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Abstract

Colorectal cancer (CRC) has become a prevalent cancer type in developed coun-
tries, and screening programs have gained popularity due to their demonstrable
preventive effect. Colonoscopy is regarded as the best-performing procedure for
CRC screening, and different tools have been developed to ease the detection of
adenomatous polyps during this examination. Among these are automatic polyp
detection and narrow-band imaging (NBI).

In this thesis, the method CycleGAN is used to create different synthetic narrow-
band imaging (SNBI) datasets from regular white-light imaging (WLI) data. The
different datasets have been used independently to train the state-of-the-art ob-
ject detection network EfficientDet-D0 for both one-class (polyp) and two-class
(hyperplastic polyps vs. adenomas) detection. The best performing SNBI models
have then been compared to models trained on the original WLI, as well as real
NBI of the same polyps.

The results show that the proposed SNBI is able to detect polyps, especially
hyperplastic polyps, easier than WLI. These findings, and results with real NBI,
also indicate that NBI is a better modality for polyp detection and classification in
general.

Despite flaws in, for instance, the datasets used, the experiments conducted
with the generated SNBI show that GAN-based methods can be used for modality
transformation in colonoscopy imaging. The generation of SNBI has an inference
time of 5.3ms, making it applicable for real-time post-process image enhance-
ment. Applying such techniques can be considered a novel approach to endoscopic
image enhancement with a great potential for further development.
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Sammendrag

Kolorektal kreft (CRC) har blitt en utbredt krefttype i utviklide land, og screen-
ingprogrammer har blitt populære på grunn av sin beviselig preventive effekt.
Koloskopi er ansett som den beste screeningmetoden for CRC, og forskjellige verk-
tøy har blitt utviklet for å forenkle deteksjonen av adenomatøse polypper under
denne eksaminasjonen. Blant disse er automatisk polyppdeteksjon og narrow-
band imaging (NBI).

I denne oppgaven er metoden CycleGAN benyttet til å lage forskjellige syn-
tetiske NBI (kalt SNBI) datasett fra vanlig white-light imaging (WLI) data. De
forskjellige datasettene har blitt brukt uavhengig til å trene objektdeteksjonsnettver-
ket EfficientDet-D0 for både polyppdeteksjon (one-class detection) og deteksjon
som skiller mellom adenomer og hyperplastiske polypper (two-class detection).
De beste SNBI-modellene har deretter blitt sammenlignet med modeller trent på
orginal WLI, samt ekte NBI av de samme polyppene.

Resultatene viser at den foreslåtte SNBI-en greier å detektere polypper, spessielt
hyperplastiske polypper, lettere enn WLI. Disse funnene, samt resultater med ekte
NBI, indikerer også at NBI generelt er en bedre modalitet for polyppdeteksjon og
-klassifisering.

Tross feil i blant annet datasettene som ble brukt viser eksperimentene som
ble gjennomført med generert SNBI at GAN-baserte metoder kan bli brukt til
modalitetstransformasjoner i koloskopiavbildning. Genereringen av SNBI har en
kjøretid på 5.3ms, som gjør den anvendelig for post-prosesserende bildeforbedring
i sanntid. Anvendelsen av slike teknikker kan ansees som en ny tilnærming til en-
doskopisk bildeforbedring og har stort potensiale for videre utvikling.
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Chapter 1

Introduction

This chapter gives some background for the project, leading up to the problem
description and a brief explanation of how the problem has been approached.
Some related works are then presented, and finally, the outline of the thesis is
given.

1.1 Background

Today, cancer is ranked as the primary cause of premature death in most of the
western world [2]. As more countries continue to develop socioeconomically, it
is expected that cancer will become the major barrier to a longer life in these as
well. Since the outburst of the COVID-19 pandemic, there has been a dip in new
cancer cases because less screening and treatment has been conducted globally.
Because of this, an abnormally high number of developed cancer cases and deaths
is expected in the next few years.

In 2020, colorectal cancer (CRC) accounted for 10% of all new cancer cases,
ranking it third overall. With a death rate of 9.4%, it ranks number two, only
surpassed by lung cancer. Incidence rates of CRC are increasing with increasing
human development index (HDI). Norway has the highest incident rate in the
world for women and ranks third overall (for both genders). The disease is there-
fore being linked to the western lifestyle, where lack of physical activity and high
alcohol- and meat consumption are considered factors. In addition to advising
people to adapt a healthier way of living, screening for CRC has proven success-
ful. Therefore, national screening programs are being rolled out in more and more
countries.

CRC usually develops from protrusions in the colon or rectum called polyps
[3]. Polyps have different shapes, sizes, colors, etc. Some are not dangerous (be-
nign), some are cancerous, and some may develop into cancer (adenomatous).
Most symptoms are usually not present until the cancer has developed to an ad-
vanced and aggressive stage where it is too late for treatment [4]. Therefore, the
best preventive action, and the primary goal of screening, is to detect the adeno-
matous polyps and remove them before they possibly develop cancer.

1
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The most important procedure in CRC screening is called colonoscopy [5].
In a colonoscopy, a long soft hose is manually guided into the anus, through
the rectum, and into the large intestine. At the tip of the hose is a video cam-
era, as well as a white light source and a tool for polyp removal (resection). The
process of capturing color images with a white light source is called white-light
imaging (WLI). By looking at real-time color video from inside the bowel, the en-
doscopist can look for polyps, remove them, and send them to a laboratory for
biopsy so that the polyp type can be confirmed and further treatment determined.
Because colonoscopy is an expensive procedure, less invasive tests like fecal occult
blood tests and sigmoidoscopy are initially performed [6]. If found necessary, a
colonoscopy can be performed next.

Although all polyps usually are resected if detected, many are benign and do
not need removal. This has led to development of supporting tools to aid the endo-
scopist in the difficult task of categorizing (classifying) the polyp while perform-
ing the colonoscopy. One of these tools is an image enhancement method called
narrow-band imaging (NBI) [7]. In NBI equipment, the endoscopist can apply a
filter on the white light source such that only specific wavelengths of green and
blue light illuminate the colon [8]. This light is designed to highlight vascular
patterns, which tend to be prominent in tumors and cancerous tissue. When per-
forming a colonoscopy with equipment containing gear for NBI, the endoscopist
can switch to this modality when a polyp is detected and more easily determine
what type it is and whether resection is necessary.

NBI eases the identification of polyp features based on their superficial col-
ors and vascular patterns. From these features, different classification systems for
polyps have been developed. A simple but frequently used system is the NBI In-
ternational Colorectal Endoscopic (NICE) system, which divides the polyps into
three types/classes, shown in Figure 1.1.

(a) (b) (c)

Figure 1.1: a) Type 1: Hyperplasia, b) Type 2: Adenoma, c) Type 3: Adenocar-
cinoma (deep submucosal invasive cancer). Images are borrowed from the PIC-
COLO set [9].

In NICE, polyps are divided into three categories [10]:

• Type 1: Hyperplasia, benign and do not need resection unless they are larger
than 6 mm. 1

1Type 1 also comprises sessile serrated polyps, but this project does not differentiate between



Chapter 1: Introduction 3

• Type 2: Adenoma, not dangerous at the moment, but may develop cancer.
In general, all polyps suspected of being adenomas should be resected.
• Type 3: Deep submucosal invasive cancer. Removal is necessary, and resec-

tion by surgery may be considered.

If type 3 is detected, the prognosis is typically very poor because the cancer
has developed too far or spread. Therefore detection and removal of type 2 polyps
imposes a huge preventive effect and is the main reason for the successfulness of
CRC screening.

In recent years, artificial intelligence (AI) using deep learning (DL) has grown
to become a giant field and proven useful on many different problems [11]. Among
these are medical diagnosing and automatic object detection; two useful topics in
CRC screening. Automating polyp detection and classification has therefore grown
to be a significant field of research. Initially, these methods are thought to serve as
a tool for easing the endoscopist’s job during colonoscopy [11]. Figure 1.2 shows
examples of detection models for polyps.

(a) One-class polyp detection. (b) Two-class polyp detection.

Figure 1.2: From (a) a one-class polyp detection model and b) a two-class de-
tection model that discerns hyperplastic polyps from adenomas. The confidence
score is given in percent.

A well-functioning detection model for polyps can draw what is called a bound-
ing box around the polyp. The model can be implemented as one of the following:

• A one-class detector (Figure 1.2a): Detects the class polyp with a given con-
fidence (confidence score).
• A multi-class detector (Figure 1.2b): The model can detect polyps of differ-

ent types/classes with a given confidence.

Implementing such a model in the colonoscopy equipment is thought to aid the
endoscopist in both detecting and classifying polyps in real-time while examining
the patient.

Although being the state-of-the-art technique for CRC screening, colonoscopy
is, in addition to being expensive, an uncomfortable procedure for the patient
[3]. This has led to the recent development of wireless capsule endoscopy (WCE),

these and hyperplastic ones.
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popularly known as pill cameras. WCE was initially developed for endoscopy of
the small bowel because endoscopic equipment could not reach this far inside
the body [12]. It is a non-invasive method where a pill camera is swallowed and
captures video of the digestive system, see Figure 1.32.

Figure 1.3: Medtronic PillCamTM SB 3 Capsule for endoscopy of the small bowel,
capable of capturing up to 6 frames per second.

Because of its expensiveness and patient discomfort, WCE has also been de-
veloped for colorectal use [13]. Ongoing research tries, among other things, to
improve the image quality and frame rate of these capsules, as well as implement
wireless real-time automatic polyp detection.

1.2 Motivation

Several meta-analyses show that manual polyp detection (one-class) does not im-
prove with NBI versus WLI [6]. Others show the opposite [8]. This may be because
NBI has developed, and analyses of the first generation gear show worse perfor-
mance than second- and third generation equipment. Despite this, good results
are, for both modalities, dependent on properly cleansing of the bowel in advance
of the colonoscopy [14, 15]. This is, however, often not the case. Bowel prepara-
tion is a complicated procedure and may be a problem if not being conducted
properly, no matter what modality is used [5]. Moreover, it is in practice impossi-
ble to make a perfect comparison of NBI and WLI because a polyp image cannot
be captured with both modalities simultaneously from the exact same position.

Today, NBI is, in practice, mainly used for the classification of polyps. The
endoscopist switches from WLI to NBI when a polyp is detected to evaluate the
need for resection. The NICE standard is a relatively easy and widely used clas-
sification system for doing class evaluation when performing colonoscopy with
NBI. NBI gear is, however, not available everywhere, and most colonoscopies are
performed with WLI only.

AI-based polyp detection systems are additional tools that can be helpful for
endoscopists while performing a colonoscopy, easing their challenging and impor-
tant job of detecting and classifying the polyps. In this case, the doctor would still
benefit from having the NBI modality available for manual classification. Whether

2Image from: https://www.medtronic.com/covidien/en-us/products/capsule-endoscopy/pillcam-
sb-3-system.html (6.6.22).
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an automatic polyp detector would be more easily able to detect and classify
polyps captured with NBI is not clearly answered. This is probably because of
the already mentioned nature of capturing colonoscopic content, as well as the
lack of public datasets.

WCE has the potential of being the initial CRC screening procedure such that
manual expertise could be focused on follow-up of serious cases. To avoid that
doctors have to look through 7 hours of gastrointestinal recordings and manually
detect polyps, an automatic detection model would be highly beneficial for this use
[15]. If NBI was shown to improve automatic polyp detection and classification,
having this modality available in WCE would be beneficial. Capsules do, however,
have minimal space for hardware, and, although methods have been proposed,
no commercial capsules today have an option for NBI [16].

1.3 Problem Description

Several of the challenges mentioned above can be solved if one could create NBI
artificially from real WLI videos. There exist different post-processing techniques
for enhancing the WLI images, but no known method that tries to mimic NBI, that
is, to create synthetic narrow-band imaging (SNBI) (see Figure 1.4).

