
Ba
ch

el
or

’s
 th

es
is Implementing Lattice-Based

Cryptography

June 2022

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Alejandro Royher Rodríguez Rodríguez

Bachelor’s thesis
2022

Bachelor’s thesis

Implementing Lattice-Based
Cryptography

June 2022

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Alejandro Royher Rodríguez Rodríguez

Abstract

The thesis is about implementation of LWE/MLWE encryption schemes in C++
and the use of the Number Theoretic Transform (NTT) in order to get faster mul-
tiplication operations over certain rings. We explore how much speed up we get
by using NTT in our different schemes, comparing performance of our NTT im-
plementation with the MulMod function of the NTL Library and the schoolbook
multiplication. We use Cooley-Turkey algorithm in the NTT forward step and
Gentleman-Sande algorithm in the NTT inverse step with ordinary modular re-
duction. After some experiments we came to the conclusion that, when we are
working on Rq = Zq[X]/(X N + 1), for relative small N with our NTT implemen-
taion we get a performance similar compared to the MulMod function and for all
N we get much better results compared to the schoolbook multiplication.

iii

Contents

Abstract . iii
Contents . v
1 Introduction . 1
2 Background . 3

2.1 Public Key Cryptosystem . 3
2.2 Security Definition . 3
2.3 The LWE Problem . 4

3 NTT . 5
4 Encryption . 11

4.1 Basic LWE Encryption Scheme . 11
4.2 Module LWE Encryption Scheme . 12

5 Experiments . 13
5.1 Setting up the experiments environment 13
5.2 Running the experiments . 14

6 Conclusion . 17
Bibliography . 19

v

Chapter 1

Introduction

Over the last years, lattice-based cryptography has been gaining more and more
importance and popularity due to the fact that it is supposed to be resistant
against quantum computers. In a groundbreaking work, Ajtai [1] gave the first
worst-case to average-case reductions for lattice problems, and with them the
first cryptographic object with a proof of security assuming the hardness of well-
studied computational problems on lattices. In particular, Ajtai’s work gave the
first cryptographic function based on a standard worst-case complexity assump-
tion of any kind. Ajtai introduced the (average-case) "short integer solution” (SIS)
problem and its associated one-way function, and proved that solving it is at least
as hard as approximating various lattice problems in the worst case. In a sub-
sequent work from 1997, Ajtai and Dwork [1] gave a lattice-based public-key
encryption scheme. In a concurrent work with Ajtai’s in 1996, Hoffstein, Pipher,
and Silverman [2] devised the public-key encryption scheme NTRU (also known
as NTRUEncrypt). This was the first cryptographic construction using polynomial
rings, which is most usefully interpreted in terms of algebraically structured lat-
tices. In a work published in 2010, Lyubashevsky, Peikert, and Regev [3] intro-
duced ring-LWE, the ring-based analogue of learning with errors [4]. One of the
most expensive steps in these types of schemes is the polynomial multiplication
over certain rings. In order to make this step faster we take advantage of the Dis-
crete Fourier Transform (DFT) that is called Number Theoretic Transform (NTT)
in our case since we work over finite fields. This algorithm is used with the idea
of fully splitting the ring so we have a faster multiplication, we are going to test
it with our 2 different encryption schemes: Basic LWE Scheme and Module LWE
Scheme.

These 2 schemes work with non-binary messages i.e. modulo p over the ring
Rq = Zq[X]/(X N + 1). The complete implementation1 is done using C++ making
use of the NTL: A Library for doing Number Theory [5] .

1All the code can be found in the repository https://github.com/alexroyher/LWECode.

1

https://github.com/alexroyher/LWECode

Chapter 2

Background

In the following sections we will be using [6] and [4] as references for definitions.

2.1 Public Key Cryptosystem

A public key cryptosystem consist of 3 algorithms with different inputs and out-
puts:

• Key Generation: It has a parameter λ, it is the process of generating as
outputs a pair of secret key SK and a public key PK.

• Encryption : It takes as input a message M to be encrypted and the public
key PK. It gives as output a ciphertext C.

