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Abstract 
Higher injury rates for knee anterior cruciate ligament (ACL) have been found in female 

athletes compared with males. Established risk factors for ACL injury include anatomy, 

external, hormonal and biomechanical factors. Non-contact ACL injuries can occur at 

landings, change in directions or rapid deceleration with the knee joint extended and 

rotational forces causing high loads on the ACL. Preventive effects of training programs have 

been documented and a protocol to assess movement patterns as functional or not functional 

is developed. The Functional Movement ScreenTM (FMSTM) detect weakness and instability in 

movement patterns. Low scoring points have been associated with increased risk of injury. 

Muscle strength is important for injury. In special, findings suggest that weakness in hip 

abductor muscles are associated with knee pain and increased knee valgus motions during 

jumping and side-cutting. Knee abduction moments have been associated prospectively with 

ACL injury and lack of strength in hip abductors might lead to compensatory activity in 

gluteal muscles, which alters biomechanics and increases ACL loading.  

The purpose of this study was to investigate associations between an adapted FMS 

score, hip abduction strength and knee abduction moments. Thirty-one female handball 

players conducted baseline and post intervention testing where screening points, hip 

abduction strength and biomechanics of four different jump tasks was collected in a test 

laboratory. Participants were divided to intervention or control group. The intervention group 

conducted a training program (2 times/week for 8 weeks) focusing on hip abductor strength 

and neuromuscular control of knee and hip joints. Findings were moderate correlations 

between total FMS score and knee abduction moments in the take-off phase in a counter 

movement jump. Further, hip abduction strength was correlated with knee abduction moments 

at initial contact in an in-jump task and hip abduction strength was correlated with scoring 

points from a one-legged squat test. Analysis of change between baseline and post-test found 

weak and non-significant correlations between the three testing procedures. In conclusion, the 

adapted FMS score, hip abductor strength and biomechanical factors are moderately 

associated with each other. Moreover, these correlations were not found when analyzing 

change from baseline to post-test. The current results may indicate that screening for risk of 

ACL injury should include a comprehensive evaluation and different testing procedures. 
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Introduction 

Physical activity is beneficial for human health and well-being. However, with increasing 

sports participation, the risk of musculoskeletal injuries increases (1, 2). Knee injuries are the 

most common reported injuries (2) and represent 15-50 % of all injuries in sports (3, 4). 

Concerns have been expressed regarding the high incidence of ACL injuries in adolescents 

and young adults (5). It has been estimated that 80.000 to 250.000 ACL injuries occur in the 

United States each year (2, 6, 7). Over 50 % of these injuries affect individuals between 15 

and 25 years of age (6). A report from the National Collegiate Athletic Association found 

higher knee injury rates in female soccer players compared with their male counterparts (8). 

Male soccer players experienced half the risk of ACL injury compared to females (8). 

Apart from gender, factors external to the body and internal factors like anatomy, 

hormonal and biomechanical differences have been established as risk factors for ACL injury 

(6, 8-12). Weather conditions, shoe-surface interaction, type of sport, practice versus match 

exposure and use of protective equipment are external risk factors (6, 9). These factors are 

often non-modifiable (9) and difficult to measure because of the influence from internal risk 

factors. However, there is a general agreement of more injuries during match exposure 

compared to training exposure (12). This increased risk can be as high as 24 times (4). 

Anatomical risk factors include, knee valgus, foot pronation, size of femoral notch, ACL 

geometry, body mass index and knee joint laxity (6, 9).   

ACL injuries occur through direct contact to the knee joint or a non-contact 

mechanism (13). Studies report that as many as 70 % of ACL injuries in athletes occur 

through non-contact mechanisms (14, 15). Typically, non-contact ACL injuries occur at 

landing from a jump, during cutting maneuvers (13) or through a rapid deceleration from high 

speed to complete stop (14). Video analysis reveals that in most non-contact ACL injuries the 

knee is close to full extension and rotational forces through tibia and femur affects the joint 

(14, 16, 17). Studies have documented positive effects of different preventive programs on 

ACL injury risk when comparing an intervention group with controls (18-25). However, to 

obtain a preventive effect it is crucial that compliance to the prevention program is high (20).  

Earlier, no common protocol to assess movement patterns and sport specific skills as 

functional or not functional existed. The Functional Movement Screen TM (FMSTM) was 

developed to fill an existing gap between pre-participation testing and performance testing, 

and identify athletes at risk of injury (26-29). The FMSTM places individuals in extreme 

positions to detect weakness and instability in fundamental movement patterns (28). For 
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testers it is noticeable if the athlete does not master stability and mobility appropriately (28). 

Movements assessed with the FMSTM
 are the deep squat, in-line lunge, hurdle step, shoulder 

mobility, active straight leg raise, trunk stability push-up and quadruped rotary stability (26-

29). Each test is scored from zero to three, three being the best score. Zero points are given if 

the subject feels pain during the test (27). One point is given if a person is unable to complete 

the whole movement pattern. Two points are given if the movement is completed using 

compensatory movements or equipment. For three points, the movement must be performed 

correctly without any compensation (27). Points from each test create a composite score 

ranging from zero to 21 points (28, 29).  