Figure 1.4: A polyp captured with WLI, transformed to SNBI that resembles real
NBI. The problem is to find such a transformation.

1.4 Objectives

The objective of this thesis is to investigate and try to solve the problem of creating
SNBI from WLI when NBI is not available for acquisition, as well as evaluate its
usefulness and resemblance to real NBI. More specifically, the following questions
will be answered:
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1. Is automatic polyp detection and classification easier on NBI compared
to WLI?
Because of its properties, NBI is used for manual classification of polyp type
when NBI equipment is available. One can therefore hypothesize that clas-
sification, and maybe also detection, may improve on an automatic detector
as well.
Polyp images and videos where each polyp has been captured with both
NBI and WLI will be gathered. These will be used to make two as identical
datasets as possible; one with WLI and one with NBI. Each of these sets will
be used to train, evaluate and test the same state-of-the-art object detector,
both for one-class (polyp) and two-class (adenoma and hyperplasia) detec-
tion. Although these datasets will not be exactly similar, one will get a good
indication of how NBI performs in automatic detection in contrast to WLI
by comparing their test results.

2. Can SNBI be created by post-processing WLI? How?
To answer this question, a way to transform polyp images from WLI to NBI
will be needed. This can be regarded as an unpaired image-to-image trans-
lation problem. In the autumn of 2021, a DL method called cycle-consistent
adversarial network (CycleGAN) was proposed for creating SNBI from WLI
[1]. In this thesis, the CycleGAN method will be investigated further. By
testing the SNBI on the NBI detection model from 1., an indication of how
well it resembles real NBI can be obtained.

3. Can a modality transformation from WLI to SNBI be made such that
automatic polyp detection and classification improves?
This question depends on whether 1. is true, i.e., one can only expect SNBI
detection and classification to be as good as NBI. Similar to the models
mentioned in 1., one-class and two-class detection models can be trained
on SNBI data created from WLI. By comparing their test performance to
the WLI detection models, one can know for sure whether the transformed
images improve detection and classification. If this is the case, one can also
conclude that NBI is easier to detect or/and classify than WLI.

4. Can the proposed WLI-to-SNBI transformation be used in real-time colon-
oscopy?
The inference time of the modality transformation by the proposed Cycle-
GAN implementation will be measured to answer this question.

To evaluate the questions above, special image datasets of polyps captured
with both NBI and WLI are needed. For the detection part, these images also need
to be clinically annotated with polyp localization and NICE class.



Chapter 1: Introduction 7

1.5 Contribution

This year (2022), a national screening program for CRC is being rolled out in Nor-
way3. Initially, a manual colonoscopy will not be offered to everyone. Because of
its massive costs of manual expertise, time, and money, one can question whether
it ever will be. WCE is regarded as a promising solution to this problem and is
currently under development. Automatic polyp detection is key to making WCE
screening efficient and truly easing the workload for the healthcare system. Be-
cause capsules capture content with WLI, a post-process transformation that cre-
ates SNBI may be the easiest solution to enable NBI for WCE. This might be useful
for manual inspection of the captured content, but it is especially interesting if the
transformed video also improves automatic detection and classification.

Skilled clinicians will, however, still be needed for the further colorectal exam-
ination of the potentially serious cases found by WCE screening. Having SNBI as
an optional modality in real-time manual detection would be helpful for the en-
doscopist. Instead of having special NBI gear, he or she can switch to SNBI purely
with software. He or she will also have the option to look at both modalities si-
multaneously.

1.6 Related Works

Below are some related works presented, considered relevant for this thesis.

1.6.1 Frame-based polyp multi-class detection

In sequence-based detection models, predictions from previous frames are used
when predicting the object class in the current frame. Frame-based detection, on
the other hand, does only base its prediction on the current frame. In this thesis,
frame-based detection has been conducted.

Compared to one-class detection and segmentation of colorectal polyps, less
research has been conducted for multi-class detection [17]. This is probably par-
tially because of the lack of datasets with class label annotations. Another problem
is that there are many ways to classify polyps, making a comparison of different
studies difficult. Despite this, most studies focus on discerning adenomas in the
test data, e.g., adenomas vs. non-adenomas or adenomas vs. hyperplastic polyps.

One study did both one-class (polyp) and two-class (adenoma vs. hyperpla-
sia) frame-based detection on different detection models [15]. Their results were
based on the F1 score and average precision (AP) of both classes and showed that
adenomas on all models were easier to detect than hyperplastic polyps. They ar-
gued that this is as expected because adenomatous polyps usually are larger, with
vascular textures that make them more visible than hyperplastic ones. A similar

3https://kreftforeningen.no/forebygging/screening-og-masseundersokelser/tarmscreeningprogrammet/
(6.6.22).
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study that achieved very good results tried detecting and classifying adenomas
and non-adenomas4 [18]. This study also got better AP results for the adenomas.

Two other studies worth mentioning did a five-class polyp detection. In the first
one, the most notable findings were indications that using NBI improved classi-
fication [19]. They could, however, not confirm it. The second one showed that
one-stage detectors could compete with two-stage detectors for polyp detection
[20]. They also showed that the prediction errors in their models were usually
because of wrong detections, not classification.

1.6.2 Colonoscopy image enhancement methods

In addition to three generations of NBI imaging equipment, there exist differ-
ent techniques for enhancing patterns that ease the detection and classification
of anomalies in endoscopic images [14]. Often, NBI equipment have an option
for magnification as well [21]. This improves manual detection and classification
performance in general. One can also inject liquid substances to further enhance
the superficial structures of the colon. By, for instance, using acetic acid in addi-
tion to NBI with magnification, manual diagnosis accuracy can be improved even
more. Liquid pigments can also be injected into the colon to colorize its surface
and improve visualization. This technique is called chromoendoscopy [8].

Similar to NBI are some methods called blue light imaging/blue laser imaging
(BLI) [22]. BLI uses other wavelengths than NBI and special blue light sources
instead of filtering the white light.

For post-process enhancement of WLI, different tools are in use. These are not
based on AI but on more traditional signal processing techniques. One is called
i-Scan (i-Scan) and is integrated with colonoscopy equipment from PENTAX [23].
In i-Scan, the image is divided into its RGB components. Different mapping func-
tions are applied to magnify or suppress the colors to enhance the contrasts in
the image. FICE is another enhancement technique where specific combinations
of wavelengths (colors) are enhanced [24]. FICE has shown competitive results
to NBI, while i-Scan reportedly improves the detection of adenomas.

1.7 Outline

Chapter 2 provides the theoretical background for the methods used in this the-
sis. This is followed by Chapter 3, where a presentation is given of the datasets
that have been used. Methodology and implementation are given in Chapter 4. A
selection of the numeric results is given in Chapter 5, and a thorough discussion
of them is provided in Chapter 6. Images from the experiments are included in
this chapter to substantiate the discussion. Chapter 7 gives a conclusion of the
thesis, and some suggestions for future work are written in Chapter 8. After the
bibliography, Appendix A is included, containing tables with all numerical results.

4The study differentiates between adenomas and polyps, but one can interpret this as adenomas
and non-adenomas.



Chapter 2

Theory

This chapter contains a thorough description of the theoretical foundation for the
chosen methods. After reviewing DL and convolutional neural networks (CNNs),
the theory behind automatic object detection models and the metrics used to eval-
uate them are given. Following this is an introduction to generative adversarial
network (GAN) and CycleGAN. Finally, the idea and physics behind NBI are ex-
plained.

2.1 Machine Learning

AI is a term used for the techniques that let computers mimic the behavior of
humans [25]. Today, AI comprises techniques that let computers perform specific
tasks, often exceeding human capabilities in terms of efficiency and accuracy. Ma-
chine learning (ML) is a branch of AI techniques where computers improve their
performance with experience. This means that as the computer is given more data,
it will get more experienced and learn the patterns in the data better. There are
three main types of ML:

• Supervised learning: One wants to find the relationship between two do-
mains X and Y, that is, a mapping f : X ! Y . The model is then trained on
labeled data, (Xtrain, Ytrain) = (x1, y1), ..., (xn, yn). In other words, for each
input xi , the ML model is told what the desired output yi should be. Af-
ter being trained on enough train data, the goal is that the model now can
map new unseen data Xtest to reasonable predictions in Y. In this thesis,
supervised learning techniques have been used.
• Unsupervised learning: These methods are typically used when labeled data

is unavailable, i.e., only Xtrain. One wants to find patterns in this data, such
as how it can be grouped or sorted.
• Reinforcement learning: Here the model is given only a set of rules, a current

state, and a goal. Using a reward system, the model learns what actions to
perform from trial and error. This method is famously used in chess-playing
AIs.

9
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As already mentioned, when training and testing an ML model, one must
keep the training and test data separate. This is important because when test-
ing a model, it should never have seen this exact data before. In addition, it is
common to use a validation set. This set is used to test the model during training
or compare different models. One can use the validation set to choose the best
model for testing or the best model parameters. Often, one only has one set of
data and therefore splits it into train (e.g., 70-80%), validation (10-15%), and
test (10-15%) before using it in an ML problem.

2.2 Deep Learning

Although being very successful in many tasks, a limitation of conventional ML
techniques is their ability to make use of the raw data directly [26]. Usually, one
has to feed these models with carefully extracted raw data features, which in
many cases can be very difficult. The methods that try to overcome this problem
are called representation learning methods. Here the model itself finds abstract
features in the data that enable it to interpret it correctly.

Deep learning (DL) comprises representative learning methods that extract
complex patterns in the input by using multiple layers of abstraction called hidden
layers. These models are called artificial neural networks (ANNs), here also called
neural networks (NNs), because of their resemblance to neuron patterns in the
brain [27]. A typical NN is shown in Figure 2.1.

Figure 2.1: Right: A multilayer perceptron. Left: a perceptron/artificial neuron.
Borrowed and edited from [27].

A NN is usually composed of an input layer containing the raw data, followed
by a series of hidden layers before ending in an output layer. If the network has
more than one hidden layer, it is said to be deep. The network will learn simple
patterns in the first hidden layer and then combine these into the next to learn
more complex features. The output layer contains an abstract representation of
the input data that enables it to be, e.g., classified. A NN that has information
flow from the input to the output and does not contain any cycles is called a
feedforward neural network (FFNN) [26].

Each layer is made up of a number of artificial neurons [27]. The neurons
weigh the inputs from the neurons in the previous layer and produce an output
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that serves as input for the neurons in the next layer. The weighted sum of a
neuron’s inputs can be written as b + ⌃iwi · xi , where wi is the weigth of each
input xi and b is an offset value called bias. In the vectorized form, the output al

of a layer l can be written as in (2.1).

al = �l(W l al�1 + bl) (2.1)

Here al�1 denotes the outputs of the previous layer, W l and bl are the weights
and biases of the current layer, and � is the layer’s activation function. When
training a NN, i.e., when the NN learns, it is essentially just updating its weights
and biases.

An iteration is when a training sample, or a batch of samples, is run through
the network. Its output is used to update the network parameters. To train the
model for one epoch means to iterate through the complete training set one time.
One usually trains a model for tens to hundreds of epochs. One can also train
a model for a number of steps. For one epoch, the number (#) of steps can be
calculated as:

# o f steps =
# o f samples

batch size

2.2.1 Backpropagation and optimizers

An update of weights and biases happens after each iteration of training [28].
This is generally done using backpropagation, a technique based on the difference
between the desired network output vector y(x) and, given a network of L layers,
the predicted output aL(x). A loss function L that measures this difference can be
defined, e.g., the quadratic loss function given in (2.2).