• Decryption : It takes as input a ciphertext C and a secret key SK. It gives as
output a message M.

Given Enc and Dec algorithms to encrypt and decrypt a message, we need, for a
cryptosystem to be valid, that it satisfies Dec(Enc(M , PK)), SK) = M for any mes-
sage M and (SK , PK) = Ke yGen(λ) generated by the Key Generation algorithm.

This let us to define another important concept like the security of a scheme.

2.2 Security Definition

To introduce the C PA security we need first to know what indistinguishability
means. Let’s see what an indistinguishability security game would be.

• Key Generation algorithm is run and it gives as output a pair (PK , SK)
• An adversary A is given the public key PK and he chooses a pair of messages
(M0, M1) of equal length.

• A bit b← {0, 1} is chosen randomly and is encrypted C ← Enc(Mb, PK) and
this ciphertext is given to A.

• Then, A outputs a bit b′ and we say that A succeeds if b′ = b (and the result
of the experiment is 1) and he fails otherwise (the resultt of the experiment
is 0).

3

4 Alejandro Royher: Implementing Lattice-Based Cryptography

Now, before defining what is a CPA-secure scheme, we will give a brief definition
of what an indistinguishable encryption is.

Definition 1: A public key encryption scheme
∏

has indistinguishable en-
cryptions to an eavesdropper if for all probabilistic polynomial-time adversaries A
there is a negligible function negl (·) s.t

Pr
�

�

�

�PubKe y EAV
A,
∏(n) = 1
�

�

�

�

≤
1
2
+ negl(n)

where PubKe y EAV
A,
∏(n) is the eavesdropping indistinguishability experiment.

Now we are able to give a right definition of the CPA security.

Definition 2: A public key encryption scheme
∏

is CPA secure if and only if
it has single-message indistinguishable encryptions.

2.3 The LWE Problem

In order to test the application of the N T T on lattice-based cryptography we will
make use of the previous mentioned schemes. These schemes are actually based
on the following problem:

Definition 3: For a set S, we write a← S to mean that a is chosen uniformly
at random from the set . In addition, for any positive integer β , we will define the
set:

[β] = {−β , ...− 1, 0,1, ...,β}

Definition 4: For positive integers m, n, q, andβ ≪ q , the LW En,m,q,β problem
asks to distinguish between the following two distributions:

1. (A, As+ e), where A← Zn×m
q , s← [β]m , e← [β]n

2. (A, u) , where A← Zn×m
q and u← Zn

q

Chapter 3

NTT

This chapter is largely based on the paper [7]. The Number Theoretic Transform is
heavily based on the Chinese Remainders Theorem. Let m1, m2, ..., mk be pairwise
coprime integers such that

∏k
i=1 mi = M . Then the system of equations

x = a1 mod m1

x = a2 mod m2

...

x = ak mod mk

has a unique x ∈ ZM that solves the equations. This version of the Chinese
Remainders Theorem is related to coprime integers [8].

Theorem 1: Let f (X) ∈ Zq[X] be so that f (X) =
∏k

i=1 fi(X) where <
fi(X)> +< f j(X)> = Zq[X] ∀i ̸= j ∈ {1, ..., k}. Then

Zq[X]/ < f (X)>∼=
k
∏

i=1

Zq[X]/ < fi(X)>

To define the NTT algorithm we first need to know what is FFT and DFT.

Definition 5: The Discrete Fourier Transform (DFT) is the discrete version of
the Fourier Transform (FT) that transforms a signal (or discrete sequence) from
the time domain representation to its representation in the frequency domain.

Definition 6: The Fast Fourier Transfrom (FFT) is an algorithm for evaluating
the traditional DFT, for complex valued vectors (f0, . . . , fN−1) of length N which
is defined over the complex field C using the complex root of unity of order N .
Here, we have

F(λ) =
N−1
∑

k=0

fke2πiλk/N =
N−1
∑

k=0

fkξ
λk
N , ξN := e2πi/N ,λ= 0,1, . . . , N − 1

5

6 Alejandro Royher: Implementing Lattice-Based Cryptography

Such a complex root of unity exists for all N, however the FFT is more efficient if
N is composite, the highest efficiency being obtained for N = 2m, for some integer
m.

