NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering

Master’s thesis

Dept. of Information Security and Communication

Technology

Anders Aasrum Milje

Detecting Malicious Python Packages

In the Python Package Index (PyPlI)

Master’s thesis in Master in Information Security
Supervisor: Katrin Franke

June 2022

@ NTNU

Kunnskap for en bedre verden

Anders Aasrum Milje

Detecting Malicious Python Packages

In the Python Package Index (PyPl)

Master’s thesis in Master in Information Security
Supervisor: Katrin Franke
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

@ NTNU

Norwegian University of
Science and Technology

Abstract

Sharing open-source software is a common practice in large parts of modern soft-
ware development. Sharing software saves countless resources for developers, not
only because it cuts down on development time but also because it is more robust.
Not every developer has the expertise to implement advanced algorithms, for ex-
ample, machine learning libraries. Often this re-use of software is more reliable
due to the large number of persons who contribute and verify that functionality
works as intended. On the flip side of the coin, hostile actors could potentially
hijack or upload new software packages injected with malicious code. Malicious
contributions that are not discovered in a timely manner in such packages could
cause huge amounts of damage, especially if the package is popular.

This thesis aims to improve on state-of-the-art detection of malicious packages
in the Python Package Index (PyPI). We did this by developing a new method for
static analysis of potential malicious packages, as well as providing an overview
of the current state of security in PyPI, and software package managers in general.
We did this by building on recent research in the field of software supply-chain
security and package managers. We then test an implementation of the method
on a dataset containing both malicious and benign software packages. We use ge-
netic algorithms to optimize parameter sets, which result in two sets of parameters
where we see potential. The first set of parameters resulted in a 60% F-score and
222 alerts when experimenting on our dataset of 441 benign and 97 malicious
packages. With the same dataset, the second parameter set results in an 8-9% F-
score but generates zero alerts. We conclude that our first parameters are suited
for small-to-medium scale analyses of one or more Python packages and their de-
pendencies. Our analysis of the second set indicates it could be suitable for large-
scale scanning of malicious packages, for example, in PyPI. Still, more research is
needed on this topic. As the last contribution, we provide our implementation of
this new method as open-source software [1].

iii

Sammendrag

Deling av apen kildekode er en vanlig praksis i store deler av moderne program-
vareutvikling. A dele programvare sparer utallige ressurser for utviklere, ikke bare
fordi dette reduserer utviklingstid, men ogsé en kan veere mer sikker pé at koden
er robust. Ikke alle utviklere har ekspertisen til & implementere avanserte algor-
itmer, for eksempel maskinlarings-biblioteker. Ofte er denne gjenbruken av pro-
gramvare mer palitelig, pa grunn av det store antallet personer som bidrar og veri-
fiserer at funksjonaliteten fungerer slik som forventet. P4 baksiden av medaljen
kan fiendtlige aktgrer enten kapre eller laste opp nye programvarepakker som er
injisert med ondsinnet kode. Ondsinnet kode som ikke blir oppdaget tidlig nok
kan forérsake enorme mengder skade; spesielt hvis pakken er populeer.

Malet med denne oppgaven er & forbedre den nyeste forskningen pa detekter-
ing av skadelige pakker i Python sitt pakke-register (PyPI). Vi gjorde dette ved &
utvikle en ny metode for statisk analyse av potensielle skadelige programvarepak-
ker, samt gi en oversikt over den ndvarende sikkerhetstilstanden til PyPI, og i an-
dre pakke-registre for programvare generelt. Vi gjorde dette ved & bygge pa nyere
forskning innen verdikjede-sikkerhet (supply-chain security) i apen kildekode og
sikkerhet i pakke-register for programvare. Vi tester deretter var implementasjon
av den nye metoden pa et datasett som inneholder béde skadelig og godartet pro-
gramvarepakker. Vi bruker genetiske algoritmer for a optimalisere parametersett,
som resulterer i to sett med parametere som Vi ser potensiale i. Det forste settet
med parametere resulterer i en 60% F-score og 222 varsler som genereres nar vi
utforer eksperimenter pad datasettet vart med 441 godartede og 97 ondsinnede
pakker. Det andre parametersettet, med samme datasett, resulterer i en 8-9% F-
score, men genererer null varsler. Vi konkluderer med at vére forste parametere er
egnet for smé- til middels-skala analyse av en eller flere Python-pakker, og pakker
de avhenger av. Var analyse av det andre settet indikerer at det kan vare egnet
for analyser i stor skala, for eksempel til skanning etter ondsinnede pakker i PyPI,
men mer forskning er ngdvendig pa dette omradet. Som et siste bidrag deler vi
vér implementasjon av denne nye metoden som &pen kildekode [1].

iv

Acknowledgements

I want to express my special thanks to all the people who supported me through-
out my degree and my thesis.

I'want to thank Prof. Katrin Franke for her valuable guidance and feedback through-
out the thesis and for helping shape my focus. This thesis would not be without
her interest in the topic, for which I am grateful. I also want to thank the lecturers
and staff for their time and knowledge they have shared throughout our courses.

I especially want to thank my wonderful girlfriend, Elisabeth Sgvik, for always
supporting me, being understanding, and providing feedback on my work. I truly
appreciate it. I want to thank my good friend Bartosz Tracz for always taking the
time to discuss what I am currently working on, as well as my good friends and
roommates Isaksen, Jannis and Trym. I would like to thank my mom, my sisters,
and the whole family for love and support. Last but not least, I want to thank my
fellow students and friends for feedback, discussions, and support over the course
of my degree.

The last few years have been difficult for many, so I appreciate you all for making
mine easier.

Contents

Abstract e iii
Sammendrag e iv
Acknowledgements v
ContentsSt e e e e e e e e e vi
Figures e e viii
Tables X
Code Listingst i it ittt e e e xii
1 Introduction 1
1.1 Background. e 1
1.2 Motivation it e e 3
1.3 Expected Impact.ot i v vttt e e 4
1.4 OVEeIVIEW it e e e e e 4

2 Stateofthe Art 6
2.1 Theoretical Foundations 6
2.1.1 Python 6

2.1.2 Packages 7

2.1.3 Package Managers 7

2.1.4 Compiled vs. Interpreted Malware Analysis. 8

2.1.5 PythonBytecode0....... 9

2.1.6 Typesof Malware00uiiuenin.. 9

2.1.7 Malware Detection 10

2.1.8 Malware Analysis 11

2.2 Literature Analysis and Related Work 12

2.2.1 Vulnerabilities and the Security of Open Source Registries . 12
2.2.2 Typo- and Combo-Squatting for Dependency Confusion . . . 14

2.2.3 Code Security Testing for Python 14

2.2.4 Static Analysis to Detect Security Issues 15

2.2.5 Dynamic Analysis of MaliciousCode 16

2.2.6 Scanning Open Source Registries 17

3 Methodology 18
3.1 Defining Maliciousness and Malicious Behavior 18
3.2 TheDetectionModel 19
3.2.1 Fields& Weights 23

3.22 Rules e 28

vi

Contents vii

3.2.3 Pre-processing of the Abstract Syntax Tree 29

3.2.4 The Approach to Obfuscation 30

3.2.5 Experimentst 33

3.3 Dataset 35
3.3.1 Malicious packages 36

3.3.2 Benignpackages 36

3.4 MetriCs . . . o i e 36
3.5 NSDApplicationo i it i e 37

4 Experimental Designand Results 38
4.1 Experiment SetUp v v v v v i v it et e e e e e 38
4.1.1 Genetic Algorithms for Optimization 39

4.1.2 Acquiring the Datasets 40

4.2 Implementationt 43
4.3 Results. e 45
4.3.1 TheImpactof TFFIDF 45

4.3.2 Experimentation ona SingleFile 45

4.3.3 ExperimentsontheDataset 48

4.3.4 Control Experiments.y 50

4.3.5 Experimentswith TE-IDF 52

4.3.6 Experiments without TE-IDF 55

4.3.7 Experimenting with TF-IDF Disabled for Imports 58

4.3.8 Changing the IDF-function 60

4.3.9 Experimenting with alternate DF and disabled imports ... 63

5 Discussionand Conclusion. 65
5.1 ExperimentalResults 65
5.2 Experimental Design 71
5.3 Limitations 72
5.4 VALY © o oo oo e 73
5.5 Conclusion 75

6 Future Work 76
6.1 Methodology & Experiments 76
6.2 Implementationttt 77
6.2.1 Big Data, Cloud, and Edge Computing 77

6.2.2 Performance and Profiling 77

6.2.3 Cachingofresults 77

6.2.4 ImprovedRules............ 78

6.2.5 Support for Different Python Versions 78

6.2.6 Dynamic Analysis Through a Modified Interpreter 78
Bibliography e 80
A HowlIPsMade 85
B The Default Setof Rules 86
C Common Words Used in Creating Canaries 89
D Genetic Algorithm Configuration. 920
E All Experiment Result Tables 92

Figures

1.1

2.1

2.2

3.1

3.2

3.3
3.4

3.5

3.6

A fictitious example of dependencies in a Study Planning app. The
grayed-out dependencies are ones that might be hidden from the
developer because of theirdepth., 2

A graph showing how an interpreted language requires another de-
pendency for being able to execute on an operating system. A com-
piled language is able to run directly on the (supported) operating

SYSTEIML. . . v i v i e e e e e e e e e e e e e e e e e 8
A diagram showing the higher level steps of the Python interpreter
when you run a Python program from its text representation. 10

A graph we created to show a simplified model of how a lot of
malware operates.. e e e 19
A graph showing the general processing pipeline of the detection
model work on a conceptual level. Our data is matched against
rules, anomaly detection, and canaries to create bulletins. Also,
note that TF-IDF affects the bulletins generated for functions and
IMPOItS. . . . o o e 20
A graph showing how the data is processed on a more detailed level. 21
This graph shows how the fields are aligned vertically with the code.
The fields follow the line numbers in other words. - The example
code shown is a vulnerable calculator app. The applications is vul-
nerable due to the use of the exec-function to evaluate mathem-
atical expression, as it will evaluate all input as code. The exec-
function is a common function to look for when searching for ma-
licious activity. o v it e e e 22
A graph showing the evaluation process after the bulletins have
been created. Here we can observe that all bulletins are generated,
and then later decided if they are shown or not based on the peak
of the hotspots. Notice how the first two steps here are conceptually
identical to the last two in figure 3.2. 24
Normal Distribution Probability Density Functions (PDFs) - Source:
Wikimedia Commons contributors [42] 25

viii

Figures ix

3.7 An example showing 'print("hello world")’ when converted into an

3.8 An example showing how simple string concatenation is converted
into an AST. This example is based on the Python code ’print("hello
THwo" +'rld") L 31

4.1 Control experiments - F-score and fitness for the control experi-

ments compared. i e e e e e e 51
4.2 Experiment 1 to 3 Best Weights Full Run - F-Score, bulletin count,

and fitness are shown for a full run for the best weights from each

experiments (highlighter in 4.4. We can tell that experiment 3’s

weights performed thebest.. 53
4.3 Experiment 4 Best Weights (10th generation) Full Run - com-

pared to previous results - F-Score, bulletin count, and fitness are

shown for a full run for the best weights from each experiments. -

The new additions are colored, while the previous ones are grayed

OUL & o e e e e e e e e e e e e e e e e e e e 56
4.4 Experiment 7 Best Weights (10th generation) Full Run - com-

pared to previous results - F-Score, bulletin count, and fitness are

shown for a full run for the best weights from each experiments. . . 59
4.5 Experiment 1 and 3, w/ DE Best Weights Full Run - compared

to previous results - F-Score, bulletin count, and fitness are shown

for a full run for the best weights from each experiments. 61
4.6 Experiment 1 and 3, w/ DE Best Weights Full Run - compared

to previous results - F-Score, bulletin count, and fitness are shown

for a full run for the best weights from each experiments. 64

5.1 Weight comparison of Ex. 3 and Ex. 7 (both are the 10th generation
weights from their respective experiments.) 68
5.2 Weight comparison of Ex. 4 and Ex. 7 w/ DF Calls Only (both are
the 10th generation weights from their respective experiments.) . . 70

Tables

3.1 A table showing the different weights we can optimize. We split
them into two parts; the ones for the fields and the ones for the
TF-IDF weighting. i

3.2 The different classifications we use and what they mean in our con-
L

4.1 An overview of our concrete experiments. Experiments 1 through
3 are with TF-IDF, and experiments 4 through 6 are with TF-IDF
disabled. Experiment 7 is an extra experiment we perform.

4.2 Control experiment using all weights set to 1.0. - Ex. 0 has TF-IDF
and Ex.0.1doesnot.

4.3 Control experiment 0.1 - Optimized for F-score only (TF-IDF on
function calls and imports, train/test split, only malicious samples).

4.4 Results from experiment 1 to 3 (as shown in or overview table
4.1) - The best results for each column are highlighted in bold
for each experiment. - The generations highlighted in cyan were
deemed the best for that experiment.

4.5 Full run with the best weights from experiment 1, 2 and 3 + con-
trols 0 and 0.1 - A graph of this can be seen in figure 4.2 - The best
results from experiment 1, 2 and 3 are highlighted in bold.

4.6 Optimized weights from experiment 1 to 3 (from table 4.4)

4.7 Results from experiment 4 to 6 (as shown in or overview table
4.1) - The best results for each column are highlighted in bold
for each experiment. - The generations highlighted in cyan were
deemed the best for that experiment.

4.8 Experiment 4 10th generation - All samplesrun

4.9 Optimized weights from experiment 4 to 6 (from table 4.7) - We
can discard the last two weights, as they are TF-IDF weights.

4.10 Results from Experiment 7 - Import TF-IDF disabled (train/test
SR . . . e

4.11 All samples run with 10th generation weights from Experiment 7 -
Import TF-IDF disabled.,

50

50

57

Tables xi

4.12 Weights for Experiment 7 - Import TF-IDF disabled (train/test
split) - The TF-IDF weight for imports can be ignored here, as it is
notused. it e e e 59

4.13 Results from experiment 1 to 3 with DF instead of IDF (as shown
in or overview table 4.1) - The best results for each column are
highlighted in bold for each experiment. 60

4.14 All samples run with weights from Ex.1 (5th gen.) and Ex. 3 (Ist
and 5th gen) changing IDF to DF. We also include Ex. 2 w/ DF since

itcan be comparedtoafullrun. 60
4.15 Optimized weights from experiment 1 to 3 with DF instead of

IDF (from table 4.13) @ 62
4.16 Results from 10th generation weights in Ex. 7 w/ DF on Calls . . . 63
4.17 All samples run with 10th generation weights from Ex. 7 w/ DF on

Calls. o e 63

Code Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

The structureofarule 28
An excerpt of two rules we defined for our default rule set. 28
An example of numpy code using aliasing. 29
Example of numpy code without alasing. 29
An example of function aliasing 29
A simple Hello World example. 30
A simple Python program concatenating a string. 30
An example of the word import being used as a canary to match on

a Base64-encoded string. oo 32
An example of a canary not matching due to padding in the encoding. 32

3.10 An example showing how we decide the cut-off point for canaries.. 33

4.1

4.2

4.3

A snippet of code used to control our experiments inside the virtual

machine from our host machine., .. 39
An example of how malicious lines of code are labeled for a single

packages. e 42
A sample malicious file for testing. 45

xii

Chapter 1

Introduction

This chapter will introduce how software developers use open source software re-
gistries today, then go on to introduce the problem of thwarting malicious activity
and keeping these registries safe to use.

1.1 Background

If you yourself are a developer or know someone who is, there is a big chance they
have been using other people’s code in their work. The modern approach to soft-
ware development revolves a lot around using shared code from other software
developers or engineers for example. The reasoning behind using existing code is
that it saves time. This shared code could be a library for machine learning, ad-
vanced mathematics, linguistics, some complex data structure, or something en-
tirely else. Sharing pre-existing code between developers saves countless hours,
not just because it saves development time, but also because not all developers
and engineers have the expertise to implement machine learning algorithms cor-
rectly for example. This shared code is often maintained either by programmers
working at companies or by volunteers who spend their spare time giving back
to the community. If you pick a reasonably popular, well-backed, or long-running
project, chances are this code has a high guarantee of working as expected. It
might even come with documentation, tutorials, and a support forum. Figure 1.1
shows a simple fictitious example of how dependencies of a project might be struc-
tured. The examples are meant to illustrate the point that only using a couple of
dependencies for your work could include many more than at first expected.

All these upsides contribute to being more productive as a developer, with
hopefully less time spent debugging advanced functionality.

For the past decade, there has been an emerging phenomenon called social
coding[2]. One popular example of a social coding platform is GitHub [github].
GitHub allows any user to register and upload code, where the goal is usually to
be able to share this with other developers. If you can use this code is a matter of
licensing, though, which is out of the scope of this thesis. This platform allowed
the bar to share code to be lowered substantially. You no longer had to set up a

Chapter 1: Introduction 2

Date Calculation Library -\

Datetime Library —\
Timezone Library —/ Calendar widget -\

Scheduling Functionality —/ A 'Study Planning-App

Text editor _/

Figure 1.1: A fictitious example of dependencies in a Study Planning app. The
grayed-out dependencies are ones that might be hidden from the developer be-
cause of their depth.

website, chat group, or email list to distribute or share your code !. Today it is
also very simple to share a piece you just developed online.

In June of 2019, one of the largest registries for software packages registered
over 1.3 million uploaded packages [3]. In this registry, you can find functionality
for a good chunk of what you want to accomplish in your work. It is easy to use
code you just found, but we should stop considering the consequences of using it
just before we integrate it into our project. Further, in the thesis, we will discuss the
downsides of having such a plethora of code and functionality at your fingertips,
raise some awareness, and show what is being done to make this plethora of code
safer to use.

The increased usage and reliance upon such code-sharing platforms, often
called registries, while also asking the question if it is reliable also introduces the
problem of trust and security of its usage. Code shared in these registries is often
called packages or modules. A package can be a small piece of code, a library,
or an entire solution ready for use. This means the size of a package can vary
substantially, yet they are all equally easy to download and use in your work.
Packages such as these are no stranger to vulnerabilities or bugs just like any
other software.

The downside to using packages without proper forethought is that they might
have security vulnerabilities, or that their handling of those security vulnerabilit-
ies is not up to the standards required of your work. We often refer to packages
used in existing work as dependencies. Dependencies, just like your own software,
could include bugs or security vulnerabilities of varying severity 2. There are also
examples of dependencies being deliberately uploaded with malicious content, or
have the dependencies compromised and injected with malicious code 3.

A common view on security in open source is that more eyes mean fewer vul-
nerabilities. This is called Linus’ Law and was investigated by Prana et al. in their

1Or sort cards and punch it into a machine for that matter

Zhttps://arstechnica.com/information-technology/2021/09/npm-package-with-3-million-
weekly-downloads-had-a-severe-vulnerability/

Shttps://www.vice.com/en/article/dypeek/open-source-sabotage-node-ipc-wipe-russia-
belraus-computers

Chapter 1: Introduction 3

recent work where they found no correlation between better or worse handling of
security vulnerabilities based on a number of contributors [4]. Their contributions
will be highlighted more in the next chapter.

A different study found that security regarding such dependencies is often
enforced if it is a company policy, or if the company has a pre-approved library
open-source library they require developers to use [5]. Prana et al. also recom-
mend an approach of having a list of approved libraries the developers can use
in their work. This may of course be difficult in some scenarios, and dependency
management has its own research.

A common word for talking about dependencies in the project is the supply
chain. A supply chain attack is sometimes used to refer to compromised pack-
ages. The European Union Agency for Cybersecurity (ENISA) describes in their
threat landscape report what constitutes such a supply chain attack [6]. The key
takeaway here is that such an attack requires two attacks; (1) one on the supplier,
and (2) one on the customer. They also attributed around 50% of attacks to ad-
vanced persistent threats (APT), which are typically regarded as state-sponsored
or well-resourced criminal enterprises [7, p. 341].

In the next part, we will discuss how these concerns around security and the
use of open-source dependencies relate to the work in this thesis.

1.2 Motivation

While there is research in the area of dependency management and for example
how long vulnerabilities are undetected in open source code, there is a growing
interest in looking at dependencies with malicious intent. The motivation for this
work is to look at the problem of security vulnerabilities through the lens of it
being malicious code. The difference between a vulnerability and malicious code
is only the intention.

Malicious code will from this point onward in this thesis indicate that the code
is malicious by intent, and not by accident, such as a bug made by a developer. If
a bug is introduced with the intention of being malicious, then it will be regarded
as malicious by our definition.

We will therefore in this thesis explore the process of detecting potentially ma-
licious packages in the Python Package Index (PyPI). This repository is the official
one for the Python programming language. With over 370’000 projects contrib-
uted by over 580’000 users [8], having over 500 million downloads every day [9],
and a full clone of all released packages amounting to 10.9 terabytes of storage
[10], it can be regarded as one of the largest repositories used by developers.

Franke et al. in the book Digital Forensics [11, p. 313] highlights the issue of the
huge amount of unstructured data digital investigations face today as a key chal-
lenge. We can draw some parallels from digital needle-in-a-haystack problems,
with the task at hand in this thesis, even though this project does not investigate a
police case or similar, there are some parallels when it comes to the sheer amount
of data and the difficulties of sifting through it.

Chapter 1: Introduction 4

Now knowing more about the subject of inquiry, we will next talk about the
impact our work has with this motivation in mind.

1.3 Expected Impact

Through the work in this thesis, we aim to advance the state of the art in detect-
ing malicious packages using static analysis. We expect to show an experimental
design to alert on malicious activity inside packages while testing using a relatively
small dataset.

The second goal is also to present findings from the literature and recent stud-
ies on vulnerabilities in open source registries, as well as the existing research on
packages or dependencies that are regarded as malicious and the current tech-
niques for finding such code.

The last goal of this work is to provide an easy-to-use and extendable imple-
mentation for developers and security analysts to use. We want to provide this
implementation as open source. The future work section of this thesis will discuss
improvements that could be made to this, as well as other techniques and ideas
that would be interesting to explore in the future. Our impact is made through
answering our research questions.

Research Questions

Tackling the problem of knowing whether to trust this piece of code on the inter-
net in your own software is difficult, and this project expands on existing research
done in this field. To find solutions to this problem, this thesis explores the fol-
lowing research questions:

e RQ, What is the current state of security for the python package index
(PyPI)?

e RQ, How can we improve the state-of-the-art detection of malicious code
in the Python package index (PyPI)?

® RQ; How can we give developers more autonomy in ensuring that their
applications are safe from compromised dependencies?

1.4 Overview

After this introduction to prepare the reader for the coming chapters, we introduce
some background on the ecosystem we are working in, as well as some concepts
that are important to cover such as what a package is. The chapters have been
written in such a manner that reading it from start to finish will be coherent, yet
any single chapter can be read without all the prior ones, though they will contain
both back and forward references.

Chapter 1: Introduction 5

Further, in the methodology section, we will introduce what we did and why.
Next, we showcase how the methodology was implemented and present the ex-
perimental results.

The rest of the thesis focuses on discussing the results and their limitations,
as well as giving a conclusion on what we have done. The very last section is on
what we think efforts should be focused on in the future. Here we will present
what we think will further the implementation made for this thesis.

At the end of the thesis, you will find an appendix with content that was not
suitable for any other chapter, or extra information that might be of interest. All
appendices are referenced somewhere in the main parts of the thesis.

Next, we will jump straight into the state of the art.

Chapter 2

State of the Art

Below we have divided the chapter into two parts. First introduces theory which
is necessary to understand the previous work in the field, as well as to help in
understanding the methodology later. This includes a bit about the Python pro-
gramming language and the ecosystem that surrounds it.

The second part of the chapter presents previous work done in the field of
finding malicious packages in both PyPI (more on this below) and other open-
source registries, as well as presents different techniques used to find malicious
packages and provides.

2.1 Theoretical Foundations

This section provides background on what a package is, what place this has in
package managers and the difference between different package managers. Fur-
ther, we introduce the Python programming language and its official package man-
ager. Then close on some theories related to malware detection and analysis.

2.1.1 Python

Python is the language in which the malware in this report is written. It is an inter-
preted high-level dynamically typed programming language. Dynamically typed
means it can figure out the type of a variable based on its contents, in contrast
to strongly typed languages where you have to define an int variable for integer
content. Therefore, it is an advantage to understand a bit about what the Python
programming language is and how it works.