LL2 =
1
2

X

x
ky(x)� aL(x)k2 (2.2)

This loss is also called the L2-loss. L is the loss of the network for a given
training sample. Because of (2.1), and the fact that y is a fixed parameter, L is a
function of weights (and biases). The goal is to minimize the difference between
predicted and desired output; thus, one needs to find the weights that minimize L.
In backpropagation, the gradient of L, rL, is a function of the partial derivatives
@L
@ w and @L@ b , which means thatrL shows howL changes with w and b. To minimize
L, the updated values of w and b are calculated by gradient descent, a technique
based on (2.3) and (2.4).

wk! w0k = wk �⌘
@L
@ wk

(2.3)

bl ! b0l = bl �⌘
@L
@ bl

(2.4)
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Here ⌘ denotes the learning rate of the model. The idea of gradient descent
optimization is illustrated in Figure 2.2.

Figure 2.2: Gradient descent optimization [27]. Given some initial weight(s),
the gradient of the loss function is used to find the weight(s) that minimize(s)
the function, also called the global cost minimum.

Because L is a function of the network output, the weights are updated by
propagating backward through the network. In practice, there are different tech-
niques for minimizing L. These are called optimizers. In one called stochastic
gradient descent (SGD), a random training sample is chosen every iteration, and
the weights are updated. One can also select the complete set of training samples
(batch), or a part of it (mini-batch), and use the averagedrL for gradient descent,
called batch gradient descent and mini-batch stochastic gradient descent, respec-
tively [28]. Another more recent optimizer is the adaptive moment estimation
(Adam) optimizer [29]. Adam is based on SGD but introduces a per-parameter
learning rate based on the initial learning rate and the square of the gradient. It
is very efficient and widely used.

As shown in (2.3) and (2.4), the learning rate ⌘ is a parameter that decides
how large the parameter updating shall be. Learning rates can be kept constant
during all training or scheduled, which means that it changes with a function at
the different epochs [30, 31].

2.2.2 Loss functions

When a training sample has been run through the model, a loss function is used to
quantify the difference between the predicted and desired output [27]. In addition
to the LL2 in (2.2), there are different loss functions in use. Because the choice of
loss function will affect the efficiency and accuracy of the model during training,
the different functions have different uses.
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Binary cross-entropy (BCE) loss is often used in binary problems, for instance,
image segmentation. This function calculates the entropy of the two classes, e.g.,
pixels in the region of interest vs. background, and measures loss based on their
difference. BCE is given in (2.5).

LBC E(pt) = �log(pt), where pt =
⇢

p if y = 1
1� p otherwise. (2.5)

Here pt is the class prediction. This function is very efficient but suffers in
problems with class imbalance. This was solved by introducing weighted BCE,
where a weighting factor ↵t compensates for the unbalanced data. ↵t is defined
similarly to pt and can be calculated from inverse class frequency [32].

Focal loss was introduced for object detection and made huge improvements
on one-stage detection models. It is a weighted BCE loss with another weighting
term that automatically adjusts the weight factor based on the prediction confi-
dence (confidence score, see Section 2.4). In this way, the most uncertain objects
detected will be weighted as more important. The focal loss is defined in (2.6).

LF L(pt) = �↵t(1� pt)�log(pt) (2.6)

Here � is a fixed parameter.

2.2.3 Activation functions

So far, the neurons in a NN have been described by linear functions. In many
DL problems, however, the network needs to learn non-linear patterns [33]. It is
therefore beneficial to introduce non-linearity to the network, so that such pat-
terns can be learned. Another important thing to control is that when updating
the weights and bias of a neuron, the output should not change too much [28].
An activation function is applied to the weighted input of the neuron to control
these factors. Some activation functions are illustrated in Figure 2.3.

The Sigmoid function is a function used in ML and DL, nowadays mainly in
the output layer of a NN, for probability predictions. This is because it maps the
input to a value between 0 and 1. Therefore it can be viewed as a smooth unit-step
function. The Sigmoid function is shown in (2.7).

�Sig(x) =
1

1+ e�x
(2.7)

While the Sigmoid function often is used in binary classification tasks, a sim-
ilar function called Softmax is used in multi-class problems. Another activation
function is called the ReLU function, given in (2.8).

�ReLU(x) = max(0, x) (2.8)

The ReLU function sets all negative numbers to zero while leaving the pos-
itive ones unchanged. Because it contains a lot of linear properties and is very
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Figure 2.3: Different activation functions that are popular today. Sigmoid in red,
sigmoid-weighted linear unit (SiLU) in blue, rectifier linear unit (ReLU) in green,
and leaky ReLU in purple.

computationally efficient, the ReLU function is used a lot in DL. Zeroing all non-
positive values leads, however, in some cases, to what is called "dead neuron is-
sues". Therefore, a variant called leaky ReLU was suggested, adding a slight slope
for the negative values.

The SiLU function is a variant of the Sigmoid function, given in (2.9).

�SiLU(x) = x ·�Sig(x) =
x

1+ e�x
(2.9)

Here �(x) is the Sigmoid function of x . The SiLU function was developed
for reinforcement learning but has recently proven useful in other applications as
well.

2.2.4 Overfitting and underfitting

Overfitting and underfitting are terms related to the training of an ML model, as
illustrated in Figure 2.4.

Underfitting is the problem when the model performs bad on both the training
and the validation set [25]. This can occur for different reasons, for instance, the
model is too simple for the data. Another reason might be that the model simply is
not trained enough. Overfitting, on the other hand, is the problem when the model
works well on the training data but not on the validation data. This indicates that
the model has learned the specific training data too well. There are different ways
to cope with overfitting:

• Reduce the number of training iterations/epochs/steps, i.e., stop the train-
ing when the validation loss starts to rise.
• Obtain more training data. More training data will give a better model.
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Figure 2.4: Under- and overfitting [25].

• Use augmentation on the available training data. This can be done in dif-
ferent ways. Traditional methods in image augmentation involve randomly
flipping, rotating, skewing, zooming, etc., of the input images, as well as
changing colors, contrast, and adding noise. More recently, GANs has been
used to create more new images artificially. The augmentation can be done
during or before training. In the latter, it becomes a part of the data pre-
processing for enlarging the training set before training.
• Apply different regularization techniques. These are techniques that make

the model better at generalizing. Dropout is a regularization technique where
the activation of a few random nodes in the model outputs zero for each it-
eration. This makes the model more robust.
• Use batch normalization, a technique that normalizes the input data in each

layer, evidently improving the ML models and avoiding overfitting.
• Apply transfer learning to the model [34]. In transfer learning, one initial-

izes the model with weights from a pre-trained model. The specific training
is, therefore, only a fine-tuning of the model to make it work for a specific
task. Usually the pre-trained weights are acquired from an extensive train-
ing on huge datasets like ImageNet [30].

2.3 Convolutional Neural Networks

The term computer vision (CV) is used for the techniques for automatic detection
and classification of objects in images [34]. In recent years, convolutional neural
networks (CNNs) has been the standard approach in DL-based CV problems [35].
A CNN extracts features from the input on different abstraction layers and com-
bines these to learn patterns in its content. The main building blocks/layers of a
CNN are illustrated in Figure 2.5.
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Figure 2.5: The main layers of a CNN [25].

2.3.1 The main layers

The input of a CNN is represented as an array of numbers. When processing color
images, the input will be an array of three dimensions, for instance, 512x512x3
(width, height, RGB). A CNN consists of three main layers/building blocks [25].

Convolutional layers

A convolutional layer is showed in Figure 2.6.

Figure 2.6: A convolutional layer [25]. The kernel is a weighting matrix that is
convolved with the input tensor, producing a feature map.

In the convolutional layer, a kxk array called a kernel/filter is slid across the
input array (tensor), calculating the elementwise product of each kxk array that
exists in the input. The values of the kernel thus work as weights on the input.
The kernel output is a new array called a feature map. Because the same weights
are applied for creating one feature map from the whole image, this is a much
more efficient method than regular NNs. In practice, several kernels are applied
in each layer, producing different feature maps. In the beginning, these feature
maps will contain quite simple information about the image, e.g., horizontal and
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vertical edges. By combining them in deeper layers, more complex feature maps
can, however, be created. The network learns and adjusts the weights of each
kernel during training. As with the regular NNs, non-linearity is used by applying
a non-linear activation function after the convolution.

A convolutional layer that, e.g., uses kernels with size 3x3, can be written as a
Conv3x3 layer. A Convkxk on an image with dimensions w and h will give feature
maps of dimensions (w-k+1) and (h-k+1). To preserve the input image size, one
can use a technique called padding, where values are added around the input
image, as illustrated in Figure 2.7.

Figure 2.7: Zero padding [25].

Pooling layers

The function of the pooling layers is to down-sample the feature maps, as illus-
trated in Figure 2.8.

Figure 2.8: Max pooling with stride 2 [25].



18 M. R. Haugland: Master’s Thesis

There are no trainable parameters in the pooling layers. The filters that are
applied are often 2x2, which means that they reduce each 2x2 part of the input
into one value. Often is a stride of 2 also used. This means that the filter "jumps"
2 places on the input before being applied again. In a max-pooling layer, the max-
imum in each sub-array is sent to the down-sampled feature map, while in an
average-pooling layer, the average of them are forwarded.

Fully connected layers

While convolutional layers and pooling layers alternate throughout a CNN, a fully
connected layer can appear at the network’s end. Before the fully connected layer,
the feature maps are typically flattened into a one-dimensional array called a fea-
ture vector. This is passed to one or more fully connected layers that finally pro-
duce an understandable output, e.g., a class prediction or all class probabilities.
The fully connected layers are followed by an activation function. In the final layer,
this is often a Sigmoid or Softmax function.

2.3.2 Encoders, decoders, and fully convolutional networks

The CNN architecture described above is usually what is called an encoder [26].
The encoder consists of repeated blocks of alternating convolutional and pooling
layers, which finally are flattened out to a feature vector.

In many cases, e.g., image segmentation or image transformation, the desired
output is also an image. Using fully connected layers on the feature vector is there-
fore not helpful. The feature vector can instead be given to a decoder, which some-
how does the opposite of the encoder. The decoder also consists of convolutional
and pooling layers and can interpret the feature vector from the encoder to pro-
duce a new image. In an encoder-decoder network, the flattening can be omitted,
leaving the complete architecture consisting only of convolutional and pooling
layers. Such networks are called fully convolutional networks (FCNs). Because
fully connected networks are computational heavy, FCNs can also be used in, e.g.,
classification tasks. A configuration of Conv1x1 blocks then replaces the fully con-
nected layer(s).

2.3.3 From residual blocks to MBConv blocks

Residual blocks were introduced as a solution that could improve learning in deep
CNNs, as these tend to suffer from what is called the degradation problem [36].
A residual block is illustrated in Figure 2.9.

In short, the residual block uses shortcut connections to add shallow features x
to a deeper layer. In this way, the deeper features F(x) will not produce a higher
error than the shallow part x does. Residual blocks are the foundation of ResNets,
which is a popular group of CNNs.
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Figure 2.9: A residual block [36].

To increase the efficiency of the residual blocks, "bottleneck blocks" were in-
troduced [36]. A bottleneck block versus a regular residual block is illustrated in
Figure 2.10.

Figure 2.10: Left: A residual block. Right: A residual bottleneck block [36].

Bottleneck blocks reduce the number of feature maps (channels), i.e., the
width, by applying a Conv1x1. Then they apply a Conv3x3, followed by another
Conv1x1 layer to re-scale the number of feature maps.

With the introduction of MobileNetV2 in 2019, inverted residual blocks with
linear bottleneck layers were introduced [37]. The inverted residual blocks up-
scale (instead of down-scale) the number of channels before performing the Conv-
3x3, and then down-scale back to the number of initial channels. "Linear bottle-
neck layers" means removing the non-linear function (ReLU) at the end of the
block. To reduce the number of convolutional parameters in the MobileNetV2,
depth-wise separable convolution was also introduced. Instead of using a regular
Conv3x3 across all channels, a Conv3x3 is applied to each channel independently,
before a Conv1x1 is used on all channels. Such inverted residual blocks, with lin-
ear bottleneck layers, depth-wise separable convolution, and also adding normal-
ization to all layers, are more commonly known as MBConv blocks. A MBConv
block is illustrated in Figure 2.11.