Ability of the FMSTM to predict injuries in professional footballers (30), military 

officer candidates (31) and female collegiate athletes (32) have been studied. Kiesel and 

colleagues (2007) investigated the likelihood of injury and FMSTM scores in 46 professional 

footballers. Through one competitive season, players with a score ≤ 14 points on the FMSTM 

had an increased risk of injury of 11.7 times compared to players with >14 points (30). 

O’Connor and colleagues (2011) recruited 874 males at the Officer Candidate School training 

and assessed the predictive value of the FMSTM through comparisons of FMSTM scores and 

risk of injury. Participants with a score ≤ 14 points had a relative risk of 1.5 compared to 

those scoring > 14 points. The FMSTM score was not associated with risk of overuse injuries 

(31). In 38 female collegiate athletes, the risk of injury was 3.9 times higher for players 

scoring ≤ 14 points compared to players scoring > 14 points on the FMSTM (32). These results 

suggest that the FMSTM can predict injuries in different populations and across genders.  

Intra-rater reliability of the FMSTM have been examined (33, 34). Gribble and 

colleagues (2013) recruited three persons to serve as models. They were videotaped in frontal 

and sagittal plane and performed all FMSTM tests three times. Thirty-eight participants met for 

two test sessions to rate the FMSTM. They were divided in three groups based on experience 

with the FMSTM. Results revealed a moderate intra-rater reliability across all participants. 

Raters with most experience achieved high to excellent intra-rater reliability (33). Smith and 

colleagues (2013) found high intra-rater reliability between two testing sessions using four 

raters with different experience. The lowest reliability was calculated for the certified FMSTM 

rater (34).   

Muscle strength is a key component in motor performance (35) and injury prevention.  

One method to test muscle strength is by using hand-held dynamometers (35, 36). It is a 

portable measuring device, which is less expensive, easier to use and more applicable in 

research and clinical testing compared to isokinetic testing devices (37-39). Testing is 
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performed during isometric contractions (37) by using the “make” or the “break” test 

technique (40). With the ”break” technique the examiner exerts a force with the hand-held 

dynamometer to the limb being tested which overcomes the maximal force output of the 

subject (40, 41). Conversely, with the “make” technique the examiner fixates the hand-held 

dynamometer to the limb being tested and the subject exerts a maximal force against the 

hand-held dynamometer through an isometric contraction (40, 41). The “break” technique 

reveals higher force output through eccentric activation of the muscles compared to isometric 

testing with the “make” technique. Therefore, these two techniques should not be used 

interchangeably when testing muscle strength in clinical practice or research (40).  

Regarding knee injuries, a review by Renstrom and colleagues (2008) provided 

evidence that hip abductor strength is of great importance for knee injury prevention (5). 

Another study found associations between low hip abductor strength and knee pain (42). 

Further, hip external rotators and abductors provide eccentric resistance to knee valgus 

motions (43). Weakness in these muscles can increase knee valgus motion during jumping 

and side-cutting and through this mechanism increase load on the ACL and risk of injury (43).  

Testing with the hand-held dynamometer is reliable (38, 44). Thorborg and colleagues 

(2010) investigated test-retest measurement variation in hip abduction strength. Nine healthy 

individuals met for two testing sessions. One examiner tested hip abduction strength in two 

positions with a hand-held dynamometer. For the supine position using mean of the three best 

repetitions the researchers found excellent reliability. In side lying position, mean of the three 

best repetitions reached moderate to good reliability (38). Kelln and colleagues (2008) 

recruited nine men and eleven women for two test sessions with three testers. Hip abduction 

was tested in supine position and the researchers reported excellent intra-rater reliability (44).    

Video analysis of female handball matches found that plant-and-cut movements and 

one-legged landings from jump shots were the two main situations leading to ACL injuries 

(17). The underlying mechanisms, seems to be a valgus collapse with the knee extended or 

near to full extension combined with internal or external rotation of tibia, relative to femur 

(16, 17). Knee abduction moments can be calculated from the magnitude of the ground 

reaction force and the moment arm in the frontal plane (45). The moment arm of the ground 

reaction force is stronger associated with knee abduction moments compared with the 

magnitude of ground reaction force (45). Reduction in one of these factors reduces overall 

knee abduction moment (46).  

Hewett and colleagues (2005) investigated associations between biomechanical 

measurements during drop vertical jumps and ACL injury prospectively in 205 female 
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athletes. Biomechanical measurements were obtained at baseline. Nine subjects suffered an 

ACL injury during 13 months of follow-up. All ACL injuries were classified as non-contact. 

Biomechanical measurements were significantly different between the injured and uninjured 

group (47). Knee abduction angles were 8.4° greater at initial contact in the injured group. 