Another critical design decision is necessary to cover; the Python program-
ming language uses indentation to determine scope by default. This means text
representation programs often follow a pattern because it needs indentation to
structure itself. Code can sometimes be minified, which is compressed to for ex-
ample a single line of code. Python does have functionality for this, and supports
semicolons ending statements, but is not used much.

Chapter 2: State of the Art 7

The simple syntax makes it the first language to learn for many students and
interested hobbyists. Python is used for both web applications, data science, and
scripting!.

The Python programming language is governed by the Python Software Found-
ation (PSF) as a non-profit corporation. The PSF is sponsored by large corpora-
tions such as Microsoft, NVIDIA, Huawei, Meta/Facebook, etc [12].

If you want to share Python code via the open-source registry, you would prob-
ably use the Python Package Index (PyPI). In this registry, we regard a piece of
code for a package, described further below.

2.1.2 Packages

Most programmers are familiar with the concept of libraries or modules, a way of
encapsulating functionality such as classes, interfaces, and functions in a manner
that makes it easier to reuse in other projects. A package is a collection of libraries,
executable programs, or scripts that are useful for others. A package, therefore,
does not have to be a library intended for re-use. It could be a command-line
application for converting audio for example.

2.1.3 Package Managers

Those familiar with Unix-like operating systems such as Debian, and CentOS might
be familiar with package managers such as apt or yum. Packages found in these
package registries provide both libraries and fully-fledged programs such as Fire-
fox. Let us call these user-space package managers (USPM). This thesis will fo-
cus on programming ecosystem package managers (PEPM). The main difference
between package managers in programming ecosystems is that is programming
language agnostic. While PEPMs are solely for that specific operating system.

Some package managers are what could be called official. For example, the
Ubuntu Foundation distributes both the operating system and controls the apt
package manager, which is why you would call apt the official package man-
ager for the Ubuntu distribution. An example of a non-official package manager
is Homebrew [13], which is not officially controlled by the same governing entity
(in this case Apple) that controls the operating system it runs on.

This report works with what we call PyPI, which is described in the next sec-
tion. The official package manager for Python, called pip, works by downloading
packages from PyPI.

Python Package Index (PyPI)

The Python Package Index (PyPI) is governed by the Python Package Authority
(PyPA), which is a working group under the Python Software Foundation (PSF)
that works on tools used for packaging Python modules and code [10].

! Automating tasks or doing simple operations not worthy of a full software solution.

Chapter 2: State of the Art 8

2.1.4 Compiled vs. Interpreted Malware Analysis

To better understand the types of malware, and the techniques used in this re-
port we will present the difference between analyzing interpreted and compiled
malware.

We will firstly begin covering compiled malware. Firstly, when code is compiled
it loses its text representation, which is the most important difference for us. In
short is malicious code being compiled to machine code, or bytecode meant to
run in some higher-level virtual machine or runtime. Some examples of machine
code compiled languages are C, C++, and Go. Examples of languages compiled
to bytecode could be Java, which is compiled to the Java Virtual Machine (JVM),
or C#, which is compiled to the .NET runtime. This generally means the compiled
code can run right on your computer. It might need a runtime or some other
libraries installed for it to work, though.

In comparison, we have interpreted malware. This is code that has no need to
be compiled and will be interpreted by another program when it is time to run.
Popular examples of this are JavaScript and Python. The finished code is left in its
text representation?. The Python language requires you to use the Python compiler
to basically compile the language as it is run. Figre 2.1 shows the execution model
for a compiled and interpreted language.

Development Compiled Interpreted
: Interpreter /
Runtime
Execution
\4 i

Operating System

Figure 2.1: A graph showing how an interpreted language requires another de-
pendency for being able to execute on an operating system. A compiled language
is able to run directly on the (supported) operating system.

When malware is compiled to machine code, for example, you lose the plain
text code, which would make the program easier to understand. Doing a static
analysis of such malware entails reading assembly code. Doing such static analysis
of malware in an interpreted language like JavaScript or Python would be reading
the actual code being run. This code could of course be obfuscated in some shape
or form to hinder analysis. The dynamic analysis would look similar; looking at
what artifacts the execution of the code would manifest on a computer.

Python is considered an interpreted language, but it does have a bytecode ele-

2Not accounting for minification or obfuscation done when releasing the code.

Chapter 2: State of the Art 9

ment to it, which is important to cover.

How the Python Interpreter Interprets

To introduce bytecode for Python we first have to take a quick detour to investigate
how Python code is being run.

When a Python program is being run by the interpreter, the program used to
execute program programs, the code is first parsed into tokens through lexical
analysis. This process converts information like ’class HelloWorld’, into the tokens
LOAD_GLOBAL and CALL_FUNCTION, for example. The next step would be to
create an abstract syntax tree from the list of tokens created in the previous step.

Abstract Syntax Tree (AST)

An abstract syntax tree (AST) is very useful for understanding a piece of code
from a computational perspective. The code is reduced into its most, well, abstract
form. It is a standardized representation of Python code that is agnostic of code
structure and naming schemes.

In chapter 3 we will discuss how we traversed such an AST.

2.1.5 Python Bytecode

After the Python interpreter has converted text into an AST, it then converts this
tree into a bytecode representation. This is similar to assembly, where you have
rudimentary instructions for operations such as loading a variable, storing a vari-
able, and adding or multiplying. This bytecode is then run by the python inter-
preter at runtime. Figure 2.2 shows the higher-level concepts of the Python inter-
preter.

Python is most often shared in its text representation, but the official python
interpreter does have a caching function that stores the compiled code locally. The
language also has integrated functionality to compile and run new code at runtime
inside a program. This means that loading Python code from an already running
Python program is easy to achieve. In the section regarding datasets, we will see
why knowing this is possible is important.

Now that we have covered a bit about how the ecosystem for Python works,
and how the code is run, we will look into some relevant literature on malware.

2.1.6 Types of Malware

Sikorski and Honing in their book Practical Malware Analysis [14, p. 3] explain the
most common terms for malware. Since the release of the book, there have been
some new additions of malware, such as ransomware and coin-miner. The authors
mention that during analysis you should not get too invested in picking the proper
category for your malware, but for us, it gives us an easier way of talking about
threats and explaining our dataset.

Chapter 2: State of the Art 10

Development Develop a Python script

Parse text to tokens

Create AST

Running a program

Generate Bytecode

Execute in VM

Figure 2.2: A diagram showing the higher level steps of the Python interpreter
when you run a Python program from its text representation.

The first term we want to explain is a trojan or backdoor, this type of mal-
ware is a type that installs itself on a computer to give (illicit) remote access to
an attacker. A backdoor could be a misconfiguration in software that allows ac-
cess, such as standard passwords for logins, and a trojan would be some sort of
malicious program that grants remote access through its own functionality.

The next term we want to describe is downloader. This is a definition of a
malicious program whose intention is to download another malware. The down-
loader itself does not have the malicious functionality you would expect from a
trojan, and its only purpose is to fetch a malicious payload and somehow install
or execute it.

The last definition we will present is information-stealing malware, this type
of malware does not have the fully-fledged functionality to take remote control
of your computer, but instead collects and ex-filtrates certain information it is
programmed to find. This could be local documents, network information, locally
stored cryptographic keys, or anything else the program might have access to.

The last part of our theory quickly covers how malware is generally detected
and analyzed.

2.1.7 Malware Detection

Before we can analyze malware we first have to detect it. Malware detection is the
act of trying to detect malicious code on a computer or in a network. This might be
done in several ways depending on if you are monitoring a computer, network, or
both. There are two theoretical definitions we will use to separate malware detec-
tion. Stallings describes these terms in their book on network security essentials
[7, p. 382].

The term signature detection, or rule-based detection, works by writing rules

Chapter 2: State of the Art 11

or searches to find similar-looking pieces of programs or network traffic. This is
often done by finding unique strings in known malware, such as IP addresses or
domains used for communication, or messages inside the program. We can also
match on a set of unique bytes that would identify a specific program containing
malware. The same would apply to network traffic, where an analyst would try
to find unique features for the network traffic a certain malware would produce
when communicating with the outside. Two downsides of rule-based detection
are that even simple text obfuscation can counter it and that the malware has to
be known ahead of time®.

The second term anomaly detection, or sometimes statistical anomaly detection,
is used to describe the act of detecting malware based on it doing things that are
not normal in your network or on a computer. This type of detection could detect
unknown malware, in contrast to rule-based detection, which is a big advantage.
Such detection can either use thresholds to determine when some activity is sus-
picious enough to get flagged for analysis or create an activity profile for a user,
network, or program, and statistically determine when that activity falls out of its
normal operation.

In the methodology chapter, we will see how this report uses both rule-based
and anomaly detection with thresholds to try to detect malicious code. First, we
will shortly explain some malware analysis techniques.

2.1.8 Malware Analysis

The book Practical Malware Analysis by Sikorski and Honing gives a great intro-
duction to malware analysis techniques [14]. We will introduce the relevant terms
from it such that we can better explain the methodology and reasoning in this pa-
per.

The two most basic terms we will introduce are static and dynamic analysis.
Static analysis entails looking at the program to understand it without running it.
The book describes this in the context of analyzing compiled malware. As previ-
ously mentioned our Python malware is not compiled when shared, and is, there-
fore (mostly) in its text representation form, so this works a bit differently for us,
but the core concept is the same; the program is not run during static analysis.
This is also the technique used for this report, but more on that in a later chapter.

The second technique called dynamic analysis executes the program to figure
out how it actually behaves when executed. During execution an analyst would
look at certain parts of the computer, such as the file system, to determine if any
new files were generated by the program. The dynamic analysis also fully omits
any obfuscation used in code to make it harder to understand during static ana-
lysis. The downside is that dynamic analysis actually requires one to run the pro-
gram on a computer in a controlled environment. Some malware also employs
techniques to stop execution if it detects it is running in a closed environment,

3You can, of course, create rules for malware you think will arrive in the future, but few of us
possess the ability to foresee the future with such accuracy.

Chapter 2: State of the Art 12

which would be used for analysis. This report does not perform dynamic analysis,
yet we will discuss it in related and future work.

Malware analysis is itself a field of study, as a consequence, the nuances of
basic and static analysis and their up-and downsides are omitted from this section,
as it would require more room in this report than we have time for. The previous
book on Practical Malware Analysis goes deeper into this topic if you feel interested
in learning more.

Finishing on the theory we move on to present related work.

2.2 Literature Analysis and Related Work

This section will present previous and related work in the field. The work is mostly
centered around the security of large open-source registries like PyPI and NPM*.
We would still consider this an emerging field that is increasingly relevant.

The field of studying open source software has had a fair amount of published
works in recent years; a lot of these focus on vulnerable packages, how long they
are present, what variables might affect them, and if a user is affected by a security
vulnerability [4, 15-18]. There is also a lot of research on detecting backdoors in
PHE but we only cite one paper that focuses on finding these in Python code [19].
This means there are not a lot of relevant works to choose from, and we try to
cover all the published works that are relevant to us.

We used both the Google and Google Scholar search engines to get the biggest
reach, and the keywords we used to locate our sources were "package managers",
"supply chain attacks", "open source/open source registries", "dependencies", and
"security testing". The two strings we used that yielded the most results were "se-
curity testing open source dependencies" and "detecting malicious code python".

After finding the initial papers we used their references to locate more papers
within the field. When we started seeing the same papers several times, we began
to feel like we had found the most impactful works. Since the field of supply chain
attacks and open source dependencies has many recent additions, we recognize
there might be newer works that we have missed in the process of writing this
thesis.

We would also like to point out that most books that were cited in this thesis
came from courses we have had over the past years.

2.2.1 Vulnerabilities and the Security of Open Source Registries

Decan et al. released a paper in 2018 where they did an empirical study of 400
security reports over a six-year period in the NPM registry. At this time the registry
contained over 610’000 packages. Their analysis concluded that the number of
vulnerabilities is growing over time and that they generally take a long time to
get fixed by the developers. They mention that it takes about 52 months for 50%

“For the NodeJS-ecosystem - Meaning JavaScript and TypeScript mostly.

Chapter 2: State of the Art 13

of all low severity vulnerabilities to be fixed. Other findings include that older
packages (over 28 months old) get the most vulnerabilities reported. While these
security issues get fixed pretty quickly after they are discovered, a large portion
of packages is still vulnerable due to upstream packages (which means packages
they themselves are dependent on). They mention the use of too restrictive version
locking as something that might halt an automatic update of a dependency in
a package to a safer version. One of their actionable recommendations is that
developers report their vulnerabilities to a common database, such that others
can check their own projects [15].

Pashchenko et al. bring up the discussion that a security vulnerability in a
library should be considered an issue if it is not being used in your application.
They argue a lot of resources might go to converting code to another version or
library because the functionality that is not being used is a vulnerability. This also
shares similarities with halted libraries, which are also discussed. Halted libraries
are libraries that are no longer maintained. Any security vulnerability in these
would mean one has to create their own fix to the issue or migrate to another
library. In their analysis of 200 popular Java open-source libraries, they also found
that developers are able to fix 82% of vulnerable dependencies in their projects
[16].

Ponta et al. recognized the need for a tool to analyze if vulnerable parts of
a library were actually reached by their own code. They found their developers,
especially the security aware of them, were reluctant to use meta-data tools, as
these can generate many false positives for vulnerabilities that are not used by
their application. The same developers also feared using yet another static analysis
tool. They then developed an internal tool that utilized both static and dynamic
analysis to assess if a project used a vulnerable part of another dependency to give
more precise feedback to the developers [17].

Prana et al. found that certain metrics from projects, such as activity level,
popularity, and developer experience did not turn into worse or better handling
of vulnerabilities in dependencies [4]. They investigate the claims that fewer or
more developers on a project improve its security, and found that you are likely
better off reducing the number of direct dependencies instead of recruiting more
developers or personnel. A solution they present is to use a bigger library that does
more and has a good track record of updating their code. They mention the use of
software composition analysis (SCA), which can be used to identify dependencies
of projects and whether or not they have security vulnerabilities reported in them.

Alfadel et al. did an empirical analysis of vulnerabilities in Python packages
[18]. They found an increasing number of vulnerabilities being discovered, and
that they can take up to 3 years before being discovered (on median), regardless
of their severity. This matches well with the findings from Decan et al., which we
introduced at the beginning of this section. They also mention a study where a
high number of projects were actually safe because the project did not utilize the
vulnerable code, which again brings up the discussion on vulnerability reporting
and its preciseness of it. Further, they bring up DependaBot, which GitHub has

Chapter 2: State of the Art 14

required. This is a bot that automatically checks dependency configurations of
projects and updates them.

2.2.2 Typo- and Combo-Squatting for Dependency Confusion

One of the first works we found in the literature search for this project was a
project by Tschache [20]. They performed a practical experiment by generating
fake package names based on real ones using Levenshtein distance to trick un-
suspecting developers to download their decoy packages. They uploaded their
own fake package with a callback function, which was executed on installation
by the developer. They found that 17°000 install would have executed their code,
which could have potentially been malicious. They found that 50% of these installs
were done with administrator rights and that much-used packages could be sus-
ceptible to typo-squatting attacks if they for example change their name between
versions. Their work has been cited by many papers we have cited in this report.
While Tschacher used edit distance to their own typo-squatted packages, Duan et
al. [21] in their work used it to track down suspicious packages by measuring how
many packages were alike official ones.

The problem that Python packages also had, and much still have, is the ability
to execute code on installations. This is meant as a feature for compiling C-code
extensions for example, but this can of course be used maliciously.

Vu et al. present methods to identify suspicious packages by measuring their
likeness to built-in modules (which should not be on PyPI) and other popular pack-
ages. They talk about both typo-squatting, which we have already mentioned, and
combo-squatting, which is a term for combining words in package names using
hyphens, or rearranging words. They put attack vectors for supply chain attacks
into two different categories, where one way is to hijack the author’s credentials
and upload a malicious version, while the other is to upload your package and
somehow trick the users into downloading it [22].

2.2.3 Code Security Testing for Python

Although not literature, the nature of the project means we also need to get prac-
tical to solve the issue of finding malicious packages. This section is dedicated
to some tools and services we have found that could increase the security of a
project by comparing them on some accounts. This is also to give the reader an
introduction to what already exists in the ecosystem for developers.

A third-party application and service called Safety will check your require-
ments (e.g. dependencies) in your Python project and report on known vulnerab-
ilities in versions that have been added to their database. It is administered by a
Canadian cyber security company specializing in supply chain security. The tool is
solely based on metadata of dependencies and already known vulnerabilities [23].
Requires.io that provides the same kind of concept as a service [24]. DependaBot,
which was mentioned earlier by Alfadel et al., is a bot now owned by GitHub to

Chapter 2: State of the Art 15

automatically update dependencies in the project by creating pull requests°[25].

Bandit is a static analysis tool for detecting security issues in Python code by
analyzing the abstract syntax tree (AST). Bandit runs on plugins and then gives
a report back to the developer or analyst [26]. They have a plugin system that
makes it easy to extend. Detect-secrets is another command-line application to
detect strings and secrets® in your project. This is useful to run before committing
your code to a public repository, or when doing a security analysis of open-source
software for example.

There are also services that specialize in providing security analysis of code as
a service. Services such as JFrog[27] and Snyk[28] are some examples to name a
few. Snyk operates in the same realm as DependaBot and requires.io (which we
previously mentioned) to analyze dependencies of projects and to give feedback
to the developer on vulnerabilities in these. JFrog has worked to automatically
identify malicious packages on PyPI, and has released the results from these efforts
as blog posts on their website [29-31]. Many of the packages they discovered are
in the dataset we are using in this report.

2.2.4 Static Analysis to Detect Security Issues

We have already presented some solutions and programs that are freely available
to use for security testing in Python but will do so for one more section. While we
still are in the realm of (mostly) static analysis, we present the work of Micheelsen
and Thalmann in their 2016 master thesis [32]. They created a static analysis tool
called Python Taint[33]. Their tool bases itself on the theoretical foundations of
control- and data flows inside Python programs to detect unsanitized inputs. This
allowed them to be able to detect SQL injection vulnerabilities by static analysis.
They did this by tracking sources and sinks to determine where user-submitted
data was flowing into the application. If some user input flowed into a sink that
was determined dangerous (e.g. an eval command) the tool gives feedback to
the developer on this. The project is now discontinued, but a large social media
corporation has incorporated the same concept in one of their type checkers’. Their
implementation called Pysa allows security engineers to generically define sources
and sinks from previously known security bugs, which can then be used to search
the code base for similar data flows [34].

Vu et al. proposed a static analysis technique to detect injected code in pub-
lished packages. The technique performs metadata mining to locate a public source
code repository for a given published package and compares its contents. If there
is new code in the published version that is not visible in the source code reposit-
ory, it should be flagged for analysis or similar [35].

>A request to submit a code change in a repository on GitHub

®Recognizable tokens, passwords, etc. that are typically used for authentication which should
not be publicly available.

7 A static analysis tool to verify the correct use of types in languages that don’t enforce this by
default (in languages such as Python for example).

Chapter 2: State of the Art 16

Fang et al. detected Python backdoors using combined features. They recog-
nized that most of the research was for either PHP or for generic web shells and
that there existed little research on malicious Python code. They proposed to clas-
sify these backdoors with a combination of features. They did so through the use
of abstract syntax trees, text statistical features, and opcodes, among others. They
also used TF-IDF on opcodes combined with n-gram. They discovered through
their work that comprehensive features gave the best result. They trained a ran-
dom forest classifier which gave them an accuracy of 97.70%. They weigh up the
benefits of static analysis by omitting the high amount of resources required for
deep learning or dynamic analysis [19].

2.2.5 Dynamic Analysis of Malicious Code

In this section, we discuss more works in the realm of dynamic analysis. Ponta et
al., as mentioned previously, also used dynamic analysis for their analysis, com-
bined with static analysis.

Sand, in their 2012 thesis, explored detecting system calls in the lower lay-
ers of the operating system to detect malware [36]. Their approach yielded good
results using graph-based learning methods to classify malware by creating de-
pendency graphs for API calls being made to the system. They found that memory
values were the most reliable of the features they tested, which were also func-
tions, among others. They tested how obfuscation then affected their dependency
graphs, for which their implementation proved resilient in most cases, as the tech-
niques implemented by the attackers were mostly developed for signature detec-
tion and static analysis.

Kim et al. in their 2012 paper proposed an approach of internal function hook-
ing (IFH) to dynamically analyze JavaScript malware. Their approach is compared
to the approach of API-hooking, where IFH can reach other, deeper, parts of the
code. With IFH and a symbol table® from Microsoft, they were able to apply their
framework to Microsoft Internet Explorer (IE) and analyze both obfuscated and
non-obfuscated code being executed in the browser [37].

Vasilakis et al. published a paper in 2018 showing a prototype for executing
partial parts of one’s code in an isolated container. In their work, they used the
Docker container solution to run the code of choice in isolation. While this tech-
nically is not the dynamic analysis of malware, it is the compartmentalization of
code that could potentially be malicious. The idea is to offload the potential secur-
ity risks of using a library by isolating it in an environment where only the output
of a function, for example, is returned. The approach works in practice, while the
downside will be how one deals with overhead [38].

Ohm et al. proposed a dynamic analysis tool called Buildwatch to analyze soft-
ware dependencies for newly introduced artifacts. They recognize the need for a
tool that connects to the continuous integration (CI) ° process that is often in-

8In short, a dictionary that keeps track of locations of functions, classes, etc, in programs.
°Introducing automation of building, testing, and publishing software using services like GitHub,

Chapter 2: State of the Art 17

volved with modern software development. The limitation of their implementa-
tion is using a sandbox that will have to run as a separate instance, instead of
running directly in the CI pipeline [39].

2.2.6 Scanning Open Source Registries

Duan et al. [21] created an analysis pipeline called MalOSS to process over one
million packages in three large and popular registries; PyPI (Python), NPM (JavaS-
cript ecosystem), and RubyGems (Ruby). They found seven malicious packages in
PyPI, 41 in NPM, and 291 in RubyGems. In doing their qualitative analysis of
registries, they created a framework to understand better the needs of package
maintainers, developers, and users. They saw the need for notifications services
in package installer tools. When PyPI removes a package for any reason, the in-
staller does not do any remediation to remove it. The developer must then use
external tools for such. PyPI also had no official advisory DB; however, the previ-
ously mentioned unofficial project safety[toolSafety] can do this for you '°. The
registries did not implement automatic notification to package maintainers, de-
velopers, or users when a package was removed for any reason (such as malicious
activity or breach of terms of service).

Jenkins, or Gitlab Runners
Ohttps://github.com/pyupio/safety

Chapter 3

Methodology

This chapter will present the methodology used in this project. We describe how
the dataset was used, the assumptions made, and the techniques employed.
First, we introduce what we mean by malicious, which is proceeded by the
new detection model we have developed, which is later implemented in code.
After this section, we introduce the dataset we tested our implementation on,
plus the metrics and pre-processing employed to determine the performance.

3.1 Defining Maliciousness and Malicious Behavior

Our definition of malicious means that someone has published or written harmful
code or exploited a vulnerability with intent. We note the difference between a bug
and a backdoor as a bug being accidental, and the backdoor is being implemented
with intention. Ohm et al. also note this difference [40]. For example, if a package
with a critical security-related bug was released and wrecked havoc, it would not
be malicious.

Since we cannot judge a single function to be malicious or benign without
context, we have to look at malware through a more contextual lens. We divide
the common malicious activity of malware into three main parts; network, sys-
tem, and file system (as shown in 3.1). Figure 3.1 shows a simplified model of
how a lot of malware operates, and serves as a demonstration of their behavior.
The model therefore does not cover every element observed in all malware. This
does not accurately describe all malware, but for our purpose, it works. The model
describes general malware that communicates information through a network, at-
tempts to steal information from the file system, and tries to access system settings
for information, then ex-filtrates this information back to the attacker.

18

Chapter 3: Methodology 19

6. Get Sensitive

Information
5. Persistence or .
Running of Files 4. Exfiltrate
Information
=
3. Retrieve Networkin
Sensitive Code \ 9
Information <
1. Download
malicious

code

2. Save
malicious
code

Figure 3.1: A graph we created to show a simplified model of how a lot of mal-
ware operates.