Here H, W, and C are the height, width, and number of channels, respectively.
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Figure 2.11: The original MBConv block.

With the introduction of EfficientNet in 2020, a modification of the MBConv block
was introduced [38]. Squeeze-and-excitation optimization was added so that the
importance of each channel could be learned, as well as stochastic depth, which
is a kind of dropout technique on layer level. Finally, the ReLU activation function
was replaced by a SiLU function.

2.4 Object Detection

In CV, object detection is the task of detecting objects of a predefined class in
digital images [34]. Today, the standard approach when doing object detection is
by using DL. It differs from image segmentation, where each pixel is classified as
to whether it contains the desired object or not, resulting in a mask of the same
size as the input image. In object detection, a bounding box is drawn around the
object, and the certainty of box localization and object class is predicted with a
confidence score between 0 and 1, as illustrated in Figure 2.12.

2.4.1 Metrics

In object detection, one can define the ground-truth bounding boxes as positives
and all other possible boxes as negatives, which gives rise to the following terms
[40]:
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Figure 2.12: Example of object detection with confidence scores [39].

• True positive (TP): The prediction matches with the ground-truth box.
• False positive (FP): The prediction does not match with the ground truth,

meaning that the prediction either contains a non-existing object or is being
misplaced.
• False negative (FN): There is no prediction, i.e., there is a ground truth that

was not detected.

The total TPs and FPs are used to calculate how many positive predictions
were correct. This metric is called precision and is defined as in (2.10).

Pr =

P
i T PiP

i T Pi +
P

i F Pi
=

P
i T Pi

all detections
(2.10)

Another metric, recall, is a measurement of how many ground-truth boxes
were predicted, defined in (2.11).

Rc =

P
i T PiP

i T Pi +
P

i FNi
=

P
i T Pi

all ground-truths
(2.11)

As mentioned earlier, an object detector gives a confidence score for each box
prediction. One can now define a score threshold ⌧ that discards predictions below
this threshold. Thus TP, FP, and FN, and therefore also precision and recall, can
be regarded as functions of ⌧. Precision and recall can now be redefined as in
(2.12) and (2.13).

Pr(⌧) =

P
i T Pi(⌧)

all detections(⌧)
(2.12)

Rc(⌧) =

P
i T Pi(⌧)

all ground-truths
(2.13)
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Note that the denominator in (2.13) is not affected by different ⌧s. If ⌧ is
lowered, more predictions will be made. This may increase the FPs but reduce
the FNs, hence decrease precision and increase recall. For different confidence
thresholds, one, therefore, gets different precision-recall pairs which can be plot-
ted against each other in what is called a precision-recall curve (PRC), illustrated
in Figure 2.131.

Figure 2.13: The blue curve shows the PRC. PR-AUC is the area under this curve.
AP is calculated as the area under the red curve, plotted for each class indepen-
dently.

The area under this curve is called the PR-AUC. If the PRC of one class is
quantized by a step function, the area under the new curve can be calculated as
the average precision (AP). By averaging the AP for all classes the mean average
precision (mAP) is calculated, defined in (2.14) where C is the number of classes.

mAP =
1
C

CX

i=1

APi (2.14)

Note that if only one class is to be detected, mAP = AP.
When dealing with detection boxes, the amount of overlap between the boxes

also determines whether a detection is a TP or not. To measure this overlap, a met-
ric called intersection over union (IoU) is used, defined as in (2.15) and illustrated
in Figure 2.14 [40].

IoU =
area(Bp \ Bgt)
area(Bp [ Bgt)

(2.15)

IoU can vary between 0 and 1, where a higher value means a better overlap be-
tween the prediction and the ground-truth box. By calculating the IoU between a

1Figure borrowed from https://deshanadesai.github.io/notes/Evaluation-of-Results-using-Mean-
Avg-Precision (6.6.22).
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Figure 2.14: IoU, given Bp = red and Bgt = green [40].

prediction Bp and ground-truth box Bgt , one can compare this to an IoU threshold
(0.5 is typically used) to determine whether the prediction is true or false.

mAP and the PRC is calculated for a specific IoU threshold. For instance, at 0.5,
the mAP@.5 is calculated. An important metric, used when evaluating detection
model performance on the COCO dataset, is called mAP@[.5:.05:.95] [41]. What
this does is averaging the mAPs with IoU thresholds ranging from 0.5 to 0.95 and
a step size of 0.05. In this thesis, this metric is named mAP for simplicity.

2.4.2 Two-stage vs. one-stage detectors

The first CNN-based object detection networks were what are called two-stage
detectors [34]. Here, the model first proposes a set of object candidate boxes,
whose contents are given to a CNN model which extracts features from these
regions. These features are secondly classified to determine if this box contains
an object and what object it is.

In a one-stage detector, there is no candidate box proposal followed by a veri-
fication. The classification and bounding-box generation is done in parallel, dras-
tically decreasing the computational time. Despite one-stage detectors’ efficiency,
the two-stage detectors used to outperform them in means of accuracy. This differ-
ence was drastically reduced with the introduction of focal loss, which compen-
sates for the class-imbalance between foreground (objects to be detected) and
background [32].

2.4.3 Anchor boxes and non-maximum suppression

Most state-of-the-art one-stage detection models today make use of anchor box
generation, also called multi-reference detection [34]. In this method, a set of
reference boxes are predefined and used to make prediction boxes. Each anchor
box has one loss for object localization and one loss for classification. This can
be combined with multi-resolution detection, that is, combining detections from
different layers of the feature extractor, into what is called multi-scale feature
fusion (see 2.4.4).

After final predictions are made, one would expect many box predictions,
especially around the object. Therefore object detectors use an important post-
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processing step called non-maximum suppression (NMS) [34]. There are different
ways to do this, but the simplest and most used one is called greedy selection. First,
all boxes with a confidence score below a chosen score threshold are removed. Of
the remaining predictions, the one with the highest confidence is chosen, and all
boxes with a certain overlap (IoU higher than a threshold value) are rejected. This
greedy process is then continued until a maximum number of box predictions is
reached.

2.4.4 Multi-scale feature fusion

Because different layers of the encoder extract different features, a general ap-
proach to object detection involves combining these features. Then, both the stronger
semantics important for the object classification in the higher, low-resolution lay-
ers and localization information in the lower layers are being used. This is called
multi-scale feature fusion. An important method for multi-scale feature fusion in
object detection is called feature pyramid network (FPN), shown in Figure 2.15
[42].

Figure 2.15: The original FPN [42].

The left "bottom-up" pyramid is a regular CNN encoder, while the "top-down"
pyramid to the right is the decoding part, used to combine the features. The 2x
up-scaling and Conv1x1 layer is there for matching the spatial size and number of
channels, before the feature maps are added together element-wise. To improve
the performance and efficiency of the object detector, this top-down part has been
subject to change over the last years.
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2.5 Generative Adversarial Networks

Learning input data patterns so that more realistic-looking data could be created
was for long considered a difficult task, even when using DL. Generative adver-
sarial networks (GANs) were proposed in 2014 as a technique for overcoming this
problem [43]. A GAN is illustrated in Figure 2.16.

Figure 2.16: A GAN [44].

A GAN consists of two NNs; a generative model G that generates synthetic
data from a noise vector z, and a discriminative model D that tries to discern this
generated data G(z) from some real data x. These networks are trained simulta-
neously based on what is called adversarial loss. The ultimate goal is to create a
G that produces real-looking synthetic data for some specific problem.

2.5.1 Deriving the objective

In a GAN, the aim of G is to fool D, while D wants to not get fooled by G. Adversarial
loss is used to train both networks. Given m training samples, the cost function of
D is shown in (2.16).

1
m

mX

i=1

[logD(xi) + log(1� D(G(zi)))] (2.16)

Here, xi is a real input sample and G(zi) is a fake sample generated by G.
D wants to classify xi as being real (first term) and G(zi) as being fake (second
term). Hence D wants to maximize this function. The cost function of G is the
second term of (2.16), given in (2.17).

1
m

mX

i=1

log(1� D(G(zi))) (2.17)

G wants D to classify the generated data as real; thus, it wants to minimize this
function. These two functions can be combined to derive the objective function of
a GAN. This is given in (2.18), where pdata(x) is the probability distribution of x
and pz(z) is the distribution of z.
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min
G

max
D

LGAN (D, G) = Ex⇠pdata(x)[logD(x)]+Ez⇠pz(z)[log(1�D(G(z)))] (2.18)

As can be seen, this is indeed an adversarial function; G wants to minimize it,
and D wants to maximize it. When such a model is trained, one can expect D to be
better at discerning the real data and G to be better at creating realistic-looking
data. GANs have proven to be extremely useful in many problems, for instance,
in data augmentation. The adversarial loss is also working very well for creating
real-looking images [31].

2.5.2 CycleGAN

The CycleGAN is a GAN-based model that is designed for unpaired image-to-image
translation [31]. Suppose two image domains X and Y of unpaired images, for
instance, Monet paintings and photographs. The aim is now to learn a pattern
that connects these two domains such that a photography can be turned into a
realistic-looking Monet painting of the same motif, i.e., to transfer the style of the
image but preserve its content. Using a traditional GAN, where z is replaced with
the images to be transformed, will not suffice because content preservation cannot
be controlled. G may therefore end up learning to create one painting that will
fool D, regardless of its input. CycleGAN is solving this problem by introducing a
cycle-consistency loss. Figure 2.17 shows the principles of this model.

Figure 2.17: From left to right: Components of CycleGAN, forward cycle-
consistency loss, backward cycle-consistency loss [31].

CycleGAN is made up of two generators, G and F, and two discriminators, DX
and DY . The aim is to learn the mapping G : X ! Y . To secure that the content of
the image is not being altered, F converts each generated sample ŷ = G(x) back
to X . The difference between x and x̂ = F( ŷ) = F(G(x)) is then calculated to
get the forward cycle-consistency loss. The concept is illustrated in the middle of
Figure 2.17 and expressed in (2.19).

L f c yc(G, F) = Ex⇠pdata(x)[kF(G(x))� xk] (2.19)

Vice versa (as shown in Figure 2.17 right), a backward cycle-consistency loss
can be calculated as shown in 2.20.

Lbc yc(F, G) = Ey⇠pdata(y)[kG(F(y))� yk] (2.20)
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Although these functions are measures of simple L1-loss, they have proven to
suffice. Adding these together gives the total cycle-consistency loss Lc yc = L f c yc+
Lbc yc . By using (2.18) for G and DY , and F and DX , respectively, the full loss
function can be defined as in (2.21).

L(G, F, DX , DY ) = LGAN (G, DY , X , Y ) +LGAN (F, DX , Y, X ) +�Lc yc(G, F) (2.21)

� is a weighting factor between the adversarial losses and the cycle-consistency
loss. Finally, the goal is to solve:

arg min
G,F

max
DX ,DY

L(G, F, DX , DY )

Although not relevant for this project, it should be mentioned that an identity
loss is also possible to add to preserve colors in the transformation. Figure 2.18
shows how CycleGAN models trained on photographs (X ) and different paint-
ings (Y ) from famous artists can generate synthetic paintings from the respective
painters.

Figure 2.18: From left: Original photo, followed by synthetic paintings of Claude
Monet, Vincent van Gogh, and Paul Cézanne [31].

2.6 Narrow-Band Imaging

Most colonoscopy equipment uses a monochromatic camera, as well as a xenon
white light source to illuminate the colon [45]. To create a color image, a red (R),
a blue (B), and a green (G) filter are in turn applied. Because the three filters have
wide bandwidth, these images can, in turn, be put together to construct a color
image. This method is called WLI and is the conventional colonoscopy method.
In NBI, another filter is placed in front of the light source to filter out specific
wavelengths, see Figure 2.19.