Peak external knee abduction moment was significantly greater in the injured group compared 

with the uninjured group. Vertical ground reaction force was 20 % higher and side-to-side 

knee abduction moments difference was 6.4 times higher in the injured group (47). Key 

predictors for increased risk of ACL injury were the increased valgus motion and valgus 

moments of knee joint at impact (47). Another study, included 82 men and women, compared 

isometric hip external rotator and hip abductor strength with lower extremity kinematics and 

gluteal activity in a double-leg landing task (43). Individuals who differed in hip abductor and 

external rotation strength during landing were not different in frontal and transverse plane hip 

motion or frontal plane knee motion. However, higher gluteal activity was observed in 

individuals with low abductor and external rotator strength. This compensatory gluteal 

activation and lack of strength in hip abductors may contribute to altered biomechanics 

associated with increased ACL loading and injury risk (43). 

In the literature there exists no studies which have investigated associations between 

all the three testing procedures mentioned above. Associations between the FMSTM and risk 

of injuries have been found. Findings indicate that hip abductor weakness is related to 

increased knee abduction moments and strengthening of hip abductors can lead to decreased 

knee abduction moments in jump landings. Weak or malfunctioning hip abductors have also 

been associated with knee pain. Further, the International Olympic Committee have 

recommended research on associations between hip abductor strength and ACL injury rates 

(5). Therefore the main purpose of this study was to investigate associations between total 

FMS score, hip abduction strength and knee abduction moments. Hypotheses were that, i) 

there is a positive association between total FMS score and hip abductor strength, ii) there is a 

negative association between hip abductor strength and knee abduction moments, iii) there is 

a negative association between total FMS scores and knee abduction moments.   

 

Methods 
Participants 

Thirty-three female handball players (age 21.5 ± 2.8 years, body mass 71.1 ± 8.2 kg, height 

171.2 ±5.1 cm) volunteered to participate in the study. The study protocol was approved by 

the Regional Committee for Ethics in Medical Research (project no. 2014/1135). All 



8 

 

participants signed an informed consent before enrollment. The study was carried out 

according to the Declaration of Helsinki.  

Inclusion criteria were no previous ACL injury or severe injuries to the lower 

extremities. Players were excluded if they had diagnosed flatfoot, experienced a spine 

prolapse during the last six months or participated regularly in training sessions aiming at 

improving neuromuscular function of knee and hip joint through the Norwegian Olympic 

Sports Center, Region Mid-Norway. An adapted screening procedure (for short, FMS) also 

functioned as exclusion criteria. Players with a total score of ≥ 9 points out of 12 points were 

excluded from the study. Results from the FMS were obtained on field at baseline. All of the 

other baseline and post intervention testing was conducted in a test laboratory. All participants 

were amateur handball players, as none of them have handball as their main income source.  

 

Experimental design 

Six eligible teams were visited on field. The purpose of this visit was to inform players and 

screen those who met all other inclusion criteria (see flowchart in figure 1). After baseline 

testing, two participants gave up playing handball and withdrew their consent for 

participation. This study was conducted as a single-blind controlled trial. Participants were 

assigned to either the intervention group or the control group. The control group was blinded 

to the intervention group training. The physiotherapist who screened the participants at 

baseline and post-test was unaware of the group assignment of the participants. The 

intervention group conducted two training sessions per week for eight weeks.  

 

Testing procedure 

All equipment was calibrated for each new test day. Body mass was measured at baseline and 

post-test using the Electronic Scale-9522WB (Weighing Apparatus Company Ltd., China) 

with one-decimal accuracy. Height was measured to the nearest half centimeter using a SECA 

225, mobile measuring device (SECA, Germany). Dominant leg was determined by asking 

participants which leg they would use to kick a football as long as possible. For each 

participant, baseline and post-test was completed on the same day. 

 

Screening  

The FMS in this study included the deep squat, in-line lunge and the hurdle step test from the 

FMSTM (27, 28) and the one legged squat test from the Nine-test screening battery (48) (see 

figure 2). A physiotherapist with experience in scoring the FMSTM screened all of the 
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participants at baseline and post-test. The in-line lunge, the hurdle step and the one-legged 

squat were assessed bilaterally, starting with the dominant limb. The lowest score on one leg 

was used as combined score for both legs. The score on each sub-test ranged from 0 to 3. The 

possible total score ranged from 0 to 12. Participants performed three repetitions on each sub-

test before points were given. Criteria for scoring points of the FMS are listed in table 1. 

Additional equipment for the FMSTM is a dowel, and a board with the measures of 5.08 cm X 

10.16 cm (27, 28). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of participants in this study. 

 

In the deep squat, participants placed their feet, shoulder width apart and held a dowel 

overhead with a 90° angel in the elbow joint (27, 28). The dowel was moved upward by 

extending elbow joints. Instructions were to squat down as low as possible while keeping the 

torso in an upright position. Heels should not be lifted from the ground and the dowel should 

be held with arms extended in the squat position. This position should be held for about 1 sec 

before returning to an upraised position (27, 28).  