3.2 The Detection Model

The detection model we present utilizes our new method, which among others
features, focuses on detecting suspicious functions and imported modules using
static analysis. We also included rudimentary anomaly based detection, which
looks for behavior such as importing modules inside functions. We ground this
method in the malware behavior we defined in the previous section. Functions
and imports on their own are not malicious, but their usage in combination might
exert suspicious behavior not usually found in all benign Python programs. This
is in large part inspired by the works of Fang et al. [19] (described in chapter
2.2.4). They received good results by combining features, which is what we aimed
to incorporate into our model as well. One difference to note is that Fang et al.
used bytecode, we used text representation.

The static analysis we performed was on the text-representation of Python
source code, as described in the previous section 2.1.1 on Python. To facilitate
our analysis, we first converted the text representation into an abstract syntax
tree (AST) to extract information such as functions, imports, and strings. From
the AST we also derive some anomalies. We will also show a practical example of
an AST later in the chapter when we elaborate on obfuscation in Python.

In figure 3.2 we can see the general processing pipeline for our detection
model. We collected various data, then matched it against rules we defined, look
for anomalies, and finally try looking for matches with our canaries. Each match

Chapter 3: Methodology 20

Functions —>» Rules —> —>
TE-IDF
Imports —» Rules —> —>
Bulletins
Strings —>» Canaries >
Behavior ——>» Anomalies >

Figure 3.2: A graph showing the general processing pipeline of the detection
model work on a conceptual level. Our data is matched against rules, anomaly
detection, and canaries to create bulletins. Also, note that TF-IDF affects the bul-
letins generated for functions and imports.

results in what we call a bulletin, which we will describe in detail later. In short,
a bulletin is an alert on some suspicious behavior or code.

As mentioned in the previous chapter on Python bytecode and interpreters;
we do not use bytecode features. We used the AST to fetch information such as
imports and functions while still keeping some important information about the
program, such as structure. We attempted this approach since Python is very de-
pendent on the indentation of its code. In figure 3.3 we can see the idea of how
our data is processed from code to data. You can observe the first steps where the
text representation is converted to an AST. We chose working with the abstract
syntax tree (AST) instead of the bytecode, because compiling the Python code to
bytecode would take longer. This is because it involves actual compilation with an
interpreter, which we did not use.

After we have fetched functions and imports, we attempt to resolve variable
assignments and import aliases. Resolving is something that is usually done by the
compiler inside the Python interpreter, but since we did not use any interpreter
and only parsed the AST, we had to perform this step ourselves in our implement-
ation. We also performed some rudimentary concatenation of strings, which is an
easy obfuscation technique seen in some simpler malware. From the AST we could
also detect modules that are imported inside functions and classes, which we will
discuss more later. With the data we gathered we implemented simple detection
for libraries that are imported dynamically using the importlib library, and the
__import__ built-in function. If we look back at figure 3.3 we can see how these
steps are combined. We performed the resolving as a post-processing step after we
have gathered our data. This graph also mentions partial evaluation, which we go
into later in this chapter.

The third research question in section 1.3 was formulated after conducting
preliminary research on the different tools that are present for Python developers
to detect security issues. While there are solutions to give feedback if developers
use known outdated dependencies, we saw the possibility of improving on the
tools that detect security issues in their Python code as well as being able to scan
the PyPI registry. A previously mentioned project like Bandit [26] (see chapter

Chapter 3: Methodology

 Abstract Syntax Tree
(AST)

Figure 3.3: A graph showing how the data is processed on a more detailed level.

print("hello world™)

\

Call

21

/ \
Arg Name
Z ~
"hello world" "print"
Partial
Evaluation

=

Resolve functions
and imports

Chapter 3: Methodology 22

X

L1 #!/usr/bin/env python3
P2
i 3 print("Welcome to Calculator App v1.0")
P4 text = input("Please provide a math expression: ")
-
i 6 if len(text) > 0:
i 7 print("Thank you! Your answer will now be printed back.")
r 8
i 9 answer = 0
©10 exec(f"answer = {text}")
P11
; 12 print (f"Answer: {answer}")
13

Figure 3.4: This graph shows how the fields are aligned vertically with the code.
The fields follow the line numbers in other words. - The example code shown is
a vulnerable calculator app. The applications is vulnerable due to the use of the
exec-function to evaluate mathematical expression, as it will evaluate all input
as code. The exec-function is a common function to look for when searching for
malicious activity.

2.2.3) can be used to detect exec-calls in Python for example. The implementation
in this paper was to some degree inspired by how Bandit works and reports on
vulnerabilities.

We wanted to extend this idea of a rule-based static analyzer, but to improve on
it to include dependencies of your current project as well. We wanted to continue
the usual trend of giving the developer feedback on specific lines of code and why
a certain alert was triggered. In other words, we did not want our method to be
a classifier at this time. Bandit can check for rules in a current project, but, Fang
et al.[19] also used matches against functions names and calls as features in their
machine learning model. As it stands, the current implementation supports the
functionality to analyse dependencies in packages, but this needs more work to
be implemented correctly.

To be able to implement a static analyzer that scales with the amount of code
and still gives relevant feedback, even when scanning dependencies, and com-
bines both matching rules and anomalies, we wanted to experiment with a differ-
ent weighting system. We implemented what we call fields, which will be described
in the next section. These fields are basically functions on a two-dimensional
graph, where the X-axis is the line of code, and the Y-axis is the value of the field.
This concept is visualized in figure 3.4 and also includes a security vulnerability.

We wanted to create a versatile technique that could simultaneously give de-
velopers the autonomy to check their own code and dependencies for security vul-
nerabilities, while at the same time lowering the threshold for applying the same
rules and detection mechanisms to the PyPI registry. For this thesis, we wanted

Chapter 3: Methodology 23

to test the implementation against the whole PyPI registry, but we could not get
this ready due to time constraints. There was also sent an NSD application for
downloading all of PyPI, which was granted and is mentioned later.

3.2.1 Fields & Weights

As mentioned in section 2.1.1 on Python, the language requires indentation to tell
the compiler when code is moving in and out of scopes and functions. In other
languages, this might be done using curly braces for example. Python also has
support for semicolons to put multiple statements' on a single line, but in most
Python code we have observed this is rarely used.

We will now explain how the fields and weights in our method work; If we
look back to our graph (figure 3.4) showing the X-axis, we can think of the level
of suspiciousness/risk as defined by F(x) = y, where x is defined as the line of
code (loc), and the output of the function y is defined as the suspiciousness /risk.
The higher the y value the more we assume that line x has suspicious or risky
code. When a line of code triggers one of our rules, a bulletin is created at the
line-of-code. We defined the interval for x, or loc, as 1 < loc < lines. This means
x can only be as big as the file has lines of code.

The value of risk, or suspiciousness, that we added to the field as a curve
or bump, is controlled by a function which we defined. The curve or bump we
created has its median value at the location of the bulletin (at the line of code our
rule triggered). We made this risk value a curve, so it would overlap with code
around the trigger spot. The hypothesis was that malicious around it might trigger
to. Several curved in a tight spot would amplify it, increasing the bump or curve.
This again increases the level of risk at that line in the Python file.

To create a symmetrical adjustable curve defined by a formula, we used a
probability density function (PDF). We choose a PDF that described a normal dis-
tribution, because we knew this could be symmetrical and would give us a good
and adjustable area for potential overlapping of other curved and bumps. In figure
3.6 we can see such a normal distributions with different parameters for different
shapes. The following equation describes such a distribution [41, p. 99]:

PDF gy (It 0%) = ————exp(— = (x — p)?) (3.1
(2mo2)z 20

Using a PDF as shown in equation 3.1 we denoted the mean u as the line
number of the suspicious code. This gives us a curve at the center of the line that
triggered, and gives us a symmetrical area on either side of the line. The variance
o2 is a configurable variable to adjust how easily we want the curved or bumps
to overlap in our file. For example, ff we have curves with high peaks, we need
the bulletins to trigger close togheter for them to get amplified. For this thesis, the
variance was configured as o2 = 5, because it seemed like a good middle ground
between too little and too much peak in our curves.

lan expression such as x = 1, or calling a function

Chapter 3: Methodology

Evaluation

24

Calculate TF-IDF Weights

Place bulletins

Validate thresholds in
hotspots

/\

h 4 \ 4
Shc.JW) Don't show
bulletins in)
bulletins
hotspot

Figure 3.5: A graph showing the evaluation process after the bulletins have been
created. Here we can observe that all bulletins are generated, and then later de-
cided if they are shown or not based on the peak of the hotspots. Notice how the
first two steps here are conceptually identical to the last two in figure 3.2.

Chapter 3: Methodology 25

1.0
- H=0, 0%2=02,=—
H=0, 02=1.0, == 1
H=0, 02=50, = |
H=-2, 02=0.5, ==

0.8

0.2

0.0

Figure 3.6: Normal Distribution Probability Density Functions (PDFs) - Source:
Wikimedia Commons contributors [42]

The hypothesis is that code might get more suspicious the closer we get to
the mean of the normal distribution. When a bulletin is created from a rule that
triggered on a line of code, a curve is generated around this line (with parameters
u = linenumber and o = 5). The variance here is set to 5, as previously men-
tioned, but this could be changed. The different bulletins created the same curves,
which were added to the field but could also be amplified by other factors such as
TF-IDF values or multipliers from rules.

The idea of using a probability density functions was that we mimic waves.
Two waves overlapping would increase the amplitude, which for us meant a higher
peak if two bulletins are generated on the same line or very close togheter. The
closer two bulletins are placed together, the higher the peak. For a single field we
combined all the curves with the equation below. Where n is the line number. This
question does not take into account field weights, yet.

N
F(x)= > PDF,(x) (3.2)
n=0
a(x) = Frync(x)wq + Fipy (X)wy + Fyp (x)ws + Fp(x)wy 3.3)

We grouped the fields into four categories; (1) functions, (2) imports, (3)
strings, and (4) behavior. After all the bulletins were placed on their respective
fields, we combined the four categories into a single field or final field. This process
used weights on each of the fields. This gave us the ability to control how much a
certain field was included in the final field. As described in equation 3.3, we can
tell the relationship between these four categories. The fields are represented as
f () with the subscript defining what category they belong to. Each field had their
own weight. The single field or final field function is defined as a(x). The weights
are defined as any real number in the interval [0, 2], but can also be outside of
this. For example, if a rule detects a suspicious imported module, a bulletin is

Chapter 3: Methodology 26

placed at the line of the import, from which values from the PDF are calculated
and added to the imports field. The imports field is later adjusted by the weight
and added to the final field. These weights are configurable and play a critical role
in our optimization strategy, which we go into later.

When all the functions and fields are combined we are left with a single func-
tion that tells us the level of suspiciousness or risk at any point in our given file.
We use suspiciousness and risk interchangeably. Both are indicators that code is
not benign. With this combined function, we can adjust the threshold on certain
rules to be displayed or not, such that any peak below 0.5 would not be shown
for example. This is set on a per-rule basis. The implementation also supports the
configuration of a global threshold, but this is not used in the experiments shown
in this thesis.

Figure 3.5 shows the general concept of the evaluation process. All the bullet-
ins are placed, which then adds the PDF curve to the respective field. Do note that
we also applied TE-IDF to the PDF curve as a multiplier before it was added to
the field. As mentioned earlier, the fields are then combined into a single function
using the user-specified or optimized weights. Further, we called the area under
the peaks generated by the curves hotspots. A hotspot is then defined as an area
of high suspiciousness, and as a way of clustering potential maliciousness. It is
these hotspots that create the local threshold for the rules we have. If the hotspot
has a peak that is high enough, then the bulletins generated by the rules in that
location will be shown. If the peak was not high enough, the threshold for the
generated rule will not be shown. Note that not all rules have the same threshold.
This means a high enough peak for one rule to show in the same hotspot, which
might not mean another rule considers the peak high enough. This is how we get
the fuzzy behavior for how each of the rules is displayed.

The reason for choosing to work with fields in this manner is because we
wanted to have human controllable thresholds for tailoring the detection to your
specific needs. In the end, the program does the binary choice of displaying an
alert or not, but the decision process is not binary and could be considered fuz-
zier. This decision process of combining fields and thresholds to guide the decision
process with overlapping functions is in due part inspired by fuzzy logic. With
human-readable weights, we are able to also easily observe what weights are be-
ing optimized. This gave us an opportunity to reflect on why the optimization
valued functions over imports. We also experimented with weights as a way of
eliminating false positives, so that we could potentially run our implementation
on the PyPI registry.

In theory, we could in the future apply a neural network to this process, but
for this thesis we explored the possibilities of using more primitive solutions first,
because we were curious if it would work, and if so, how well. By using weights
for each of our fields and optimizing these based on a dataset with malicious
and benign code, we did to some degree create a very simplified one-layer neural
network with four neurons. We did not use back-propagation for the optimization,
though. Later we will discuss how we used genetic algorithms for that process. Do

Chapter 3: Methodology 27

note that this detection model was not supposed to be a classifier.

Hotspots

As we mentioned briefly in the previous section, we use the term hotspots for areas
under the curve. The reason we chose this clustering technique is that it came
naturally when implementing the fields, which allowed us to cluster functionality
too. Another approach could have been an unsupervised clustering method on
a one-dimensional axis (the lines of code where the bulletins are placed). We
implemented hotspots in our model to test their feasibility. In future work we
could compare it to more conventional clustering algorithms to see which methods
works or performs better. We keep performance in the back of our minds when
implementing this, as these hotspots are generated for every file in every project,
but this is not a priority at this moment but is a consideration we made.

Figure 3.5 shows an example of creating a hotspot. This example only shows
one, but imagine the two graphs were a part of the same graph. This would then
generate two hotspots.

TE-IDF

The next section will outline how we experimented with term frequency-inverse
document frequency(TD-IDF) [43, 44] in order to lower the number of false posit-
ives, and attempt to reject code that is not unique. We did this with the assumption
that if a big library or framework frequently uses an import or module a lot across
the whole project, then it is probably not malicious and should count less towards
the decision to alert it. For this, we were inspired by Fang et al. [19], who used TF-
IDF on opcodes (also mentioned in related work). We were also aware TF-IDF can
be used for information retrieval in documents. We then hypothesized we could
apply this to functions and imports instead of opcodes, and aimed to test the feas-
ibility of this. The intention was to find functions and imports that are rarely used,
with the hopes that malicious code uses functionality not commonly found in the
library elsewhere. The equations 3.4, 3.5, and 3.6 show how we calculated TF-IDF
for function calls. The same applied to imports.

_ CountOf ThisCallInThisFile

TF = 3.4

NumberOf CallsInThisFile (3.4
NumberOf CallsInThisFile

IDF =1 3.5

o8 FleswichThiscall (3-2)

TFIDF =TF xIDF (3.6)

In the actual implementation, we calculated the TF-IDF value for each unique
function call and import done. We then stored this value and used a weight to

Chapter 3: Methodology 28

control its usage of this. We did this by interpolating between the calculated TF-
IDF value and the actual value of the PDF-curve. The interpolation percentage was
decided by the weight, which could be set in the implementation configuration.
The interval of the weight was originally defined as the interval [0, 1], but it could
also be more or less than this. The weight were set to a default value of 1.0, but
these weights were also optimized along with the field weights. We discuss more
about this later in the chapter.

3.2.2 Rules

Since we wanted to look for specific functions, such as those working with net-
working and the operating system, we needed to specify which ones we were look-
ing for. We also had to consider that some functions and imports are more inter-
esting to us than others. Therefore we needed to implement a simple rule system
where we could define both functions and imports, as well as set the thresholds
for specific ones.

We then created a system where we defined either an import or a function call.
These rules were then used to string match for an identifier after pre-processing
the data from the abstract syntax tree (AST). Later in the chapter we provide
further explanation of what this entails. Rules also incorporated a functionality
aspect for future work on the implementation, with the possibility to identify a
certain rule as a file system operation for example. This functionality aspect was
not integrated into the detection model due to time constraints, but could be in
the future. Below we show how rules were defined.

Module(Functionality, Identifier, Name (optional), Description (optional))
Function(Functionality, Identifier, Name (optional), Description (optional))

Code listing 3.1: The structure of a rule

Using this as a template we could then define a group of rules and set the
threshold for the whole group. We also gave it a name so we could recognize
it more easily. The rule format also supported comments. The file format was
implemented using Rust Object Notation (RON) [45], which is a variation of the
common JSON format but is specific to the Rust programming language. RON
is easily converted into Rust native data structures, which was what we used in
our implementation. Below is an example of two groups that define rules with
different thresholds:

(name: "Basic module rules", threshold: 0.30, rules: [
Module(Process, "subprocess", None, None),

(name: "Basic function rules", threshold: 0.20, rules: [
Function(System, "exec", None, None),

1)

Code listing 3.2: An excerpt of two rules we defined for our default rule set.

The thresholds in the above excerpt are 0.30 and 0.20, and were set from ex-
perience with the fields. In general, a lower threshold means the rules will trigger

Chapter 3: Methodology 29

more often. We created a default set of rules which were included in the imple-
mentation, yet these are very customizable and can be improved in the future. The
default rule set is largely based on a list from Fang et al. [19] which they used in
their classifier. A full list of the rules used in the default configuration is included
in the appendix B.

3.2.3 Pre-processing of the Abstract Syntax Tree

Since we did not have an interpreter or compiler to perform all the pre-processing
that would normally done to the AST, we did it ourselves. One of the first things we
needed to implement was import and function aliasing. This is a Python language
feature that allows us to shorten an imports name for more convenient use when
coding. Doing this pre-processing in our implementation is not complicated but
did require some work. It is mostly done through hashmap and dictionary data
structures.

One reason we used the AST instead of compiling code was because it was
quicker. We deemd it was worth it to use simple time-saving steps in the pre-
processing stage because we wanted to perform a large amount of analysis.

Import aliasing

Here is an example of the import aliasing we mentioned earlier, using the popular
package numpy:

import numpy as np
a = np.array([1, 2, 31])

Code listing 3.3: An example of numpy code using aliasing.

A rule matching for numpy.array would simply fail without pre-processing. A rule
for np.array in this scenario would work, but we had to take into account that
not everyone uses the same alias. Therefore we needed to support the resolving
of aliases, as this is a very commonly used language feature. The above example
would look like this with our implementation after pre-processing:

import numpy
a = numpy.array([1, 2, 3])

Code listing 3.4: Example of numpy code without alasing.

Now our rule for numpy.array would trigger a bulletin in this location.

Function aliasing

The next example shows the same concept but with function aliasing. While sim-
ilar, this is used for importing single functions from a library:

from numpy import array as arr
a=arr([1, 2, 3])

Code listing 3.5: An example of function aliasing

Chapter 3: Methodology 30

The above example would look like this with our implementation after pre-processing:

import numpy
a = numpy.array([1, 2, 31)

Which is similar to what has been shown earlier.

3.2.4 The Approach to Obfuscation

The next process after this was tackling matching on strings and variables of in-
terest. This could be done through a simple text search on the text representation
of the Python file, but in some cases, the malware uses obfuscation to try to subvert
static analysis. We also did not want to use Regular Expressions, which are com-
mon for searching text, due to concerns of performance at the scale we wanted
to deploy our software. In our implementation, we used two simple techniques to
try and defeat some obfuscation; partial evaluation, and text-encoding rainbow
tables, which we call canaries.

Partial Evaluation

Partial evaluation is a process of picking specific parts of a program and then
evaluating only that part as if the program was running. This is useful if you want
to see the result of a string operation that might be obfuscating some data. If we
continued implementing partial evaluation, until we implemented all the features
in the language, we would eventually have made a compiler or full interpreter,
which was not our intention. We used this process to aid in the static analysis and
to give us more information to work with. This process can be useful for simple
operations such as string concatenation, which some malware use to (barely) ob-
fuscate strings. Other operations we observed in malware are indexing, slicing,
reversing, and replacing strings.
Consider the following example of Python code that prints a simple string:

print("hello world")

Code listing 3.6: A simple Hello World example.

When this example is turned into an AST from text representation it is a rudi-
mentary task to extract the variable and use it in our implementation. We simply
looked up all the Constant-nodes and extracted their value. A simple text search
would also match if we search in our file. In figure 3.7 we can see the AST gen-
erated for the code example above. The string is stored as a constant in the AST
and is easy to extract.

If we then introduce the previous example but with simple string concatena-
tion, the AST is transformed into a bigger tree:

print("hello " + "wo" + "rld")

Code listing 3.7: A simple Python program concatenating a string.

Chapter 3: Methodology 31

Name 'print’

Expression ——p Call

Argument ——Jp{ Constant 'hello world'

Figure 3.7: An example showing ’print("hello world")’ when converted into an
AST for the Python interpreter.

Concatenating string 'Hello World"

/ Constant 'hello '

Binary Operation

/> Name ‘print' \ ~——p Operation 'Add'
_—p Operation 'Add"
\. Argument —————p Binary Operation
Constant ‘wo'

\. Constant 'rd’

Expression ——p Call

Figure 3.8: An example showing how simple string concatenation is converted
into an AST. This example is based on the Python code ’print("hello " + "wo" +
Urldn)?

Figure 3.8 shows the above code example converted to an AST representation.
The area highlighted in yellow is responsible for the concatenation of the three
separate constants. In our implementation we implemented simple operations like
these by performing binary operations on strings. If the constant was a number or
other type than a string, the operation was aborted and the value left as is. In this
example, we can no longer just look through the Constant-nodes. We also had to
fetch them in the right order by reading the Binary Operation-nodes.

Canaries

Canaries? is the term we use in this thesis for text-encoding rainbow tables. Since
different types of encoding, specifically Base64, is very easy to use in Python it is
used quite a lot as the encoding for sending more malicious Python for the pro-
gram to execute. Our hypothesis for why this is used so frequently is that sending
a whole file as a single line of Base64 is quite robust, hides the actual payload
from plain sight, and is easily decoded. This is a method we have seen being used
by the information security community.

2Inspired by how they were used detect to carbon monoxide when coal miners were under-
ground.

Chapter 3: Methodology 32

As mentioned we wanted to detect if a program has Base64-encoded code,
which would be indeed very suspicious from the examples we have seen. The ap-
proach we took used the fact that Base64 is an encoding and not an encryption
algorithm. The idea was to have a file of pre-computed strings to match against
constants found in a Python file. If the pre-computed string matched, it was sup-
posed to signal we found a program, URL, or other object encoded using Base64.
The canaries are agnostic to how they were used to search a file or code, but
we paired this with our partial evaluation and search Constant-nodes instead of
full-text search.

We based our implementation on the fact that the Base-family of encodings
(Bse64, Base32, Base16) are text-encoding algorithms. The same input will always
generate the same output. We then created pre-encoded strings using a list of
common words that start a payload. These common words could for example be
import, or https:// if it's an encoded URL or domain we want to catch. The full list
of common words we used for our canaries in the implementation of our method
can be found in appendix C.

Before we calculated the canary we had to be aware of the padding for the
encoding, since they work in multiples. If an input string is less than a certain
multiple, the encoding pads the tail end of the string so it becomes a multiple.
This is important because we matched on sub-strings, which were a part of other
bigger encoded strings. We, therefore, needed a cut-off point, which meant up to
that cut-off, the two encoded strings had to be identical. Base64 for example pads
the end of a string so that it is a multiple of four. We did not have to to know this
for us to create the canaries, but it is good to be aware of. Here is an example to
illustrate how we can ignore this padding length; The term import when converted
to Base64 would be aWiwb3JO0. If we used this in the example below, we would
indeed find a match, because of its length it generates an encoded string with a
length that is a multiple of four:

import -> [aWlwb3J0]
import subprocess -> [aWlwb3JO]IHN1YnByb2Nlc3M=

Exact match!

Code listing 3.8: An example of the word import being used as a canary to match
on a Base64-encoded string.

Consider the text http, which converts to aHROcA==. If we now want to search
for in our example above, we can see we do not get an exact match, which is
what we want. We could of course configure some form of partial matching, but
for performance reasons and doing these thousands of times, we wanted exact
matching.

http -> [aHROCA==
https://www.ntnu.no/ -> [aHROc]HM6LYy93d3cubnRudS5uby8=

No exact match.

Code listing 3.9: An example of a canary not matching due to padding in the
encoding.