The wavelengths used in NBI are around 415 nm (blue) and 540 nm (green)
because these are absorbed by hemoglobin in the blood [7]. By filtering out all
other wavelengths from the light source, capillaries and vessels in the tissue will
appear darker and in higher contrast to the tissue surrounding them. Cancerous
tissue tends to be vascular and can therefore easier be identified superficially.
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Figure 2.19: The procedure of capturing WLI versus NBI [7].

2.6.1 NICE

Because the superficial structures of cancerous and adenomatous tissue are dif-
ferent from benign ones, the NICE system was invented [10]. The standard was
meant to aid endoscopists in identifying the polyp type when looking at images/video
captured with NBI. There are three types of polyps, which can be discerned from
each other by looking at the color, vessels and surface patterns.

1. Type 1: Hyperplasia. Color is similar or lighter than the background. Vessels
are lacy or non-existent. Dark or white spots may appear.

2. Type 2: Adenoma. Color is darker than background. Vessels are brown/dark
and surround white structures.

3. Type 3: Deep submucosal invasive cancer. Color is dark and may also contain
white areas. Vessels are dark, but some are missing or disrupted.

Polyps of the three types are displayed in Figure 1.1. Although there are other
more complicated classification systems, NICE is often used. It suffices for discern-
ing adenomas, which is the essential part of CRC screening.
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Datasets

In this chapter, a presentation is given of the datasets that were used. Some of the
general modifications applied to them are also included. In this project, the data
needed to satisfy certain criteria:

• Clinical NICE classification annotations (Adenoma and Hyperplasia)
• Clinical detection annotations, either by a binary segmentation mask or

bounding box.
• Preferably WLI and NBI images of the same polyps.

This data would be used to train, evaluate, and test networks for object de-
tection. In addition, images of polyps captured with both NBI and WLI equipment
were needed to train the CycleGAN model.

3.1 PICCOLO

The PICCOLO Widefield (PICCOLO) dataset is a Spanish set created by the Span-
ish Basque Biobank in 2020 [9]. The set contains images of 76 lesions from 40
patients. The dataset contains both NBI and WLI for most polyps, NICE classifi-
cation, and clinically annotated segmentation masks. All type 3 polyps were re-
moved from the dataset. The PICCOLO dataset was used as train and validation
data for the object detection, and prepared and used differently in different ex-
periments. Some examples are presented in Figure 3.1.

3.2 OUS-NBI-ColonVDB

The OUS-NBI-ColonVDB dataset (also called the OUS-set) contains high-quality
images from videos of eleven hyperplastic and ten adenomatous polyps. The videos
were captured at Oslo University Hospital (OUS) with both NBI and WLI. The
polyps are annotated by clinicians as binary segmentation masks. A "cleaned" and
reduced version of the dataset was used (as proposed in [1]). All blurry images
were removed from the set, and each video was reduced to < 300 images with

29
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(a) Adenoma. (b) Hyperplasia.

Figure 3.1: Examples of the (uncut/original) images from both modalities of the
PICCOLO dataset [9].

sizes of 1350x1072 or 620x546. The dataset was used for validation and testing
of the object detection network and used differently for different experiments.
Some examples are presented in Figure 3.2.

(a) Adenoma. (b) Hyperplasia.

Figure 3.2: Example images of two polyps, captured with both modalities, of the
OUS-NBI-ColonVDB dataset.
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3.3 KUMC

The KUMC dataset is a set of 80 low-quality polyp videos from the University of
Kansas Medical Center, published in 2021 [15]. The set contains a mix of NBI and
WLI frames from these videos. Each frame has been manually classified into ade-
noma or hyperplasia and annotated with a bounding box for each polyp present.
Some examples are given in Figure 3.3.

(a) Adenomas. (b) Hyperplasias.

Figure 3.3: Examples of WLI frames from four polyps in the KUMC dataset [15].

3.4 Mesejo Videos

A Spanish dataset built by Mesejo et al. in 2016 contains videos of 15 serrated,
21 hyperplastic, and 40 adenomatous polyps, captured with both NBI and WLI
[46]. These videos were converted to single-frames (10fps) with size of 768x576.
Blurry images were removed, as well as hyperplastic video #20 because it was a
copy of #19. Some example frames are presented in Figure 3.4.
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(a) Adenomas. (b) Hyperplasias. (c) Serrated polyps.

Figure 3.4: Examples of polyps captured with both modalities, from the Mesejo
video dataset [46].
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Methods and Implementation

The following chapter describes what methods were used and their implementa-
tion. After a quick overview, the DL methods used are presented. The detection
experiments conducted are divided into two parts, where the second one follows
the first.

4.1 Overview

To answer the questions in this thesis (Section 1.4), the flowchart in Figure 4.1
will be followed.

Figure 4.1: Flowchart of of how the NNs are being used.

33
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The experiments are divided into two parts. In short, datasets of polyp images
captured with both WLI and NBI will be created from existing datasets. A Cycle-
GAN model will be trained in different ways to create different types of SNBI from
the WLI data. Next, to see how the best SNBI compares to the original WLI, inde-
pendent detection models for both one- and two-class detection will be trained,
and their results compared. In experiment 1, an effort will also be made to com-
pare NBI with WLI. However, because NBI consists of other but similar images,
the results from the detection models using this modality will mainly be used as
a reference and to verify the SNBIs’ resemblance to real NBI.

4.2 EfficientDet-D0 for Object Detection

To evaluate the SNBIs, they will be compared to the original WLI. This comparison
is done using the EfficientDet, which is a state-of-the-art object detection network
proposed by Google AI Lab in 2020 [30]. There are different EfficientDet mod-
els with different complexity and performance. Because many experiments were
to be conducted, the simplest and fastest one, called EfficientDet-D0, was cho-
sen. Although this network is a one-stage detector, its performance on the COCO
dataset is reportedly competitive with two-stage detectors. The EfficientDet-D0 is
illustrated in Figure 4.2.

Figure 4.2: Original illustration of the EfficientDet-D0 [30].

EfficientDet-D0 is composed of three main parts, which are further explained
below.

EfficientNet backbone

EfficientDet is based on the classification network EfficientNet and uses the Effi-
cientNet backbone to generate feature maps from the raw images [30]. The pro-
posal of EfficientNet contains a new way of scaling the network called compound
scaling. Compound scaling suggests a way to balance the scaling of both depth
(number of hidden layers), width (number of feature maps in each layer), and
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resolution relative to each other. The authors show that this benefits the model’s
accuracy and efficiency and reports astounding results.

EfficientDet-D0 uses the EfficientNet-B0 baseline, illustrated in Figure 4.3.

Figure 4.3: Illustration of the EfficientNet-B0 baseline [47].

The baseline consists of a convolutional layer followed by a series of modified
MBConv blocks/layers. The output from each (color-coded) block serves as a fea-
ture input to the next part of EfficientDet — the BiFPN layer. This backbone has an
option for transfer learning, initializing the model with pre-trained weights from
an extensive training on ImageNet.

BiFPN layer

EfficientDet-D0 proposes a new method for multi-scale feature fusion, roughly
based on the FPN and called bidirectional feature pyramid network (BiFPN). The
two are illustrated in Figure 4.4.

Compared to the original FPN, BiFPN consists of repeated blocks with bidi-
rectional cross-scale connections [30]. A weighted feature fusion is also used so
the network can learn the importance of the individual features. Like in the back-
bone, depth-wise separable convolution is applied in the feature fusion to improve
efficiency. The number of times the repetitive blocks are repeated is determined
by compound scaling. As shown in Figure 4.2, there are three BiFPN blocks in
EfficientDet-D0.

Box and Class prediction nets

The class prediction is made simultaneously as the bounding box prediction by
using anchor box generation. From the final layer of the BiFPN, its outputs are
fused in a softmax classifier using weighted sigmoid focal loss and a bounding
box predictor using weighted smooth L1-loss. Smooth L1-loss can be interpreted
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(a) Original FPN. (b) BiFPN in EfficientDet-D0.

Figure 4.4: FPN vs BiFPN [30].

as a (linear) L1-loss for large (absolute) values of the argument and a (quadratic)
L2-loss for small values.

4.3 CycleGAN for Creating Synthetic Images

For creating the SNBI, CycleGAN will be used. This is because this method can
enhance images without altering their content. The CycleGAN design is illustrated
in Figure 4.5.

Figure 4.5: CycleGAN block design [1].

The generator begins with an encoder made up of three convolutional layers
followed by ReLUs (L1� L3). The encoder is followed by a series of residual blocks
(L4 � L12) (as in Figure 2.9). The purpose of these is to transform the image. A
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decoder (L13� L15) follows the transformer and up-samples the feature maps, as
well as reduces the number of maps down to three channels (red, green, blue).

The discriminator is a network called PatchGAN [31]. It is made up of convo-
lutional blocks followed by leaky ReLUs.

4.3.1 Implementation and improvements

The CycleGAN was written in the programming language Python, using the DL
library PyTorch, and based on an implementation by Aladdin Persson1[48]. Much
of the code was, however, rewritten2. A test function was written, using only the
WLI-to-NBI generator and a custom Dataset class. Its inference time was measured
to see whether the transformation could be used in real-time. Functionality for
learning rate scheduling was also added. To preserve more details in the images,
resizing was set to 512x512. In the test function, the images were also converted
back to their original size after being transformed. Except for the learning rate and
the number of epochs, the parameters were set according to the original paper
[31].

Data augmentation was applied during training. In addition to resizing and
normalization, horizontal flip, vertical flip, random rotation, zoom in/out, and
transpose were all implemented with a probability of 0.5 (like in [1]).

During training, CycleGAN is given one WLI and one NBI image for each it-
eration. Previous experiments showed that although being designed for unpaired
data, a kind of "semi-pairing" of the training images would improve the Cycle-
GAN performance [1]. The data and the code was therefore organized such that
for each iteration, the two images originated from the same video/colon.

The training of the CycleGAN models was run on an 11GB NVIDIA GeForce
GTX 1080 Ti. Training of 15 � 20 epochs on ca. 10000 images took around 24
hours.

4.3.2 Synthetic NBI datasets

CycleGAN was used to create four different SNBI datasets from real WLI. The
datasets examined are presented below:

• SNBI1: Trained on the Mesejo set images for 100 epochs with a constant
learning rate of 0.0002.
• SNBI2: SNBI1, further trained on the OUS-NBI-ColonVDB for 30 epochs

with a constant learning rate of 0.0002, followed by a linearly decaying
learning rate for another 30 epochs.
• SNBI3: SNBI1, further trained on the OUS-NBI-ColonVDB for 60 epochs

with a constant learning rate of 0.0002, followed by a linearly decreasing

1https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/-
GANs/CycleGAN (6.6.22).

2Complete code for CycleGAN can be found at GitHub: https://github.com/mathiarh/TFE4940-
Masters-Thesis.git (7.6.22).
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learning rate for another 60 epochs (Similar to SNBI2, but retrained longer
on the OUS-set).
• SNBI4: Trained on the Mesejo set images for 150 epochs with a constant

learning rate of 0.0002.

4.4 Experiments

The detection and classification were done by using the TensorFlow 2 Object De-
tection API3. All experiments were run on an 11GB NVIDIA GeForce GTX 1080 Ti.
For evaluation and testing, the following metrics were used:

1. mAP was used for both validation and testing.
2. PRC-AUC was used for validation.
3. Precision, recall, and F1 @IoU=.5 were used for validation and testing.

In both experiments, all models were trained separately. Then their precision-
recall curve @IoU=.5 was plotted, and the confidence score yielding the best bal-
ance between the two was chosen. When testing, this score was used to calculate
precision, recall, and F1.