The in-line lunge started with participants placing the heel of the front foot on a 

predetermined mark on the board (5.08 cm X 10.16 cm). Participants squatted down and made 

contact between the knee of the back foot and heel of the front foot. A mark was made were 

the toes of the back foot touched the block. Participants held the dowel behind the back with 

Teams declining 

participation or not 

answering invitation: 

5 

Excluded players: 

(FMS, ex. criteria, 

not signing consent) 

n=56 

Players unavailable 

for FMS or baseline: 

n= 37 

Invited teams: 

11 

 

Eligible teams: 6 

total number of 

players: n= 126 

Players conducting 

baseline testing: 

n=33 

Control group: 

n=14 

Intervention group: 

n=17 

Post-test:  

n=31 

 

Drop-out  

n=2 
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the opposite hand of the front foot at the cervical spine and the other hand on the dowel at the 

lumbar spine. The dowel should stay in contact with the head, thoracic spine and middle of 

buttocks throughout the test. Starting position was upright with feet flat on the block and toes 

pointing forward. Participants lowered their back knee and touched the block behind the heel 

of the front foot, before returning to starting position. The posture should be upright 

throughout the test (27).  

 

Table 1. Scoring options for the adapted FMS (27, 48) 

*If criteria for three points were not achieved a board (5.08cm X 10.16cm) was placed under the heels of the participants 

In the hurdle step test, participants placed their feet touching the base of the hurdle with toes 

aligned (27). Height of the hurdle string was adjusted to the height of the tibial tuberosity of 

each participant. Participants held the dowel with both hands positioned behind the neck and 

across the shoulders while stepping over the string and touching the floor with the heel. An 

upright posture with the stance leg extended should be held until the moving leg returned to 

starting position (27) 

In the one-legged squat test, hands were fixated at the hip. The passive leg was flexed 

throughout the test. The upper body should be in an upright position while squatting as deep 

as possible. The test should be performed as slow as possible. The deepest position was held 

for about 1 sec before returning to starting position (48). 

Points Deep squat In-line lunge Hurdle step One-legged squat 

3 - Parallel upper torso with tibia   

or toward vertical 

- Femur below the horizontal 
line between knee joints 

- Hips aligned over knee and     

ankle 
- The dowel is aligned over feet 

- The dowel is held with both 

hands at the cervical and lumbar 

area of the back and must be held 
in contact with the lumbar spine 

- No flexion of the lumbar spine  

- The dowel and feet are parallel 
in the sagittal plane 

- Contact between knee and board 

behind front foot heel 

- Hips, knees and ankles 

in line 

- Minimal to no flexion 
or extension in lumbar 

spine 

- The dowel and the 
string is parallel 

- Hip, knee and foot 

remain in line 

throughout the 
movement 

- Pelvis remain in 

horizontal alignment 
- Vertical upper body 

2 - Additional board placed under 

heels* 

- Parallel upper torso with tibia 
or toward vertical 

- Femur below the horizontal 

line between knee joints 
- Hips aligned with knees and 

ankles 

- The dowel is aligned over feet 

- Loss of contact between the 

dowel and the lumbar spine due 

to lumbar spine flexion 
- Flexion of lumbar spine or 

sideways flexion of torso during 

the test 
- Dowel and feet are not parallel 

in sagittal plane 

- Unable to make contact between 
knee and board behind front foot 

heel 

- Hips, knees and ankles 

not in line 

- Flexion or extension 
movement of the lumbar 

spine  

- Dowel and string is not 
parallel 

-  Hip, knee and foot 

remain in line 

throughout the 
movement 

- Pelvis not horizontal 

aligned  
- Upper body is not 

vertical 

1 - Additional board placed under 
heels 

- Tibia and upper torso are not 

parallel 
- Femur not below the 

horizontal  line between knee 

joints 
- Hips, knees and ankles are not 

aligned 

- Lumbar flexion 

- Loss of balance - Contact between foot 
and the string 

- Loss of balance 

-Hip, knee and foot is 
not in line through the 

movement (typically 

knee valgus or knee 
varus is noted) 

0 -Participants reported pain 
during execution of the 

movement 

-Participants reported  
pain during execution of the 

movement 

-Participants reported 
pain during execution of 

the movement 

-Participants reported 
pain during execution of 

the movement 
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Hip abductor strength 

Prior to baseline testing a pilot study was conducted, to ensure that isometric hip abductor 

strength measurements were reliable using the hand-held dynamometer (Lafayette Manual 

Muscle Testing System; Lafayette Instrument Company, Lafayette, IN, USA).  

 Participants performed two warm-up exercises preceding hip abductor strength 

testing. Warm-up was performed in upright position. First, they conducted 10 cycles of 

flexion and abduction of the hip joint on left and right side. The second exercise was 10 full 

range of motion hip abduction and adduction movements on both sides with a controlled pace.  