Chapter 3: Methodology 33

Our wanted outcome was to have the least common full match at the beginning of
any encoded string starting with http. To do this we calculated two strings, where
one was padded with characters (in this case with A's). We then took the common
part of the beginning of the two strings and created a cut-off point. This common
string is what we save in our file.

http -> aHROc |A==
httpAAAAAAAA -> aHROc|HM6Ly93d3cubnRudS5uby8=

| Cutoff point

Code listing 3.10: An example showing how we decide the cut-off point for ca-
naries.

We then stored the result in a file where we could reverse lookup the encoded
string aHROc to the common word http. We did this with many different variations
of encoding, made a list of words we thought are common, and created a script
to generate this list for us. As previously mentioned, the implementation used a
default list of common words to generate canaries with can be found in appendix
C. We do not include the full list of generated canaries in this thesis as it would
be too large to include. However, the Python-script used to generate these are
open-source and available for anyone to use [46].

3.2.5 Experiments

We wanted to measure the performance of our techniques by performing a set of
experiments. These were designed to give us an idea of how well the implement-
ation would do when scanning a huge set of packages. In the section on datasets
later in the chapter, we will discuss what criteria we had for this.

First off we performed a couple of control experiments to create a baseline
for our performance. We wanted to know the performance of our method when
all the weights were default values (1.0). Another control experiment wanted to
perform were to investigate the maximum detection rate. This can be done by
optimizing the weights by only using F-score as a fitness value.

Since the experiments were designed to measure how scalable our implement-
ation is, we wanted to perform three core experiments, with some variation de-
pending on what we saw the need for.

The two most rudimentary experiments we wanted to perform were one set
with TF-IDF enabled, and one with it disabled. This was so we could compare the
differences, and see if we could see a noticeable difference. TF-IDF was used to
prevent false positives, so we wanted to see how this worked on pure function
calls and not opcodes, such as Fang et al. did [19]. We also wanted to incorporate
a train-test splitting on the dataset to prevent overfitting. We therefore performed
experiments with such a split, and ones without. This was to see if we could spot
any difference. If we trained and tested the weight sets on the same dataset, we
were afraid we might overfit the weights to the dataset. This is why we performed

Chapter 3: Methodology 34

experiments with and without training and testing datasets, so we could compare
and see if this had any noticeable effect.

In addition to testing out enabling and disabling TE-IDE, we also wanted to
test a variation on the IDF function. This is because we know TF-IDF is primarily
used for information retrieval in documents, and was not made for lowering false
positive rates when looking at suspicious function calls and imports in Python
code. We then wanted to experiment and see if changing the IDF function could
give us good results.

The initial inverse document frequency (IDF)-function that we used was the
most common we had seen, and in short we calculated this using the equation
below (this is the same equation 3.5 presented previously):

NumberOf CallsInThisFile
FilesWithThisCall

We had a hypothesis that this function penalizes results in smaller packages
with only one or a few files. Since the idea of TF-IDF is to help lower the false
positive rate in huge projects with hundreds or thousands of files. To mitigate this
we experimented by removing the inverse part of the equation, effectively turning
it into a term frequency function instead. The new equation included the aspect
of how many other files include a given function call. The idea was; the more a
function was called in other files in a project, the lower the calculated TF-IDF value
would be. The new equation, which we call document frequency (DF), is shown in
equation 3.8:

IDF =log,() (3.7)

DF — FilesWithThisCall 3.8)
"~ NumberOf CallsInThisFile '
TFDF =TF xDF (3.9)

We then calculated TF-DF using equation 3.9. We experimented with this new
function in chapter 4.

Next, the parameter optimization step is discussed, which was a critical part of
our experiments. After the parameter optimization section we show then elaborate
on how the fitness function was designed and used to perform this optimization.

Parameter Optimization

Through the thesis we also wanted to optimize the weights our implementation
uses by applying machine learning. In table 3.1 we see the different weights we
optimized. The weights were of course agnostic to the machine learning algorithm
used to optimize the weights, and any algorithm that is suitable should in theory,
work. There could of course be differences in the optimization they generate.
This depends on the experimental setup, and on how much feedback the machine
learning algorithm needs. Our experiments took quite some time to finish, which

Chapter 3: Methodology 35

TF-IDF Weight Functions 1.0
TF-IDF Weight Imports 1.0

Weight Default value
1 Field Weight Functions 1.0

2 Field Weight Imports 1.0

3 Field Weight Behavior 1.0

4 Field Weight Strings 1.0

5

6

Table 3.1: A table showing the different weights we can optimize. We split them
into two parts; the ones for the fields and the ones for the TF-IDF weighting.

meant we wanted an algorithm that did not need to run analyses on our dataset
an unnecessary amount of times.

Fitness Function

Our fitness function can be seen in equation 3.10. This is the function we used
in PyGAD to optimize the weights. The function was designed to be maximized,
meaning we wanted the highest possible fitness value. In theory, we get a high
value with a low amount of bulletins and a high F-score. We added a very small
constant to the bulletin count in case it becomes zero. We wanted the F-measure
to be as high as possible (close to 1.0) and the bulletin count to be as low as
possible (close to zero). We multiplied by 10000 in order to get a more tangible
fitness value to work with, as working with too many decimal places proved to be
less robust. This may have been due to floating point precision errors, but we also
wanted a number that was human-readable where possible.

FM
Fitness = 10000 : casure (3.10)
BulletinCount + 0.00000001

3.3 Dataset

The dataset for this thesis was a critical component where much time was spent,
and was one of the initial roadblocks for the project. Initially, we planned to di-
vide the data we gathered into four different categories: (1) malicious code found
openly online, (2) datasets found publicly or gathered from other researchers, (3)
custom made malicious samples, and last (4) benign code used as a control. It was
not clear at the beginning of the project if there was going to be machine learning
involved, but we knew we needed malicious samples, which were the hardest to
acquire.

Chapter 3: Methodology 36

3.3.1 Malicious packages

Due to the fact that the field of supply chain attacks and malicious packages in
open source registries is very recent, there is no fully publicly available dataset.
This is probably due to the ethical reasons of accessibly sharing malware, which
can be used as derivative malware in the same registries. We were preferably on
the lookout for a dataset containing actual malicious packages from PyPI. These
are different from normal malicious Python code, which could a backdoor for ex-
ample, since packages published on PyPI have a specific structure that all packages
must follow. This would make the dataset more accurate. Our plan was then to
attempt to acquire a dataset from the literature we have been reading. In chapter
4 under experiments, we will describe how we acquired such a dataset.

3.3.2 Benign packages

For the benign packages, we decided to go for a collection of the most downloaded
packages from PyPI. The idea is that these are generally safe to use, and we make
the assumption these are not malicious packages (they can of course include se-
curity vulnerabilities). The reasoning behind this is that the packages are pretty
widely used and any malicious activity would hopefully be detected quickly by
users. In chapter 4 we describe how we downloaded the such packages.

3.4 Metrics

In this section, we discuss the different metrics we used to measure the perform-
ance of our implementation. As we mentioned at the beginning of this chapter,
we created bulletins based on certain features such as rules of anomalies. These
were then evaluated by the hotspot, which decided if the bulletins are suspicious
enough to be shown to the user (here is also a mode in our implementation to
override this mechanism, which will all alerts if enabled). This means bulletins
are the measure we wanted to keep track of, and we wanted to see how well we
placed bulletins on the specific lines of code we associate with malicious behavior
in our dataset. We wanted to have a low number of bulletins when we looked at
benign code, and a high number of bulletins when we looked at malicious code.
Since the model allows for configurable weights, we can experiment with adjust-
ing it to be more or less sensitive about features. We did not do this by hand,
though. We optimized the weights using machine learning.

Since our bulletins were created for a specific line of code, we knew what lines
of code specifically were malicious in our dataset. Only then could we be certain
that the implementation generates the expected bulletins in the correct location
and when it mistakes benign code for being suspicious. This labeling of the dataset
is shown in the experiment section of chapter 4.

We kept track of how well bulletins were created using simple metrics that are
commonly in confusion matrices. From the simple measures used in the confusion

Chapter 3: Methodology 37

Classification Description

True Positive (TP) Any bulletins that trigger inside a line of code (LOC)
False Positive (FP) | Any bulletins that trigger but are not inside any LOC
True Negative (TN) | Every line that correctly does not get a bulletin

False Negative (FN) | Any LOCs that does not have any bulletins

Table 3.2: The different classifications we use and what they mean in our context.

matrix, we calculated accuracy, recall, precision, and an F-measure [47, p. 68].

In table 3.2 we explain how each of the classifications corresponds to our
scenarios. In practice we did not use the false negative (FN) classification, as this
would just be any line that did not get a bulletin made for it.

We also tracked a time variable for our experiments, but these were in the scale
of hours. This meant we did not give much consideration to accurately timing the
speed of the operations since these small changes would not matter at our current
scale. We were more interested in just comparing the experiment times to see if
one was faster than the other.

3.5 NSD Application

For the thesis, we also submitted an NSD application to get approval to create a
mirror of PyPI for research purposes. The aspiration at the beginning of the project
was to test the implementation against the PyPI registry if it proved feasible. The
application was later approved in case we got the time to do so.

The submission of the application was a discussion point, due to the fact that
anyone can mirror the PyPI registry with open and publicly available software.
The intention of the mirror would be to analyze the code, but in the process,
we would also get information about the author as collateral information. We
wished to not collect due to privacy of the authors, and because of GDPR rules
here in the EU. The technical aspect of removing author information from all the
packages from PyPI would be unfeasible and decided in the end to just not use it,
but the argument for not removing it is that users submit packages to this registry
willingly, and also submit their information knowing it will be public. There could
of course be cases where users do not know this information (name and e-mail
for the most part) will be public.

Chapter 4

Experimental Design and Results

Now that we have presented our methodology, we will elaborate on the exper-
imental setup, the implementation, and the results. The experiments intend to
determine if it is feasible to run our implementation on the entire PyPI registry
and how well our detection model works.

For the experimental setup read on to the next section. If you want to go
straight to the implementation jump forward to section 4.2, or to go directly to
the results from the experiments jump to section 4.3.

4.1 Experiment Setup

Our fitness function discussed in chapter 3 has the need for two metrics we are
interested in tracking; bulletin count of benign packages, and an F-score for all
the malicious packages. We run two tests separately to acquire these, one test on
the benign dataset, and one on the malicious dataset. These two tests were run
separately, so the dataset was not mixed. The way we did this was by creating
a small test framework in Python in which we could pragmatically define our
experiments. We could now automatically execute experiments, which would be
used by the genetic algorithm to determine the best samples in the population.
We set up the genetic algorithm to use the weights described in the table 3.1 as
genes.

A note on the performance of a single run. A single run is what we consider
to be one pass over all the benign packages, and one pass over all the malicious
packages. A single run acquires the fitness by combining the results from these
two, and this could take several minutes depending on the features used. And
a full experiment could take upwards of six hours to complete a full set of 10
generations with the current configuration. The TE-IDF calculation significantly
increases the time to analyze all the packages, which is why it would be beneficial
to partially disable it, or not at all. This is also why we want to compare TF-IDF
runs and non-TF-IDF runs.

The genetic algorithm is set to run for 10 generations, but reports back the

38

Chapter 4: Experimental Design and Results 39

best solution and other metrics at generations 1, 5, and 10. This means the results
from the generations are all from the same starting pool, only more evolved.

The malicious packages were run with our program in a virtual machine (VM)
in case the malicious packages somehow got activated in the process of testing.
The implementation should not pose any risk to the host machine when analyzing
malicious code, but we were concerned our test framework would accidentally ex-
ecute malicious Python. Windows Defender was also very persistent in deleting
parts of our dataset, and we did not want to create an exclusion rule for it. It is
possible the anti-virus had not reacted if it was still compressed (they are down-
loaded in compressed form).

Through the use of a shared folder, we transferred results and code back and
forth between the virtual machine. We compiled the implementation for Linux
in the virtual machine without any modification. This proved that the program
works for both Windows and Linux operating systems. It has also been tested on
macOS. The test framework, which we mentioned earlier, would communicate
with VirtualBox to run a specific script that starts the experiments and writes the
results to a shared folder. This is similar to what Sand did in their thesis, where
they had scripts on the host machine run commands in their virtual machine [36].

The following code is what we used to control scripts inside the virtual ma-
chine:

def run in virtualbox(args):
out = subprocess.check output(["VBoxManage.exe",

"--nologo", "guestcontrol", "kali-linux-2022.1-virtualbox-amd64",
"run",
"--username", "kali", "--password", "Fxikckiicki v _ywajt-stdout",
"--", *args]).decode("utf-8")

return out

Execute ‘run.sh’ inside the VM and capture the terminal output.
output = run_in virtualbox(["/usr/bin/zsh", "/home/kali/run.sh"])

Code listing 4.1: A snippet of code used to control our experiments inside the
virtual machine from our host machine.

The process is fully automatic, and as previously mentioned, the experiments
were then pre-programmed and left to run unattended to calculate the results.
This could take many hours and be mostly done overnight.

The experiments were set up on a personal computer running Windows 10
with an AMD Ryzen 5 3600X 6-Core processor and 32GB of RAM. We did not
utilize a GPU or other hardware acceleration in these experiments. In practice,
the implementation did not use much RAM at all but could utilize a lot of CPU at
certain times during the experiments. A limitation in the implementation is that it
runs entirely on the CPU, instead of running on the GPU, which would have been
much faster.

4.1.1 Genetic Algorithms for Optimization

For the parameter optimization we chose to utilize genetic algorithms [47, p. 146].

Chapter 4: Experimental Design and Results 40

As previously mentioned in the method chapter, we wanted to optimize six
weights that are used in our implementation. These weights are used for combin-
ing fields and adjusting the influence of our TF-IDF values. By default, all these
weights are set to 1.0 and we deem the interval [0, 2] of as the most reasonable.

We did not implement our own genetic algorithm, instead, we used a publicly
available library called PyGAD [48]. This library had extensive options we could
experiment with, but we decided to use the default configuration. The mutation
step is set to select 10% of the population randomly. Only one point is used in
the crossover step. A method called steady-state selection was chosen for picking
parents, and only one parent was kept. The number of genes was set to six, as this
is the number of weights we wanted to optimize for. The full configuration can be
found in appendix D.

4.1.2 Acquiring the Datasets

This section will go into in detail on how we acquired the datasets we used, how
we prepared them, and then lastly, how we used them.

We first searched for malicious packages online (category 1 dataset, see chapter
3.3), yet this proved not to be very beneficial. There are lists of known previous
malicious packages that have been present on PyPI. Ohm et al. curated a list of
such packages [40]. News outlets also sometimes report on the findings of these.
Most of these known malicious packages are taken off the registry though, as they
should. We did have some success in finding a PyPI mirror with some malicious
packages, but downloading them revealed another problem because the malware
would be run on installation even with the download flag enabled. Ohm et al.
also note this and recommend using Wheels, which is another packaging method
for Python where no code is executed upon installation. As a word of warning,
we therefore strongly suggest using a virtual machine if you want to attempt to
download known malicious packages from PyPI or a mirror of it.

We tried to gather individual examples of malicious Python packages, but most
were proof-of-concept code found on GitHub. The actual malicious packages from
PyPI that have been reported over the years have, as we mentioned, been taken
off the official registry after being reported. If you manage to find a mirror that
does not delete packages and only synchronizes with new ones, you could get
"lucky" and be able to download the previously detected malicious packages.

We contacted Ohm et al. [40] by email, who as previously mentioned curated a
list of real malicious packages found in several package managers, including PyPI.
They thankfully gave us access to their dataset, which we will elaborate more in
the next section. This covered our second category, which was locating a dataset.
We then quickly discarded the idea of finding malicious code ourselves, as the
dataset we just received was just what we were looking for. We also discarded the
idea of creating an abundance of custom-made malware, as we did not have the
resources for this and in the end, would only be derivatives of known malware.
We will also go into the last category of benign code, which thankfully was more

Chapter 4: Experimental Design and Results 41

straightforward.

Malicious Dataset

For our dataset, we directly contacted Ohm et al. as they could upon request grant
permission for research purposes. Their dataset is called Backstabbers Knife Col-
lection and is described in depth in their paper [40]. Their collection includes ma-
licious packages from four large open-source registries; NPM, RubyGems, Maven,
and PyPI. We have personally inspected all the samples from PyPI in the dataset,
and regard them all as malicious. The dataset has grown over time, meaning it
has more packages now than when their paper was released. We, therefore, note
that not all malicious package from PyPI in this thesis is included in the results of
their paper.

Across RubyGems, NPM and PyPI, Ohm et al. found that malicious packages
were available for 209 days on average before being made unavailable. They make
due note of the package managers running arbitrary code on installation of a pack-
age as a reason for the increasing number of malware, and that 56% of packages
they analyzed initiate their routines on installation.

The dataset at the time of our download included 97 malicious packages from
PyPI. The packages were extracted to be ready for analysis and usage. This dataset
is what we used for our second (2) category, which was datasets found online or
given by other researchers. The labeling of the dataset required us to mark every
line that was deemed malicious, we could then see that the average malicious
package had 56.42 lines of code associated with its malicious functionality. The
median value was 20, and the standard deviation was 163.66. We go into detail
on how we labeled the dataset in a later section.

Benign Dataset

We decided to download the top 360 most downloaded packages at the beginning
of February 2022. In practice, the download of this includes dependencies of those
packages as well, which made our total number of benign packages 442. The list of
these packages was acquired via Google BigQuery, as PyPI uploads statistics here.
A tool called pypinfo [49] integrates with BigQuery, which allows us to perform
queries (for a cost).

Pre-processing of the Dataset

Before we could use the data we had gathered, we had to pre-process it. In this
section we will discuss how we prepared the compressed data, how we labeled the
dataset, and how we decided which released version of the malicious packages to
use.

Both the malicious and benign packages were compressed when downloaded.
Packages are by default compressed when they are distributed by the package
manager. This is either in a Zip or Tar format, which are both widely used. We

Chapter 4: Experimental Design and Results 42

started by decompressing the packages to make it easier to browse through them,
but also to lower the overhead when doing analysis. This meant we did not have
to decompress the packages in memory for each analysis. This does take up more
space, but it really is not a problem if you do not try to scan the whole PyPI registry.
This means the current implementation does not incorporate decompressing of
packages in memory, but this could be implemented in the future.

As mentioned in the previous section on metrics, we need to be able to tell
what lines of code in the sample are malicious to be able to tell how well the
implementation did in our experiments. We achieved this by labeling the dataset
of malicious packages we got from Ohm et al. This proved difficult at times. Some
samples only had a few lines of code that were malicious, while others were an
entire file with a full implementation of a backdoor or key-logger. In the latter
example, we choose to label the entire file as malicious, since circling in on one
part was not feasible. This is a limitation of this approach. We choose to also label
supporting code, such as import statements for modules used in the malicious
code. We choose not to label imports that were a part of the original package. The
following listing is an example of how this was labeled:

malicious-package,/setup.py:4-9123-43;/folder/test.py:1-3119-19

Code listing 4.2: An example of how malicious lines of code are labeled for a
single packages.

Since a package could have several malicious files, we split them by a semi-
colon. The lines of code were written as inclusive, which means 4 to 9 means
inclusive 4 to inclusive 9. We used an exclamation mark to separate code ranges
for a single file, and files were defined from the root of their package. For example,
the /setup.py-file is located at the top level of the package.

In the dataset, we also get all published versions of a package. For this pre-
processing, we decided to only use the latest version of published malicious pack-
ages. This was because a lot of the previous revisions used identical code. Since
each package had different numbers of published versions, it was decided to only
use the latest to prevent potential over-fitting, since a lot of the versions would
have almost the same code. We do note that there were also packages that were
alike in their malicious payload, which could also enable some over-fitting.

We also choose to label dependencies in files such as the setup.py-files that
we knew were malicious. This is because we wanted to be able to show bulletins
created in dependencies. This could also be integrated with databases that contain
known malicious package names and versions. An example of this is Safety [23],
which we presented in chapter 2. Technically the implementation as it stands does
support detecting dependencies of a package but lacks the integration to forward
bulletins for that dependency (e.g. lookup in a database, or through another API).
We elaborate on this in future work.

Chapter 4: Experimental Design and Results 43

Splitting the Dataset for Testing and Training

To not over-fit the weights in the machine learning process, we also incorporated
a training and testing split of our dataset. There are some considerations we had
to do when doing this. A single run, which will be defined at the start of the next
section, can take several minutes, and a full experiment usually takes upwards
of six hours. We, therefore, did not use a more thorough method of say K-Fold
splitting, where we would use a K = 5 for example. This would be too resource-
intensive for us at this point. We would recommend optimizing the experiments
and then trying out K-Fold for optimization in the future. This will be discussed
more later in the discussion on Experiment Speed (section 5.3).

We, therefore, use a standard 80/20 split on the dataset. This means that when
we employ this, we split the samples in the benign and malicious datasets to 80%
for training, and 20% for testing. We will refer to this as an 80/20 split in the rest
of the thesis.

4.2 Implementation

For this thesis, we implemented a program in the Rust programming language
that utilizes the techniques we presented in our methodology chapter. This imple-
mentation is free and open-source on GitHub [1], as was a goal from the beginning
of this thesis. In total it harbors around 2900 lines of code and is implemented
as a cross-platform command-line tool. It can be compiled and run on Windows,
Linux, and macOS.

The implementation has been programmed with the intention of it being ex-
tensible and future-proofed where we could. We, therefore, hope this implement-
ation can be worked on in the future.

Choosing a Programming Language

From the start, the goal of the project was to make a static analyzer as a prototype,
but also make it extensible and robust. The robustness was deemed important to
ensure the correctness of the program. A first prototype was written in Python to
test out some of the concepts, but this quickly showed that we needed a strongly-
typed language. The structure of the program, and analyzing many packages as
quickly as possible also meant multi-threading the implementation would perhaps
yield a big impact. We also wanted the implementation to be as easy to use and
run as possible, which is why it comes with a default configuration (the one tested
later in this chapter). To make sure we could compile the implementation to any
architecture and operating system we choose to go with a programming language
that would support this.

The prototype implementation was therefore written in the Rust program-
ming language. A strongly typed programming language that supports many ar-
chitectures. We could also utilize a lot of the functional data-oriented principles

Chapter 4: Experimental Design and Results 44

that Rust allows us to use. This allows for maintainable and understandable code,
which would make contributions by others easier. Rust also has good support for
parallelization in both features and libraries available.

This was the first big project we attempted in Rust, which did prove a chal-
lenge. Learning the language took time, but was also included in the planning of
the thesis. In the end, we were happy with the result and the language.

RustPython for AST-parsing

We needed a library for parsing the Python AST from the text representation. This
is due to the development time it would require to build such functionality for this
thesis only. The RustPython project[50] was discovered at the beginning of the
thesis and provides an open-source library for parsing and returning a full AST.
This fitted well into our project since we wanted to integrate this functionality
directly into our implementation. The library rustpython-parser has now become
essential for our implementation. We do note that the RustPython project is still
in development and is not yet production-ready, but for our implementation, it
does exactly what we want.

AST-walker

The Python standard library ! provides by default an ast-module [51]. We exper-
imented with prototypes of our implementation using this module in the early
stages of the thesis. This module provides functionality to visit and traverse spe-
cific nodes in the AST, which is useful to, for example, only visit function call nodes
to collect their names. The downside was the RustPython-library did not have such
functionality by default, and since we chose to use this library for the full imple-
mentation we had to implement an AST traverser/walker ourselves. This module
we developed is provided in the open-source repository for the implementation
[1] under the name ast_walker. The design goal was to mimic the Python module
as closely as possible but in Rust.

LA set of libraries included by default with the programming language.

Chapter 4: Experimental Design and Results 45

4.3 Results

In this section, we will explain the experiments we performed and the results we
got. We try to determine the feasibility to use the implementation for the two
operating modes we have in mind. Again, these modes are; (1) running the im-
plementation on a single package and its dependencies, and (2) being able to
scan huge amounts of packages to find the needle-in-a-haystack, which would be
a malicious package. We will only perform experiments for the second mode, as
we will try to infer the performance on a smaller amount of dependencies from
these results.

Before we show the experiments, we will demonstrate the usage and applic-
ation of the implementation on a single file. This is to demonstrate its features,
and how the feedback to the user looks like.

4.3.1 The Impact of TF-IDF

During development we discovered how TF-IDF completely hid important bullet-
ins in sample packages we were using as control. One of these packages were the
jeilyfish-package (a part of the dataset we described earlier). With default weights
set to 1.0 and TF-IDF enabled, this package got zero bulletins. If we did a single
pass of this package again without TF-IDE we received 12 bulletins.