4.4.1 Pre-processing

Different pre-processing was needed before being able to run experiments. All
scripts were written in the programming language Python and are available on
GitHub.4

The first task was to create the datasets, which in some cases had to be done
manually (the train, validation, and test sets of experiment 1, the CycleGAN train-
ing sets, and the KUMC test set in experiment 2).

Two of the datasets had binary segmentation mask annotations, and a script
was written to convert these into a JSON file of bounding boxes. Because most
of the masks contained white pixel noise, a lower limit of 300 clustered white
pixels was chosen for making a bounding box. Another script converted the KUMC
annotation files of bounding boxes from .xml format to a JSON file.

TensorFlow networks need all data to be stored in special binary files called
"record" or "TFrecord" files. A Jupyter Notebook was written to convert JSON files
of bounding boxes to .csv files, which then could be converted to .record files.

There were also written smaller scripts for specific purposes. A script for cal-
culating aspect ratio of the training images in experiment 2 was written. Another
script was made for cutting away the black "curtains" of the PICCOLO set. Also,
different code for organizing and renaming all the images in use and their ground
truth masks were written.

3https://github.com/tensorflow/models/tree/master/research/object_detection (6.6.22).
4https://github.com/mathiarh/TFE4940-Masters-Thesis.git (7.6.22).
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4.4.2 Post-processing

A Jupyter Notebook was written for testing and evaluating the detection results.
Testing functions were written for making prediction images and storing pre-
diction boxes in a .txt file. These were based on an implementation by Anton
Morgunov5 The .txt files with predictions were used along with the ground-truth
JSON files for calculating precision and recall, plotting precision-recall curves, and
calculating the PR-AUC under these curves.

4.4.3 Experiment 1: One- and two-class detection

In this experiment, both one-class (polyp) and two-class (Hyperplasia and Ade-
noma) detection was conducted. The goals were the following:

1. Try to compare WLI with NBI to get an indication of how different their
detection performance is. This is why as identical as possible WLI and NBI
datasets were used.

2. Compare WLI with SNBI(1) made from the WLI data to see whether images
transformed by CycleGAN could improve the automatic detection.

3. Try to tell how well SNBI actually resembles real NBI in terms of detection
scores. To assess this, the real NBI models were given SNBI test data. This
is named SNBIx.

Preparation of datasets

To be able to compare NBI and WLI imaging, two as identical datasets as possi-
ble were constructed. PICCOLO was used as training data, while the OUS-NBI-
ColonVDB was split into validation (4 of the 21 videos available) and test (the re-
maining 17). To get the datasets as similar as possible implied reducing both NBI
and WLI images in the two sets so that there were equally many of each modal-
ity for each polyp. The training sets ended up having 741 images each. Because
both the EfficientDet-D0 and CycleGAN resize the images to 512x512, using more
square-shaped images were believed to preserve the information in the images
better.

The WLI data was run through the CycleGAN test function to create SNBI1.
The models were tested for frame-wise detection on each independent test video
and the complete set.

Detection model parameters and augmentation

The EfficientDet-D0 parameters were, in general, based on the original values
[30]. Three boxes with width/height ratios of 0.5,1.0, and 2.0 were used for the
anchor box generation. The learning rate was linearly increasing for the first 2500
steps, followed by a decrease to zero by the cosine decay rule. NMS was applied

5https://app.neptune.ai/anton-morgunov (6.6.22).
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with an IoU threshold of 0.2, and a maximum of six detections were allowed per
image. The training batch size was 8, which was the maximum possible for the
GPU used. For one-class detection, the models were trained for 30000 steps, and
for two-class detection, 10000 steps. These parameters were found by trial and
error based on the validation loss.

Because the training sets only contained 741 images, different augmentation
was applied while training. In addition to random vertical and horizontal flip-
ping, random 90� rotation and zoom in/out were applied. Because only 207 of
the images contained hyperplastic polyps, a weight of 0.4 was added to the ade-
noma images when creating the two-class detection training set. This was meant
to compensate for the class imbalance as a weight for the classification loss func-
tion.

4.4.4 Experiment 2: One- and two-class detection

Experiment 2 was an effort to improve detection results in general, as well as
improve the SNBI data. The following was being investigated:

1. Can the SNBI generation be improved? Will retraining the CycleGAN on
more high-quality images improve SNBI, i.e., SNBI1 vs. SNBI2, SNBI3, and
SNBI4?

2. How does the best SNBI perform compared to the original WLI?

Preparation of datasets

First and foremost, the goal of experiment 2 was to use more high-quality data
in an effort to make the CycleGAN even better. Therefore most of the OUS-data
were used to train the CycleGAN from experiment 1 even more. All the WLI data
(type 1 and 2) from PICCOLO was chosen for training, validation, and testing in
EfficientDet-D0. As the dataset was already divided into these three, this partition
was kept, although some of the validation data were added to the test and training
data to get 48 polyps (ca. 70%) for train and 10 (ca. 15%) for validation and test
[15]. Important to note is that the datasets had to be split polyp-wise (not image-
wise) such that images from the same polyp/video were not in, for instance, both
train and test data. The PICCOLO test set ended up not being used because in-
consistent mask annotations were discovered (see 6.6.2). Instead, a test set was
manually created by handpicking images of 154 hyperplastic polyps and 154 ade-
nomas from the low-quality KUMC set (from here called the "KUMC-based" set).

Improvements

To make the anchor generation as good as possible for the data in use, height/width
and width/height (aspect ratio) histograms were plotted from the training data,
see Figure 4.6.

From inspection of these, three new anchor boxes with ratios of 0.7, 1.0, and
1.5 were defined. Using this showed a slight increase in validation mAP during



Chapter 4: Methods and Implementation 41

Figure 4.6: Histogram of ratios in the training set of experiment 2.

training, and they were therefore used in all models of experiment 2. The classifi-
cation models were trained for 15000 steps, found by trial and error. In addition
to the augmentation from experiment 1, augmentation for randomly altering the
brightness of the images was added. Apart from this, the parameters and training
were done exactly like in experiment 1.

Choosing the best transformation

One-class and two-class models were trained for SNBI1, SNBI2, SNBI3, SNBI4,
and WLI. By looking at the validation results of the four different synthetic image
sets, SNBI2 and SNBI4 got the best performance with regards to two-class and
one-class detection, respectively. These were therefore chosen for further testing,
along with the WLI set.

One-class detection

WLI, SNBI2, and SNBI4 were tested against each other on the KUMC-based set.
The mAP and F1, precision and recall @IoU=.5 were measured and compared.

Two-class detection

It was discovered that the class weighting added in experiment 1 did not seem
to work properly. All models tended to predict "Adenoma" on both hyperplas-
tic and adenomatous polyp images. Early tests of experiment 2 confirmed this.
Therefore augmentation was done on the training sets in pre-processing, where
more augmentation (zoom in/out and flipping) was applied to the hyperplastic
images. Classification models were now trained on pre-augmented WLI, SNBI2,
and SNBI4. The learning rate was changed to linearly increase for from 0 to 0.03
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for the first 1500 steps, before following the cosine decay rule. The augmentation
during training was kept, allowing the models to be trained for 17000 steps with-
out overfitting. The models were tested on the KUMC-based test set. The mAP and
F1, precision and recall @IoU=.5 were measured and compared.
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Results

From the different experiments, different metrics were calculated. Most impor-
tantly is the precision and recall @IoU=.5. In some places where the precision-
recall balance was good, only the F1 score is given. However, the precision and
recall values are included in Appendix A, where complete results also are pro-
vided.

5.1 Experiment 1

Here are the results of the NBI, WLI, and SNBI1 models in one- and two-class
detection, respectively.

5.1.1 One-class detection

Table 5.1 shows the results from experiment 1.

Table 5.1: Test results from all videos of experiment 1, one-class detection.

NBI WLI SNBI1 SNBI1x
Precision 0.757 0.55 0.634 0.457
Recall 0.594 0.52 0.537 0.426
F1 0.666 0.535 0.581 0.441

In SNBI1x, the SNBI1 test data is tested on the NBI-trained model.
Because the test set(s) consisted of 17 videos, these metrics were also calcu-

lated for each video independently. Here are some observations:

• WLI vs NBI: For most of the videos, NBI and WLI got similar results. In some
cases, presented in Table 5.2, the difference was larger.
In total, six of eight adenoma videos were better detected with WLI, while
seven of nine hyperplastic polyp videos were better detected by NBI.
• WLI vs SNBI1: SNBI1 was getting better results than WLI in eleven of 17

videos; five adenomas and six hyperplasias. There were no considerable
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Table 5.2: Test results where difference in both precision and recall was larger
than 0.3.

Precision Recall
Video Type NBI WLI NBI WLI
#7 Hyperplastic 0.887 0.13 0.8 0.13
#12 Hyperplastic 0.758 0.212 0.676 0.21
#16 Adenoma 0.073 0.421 0.065 0.421
#20 Hyperplastic 0.839 0.481 0.834 0.377

differences between the two models.
• SNBI1 vs NBI: SNBI1 beat NBI on seven adenoma videos and one hyper-

plastic video.
• In some videos, all models performed poorly.

5.1.2 Two-class detection

The test results of two-class detection (detection with classification) is given in
Table 5.3.

Table 5.3: Test results from experiment 1, two-class detection.

NBI WLI SNBI1 SNBI1x
Precision 0.655 0.362 0.438 0.496
Recall 0.358 0.307 0.336 0.338
F1 0.463 0.332 0.38 0.402

Here are some observations from the results:

• WLI vs NBI: Table 5.4 shows some cases where the results were considerably
large between WLI and NBI.

Table 5.4: Test results where differences in both precision and recall was larger
than 0.2.

Precision Recall
Video Type NBI WLI NBI WLI
#4 Adenoma 1 0.77 0.782 0.504
#10 Adenoma 0.98 0.095 0.467 0.107
#13 Hyperplastic 0 0.543 0 0.227
#14 Hyperplastic 1 0.231 0.928 0.237
#20 Hyperplastic 0.671 0.05 0.62 0.036
#24 Adenoma 0.07 0.504 0.014 0.294

In total, NBI got three adenomas and three hyperplasia videos better than
WLI. WLI got five adenomas and one hyperplasia better than NBI. Both mod-
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els had precision and recall close to zero for the five remaining videos. These
were all hyperplastic.
• WLI vs SNBI1: If excluding the results where both models had precision or

recall close to zero, the SNBI1 model beat WLI in three adenoma cases and
two hyperplastic cases. On the other hand, WLI was better in four adenoma
cases and one hyperplastic case.

5.2 Experiment 2

Here are the results from experiment 2 presented.

5.2.1 One-class detection

Table 5.5 shows the test results in terms of F1 score and mAP.

Table 5.5: Test results on the KUMC-based set.

WLI SNBI2 SNBI4
mAP (all) 0.439 0.454 0.448
F1 (all) 0.685 0.71 0.674
F1 (adenomas) 0.734 0.744 0.692
F1 (hyperplasias) 0.658 0.675 0.656

5.2.2 Two-class detection with pre-process augmentation

Table 5.6 shows the results from classification when class imbalance compensation
had been applied as augmentation in the pre-processing.

Table 5.6: Test results on the class-balanced KUMC-based set.

WLI SNBI2 SNBI4
mAP (all) 0.289 0.242 0.211
F1 (all) 0.464 0.387 0.419
F1 (adenomas) 0.71 0.486 0.637
F1 (hyperplasias) 0.212 0.288 0.203

5.2.3 CycleGAN inference time

The inference time of the CycleGAN test function was measured when creating
the SNBI2 training set. Without the time taken for saving the image (254 ms) and
the time for creating the Dataset, the generation of one frame of SNBI2 from WLI
took 5.3 ms on average.
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Discussion

Here follows the discussion of the results. Since a big part of the results are images,
which were not included in the previous chapter, relevant images will be included
to support the discussion. To ease the reading, relevant precision and recall values
are also included (mainly in the figure descriptions) to support the discussion. The
chapter is divided into subsections that compare the different modalities against
each other. This precedes a visual evaluation of the SNBIs and a comparison with
related work. A final note about errors is then given.

