis in Abaqus and surrogate models for AD-data, the critical wind speed could
be calculated and controlled in the constraint function. Using the geometry generated with
the input parameters, the material cost could also be calculated by multiplying the material
quantities with price functions. The optimisation function then iterates to minimize the object-
ive function, resulting in the assumed cheapest alternative. The initial idea of how to structure
the optimisation is illustrated in Figure 3.1.

23
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Figure 3.1: Flowchart illustrating the initial idea of the program. The section references indicates where
each part is described.

It was desired to keep the program efficient in order to debug and improve it in a more prac-
tical manner. One could also imagine that expanding the program with additional parameters
would make it even more time-demanding, so keeping the running time as low as possible
was a priority. It was quickly identified that running Abaqus within the loop was the most
time-demanding part of each iteration. Cross-section properties and statical displacement in
the global model looked to behave quite linearly with respect to the two main parameters. It
was then decided to carry out preliminary studies for a range of input parameters and save the
results in csv-files. The optimisation loop was then made to extract cross-section parameters
and geometry offsets using linear and bi-linear interpolation, respectively, on the csv-data. This
is further explained in the following chapters. By using an interpolation approach on cross-
section parameters as well as static displacement, the number of Abaqus analyses within each
iteration of the optimization was reduced from three to one.
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3.2 Global Abaqus model

The stability limit is dependent on the modal properties of the structure, and thus, a modal
analysis had to be carried out for each iteration of the optimization loop. The program was
therefore made to initiate the process of establishing an FE-model of the bridge based on the
two main parameters, tower and girder height, and execute the modal analysis. Our supervisor,
Øyvind Wiig Petersen has developed a parametric script for general suspension bridge models
in Abaqus, which was very helpful in our work. This script takes key geometric parameters,
distributes nodes and element, and writes this to an Abaqus INP-file. It also takes element
type definitions and material parameters. Further, the script writes calculation steps, where it
defines boundary conditions and assigns gravitational load. Lastly, an Abaqus job is submitted
that generates an ODB-file, where the requested output can be read. This was very helpful to
our work, and we are very grateful for Øyvinds work on this.

Through step definitions, the model is established in the same way as a suspension bridge is
typically built in real life. The steps are illustrated in Figure 3.2. The steps 1-4 are static steps,
where gravitational load is added along with the element establishment. Non-linear effects are
accounted for, mainly to include the significant geometrical stiffness that occurs in the cables.
Static equilibrium must then be found iteratively.

Step 1: Towers

• 2-node bi-linear beam elements (B31) [29]
• Element length of 5 meters. The last (top) element of each tower has a length of Towerheight ≡

5m.
• Tower box cross section from 7.5x7.5x1.0m at tower base to 5.0x4.0x0.6m at tower

top
• Tower legs are fixed at their base
• Tower leg spacing of 40.0 m at base and 3.0 m at top
• Crossbeam elements are defined at elevations 60m and Towerheight − 1m
• Crossbeam section of 6.0x4.0x0.6m
• Pullback forces are assigned to the tower tops to compensate for the forces from the

cables when the rest of the bridge self-weight is applied.

Step 2: Main cables

• 2-node cubic beam elements (B33) [29]
• The main cables has a parabolic shape defined from the elevation at the tower tops and

the elevation at mid-span of 88.8 meters.
• The mesh discretization is defined from the hanger spacing, i.e 12 meters, and 50 ele-

ments in the side-spans.
• The cable anchors are defined with BC’s, constraining translation as well as rotation

around the x-axis. The cables are connected to the tower top nodes.
• The cables do also have a sideways parabolic shape. To maintain this when gravitational

load is applied, 11 temporary supporting beam elements are placed between the cables.
These are removed in the later steps.
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Step 3: Girder and hanger

• Girder is 2-node bi-linear beam elements (B31) [29]
• The girder length (span length) is 1235 meters.
• The girder is defined with a so-called Beam General Section, such that the girder cross-

section is not geometrically defined in the model, it is only assigned mass and stiffness
properties.
• The girder has a parabolic shape defined by the elevation of 69 meters at its ends and

an elevation of 76.6 meters at mid-span.
• Since the girder is modelled as a spine beam, connection elements are added to define

the width of the bridgedeck.
• The hangers are single 2-node bi-linear beam elements (B31)[29].
• Connected to cable node at top and girder connection element at bottom

Step 4: Bearing elements

• Bearing elements are added to the lower tower crossbeam to model the girder boundary
conditions more accurately.
• These are pendulums constraining rotation around the x-axis, as well as springs that

connects the bridgedeck center to the crossbeam, restraining translations.
• The springs have stiffness 3e7, 1e12, 1e6 N/m in the coordinate directions X,Y and Z,

respectively.
• Plates are added to visualize the bridgedeck, however, these have no structural role.

Step 5: Modal analysis

• Requesting the 100 first eigenfrequencies, with corresponding mode shape vectors.
• Abaqus here uses the Lanczos method for eigenvalue extraction [29].

The material properties assigned to the elements are summed up in Table 3.1.

Table 3.1: Material properties used in the Abaqus model

Part ρ[kg/m3] E [MPa] ν G [MPa]
Concrete towers 2500 35 0.2 14.6
Cable steel 7850 200 0.25 80
Girder aluminium 2700 70 0.35 26
Hanger steel 7850 160 0.33 60
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Figure 3.2: The steps illustrating the establishment of the global Abaqus model

The parameters that were set to generate the input for the model in our program are listed
in Table 3.2. The tower height is, as mentioned in Section 3.1 one of the main parameters.
The girder properties are functions of the girder height, which is calculated in a separate
Abaqus analysis, described in the next chapter. The deflections as well as the maximum cable
and hanger forces can be extracted from a static analysis in self-weight state. By setting a
target maximum stress in the cables and hangers, the necessary section areas are calculated
by utilizing the formula σmax =

Nmax
A . The target stress in static self-weight state was set to

500 MPa for both the hanger and the main cable. This is in the upper range of what Dr. Techn.
Olav Olsen have tested in their parametric study [27].

Static deflections and forces must be calculated in an iterative manner to get them correct.
This because they are self-dependent and vary with the main parameters. This would require a
separate analysis prior to the modal analysis, which would add another 30-60 seconds per iter-
ation of the final optimization. It was discovered that the deflections and the cable and hanger
forces had quite linear (bi-linear) behavior with respect to the main parameters. Therefore,
a preliminary study was done, iterating through ranges of tower heights and girder heights,
writing deflections and maximum forces to a csv-file. The input for each iteration was the res-
ult of the previous analysis of the most similar configuration, with tower height as the priority.
In the modal analysis used in the optimization, deflections and max forces could be extracted
by bi-linear interpolation of the content in the csv-file. This was considered to be sufficiently
accurate as long as the steps in the ranges of input parameters for the static analysis were set
small enough. The ranges were defined ht ∈ [180,220] with steps of 5 m, and hg ∈ [3.5, 4.5]
with steps of 0.25 m. Altogether, this means that all the parameters listed in Table 3.2 could
be calculated as functions of the two main parameters. Parameters beyond the listed ones are
kept constant through the optimization. Mostly, they are set equal to what has been used in
previous studies on the Langenuen crossing.



28 Bergseth, Myhr: Optimization Program

Table 3.2: Variables in global Abaqus model

Parameter Describtion
Tower height Z-coordinate of top nodes
Girder cross-section area Solid area of girder cross section
Girder second moment of inertia (I11) Girder stiffness around weak axis (y)
Girder second moment of inertia (I22) Girder stiffness around strong axis (z)
Girder torsional stiffness constant (It) Stiffness towards roation around longitudinal axis (x)
Girder distributed mass Mass per meter in longitudinal direction
Girder moment of inertia axis 11 Moment inertia around y-axis per meter x-direction
Girder moment of inertia axis 22 Moment inertia around z-axis per meter x-direction
Girder deflection (UZ) at midspan Static self-weight deflection to define geometry offset
Girder deflection deflection (UZ) at south end Static self-weight deflection to define geometry offset
Girder deflection (UZ) at north end Static self-weight deflection to define geometry offset
Cable deflection (UZ) at midspan Static self-weight deflection to define geometry offset
Tower deflection (UX) at top Static self-weight deflection to define geometry offset
Max axial force in cables Static self-weight force to calculate cable section area
Max axial force in hangers Static self-weight force to calculate hanger section area

3.3 Cross-section parametrization

To approach the optimal solution for the Langenuen project, a range of cross-sections should
be considered for the bridge girder. The choice of cross-section will determine the mass and
stiffness properties of the girder and thus influence the modal properties of the bridge. Ad-
ditionally, the shape will determine the wind flow around the girder and therefore its aero-
dynamic derivatives. The range of cross-sections included in the optimization must then be
represented with wind-tunnel data, which becomes a time and cost consuming process as the
range of cross-sections increases. It was therefore regarded as necessary to constrain some
parameters in the girder parametrisation. All of the angles defining the cross-section shape
were decided to be held constant. The bridge width is also constant at 31 meters, such that
the girder height becomes the only variable in the cross-section parameterisation. Master pro-
jects from 2020 and 2021 have shown that the critical wind speed criteria can be met with
cross-section heights as low as 4.9 meters, and that even lower cross-sections could be tested.

The transverse panel concept developed in a preliminary study by Dr. Techn. Olav Olsen is
the concept further developed throughout this project [27]. Of the three different aluminium
girder concepts that are suggested for the Langenuen crossing, the transverse panel concept
is assumingly preferable due to its performance with regards to fatigue. In cooperation with
NPRA, RWDI has done free vibration wind-tunnel tests on some cross-section types [30]. It
was then interesting to include some of the same cross-section types in a forced vibration
wind tunnel test, to get a good comparison of the methods, considering the resulting ADs. In
consultation with our supervisors and Jungao Wang from NPRA, it was decided to go on with
the LA12-16 section that has been tested by RWDI. This has a maximal height of 4.0 meters
and an inclination of 16 degrees. In addition to this, cross-section heights of 3.5, 3.75, 4.25,
and 4.5 meters with the same inclination angle were to be tested in the wind-tunnel in this
project. Figure 3.3 shows the cross-sections that were to be tested in the wind-tunnel.
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Figure 3.3: Illustrations of the cross-sections that are to be tested in the wind-tunnel

As can be seen from Figure 3.3, the cross-section is parameterized with height as the only
varying parameter. To generate drawings of the cross-sections, a parametric script was de-
veloped in the software Autodesk Dynamo. From this script, the corner coordinates were
defined for all the five cross-section shapes. The corner coordinates were saved to an excel
sheet that was used to mill the section models with a CNC-machine. In addition to this, a para-
metric Python script was written to define the geometry that would be analyzed in Abaqus to
generate the cross-section parameters.