 The hand-held dynamometer technique used in this study was the “make” test 

technique (figure 3). Testing was conducted with participants in side-lying position on a 

bench with their back placed against a wall. The opposite arm of the tested leg was positioned 

under the head. The tester stabilized the participants’ hip during testing to minimize rotation 

of the hip and femur. The hand-held dynamometer was placed 2 cm proximal to the lateral 

epicondyle of femur. Participants were tested bilaterally with the leg extended and with knee 

and hip joint flexed at 90°. Two familiarization tests with a submaximal effort (~80 % of 

perceived maximal strength) were performed prior to the registration of isometric maximal 

voluntary contraction (MVC) force output of the hip abductors. All participants performed 

three MVC repetitions for each position. Each MVC lasted ~3 sec, with a resting period of 30 

sec between each repetition. The order of the test position and side was randomized. A 

protractor was used to control the knee and hip joints angle. The highest obtained value was 

considered as the MVC. When the third measurement was the highest, a fourth test was 

required. During testing the participants received verbal encouragement to optimize 

performance.  

 

Biomechanical assessment 

Six Oqus 1 cameras (Qualisys, Sweden) were set up to record kinematics. Two Kistler force 

plates type 9286BA (Kistler Instrument Corporation, NY, USA) were used to record kinetics. 

Force plates were placed on the floor. Fifteen reflexive markers (Qualisys, Sweden) with a 

diameter of 19 mm were placed bilaterally on anatomical bony landmarks i.e. the medial and 

lateral ankle malleoli, lateral and medial femur epicondyles, trochanter major, iliac crest, 

acromion and on the sacrum using self-adhesive tape. Prior to the biomechanical assessment, 

participants conducted a warm-up procedure consisting of two sets with ten deep squats and 

three sets of squat jumps. The first two sets of squat jumps was three repetitions with 

submaximal effort. The third set was two squat jumps with maximal effort. During the 
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biomechanical assessment, participants restrained their arms by holding them in hip position 

to minimize concealing of markers (figure 4). After landing from a jump, instructions were to 

stand on the force plates for 3 sec until data collection were stopped. The order of the four 

different jump tasks was randomized for each participant. 

In the counter movement jump, participants were instructed to stand still on the force 

plates for 1 sec before initiating the jumping movement. Participants squatted to a freely 

chosen knee angle before accelerating their body upwards and landing on the force plate. 

They were instructed to jump as high as possible.  

A line was marked 1 meter from the force plate to indicate starting position for the in-

jump task. When performing the in-jump task, participants squatted down to a freely chosen 

knee angle and jumped forward aiming to land at the center of the force plates. Participants 

were instructed to jump as high as possible. 

The one-legged jump landing started with participants standing on a box, 30 cm higher 

than the force plate. Participants kept their passive leg bent backwards to avoid compensation 

during landing on force plate with the passive leg. The passive leg was set to ground after data 

collection stopped. All participants performed the landing bilaterally. 

 

Functional strength training program 

The functional strength-training program consisted of four exercises directed to strengthen hip 

abductor muscles and improve neuromuscular control of knee and hip joints. Exercises were 

side lying and supine hip abduction, squat jumps, Bulgarian squat (figure 5 and 6). Ankle 

weights (1 kg) were used as resistance on the side lying hip abduction. For the other exercises, 

rubber bands (Kappi, Oslo, Norway) were used as resistance. The rubber bands were fixed 

around the knee joint, 2 cm distal to the patella when participants stood in upright posture 

with feet together, adding medially directed resistance during the exercises. Participants 

started training with eight repetitions and three sets on all exercises. Between sets they were 

given a resting period of 1 min. When participants successfully performed eight repetitions, 

they progressed to ten repetitions on next session. Progression increased to completion of 12 

successful repetitions in all three sets. When performing 12 repetitions and three sets 

resistance increased with heavier ankle weights and thicker rubber bands. Progression was 

determined for each participant by the researchers. 
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Data analysis and statistics 

Kinematics and kinetics were collected in take-off and landing phase of the counter 

movement jump and in the landing phase from the one-legged jump landing and the in-jump. 

A customized Matlab (v.2013b The MathWorks, Inc., MA, USA) script was designed to 

calculate knee angle and knee abduction moments. The period of 300 msec after initial 

contact was analyzed. For the counter movement jump the last 200 msec before take-off was 

also analyzed. Initial contact was defined as the moment were plates registered forces over 10 

N. Take-off was defined as the last time point where the force plates registered forces of 10 N 

before flight time. Knee abduction moments were a product of the magnitude of the vertical 

ground reaction force and the moment arm in frontal plane and were averaged from all three 

jumps performed in each of the four different jump tasks. Exceptions were for the one-legged 

landing at baseline where the last to landings were averaged. Synchronization between the 

camera system and force plates was performed before each test day. Each camera collected 

data with 250 Hz, each force plate collected at a rate of 500 Hz. 