Now, we have problems with DFT: For cryptography we work with finite ob-
jects, and can actually obtain full precision which does not apply in practice in the
complex field, since the argument of the complex root of unity is irrational and
exact arithmetic is impossible in general.

The NTT’s, whether based on a finite field or integer roots of unity modulo
certain rings, give us full precision (complex DFTs cannot do this and can’t be
used for crypto), and are evaluated in the native ring that is used in cryptography.

With parameters N being a power of 2 and q a prime with q ≡ 1 mod 2N , let
a = (a[0], ..., a[n− 1]) ∈ ZN

q , and let ω be a primitive N − th root of unity in Zq ,
which means that ωn ≡ 1 mod q.

The forward transformation ã = N T T (a) is defined, as stated in Patrick Longa
and Michael Naehrig, as

ã =
N−1
∑

j=0

a[j]wi j mod q

for i = 0, . . . , n − 1. In the same paper is stated that the inverse is computed as
b = IN T T (ã) where:

b =
1
n

N−1
∑

j=0

ã[j]w−i j mod q

for i = 0, . . . , n− 1. Since applying the NTT transform as described above to our
target scheme provides a cyclic convolution, computing c = a · b mod (X N + 1)
with two polynomials a and b would require applying the NTT of length 2N and
thus N zeros to be appended to each input; this effectively doubles the length
of the inputs and also requires the computation of an explicit reduction modulo
X N + 1. As stated in the paper, to avoid these issues, one can exploit the negative
wrapped convolution.

Letting φ be a primitive 2N − th root of unity in Zq such that φ2 = ω , and
let a = (a[0], ..., a[n− 1]), b = (b[0], ..., b[n− 1]) ∈ ZN

q be two vectors. Also, we
define

ã = (a[0],φa[1], . . . ,φn−1a[n− 1])

b̃ = (b[0],φb[1], . . . ,φn−1 b[n− 1])

The negative wrapped convolution of a and b is defined as

c = (1,φ−1,φ−2, . . . ,φ−(n−1)) ◦ IN T T (N T T (ã) ◦ N T T (b̃))

where ◦ denotes component-wise multiplication and where IN T T (N T T (a)) = a.

Chapter 3: NTT 7

Now, let’s took a look at how the Forward/Inverse NTT steps are performed.
As mentioned in the introduction, we will use Coley-Tukey NTT Algorithm for the
forward step and Gentleman-Sande Inverse NTT Algorithm fot the inverse step.
These both algorithms and its pseudocode can be found in the referenced paper
[9]. Below we show how both algorithms have been implemented in C++.

First of all, we need the 2N -th root of unity given the modulus q and N . To
achieve this, we have the following functions:

/* This function just checks if r^k is congruent with 1 mod N */
bool existSmallN(ZZ r, ZZ M, ZZ N){

for (int k = 2; k<N; k++){
if (PowerMod(r,k,M) == 1){

return true;
}

}
return false;

}

INPUT:
- q : Modulus of the field
- N : The order of the root of unity we want to find

OUTPUT:
- The N-th root of unity

ZZ NthRootOfUnity(ZZ q, ZZ N){
assert((q-1) % N == 0);
ZZ phi = q-1;
srand(time(NULL));
while(true){

ZZ alpha = ZZ(rand() % conv<int>(q) + 1);
ZZ beta = PowerMod(alpha,phi / N, q);
if(!existSmallN(beta,q,N)){

return ZZ(beta);
}

}
}

Before performing the NTT forward step, first we need to compute the powers of
the 2N -th root of unity but since we are using the iterative version of the N T T
algorithm we have to store them in bit reversed order. So given a root g, while
the natural ordering of its powers would be [g0, g1, g2, · · · gn−1], in bit reverse
order the element g i would actually be stored at an index in the table found by
reversing the m bits in i where N = 2m. Similarly, we also have to store the inverse
powers of the root in bit reversed order for the inverse step.