The transverse panel concept consists of extruded aluminium panels that are friction stir
welded together [27]. The panels are designed as illustrated in Figure 3.4, in order to prevent
local plate buckling. The panels are compiled as illustrated in Figure 3.5, with the panels direc-
ted transverse to the girder span direction. Bulkhead panels are placed every 3.9 meters in the
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longitudinal direction, assembled by panels directed vertically. Although the transverse panel
concept has been shown to be beneficial with regard to fatigue, it complicates the calculation
of the cross-section parameters, because the panels do not have a constant cross-section in the
longitudinal direction. Therefore, some simplifications are made to prevent the cross-section
analysis from taking too much time away from the actual scope of this project.

The main simplification is to represent the panels as massive plates, with a constant effective
thickness. The calculation of the effective thickness is based on the properties that Dr. Techn.
Olav Olsen has calculated for their version of a transverse panel cross-section. They have in-
vestigated a cross-section with a height of 5.5 meters and an inclination of 31.41 deg [27].
With an effective thickness of 35 mm, the torsional stiffness was calculated to 40.6 m4, utilizing
Bredt’s 2. formula for St. Venant torsion.

It =
4A2

m
∮ ds

t

(3.1)

The same effective thickness of 35 mm was used in the cross-section parametrisation, as-
suming that this was representative for the transverse panel concept.

(a) The top deck panel

(b) The bottom and side panel

(c) The bulkhead panel

Figure 3.4: Illustrations of the geometries of the panels used in the transverse panel concept
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Figure 3.5: Illustration of the transverse panel concept developed by Dr. Techn Olav Olsen for NPRA.
Bulkheads are not shown.

As was mentioned in Section 3.2, the girder in the Abaqus model is represented by a spine
beam, only described by its mass and stiffness properties and not by its geometry. To run the
global model with girder height as an input parameter, a separate process had to calculate the
mass and stiffness properties for the girder geometry, determined by the girder height para-
meter. The analysis of the different sections was carried out using plates with thickness 35 mm.
The girder shapes in Figure 3.3 represents the mid-lines, which were then offset 17.5 mm in
and out to create a locked thin-walled cross-section sketch. This was sent to Abaqus to generate
the section properties. Abaqus generated a mesh of WARP2D4 and WARP2D3 elements, which
are 2D planar quadrilateral and triangular elements, respectively. These elements each have
one DOF that represent the value of the warping function, which enables the calculation of the
total torsional stiffness, as well as other stiffness, mass and inertia parameters [31]. A simple
convergence study was done on the mesh size. The conclusion from this was that a mesh size of
maximum 10 mm was sufficient for convergence on the section parameters. Submitting a beam
section generate job in Abaqus generates a .bsp-file that contains the cross-section properties.

The particular properties that were collected from each .bsp-file were

• Solid area
• Second moment of inertia, I11 and I22
• Torsional stiffness, It
• Distributed mass per meter
• Moment inertia, i11 and i22

Additionally, the area within the box girder as well as the perimeter were calculated with a
self-made Python script. Before the cross-section properties could be used in the global modal
analysis, some extra mass and moment inertia had to be included, since weight from e.g asphalt
and bulkheads will have a significant influence on the modal properties of the bridge. The extra
weight was calculated under the following assumptions:

• 80 mm asphalt on the whole width of the traffic and pedestrian lanes. Asphalt density
of 2500kg/m3. Moment inertia calculated as rectangle rotating around its center.
• Bulkhead with effective thickness of 16 mm every 3.9 meters. Moment inertia calculated

as rectangle rotating around its center.
• Hanger heads with contribution of 30 kg/m on mass have negligible moment inertia
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• Mass from other equipment is set to 400 kg/m. Moment inertia not calculated because
of its unknown geometry.

The additional mass and inertia was added to the girder mass and inertia, and all the prop-
erties were written and stored to a .csv- file. The section analysis was carried out and the
resulting properties were stored for all the cross-section ranges of interest. Properties for five
of the sections are shown in Table 3.3.

Table 3.3: Summary of the section properties for the different girder heights.

Parameter LN22_3500 LN22_3750 LN22_4000 LN22_4250 LN22_4500
Girder height [m] 3.50 3.75 4.0 4.25 4.50
Solid area [m2] 2.397 2.399 2.402 2.404 2.407
I11[m4] 5.155 5.764 6.364 6.946 7.500
I22[m4] 186.213 186.394 186.541 186.656 186.743
It[m4] 18.320 20.164 21.892 23.479 24.904
Girder mass [kg/m] 6471.900 6478.600 6485.200 6491.900 6498.500
Total mass [kg/m] 13056.398 13110.604 13169.881 13204.430 13244.050
i11 [kgm2/m] 15327.717 17169.557 19009.242 20817.766 22566.823
i22 [kgm2/m] 857625.220 861195.819 864359.191 867125.335 869503.251
Perimeter [m] 63.126 63.196 63.266 63.337 63.407
Inner area [m2] 86.170 90.459 94.311 97.728 100.709

A function for linear interpolation of cross-section properties was made in order to extract
the properties for arbitrary cross-section heights. This could have been carried out by a section
analysis for each iteration of the optimization algorithm. However, this would add about 30
seconds to each iteration in the optimization. The interpolation seemed to be sufficiently ac-
curate as long as the step size on the cross-section height was low enough. The step size was
set to 0.125 m. Interpolated cross-section properties were then considered to be convenient to
speed up the final optimization algorithm.

3.4 Wind-tunnel testing

The ADs that are later utilized in stability limit calculations are most accurately determined
experimentally with wind-tunnel tests. By testing the cross-section range presented in Section
3.3, the idea was to create surrogate models such that ADs could later be extracted for arbit-
rary cross-section heights within the range. The wind-tunnel tests were executed in a forced
vibration rig at the fluid mechanics laboratory at NTNU in Trondheim. Section models in scale
1:70 were fixed between two load cells, that are also able to move in an arbitrary motion
described by three DOFs, ry , rz and rθ , where θ is the rotation around the section model lon-
gitudinal axis, x . This is illustrated in Figure 3.6. The load is then recorded with the same DOF
reference, as the wind flow approaches the nose of the cross-section. By recording the load
for particular load patterns, the aerodynamic derivatives as well as the quasi-static coefficients
can be extracted.
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Figure 3.6: The reference system for the sections models in the wind-tunnel tests

To make the section models in 1:70 scale, two plates with thickness 40 mm were glued
together with a Ø40 mm aluminium pipe between them. Along with providing stiffness to
the section model, the pipe is the section models’ connection to the force vibration rig. The
section shapes were then milled out of Dyvincell material using a CNC-machine programmed
with coordinates extracted from the drawings in Figure 3.3. Railings for both the traffic and
the pedestrian lane, as well as railings for a maintenance trolley were modelled using the
software Solidworks, and then 3D-printed. Drawings of the parts are shown in Figure 3.8.
Unfortunately, the scale on the railing parts was set to 1:50 by a mistake. This was not noticed
in time to change it. The effect this had on the results will be discussed later in the report. With
some anchoring length, the plastic parts were stuck into the Dyvincell material like shown in
Figure 3.7.

In order to isolate the effect of the self-excited forces there were milled out space at the
mid-span of the section models to make room for a tuned mass damper (TMD). The TMD was
a steel piece of approximately 100 grams, giving it a mass ratio of approximately 0.2 %. This
was allowed to vibrate on an elastic timber stick that was stuck into the Dyvincell material. To
cancel out vortex induced vibration (VIV), the mass on the stick could be pulled in and out to
adjust the length of the elastic stick, adjusting also the natural frequency of the TMD.
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Figure 3.7: Photo of a section model with railing
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Figure 3.8: Railing drawings

Figure 3.9 shows a section model fixed up in the wind-tunnel. The testing area is 1.8 meters
high, 2.7 meters wide, and 11.1 meters long. Each side of the section model is fixed with
clamps attached to Gamma load cells supplied by ATI Industrial Automation [13]. The load
cells are mounted on the 3-DOF actuators, which are controlled by a MC4U control system
from ASC Motion Control.
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Figure 3.9: Photo of the section model fixed into the forced vibration rig

According to the test plan including tests for vortex shedding, static coefficients and aerody-
namic derivatives, the section models were tested one by one. An overview of the test plan for
each section-model is shown in Table 3.4.

Table 3.4: Summary of the tests ran in the wind-tunnel.

Test Wind speed [m/s] Motion Amplitude Purpose
Vortex shedding 10 None None Observe VIV effects
Static tests 0, 6, 8, 10 Angular steps 8◦ (max) Static coefficients
Single harmonic 0, 8, 10 Horizontal harmonic 20 mm Horizontal ADs

0, 8, 10 Vertical harmonic 10 mm Vertical ADs
0, 8, 10 Torsion harmonic 1◦ Torsion ADs

The section models were fixed in the rig with the pedestrian lane downwind, and the load
cells were reset to cancel out the self-weight before the recording was started. For the first
VIV test, the TMD was deactivated (pushed all the way in), and the wind speed was increased
from 0 to 10 m/s, observing potential load fluctuations from vortex shedding. If there was any
significant VIV, the TMD was activated (pulled out), and the VIV test was redone.

Then, predefined motion patterns were loaded onto the control system. Static tests were
first carried out. The section models were rotated as the plot in Figure 3.10 shows. While
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the angular velocity here is very low, the motion induced effects are negligible. The drag, lift,
and pitching moment coefficients can then be extracted in a static manner as functions of the
attacking angle, θ . The motion pattern is performed for still air, 6, 8, and 10 m/s. The still-air
tests are to determine the effects of inertia forces from the motion pattern. These are later to be
subtracted to isolate the load from the drag, lift and pitching moment caused by the wind-flow
on the section models.

Figure 3.10: Motion plot for quasi steady test

At wind-speeds of 0, 8, 10 the section models were vibrated as the motion patterns described
in Figure 3.11. These are harmonic motions corresponding to frequencies of 0.25, 0.50, 0.77,
1.1, 1.4, 1.7, 2.0 and 2.5 Hz.

Figure 3.11: Motion plots for harmonic tests
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Again, the wind-induced forces could be isolated by subtracting the forces recorded in still-
air. What is left is then the self-exited forces that can be seen on the left hand side of the
Equation (2.48), (2.49) and (2.50). The self excited forces are recorded at two non-zero wind
velocities and eight different vibrations frequencies. This gives a total of 16 data points, while
the reduced frequency and the reduced wind velocity are dependent on each other. With a least
squares fit approach, the reduced velocity dependent ADs was extracted. This post-processing
part was done, by our supervisor Ole Øiseth, with use of his self-made Python library.