4.3.2 Experimentation on a Single File

To demonstrate the abilities and limitations of the implementation, we present
a program with different suspicious behaviors. For this test, we turned off the
TF-IDF weighting for function calls and imports. This is because TF-IDF generally
only works if we have a lot of files, but this will be discussed more later in the
next section. If we use TF-IDF on such a small program, we would see a lot less
bulletins (as presented in the above section). This is a limitation of enabling TF-IDF
for samller files, but it is intended to lower false positives in larger dependencies.

Below we can see the code for the suspicious sample. Do note that this is for
demonstration purposes, and that the program does not actually run. Except for
the test-function which would import the builtins module in Python, and dynam-
ically get the built in method exec from it using the getattr function. The function
name is encoded using Base64. It would then decode a Base64 snippet of code
that gets the hostname of the local machine and returns it.

import os

import socket

import os.path as awdawd

from importlib import import module as im
from Crypto.Cipher import AES

def x():
return "vY2tldDtwcmludCh"

def test():

Chapter 4: Experimental Design and Results 46

key = "aWlwb3JOIHN" + "zb2NrzZXQuz2Ve" + "aG9zdG5hbWUoKSk="
hello(key)

def hello(key param):
import base64
import marshal
m = im("buil" + "ti" + "ns")
s = base64.bb64decode(key param).decode("utf-8")
e = getattr(m, base64.b64decode("ZXhlYw"+"==").decode("utf-8"))
e(s)

f = open("myfile.txt", "x")
exec("hello there")

test()

Code listing 4.3: A sample malicious file for testing.

The first most basic demonstration is detecting the use of exec in our program,
which is used a lot in malicious Python code. Below you can see the output from
the bulletin that was created:

24| exec("hello there")
~The function ’'exec’ is often used in malicious activity

The implementation also marks imports that are often used in malicious activ-
ity, because we have defined it in the rule-set. The packages beneath are also used
for totally benign purposes, which also illustrates that judging what is suspicious
or not is difficult in static analysis.

1| import os
~“The import ’'os’ is often used in malicious activity
2| import socket
~“The import ’socket’ is often used in malicious activity

In order to demonstrate the functionality for resolving aliases and partial eval-
uation, we show the results from a part of our program trying to import the builtins
package, which can be used to dynamically get functions such as "exec", which we
are indeed trying to do.

We see the usage of "im" as an alias to "import_module" is detected, and the
partial string evaluation shows us that this package is the "builtins" package:

4| from importlib import import module as im
~“The import 'importlib’ is often used in malicious activity

17| m = im("buil" + "ti" + "ns")
~“Functionality was dynamically imported (at runtime). [...]
~The import ’builtins’ is often used in malicious activity

Chapter 4: Experimental Design and Results 47

The last example from this we want to show is the use of canaries. Below you
can see the output from our implementation detecting the use of "import" as a
Base64-encoded string. This could in future work be chained with string evalu-
ation to automatically decode the string and to then recursively run analysis on
that code again for example.

10| def test():
11| key = "aWlwb3JOIHN" + "zb2NrZXQuz2vVe" + "aG9zdG5hbWUoKSk="

~Canary triggered: detected 'import’ using transform 't b64encode’

12| hello(key)

To demonstrate the limitations of the canary detection using the AST, we
present another line of code from our example. This line of code decodes "exec"
from a Base64-encoded string, but no bulletin was created. We know this should
have generated a bulletin because "exec" is in our canary list. This is probably due
to arguments in functions not being recursively handled, which could be extended
in the future, but is nevertheless important to demonstrate. This example in par-
ticular could be found using a simple regex search, but in some cases that might
not be possible. Combining this with regular expression could be possible in the
future.

19| e = getattr(m, base64.b64decode("ZXhlYw"+"==").decode("utf-8"))

~“The function ’'base64.b64decode’ is often used in malicious activity

Chapter 4: Experimental Design and Results 48

4.3.3 Experiments on the Dataset

Since the implementation allows for adjusting weights for fields and TF-IDF val-
ues, we wanted to try and optimize these weights using machine learning. To
do this we used genetic algorithms, which we along with the fitness functions
described in chapter 3. The results are presented in this section, and partially
elaborated on.

The full discussion on the results, and conclusion about what experiments
were better, please see chapter 5. This chapter will only present the findings.

This section does not show all the optimized weights for each of the genera-
tion for clarity of reading, however, to see full combination of weights and results
for each experiment, please see section E in the appendix. The tables there also
provide more decimals for each weight, in case you want to use them in the im-
plementation.

Ex. Gen. TF-IDF Dataset Description

0 - Calls/Imports ~ All Control with default weights.
0.1 - Disabled All Default weights, no TF-IDE

0.2 - Calls/Imports Train/Test Only optimized for F-score.

1 1,5,10 Calls/Imports Train/Test Train/Test (80/20) split.

2 1,5,10 Calls/Imports All All samples (no train/test).

3 1,5,10 Calls/Imports Train/Test 100 RND 100 random of benign samples.
4 1,5, 10 Disabled Train/Test Train/Test (80/20) split.

5 1,5, 10 Disabled All All samples.

6 1,5,10 Disabled Train/Test 100 RND 100 random of benign samples.
7 1,5,10 Calls Train/Test Disabled for imports.

Table 4.1: An overview of our concrete experiments. Experiments 1 through 3 are
with TF-IDF, and experiments 4 through 6 are with TF-IDF disabled. Experiment
7 is an extra experiment we perform.

In table 4.1 we can see an overview of the experiment we performed. Below we
describe more in detail what each of the experiments do. We also perform the same
experiments again later in the chapter with a slightly different implementation of
TF-IDE but more on that towards the end of the chapter.

Experiment 0, 0.1 (along with Experiment 0.2 described next) were our
control experiments. These were used as baselines for the rest of the experiments.
They measure F-score, bulletin count, and a fitness score just like the other exper-
iments and were meant give us a control to match against the other results. The
weights were set to 1.0 for these.

Experiment 0.2 was performed to tell us the maximum detection rate for our
implementation. This is as discussed in 3.2.5, where we mentioned we wanted
find a maximum F-score. To do this we optimized for only the F-score by simply

Chapter 4: Experimental Design and Results 49

returning it in the fitness function, since higher values equals better fitness. The
higher the F-score the better. The difference from the normal fitness function is
that we then omit the bulletin count.

Experiment 1 is meant to be a standard 80/20 train-test split. We do this to
discourage overfitting the weights to our results, we did also consider using K-Fold
for this, but as we will discuss in section 5.2, we choose not to do so for this thesis.

Experiment 2 is made to see what would happen if we optimize the weights
without using a train/test split, and the last one is a combination with train/test
and a selection of 100 random benign packages of the 441 benign packages we
have downloaded.

Experiment 3 was made to test how the weights fair against being optimized
with approximately a third of the benign dataset. Each run picks 100 random
benign packages of the 441. These 100 are then used in a train/test split. The
malicious dataset stays the same, but is also affected by the train/test split. This
was to see how the performance scales between this experiment and the full-test
experiment without train-test splitting.

Experiment 4, 5, and 6 are almost equal to experiment 1, 2 and 3 respect-
ively. The critical change is the usage of TF-IDE which was disabled for both im-
ports and functions. As mentioned in section 3.2.5, we wanted to also test how the
TF-IDF did on function calls and imports, since Fang et al. used this on opcodes
[19].

Experiment 7 was created because the results from the previous tests promp-
ted us to at the time to experiment more with the combination of TF-IDE This is
the same as experiment 1, but without TF-IDF for imports. We will elaborate on
why when we present the results, which will also be discussed in chapter 5.

We start of by showing the results from the control experiments.

Chapter 4: Experimental Design and Results 50

4.3.4 Control Experiments

Experiment 0 and 0.1: The first two control experiments were simple runs, where
we only set the default weights. When we say we did a full run, we mean a single
pass over the full dataset of benign and malicious packages. The results from this
can be seen in table 4.2. This was on the whole dataset of both malicious and
benign results (what we denote as "all" in our tables). For experiment 0 we get
an F-score of 0.44 and a bulletin count of 2172, which results in about 4.9 bulletins
per package on average (with 441 benign packages in our dataset as previously
mentioned). This results shows us that this run did not generate bulletins for half
of the requested malicious code.

To reiterate; The results we are looking for have a high F-score (which are
practically percentages, but are displayed as decimals), a low bulletin count, and
a high as possible fitness.

Experiment TF-IDF F-score Bulletins Fitness

Ex. 0 Yes 0.44 2172 2.04
Ex. 0.1 No 0.78 9662 0.81

Table 4.2: Control experiment using all weights set to 1.0. - Ex. 0 has TF-IDF
and Ex. 0.1 does not.

Experiment 0.2: The next control was optimized only using F-score as fitness.
This experiment also used TF-IDF and went through 10 generations of evolution.

Table 4.3 shows the results from this run with the genetic algorithm. The val-
ues highlighted in bold are the best ones for the column they are in. How we
chose the best values are discussed more in detail in chapter 5.

Gen. F-score Training Testing Time
Fitness Fitness

1 0.83 0.78 4.64 14m
5 0.88 0.78 4.12 38m
10 0.86 0.81 3.69 1h 7m

Table 4.3: Control experiment 0.1 - Optimized for F-score only (TF-IDF on func-
tion calls and imports, train/test split, only malicious samples).

The time column in 4.3 show how long it took to get to that specific genera-
tion. That the time for the 5th generation is the time it took to get to that evolution.
It is not the time between evolution’s. For example, the F-score only optimization
took 1 hour and 7 minutes to complete all its generations from 1 to 10.

Figure 4.1 shows the fitness and F-score from the three control experiments
on a single graph. We can see that the control experiment with no TE-IDF is com-
parable to the experiment where we only optimize for F-score.

Chapter 4: Experimental Design and Results 51

F-Score (%) Fitness
(higher = better) (higher = better)
1.0
..\
4.5 ~ S~
“Ne.
o84 ___ 4.0 S~
~~<e
3.5 1
g 0-61 30 Training Fitness
o o ~®- Testing Fitness
S = — .
7 Gar. no TFIDF
w 0.4 trl. no TF-
2.0 A
0.2 1.5 A
F-score
—— Ctrl. w/ TF-IDF 1.0 4
——= Ctrl.noTF-IDF | = |le====———g=====e==—a
0.0 T T T T T T
1 5 10 1 5 10
Generations Generations

Figure 4.1: Control experiments - F-score and fitness for the control experiments
compared.

In summary: We can tell from figure 4.1 that the F-score performance of the
F-score-only optimized weights are comparable to the control experiment with no
TF-IDF (as mentioned all weights were set to 1.0 for experiment 0 and 0.1). The
F-score is almost halved by the introduction of TF-IDE but we can see in table 4.2
that the bulletin count goes from 9662 to 2172 with TF-IDF enabled.

Chapter 4: Experimental Design and Results 52

4.3.5 Experiments with TF-IDF

Next, we will show the results from the TF-IDF experiments 1 through 3. They
are shown in table 4.4 below. The weights for these experiments can be found
in table 4.6, but will make more sense when these are discussed and analyzed in
chapter 5.

The experiments used a total time of 16 hours and 54 minutes to complete.
As previously mentioned we highlight the best values in their column by marking
it in bold. Do note that the bulletin count is read from the testing run. This means
the 1st experiment in generation 5 got 291 bulletins and during that run got 26.39
as a fitness score. It is critical these results are viewed with the context of the full
runs, so the experiments have a common testing ground (table 4.5).

Ex. Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 0.37 326 3.22 11.47 1h 26m
1 5 0.77 291 7.90 26.39 3h 43m
10 0.67 301 8.11 22.08 6h 26m
1 0.46 1191 3.87 3.86 1h 44m
2 5 0.56 606 10.14 9.21 4h 41m
10 0.58 339 17.11 17.05 8h 9m
1 0.51 174 62.61 29.16 36m
3 5 043 235 82.17 18.09 1h 23m
10 0.52 119 84.61 43.57 2h 19m

Table 4.4: Results from experiment 1 to 3 (as shown in or overview table 4.1) -
The best results for each column are highlighted in bold for each experiment. -
The generations highlighted in cyan were deemed the best for that experiment.

The cyan-colored generations were chosen to be evaluated through a full run.
As mentioned in the introduction to this section, a full run is what we call a run
of a set of weights across all the benign and malicious samples we have. This

Ex. Gen. F-score Bulletins Fitness

0o - 0.44 2172 2.04
0.1 - 0.78 9662 0.81
1 5th 0.67 1136 5.89
2 10th 0.58 339 17.05
3 10th 0.62 222 27.78

Table 4.5: Full run with the best weights from experiment 1, 2 and 3 + controls
0 and 0.1 - A graph of this can be seen in figure 4.2 - The best results from
experiment 1, 2 and 3 are highlighted in bold.

Chapter 4: Experimental Design and Results 53

gives the weights a common testing dataset when they have been optimized with
different ones. In table 4.5 we can see the results from the weights we regarded
as the best from experiment 1, 2, and 3. The control experiments are included
as comparison.

F-score (%) Bulletins Fitness
(higher = better) (lower = better) (higher = better)
10000 A
— Ctrl.w/TFIDF | = p===——=mmm—mmm — Ctrl. w/ TF-IDF
=== Ctrl. no TF-IDF === Ctrl. no TF-IDF
mmm F-Scores 251 mmm Fitness
L B e ——— 8000 -
20 A
6000 -
E —— Ctrl. w/ TF-IDF 0
] -=- Ctrl. no TF-IDF 2
g mm Bulletins i
4000 1
2000 4
0 -_—__ _
Ex. 1 Ex. 2 Ex. 3 Ex. 1 Ex. 2 Ex. 3 Ex. 1 Ex. 2 Ex. 3

Figure 4.2: Experiment 1 to 3 Best Weights Full Run - F-Score, bulletin count,
and fitness are shown for a full run for the best weights from each experiments
(highlighter in 4.4. We can tell that experiment 3’s weights performed the best.

These results were visualized in figure 4.2. We also overlay the first two con-
trols (omitting the F-score-only control) on the graph for comparing the results
from the optimization. Do note the bulletin count is from the testing split in the
experiments that use this, which are experiment 1 and 3. Experiment 2 uses all
the samples, which means the best generation here is considered a full run. It was
a simple task to pick out the best generation within a given experiment just based
on the other best values.

In summary: Experiment 1 to 3 performed right in the middle of our controls
in terms of F-score, hovering at around 60%. The bulletin count was consistently
and considerably better than the controls, and any of the weights would outper-
form it. The fitness values (right in the figure 4.2) reflect this good combination
of F-score and bulletin count in experiment 3. Experiment 3 was the one with 100
random benign packages, instead of the full samples of 441. The time for this
experiment was also 1/4 of experiment 2, which was trained on all samples.

Chapter 4: Experimental Design and Results 54
Ex. Gen. FWFunc. FWIm. FW Be. FW Str. | TW Func. TW Im.

1 0.21 0.85 -0.13 0.72 1.26 1.49

1 5 0.21 0.85 -0.13 1.90 1.22 0.29
10 0.21 0.85 -0.13 2.10 1.22 0.29

1 0.87 0.68 0.61 1.05 0.59 0.27

2 5 0.13 0.68 0.48 1.05 0.76 0.09
10 0.13 0.68 -0.60 1.05 0.01 0.09

1 0.09 0.73 0.90 1.18 0.87 0.35

3 5 0.19 0.70 0.90 1.18 0.87 0.71
10 0.09 0.65 -0.09 -0.10 0.87 0.03

Table 4.6: Optimized weights from experiment 1 to 3 (from table 4.4)

Chapter 4: Experimental Design and Results 55

4.3.6 Experiments without TF-IDF

This next part will focus on doing the same experiments as 1 to 3, but with TF-IDF
disabled. The overview for all the experiments can once again be found in 4.1.
Do note that due to technical reasons we still feed the genetic algorithm with six
genes, even though the last two weights for TF-IDF will have no impact on the
results.

For the control experiments we refer back to table 4.2 in the previous section.
THe control with no TF-IDF resulted in 78% as F-score, 9662 bulletins, and the
fitness value was considerably lower than the other control with TF-IDF (due to
the much increased bulletin count).

Ex. Gen. F-score Bulletins Training Testing Fit- Time
Fitness ness

1 0.17 117 163.6 14.11 34m
4 5 0.23 66 216.9 34.86 1h 26m
10 0.21 0 7.7e+10 2.1e+11 2h 30m
1 0.13 450 2.90 2.90 Oh 39m
5 5 0.08 64 12.02 12.02 1h 42m
10 0.08 0 7.7e+10 7.7e+10 2h 56m
1 0.39 156 3017.1 24.81 Oh 17m
6 5 0.0 141 9.5e+10 0.0 Oh 41m
10 0.17 141 1.3e+11 11.71 1h 13m

Table 4.7: Results from experiment 4 to 6 (as shown in or overview table 4.1) -
The best results for each column are highlighted in bold for each experiment. -
The generations highlighted in cyan were deemed the best for that experiment.

The results from the no TF-IDF experiments can be seen in table 4.7. As we
have mentioned, these experiments are partially the same as experiment 1 to 3,
but they have TF-IDF disabled.

We immediately see that these results differ a lot from the TF-IDF experiments.
The F-score is generally much lower, ranging from a maximum value of 39% all the
way down to 0% (worse than both our controls), but bulletin count is consistently
much lower than our previous experiments. This count reaching all the way down
to zero at the 10th generation in both experiment 5 and 6.

We only performed a full run for the 10th generation for experiment 4, because
the 6th experiment did not have a clear best generation, and the best weights in

F-score Bulletins Fitness

0.09 0 9.5e+10

Table 4.8: Experiment 4 10th generation - All samples run

Chapter 4: Experimental Design and Results 56

F-score (%) Bulletins Fitness
(higher = better) (lower = better) (higher = better)
10000 - -
—— Ctrl. w/TF-IDF | === =—=————————— 101t1 —— ctrl. w/ TF-IDF
=== Ctrl. no TF-IDF === Ctrl. no TF-IDF
B F-Scores B Fitness
L e ——— 8000 - 109 A
m
g
)
< 0.6 1 6000 1 2
g E — ctrl.w/TF-IDF | E
g 3 -—- Ctrl. no TF-IDF =
b g = Bulletins E‘
uw0.4 4000 o
7
@
5
i
0.2 A 2000 A
0.0 - 0
Ex.1 Ex.2 Ex.3 Ex. 4 Ex.1 Ex.2 Ex.3 Ex. 4 Ex.1 Ex.2 Ex.3 Ex. 4

Figure 4.3: Experiment 4 Best Weights (10th generation) Full Run - compared
to previous results - F-Score, bulletin count, and fitness are shown for a full run
for the best weights from each experiments. - The new additions are colored,
while the previous ones are grayed out

experiment 5 would be worse than those in experiment 4. The results from this full
run can be seen in table 4.8. In figure 4.3 we can see this result compared to the
previous full runs of the experiments 1 to 3. The bulletin count of this experiment
is not visible because it is zero. Also note that the fitness graph is a logarithmic
scale to be able to compare them visually. The new additions are colored, while
the previous ones are grayed out.

The weights for these experiments can be found in table 4.9, but will make
more sense when these are discussed and analyzed in chapter 5.

These experiments also used a lot less time on average. The maximum time
required for an experiment for this group was 2 hours and 56 minutes. This exper-
iment with all the samples does go through considerably more benign packages.
The quickest of the experiments were experiment 6, which only used 1 hour and
13 minutes to complete.

In summary: The TF-IDF experiments, as illustrated by table 4.7 and figure
4.3, show us that we can get results with a considerably lower amount of bulletins
compared to our previous experiments, but that this comes at the cost of F-score.

Chapter 4: Experimental Design and Results 57
Ex. Gen. FWFunc. FWIm. FWBe. FW Str. | TW Func. TW Im.

1 0.52 0.29 0.31 1.06 0.22 0.46

4 5 -0.46 0.55 0.31 0.40 -0.01 1.58
10 0.36 -0.45 0.31 1.92 0.11 0.97

1 0.05 0.13 1.54 1.54 0.05 0.55

5 5 0.05 0.13 0.98 1.54 0.05 0.55
10 -0.27 0.02 0.33 2.07 0.05 0.55

1 0.53 0.58 0.10 1.61 0.43 0.85

6 5 0.53 -0.32 0.10 0.72 0.98 0.64
10 0.55 -0.36 0.25 1.06 0.98 1.65

Table 4.9: Optimized weights from experiment 4 to 6 (from table 4.7) - We can
discard the last two weights, as they are TF-IDF weights.

Chapter 4: Experimental Design and Results 58

4.3.7 Experimenting with TF-IDF Disabled for Imports

During the experimentation of the first three experiments, we saw a trend in the
weights that were generated. The weights themselves can be seen in table 4.6 in
the section on experimenting with TE-IDE This trend was that TF-IDF on imports
tended to be low. This prompted us to perform an Experiment 7 with TF-IDF
disabled for imports, but enabled for function calls. This experiment can also
be seen in our overview table 4.1. This meant running 10 generations with a
train/test dataset.

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 0.21 154 4.91 13.91 1h 14m
5 0.66 122 15.86 53.91 3h 15m
10 0.66 90 23.33 73.08 5h 37m

Table 4.10: Results from Experiment 7 - Import TF-IDF disabled (train/test
split).

Table 4.10 show the results from this experiment. We did see a good result
with 0.66 in F-score and 90 bulletins in total on the 10th generation. We do have
to be aware that this result is from the test-portion of the dataset. To get a better
idea if this result would be consistently good, we perform a full run using the
weights from the 10th generation.

F-score Bulletins Fitness

0.63 230 27.62

Table 4.11: All samples run with 10th generation weights from Experiment 7 -
Import TF-IDF disabled.

In table 4.11 we can see the results from a full run using the 10th generation
of our experiment above. The result we got is comparable to the one in table
4.10 above. Figure 4.4 visualizes this result in comparison to the previous results.
The previous results are grayed out for clarity, while our new result is colorized.
From this graph we can easily tell that the performance of this experiment closely
matches that of experiment 3 (TF-IDE, train/test, 100 random benign packages).

In summary: This experiment with TE-IDF disabled for imports yielded similar
results to an experiment with TF-IDF enabled for both imports and calls. Specific-
ally, this experiment (7) was similar to experiment 3 in performance, with our full
run getting 63% F-score and 230 bulletins, and experiment 3 getting 0.62% and
222 bulletins. This results are discussed further in chapter 5.

Chapter 4: Experimental Design and Results

F-score (%)
(higher = better)

1.0
—— Ctrl. w/ TF-IDF
=== Ctrl. no TF-IDF
B F-Scores

0.8

Ex.1 Ex. 2 Ex. 3 Ex. 4 Ex. 7

Bulletins

Bulletins
(lower = better)

10000 A

8000 +

6000

4000 -

—— Ctrl. w/ TF-IDF
=== Ctrl. no TF-IDF
mmm Bulletins

2000

Ex.1 Ex. 2 Ex. 3 Ex. 4 Ex. 7

Fitness (logarithmic scale)

59

Fitness
(higher = better)

1011 4

109 4

107 4

105 4

103 4

101 i

—— Ctrl. w/ TF-IDF
=== Ctrl. no TF-IDF
I Fitness

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 7

Figure 4.4: Experiment 7 Best Weights (10th generation) Full Run - compared
to previous results - F-Score, bulletin count, and fitness are shown for a full run
for the best weights from each experiments.

Gen. FW Func. FWIm. FW Be. FW Str. | TW Func. TW Im.
1 048 0.42 0.46 1.53 0.97 0.28
5 0.01 0.66 0.46 1.76 0.97 0.28
10 0.01 0.65 -0.46 1.76 0.97 0.28

Table 4.12: Weights for Experiment 7 - Import TF-IDF disabled (train/test split)
- The TF-IDF weight for imports can be ignored here, as it is not used.

Chapter 4: Experimental Design and Results 60

4.3.8 Changing the IDF-function

We wanted to perform one more experiment where we changed the IDF-function.
As mentioned in section 3.2.5, we modified the TF-IDF function by replacing
the IDF function with one we called document frequency (DF) (equation 3.9 in
chapter 3). The intention was to see if we could mitigate penalizing results in
smaller packages.