To perform the bit-reverse operation we have the following 2 auxiliary func-
tions:

8 Alejandro Royher: Implementing Lattice-Based Cryptography

INPUT:
- n : A number which bits we want to reverse
- len : Number of bits that are needed to represent ’n’

OUTPUT:
- res : Number resulting of reversing the bits of ’n’.

ZZ reverseBits(ZZ n, ZZ len) {
ZZ res = ZZ(0);
for (int i = 0; i < len; i++) {

if (conv<int>(n) & (1 << i))
res |= 1 << (conv<int>(len) - 1 - i);

}
return res;

}

INPUT:
- a : The array we want to bit reverse
- N_bit : log2(N)

OUTPUT:
- a : Array with elements in bit reversed order.

ZZX orderReverse(ZZX a, ZZ N_bit){
for(int i=0;i<deg(a);i++){

ZZ rev_i = reverseBits(ZZ(i), N_bit);
if (rev_i > i){

ZZ coef = a[conv<int>(rev_i)];
a[conv<int>(rev_i)] = a[i];
a[i] = coef;

}
}
return a;

}

The forward step is performed in the following way:

INPUT :
- a : The polynomial we want to apply the NTT forward step.
- q : Modulus of the field we are working on, it satisfies q = 1 mod 2N
- N : Length of the polynomial ’a’ (we work on Z_q[X]/X^N+1)), it is a power of 2

OUTPUT:
- a : Polynomial ’a’ once the NTT forward step is performed

ZZX FNTT(NTTScheme& NTT,ZZX a, ZZ q, ZZ N){
int t = (conv<int>(N)/2);
int m=1;
while(m<N){

int k = 0;
for (int i=0;i<m; i++){

ZZ S = NTT.power_of_roots[m+i];
for (int j=k; j<k+t; j++){

ZZ U =a[j];
ZZ V =a[j+t]*S % q;
a[j] = (U+V) % q;
a[j+t] = (U-V) % q;

}
k = k+2*t;

}
t = t/2;
m = 2*m;

}
return a;

}

Chapter 3: NTT 9

Analogously, we have that the inverse step is performed in the following way:

INPUT:
- a : The polynomial we want to apply the NTT inverse step
- q : Modulus of the field we are working on, it satisfies q = 1 mod 2N
- N : Length of the polynomial ’a’ (we work on Z_q[X]/X^N+1)), it is a power of 2

OUTPUT:
- a : Polynomial ’a’ once the NTT inverse step is performed

ZZX INTT(NTTScheme& NTT,ZZX a, ZZ q, ZZ N){
ZZ inv_N = InvMod(N,q);
int t = 1;
ZZ m = (N/2);
while(m>0){

int k=0;
for (int i=0;i < m; i++){

ZZ S = NTT.inv_power_of_roots[conv<int>(m)+i];
for (int j=k;j<k+t; j++){

ZZ U = a[j];
ZZ V = a[j+t];
a[j] = (U+V) %q;
ZZ W = (U-V) %q;
a[j+t] = (W*S) % q;

}
k = k+2*t;

}
t = 2*t;
m = m/2;

}
for (int i=0;i <N; i++){

a[i] = (a[i] * inv_N) % q;
}
return a;

}

Chapter 4

Encryption

4.1 Basic LWE Encryption Scheme

We now will define our 2 encryption schemes before using N T T in order to later
have a clear idea about how the N T T influences in the process of encryption/de-
cryption.

We start defining the Basic LWEn,m,q,β Encryption Scheme that encrypts a
message message M ∈ Zk×l

p . This definition is partially based on [10] and [11].
The key generation works in the following way:

sk : S← [β]m×l , pk : (A← Zm×m, t = AS + pE1)

where E1 ← [β]m×l . Now , to encrypt message M the encryptor chooses R, E2 ←
[β]k×m and E3← [β]k×l . Then we have the following ciphertext

(U= RA+ pE2 , V= RT + pE3 +M).