3.5 AD surrogate models

Surrogate models were made in order to extract the AD-values which were necessary to cal-
culate the stability limits. Assuming that the surrogate models were representable within the
cross-section range, the stability limits could be calculated for arbitrary cross-section heights.
The Python library scikit-learn offers a comprehensive module for Gaussian Process Regression
(GPR) which is used to create the models [32]. Figure 3.12 shows an example model illustrat-
ing how the GPR predicts AD-data between the measured data points which are functions of
girder height, H and reduced velocity V̂ .

Figure 3.12: Illustration of a surrogate model

The module also comes with a wide variety of pre-defined kernel functions. Considering Stein
(1999), Matern is selected as the kernel function for the Gaussian process [22][23]. This is to
accommodate the amount of scatter and occasionally sparse measuring density in the test data
and the desire to develop relatively smooth models. The length scale parameter is set to 0.5
for the height axis and 4.5 for the reduced velocity axis based on the maximum measurement
spacing in the wind-tunnel data. The smoothness parameter, ν, is set to 2.5. Global noise is
added to the model through the alpha parameter, which is set to 0.13. The alpha parameter is
set based on trial-and-error to obtain sufficiently smooth models.
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3.6 Calculation of critical wind speed

With modal properties calculated with the parametric Abaqus model and ADs for arbitrary
cross-section height extracted from the surrogate models, the stability limits could be calcu-
lated as a function of the two main parameters, tower and girder height. Calculation of the
critical wind speed at which dynamic instability occurs is done numerically in a Python script.
The script was developed with great help from Jungao Wang from the NPRA, and is based on
the Ge and Tanaka (2000) approach [17]. The assembly of M,C and K with aerodynamic stiff-
ness and damping contributions is done according to Chapter 9 in Strømmen (2010) at discrete
reduced velocity steps [12]. The initial structural damping ratio is set to 0.2 % in accordance
with N400 Bruprosjektering [3]. The script automatically generates the necessary modal data
from the global Abaqus analysis and pull ADs from the surrogate models. The pseudocode for
the iterative and highly computational process is presented below.

Algorithm 1 Calculation of critical wind speed, Vcr

Input
- Modal properties: M̃, φ, ωn
- Aerodynamic derivatives from surrogate models

Output
- Critical wind speed, Vcr [m/s]

1: for U in Urange do
2: for ωn in ω do
3: - Assemble M, C and K with Cae and Kae contributions wrt. (U ,ω)
4: - Solve complex eigenvalue problem on state space form→ eigvals
5: Re(eigvals) = ζnωn
6: Im(eigvals) =ωn

Æ

1− ζ2
n =ωD

7: while |(ωD −ωn)|> tol do
8: ωn =ωD
9: - Assemble M, C and K with Cae and Kae contributions wrt. (U ,ω)

10: - Solve complex eigenvalue problem on state space form→ eigvals
11: if ζnωn = 0 then
12: Vcr = U
13: ωcr =ωD ▷ Which is used to extract the instability mode shape
14: break

The process terminates (breaks) when the real part of the complex eigenvalue becomes zero.
This defines the instability limit, as the in-wind damping ratio defined in Equation (2.80) now
becomes negative. The current mean wind speed and frequency are then returned as critical
values. The eigenvector corresponding to the critical frequency is also extracted to investigate
the mode-participation in the critical mode.

3.7 Optimization

An optimization algorithm was developed with the goal of returning the optimal configuration
with respect to the main parameters; tower and girder height. The optimization algorithm con-
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sists of two main components, a constraint function and an objective function. The constraint
function is described in Section 3.6. According to the N400 Bruprosjektering motion induced
instabilities shall be controlled towards a design criterion of

Vcr ≥ Vm · γV cri t (3.2)

where γV cri t = 1.6 and Vm is the site wind velocity measured at the height of the bridge deck
for a return period of 500 years [3]. Vcr is calculated to 76 m/s for the Langenuen crossing
[27], such that the inequality constraint function reads

Vcr(ht , hg)− 76≥ 0 (3.3)

where ht and hg are the tower and the girder height, respectively.

The bridge concept is proposed to be optimized with the objective of minimizing material
costs. The objective function is then simply the material quantities for the different bridge
parts, multiplied with price factors. Denoting the different parts

t: towers
g: girder
c: main cables
h: hangers

the objective function is defined

Ob j(ht , hg) =
∑

n

Qn(ht , hg) · Pn (3.4)

for n ∈ [t, g, c, h], where Qn is the quantity for the part for the current configuration of ht
and hg in unit m3, and Pn is the price factor for the part in unit NOK/m3. The quantities are
calculated numerically in dedicated Python-scripts, which are based on the geometry of the
different parts.

The price factors are set based on Dr. Techn. Olav Olsens report from the preliminary study
of the Langenuen crossing [27]. The report includes cost estimations to compare the total cost
of the different concepts. By dividing the total cost of each bridge part by its quantity, the unit
cost price factor is found for the concrete tower, the main cables, the steel hangers, and the
aluminium girder. These are summed up in Table 3.5.

Table 3.5: Price factors used for the objective function.

Bridge part Cost [NOK/m3]
Concrete tower 326948
Main cables 86535
Steel hangers 691358
Aluminium girder 1543210

Dr. Techn. Olav Olsens price estimations are quite detailed for the aluminium girder, includ-
ing cost for material, welding, handling and facility and installation. The price estimations on
the cables, hangers, and towers are not described in detail. One would probably not expect
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the price functions to be linear, so assuming this is a very rough simplification. Detailed price
estimations were not part of the primary scope of this project. Therefore, this part was given
less attention.

Several sub-algorithms were considered to generate new input parameters ht and hg to ap-
proach the minimum of the objective function. The SciPy library provides optimization al-
gorithms in Python, such as scipy.minimize that can be used to minimize objective functions
in a gradient-based sense [24]. Our inequality constraint could easily be implemented, but the
scipy-algorithm seemed to use too many iterations considering our time-demanding inequal-
ity function. It should also be noted that the scipy.minimize algorithm only finds the local
minimum, and thus comes with the risk of missing the actual optimum.

Bayesian Optimization was also considered to minimize the objective function. This is an ex-
pansion of Gaussian Process Regression (GPR) that includes an algorithm to suggest the next
sampling point based on a probability of improvement (reduction) of the objective function
[26]. For each iteration, the function will improve a surrogate model, providing higher accur-
acy in the areas near the assumed lower extremes. This function seemed appropriate to get a
good prediction of the objective function with fewer iterations than scipy.minimize. With little
prior knowledge on the topic, the inequality constraint appeared to be difficult to implement
without drastically increasing the computational time. Still, one could use the algorithm to
create a surrogate model for the critical wind velocity, but because of the acquisition function
the surrogate would then become more accurate in some regions than other.

The conclusion was to carry out the optimization more manually by a grid search, iterating
over a pre-defined grid for the tower and girder height. Surrogate models for the objective
and constraint functions could then be generated separately utilizing GPR. All of the config-
urations that meet the wind-speed criteria could be saved, and the objective function could
be minimized with respect to these configurations. One can imagine that both surrogate mod-
els for the material cost and the critical wind will be quite smooth surfaces within the search
space. This justifies that a GPR of a grid search with a reasonable grid mesh size can create
representative models for cost and critical wind speeds. However, it might require some test-
ing and engineering judgement in the choice of a sufficiently fine grid mesh, as well as the
GPR-parameters.

The bounds of the main parameters were set to ht ∈ [180,220] and hg ∈ [3.5,4.5] with
sampling steps of 2 meters and 0.25 meters for tower and girder height, respectively. The co-
variance function for creating the GPR is the Matern-kernel. The length scale is set equal to the
sampling steps in the corresponding parameter dimension, while the smoothness parameter ν
is set to 2.5. The α-parameter is set very low, which means that the GPR does not account for
any significant noise in the sampling data. The resulting GPR-models were visually examined
and considered to give a representative model for the whole search space.

Other than just returning the optimal configuration of the input parameters, a grid search
provides models that should be representative for the whole search space. This can give valu-
able understanding of general aerodynamic design of suspension bridges. It can also be useful
if other objectives, such as environmental impact, are added in the bridge design decision
making.
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3.8 Buffeting response

The calculation of buffeting response is currently not implemented in the optimization, due to
the fact that this was not within the initial scope of this project. However, to assure that the
response was within reasonable limits, a separate calculation on the configuration returned
from the optimisation algorithm was conducted. Previous studies of the Langenuen crossing
have shown that the aluminium girder concepts are vulnerable with regards to fatigue. Thus,
the buffeting response is highly relevant in the design of such a bridge.

By utilizing relations presented in the theory chapter, the buffeting response spectrum could
be calculated with the use of modal coordinates. This approach was first presented by Scan-
lan (1978), and has been commonly used since [33][34]. Utilizing the results from the global
Abaqus analysis, the modal properties of the structure was extracted. Including the aerody-
namic contributions that could be defined with use the of the surrogate models explained in
Section 3.5, the equation of motion with modal coordinates could be determined as

M̃η̈(t) + (C̃− C̃ae)η̇(t) + (K̃− K̃ae)η(t) = Q̃ (3.5)

leading to the modal frequency response matrix

H̃= [−ω2M̃+ iω(C̃− C̃ae) + (K̃− K̃ae)]
−1 (3.6)

From Equation (2.34), only the buffeting load Bqv(x , t) is considered, while this is what
causes the fluctuating response. The force coefficients that assemble the Bq-matrix were ex-
tracted from the static test wind-tunnel data. The data was a bit noisy, especially for the drag
coefficient, which made it difficult to calculate the static coefficients’ derivatives. To get repres-
entative values of the force coefficients, the wind-tunnel data was smoothed using a moving
average function with a time window of 400. An example of this is shown in Figure 3.13. As a
simplification, the buffeting response is calculated by picking the static coefficients for a mean
attacking angle, α of zero. However, a study of the buffeting responses sensitivity to the mean
attacking angle was conducted.
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Figure 3.13: Plot illustrating the smoothing of the force coefficients

Referring to Equation (2.10) the modal load can be expressed as

Q̃=

∫ L

0

φ(x)Bqv(x , t)d x (3.7)

It can be convenient to work in the frequency domain to utilize the relation derived in e.g
Newland (2005) [11]