We ran Experiment 1, 2 and 3 again with this modified function. The results
can be found in table 4.13. Do note again that this experiment used a train/test
split. But the results were promising. The 5th generation in Experiment 1 w/ DF
outperformed generation 1 and 10 in terms of F-score, suggestion that it might
perhaps over-fit if we ran it for longer.

Ex. Gen. F-score Bulletins Training Testing Fit- Time
Fitness ness
1 04 11.0 13.04 363.6 1h 49m
1w/ DF 5 0.62 33.0 16.16 188.1 4h 1m
10 0.35 9.0 21.87 391.1 6h 40m
1 0.23 65.0 35.05 35.05 1h 53m
2w/ DF 5 0.08 4.0 256.4 192.3 4h 56m
10 0.08 0.0 7.7e+10 7.7e+10 8h 22m
1 0.25 8.0 3.9e+10 307.0 Oh 33m
3w/ DF 5 0.25 8.0 3.9e+10 307.0 1h 17m
10 0.25 13.0 3.9e+10 188.9 2h Im

Table 4.13: Results from experiment 1 to 3 with DF instead of IDF (as shown
in or overview table 4.1) - The best results for each column are highlighted in
bold for each experiment.

The results from the experiments were varied. We decided to therefore per-
form two full runs using two set of weights from Ex. 1 w/ DF and Ex. 3 w/ DF.
This meant we could compare it to the results from Ex. 2 w/ DF. The results from
this can be seen in table 4.14. Here we observed the weights have a good F-score
for Ex. 1 w/ DF, but with a bulletin count of 8663 it lowered the fitness values

Ex. Gen. F-score Bulletins Fitness
Ex.1w/DF 5 0.76 8663 0.87

Ex. 2w/ DF 10 0.08 0 7.7e+10
Ex.3w/DF 1,5 0.06 51 11.42

Table 4.14: All samples run with weights from Ex.1 (5th gen.) and Ex. 3 (1st and
5th gen) changing IDF to DF. We also include Ex. 2 w/ DF since it can be compared
to a full run.

F-score (%)

Chapter 4: Experimental Design and Results 61

F-score (%) Bulletins Fitness
igher = better ower = better igher = better
(high better) (l better) (high better)
1.0 10000 - 1
—— Ctrl.w/TF-IDF | === ==mm—sssmm———ee 10°° 1 —— Ctrl. w/ TF-IDF
=== Ctrl. no TF-IDF === Ctrl. no TF-IDF
0.8 - B F-Scores 3000 4 109 - B Fitness
T
?
o 107_
0.6 - i L
o 5000 —— Ctrl. w/ TF-IDF £
B -—- Ctrl. no TF-IDF T
3 mm Bulletins 3 1071
0.4 4 4000 =
o
g 10°4
&
0.2 - 2000
101_
0.0 - 0-
RIRLINCIRNATIR SR RANLINCIRNANR S R RIRLIRCIRINATIR SR
G v G N G v
< ¢ < < ¢

Figure 4.5: Experiment 1 and 3, w/ DE Best Weights Full Run - compared to
previous results - F-Score, bulletin count, and fitness are shown for a full run for
the best weights from each experiments.

drastically. Both generation 1 and 5 in Ex. 3 w/ DF had the same weights, as seen
in table 4.15, which is why they are both highlighted. We also observed that Ex.
2w/ DF is almost identical in performance when we compared it to experiment 4
and 5. Both had 8% F-score and 0 bulletins.

Figure 4.5 compared the full run result from our chosen experiments. From
this graph we saw that higher F-score strongly correlated with a higher bulletin
count. Ex.3 w/ DF matched with experiment 4 in terms of F-score and bulletin
count, but we notice the fitness values are widely different. We do note that the
full run for experiment 4 had 0 bulletins, while Ex.3 w/ DF got 15.

In summary: Our experiments with the TF-DF function enabled for imports
and functions gave us results where two experiments exhibited high correlation
between F-score and bulletin count, which is not what we wanted. Ex. 2 w/ DF
on the other hand, had almost the same results as experiment 4 and 5 (no TF-IDF
functions and imports).

Chapter 4: Experimental Design and Results 62
Ex. Gen. FWFunc. FWIm. FWBe. FW Str. | TW Func. TW Im.
1 0.32 1.06 0.23 1.88 1.16 1.09
1w/ DF 5 0.32 1.26 -0.50 1.88 1.16 1.09
10 1.41 0.63 0.44 1.88 1.16 1.09
1 1.61 0.54 0.42 1.44 0.94 1.07
2w/ DF 5 -0.02 -0.27 0.31 1.44 0.94 1.07
10 -0.02 0.23 0.31 1.44 0.94 0.0
1 0.57 0.98 0.70 0.65 1.59 1.60
3w/ DF 5 0.57 0.98 0.70 0.65 1.59 1.60
10 0.57 1.11 0.70 0.11 1.59 1.60

Table 4.15: Optimized weights from experiment 1 to 3 with DF instead of IDF
(from table 4.13)

Chapter 4: Experimental Design and Results 63

4.3.9 Experimenting with alternate DF and disabled imports

Due to the results in the previous section, as shown in figure 4.5, we wanted try
combining experiments. We decided to run an experiment with TF-DF-function
but disabled it for imports, just like experiment 7 (see overview table 4.1).

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 0.73 662 4.15 11.04 1h 20m
5 0.21 0 3.9e+10 2.1e+11 3h27m
10 0.35 0 3.9e+10 3.5e+11 6h1m

Table 4.16: Results from 10th generation weights in Ex. 7 w/ DF on Calls

F-score Bulletins Fitness

0.11 0 1l.1e+11

Table 4.17: All samples run with 10th generation weights from Ex. 7 w/ DF on
Calls.

The results from this experiment can be seen in table 4.16. We see the last two
generations have a very high fitness value for the testing split.

We also perform a full run for the best weights from the 10th generation in the
experiment. The results can be seen in table 4.17 and as we can see the trend of
0 bulletins is continuing, but the F-score is only slightly better than the previous
result. The run is visualized in figure 4.6 where it is compared to previous full
runs. To see previous results please see our previous sections.

This is the most promising results where we have got 0 bulletins. The results
from this full test closely match experiment 4, which was the train/test experiment
were TF-IDF was disabled for both imports and functions (as seen in our overview
4.1), only that the F-score is slightly better. As for the difference between the
experiments; we have the DF instead of IDF-function, and TF-DF then enabled on
functions.

In summary: This experiment was performed with the modified DF-function,
but only for function calls. The experiment was run on our train/test dataset, and
the results were promising. A full run showed us that the 10th generation weights
got an F-score of 11% and a bulletin count of 0. This experiment closely matched
the results of experiment 4.

F-score (%)

Chapter 4: Experimental Design and Results 64

F-score (%) Bulletins Fitness
(higher = better) (lower = better) (higher = better)
10000 A
— Ctrl.w/TFIDF | [TTmmmmmossmmsseeo 104 —— ctrl. w/ TF-IDF
—== Ctrl. no TF-IDF —== Ctrl. no TF-IDF
0.8+ ___Mmm F-Scores _ 8000 T 10° | ™= Fitness
2
| o 107 4
0.6 @ 60001 ' cori, w/ TF-IDF E
@ ——- Ctrl. no TF-IDF £
E B Bulletins 5 10°1
0.4 @ 4000 =
@
o 103
=
0.2 A 2000 i
101 4
0.0 - 0-
S RA K& N A K& N B A K& @
e +_\,°+?>° < Gt QQQQ & e +_~§i’.’=° <&
L2 ,\Q E2R ,\0 L2 ,\Q
(% < (%

Figure 4.6: Experiment 1 and 3, w/ DE Best Weights Full Run - compared to
previous results - F-Score, bulletin count, and fitness are shown for a full run for
the best weights from each experiments.

Gen. FW Func. FWIm. FW Be. FW Str. | TW Func. TW Im.

1 0.30 0.84 0.36 1.48 1.72 0.65
5 044 0.12 0.36 2.07 1.72 0.65
10 0.72 -0.03 0.36 2.53 1.72 1.40

Table 4.18: Weights from Ex. 7 w/ DF on Calls (train/test split).

Chapter 5

Discussion and Conclusion

This chapter discusses the previously shown results while also analyzing them. We
also reflect on the decision talking about the validity and the limitations of our
approach. This is also the chapter that addresses the research questions.

Through the thesis we got a lot of points to discuss and reflect on, therefore
this chapter is divided into sections. First section 5.1 covers the results from the
previous chapter, section 5.2 then discusses the experimental design. The last two
sections 5.3 and 5.4 cover the limitations and validity of our results and methods.
Lastly, we present our conclusion of the thesis in section 5.5.

5.1 Experimental Results

This section will discuss the results from chapter 4. This is done in the same order
they appear in the results, and each section provides a summary for each part.

TE-IDF

The first three experiments we performed with TF-IDF yielded good results com-
pared to our controls, as we mention in the summary. The results can, again, be
seen in figure 4.2. Here we can see these experiments performed consistently bet-
ter than the control with TF-IDE and the bulletin count was also considerably
lower. The fitness values for these first three experiments show an inverse cor-
relation between F-score and bulletin count, which is what we wished to see (as
mentioned this is because we want a high F-score and a low bulletin count). These
results, specifically from the 10th generation of experiment 3, are so far the best
overall set of weights. This result gave us an F-score of around 60%, and the bul-
letin count was 222, which compared to the control result of 2172 is almost ten
times better. This could with some work function well on smaller scale analysis,
for example, one package and a selection of their direct dependencies (RQ5).
Now that we have seen the results from these experiments, we can also look
at the weights to see if we see any particular similarities between the three exper-
iments. The weights can be seen in table 4.6, and we this since they all performed

65

Chapter 5: Discussion and Conclusion 66

reasonably well. They do tell us at least three interesting behaviors; (1) All weights
penalize the field weight for the functions, reducing it to between 0.09 and 0.21
for their last generations (just a reminder the default weights are 1.0). (2) We
see the field weight for imports being reduced, but not too much. (3) We can also
tell the TF-IDF weights for imports were reduced drastically for all experiments
10th generation. In practice this means we do not use the calculated TF-IDF value,
practically disabling it.

We are also aware we might see different results from these weights if we run
the optimization process several times, and run a full run for those as well, which
we could not do due to the speed of our experiments (which we discuss later in
this chapter).

We picked the best generation for each experiment to perform a full run. The
intention of the full run was to give all experiments a common testing ground.
The way we chose the best ones was by looking at a combination of bulletin count
and F-score and trying to find a balance between them. The fitness score was not
always reliable in showing an equal prioritization of the two in our opinion. We
speculate this could be improved by adjusting the fitness function.

In summary: The first three experiments showed an inverse correlation between
bulletin count and F-score, meaning we observe a low bulletin count when we
have a high F-score. The best set of weights gave us 60% F-score and 222 bullet-
ins. We can also tell the TF-IDF weights for imports were reduced drastically for
all experiments 10th generation.

No TF-IDF

The results from the non-TF-IDF tests were a lot more varied. While experiments
1 to 3 were all pretty consistent, experiments 4 to 6 were sacrificing F-score for
bulletin count much more than we had anticipated. The maximum F-score value
from all the generations was 39%, which is worse than both the controls. The
worst F-score was 0%, which still had bulletins. We decided the best result in
terms of the trade-off between F-score and bulletin count was experiment 4, gen-
eration 10, with 21% F-score and O bulletins. In the actual full run, we got a 9%
F-score and 0 bulletins. This full run result closely matches the 10th generation
of experiment 5. We note that experiment 2 and 5 practically only do full runs
to train and test their weights. This means experiment 5 results are comparable
to full runs of experiment 4 1. By seeing the result for experiment 4 and 5 match
in this manner, we could perhaps draw a conclusion that train/test-splitting does
not impact optimization, but more research on this is needed.

In terms of bulletin count, experiment 4 and 5 is the best we have got so far
and actually has the potential to be feasible to scan the entire PyPI registry. If we
could detect even 8-9% of all malicious packages we scan through, it would still be
fewer malicious packages in PyPI. Even though the F-score is low we have to look
at it in the context of over 380’000 packages, which is what PyPI currently has.

!Which is why experiment 5’s 10th generation is highlighted in cyan as well in the result tables.

Chapter 5: Discussion and Conclusion 67

With no TE-IDE a single run over all the 441 benign packages takes approximately
100 seconds, which is almost 10 packages per second. We can then estimate we
would spend 38000 seconds, or roughly 10 and a half hours to scan PyPI using
one running instance of the implementation. This does not account for the time
it takes to extract the Zip file in memory. In comparison, the same run with TF-
IDF for imports and calls takes 243 seconds or roughly 4.1 packages per second.
Meaning a full PyPI scan would take almost 26 hours.

These results without TF-IDF were also a lot quicker than the ones with TE-IDE
In a future section on speed and performance (5.1) we will discuss this further,
but in general, the experiments with TE-IDF disabled were 65% faster than those
with it enabled. This would again make it more feasible for large-scale deployment
(RQy).

The weights for these experiments (shown in table 4.9 in the previous chapter)
are not as consistent as the previous ones we analyzed. We ignore the TF-IDF
weights for experiments 4 to 6, but include them for completeness. We can at
least look into the weights for our best generation, which was the 10th one in
experiment 4 and 5; This experiment got 9%- and 8%F-score, respectively, and
zero bulletins as previously mentioned. Their weights do not match, except for
the field weights for the behaviors and the strings/canaries. Those are almost a
complete match, which is interesting. The field weights for functions and imports
are pretty far apart, but both get penalized quite a lot.

The fitness value in these experiments also skyrocketed. This is likely because
of our fitness function and the small value we add to the bulletin count in case it
it zero to stop divide-by-zero exceptions. We also want 0 bulletins, which is why
we do not discard results and add a small value. The function worked exactly as
designed (shown in equation 3.10, chapter 3.2.5), but we did not expect it to go
this high. Here is an example with a very medium and low bulletin count, showing
us how the fitness value increases drastically:

FMeasure

Fitness = 10000 - (5.1

BulletinCount + 0.00000001
(5.2)

0.60
27 = 10000 (5.3)
222+ 0.00000001
(5.4)
0.60

600000000000 = 10000 (5.5)

0+ 0.00000001

In the future, it might be reasonable to add a max() function to the fitness
function, where instead of the small value we add, pick the maximum value of
the bulletin count and a value of 1.

In summary: Experiment 1, 2, and 3 were performed anew with TE-IDF dis-
abled. The results showed a huge decrease in time for the experiments to com-
plete. In general the experiments with TE-IDF disabled were 65% faster than those

Chapter 5: Discussion and Conclusion 68

with it enabled. Experiment 4 and 5 got 9%- and 8%F-score, respectively, and zero
bulletins, which is so far the best result in regards to bulletin count.

TF-IDF Disabled for Imports

As mentioned previously in the discussion, the optimized weights for experiment 3
reduced the TF-IDF weight for imports drastically, practically disabling it. Because
of this, we performed experiment 7, which disabled TF-IDF for imports. Figure
4.4 in results showed the full run for this experiment compared to the previous
ones, which clearly showed us the results are almost identical to experiment 3.
This was expected but proved we did not need half of the TF-IDF calculations for
practically the same results. If also want to compare times; All 10 generations in
experiment 7 spent 5 hours and 37 minutes, and all 10 generations in experiment
1 took 6 hours and 26 minutes. We use experiment 1 for comparison since both
used train/test datasets. From these values, we can see our experiment with TF-
IDF disabled spent 1 hour less in terms of time, which is a 12.7% improvement in
time.

-== Default Value
1.5 4 Ex. 3
Ex. 7
10 +--————=—"=———————————— R -~ —————— = ————
Z
2
2 05
0.0
_05 -

C . o - C- .
?“\\?\g(\ Q\“\‘{\ Qﬂ\\% ?\NC) ,‘\‘QQ\Y{\ w\(‘\

Figure 5.1: Weight comparison of Ex. 3 and Ex. 7 (both are the 10th generation
weights from their respective experiments.)

We wanted to compare weights from experiments 3 and 7 since they are closely
matched, which we can see graphed in figure 5.1. Again, we can ignore the TF-
IDF weight for the imports from experiment 7 (right-most red bar in the graph).
We see the field weight for functions, imports, and partially the behavior, closely
matches. TE-IDF weights also closely match. The close match of the TF-IDF Import
field weights matching even when it does not affect the performance of the fitness
could be a coincidence, but this remains an open question.

Chapter 5: Discussion and Conclusion 69

We observe that the field weight for strings does not match. This suggests the
dataset does not contain many or any, Base64 encoded payloads that it could find.

In summary: Experiment 3 (TE-IDF import and functions) and 7 (TF-IDF func-
tions) show similar results, which is expected, since Experiment 3 penalized TF-
IDF weights for imports. Disabling this function for this experiment yielded a
12.7% improvement in time. It also helps to prove we can disable this functionality
and get similar results.

Changing the DF Function

We also performed experiments where we changed the IDF function in TF-IDF
to a new function, DF. The results from these experiments are displayed in table
4.13. As we mentioned in the results chapter, experiment 2 w/ DF closely matched
experiments 4 and 5 in terms of F-score and bulletin count. This might suggest
TF-DF exhibits some of the same results at experiments without TF-IDE This is
interesting because the results from Ex. I w/ DF and Ex. 3 w/ DF had a high
correlation between F-score and bulletin count. This is the inverse of what we
wanted, and if we needed results with a high coverage rate (high F-score and very
high bulletin count), we have would have run with default weights and TF-IDF
disabled (see control experiments 4.5).

When looking at the weights for Ex. 2 w/ DF in table 4.15, we see TF-DF
weight for imports being reduced to zero, meaning TF-IDF for imports become
practically disabled. We also observe the field weight for functions being reduced
to close to zero. This also means bulletins on functions in practice would have
almost no effect on the result. Field weights for imports and behavior have also
been heavily penalized compared to the default value of 1.0. This is a trend we
have been seeing from table 4.6 (Ex. 1 to 3) and 4.12 (Ex. 7 TF-IDF Calls Only).

In summary: Results from Ex. 2 w/ DF match closely with experiments 4
and 5. For the weights belonging to Ex. 2 w/ DF we observe the field weight for
functions being reduced to close to zero. Meaning functions in practice have no
effect. We also see TF-DF weight for imports being reduced to zero, meaning TF-
IDF for imports becomes practically disabled.

DF function Disabled for Imports

As we saw a trend of TF-IDF weights being severely reduced in several experi-
ments, we decided to combine this with the modified TF-DF function. The results
can be seen in 4.16chapter 4, and as mentioned in the summary; this experiment
closely matched experiment 4. While experiment 4 got 9% F-score (table 4.8),
this experiment achieved 11% in F-score. Without further re-runs and validations
we will withhold a certain conclusion this is a 2% improvement. More testing is
needed.

In figure 5.2 we compare the weights from the two experiments (as seen in
table 4.9 and 4.18). Experiment 4 is displayed in green, and Ex. 7 w/ DF Calls
Only in red/pink. We can see some similarities, for example in the field weight for

Chapter 5: Discussion and Conclusion 70

2.5 —-—- Default Value
Ex. 4
2.01 Ex. 7 w/ DF

1.5 1

1.0 F=—=====—-—-———————— SRR - SS% - __SSL -

Weight

0.5 1

0.0

05

Ce . e ‘_'(C+ .
@\?\\p ({\‘\\\6‘ Q“\% <<\X\\(° }(\“?\)(\ «\“\6\

Figure 5.2: Weight comparison of Ex. 4 and Ex. 7 w/ DF Calls Only (both are
the 10th generation weights from their respective experiments.)

functions and behavior. The field weight for imports does to some degree match.
Since experiment 4 did not utilize TF-IDE we cannot directly compare those val-
ues. This means the only valid TF-IDF weight to look at is the one for function
calls. By (assumed) coincidence the TF-IDF value on experiment 4 was also close
to zero, which would have practically disabled it as well. Since this was the biggest
change, we could speculate the TE-IDF for function calls increased the F-score by
a couple of percent, but more testing is needed. Currently, the TE-IDF weight for
Ex. 7w/ DF Calls Only amplifies the TF-IDF value by about 1.7.

In terms of time used, this experiment used 6 hours and 1 minute. Compared
to experiment 4 (our closest match) which used 2 hours and 30 minutes. This
means this new experiment spent 41% more time.

In summary: Due to a trend with the optimized weights practically disabling
TF-IDF for imports, we performed a combined experiment with the new DF-function
while also disabling TF-IDF for imports. The result from this experiment (Ex. 7 w/
DF Calls Only) closely matched the ones of experiment 4 (no TF-IDE train/test
dataset). While matching experiment 4 in terms of F-score and bulletin count,
this experiment spent 41% more time.

Speed and a Note on Performance

We can tell by the experiment time on experiments with and without TF-IDF that
this has a big impact on performance (tables 4.4 and 4.7). We compare the time it
took for experiments 2 and 5 to finish, as they both trained and tested on the whole
dataset; Experiment 2 used 8 hours and 9 minutes to finish, and experiment 5 used
2 hours and 56. This meant the experiments with TF-IDF disabled were 65% faster

Chapter 5: Discussion and Conclusion 71

than those with. This could perhaps be mitigated with optimization and profiling.
This is also mentioned in future work (section 6.2.2). The process of calculating
the TF-IDF requires one to know if any function or import has a presence in all
files, which is a problem in handling data inside the application. Which means it’s
a practical component to it as well. We therefore cannot be certain if it’s the sheer
number of calculations themselves or the implementations handling of data that
is the cause for these extended testing times.

From sample testing we have performed, it seems the TF-IDF struggles with
larger packages, for example, the ansible package, which contains over 4000 Py-
thon files. Other packages take a very short time to analyze from our experience.
We could ignore certain package sizes in our analysis to speed up the experiments.
We could ignore larger packages in our experiments, but even though the average
length of malware in our dataset is not high, it can be inside any package in theory
(as presented in section 4.1.2on the malicious dataset).

The reason performance matters for us is because we want to be able to scan
hundreds of packages in the shortest amount of time. This is to both (1) enable
quick analysis of a package and all its dependencies, and (2) to make it feasible
to scan all of PyPI as quickly as possible.

5.2 Experimental Design

We picked the best generation for each experiment to perform a full run. The
intention of the full run was to give all experiments a common testing ground.

In the next version of our experiments, we would have performed a full run at
the end of each generation, and stored it, so that we could compare all generations
for all experiments more easily instead of picking the best ones and performing
extra experiments on them. Another difference we would do with is to perform
re-runs of experiments. This would allow us to get standard deviations from the
results, which would mean we could call one result better than another with more
confidence.

We also hypothesize the extra weights that are not used in the non-TF-IDF ex-
periments have no impact on the performance, but in the future, we would change
this so we could be certain. This would mean changing the machine learning setup
to only use 4 or 5 genes, depending on if we have TE-IDF for both calls and func-
tions. Removing the weights should not change the experiment time by a huge
amount, as most time is spent doing the actual analysis using the implementa-
tion.

Time as a Metric of Performance

At the beginning of the experiment, we also tracked time variables for our experi-
ments, including everything else mentioned in section 3.4 on Metrics. The idea was
that we would see what made the implementation faster and slower. During the

Chapter 5: Discussion and Conclusion 72

project, this was deemed not feasible anymore, as the development of the imple-
mentation was across three different machines and inside virtual machines. This
is because the stored data would then be inconsistent across platforms, and we
realized optimizing the algorithms for the temporal aspect should be done later if
the method is at all shown to work. The time perspective would be interesting to
include, yet was not feasible for these experiments with the inconsistent setups.

Train/Test Splitting

In chapter 4 we present our experiments where we performed a train/test split
of 80/20 (%). This is a split we have seen and thought would be reasonable. We
also considered doing a K-Fold cross-validation with K = 5. This would mean us
doing the same split of 80/20 five times, such that all samples, at some point, get
to be both a test- and train-sample. The reason we choose not to use K-Fold in our
experiments is that this would require perhaps five times the time it already takes
to run one test. As we saw from the results from experiment 1 in table ??, one run
of 80/20-splitting with 10 generations took approximately six and a half hours.
This same run with K-Fold would then take around 32 hours. At this time this
would not be reasonable with respect to time. Before doing this we would perform
some optimization on both the implementation, the dataset, and the experiment
framework. The test framework is not multi-threaded due to I/O limitations at
this moment but could be fixed in the future. This means we only run one test at
a time, which is not efficient, but the time required to fix this cannot be justified
before this report is due.