 Scores from the FMS tests was analyzed as categorical variables with test performance 

as outcome. The value 0 were used when participants reported pain performing test, 1 was 

categorized as low test performance, 2 as medium test performance and 3 as good test 

performance. MVC values obtained with the hand-held dynamometer was treated in the 

statistical analysis as an ordinal variable.  

The statistical software SPSS (v. 21, International Business Machines Corp, NY, 

USA) was used in the analysis. Variables in the first analysis was total FMS score for each 

participant, bilateral MVCs with legs in extended position and with knee and hip joint flexed 

to 90° and knee abduction moments from take-off and landing phases in the counter 

movement jump at baseline. Further, change (post-test – baseline) between these variables 

was analyzed. At last, baseline and change in scores from the FMS sub-tests and knee 

abduction moments from the in-jump and one-legged landing were analyzed. Descriptive 

statistics are presented as means ± standard deviation (SD). The data set was tested for 

normality using Shapiro-Wilk tests. Since FMS variables were categorical and the results 

from normality tests, Spearman’s rho (ρ) correlation test was used to analyze correlations 

between variables. T-test (2-tailed) and one-way analysis of variance were used to investigate 

differences between groups. Intraclass correlation test was used to calculate reliability of the 

hand-held dynamometer.  
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Figure 2. Pictures of the FMS tests in this study. A – D illustrates start positions of the deep 

squat, the hurdle step, the in-line lunge and the one-legged squat test, respectively. E – H 

illustrates the stop position of the screening tests in the above-mentioned order. 

 

Figure 3. Hip abduction strength test with the hand-held dynamometer. Picture A illustrates 

dynamometer placement and stabilization of participants during testing with extended leg. 

Picture B illustrates dynamometer placement and stabilization of participants during testing 

with knee and hip joint flexed to 90°. 
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Figure 4. Picture A is the start position of the counter movement jump, B illustrates start 

position on in-jump, C and D is the start position of the one-legged landing on right and left 

foot respectively. Picture E-H represents the landing positions of the jump tasks, respectively. 

Figure 5. The three first exercises in the training program. Picture A and B illustrates start and 

stop position of the Bulgarian squat with rubber bands used as medially directed resistance. C 

and D is the start and stop position of the side lying hip abduction with ankle weights used for 

extra load. E and F is start and stop position of the supine hip abduction with rubber bands 

used as resistance. In the stop position, participants held for 3 sec before returning to the start 

position. 
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H 
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Figure 6. Pictures illustrates take-off, flight and landing of the squat jump exercise in the 

training program. Rubber bands were used as medially directed resistance. 
 

 

Results 

Results from the pilot testing are presented in table 2. The test protocol demonstrated good to 

excellent reliability using a hand-held dynamometer for testing of hip abduction strength.  

 

Table 2. Intraclass correlation coefficients from pilot testing of hip abduction strength with a 

hand-held dynamometer 

 Intraclass correlation 95 % confidence interval 

Right leg extended 0.99 0.94 – 1.00 

Right leg 90° hip and knee 0.85 0.27 – 0.98 

Left leg extended 0.98 0.88 – 1.00 

Left leg 90° hip and knee  0.95 0.68 – 0.99 

 

Thirty-one participants completed both baseline and post intervention testing. Descriptive 

statistics for each group are presented in table 3. There was no significant differences between 

the intervention group and control group at baseline.  

 

Table 3. Descriptive statistics of participants   

 Intervention group (n=17) Control group (n=14) P-value 

Age, years±SD 21.7 ± 1.7 20.4 ± 2.7 0.12 

Height cm±SD 170.2 ± 4.8 172.9 ± 5.2 0.15 

Weight baseline kg±SD 73.6 ± 8.5 69.0 ± 7.0 0.12 

Weight post-test kg±SD 72.7 ± 8.7 68.5 ± 7.1 0.16 

Dominant leg, left/right 2/15 2/12 0.84 
 

Baseline  

Results from the Spearman’s rho at baseline are presented in table 4. The only significant 

association was between the total FMS score vs knee abduction moments in the take-off phase 

of the counter movement jump. These data are also presented in figure 7. 
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Table 4. Correlations between total FMS score, MVC and knee abduction moments from the 

counter movement jump at baseline 

 n Spearman’s ρ P-value 

Total FMS score vs MVC    

Left leg 90° hip and knee 31 0.14 0.48 

Right leg 90° hip and knee  31 0.13 0.49 

Left leg extended 31 0.05 0.78 

Right leg extended 31 -0.01 0.95 

 

MVC vs knee abduction moments 

   

Left leg 90° hip and knee and take-off 28 -0.04 0.85 

Left leg 90° hip and knee and landing   28 -0.34 0.08 

Right leg 90° hip and knee and take-off 27 0.01 0.98 

Right leg 90° hip and knee and landing 27 -0.06 0.74 

Left leg extended and take-off 28 -0.11 0.57 

Left leg extended and landing 28 -0.29 0.14 

Right leg extended and take-off 27 0.06 0.75 

Right leg extended and landing 27 -0.07 0.71 

    