Sη(ω) = H̃∗(ω)SQ̃(ω)H̃
T (ω) (3.8)

where ∗ denotes the complex conjugated. The modal frequency response matrix is already
presented, but the modal load has to be transferred to the frequency domain. Using the cross-
correlation function presented in Equation (2.17), the cross-correlation matrix of the modal
load can be derived as

SQ̃(ω) =

∫ L

0

∫ L

0

φT (x1)Bq(x1)Sv(ω,δx)BT
q(x2)φ(x2)d x1d x2 (3.9)

The wind turbulence matrix v(x , t) is then replaced by the cross spectral density (CSD)

Sv =





Suu Suv Suw
Svu Svv Svw
Swu Swv Sww



 (3.10)

with the turbulent components u, v, w parallel to the bridge coordinate axes y, x, z, respect-
ively.
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Since site measurements of the wind were not available, the CSD is defined according to the
guidelines in N400 Bruprosjektering [3]. The handbook use a Kaimal spectrum to describe the
turbulence [35], such that the single point spectrum is defined as

Si(ω) =
Aiω̂σ

2
i

ω(1+ 1.5Aiω̂)5/3
(3.11)

for i = u, v, w where

ω̂=
ωx Li(z)
2πvm(z)

(3.12)

Au = 6.8, Av = 9.4, Aw = 9.4 (3.13)

The turbulence length scale, which describes the average size of the wind eddies, is given by

x Lu =

¨

L1(z/z1)0.3 if z > zmin

L1(zmin/z1)0.3 if z ≤ zmin
(3.14)

and can be transferred to other directions as
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(3.15)

The term σi denotes the standard deviation of the turbulence component, i, vm is the mean
along wind velocity, z is the height above the terrain at the site, L1 is the reference length equal
to 100 meters and z1 is the reference height equal to 10 meters. The frequency axis,ω, is here
in unit [rad/s].

Further, the co-spectra is given by

Si1i2(ω,∆s j) =
Æ

Si1(ω)Si2(ω) · e
−Ci j

ω∆s j
vm(Z) (3.16)

where∆s j is the spacing between the two points along the considered coordinate axis, j, and
Ci j is the decay factor defined as

Cuy = Cuz = 10, Cv y = Cvz = Cwy = 6.5, Cwz = 3.0 (3.17)
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The buffeting response in the longitudinal direction is considered as negligible, such that the
v-components can be disregarded. For simplicity, the cross-correlation of u- and w-components
is sat to zero such that

Sv =

�

Suu 0
0 Sww

�

(3.18)

In any case, this correlation is expected to be small, which justifies the simplification.

By defining the turbulence intensities Iu and Iw in accordance to the guidelines from N400
and NS-EN-1991-1-4, the CSD of the turbulence could be defined for any mean along wind
velocity [3][36].

Iu =
σu

vm
= 0.10, Iw =

σw

vm
=

1
4

Iu (3.19)

As the response spectrum was found for the modal coordinates it was transferred back to
the physical coordinates with the relation [12]

Sr = φSηφ (3.20)

It can be shown that the variance of a process can be found by integrating its auto-spectral
density (ASD), such that [11]

σr =

√

√

√

∫ ∞

−∞
Sr(ω)dω (3.21)

This sums up the script that was written in Python, enabling the calculation of standard
deviations of the buffeting response for any configuration of the tower height and girder height,
for an arbitrary mean wind velocity.





Chapter 4

Optimization program

4.1 Objective and structure

An optimization program was developed with the objective of finding the optimal aerodynamic
design for single-span suspension bridges with respect to cost. The program operates with the
two geometric parameters, tower and girder height, and an algorithm eventually returns the
most economical design that also satisfies the design criteria for critical wind. From the very
beginning, it has been a priority to make the program as automatic, general, and time-effective
as possible. The idea of further development and expansion has also been kept in mind when
developing the program. This is the reason why the authors decided to keep the components
of the program separate and not combine them into a main control script. By keeping the
components separate, the program becomes more transparent and easier to debug with the
implementation of new data and further expansions.

The program consists of two components: Python and Abaqus. Python has a very versatile
application area in the program and makes up everything from heavy numerical computations
to folder and file management. Abaqus is used for its FEM-solver, which offers parametric
modeling. Abaqus is also compatible with Python, and allows the program to be controlled
solely from a Python IDE. Therefore, one can perform Abaqus analyses without ever having
to open the Abaqus GUI. The program is built around the Langenuen crossing as an example,
and is still indented to be in the development phase. It does not have a single script to control
the whole program, but rather several sub-scripts that build on each other and can be run
independently. The program is presented in a digital appendix and Figure 4.1 shows the folder
structure in the program. The most time-consuming part of the program is the generation of
sample data for the optimization algorithm, which for the Langenuen example takes about
1.5 hours and includes 105 Abaqus analyses, flutter, and cost calculations. As can be seen
in the figure, the program therefore has active and preliminary components. The purpose of
the preliminary components is to save time in the active components. Once the parametric
model is defined and the tower and girder height parameter-range is set, one can calculate the
cross-section parameters along with the static deflections. These values are needed in advance
before every global modal analysis and save the active components for two additional Abaqus
analyses per iteration in the data generation.
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Figure 4.1: Folder structure for the optimization program

The program is also equipped with a separate buffeting response analysis that can be used
to calculate the buffeting response for arbitrary design configurations. All the scripts and func-
tions in the program are commented to ease understanding and debugging.

4.2 Quick run with Langenuen example

The program is developed and executed throughout this report in the IDE Virtual Studio Code,
also referred to as just VS Code. The integrated terminal in VS Code operates with a fixed path
and does not require the user to specify a path for each script. It is therefore recommended to
use VS Code’s integrated terminal to simplify exploration and testing of the program.

The attached code comes with all the preliminary components executed for the Langenuen
crossing, that is:

• Cross-section parameters for the LN22 test range
• Deflection prediction for the LN22 parameter range
• Surrogate models for the aerodynamic derivatives from the wind tunnel testing

If the reader has access to an Abaqus license, one can generate data using the GenerateData.p y
script, followed by the OptimizeMain.p y script. All the active components will then be ex-
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ecuted. If one do not have an Abaqus license, the example data in SampleDataExample can
be used and one only has to run the OptimizeMain.p y script to execute the optimization
algorithm. The program also includes data to run with cross-sections and ADs from previous
master theses (2020, and 2021). Further information and a more detailed user manual may
be read in Appendix A.





Chapter 5

Langenuen case study

5.1 Modal analysis

The modal analyses were performed in Abaqus, described comprehensively in Section 3.2. For
each analysis, the modal step yields 100 modes, where eigenfrequecies, generalized masses,
and modeshapes are extracted from the .odb-file and stored as .csv-files. For the stability and
buffeting response analysis, the bridge girder is the main interest. Modeshapes are therefore
only extracted for the center nodes of the girder. The modal properties for an example ana-
lysis from LN22 with hg = 4.0m and ht = 206m are shown in Table 5.1. The table shows
the horizontal, vertical and torsional modes among the 40 first Abaqus modes, cable modes
are excluded. S and A denotes symmetrical or asymmetrical modes, respectively. Additional
illustrations of the mode shapes, as well as modal properties may be found in Appendix B.

Table 5.1: Modal properties for hg = 4.0m and ht = 206m
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The first five modes are vertical and horizontal modes. From here on out, cable modes start
to occur. The girder modes have more or less sinusoidal appearances, as was predicted from
Section 2.2. The first torsional symmetrical mode, TS1, occurs at Abaqus mode no. 19.

A study was conducted to investigate how the natural frequencies are influenced by the
change in tower and girder height. The first symmetrical vertical (VS1) and torsional (TS1)
modes are picked out as examples since they are normally most likely to couple into flutter
[14]. Since VS1 is not perfectly shape-wise similar to TS1, the coupling also depends on con-
tributions from a set of other VS-modes in order to occur. The main cable geometry prevents a
vertical eigenmode with only one wave to occur. Figure 5.1 shows surface plots for the eigen-
frequencies of the first symmetrical vertical and torsional modes and their frequency ratio.

Figure 5.1: Surface plots of the eigenfrequencies for first asymmetric vertical and torsional mode

As shown in the plots, the driving parameter for both frequencies is the tower height, at
which the frequencies behave opposite to each other. Table 5.2 displays the maximum and
minimum frequencies for VS1 and TS1, as well as the respective configuration and relative
difference. The torsional frequency is much more influenced by the change in parameters, and
has a 19.9% difference between the max. and min. frequency. The verticals only differ 3.6%,
and are less influenced by the change in parameters.

Table 5.2: Maximum and minimum frequency for VS1 and TS1 along with the respective configuration
and difference in percent

Vertical min. [Hz] Config. [ht , hg] max. [Hz] Config. [ht , hg] Difference [%]
0.1397 220,4.0 0.1447 180,4.5 3.6

Torsional min. [Hz] Config. [ht , hg] max. [Hz] Config. [ht , hg] Difference [%]
0.3319 180,3.75 0.4143 220,4.5 19.9

The change in tower height introduces rather complex changes to the global geometry, which
again change the distribution of forces throughout the system. This affects each of the modal
stiffnesses, and thus their corresponding natural frequencies. Shifting to the girder height axis
in Figure 5.1, the torsional frequency increases with a considerable slope proportional to the
increase in torsional stiffness as shown in Table 3.2. The VS1 frequency also increases with
the girder height, but with a smaller slope. The frequency ratio between VS1 and TS1 is an
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important factor when investigating flutter coupling and will be further discussed later.

5.2 Vortex shedding

VIV was controlled by exposing the fixed section model to an increasing wind velocity, from 0
m/s to approximately 10 m/s. This was to identify potential lock-in phases where resonance
between the VIV and the section model eigenfrequency (mainly vertical modes) occurred.
There was no observed VIV effect for any of the sections within the wind speed range in the
tunnel. Therefore, there is no reason to believe that VIV has affected the results in the other
tests in a significant sense. Some VIV was observed when the 4.0 meter section was tested
without railing and details. This was at wind speeds in the range 9-10 m/s. Judging from this,
the model scale railing was proven effective in disturbing the formation of vertices along the
streamlined section. However, it is hard to judge the sections performance with regards to VIV
in full scale at higher wind velocities.