5.3 Limitations

Another limitation we found was that TF-IDF in some cases hides critical bulletins
in malicious packages. It is used to lower false positives, so we can argue it works
as expected, but this is not good when scanning a small package, or a single file.
This is why we again performed tests to uncover the impact of this.

Implementing Other Languages

Out method which we presented in chapter 3 uses the fact that Python code need
indentation in order to parse its syntax. This is not true for many other languages,
such as JavaScript. This means this method at this moment is very specific to
Python, but more research could be done to apply it to other programming lan-
guages.

Experiment Speed and Overfitting Weights

The rate at which we could perform the experiments was pretty low. This is on
the same topic as also previously discussed, except this is regarding the experi-
ments as a whole and not the specific implementation of TF-IDE The experiments

Chapter 5: Discussion and Conclusion 73

themselves took upwards of six to eight hours, as shown in table 4.4 and 4.7.
These experiments were for 10 generations, with a starting population of 8. The
bottleneck was the evolution process that needed to run the weights for both the
benign and malicious samples to return a fitness. This could have been multi-
threaded with more time. Each gene (set of weights) in the pool for the genetic
algorithm at a given generation could be run at the same time since the genes are
not dependent on each other. The benign and malicious tests could also be run
in parallel, but running through the benign samples is the most time-consuming
part, so this last parallelization would probably make little difference.

We can tell by the experiment time on experiments with and without TF-IDF
that this has a big impact on performance.

We were afraid the weights might be overfitted, meaning we trained to well
on the dataset we gave them and would not be generally applicable to other data-
sets, which is the reason we have a training/testing split. We wanted to implement
K-Fold for the dataset, so we could have even better fitness values for the genetic
algorithm, but since the experiments took so long to run, this would not be feas-
ible. We also wanted to run the experiments several times, but we had trouble
running more experiments at a time at the beginning of the testing phase, which
resulted in the limitation of only being able to run one test at a time. As discussed
in future work; the experiment framework and the speed of the tests would be a
good place to put optimization efforts if one decides to continue that route.

Tracking Bulletins

The way our experiments currently track bulletins is by counting the total amount
of bulletins that are reported for all packages. This method has its drawbacks, and
is currently a limitation. It is useful to have a single statistic which we can use
in our fitness function, but also knowing how many packages got zero bulletins
would be interesting. Looking at package counts for individual packages would
not be feasible, but calculating certain descriptive statistics from those counts
would be interesting. With different types of bulletin tracking, we could, for ex-
ample, optimize for alerting on as few packages as possible and see what type of
results this would give us.

5.4 Validity

Mistakes in the Implementation

We need the implementation to be correctly implemented in order to receive valid
results. We recognize that mistakes in the implementation of the method we have
developed are possible. Depending on the mistake, the results to no longer be
valid and would have to be re-run.

Chapter 5: Discussion and Conclusion 74

Labeling of the Dataset

The labeling of the dataset, as described in chapter 3, is essential to accurately
measuring what is malicious. In this process, one has to make assumptions and
choices about what lines of code contribute to the malicious activity. In some cases,
this can be difficult. An example is an import dealing with network functionality,
which in this example is used throughout the whole program, but is also used
by the malicious payload. The question is if this line where this import is loaded
should be marked as malicious or not. This is an example, but we did have the
same situations when labeling our dataset. Most times we ended up marking such
imports as malicious, but it also depends on the malware. The difficulty is in ensur-
ing we cover all the malicious code, while still not marking too much benign code,
which would then contribute to more false positives since the machine learning
algorithm follows this as malicious.

F-Score vs. Accuracy

It is important to note that this implementation is a classifier, it is a tool that
provides static security analysis for Python packages and their dependencies. This
implementation has the goal of trying to bring better detection of unwanted code
into the hands of normal developers while trying to not make the barrier of entry
too high. It also aims to be versatile while experimenting with new techniques to
give feedback on suspicious and malicious code. Therefore the tests and experi-
ments cannot be viewed as measuring a classification problem.

As mentioned in the methodology chapter; we utilize F-score to measure how
well the implementation generates bulletins for the lines of code we have labeled.
We incentivize the GA with our fitness function (described in the methodology
chapter 3.2.5) to do this, while still optimizing for bulletin count. The F-score
practically translates to how much of the labeled code has got a bulletin generated
for it. Think of it as perhaps as how much area have we covered compared to what
is desired (which is of course 100%).

At the beginning of the project, we used accuracy to measure how well we
detected labeled lines of code but switched to F-score after it seemed like a good
idea due to it using precision and recall. As an afterthought, this might skew the
performance of the implementation because it is not a classifier. We want to meas-
ure the area of labeled code we cover, and for that accuracy may be better than
F-score.

Chapter 5: Discussion and Conclusion 75

5.5 Conclusion

In conclusion, the goal of this thesis was to find a method of analyzing a package
and all its dependencies efficiently, as well as being able to deploy it to scan large
amounts of packages in the shortest possible time.

To do this we looked into the small, but growing, literature on supply-chain
attacks, vulnerabilities in dependencies, and malicious packages in package man-
agers. We read up on works by Duan et al.[21] who analyzed package managers
NPM, PyPI, and RubyGems for malicious packages, and Ohm et al.,[40] who cur-
ated and analyzed a collection of known malicious packages in several package
managers including NPM and PyPI.

We were inspired to develop a new method by building on the malware ana-
lysis research by Sand [36] and Fang et al. [19], as well as the static control-flow
analysis done by Micheelsen and Thalmann [32].

This new method utilizes static analysis which involves fields, weights, and
bulletins. This approach analyzes the AST of Python programs in order to extract
function calls, imported modules, variables, and certain behaviors. We then match
this information against a set of defined rules. When a rule is triggered it adds a
risk value to the fields, on the line of code is triggered. When a risk value goes
above a threshold, one or more bulletins (alerts) are returned to the developer.
The developer then has to then judge whether or not the bulletins actually show
malicious activity and how they would act on it.

We then performed a series of experiments to test our new method on a dataset
of 441 benign packages and 97 malicious ones. Inspired by Fang et al.[19] we also
added TF-IDF to lower the amount of alerting false positives. The experiments
utilized genetic algorithms to optimize weights, which controlled how much the
risk value mattered when comparing it to a threshold. These experiments resulted
in two sets of weights which we deemed the best; the first set resulted in a 60%
F-score and 222 bulletins when experimenting with our dataset of 441 benign
packages and 97 malicious packages. The second set resulted in an 8-9% in F-
score, but zero bulletins. We conclude the first set is more applicable for smaller
to medium scale analysis, while the second set might be applicable to larger-scale
analysis (of all packages in PyPI), but more research is needed.

Lastly, we open-sourced two projects from this thesis; the first project is the
implementation of our new method [1], and the second is the program to generate
the canaries we have previously described [46].

Chapter 6

Future Work

This chapter will focus on what we would improve in this thesis given more time
and further work in the area. Since this report had a lot of focus on implementing
an experimental technique this is going to be a lot of the focus and is elaborated
on in the Implementation-section below. The topics in this chapter are as follows:

e Methodology & Experiments - How our methodology and our experiments to
test it could be improved.
e Implementation - How the implementation itself could be improved.

6.1 Methodology & Experiments

As mentioned in the discussion, and later in this chapter, we wanted to optimize
the experiment time. This is so we could speed up the process of gathering fitness
data from our experiments. This would also enable us to perform K-Fold testing,
which would hopefully help to optimize the weights for a much more general
solution. We could also run the experiments several times to see if the optimization
was consistent, or if it is strongly influenced by randomness.

We could also consider using more metrics for another implementation as dis-
cussed in the previous chapter. Using accuracy would be interesting to see cor-
related with our F-measure and other metrics as well. For this thesis, we chose
F-score as previously mentioned for our metric, but this may not be the best solu-
tion. More research is needed here.

On the topic of metrics; we would also consider looking into synthesized data,
as the number of real worlds samples is low. This could perhaps be improved by
also utilizing synthesized data, but we could foresee this being a lot of work. Big-
ger datasets would hopefully enable us to have better results when using machine
learning for optimization.

76

Chapter 6: Future Work 77

Turn it Into a Classifier

The implementation implemented in this thesis is not a classifier, as is discussed
in chapter 5. For future work, we would be interested in experimenting with using
the detection model and machine learning to create a binary classifier, which could
hopefully be used for more semi-automatic flagging of malicious packages. The
intention would be to run this on a large scale or to give more reliable information
back to the developer on the dependencies they use.

6.2 Implementation

This section discusses future work and possible ideas for the implementation itself.

6.2.1 Big Data, Cloud, and Edge Computing

Our implementation is written in Rust, which also has the possibility to be com-
piled to Web Assembly (WASM). This opens the possibility to have the same
command-line application run on the edge with little modification, in theory. This
allows for maintaining a single code base that can be easily deployed to several
operating systems, as well as the cloud.

The hope is to be able to utilize the cloud, or edge computing, to parallelize
the operation of searching through packages. We would then require less local
resources, and could possibly turn it into a REST-API, which would make it more
feasible to use in automatic build pipelines (CI/CD).

6.2.2 Performance and Profiling

The implementation as it stands integrates all the parts it needs from the Rust
ecosystem to lower the overhead of inter-process communication. This allows us
to have more free control over the data we handle, and at the same time not
sacrifice it for performance. The implementation does have a ways to go when it
comes to performance. Profiling would be the first step in trying to optimize the
existing implementation to run faster, which would allow for more packages per
second.

In the same realm, we would discuss multi-threading or asynchronous opera-
tions. In Rust, there are good libraries and frameworks to implement this, and the
language even has support to ensure no deadlocks will happen at compile-time,
meaning there will be less time debugging deadlocks when doing multi-threading.
This is also one of the reasons we chose Rust over other programming languages
for the implementation in this report.

6.2.3 Caching of results

In chapter 3, our figure 3.5 shows the evaluation process after the bulletins have
been placed. We believe that there is potential in perhaps caching results for up

Chapter 6: Future Work 78

to the Pre-Evaluation step. This means we could tweak variables and more quickly
execute a search anew. The scenario would be searching through a large heap of
packages, and want to adjust the weights to give more or fewer results, depending
on what you have received back from the implementation.

This approach of caching has the downside of taking up space, while saving
on time. The implementation as it stands spends more time and does not really
take up any space except the packages it is analyzing.

6.2.4 Improved Rules

The rule system introduced in chapter 3 was quickly implemented and may not
be the best for the task. In future work, we would explore other ways to create
rules, thresholds, and test if the functionality aspect of rules as it stands today is
useful in detecting malicious packages.

Doing research on what rules to include would be valuable. Better definitions
that not only looked for concrete functions and imports, but could perhaps look for
combinations, and chain rules togheter. Maybe even more information could be
useful. The rule set implemented in this report was already inspired by the types
found in intrusion detection systems (IDS), and malware signatures (e.g. YARA
rules), and could perhaps borrow more concepts from these implementations and
shape them for our needs.

6.2.5 Support for Different Python Versions

As mentioned in section 4.2 on the implementation, we only support newer ver-
sions of Python with the rustpython-parser library, and the middleware we use to
transforming code to something this library understands is not a robust solution
for the future. Since we already only do static analysis we do not necessarily need
a correct parser for every version of Python, and would perhaps be good with a
general parser that gave as much information as possible given any Python ver-
sion. In a perfect scenario, we would have a parser for every version, but this is not
feasible. Instead, we recommend trying to create a soft parser that is more lenient
on syntax errors, either through ignoring certain lines of code, making assump-
tions, or others. The parser would only be used to alert the developer on malicious
code, and the code would never be run, so this might be a good solution.

6.2.6 Dynamic Analysis Through a Modified Interpreter

As discussed in previous work, we would also like to combine static and dynamic
analysis for even better performance. Static analysis could be susceptible to obfus-
cation, and we might detect code that is never even run, while dynamic analysis
requires a more elaborate setup to safely analyze potential malware, but might
not run the code we want to inspect due to anti-analysis techniques or system
conditions.

Chapter 6: Future Work 79

The idea is to modify the Python interpreter in such a way that we emulate or
block system calls to the file system or network, for example. This is largely similar
in concept to Kim et al. (discussed in chapter 2.2.5). This could mean the malicious
program would try to fetch a payload from some website, but instead, we block
the request and serve it a junk payload. This technique of intercepting traffic and
blocking it and serving your own payload back is not new in any way (it is often
called a Man-in-the-middle (MITM) attack), Sikorski describes this as a method
of malware analysis in their book [14]. The difference with this approach is to do
all this in the same program, which would mean not running a virtual machine,
on the host machine. This is the ideal scenario, which is of course not advised
before thoroughly testing this modified interpreter. You would have to make sure
you have hooked all the functions interacting with the host system (file system,
network, system configuration, etc.). In future work we could for example fork
the RustPython implementation and integrate it straight into our implementation.
This would hopefully lower the overhead of the analysis, and at the same time
give us data from dynamic analysis. This would of course be overly complicated
if we wanted to only test a single malicious package, but we want to facilitate
mass-processing in the shortest amount of time.

Bibliography

[1]

[2]

(3]

[4]

[5]

(6]

[7]

[8]

A. Milje, Scout: A static analysis security tool for python packages and depend-
encies. https://github.com/Syntox32/scout, (Accessed on 05/30/2022).

L. Dabbish, C. Stuart, J. Tsay and J. Herbsleb, ‘Social coding in GitHub:
Transparency and collaboration in an open software repository,’ in Proceed-
ings of the ACM 2012 Conference on Computer Supported Cooperative Work
- CSCW ’12, Seattle, Washington, USA: ACM Press, 2012, p. 1277, I1SBN:
978-1-4503-1086-4. DOI: 10.1145/2145204.2145396. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2145204.2145396 (visited on
04/03/2022).

‘NpmJS Blog - So long, and thanks for all the packages!,” [Online]. Avail-
able: https://blog.npmjs.org/post/615388323067854848/s0 - long -
and-thanks- for-all-the-packages (visited on 20/04/2022).

G. A. A. Prana, A. Sharma, L. K. Shar, D. Foo, A. E. Santosa, A. Sharma and
D. Lo, ‘Out of sight, out of mind? How vulnerable dependencies affect open-
source projects,” Empir Software Eng, vol. 26, no. 4, p. 59, Jul. 2021, 1SSN:
1382-3256, 1573-7616. DOI: 10.1007 /510664 - 021 - 09959 - 3. [Online].
Available: https://link.springer.com/10.1007/s10664-021-09959-3
(visited on 23/10/2021).

I. Pashchenko, D.-L. Vu and E Massacci, ‘A Qualitative Study of Depend-
ency Management and Its Security Implications,’ in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event USA: ACM, 30th Oct. 2020, pp. 1513-1531, 1SBN: 978-1-4503-7089-
9. DOI: 10.1145/3372297.3417232. [Online]. Available: https://d1l.acm.
org/doi/10.1145/3372297.3417232 (visited on 25/11/2021).

European Union Agency for Cybersecurity.,, ENISA Threat Landscape for
Supply Chain Attacks. LU: Publications Office, 2021. [Online]. Available:
https://data.europa.eu/doi/10.2824/168593 (visited on 06/10/2021).

W. Stallings, Network Security Essentials: Applications and Standards, Sixth
edition. Boston: Pearson, 2017, 445 pp., ISBN: 978-0-13-452733-8.

‘Python Package Index (PyPI),” [Online]. Available: https://pypi.org/
(visited on 21/04/2022).

80

https://github.com/Syntox32/scout
https://doi.org/10.1145/2145204.2145396
http://dl.acm.org/citation.cfm?doid=2145204.2145396
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages
https://doi.org/10.1007/s10664-021-09959-3
https://link.springer.com/10.1007/s10664-021-09959-3
https://doi.org/10.1145/3372297.3417232
https://dl.acm.org/doi/10.1145/3372297.3417232
https://dl.acm.org/doi/10.1145/3372297.3417232
https://data.europa.eu/doi/10.2824/168593
https://pypi.org/

Bibliography 81

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

‘PyPI Stats - Download stats for downloads across all packages on PyPI’
[Online]. Available: https://pypistats.org/packages/ all _ (visited
on 21/04/2022).

‘Python Package Index (PyPI) - Statistics,” [Online]. Available: https://
pypi.org/stats/ (visited on 21/04/2022).

A. Arnes, ‘Digital Forensics,” p. 373, 2018.

‘Python Package Index (PyPI) - Sponsors,” [Online]. Available: https://
pypi.org/sponsors/ (visited on 01/12/2021).

‘Homebrew - Third-party Package Manager for macOS (or Linux),” [On-
line]. Available: https://brew.sh/ (visited on 01/12/2021).

M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-on Guide
to Dissecting Malicious Software. San Francisco: No Starch Press, 2012,
766 pp., ISBN: 978-1-59327-290-6.

A. Decan, T. Mens and E. Constantinou, ‘On the impact of security vulner-
abilities in the npm package dependency network,” in Proceedings of the
15th International Conference on Mining Software Repositories, Gothenburg
Sweden: ACM, 28th May 2018, pp. 181-191, 1SBN: 978-1-4503-5716-6.
DOI: 10.1145/3196398.3196401. [Online]. Available: https://dl.acm.
org/doi/10.1145/3196398.3196401 (visited on 23/10/2021).

I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta and E Massacci, ‘Vulner-
able open source dependencies: Counting those that matter,” in Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement, Oulu Finland: ACM, 11th Oct. 2018, pp. 1-
10, ISBN: 978-1-4503-5823-1. DOI: 10.1145/3239235.3268920. [Online].
Available: https://dl.acm.org/doi/10.1145/3239235.3268920 (visited
on 24/10/2021).

S. E. Ponta, H. Plate and A. Sabetta, ‘Beyond Metadata: Code-Centric and
Usage-Based Analysis of Known Vulnerabilities in Open-Source Software,’
in 2018 IEEE International Conference on Software Maintenance and Evol-
ution (ICSME), Madrid: IEEE, Sep. 2018, pp. 449-460, 1SBN: 978-1-5386-
7870-1. DOI: 10.1109/ICSME . 2018 .00054. [Online]. Available: https :
//ieeexplore.ieee.org/document/8530051/ (visited on 23/10/2021).

M. Alfadel, D. E. Costa and E. Shihab, ‘Empirical Analysis of Security Vul-
nerabilities in Python Packages,” in 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA:
IEEE, Mar. 2021, pp. 446-457, 1SBN: 978-1-72819-630-5. DOI: 10.1109/
SANER50967.2021.00048. [Online]. Available: https://ieeexplore.ieee.
org/document/9425974/ (visited on 23/10/2021).

https://pypistats.org/packages/__all__
https://pypi.org/stats/
https://pypi.org/stats/
https://pypi.org/sponsors/
https://pypi.org/sponsors/
https://brew.sh/
https://doi.org/10.1145/3196398.3196401
https://dl.acm.org/doi/10.1145/3196398.3196401
https://dl.acm.org/doi/10.1145/3196398.3196401
https://doi.org/10.1145/3239235.3268920
https://dl.acm.org/doi/10.1145/3239235.3268920
https://doi.org/10.1109/ICSME.2018.00054
https://ieeexplore.ieee.org/document/8530051/
https://ieeexplore.ieee.org/document/8530051/
https://doi.org/10.1109/SANER50967.2021.00048
https://doi.org/10.1109/SANER50967.2021.00048
https://ieeexplore.ieee.org/document/9425974/
https://ieeexplore.ieee.org/document/9425974/

Bibliography 82

[19] Y. Fang, M. Xie and C. Huang, ‘PBDT: Python Backdoor Detection Model
Based on Combined Features,” Security and Communication Networks, vol. 2021,
S. Nazir, Ed., pp. 1-13, 14th Sep. 2021, 1ssN: 1939-0122, 1939-0114. port:
10.1155/2021/9923234. [Online]. Available: https://www.hindawi.com/
journals/scn/2021/9923234/ (visited on 14/10/2021).

[20] N. P Tschacher, ‘Typosquatting in Programming Language Package Man-
agers,” University of Hamburg, 2016. [Online]. Available: https://incolumitas.
com/data/thesis.pdf (visited on 25/11/2021).

[21] R. Duan, O. Alrawi, R. P Kasturi, R. Elder, B. Saltaformaggio and W. Lee,
‘Towards Measuring Supply Chain Attacks on Package Managers for In-
terpreted Languages,” 2nd Dec. 2020. arXiv: 2002.01139 [cs]. [Online].
Available: http://arxiv.org/abs/2002.01139 (visited on 25/11/2021).

[22] D.-L. Vu, I. Pashchenko, E Massacci, H. Plate and A. Sabetta, ‘Typosquat-
ting and Combosquatting Attacks on the Python Ecosystem,’ in 2020 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa,
Italy: IEEE, Sep. 2020, pp. 509-514, 1SBN: 978-1-72818-597-2. DOI: 10.
1109/EuroSPW51379.2020.00074. [Online]. Available: https://ieeexplore.
ieee.org/document/9229803/ (visited on 14/10/2021).

[23] ‘Pyup - Safety,” [Online]. Available: https://github.com/pyupio/safety
(visited on 10/05/2022).

[24] ‘Requires.io,’ [Online]. Available: https://requires.io/ (visited on 15/05/2022).

[25] ‘Dependabot - Automated dependency updates built into GitHub,” [Online].
Available: https://github.com/dependabot (visited on 20/05/2022).

[26] ‘Bandit - A tool designed to find common security issues in Python code,
[Online]. Available: https://github.com/PyCQA/bandit (visited on 20/05/2022).

[27] ‘JFrog,’ [Online]. Available: https://jfrog.com/ (visited on 20/05/2022).

[28] ‘Snyk.io - Developer security platform,” [Online]. Available: https://snyk.
io/ (visited on 20/05/2022).

[29] Jfrog - malicious packages in pypi use stealthy exfiltration methods, https:
//jfrog.com/blog/python-malware-imitates-signed-pypi-traffic-
in-novel-exfiltration-technique/, (Accessed on 24/05/2022).

[30] Jfrog - python developers are being targeted with malicious packages on pypi,
https://jfrog.com/blog/malicious-pypi-packages-stealing-credit-
cards-injecting- code/, (Accessed on 24/05/2022).

[31] Jfrog - malicious packages in pypi: 3 remote access trojans discovered, https:
//jfrog.com/blog/jfrog-discloses-3-remote-access-trojans-in-
pypi/, (Accessed on 24/05/2022).

[32] S. Micheelsen and B. Thalmann, ‘A static analysis tool for detecting secur-
ity vulnerabilities in python web applications,” Aalborg University, Aalborg
University, 31st May 2016. [Online]. Available: https://projekter.aau.
dk/projekter/files/239563289/final.pdf (visited on 18/10/2021).

https://doi.org/10.1155/2021/9923234
https://www.hindawi.com/journals/scn/2021/9923234/
https://www.hindawi.com/journals/scn/2021/9923234/
https://incolumitas.com/data/thesis.pdf
https://incolumitas.com/data/thesis.pdf
https://arxiv.org/abs/2002.01139
http://arxiv.org/abs/2002.01139
https://doi.org/10.1109/EuroSPW51379.2020.00074
https://doi.org/10.1109/EuroSPW51379.2020.00074
https://ieeexplore.ieee.org/document/9229803/
https://ieeexplore.ieee.org/document/9229803/
https://github.com/pyupio/safety
https://requires.io/
https://github.com/dependabot
https://github.com/PyCQA/bandit
https://jfrog.com/
https://snyk.io/
https://snyk.io/
https://jfrog.com/blog/python-malware-imitates-signed-pypi-traffic-in-novel-exfiltration-technique/
https://jfrog.com/blog/python-malware-imitates-signed-pypi-traffic-in-novel-exfiltration-technique/
https://jfrog.com/blog/python-malware-imitates-signed-pypi-traffic-in-novel-exfiltration-technique/
https://jfrog.com/blog/malicious-pypi-packages-stealing-credit-cards-injecting-code/
https://jfrog.com/blog/malicious-pypi-packages-stealing-credit-cards-injecting-code/
https://jfrog.com/blog/jfrog-discloses-3-remote-access-trojans-in-pypi/
https://jfrog.com/blog/jfrog-discloses-3-remote-access-trojans-in-pypi/
https://jfrog.com/blog/jfrog-discloses-3-remote-access-trojans-in-pypi/
https://projekter.aau.dk/projekter/files/239563289/final.pdf
https://projekter.aau.dk/projekter/files/239563289/final.pdf

Bibliography 83

[33] ‘PyT - A Static Analysis Tool for Detecting Security Vulnerabilities in Python
Web Applications,” [Online]. Available: https://github. com/python -
security/pyt (visited on 24/05/2022).