Now, given the ciphertext (U , V) and the secret key S the decryption proceeds
as follows

V - US= RT + pE3 +M − (RA+ pE2)S = p(RE1 + E3 − E2S) +M

Then the (i, j)th coefficient of V − US is

outputi, j = p(rT e1 + e3 − eT
2 s) +Mi, j

if we compute

Mi,j =

(output i, j) mod p if outputi, j ≤ q/2

(output i, j − q) mod p if outputi, j > q/2

we get the original message back. We note that in the output message we have
some noise that can be handed if the following inequality holds

β2m+ β <
q

2p

11

12 Alejandro Royher: Implementing Lattice-Based Cryptography

[10]. Basically, every term in the output expression is bounded by β since they are
chosen from a space [β]p×t for some p and t and we see that the space size p of
the field we are working on is multiplying all these elements, this explains the p in
the right hand denominator. All the details about the inference of this inequality
are carefully explained in the cited paper.

Now, based on this scheme, we will give a definition of the other scheme that is
quite similar to the Basic LWE Encryption Scheme with the difference that matrices
do not contain just numbers. Instead, matrices operates with polynomials.

4.2 Module LWE Encryption Scheme

This section is largely based on [10]. The polynomial ring (Z[X],+,×), with an
indeterminate X , consists of elements of the form

a(X) =
∞
∑

i=0

aiX
i

for ai ∈ Zwith the usual polynomial addition and multiplication operations. In the
Basic LWE Encryption Scheme we worked with the ring (Z,+,×). A generalization
of this ring with which we will be working with is the ring (R f ,+,×), where f ∈
Z[X] is a monic polynomial of degree N . The elements of R f are the polynomials

a(X) =
d−1
∑

i=0

aiX
i

Now, for a vector a ∈ Rm
f , we write a← [β]m to be the distribution in which every

coefficient of every polynomial in a is chosen uniformly from [β]. Analogously,
we will be working over the ring Rq, f , which is like the ring R f except that the
polynomial coefficients are in Zq rather than in Z.

For positive integers m, n, q,β ≪ q, and ring Rq, f , the Rq,fLWEn,m,β problem
asks to distinguish between the following two distributions:

1. (A, As+ e), where A← Rn×m
q, f , s← [β]m , e← [β]n

2. (A, u) , where A← Rn×m
q, f and u← Rn

q, f

Now we can define the Module LWEn,m,β Encryption Scheme. The main ad-
vantage of the scheme will be that the message µ, being in R f and whose coeffi-
cients are in Zp, allows us to pack d bits into it. The encryption and decryption
steps work similar to the basic scheme commented above so details won’t be writ-
ten again.

It is important to know that in this scheme we can optimize the polynomial
multiplication by using our N T T multiplication in every product of polynomials
instead of using the school book multiplication.

Chapter 5

Experiments

5.1 Setting up the experiments environment

Since we want to do experiments about how fast we can perform the multiplic-
ation of polynomials, it is important to vary the degree of the polynomials we
are working with (i.e the N parameter) and the field modulus of the ring we are
working (i.e the q parameter).

The parameter q has to satisfy q ≡ 1 mod 2N , so it is enough to vary the N
parameter. We will choose random polynomials on these scenarios and perform
different experiments. The computer where the experiments will take place has
the following characteristics:

• 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
• CPU MHz: 2800.000
• CPU max MHz: 4700,0000
• CPU min MHz: 400,0000
• CPU(s): 8
• Thread(s) per core: 2
• Core(s) per socket: 4

Since the polynomials we are working with are random, if we run, for every para-
meter N and every scheme among schoolbook multiplication, our N T T imple-
mentation and MulMod (of the N T L Library) we would not get a real measure
of the performance of every scheme. To achieve a more precise measure, we will
run every scheme with every different parameter N 10 times and we will take the
mean.

Our main objective is to test if, as the parameter N varies, the execution time
difference between schemes varies as well. It is important to know that parameters
like the dimension of the matrices used in every scheme will be kept constant
keeping in mind that our goal.