5.3 Static coefficients

The trends in the static coefficients were generally the same for all of the five section models
that were tested. While the drag coefficient, CD, had a quadratic looking shape with respect to
the attacking angle, α, the lifting and pitching coefficient, CL and CM , behaved more linearly
with respect to the attacking angle. This is seen from Figure 5.2. The lifting and pitching
moment coefficients seemed relatively independent of the wind speed. For the drag coefficient,
a slight dependency was observed, especially for some of the models. The highest dependency
was found for girder height 3.5 meters, while it was almost negligible for girder height 4.0
meters. This can be seen from Figure 5.2. Any dependency showed a lower drag coefficient for
the highest wind speed. For some of the tests it was observed some extra noise around α= 0.
This appeared as narrow spikes in the plots of the raw data, and was especially present in the
data for 4.5 meter model. This noise is assumed to come from disturbance in the test rig, and
is therefore disregarded when the static coefficients was extracted for the buffeting response
analysis.
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Figure 5.2: Static coefficients resulting from wind-tunnel tests of all section models
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A general overview of the static coefficients for the different section models, at α = 0 and
V = 10.0m/s are shown in Table 5.3. The lower rows show the coefficients for the 4.0 meter
girder with no railing, and pedestrian lane flipped upwinds, respectively. These tests are made
to isolate the effect of the railing and the asymmetry of the girder. Generally, one can observe a
drag coefficient that decreases with the girder height, while the lifting and pitching coefficients
are quite stable. The orders of magnitude are quite as expected, judging from previous wind-
tunnel testing in other projects, except maybe for the drag coefficients. Compared to tests
made by RWDI for NPRA of a similar 4.0 meter girder, the drag coefficients are increased with
approximately 25 % [30]. The test without the railing illustrates that the railing significantly
increases the drag force. However, the lift force and the pitching moment remain in the same
order of magnitude. The asymmetry of the girder section affects the drag force, but not very
drastically.

Table 5.3: Summary of the results of the static coefficient tests.

Girder height CD(0) CL(0) CM (0) C ′D(0)[rad]−1 C ′L(0)[rad]−1 C ′M (0)[rad]−1

3.50 1.49 -0.19 -0.02 0.02 2.82 0.93
3.75 1.35 -0.21 -0.01 0.61 2.23 0.86
4.00 1.13 -0.20 -0.02 0.22 2.40 0.85
4.25 1.05 -0.2 -0.01 -0.33 2.43 0.84
4.50 0.99 -0.17 0.00 -0.01 2.30 0.78
4.00 (No railing) 0.36 -0.21 0.01 -0.95 2.98 1.10
4.00 (Reverse) 1.06 -0.21 -0.01 -0.97 2.61 0.87

The static coefficients are mainly made to calculate the buffeting response. The results are
also useful for getting a physical interpretation of the wind-induced forces in a more intuitive
manner then by studying the aerodynamic derivatives. For example the results illustrates the
effect of railing, with a drag-force increase of about 200 % from the test without railing to
the tests with railing. This reveals that the scaling mistake on the railing, as explained in Sec-
tion 3.4, had a significant effect on both the static coefficients and the aerodynamic derivatives.
The C ′M , which participates in the control toward static divergence, is generally low. Based on
estimates from some configuration samples, static divergence is considered very unlikely.

The observed wind-speed dependency which was particularly present for the 3.5 meter sec-
tion, may be due to a Reynolds number dependency because of some turbulence in the wind-
flow around the sections. The resulting maximum deviation of approximately 3.3 % indicates
that the wind-induced forces on the section is not linear with respect to the wind speed. Mat-
suda et. al. (2001), however, conclude that conventional wind-tunnel tests in the low Reynolds-
number region is on the conservative side for the purpose of bridge deck designing [37]. Nev-
ertheless, one might argue that the data for the 4.0 meter section has the lowest uncertainty.

5.4 Aerodynamic derivatives

By least square fitting, ADs were extracted from the load time series from the wind-tunnel
with the use of Equation (2.48), (2.49) and (2.50). The resulting data points for all 18 ADs
for the median girder height 4.0 meters are shown in Figure 5.3. The data points are plotted
with different colors to indicate which wind tunnel speed the data point was recorded from.
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Similar plots for all the section models may be found in Appendix C.

Figure 5.3: Plots of ADs resulting from wind-tunnel tests of the 4.0 meter girder

For each AD, the plots were extended with one dimension, enabling a visualization of the
ADs dependency on the girder height. Surrogate models were made using Gaussian Process Re-
gression on the data points in 3D. The surrogate models are shown in Figure 5.4. The sampling
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points are also shown in this plot. Up-scaled versions of these plots are shown in Appendix C.

Figure 5.4: Surrogate models for all the ADs

As for static coefficient data, some wind speed dependency can be observed for the aerody-
namic derivatives. This is clearly illustrated in the data-points for P1*, P2* and H3* in Fig-
ure 5.3. This is again assumed to result from a Reynolds number dependency. In the surrog-



58 Bergseth, Myhr: Optimization Program

ate models, the spread from the wind-dependency is more or less averaged. This is because
of the parameters chosen for the GPR. More specifically, the length-scale parameter and the
alpha(noise)-parameter. The parameters are determined by trial-and-error to obtain smooth
surfaces, and only account for the variance that is assumed to be reasonable for the behaviour
of the ADs. The variance in the girder height direction is generally low, which has resulted in
surfaces that are mostly linear in this direction. In the reduced velocity direction, the surfaces
capture the trend for the different ADs quite well with the current GPR-parameters. It can,
however, be discussed how much scatter the surfaces should "collect". This is hard to judge,
while a physical interpretation of each AD is challenging, making it difficult to evaluate the
surfaces validity for a particular choice of GPR-parameters. Regardless of the GPR-parameters,
A2* seems to remain negative within the bounds of the surrogate model. Referring to Sec-
tion 2.5.3, it can be concluded that dynamic instability in torsion will not occur for any of the
configurations. Additionally, H2* is mostly negative, such that galloping can be judged unlikely
to happen, except for the low girder height configurations. This is, referring to Section 2.5.2.
Judging from the AD surrogate models, the most likely instability phenomenon is then flutter.

5.5 Optimization

The grid search, as described in section Section 3.7, was carried out to generate data for the
optimization function. The generated data, displayed as sampling points in Figure 5.5, repres-
ents critical wind speed and total cost for 105 different configurations. The generated data is
presented in table form in Appendix D. After the time-consuming process of generating data
was completed, the optimization algorithm could be performed in a matter of seconds. A sur-
rogate model was fitted to the sampling points with use of GPR. This resulted in predicted data
for 2500 configurations, evenly distributed within the parameter ranges. The algorithm returns
the optimal configuration with respect to the objective function, defined in Equation (3.4),
passing its constraint, defined in Equation (3.3). As shown in Figure 5.5, the optimal design
for the LN22 test range is ht = 220m and hg = 3.68m, with total cost ≈ 2001 MNOK and Vcr
= 76.43 m/s.
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Figure 5.5: 3D-plots for the critical wind speed and configuration cost as function of tower and girder
height. The green scatter plot depicts the configurations where Vcr > 76m/s.

Further investigation of the stability limit calculation confirmed what the AD data indic-
ated; the instability phenomena determining the stability limit was flutter. Figure 5.6 is an
Argand diagram showing the most contributing modes to the failure mode for hg = 3.68m
and ht = 220m. The length of each vector indicates the corresponding mode’s relative con-
tribution to the failure mode. The first symmetric torsional mode is the main contributor. The
first, second, and third vertical symmetric modes are also significant contributors, as well as
the first symmetric horizontal mode. It is to be expected that asymmetric modes will not couple
when the main mode is symmetric while coupling is more likely when the mode shapes have
a shape-wise similarity [12]. The instability can be concluded to be caused by multi-modal
flutter.
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Figure 5.6: Argand diagram illustrating coupled the failure mode for hg = 3.68m and ht = 220m. The
plot to the right is an up-scaled version of the plot to the left.

For the total configuration cost, the main driving parameter is the tower height, whereas
there is relatively little change in the total price as the girder height changes. Figure 5.7 shows
the main cable force as a function of tower height. Lower tower height results in higher tensile
forces in the main cables, which requires a bigger cable cross-section to limit the stress.

Figure 5.7: Cable force as function of tower height. Girder height = 4.0

Figure 5.8 shows the cost functions for each part within the parameter bounds. The alu-
minium girder is the main contributor to the total price. However, the girder cost function
shows a negligible slope along the girder height axis, relative to the cable and tower cost
along the tower height axis. The cable cost has a bigger slope than the tower cost and is there-
fore the factor controlling the total price slope in Figure 5.5. The hanger cost also shows little
change with the parameters relative to the cable and tower cost.
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Figure 5.8: 3D-plot showing the cost per part for the Langenuen suspension bridge

Based on the surrogate models displayed in Figure 5.5, the optimization algorithm will seek
configurations along the upper tower height bound. These configurations are preferable, both
with regards to cost and stability limit. An argument is to be made that the upper tower height
bound should be increased. Based on a study of the generated data, the slope of the config-
uration cost tends to flatten out towards the upper tower height bound. As does the slope of
the critical wind speed. However, it appears likely that extending the tower height range by
10–20 meters will result in an even more optimal design configuration. Henceforth, it should
be mentioned that an extension of the tower height range will bring even more uncertainty
and unknown variables. For example, the optimization algorithm is not yet designed to include
design changes when the towers reach higher.

5.6 Buffeting response

The buffeting response analysis was carried out for the optimal design configuration returned
from the optimization. That is, ht = 220m and hg = 3.68m. Plots of the corresponding fre-
quency response functions, modal load spectra, and modal coordinate spectra is shown i Fig-
ure 5.9, 5.10 and 5.11, respectively. Note that they are plotted towards a logarithmic y-axis.
The plots are generated at a mean along wind speed of 30 m/s, a turbulence intensity, Iu, of
0.10 and a mean attacking alpha, α, of zero. These plots illustrate the modal contributions to
the buffeting response.
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Figure 5.9: Plots of the modal frequency response function for U = 30 m/s

Figure 5.10: Plots of the modal load spectra for U = 30 m/s
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Figure 5.11: Plots of the modal coordinate spectra for U = 30 m/s

The root mean squared (RMS) of the modal contributions to the standard deviation are
plotted towards the bridge longitudinal axis in Figure 5.12. This shows the expected standard
deviations of the buffeting response for the three considered DOF-directions for a mean along
wind velocity of 30 m/s. This does also give an indication of the mode shapes of the dominating
modes.