[34] ‘Pyre Check - Performant type-checking for Python.,” [Online]. Available:
https://github.com/facebook/pyre-check (visited on 20/05/2022).

[35] D.L.Vu, I Pashchenko, F Massacci, H. Plate and A. Sabetta, ‘Towards Us-
ing Source Code Repositories to Identify Software Supply Chain Attacks,’
in Proceedings of the 2020 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event USA: ACM, 30th Oct. 2020, pp. 2093-
2095, ISBN: 978-1-4503-7089-9. DOI: 10.1145/3372297 .3420015. [On-
line]. Available: https://dl.acm.org/doi/10.1145/3372297.3420015
(visited on 02/10/2021).

[36] L. A. Sand, ‘Information-based Dependency Matching For Behavioral Mal-
ware Analysis,” p. 138, 2012.

[37] H. C. Kim, ‘JsSandbox: A Framework for Analyzing the Behavior of Mali-
cious JavaScript Code using Internal Function Hooking,” KSII TIIS, 2012,
ISSN: 19767277. DOI: 10.3837/tiis.2012.02.019. [Online]. Available:
http://www.itiis.org/digital-library/manuscript/316 (visited on
17/01/2022).

[38] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon and J. M.
Smith, ‘BreakApp: Automated, Flexible Application Compartmentalization,’
in Proceedings 2018 Network and Distributed System Security Symposium,
San Diego, CA: Internet Society, 2018, 1SBN: 978-1-891562-49-5. DOI: 10.
14722/ndss.2018.23131. [Online]. Available: https://www.ndss-symposium.
org/wp-content/uploads/2018/02/ndss2018 08-3 Vasilakis paper.
pdf (visited on 26/11/2021).

[39] M. Ohm, A. Sykosch and M. Meier, ‘Towards detection of software supply
chain attacks by forensic artifacts,” in Proceedings of the 15th International
Conference on Availability, Reliability and Security, Virtual Event Ireland:
ACM, 25th Aug. 2020, pp. 1-6, 1SBN: 978-1-4503-8833-7. DOI: 10.1145/
3407023 .3409183. [Online]. Available: https://dl.acm.org/doi/10.
1145/3407023.3409183 (visited on 25/11/2021).

[40] M.Ohm, H. Plate, A. Sykosch and M. Meier, ‘Backstabber’s Knife Collection:
A Review of Open Source Software Supply Chain Attacks,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, ser. Lecture Notes
in Computer Science, C. Maurice, L. Bilge, G. Stringhini and N. Neves,
Eds., vol. 12223, Cham: Springer International Publishing, 2020, pp. 23—
43, 1SBN: 978-3-030-52682-5 978-3-030-52683-2. DOI: 10.1007/978-3-
030-52683-2 2. [Online]. Available: http://link.springer.com/10.
1007/978-3-030-52683-2 2 (visited on 08/10/2021).

https://github.com/python-security/pyt
https://github.com/python-security/pyt
https://github.com/facebook/pyre-check
https://doi.org/10.1145/3372297.3420015
https://dl.acm.org/doi/10.1145/3372297.3420015
https://doi.org/10.3837/tiis.2012.02.019
http://www.itiis.org/digital-library/manuscript/316
https://doi.org/10.14722/ndss.2018.23131
https://doi.org/10.14722/ndss.2018.23131
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_08-3_Vasilakis_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_08-3_Vasilakis_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_08-3_Vasilakis_paper.pdf
https://doi.org/10.1145/3407023.3409183
https://doi.org/10.1145/3407023.3409183
https://dl.acm.org/doi/10.1145/3407023.3409183
https://dl.acm.org/doi/10.1145/3407023.3409183
https://doi.org/10.1007/978-3-030-52683-2_2
https://doi.org/10.1007/978-3-030-52683-2_2
http://link.springer.com/10.1007/978-3-030-52683-2_2
http://link.springer.com/10.1007/978-3-030-52683-2_2

Bibliography 84

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

C. M. Bishop, Pattern Recognition and Machine Learning, ser. Information
Science and Statistics. New York: Springer, 2006, 738 pp., ISBN: 978-0-
387-31073-2.

Wikipedia contributors, Normal distribution — Wikipedia, the free encyclo-
pedia, [Online; accessed 25-May-2022], 2022. [Online]. Available: https:
//en.wikipedia.org/w/index . php?title=Normal distribution&
0ldid=1087764287.

Wikipedia contributors, ‘Term Frequency - Inverse Document Frequency
(TF-IDF) - Wikipedia,” Wikipedia, The Free Encyclopedia, [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&
0ldid=1071253989 (visited on 10/05/2022).

H. C. Wy, R. W. P Luk, K. E Wong and K. L. Kwok, ‘Interpreting TF-IDF
term weights as making relevance decisions,” ACM Trans. Inf. Syst., vol. 26,
no. 3, pp. 1-37, Jun. 2008, 1ssN: 1046-8188, 1558-2868. po1: 10.1145/
1361684 .1361686. [Online]. Available: https://dl.acm.org/doi/10.
1145/1361684.1361686 (visited on 10/05/2022).

Ron-rs/ron: Rusty object notation, https://github.com/ ron-rs/ ron,
(Accessed on 05/26/2022).

A. Milje, Syntox32 /encodary: A script for generating rainbow tables for simple
encodings and string transformations. https://github. com/Syntox32/
encodary, (Accessed on 05/30/2022).

I. Kononenko and M. Kukar, Machine Learning and Data Mining: Introduc-
tion to Principles and Algorithms. 1st Mar. 2008.

A. E Gad, Pygad: An intuitive genetic algorithm python library, 2021. arXiv:
2106.06158 [cs.NE].

‘GitHub - PyPInfo,’ [Online]. Available: https://github.com/ofek/pypinfo
(visited on 29/04/2022).

Rustpython: An open source python 3 interpreter written in rust, https://
rustpython.github.io/, (Accessed on 05/30/2022).

Ast — abstract syntax trees — python 3.10.4 documentation, https://docs.
python.org/3/library/ast.html#ast.walk, (Accessed on 05/30/2022).

https://en.wikipedia.org/w/index.php?title=Normal_distribution&oldid=1087764287
https://en.wikipedia.org/w/index.php?title=Normal_distribution&oldid=1087764287
https://en.wikipedia.org/w/index.php?title=Normal_distribution&oldid=1087764287
https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&oldid=1071253989
https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&oldid=1071253989
https://doi.org/10.1145/1361684.1361686
https://doi.org/10.1145/1361684.1361686
https://dl.acm.org/doi/10.1145/1361684.1361686
https://dl.acm.org/doi/10.1145/1361684.1361686
https://github.com/ron-rs/ron
https://github.com/Syntox32/encodary
https://github.com/Syntox32/encodary
https://arxiv.org/abs/2106.06158
https://github.com/ofek/pypinfo
https://rustpython.github.io/
https://rustpython.github.io/
https://docs.python.org/3/library/ast.html#ast.walk
https://docs.python.org/3/library/ast.html#ast.walk

Appendix A

How It’s Made

For Writing and Research

Overleaf
Zotero
Joplin
Dropbox

For Programming

Visual Studio Code

Rust 1.61.0
Rust-analyzer Extension
LLDB for Rust Debugging
Python 3.10

For Graphs and Diagrams

excalidraw
mermaid-js
diagrams.net
matplotlib

85

Appendix B

The Default Set of Rules

This is the default set of rules included in the implementation. This file can also
be viewed in the GitHub repository for the implementation.

///

///

/// Rules are defined as follows:

/// ot

/// Module(Functionality, Identifier, Name (optional), Description (optional))

/// et

/// You can choose between Module or Function.

///

/// ‘Name‘ and ‘Description’ is currently not used and can be safely set to ‘None‘.

///

///

([

(name: "Basic module rules", threshold: 0.30, rules: [

// compression
Module(Compression, "zlib", None, None),
Module(Compression, "gzip", None, None),
Module(Compression, "tarfile", None, None),
// encoding
Module(Encoding, "base64", None, None),
Module(Encoding, "binascii", None, None),
// hashing, signing, encryption
Module(Encryption, "hashlib", None, None),
Module(Encryption, "hashes", None, None),
Module(Encryption, "Crypto.Util.Padding", None, None),
Module(Encryption, "Crypto.Cipher", None, None),
// networking
Module(Network, "socket", None, None),
Module(Network, "urllib2", None, None),
Module(Network, "urllib", None, None),
Module(Network, "urllib.request", None, None),
Module(Network, "paramiko", None, None),
Module(Network, "ftplib", None, None),
Module(Network, "socketserver", None, None),
Module(Network, "httplib", None, None),
Module(Network, "scapy", None, None),
// processes
Module(Process, "subprocess", None, None),
Module(Process, "commands", None, None),
Module(Process, "pty", None, None),

86

Chapter B: The Default Set of Rules

D,

Module(Process, "threading", None, None),
Module(Process, "select", None, None),
Module(Process, "multiprocessing", None, None),
Module(Process, "setproctitle", None, None),
Module(Process, "shutil", None, None),
Module(Process, "fcntl", None, None),

// filesyten

Module(FileSystem, "io", None, None),

// System

Module(System, "ctypes", None, None),
Module(System, "platform", None, None),
Module(System, "winreg", None, None),
Module(System, "psutil", None, None),
Module(System, "wmi", None, None),
Module(System, "pynput", None, None),
Module(System, "pwd", None, None),
Module(System, "os", None, None),

(name: "Misc. suspicious rules", threshold: 0.20, rules:

D,

Module(NotSpecific, "builtins", None, None),

Module(System, "importlib", None, None),
Module(System, "marshal", None, None),
Function(System, "marshal.load", None, None),
Function(System, "marshal.loads", None, None),
Module(System, "pytransform", None, None),
Function(System, "pyarmor runtime", None, None),
Function(System, " pyarmor ", None, None),

(name: "Basic function rules", threshold: 0.20, rules:

// compression

// encoding

Function(Encoding, "b64decode", None, None),
Function(Encoding, "b64encode", None, None),
Function(Encoding, "EncodeAES", None, None),
Function(Encoding, "DecodeAES", None, None),
Function(Encoding, "encode base64", None, None),
// Function(Encoding, "OAEP", None, None),

// Function(Encoding, "MGF1", None, None),

// hashing, signing, encryption
Function(Encryption, "encrypt", None, None),
Function(Encryption, "decrypt", None, None),
Function(Encryption, "AESGCM", None, None),
Function(Encryption, "md5", None, None),
Function(Encryption, "rc4", None, None),
Function(Encryption, "SHA256", None, None),
Function(Encryption, "shal", None, None),

// networking

Function(Network, "urlopen", None, None),
Function(Network, "socket", None, None),
Function(Network, "bind", None, None),
Function(Network, "setsockopt", None, None),
Function(Network, "gethostbyname", None, None),
Function(Network, "gethostname", None, None),
Function(Network, "SSHClient", None, None),
// processes

Function(Process, "spawn", None, None),
Function(Process, "Popen", None, None),

[

[

87

Chapter B: The Default Set of Rules

D,

Function(Process,
Function(Process,
Function(Process,
Function(Process,
Function(Process,
Function(Process,
Function(Process,
// filesyten

"communicate", None, None),
"daemon", None, None),

"fork", None, None),
"ThreadingTCPServer", None, None),
"ThreadingUDPServer", None, None),
"setproctitle", None, None),
"CreateThread", None, None),

// Function(FileSystem, "open", None, None),
// Function(FileSystem, "StringI0", None, None),
// Function(FileSystem, "BytesIO", None, None),

// System

Function(System,
Function(System,
Function(System,
Function(System,
Function(System,
Function(System,

"exec", None, None),
"execv", None, None),
"execvp", None, None),
"execfile", None, None),
"storbinary", None, None),
"system", None, None),

// Function(Encoding, "getopt", None, None),
// Function(Encoding, "getoutput", None, None),
// Function(Encoding, "tcsetattr", None, None),

Function(System,
Function(System,
Function(System,
Function(System,
Function(System,

"command", None, None),
"exec_command", None, None),
"check output", None, None),
"VirtualAlloc", None, None),
"sysinfo", None, None),

88

Appendix C

Common Words Used in Creating
Canaries

This is the full list of common words used to create canaries in our program.

import
__import
base

eval

exec
base64
zlib

gzip
urllib
http://
https://
ftp://
ws://
wss://
b64decode
b32decode
blédecode
b85decode
decode
#!/usr/
#1/bin/

89

Appendix D

Genetic Algorithm Configuration

This is the full configuration we used in our genetic algorithm. The library is as
mentioned PyGAD [48]. Do note that this code below is a snippet from the testing
framework and is missing variables and context, but the important details of the
configuration are present.

[1, 5, 10]
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

num_generations
function_inputs

num_parents mating = 4

sol_per pop = 8
num_genes = len(function_inputs)

init_range low = 0.0
init range high = 2.0

parent selection type = "sss
keep parents =1
crossover_type = "single point"

mutation type = "random"
mutation percent genes = 10

def on generation(ga):
if ga.generations completed in num generations:
generations = ga.generations completed
solution, solution fitness, @ = ga instance.best solution()
total time = time.perf counter() - start time

custom code to report results to a log file
also runs a test to gather F-score for generations 1, 5, and 10
[...]

ga_instance = pygad.GA(num generations=max(num generations),
num_parents_mating=num parents mating,
fitness func=fitness func,
sol _per pop=sol_per pop,
num_genes=num_genes,
init range low=init range_ low,
init range high=init range high,

90

Chapter D: Genetic Algorithm Configuration

parent_selection_type=parent_selection_type,
keep parents=keep parents,
crossover_type=crossover_type,

mutation type=mutation type,
mutation_percent_genes=mutation_percent_genes,
on_generation=on generation)

91

Appendix E

All Experiment Result Tables

F-score Bulletins Fitness

0.44213 2172 2.0356

Table E.1: The control experiment 0 using all weights set to 1.0.

F-score Bulletins Fitness

0.78113 9662 0.8085

Table E.2: The control experiment 0.1 using all weights set to 1.0 but with TF-
IDF disabled.

92

Chapter E: All Experiment Result Tables 93

Gen. F-score Training Testing Time
Fitness Fitness

1 0.8301 0.7773 4.6401 14m
5 0.8802 0.7824 4.1248 38m
10 0.8601 0.8078 3.6867 1h 7m

Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.

1 1.9191 1.2179 1.7402 1.008 0.9143 0.4415
5 2.1904 1.2179 1.7402 1.5566 -0.3746 1.1532
10 2.8935 1.2179 1.4287 1.5566 -0.3746 0.6519

Table E.3: The results for experiment 0.2 which only uses the F-score from the
malicious samples as output from the fitness function (TF-IDF on function calls
and imports, train/test split).

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 0.37398 326 3.2212 11.4719 1h 26m
5 0.76800 291 7.9026 26.3918 3h 43m
10 0.66667 301 8.1081 22.0751 6h 26m
Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.
1 0.2068 0.8546 -0.1262 0.7161 1.2623 1.4922
5 0.2068 0.8546 -0.1262 1.9047 1.2231 0.2900
10 0.2068 0.8546 -0.1262 2.0965 1.2231 0.2900

Table E.4: The results from experiment 1 (TF-IDF on calls and imports, train/test
split). The bulletin count is taken from the testing split of the dataset.

F-score Bulletins Fitness

0.66959 1136 5.8943

Table E.5: A run using the best weights from experiment 1.

Chapter E: All Experiment Result Tables

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

94

1 0.45937 1191 3.8668 3.8571 1h 44m
0.55796 606 10.1426 9.2072 4h 41m
10 0.57813 339 17.1140 17.0540 8h9m
Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.
1 0.8687 0.6784 0.6106 1.0452 0.5876 0.2658
5 0.1325 0.6784 0.4750 1.0452 0.7573 0.0923
10 0.1325 0.6784 -0.5991 1.0452 0.0083 0.0923

Table E.6: Results from experiment 2 (TF-IDF on calls and imports, all samples
for training and testing).

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 0.50746 174 62.6133 29.1645 36m
5 0.42520 235 82.1745 18.0935 1h 23m
10 0.51852 119 84.6096 43.5730 2h 19m
Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.
1 0.0926 0.7276 0.9004 1.1821 0.8733 0.3475
5 0.1862 0.6987 0.9004 1.1821 0.8733 0.7126
10 0.0926 0.6465 -0.0913 -0.0998 0.8733 0.0276

Table E.7: Results from experiment 3 (TF-IDF on calls and imports, train/test
split, 100 random benign packages).

F-score Bulletins Fitness

0.61678 222 27.7830

Table E.8: A run using the the weights from the 10th generation in experiment
3.

Chapter E: All Experiment Result Tables

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

95

1 0.16514 117 163.5514 14.1143 34m
5 0.23009 66 216.9421 34.8619 1h 26m
10 0.21429 O 7.692e+10 2.143e+11 2h 30m
Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.
1 0.5170 0.2858 0.3110 1.0584 0.2251 0.4617
5 -0.4558 0.5497 0.3110 0.3985 -0.012 1.5758
10 0.3601 -0.4456 0.3110 1.9159 0.1058 0.9668

Table E.9: Results from experiment 4 (TF-IDF disabled, train/test split). The
number of bulletins are from the testing split. We can discard the last two weights,
as they are TF-IDF weights.

F-score Bulletins Fitness

0.09524 0 9.524e+10

Table E.10: Doing an all-sample run with the 10th generation weights from ex-
periment 4.

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 0.13084 450 2.9076 2.9076 Oh 39m
5 0.07692 64 12.0192 12.0192 1h 42m
10 0.07692 O 7.692e+10 7.692e+10 2h 56m
Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.
1 0.0460 0.1298 1.5397 1.5371 0.0535 0.5487
5 0.0460 0.1298 0.9818 1.5371 0.0535 0.5487
10 -0.2693 0.0212 0.3311 2.0712 0.0535 0.5487

Table E.11: Results from experiment 5 (TF-IDF disabled, all samples). We can
discard the last two weights, as they are TF-IDF weights.

Chapter E: All Experiment Result Tables

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 0.3871 156.0 3017.1428 24.8139 Oh 17m

96

5 0.0 141.0 9.524e+10 0.0 Oh 41m
10 0.16514 141.0 1.308e+11 11.7119 1h 13m
Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.
1 0.5337 0.5787 0.1008 1.6059 0.4299 0.8532
5 0.5337 -0.3201 0.1008 0.7157 0.9821 0.6399
10 0.5513 -0.3596 0.2515 1.0618 0.9821 1.6551

Table E.12: Results from experiment 6 (TE-IDF disabled, train/test split, 100
random benign packages). We can discard the last two weights, as they are TF-

IDF weights.

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 0.21429 154.0 4.914 13.9147 1h 14m
5 0.65772 122.0 15.8576 53.9113 3h 15m
10 0.65772 90.0 23.3333 73.0798 5h 37m
Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.
1 0.4785 0.4162 0.4643 1.5280 0.9669 0.2802
5 0.0112 0.6627 0.4643 1.7647 0.9669 0.2802
10 0.0112 0.6535 -0.4587 1.7647 0.9669 0.2802

Table E.13: Results from experiment 1 - Import TF-IDF disabled (train/test

split).

F-score Bulletins Fitness

0.63531 230 27.62219

Table E.14: All samples run with weights from experiment 1 - Import TF-IDF dis-

abled.

Chapter E: All Experiment Result Tables 97

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 04 11.0 13.0378 363.6364 1h 49m
5 0.62069 33.0 16.1588 188.0878 4h 1m
10 0.35204 9.0 21.8659 391.1565 6h 40m
Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.
1 0.3160 1.0592 0.2348 1.8756 1.1560 1.0869
5 0.3160 1.2579 -0.4985 1.8756 1.1560 1.0869
10 1.4071 0.6339 0.4356 1.8756 1.1560 1.0869

Table E.15: Results from experiment 1 - changing IDF to DF (TF-DF for calls
and imports, train/test split).

F-score Bulletins Fitness

0.75484 8663 0.871336

Table E.16: All samples run with weights from experiment 1 - changing IDF to DF.

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 0.22781 65.0 35.0476 35.0476 1h 53m
5 0.07692 4.0 256.4103 192.3077 4h 56m
10 0.07692 0.0 7.692e+10 7.692e+10 8h 22m
Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.
1 1.6151 0.5356 0.4187 1.4436 0.9394 1.0727
5 -0.0194 -0.2654 0.3103 1.4436 0.9394 1.0727
10 -0.0194 0.2300 0.3103 1.4436 0.9394 -0.000

Table E.17: Same as Experiment 2 - changing IDF to DF (all samples, TE-DF on
imports and calls)

Chapter E: All Experiment Result Tables

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

98

1 0.24561 8.0 3.922e+10 307.0175 Oh 33m
5 0.24561 8.0 3.922e+10 307.0175 1h 17m
10 0.24561 13.0 3.922e+10 188.9339 2h 1m
Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.
1 0.5701 0.9760 0.7011 0.6455 1.5932 1.6009
5 0.5701 0.9760 0.7011 0.6455 1.5932 1.6009
10 0.5701 1.1152 0.7011 0.1127 1.5932 1.6009

Table E.18: Same as Experiment 3 - changing IDF to DF (RND100 Train/Test,
TF-DF on imports and calls)

F-score Bulletins Fitness

0.05825 51 11.42204

Table E.19: All samples with weights from GA 1 and 5 in Experiment 3 - chan-
ging IDF to DF

Gen. F-score Bulletins Training Testing Time
Fitness Fitness

1 0.73084 662.0 4.1544 11.0399 1h 20m
5 0.21429 0.0 3.922e+10 2.143e+11 3h 27m
10 0.35204 0.0 3.922e+10 3.520e+11 6h 1m

Gen. FW Func. FWIm. FW Behavior FW Str. TW Func. TW Im.

1 0.2986 0.8362 0.3634 1.4839 1.7156 0.6493
5 0.4354 0.1228 0.3634 2.0729 1.7156 0.6493
10 0.7177 -0.0322 0.3634 2.5269 1.7156 1.4042

Table E.20: Results from experiment 1 - TF-DF disabled for imports (train/test
split).

F-score Bulletins Fitness

0.11182 O 1.118e+11

Table E.21: All samples run with weights from experiment 1 - TF-DF (disabled for
imports).

Detecting Malicious Python Packages in PyPI

@ NTNU

Kunnskap for en bedre verden

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Background
	Motivation
	Expected Impact
	Overview

	State of the Art
	Theoretical Foundations
	Python
	Packages
	Package Managers
	Compiled vs. Interpreted Malware Analysis
	Python Bytecode
	Types of Malware
	Malware Detection
	Malware Analysis

	Literature Analysis and Related Work
	Vulnerabilities and the Security of Open Source Registries
	Typo- and Combo-Squatting for Dependency Confusion
	Code Security Testing for Python
	Static Analysis to Detect Security Issues
	Dynamic Analysis of Malicious Code
	Scanning Open Source Registries

	Methodology
	Defining Maliciousness and Malicious Behavior
	The Detection Model
	Fields & Weights
	Rules
	Pre-processing of the Abstract Syntax Tree
	The Approach to Obfuscation
	Experiments

	Dataset
	Malicious packages
	Benign packages

	Metrics
	NSD Application

	Experimental Design and Results
	Experiment Setup
	Genetic Algorithms for Optimization
	Acquiring the Datasets

	Implementation
	Results
	The Impact of TF-IDF
	Experimentation on a Single File
	Experiments on the Dataset
	Control Experiments
	Experiments with TF-IDF
	Experiments without TF-IDF
	Experimenting with TF-IDF Disabled for Imports
	Changing the IDF-function
	Experimenting with alternate DF and disabled imports

	Discussion and Conclusion
	Experimental Results
	Experimental Design
	Limitations
	Validity
	Conclusion

	Future Work
	Methodology & Experiments
	Implementation
	Big Data, Cloud, and Edge Computing
	Performance and Profiling
	Caching of results
	Improved Rules
	Support for Different Python Versions
	Dynamic Analysis Through a Modified Interpreter

	Bibliography
	How It's Made
	The Default Set of Rules
	Common Words Used in Creating Canaries
	Genetic Algorithm Configuration
	All Experiment Result Tables