Total FMS score vs knee abduction moments    

Take-off left leg 28 -0.48 0.01 

Take-off right leg 27 -0.42 0.03 

Landing left leg 28 -0.26 0.18 

Landing right leg 27 -0.22 0.26 

 

Further analysis revealed no significant correlations between MVC tests at baseline vs the 

scores of the FMS sub-tests, i.e. the deep squat, the hurdle step or the in-line lunge (data not 

shown). However, the score from the one-legged squat test was significantly correlated with 

the MVC at 90° hip and knee flexion in left (ρ = 0.43; p = 0.017) and right leg (ρ = 0.44; p = 

0.013). These correlations were not found for the MVC tests with leg extended (ρ = 0.27-0.31; 

p = 0.10-0.14). The MVC with leg extended was significantly correlated with knee abduction 

moments at initial contact on the in-jump task (ρ = -0.53; p = 0.005) only for the left leg. 

No correlations were found between MVC with leg extended vs knee abduction 

moments at initial contact on the one-legged landing task in either leg. MVC with 90° hip and 

knee flexion was significantly correlated with knee abduction moments at initial contact on 

the in-jump for left (ρ = -0.61; p = 0.001) and right leg (ρ= -0.61; p = 0.001). Left or right leg 

MVC with 90° hip and knee flexion was not correlated significantly with any of the other 

knee abduction moments. No significant correlations were found between the deep squat or 

hurdle step and any of the knee abduction moments. Points from the in-line lunge and knee 

abduction moments at initial contact on the one-legged landing were significantly correlated 

only on the right leg (ρ = -0.46; p = 0.02). The in-line lunge was not correlated with any of 

the other knee abduction moments. The one-legged squat test correlated significantly with the 
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left leg knee abduction moments on the in-jump (ρ = -0.39; p = 0.04). However, it was not 

correlated with the right leg or any other knee abduction moments. 

 

Figure 7. Scatterplot of total FMS score and knee abduction moments during take-off phase in 

counter movement jump at baseline. 
 

Change from baseline to post-test 

Table 5 shows results from the analysis of change between baseline and post-testing. A 

significant association between the extended right leg MVC and knee abduction moments 

from the take-off phase in counter movement jump were found. No other significant 

associations were found.  

There were no significant associations between the changes in deep squat, hurdle step, 

in-line lunge and change in MVC. Change in score on the one-legged squat test and the left 

leg MVC with knee and knee joints flexed to 90° was significantly associated (ρ = -0.37, p = 

0.04). There were no other significant associations between the one-legged squat test and the 

MVC tests. The only significant association between the change in knee abduction moments 

from the in-jump task, was a negative association between right leg knee abduction moments 

from the in-jump task and the MVC with leg extended (ρ = -0.54, p = 0.01). Correlations 

between the FMS sub-tests and knee abduction moments were mostly weak and non-

significant. However, there was a negative significant correlation (ρ = -0.49, p = 0.01) 

between change in score on the deep squat and knee abduction moments from the right leg on 

the one-legged landing task. 

 



19 

 

Table 5. Associations between change in total FMS score, MVC and knee abduction moments 

from the counter movement jump at baseline. 

 n Spearman’s ρ P–value 

Total FMS score vs MVC    

Left leg 90° hip and knee 31 - 0.34 0.06 

Right leg 90° hip and knee 31 - 0.09 0.62 

Left leg extended 31 - 0.03 0.87 

Right leg extended 31 - 0.23 0.21 

    

MVC vs knee abduction moments    

Left leg 90° hip and knee and take-off 27 0.12 0.54 

Left leg 90° hip and knee and landing   27 - 0.18 0.38 

Right leg 90° hip and knee and take-off 25 0.20 0.34 

Right leg 90° hip and knee and landing 24 0.01 0.95 

Left leg extended and take-off 27 0.04 0.86 

Left leg extended and landing 27 - 0.03 0.89 

Right leg extended and take-off 25 0.48 0.01 

Right leg extended and landing 24 0.03 0.89 

    

Total FMS score vs knee abduction moments    

Take-off left leg 27 - 0.29 0.14 

Take-off right leg 25 - 0.08 0.69 

Landing left leg 27 0.18 0.37 

Landing right leg 24 0.04 0.84 

 

Discussion 

The main findings in this study was a negative correlation between knee abduction moments 

during the take-off phase in the counter movement jump and total FMS score at baseline. 

Further, a negative correlation between MVC with 90° hip and knee flexion and knee 

abduction moments in the landing phase in the in-jump task was found at baseline. MVC with 

90° hip and knee flexion was positively correlated with the scoring of the one-legged squat 

test. All other results were either weak, non-significant correlations or they were found only 

for one of the legs. No significant associations for both legs between the different tests were 

found when analyzing results of the change between baseline and post-test.  