Figure 5.12: Plots of the maximum response along the bridge length for U = 30 m/s

Figure 5.13 shows the RMS standard deviations sensitivity to increasing mean wind velocity,
turbulence intensity and mean attacking angle, respectively.
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(a) Increasing U (b) Increasing Iu (c) Increasing α

Figure 5.13: Sensitivity study of the spacial maximum standard deviation of the buffeting response

The horizontal buffeting response is dominated by the first mode, i.e mode 1HS, with a
maximum standard deviation of approximately 0.5 meters. The vertical buffeting response
mainly results from modes VA1 and VS1, adding up to a standard deviation of about 0.07
meters. The torsional response is also dominated by the first horizontal mode, HS1. It can be
seen from the mode visualizations in Appendix B that the horizontal modes also excite the
torsional DOF’s, in a shape-wise similar way, except for a counteraction near the supports of
the girder. Looking at Figure 5.11, it is clear that the torsional mode, TS1, has a very small
contribution to the response, keeping in mind that the y-axis is logarithmic. The torsional
standard deviation is about 0.11◦ at it’s maximum. This information may be utilized to reveal
where the girder is most vulnerable with regard to fatigue. The bending moment is at its
maximum, where the curvature is largest [8]. High standard deviations together with large
curvature in the dominating modeshape vectors indicate high bending moments, and thus
bending stress variations.

In Figure 5.9, it can also be remarked that some of the modes have more rounded peaks, such
as VA1, VS1, VA2, VS2, and to some extent TS1. This is due to the aerodynamic contributions,
Cae and Kae to the total C and K matrices. The aerodynamic derivatives, that are dependent
on the reduced velocity, change the structural properties and thus, the resonance frequencies.
Therefore, the peaks in the FRF get smoothed out when plotted towards a frequency axis. It
can also indicate coupling of modes, while C and K get significant contributions at the off-
diagonal terms. However, it is still reasonable to believe that the original mode shapes are
most dominant in the coupled mode shapes. Regardless, it is clear from the FRF-plots that the
aerodynamic contributions are more significant for the vertical and torsional modes than for
the horizontal modes.
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5.7 Further discussions

In the Langenuen case study, there are some uncertainties in the cost and critical wind speed
calculations for the various configurations. These are related to both the modal analysis in
Abaqus and the data that is used to describe the aerodynamic properties of the different sec-
tions. Additionally, the cost estimations are quite simplified.

The critical wind speed calculation utilizes the eigenfrequencies, mode shapes, and modal
masses which are extracted from the modal analysis. Multi-modal flutter is regarded as the
most likely instability phenomenon, determining the stability limit for the configurations. As
shown in Figure 5.6, the symmetrical torsional and vertical modes are the main participants in
the flutter mode. Uncertainties in the stability limits should then mainly be related to the prop-
erties of these modes. In the calculation of cross-section properties, the panel geometry has
been simplified. This may affect the stiffness properties I11, I22 and It , as well as the girder’s
distributed mass. In particular, the torsional stiffness, It has been seen to influence the fre-
quency of the torsional modes significantly. Looking at both Figure 5.5 and 5.1, there is a clear
correlation between the increase in critical wind speed and the increase in ωθ/ωz-ratio. The
tower height is the driving parameter for both frequencies. This is believed due to the big im-
pact the tower height has on the force distribution, which again seems to have a great influence
on the global stiffness. When changing the girder height parameter, the torsional frequency
displays a small slope, whereas the vertical frequency seems to be relatively unaffected. To
maximize the ωθ/ωz-ratio, increasing both tower and girder height seems beneficial within
the defined bounds. The critical wind speed plot in Figure 5.5 follow more or less the same
trend as the frequency ratio plot in Figure 5.1, and substantiates that a high ωθ/ωz-ratio is
good for aerodynamic stability for suspension bridges [12].

The parametric cross-section model described in Section 3.3, is modeled as a thin-walled
cross-section with an effective stiffness of 35 mm. Compared to Bredt’s 2. formula, Abaqus
calculates appoximately 12 % higher torsional stiffnesses. While Bredt’s 2 formula is referring
to St. Venant torsion, the warping elements in Abaqus include a warping DOF, accounting
also for warping torsion [31]. The torsional stiffness is not investigated in detail while the
cross-section is, nevertheless, simplified as a thin-walled section. An accurate estimation of the
section parameters of a transverse panel cross-section is a rather complicated exercise, and not
the objective of this project. It is, however, revealed that a study of the torsional stiffness of
a transverse panel cross-section is necessary to improve the accuracy of the calculation of the
stability limit for the Langenuen concept.

Another topic of discussion is the system’s structural damping. This can stem, for example,
from strain or friction in the motion of the various modes, and will thus vary for each mode. In
the Langenuen case study, the damping ratio was chosen to ζ= Cn

C̃n,cr
= 0.2% for all modes, n.

This is in accordance with the recommendations from N400 Bruprosjektering [3]. The system
will turn unstable as the total damping ζn − ζn,ae turns negative, and thus, the structural
damping has a direct influence on the stability limit. The significance is dependent on whether
the flutter, is so-called hard or soft, meaning if the absolute slope of the total damping is large
or small in the area where it approaches zero. Since the structural damping appears as an
offset on the y-axis at V = 0, this has a large influence on the stability limit if the flutter is
soft. Figure 5.14 shows how the eigenfrequencies and total damping ratios typically develop
with increasing wind speed. The plot summarizes the flutter analysis for a tower height of 220
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meters and a girder height of 3.68 meters. Figure 5.15 illustrates the corresponding failure
modes sensitivity to decreasing structural damping. Increasing the structural damping from
0.2 % to 0.5 % increases the calculated critical wind speed from 74 m/s to 80 m/s. Note that
the mode combination here is only vertical symmetric modes, VS1, VS2 and VS3, as well as
the first torsional mode, TS1. This results in a slightly lower stability limit than by combining
all modes.

Figure 5.14: Total damping ratio and eigenfrequency for symmetric vertical and torsional modes

Figure 5.15: Total damping ratio plotted towards increasing mean wind speed

The structural damping is difficult to estimate analytically without response measurements
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from the actual bridge. As a result, the stability limit is subject to significant uncertainty.

Uncertainty is also present in the wind-tunnel results that may have affected the stability
limits. Even though there are no signs of systematic mistakes leading to errors during the
testing, some general thoughts are made on this.

• Some wind speed dependency was observed, indicating that the forces are not com-
pletely linear with the wind speed.
• The least-square-fit approach that is used to extract the ADs from the load recording

leaves some room for error. This is illustrated, e.g., by the scatter in some of the AD-
data, which indicates that the method "struggles" to determine some of the AD values.
However, this also indicates that these particular ADs have a small contribution to the
measured load.
• Some general uncertainty can be expected from the test setup. This is illustrated by, e.g.,

the noise seen in the recordings, such as in Figure 3.10. However, this uncertainty seems
to be relatively small.

From the wind-tunnel results, surrogate models for each AD were made, enabling the extrac-
tion of AD values for arbitrary reduced velocities and girder heights. This surface-fitting comes
with an uncertainty that increases with the spacing of the data points. It can be seen from Fig-
ure 5.3 the sampling spacing with respect to reduced velocity is lowest in the range of approx-
imately Vred ∈ [0.9,3.5]. The flutter failure mode appears to be TS1 in the in-wind frequency

range of ωr ∈ [1.9, 2.3] for velocities between 63 m/s and 86 m/s. With Vred =
V

Bωr
it can

be shown that this corresponds to approximately Vred ∈ [1.0,1.5] for certain configurations.
The algorithm then occasionally picks ADs outside the test range of Vred , which introduces a
little uncertainty. The other most contributing modes, VS1, VS2 and VS3, have in-wind fre-
quencies down to approximately 0.9 rad/s, which corresponds to a reduced velocity beneath
3.0. The AD surrogate models have good accuracy in the most critical area, but it should be
considered to add some higher frequencies in the forced vibration tests to get more data points
in the lowest Vred -area. On the girder height axis, there is data in steps of 0.25 meters, leaving
some uncertainty in the AD-values in-between. However, the figure also shows a lower vari-
ance along this axis, such that a relatively low confidence interval may be expected for the
surrogate model in this dimension.

Figure 5.16 show three 2D-slices from the critical wind speed plot in Figure 5.5. For this
example, it can be seen that girder heights around 3.85 m yield the lowest Vcr , and girder
height at 3.5 m yields the highest critical wind speed for the lower and middle tower height
range. For the upper tower height range, it’s the girder heights of around 4.3 m that yield the
highest critical wind speed. It is observed that the lower and middle tower heights share the
same tendency, whereas a slight change is observed for the upper tower height range. It is also
observed that both parameters can be changed to significantly affect the critical wind speed.
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Figure 5.16: Plot showing 2D-slices for the critical wind speed taken at three different tower heights.
The girder height with the heighest and lowest Vcr are annotated

The tendencies in the critical wind speeds along the girder height axis in Figure 5.5 and Fig-
ure 5.16 cannot solely be explained by the change in cross-section parameters. These changes
manifest themselves in Figure 5.1 and are observed to be linear and of relatively little signi-
ficance. Therefore, the tendencies must stem from the ADs. A∗2 is considered as a potential
contributor to this tendency. As shown in Equation (2.72), the AD is connected to torsional
motion, which by Figure 5.6 is shown to be the main component in the flutter mode. Also,
comparing the surrogate model and Figure 5.16, a shape-wise similarity with a negative cor-
relation is to be observed. The same argument can be applied to H∗2, which is shown to be
connected to vertical motion.

Another phenomenon in the critical wind speed plot that cannot be explained by the changes
in modal data, is the increasingly undulating tendency towards the uppermost bound in the
tower heights. The reason behind this phenomenon could be many since it manifests itself
over both axis. One thought is that the consistent increase in critical wind speed results in ADs
being picked further up the reduced velocity axis. Here, the data points are more sparse and
the discrepancies in AD-values are greater.

One can imagine that the approach of scaling down a bridge deck while exposing it to har-
monic motion and reduced wind velocity comes with some uncertainty. The wind flow in the
tunnel can to some extent be considered idealized. The turbulence intensity in the inlet is as-
sumably about 0.2 %, which is quite low compared to the regulations for design that state
a turbulence intensity of 10 % at the Langenuen site [13] [36]. One can expect a layer of
the flow near the supporting points to be affected by the walls, but except for this, the flow
can be considered as spatially constant along the section model. This is very unlikely in real-
ity, judging from the turbulence co-spectra described in N400 Bruprosjektering. The roughness
of the section model surface can influence the flow separation as well as the turbulence and
vortex creation. However, this is rather complicated to perfectly reproduce on a model scale.
Siedziako et.al. (2017) also address the interest in implementing some noise in the forced mo-
tion to approach a more realistic situation [13]. Wind-tunnel testing is all about determining
the ADs and static coefficients, which is easier in more idealized conditions. It could, how-
ever, be interesting to investigate if more realistic conditions could provoke unexpected effects
regarding the aerodynamic behavior.