6.1 WLI vs. NBI

One-class detection

As results in experiment 1 indicate, NBI seems to outperform WLI both in the
one-class and two-class detection cases. In the one-class detection models from
experiment 1, NBI works better for hyperplastic polyps. Hyperplastic polyps are
harder to detect manually than adenomas, indicating that the narrow-band light
highlights patterns that ease the detection for the automatic model. An example
where NBI outperforms WLI is in video #7 from the test set (metrics given in
Table 5.2). Figure 6.1 shows images from this video that are considered represen-
tative of the two modalities.

As can be seen, the WLI model has problems with discerning the polyp from
the background or finding the edge of the polyp. A similar problem can be seen
for NBI in video #16, see Figure 6.2.

In this case, the prediction box also covers the ground-truth polyp but is too
large. Therefore, the IoU becomes less than 0.5, and the prediction is counted as
an FP. However, one can question whether the model prediction is more accurate
than the clinical ground-truth annotation. Figure 6.3 shows a WLI prediction from
the same video.

Observing the WLI images from video #16 shows that the model predicts the
same region as a polyp as the NBI model does. The difference is that the polyp is
captured at a different location, making the IoU > 0.5 and the prediction a TP.
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Figure 6.1: From video #7 of a hyperplastic polyp. Predictions to the left and
ground truths to the right. Precision/recall was 0.887/0.8 for NBI and 0.13/0.13
for WLI.

Figure 6.2: From NBI video #16. Prediction to the left and ground-truth to the
right. Precision/recall was 0.073/0.065

Figure 6.3: From WLI video #16. Prediction to the left and ground-truth to the
right. Precision/recall was 0.421/0.421.

The hyperplastic video #20 is also an example where NBI outperforms WLI.
A WLI prediction can be seen in Figure 6.4.

While the NBI model in this video has a more steady close-up polyp video,
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Figure 6.4: From WLI video #20. Prediction to the left and ground-truth to the
right. Precision/recall was 0.481/0.377. For NBI of the same colon, the preci-
sion/recall was 0.839/0.834.

the WLI suffers from being far away and then very small. The PICCOLO set used
in training contains mainly close-up images of the polyps, which has led to all
models struggling to detect small polyps in the OUS-set.

The NBI and WLI sets contain images of the same polyps and the datasets
were designed to be as similar as possible such that their performance could be
compared. However, small differences seem to be crucial for performance in some
cases, leaving it unclear whether NBI outperforms WLI in terms of detection. De-
spite this, one thing that may explain why NBI beats WLI all over is that it tends
to be better at finding the polyp region, especially in the hyperplastic polyp videos
(like Figure 6.1).

Two-class detection

In two-class detection (Table 5.3), NBI seems to get better results than WLI gen-
erally. A case where both modalities performed badly is video #1. While they had
one-class detection F1’s of 0.98 and 1.0, respectively, their two-class detection F1’s
on the same video were 0.295 and 0.0. A WLI example is given in Figure 6.5.

Figure 6.5: From WLI video #1 of a hyperplastic polyp. Prediction to the left and
ground truth to the right. For NBI the results were similar.

By inspection of the predictions, both models have no problem detecting the
polyp. It is when determining their type that they both perform poorly. Despite
the bad performance, note that NBI is better at classifying the polyp than WLI.

The problem of correctly classifying the polyps is also present in other videos,
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for instance, #4 (Table 5.4), where the WLI model guesses the polyp to be hy-
perplastic when it is not. Video #4 is also one of two cases where WLI has better
one-class detection results but is worse than NBI for two-class detection. Since no
results show the opposite, this indicates that NBI improves classification.

Video #12 and #15 are also examples of where the one-class detection perfor-
mance is non-zero, but the two-class detection gives zero out for both modalities.
This may, at first glance, indicate that the model predictions are so wrong that one
could start to question the ground-truth annotations. But by looking at the pre-
dictions, one can see that the WLI detects the polyp in these cases but guesses the
wrong class. NBI, on the other hand, tends not to create any bounding box at all.
This indicates that its classification confidence is below the confidence threshold
and therefore neglected. In these two hyperplastic cases, NBI seems less confident
than WLI in that the polyps are the wrong class.

6.2 WLI vs. SNBI

While comparing WLI and NBI always involve some imprecision, comparing WLI
and SNBI gives much more accurate results because the SNBI data is just enhanced
WLI data.

One-class detection

From both experiments, the results show that detection improves with SNBI, espe-
cially SNBI2, versus the original WLI. In experiment 1 (Table 5.1), the two modal-
ities have no large difference in results for most videos. There are some small
exceptions, for instance, in video #13. Samples are shown in Figure 6.6.

In video #13, the WLI F1 was 0.6, while the SNBI1 F1 was 0.339. As Figure 6.6
indicates, the light reflections are enhanced in the transformation. This may in-
dicate that NBI has more reflection problems, which consequently are amplified
with the proposed SNBI transform. Although possibly being a problem in video
#13, it does not seem to be a major problem for the detection performance in
general.

From experiment 1, one can conclude that the SNBI1 transform, all over, per-
forms slightly better for automatic detection. This is supported by the results from
experiment 2 (Table 5.5), although this experiment compares other transforms
(SNBI2 and SNBI4) against WLI.

Two-class detection

For two-class detection, there are some differences between the results in exper-
iment 1 and experiment 2. While experiment 1 (Table 5.3) indicates that SNBI
generally is better than WLI, the results from experiment 2 (Table 5.6) somewhat
indicate the opposite. As pointed out earlier, the trend for all models in experi-
ment 1 is that they do not have problems with detecting the hyperplastic polyps.
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Figure 6.6: From video #13, showing the same frame for WLI and SNBI1. Predic-
tions to the left and ground-truths to the right. Precision/recall was 0.343/0.336
for SNBI1 and 0.713/0.518 for WLI.

It is when classifying them that the models fail. Although being tested on a small
dataset, the classification results from experiment 2 are therefore considered to
be the most significant.

In experiment 2, SNBI2 shows a relative improvement in classifying hyper-
plastic polyps while being much worse in adenoma detection. These results could
be explained by what is seen in Figure 6.7.

Figure 6.7: From the KUMC-based test set, showing the same frame for WLI and
SNBI2. Predictions to the left and ground-truths to the right.
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Some of the SNBI2 transformed images have black spots on them. It is not clear
why this occurs. One reason might be that because the SNBI2-transformation was
trained on high-quality images (the OUS-set) at the end, artifacts appear when
trying to transform low-resolution images (the KUMC-based set). SNBI4, which
has only been trained on quite low-quality data, supports this argument because it
does not contain any such artifacts. If weighting the cycle-consistency loss as more
important during training (see� in (2.21)), the problem might vanish. These black
dots do, however, not seem to be the reason for the poor adenoma detection, as
most of the adenoma images with black spots were classified similarly to their
original WLI frame (like in Figure 6.7). In a few cases, however, the detection
seems to be disturbed by these artifacts, as shown in Figure 6.8.

Figure 6.8: From the KUMC-based test set, showing the same frame for WLI (top),
SNBI2 (middle) and SNBI4 (bottom). Predictions to the left and ground-truths to
the right. As these images indicate, the black dots on SNBI2 can influence its
detection performance.

By inspection, it looks like the SNBI2 model just guesses more polyps to be
hyperplastic, which increases its F1 on hyperplastic polyps. The downside is that
this causes many adenomas to be wrongly labeled.
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A note on black spots for detection

If the black spots in the SNBI2 test set in general were concentrated around the
polyp, one could also question whether these are the reason why SNBI2 beats
WLI in (one-class) detection, i.e., that it helps the model to localize the polyp.
Visual inspection indicates that this, however, is not the case. Moreover, the SNBI2
training data do not contain such artifacts, meaning that the model is not trained
to "see" them. Therefore, one could argue that these black spots instead would be
a disadvantage, making the SNBI2’s performance over WLI in one-class detection
even more remarkable.

6.3 NBI, SNBI, and SNBIx

SNBIx results from experiment 1 (in Table 5.1 and Table 5.3) gave an F1 of 0.441
for one-class and 0.402 for two-class detection. This is probably the best indication
that the proposed SNBI actually resembles (and can resemble) real NBI. It is not
known what type of imaging equipment has been used for making the different
datasets. Since the NBI technology has been improved over the years, only images
from the latest, best-performing technology should be used ideally. Such resources
have not been available for this project. Despite this, when using different NBI
datasets for the CycleGAN and the NBI detection/classification model, the SNBI
can be both detected and classified by the NBI models.

One thing worth mentioning is that even though a perfect comparison of NBI
and WLI has not been made, one can argue that NBI at least will be able to perform
as well as the SNBI does. This is simply because NBI data has been used to create
the SNBI transforms. The features of SNBI that improve its performance compared
to the original WLI come arguably from NBI. On the other hand, the features that
impair SNBI performance may also come from NBI.

Among the proposed SNBI transforms, the one performing best is the SNBI2.
Based on its performance and compared to how the other transforms/SNBIs were
created (see subsection 4.3.2), it looks like the best performing SNBI benefits from
being trained on different and diverse datasets.

6.4 Visual SNBI Evaluation

Figure 6.9 shows two close-up samples; an adenoma and a hyperplastic polyp of
the different SNBI, as well as the original WLI and reference NBI image of the
same polyp.

From visual inspection, the transformations that visually best resemble NBI
color-wise are SNBI1 and SNBI4. This is arguably because these transformations
were only trained on the Mesejo set, which contain very green NBI footage. The
OUS-set, which was used to train the SNBI2 and SNBI3 transformations, contains
a more red color in the NBI. More specifically, yellow colors appear to be red. The
transformations based on this set thus seem to add more red color where the WLI
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(a) NBI. (b) WLI. (c) SNBI1

(d) SNBI2. (e) SNBI3. (f) SNBI4.

(g) NBI. (h) WLI. (i) SNBI1.

(j) SNBI2. (k) SNBI3. (l) SNBI4.

Figure 6.9: From the experiment 2 training sets. On top (two rows) are adenomas
and on bottom are hyperplastic polyps.

image contains some yellow color. Note, however, that the red appears slightly
more dark in SNBI3. One can hypothesize that further training on the OUS-set
would make these red-colored areas even darker, thus resembling the real NBI
even better.

In terms of contrast, SNBI2 seems to be the best transformation. This is ar-
guably because of the images’ relatively strong red colors and a slightly more
coarse resolution than the in other transformations. These features may have been
an advantage and explain why this transformation gave the best detection and
classification results. SNBI1 and SNBI4 have the poorest contrasts, not only be-
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cause they mainly are green but maybe because they have only been trained on
low-quality data.

Although they all have flaws and strengths, the different transformations seem
to resemble NBI quite well. More training, first and foremost on the OUS-set,
could improve the results, especially when tested on high-quality colonoscopy
videos. In terms of manual detection, medical expertise is needed to evaluate
each transformation’s usefulness.

6.5 Brief Comparison with Related Work

The results show that even when using different compensation for class imbal-
ance, adenomas are still easier to detect than hyperplastic polyps. This holds for
both one- and two-class detection and matches the findings in [15] and [18] (as
presented in Section 1.6). It also makes sense intuitively due to the nature of ade-
nomas. The experiments in this thesis strongly indicate that hyperplastic polyps
easier can be detected and classified with NBI. There are indications that NBI
improves polyp classification, but as in [19], this cannot be fully confirmed.

Although the results also indicate wrong detections, classification errors are
the most prominent. This does not, at first sight, match the results in [21]. How-
ever, as previously mentioned, the amount and class distribution of the training
data plays an important role when it comes to this errors. The choice of model
and model parameters also arguably make an impact.