13

14 Alejandro Royher: Implementing Lattice-Based Cryptography

5.2 Running the experiments

In the following table are shown the results of the experiments for every para-
meter N . Note that, for every N a parameter q is computed. Measures are taken
in seconds so it is easy to compare.

Since what we want is to analyze how the performance is affected by the
increment of N , we kept the following parameters constant:

• m = 32
• n = 32
• p = 3

Where m and n are the number of rows and columns of the public key matrix A
and p indicates the space of the message we are working with, i.e. since p = 3 we
perform the encryption and decryption of polynomials with coefficients in Z3.

N q MulMod NTT School book
256 7681 1.60 3.62 7.76
512 12289 1.70 4.99 29.61
1024 12289 1.91 8.22 116.7
4096 12289 4.40 39.53 -
8192 65537 9.91 86.55 -
16384 65537 15.25 178.45 -

As we can see, from a certain point (N = 1024;q = 12289) performing school
book multiplication becomes infeasible and so we stop using it since we have
already enough information about its performance.

Note that, knowing that q has to satisfy q ≡ 1 mod 2N we can compute it in
the following way:

long generate_prime(long N){
long k=1;
while(!(isPrime(ZZ(k*N+1)))){

k++;
}
return k*N+1;

}

And once we have set the N , we can use the function above to generate our para-
meter q:

q = generate_prime(2*N);

In order to get another perspective of the results, we plot the results obtained in
the table in form of plot.

Chapter 5: Experiments 15

Figure 5.1: Seconds vs log2(N) of the different schemes

Chapter 6

Conclusion

To begin with the conclusion, we should highlight that we have used ordinary
modular reduction (i.e. with the C++ operator ’%’) and it is highly possible that
the NTL Library function MulMod implements some optimized modular reduc-
tion.

Despite this, we can clearly observe that for relative small N and q the MulMod
function and our implementation of N T T perform similarly. From N = 210 =
1024 the difference between this 2 functions are bigger and bigger. Whereas
our N T T implementation increase in an exponential way as the N increase, the
MulMod function keeps a reasonable low time as the N increases.

On the other hand, from the beginning we can observe that the school book
multiplication is, by far, the worst way to perform the polynomial multiplication.
Its time increases really fast as the N increases, making even infeasible to perform
more experiments with a higher N .

Keeping in mind all of this, we can conclude that with a relative simple N T T
implementation we can get a great speed up in the time. We have seen how this
speed up can be used in nowadays schemes such the Module LWE.

17

Bibliography

[1] M. Ajtai, Generating hard instances of lattice problems, 2004.

[2] J. P. Hoffstein and J. H. Silverman, Ntru: A ring-based public key cryptosys-
tem, 1998.

[3] C. P. V. Lyubashevsky and O. Regev., On ideal lattices and learning with errors
over rings, 2010.

[4] C. Peikert, A decade of lattice cryptography, https://eprint.iacr.org/
2015/939.pdf, 2016.

[5] V. Shoup, Ntl: A library for doing number theory, https://libntl.org,
2022.

[6] W. Stallings, Cryptography and network security: Principles and practice,
2010.

[7] P. Longa and M. Naehrig, Speeding up the number theoretic transform for
faster ideal lattice-based cryptography, https://eprint.iacr.org/2016/
504.pdf, 2016.

[8] Wikipedia, Chinese remainder theorem : Statement, https://en.wikipedia.
org/wiki/Chinese_remainder_theorem.

[9] M. Scott, A note on the implementation of the number theoretic transform,
https://eprint.iacr.org/2017/727.pdf, 2017.

[10] V. Lyubashevsky, Basic lattice cryptography: Encryption and fiat-shamir sig-
natures, 2019.

[11] T. Silde, Short paper: Verifiable decryption for bgv, 2022.

19

https://eprint.iacr.org/2015/939.pdf
https://eprint.iacr.org/2015/939.pdf
https://libntl.org
https://eprint.iacr.org/2016/504.pdf
https://eprint.iacr.org/2016/504.pdf
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://eprint.iacr.org/2017/727.pdf