By a mistake, the railing was scaled to 1:50, while the section models were scaled to 1:70.
Provably, the railing has a very significant effect, especially on the drag force. How this appears
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in the resulting stability limits is difficult to interpret directly from the results. However, it is
known that the drag force is described by P∗i for i ∈ [1,6] primarily influencing aerodynamic
contributions on the horizontal modes, which are minor contributors to the failure modes.
Nevertheless, the buffeting response is certainly affected by the increased drag force due to the
scaling mistake. Even though the scaling mistake jeopardized the accuracy of the Langenuen
case study, it emphasizes the significance of cross-sectional details in wind-tunnel testing and
is consistent with the findings made by Siedziako et al. (2017) [38]. There is a potential in
railing optimization regarding aerodynamic design.

The objective function, including the price functions, is highly simplified, leaving room for
discussion regarding the result of the optimization. The price functions are based on estima-
tions from a previous study on Langenuen by Dr. Techn Olav Olsen (2020) [27]. The estim-
ations seem quite detailed on the girder, while more rough regarding the tower, cable, and
hanger cost. One can also imagine these price functions being non-linear with respect to the
material quantities, considering the complicated installation process. Nevertheless, it might be
reasonable to consider them to be relatively linear within a certain range of the main para-
meters. Further investigations into the price functions should be prioritized to increase the
credibility of the result from the optimization program.

Even though there are uncertainties in the results from the optimization of the Langenuen
concept, the trends seen from Figure 5.5 are clear. Because of the expensive cable steel, one
should consider a higher tower to lower the static forces in the main cables. A higher tower
also tends to be beneficial considering aerodynamic stability. Throughout master projects at
NTNU the later years, the suggestions have been to test lower and lower girders to reduce
material use. The optimization program recommends a girder height of 3.68 meters, even
though the stability criteria can be fulfilled down to 3.5 meters. This might indicate that a
further reduction in the girder height might not be so interesting from a cost perspective.





Chapter 6

Conclusions

A program for suspension bridge concept optimization with respect to material cost and aero-
dynamic stability was successfully developed throughout this project. The program performs
a grid search on configurations of the two main parameters, tower and girder height. Com-
bining numerical calculations in Python and modal properties calculated with a parametric
FE-model in Abaqus, the stability limits are obtained for the configurations. With an objective
function representing the material cost, the optimal design is returned as the configuration
corresponding to the minimum of the objective function, which simultaneously passes the sta-
bility criteria.

Aerodynamic optimization of suspension bridge concepts is traditionally regarded as a de-
manding exercise, while the aerodynamic properties of the cross-sections are most accurately
found experimentally. This becomes a time- and cost-consuming process in a wind-tunnel as all
the considered cross-section alternatives must be tested. By testing a range of sample sections,
surrogate models of the aerodynamic derivatives were made with the use of Gaussian Process
Regression. These were utilized in the optimization program to enable extraction of ADs for
arbitrary girder heights within the sampling range.

The program performed successfully on a case study conducted on the Langenuen crossing;
potentially the world’s first suspension bridge with an aluminium girder. The returned cost-
optimum showed a tower height of 220 meters and a girder height of 3.68 meters, which gave a
critical wind speed of 76.4 m/s. Resulting plots shows clear trends of increasing stability limits
and decreasing material cost with increasing tower heights. However, this comes with some
uncertainty. This is especially regarding the surrogate models that are observed to be quite
sensitive to GPR-parameters. It has also been confirmed that torsional stiffness and structural
damping have a clear influence on the stability and should therefore be paid attention to, to
assure trustable results. Additionally, the cost function should be improved to increase the
accuracy of the optimization.

Even though there are uncertainties in the results, it has been proven that there is potential in
this approach for optimizing suspension bridge concepts. It can be both time and cost-saving,
by making the concept phase more effective, as well as potentially reducing material use with
more optimal solutions. It can also help gaining general knowledge on aerodynamic suspen-
sion bridge design by exploring a wide range of design options. The program was adjusted to
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optimize the Langenuen crossing, but can readily be implemented for other concept studies
as well. With the work Øyvind Wiig Petersen has done on developing a parametric Abaqus
model for suspension bridges, the applicability of the program is only limited by the available
wind-tunnel data.



Chapter 7

Further work

The work on developing the optimization program throughout this project can be regarded
as a pilot project. With Langenuen as an example, the program suggests an optimal config-
uration, but there is still significant uncertainty in the result. Potentially, additional variables
can be parameterized as main input parameters to further optimize the concept. To improve
the program’s performance in aerodynamic optimization from a cost-perspective, the authors
suggest prioritizing:

• Explore opportunities for utilizing machine learning to automatically choose and tune
GPR-kernels for the surrogate models.
• Develop a database of wind-tunnel data to include additional cross-section parameters,

such as inclination angle and railing alternatives, in the program.
• Add parameter dependencies, such as tower design, to improve the accuracy of the ana-

lysis.
• Implement more accurate cost functions.
• Make the program more user-friendly by gathering all inputs into a main script or GUI.

When adding n main parameters to the optimization, the grid expands by n dimensions and
the number of iterations is drastically increased. In such a case, measures to keep the run-
ning time within reasonable limits may be necessary. This can be achieved by implementing
a smarter optimization function such as constrained Bayesian Optimization, which enables
equally accurate surrogate models in critical regions with fewer sampling points. Another op-
portunity is to speed up the FE-analysis by improving the implementation of Abaqus or switch-
ing to another self-made or commercial FE-software.

There is also a lot of potential for increasing the value of such a program by expanding its
interface. Constraints like limited buffeting and static response can readily be implemented
to get a more general concept optimization. Environmental impact is becoming a priority in
today’s infrastructure projects and can be implemented as a second objective function in the
program, with a weighting against the cost to choose the best concept.
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Appendix A

Optimize Program

The program is attached in a digital appendix. Link to GitHub-repository: Click here.

A.1 User manual

A.1.1 Overview

Figure A.1: General overview of the structure of the program.
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Figure A.2: The FEM_Results folder.

FEM_Results/ All the results from the Abaqus FE-analysis is stored in this folder.

CrossSectionAnalysis/ Collection of files generated by the latest cross-section analysis
in Abaqus
GlobalAnalysis/ Collection of the files generated by the latest global analysis in Abaqus.
ModalData/Modal properties for the latest configuration of which the Pull_modeshapes.py
and Pull_ModalData.py are ran from a LangenuenGlobal.odb.

Modeshapes/ csv-files for the modeshapes, structured
nodenumber, xdisp, xrot , ydisp, yrot , zdisp, zrot
Eigenfrequency.csv csv-file for all the modal eigenfrequencies, structrued
modenumber,ωn[rad/s]
Generalized_mass.csv csv-file for all the modal masses structured
modenumber, M̃n[kg]
PF_i csv-file for all the modal particitation factors in DOF i, structured
modenumber, PFn
EM_i csv-file for all the modal effective masses in DOF i, structured
modenumber, EMn
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Figure A.3: The Scripts folder.

Scripts/ collection of the scripts carrying out the opti

CrossSection/ scripts carrying out the parametrized girder section analysis

GenProp.py contains the functions for writing to an input script, running the ana-
lysis, as well as reading and storing the desired section properties. It also contains
the function that is used later to interpolate section properties.
GenPropInput.py the file that is sent to the Abaqus FEA
Geometry.py parametrization of the girder section. Primarily for plotting and visu-
alizing the girder shapes.
init.py looping through the desired range of cross-sections, analysing them and
storing the corresponding properties
SectionProperties.csv the storage of the section properties which are later to be
used for interpolation to get the properties for arbitrary girder height.

DeflectionPrediction/ scripts to carry out the global analyses to determine static deflec-
tions and forces for a given configuration.

DeflectionPrediction.csv the storage of the predicted static deflections as well as
the maximum cable- and hanger forces for different configurations. Later used to
interpolate input variables for arbitrary configuration.
DefPred.py contains the function for writing to an input script, running the ana-
lysis, as well as reading and storing the desired static- deflections and forces. Also
contains the function that is used later to interpolate deflections and forces.
DefPredInput.py the file that is sent to the Abaqus FEA
init.py double loop, looping through the desired range of cross-sections and tower
heights, analysing them and storing the corresponding deflections and forces
ReadOdb script sent to the Abaqus interpreter to read the latest odb-file
step1_disp.csv csv-file containing the nodal displacements for the static step 1
step4_disp.csv csv-file containing the nodal displacements for the static step 4
step4_sf.csv csv-file containing the nodal forces for the static step 4

FlutterAnalysis/ scripts to carry out the stability limit calculation for a given configur-
ation

AD_Data_y/ csv-files containing AD values extrapolated from the surrogate models
from wind-tunnel tests in year, y
Figure/s figures that are automatically generated if plot=True in Functioncode.flutter_speed
Functioncode.py the function calculating the stability limit for a given configura-
tion. Pulls AD-data from AD_Data_y and modal data from FEM_Results/ModalData
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latest_AD_data csv-file containing the latest AD-data used in the stability limit cal-
culation. If AD-data is not found for the given girder height, the data in latest_AD_data.csv
is interpolated.

Optimize/ the main folder controlling the optimization

SamplingDataExample/ csv-files containing stability limits and cost for an ex-
ample grid of configurations
GenerateData.py double loop, running the constraint function (stability limit) and
objective function (cost) for a chosen grid of configurations
LangenuenInput.py input file for the modal analysis in Abaqus.
ModalAnalysis.py functions that writes input parameters to LangenuenInput.py and
runs this. Uses interpolated values of cross-section properties and static deflections
and forces from SectionProperties.csv and DeflectionPrediction.csv for a given con-
figuration.
OptimizeFunctions.py the constraint and objective function, as well as the optim-
izing algorithm.
OptimizeMain.py function that initiates the optimizing algorithm based on gener-
ated sampling data such as in SamplingDataExample
Quantities.py scripts to calculate the material quantities for a configuration, which
are utilized to calculate the objective function in OptimizeFunctions.py
SingleAnalysis.py function to calculate the stability limit of a single configuration.
Made to run examples.