6.6 Errors

6.6.1 Errors in the class-imbalance compensation

As experiment 1 indicates, the hyperplastic polyps are not classified well compared
to the adenomas for any of the models. Although a class weighting was initialized
when creating the tensors (.record files), it did not seem to have an effect. Focal
loss is designed to account for class imbalance automatically. However, because
the detection method uses anchor box generation, the focal loss may be doing
its automatic class weighting between foreground and background (misclassified
bounding boxes). Despite this, looking at the source code for the weighted sigmoid
focal classification loss, it still seems possible to initialize class weights. One may
suggest that there has been an error in the implementation, causing the weights
to have no effect.

Using the pre-process augmentation in experiment 2 seemed to work better
than the class weighting. Despite this, the classification performance of adenomas
is still much larger than that of hyperplasias. This weakens the suggestion that
the class-weight implementation in experiment 1 did not work. Instead, one could
blame the lack of hyperplastic polyp diversity in the training set. The simpleness
of the pre-process augmentation in experiment 2 did probably not improve the
class imbalance enough because the diversity in the augmented set was still low.
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The problem may have been possible to overcome by using more complicated
augmentation; for instance, would GAN-based augmentation be interesting to try.

Another known measure that maybe could compensate for the class imbal-
ance is the weighting of classification importance relative to detection. As the
detection seemed to work better than the classification in general, weighting the
classification as more important could teach the network to classify better, even
with imbalanced class distribution in the training data.

6.6.2 Errors in the PICCOLO set

When conducting a project like this, one should be able to expect that publicly
available datasets are correctly labeled. In addition to the already mentioned
dataset errors, a few suspicious annotations were additionally encountered in the
PICCOLO dataset.

The PICCOLO set, or parts of it, has been used to train the different detection
models. A problem that was discovered when preparing the datasets for experi-
ment 2 is shown in Figure 6.10.

Figure 6.10: A WLI frame of the PICCOLO set, originally classified as type 1
(hyperplastic).

This polyp has been clinically annotated as being a hyperplastic polyp. As this
was strongly suspected to be an adenomatous polyp, its label was changed when
creating the training set for experiment 2. Some other polyps were suspected of
being wrongly labeled but not changed due to unavailable medical expertise. An-
other clear error was found in the PICCOLO test set for experiment 2 and caused
the test set not to be used (replaced by the KUMC-based test set). This is illustrated
in Figure 6.11.

Regardless of whether the contour in the background should be labeled or not,
it is clear that the images’ annotations are inconsistent. This will impose errors in
the model predictions.
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Figure 6.11: Two frames from the (cutted) PICCOLO set to the left, and their
respective masks on the right. As can be seen, the mask annotations are inconsis-
tent.
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Conclusion

The scope of this thesis was to find a way to create SNBI from colonoscopy im-
ages captured with WLI and then evaluate its usefulness. To create the SNBI,
the DL-based method CycleGAN was used. Training data containing polyp images
captured with both WLI and NBI were manually created from available datasets
and used differently to create four transformation models. Using these, four SNBI
datasets were generated from additional WLI data. The different SNBIs were eval-
uated by the DL-based state-of-the-art object detection network EfficientDet-D0.
Independent models were trained, evaluated, and tested for the different (syn-
thetic and real) modalities on both one-class and two-class detection (adenomas
vs. hyperplastic polyps). Finally, their results were compared to see how the SNBIs
performed against the original WLI and real NBI.

The experiments in this thesis show that it is possible to create a post-process
modality transformation from WLI to NBI by using DL. The results show that the
transformations ease the automatic detection of polyps, especially hyperplastic
polyps. Regarding classification, the most reliable results indicate that SNBI(2)
improves the classification of hyperplastic polyps, but is beaten by original WLI
for adenomas. Although giving the best results, this transform suffers from black
spot artifacts. More research is needed to find the reason for this, but it seems to
be related to the CycleGAN training parameters. Clinical expertise will also need
to determine the manual relevance of the proposed SNBI.

The experiments involving real NBI indicate that this modality beats tradi-
tional WLI imaging, generally in both detection and classification. Because the
SNBI transformations are created by NBI images, its improvements over WLI should
arguably also apply to NBI. These findings support similar work in general.

Using GAN-based models can be regarded as a novel approach for post-process
enhancement of colonoscopy imaging and a novel approach for evaluating the
advantage of NBI in colonoscopy. Despite different data flaws, the results show
that this method has potential for practical use. Since having an inference time
of 5.3ms, the CycleGAN’s WLI-to-NBI generator can also be used in real-time ap-
plications. If more high-quality images for the CycleGAN are acquired, one may
hypothesize that an even more real-looking NBI is possible to create.

59





Chapter 8

Future Work

The experiments in this thesis show that GAN-based methods can serve as a real-
time post-process enhancement of colonoscopy imaging. Several aspects of this
topic are still worth investigating.

First and foremost, more correctly annotated data should be used in the evalu-
ation (detection model) of the SNBI1. Especially, more hyperplastic polyp images
is expected to reduce problems with class imbalance. One could also try apply-
ing more advanced data augmentation, for instance GANs, to the gathered data.
Moreover, to verify the results in this thesis, the proposed CycleGAN transforma-
tions should be further evaluated by other detection and segmentation networks.
Different metrics could also be considered; for instance, varying the IoU threshold
may give a clearer view of the nature of the different modalities.

In addition to further evaluation, different image-to-image translation meth-
ods could be explored for the generation of SNBI. There exists an arsenal of other
novel GAN methods for this purpose. Using these might give even better synthetic
data. Other DL methods may also be considered, for instance, methods based
on contrast learning. Acquiring more high-quality data for training such transfor-
mations is also considered advantageous. Furthermore, NBI is used not only in
colonoscopy but in several other endoscopic examination procedures as well. In
lack of colonoscopy data, endoscopic images from other parts of the digestive sys-
tem may also enable the training of a well-functioning WLI-to-NBI translation.
However, the semi-pairing of white and narrow-band data should not be omitted.

Although not being invented for medical use, CycleGAN has proven its useful-
ness in this field. Based on the findings in this thesis, one can therefore hypothesize
that DL-based methods for unpaired image-to-image translation can be applied to
transform WLI content to other domains as well, for instance BLI. It might also
be applicable for translating WCE content to regular colonoscopy imaging, which
might ease both manual and automatic detection and classification of WCE imag-
ing. These methods have great potential for medical use and are worthy of further
research.

1An updated collection of available colonoscopy datasets are provided here:
https://github.com/sing-group/deep-learning-colonoscopy/blob/master/README.md (7.6.22).
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Appendix A

Complete Results

A.1 Experiment 1

One-class detection test results

Test results from each video is given in Table A.1.

Two-class detection test results

Test results from each test video are given in Table A.2.

A.2 Experiment 2

One-class detection on KUMC-based set

Test results are given in Table A.3.

Two-class detection on KUMC-based set

Test results are given in Table A.4.

69



70 M. R. Haugland: Master’s Thesis

Table A.1: One-class detection results from experiment 1.

Video: polyp type NBI WLI SNBI1 SNBI1x Num. of images
V1: HP Precision 0.989 1 0.985 0.985 274

Recall 0.971 1 0.985 0.989
V2: HP Precision 0.235 0.007 0.22 0.166 297

Recall 0.158 0.007 0.02 0.128
V3: A Precision 0.818 0.992 0.911 0.823 123

Recall 0.732 0.992 0.911 0.829
V4: A Precision 0.879 0.907 0.929 0.325 177

Recall 0.744 0.897 0.908 0.293
V5: HP Precision 0.699 0.648 0.926 0.05 173

Recall 0.544 0.393 0.289 0.046
V7: HP Precision 0.887 0.13 0.314 0.309 285

Recall 0.8 0.13 0.309 0.309
V8: A Precision 0.956 0.87 1 0.971 238

Recall 0.799 0.87 1 0.971
V9: A Precision 0.796 0.861 0.912 0.792 216

Recall 0.751 0.861 0.861 0.812
V10: A Precision 0.317 0.094 0.078 0.014 156

Recall 0.314 0.099 0.053 0.015
V12: HP Precision 0.758 0.212 0.072 0 253

Recall 0.676 0.21 0.055 0
V13: HP Precision 0.677 0.713 0.343 0.284 153

Recall 0.3 0.518 0.336 0.245
V14: HP Precision 1 0.806 0.939 0.222 180

Recall 0.95 0.753 0.837 0.217
V15: HP Precision 0.971 0.683 0.846 0.167 123

Recall 0.347 0.483 0.371 0.124
V16: A Precision 0.073 0.421 0.337 0.355 107

Recall 0.065 0.421 0.29 0.355
V18: A Precision 1 0.844 1 0.967 245

Recall 0.559 0.841 0.992 0.963
V20: HP Precision 0.839 0.481 0.687 0.529 187

Recall 0.834 0.377 0.493 0.391
V24: A Precision 0.081 0.223 0.528 0.111 216

Recall 0.023 0.216 0.279 0.083
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Table A.2: Two-class detection test results from experiment 1.

Video: polyp type NBI WLI SNBI1 SNBI1x Number of images
V1: HP Precision 0.305 0 0.256 0.695 274

Recall 0.285 0 0.252 0.657
V2: HP Precision 0 0 0 0 297

Recall 0 0 0 0
V3: A Precision 0.899 0.852 0.818 0.823 123

Recall 0.797 0.886 0.732 0.642
V4: A Precision 1 0.582 0.77 0.504 177

Recall 0.782 0.569 0.713 0.328
V5: HP Precision 0 0.04 0.074 0.068 173

Recall 0 0.006 0.029 0.029
V7: HP Precision 0.417 0.049 0.199 0.053 285

Recall 0.088 0.049 0.193 0.042
V8: A Precision 0.995 1 0.903 0.964 238

Recall 0.807 0.996 0.895 0.912
V9: A Precision 0.933 0.849 0.817 0.912 216

Recall 0.723 0.701 0.743 0.792
V10: A Precision 0.98 0.095 0.633 0.482 156

Recall 0.467 0.107 0.237 0.206
V12: HP Precision 0 0 0.006 0 253

Recall 0 0 0.005 0
V13: HP Precision 0 0.543 0.031 0 153

Recall 0 0.227 0.009 0
V14: HP Precision 1 0.231 0.441 0.277 180

Recall 0.928 0.217 0.361 0.247
V15: HP Precision 0 0.02 0.04 0 123

Recall 0 0.011 0.022 0
V16: A Precision 0.229 0.457 0.33 0.653 107

Recall 0.15 0.402 0.28 0.458
V18: A Precision 1 0.964 0.951 1 245

Recall 0.58 0.869 0.955 1
V20: HP Precision 0.671 0.05 0.102 0.07 187

Recall 0.62 0.036 0.072 0.036
V24: A Precision 0.07 0.504 0.141 0.262 216

Recall 0.014 0.294 0.069 0.108
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Table A.3: One-class detection test results from experiment 2.

WLI SNBI2 SNBI4 SNBI2x SNBI4x Number of images
Precision (all) 0.678 0.709 0.652 0.394 0.562 308
Recall (all) 0.691 0.711 0.698 0.429 0.607
Precision (adenoma) 0.734 0.742 0.671 0.38 0.536 154
Recall (adenoma) 0.734 0.747 0.714 0.403 0.584
Precision (hyperplasia) 0.648 0.675 0.633 0.407 0.588 154
Recall (hyperplasia) 0.669 0.675 0.682 0.454 0.63

Table A.4: Two-class detection test results from experiment 2.

WLI SNBI2 SNBI4 Number of images
Precision (all) 0.446 0.381 0.412 308
Recall (all) 0.484 0.393 0.425
Precision (adenoma) 0.676 0.478 0.631 154
Recall (adenoma) 0.747 0.494 0.643
Precision (hyperplasia) 0.205 0.283 0.2 154
Recall (hyperplasia) 0.221 0.292 0.208
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