ResponseAnalysis/ scripts to calculate the buffeting response of a configuration

Figures/ figures that are automatically generated if plot=True in ResponseAna-
lysis.ResponseAnalysis
StaticCoeff/ xls-files containing static coefficient wind-tunnel data from 2020, 2021
and 2022
ModalProperties.py functions utilizing AD surrogate models to assemble in-wind
M, C and K matrices
ResponseAnalysis.py function calculating the buffeting response of a configura-
tion utilizing frequency domain analysis
StaticCoeff.py function that pulls the static coefficents and their derivatives for an
arbitrary girder height within the test range, based on linear interpolation of girder
heights
WindSpectra.py functions defining the turbulence spectra (Kaimal spectra) with
the approach described in N400 Bruprosjektering

SurrogateModels/ functions creating surrogate models for AD-data based on wind-
tunnel data

Figures/ figures of the 3D surrogate models created in GPRmain.py
WindTunnelData_y/ wind-tunnel data from year, y. xls-files of ADs for reduced
velocities.
WindTunnelDataCSV/ csv-files with values from the surrogate models created in
GPRmain.py
GPRfunctions functions creating the surrogate models based on data in WindTun-
nelData_y .xls-files, as well as functions to create figures
GPRmain.py initiates GPRfunctions.py
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PredictedData_y.xls xls-files with the same data as in WindTunnelDataCSV. Used
only for a better overview than with only csv-files.

Figure A.4: The suspensionbridge folder

suspensionbridge/ folder containing all necessary scripts to establish and run the para-
metric suspension bridge model in Abaqus FEA. Devloped by Øyvind Wiig Petersen.

A.1.2 How to run

A guide on how to run the program is listed below. Minor adjustments might be necessary
to implement and run optimization for new data, while the functions are not yet completely
generalized. Further description may be found in the scripts.

1. Set constant parameters in global analysis
The global analysis is based on a parametric FE-model in Abaqus. Geometric inputs cus-
tomizing your suspension bridge must be set in both Scripts/DeflectionPrediction/De-
fPredInput.py and Scripts/Optimize/LangenuenInput.py. These input files are built up
equally, but runs in the purpose of static deflections and modal properties, respectively.

2. Parametrize your cross-section
Make a parametrisation of your cross-section based on corner coordinates and past this in
to GenPropInput.py. Existing parametrization may also be used (p_type = [2020, 2021,
2022])

3. Initiate cross-section analysis
Set cross-section range and loop through this in Scripts/CrossSection/init.py. The results
will be written to SectionProperties.csv for later use.

4. Initiate static deflection analysis
Set your range and run the double loop of configurations in Scripts/DeflectionPredic-
tion/init.py. The results will be written to DeflectionPrediction.csv

5. Prepare your AD surrogate models
Load your AD-data as xls-files in the same way as in e.g. Scripts/SurrogateModels/Wind-
TunnelData_22. Run GPRmain.py to generate the models.

6. Run the grid search
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Set your ranges and run the double loop in Scripts/Optimize/GenerateData.py. Results
will then be written to csv-files which are later to be utilized in a GPR of the constraint
functions as well as the objective function.

7. Run the optimization function
Run Scripts/Optimize/OptimizeMain.py to execute the optimization algorithm returning
the optimal configuration of tower height and girder height for a chosen stability criteria
(Vcr)

8. Calculate buffeting response
Load wind-tunnel data for static coefficients as the xls-files in Scripts/ResponseAnalys-
is/StaticCoeff. Run ResponseAnalysis.py for the chosen configuration. Make sure that the
correct modal data is available i.e. by running Scripts/Optimize/SingleAnalysis.py for the
same configuration prior to the ResponseAnalysis.py.



Appendix B

Modal analysis

Results for the modal analysis for the optimal design configuration ht = 220m, hg = 3.68m is
presented in this appendix.
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B.1 Mode shapes

(a) HS1 (b) VA1

(c) HA1 (d) VS1

(e) VS2 (f) VA2

(g) HS2 (h) VS3
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(a) VA3 (b) TS1

(c) TA1 (d) VS4

(e) HA2 (f) VA4
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B.2 Modal properties

Table B.1: Modal properties for the optimal design configuration. ht = 220m, hg = 3.68m



Appendix C

Wind-tunnel results

C.1 ADs: sampling data

Results from the post-processed wind-tunnel data is presented in this appendix.
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Figure C.1: Aerodynamic derivatives sampling data for girder height 3.5 m.
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Figure C.2: Aerodynamic derivatives sampling data for girder height 3.75 m.
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Figure C.3: Aerodynamic derivatives sampling data for girder height 4.0 m.
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Figure C.4: Aerodynamic derivatives sampling data for girder height 4.25 m.
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Figure C.5: Aerodynamic derivatives sampling data for girder height 4.5 m.
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C.2 ADs: surrogate models

Figure C.6: Surrogate model for P1*.
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Figure C.7: Surrogate model for P2*.
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Figure C.8: Surrogate model for P3*.
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Figure C.9: Surrogate model for P4*.
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Figure C.10: Surrogate model for P5*.
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Figure C.11: Surrogate model for P6*.
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Figure C.12: Surrogate model for H1*.
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Figure C.13: Surrogate model for H2*.
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Figure C.14: Surrogate model for H3*.
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Figure C.15: Surrogate model for H4*.
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Figure C.16: Surrogate model for H5*.
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Figure C.17: Surrogate model for H6*.
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Figure C.18: Surrogate model for A1*.
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Figure C.19: Surrogate model for A2*.
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Figure C.20: Surrogate model for A3*.
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Figure C.21: Surrogate model for A4*.
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Figure C.22: Surrogate model for A5*.
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Figure C.23: Surrogate model for A6*.



Appendix D

Optimization

The data generated for the optimization algorithm is presented in this appendix.
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Table D.1: Flutter speed for all generated configurations

ht hg Vcr[m/s] ht hg Vcr[m/s] ht hg Vcr[m/s]

180 3.5 71.1 194 3.5 76.2 208 3.5 79.1
180 3.75 62.9 194 3.75 66.2 208 3.75 72.3
180 4 64 194 4 67.9 208 4 74
180 4.25 70.6 194 4.25 74.7 208 4.25 81
180 4.5 64.4 194 4.5 69.7 208 4.5 77.7
182 3.5 72.1 196 3.5 76.5 210 3.5 79.6
182 3.75 63.5 196 3.75 66.7 210 3.75 73.7
182 4 64.8 196 4 68.5 210 4 75.3
182 4.25 71.3 196 4.25 75.3 210 4.25 82.3
182 4.5 65.2 196 4.5 71 210 4.5 73
184 3.5 73.3 198 3.5 76.9 212 3.5 80.1
184 3.75 64.2 198 3.75 67.4 212 3.75 75.2
184 4 65.4 198 4 69.4 212 4 76.6
184 4.25 72.2 198 4.25 76 212 4.25 83.6
184 4.5 65.8 198 4.5 72.9 212 4.5 73.7
186 3.5 74.9 200 3.5 77.2 214 3.5 80.8
186 3.75 64.5 200 3.75 68.1 214 3.75 76.9
186 4 65.8 200 4 70.3 214 4 76.8
186 4.25 72.8 200 4.25 76.8 214 4.25 85.2
186 4.5 66.2 200 4.5 72.2 214 4.5 74.6
188 3.5 77 202 3.5 77.6 216 3.5 81.7
188 3.75 64.8 202 3.75 68.8 216 3.75 78.1
188 4 66.2 202 4 71.4 216 4 76
188 4.25 73.2 202 4.25 77.5 216 4.25 84.7
188 4.5 66.8 202 4.5 73.3 216 4.5 76.4
190 3.5 75.6 204 3.5 78.1 218 3.5 79.6
190 3.75 65.2 204 3.75 69.9 218 3.75 75.8
190 4 66.7 204 4 72.9 218 4 76.1
190 4.25 73.7 204 4.25 78.6 218 4.25 83.6
190 4.5 67.6 204 4.5 75.1 218 4.5 74
192 3.5 75.8 206 3.5 78.5 220 3.5 81.2
192 3.75 65.6 206 3.75 71 220 3.75 75.1
192 4 67.1 206 4 74.5 220 4 77.2
192 4.25 74.1 206 4.25 79.6 220 4.25 83.5
192 4.5 68.4 206 4.5 76.7 220 4.5 73.9
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Table D.2: Total cost for all generated configurations

ht hg Cost [NOK] ht hg Cost [NOK] ht hg Cost [NOK]

180 3.5 2154678461 194 3.5 2104077869 208 3.5 2037496442
180 3.75 2173819683 194 3.75 2088494911 208 3.75 2029349924
180 4 2176541032 194 4 2091064673 208 4 2031797484
180 4.25 2178915975 194 4.25 2093317870 208 4.25 2033952649
180 4.5 2181275800 194 4.5 2095557728 208 4.5 2036095644
182 3.5 2159841638 196 3.5 2092253777 210 3.5 2030846526
182 3.75 2164244515 196 3.75 2077784505 210 3.75 2023375726
182 4 2166944994 196 4 2080335039 210 4 2025807652
182 4.25 2169303067 196 4.25 2082572838 210 4.25 2027950206
182 4.5 2171646454 196 4.5 2084797466 210 4.5 2030080803
184 3.5 2157693008 198 3.5 2081141225 212 3.5 2024723797
184 3.75 2152292256 198 3.75 2067946408 212 3.75 2017894225
184 4 2154970406 198 4 2070478470 212 4 2020310913
184 4.25 2157310500 198 4.25 2072701475 212 4.25 2022441154
184 4.5 2159636232 198 4.5 2074911471 212 4.5 2024559671
186 3.5 2150626991 200 3.5 2070834091 214 3.5 2019072648
186 3.75 2139160693 200 3.75 2058904143 214 3.75 2012871616
186 4 2141816053 200 4 2061418359 214 4 2015273452
186 4.25 2144137841 200 4.25 2063627067 214 4.25 2017391672
186 4.5 2146445523 200 4.5 2065822921 214 4.5 2019498420
188 3.5 2140513340 202 3.5 2061352868 216 3.5 2013866749
188 3.75 2125725330 202 3.75 2050580778 216 3.75 2008270673
188 4 2128358128 202 4 2053077675 216 4 2010658011
188 4.25 2130661821 202 4.25 2055272496 216 4.25 2012764489
188 4.5 2132951623 202 4.5 2057454620 216 4.5 2014859748
190 3.5 2128761977 204 3.5 2052674700 218 3.5 2009121099
190 3.75 2112585898 204 3.75 2042913210 218 3.75 2004047602
190 4 2115196793 204 4 2045393245 218 4 2006420736
190 4.25 2117482932 204 4.25 2047574533 218 4.25 2008515717
190 4.5 2119755375 204 4.5 2049743285 218 4.5 2010599715
192 3.5 2116388144 206 3.5 2044643286 220 3.5 2004904129
192 3.75 2100113003 206 3.75 2035747174 220 3.75 2000148877
192 4 2102702867 206 4 2038210769 220 4 2002508001
192 4.25 2104972161 206 4.25 2040378844 220 4.25 2004591669
192 4.5 2107227941 206 4.5 2042534556 220 4.5 2006664542
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