The negative correlation between knee abduction moments at take-off and the total 

FMS score indicates that participants with increased stability and neuromuscular control of 

the lower extremities had decreased knee valgus during take-off. However, the forces 

affecting the knee joint at take-off are lower compared to forces at initial contact. The finding 

that strength measurements with hip and knee joints flexed to 90° has a correlation with both 

knee abduction moments in the landing phase of in-jump and performance on the one-legged 

squat test is interesting. Especially since the strength measurements taken with the leg fully 
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extended was not correlated with the same variables. This may suggest that biomechanical 

demands associated with landing from an in-jump and controlling the knee and hip joint in a 

one-legged squat are similar. Furthermore, strength measurements of hip abductors taken with 

knee and hip joints flexed seem to be more relevant compared to strength measurements 

obtained with extended legs. 

The significant correlations at baseline were not found when analyzing the change 

between baseline and post-test. This can be a result of the increase in screening points and 

decreased knee abduction moments in the intervention group, and no significant changes in 

hip abductor strength. The training program conducted by the intervention group might 

therefore have led to increased stability and neuromuscular control of hip, knee and ankle 

joints. However, it was expected that the intervention group would increase hip abductor 

strength. The absence of increased strength might be a result of to low external loading or low 

compliance to the program.  

Three out of the seven original tests in the FMSTM were included in this study. In 

addition, the one-legged squat test from the Nine-test screening battery was included. These 

four tests demands neuromuscular control of muscles and joints in the lower extremities. The 

deep squat requires mobility in hip, knees and ankles and strength in flexor and extensor 

muscles of the lower extremities (27, 28). The hurdle step does not include the same mobility 

demands as the deep squat. Instead, this test is used to assess coordination and stability of the 

hip and torso as well as single leg balance (27, 28). The in-line lunge demands control over 

rotational forces and maintenance of balance and body alignment (27, 28). It is also used to 

assess quadriceps flexibility and knee joint stability (27, 28). The one-legged squat test 

provides an assessment of stability and mobility in the lower extremities, hip and core (48). 

The four other tests in the FMSTM assess rotary stability of the torso, shoulder mobility, 

hamstring mobility and sagittal plane trunk stability (26, 29). These tests were not found 

relevant to the purpose of this study and was therefore excluded from the screening procedure. 

When testing hip abductor strength with the hand-held dynamometer the “make” test 

technique was preferred over the “break” test technique in this study. This tradeoff was done 

to ensure that the strength of the participants did not overcome the strength of the tester. 

Either of the two techniques has an advantage over the other regarding reliability (40). With a 

mechanical advantage for the tester compared to the person being tested, the reliability is high 

regardless of experience with the hand-held dynamometer (44). However, comparing 

isometric strength with results from dynamic motions like screening exercises and knee 

abduction moments from different jumps might be difficult. The “break” test technique is 
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used to measure eccentric force of the muscles being tested. An eccentric dynamic test instead 

of isometric test protocol might have correlated better with knee abduction moment since the 

hip abductors are activated eccentrically when an individual attempt to resist knee valgus, 

maintain stability and control the knee and hip joint. More research is necessary to decide 

which strength measurement is most relevant for assessment of knee and hip control. 

Knee abduction moments in this study were calculated from the magnitude of the 

vertical ground reaction force and the moment arm in frontal plane. This is in accordance with 

other studies and literature, which have investigated knee abduction moments and other 

factors related to knee injuries (45-47). The correlations between total screening points and 

knee abduction moments from the take-off phase are interesting since it was expected to find 

this association at initial contact. This means that the higher forces related to landings resulted 

in higher knee abduction moments for the participants. They were not able to resist knee 

valgus at landing and therefore no associations were found between hip abductor strength, 

total FMS score and knee abduction moments at initial contact in the counter movement jump.  

At the first visit to eligible teams, all players conducted the adapted FMS test. Players 

that obtained ≥ 9 points out of 12 points were excluded and did not conduct any of the other 

baseline tests. When players with score of 9 points or more were excluded, it was supposed 

that the included participants were those with the poorest neuromuscular control of the lower 

extremities. The cut-off value of 9 points were decided out from other studies, which have 

investigated risk of injury in association with the FMSTM. Two-thirds of the total possible 

score have previously been suggested as a crucial cut-off point for increased risk of injury 

(30-32). However, with an adapted FMS procedure it cannot be certain that two-thirds of the 

total still is valid as cut-off point. Further, if players with 9 points or more were included in 

this study, stronger correlations at baseline or correlations between the change values could 

have been found. This question remains to be answered and future research should in 

particular investigate if adapted screening procedures with only lower extremity tests or upper 

body tests are associated with injuries in that specific part of the body.  

An apparent strength of this study are the high reliability of the hand-held 

dynamometer. Intraclass correlation coefficients from the pilot testing in this study were of 

similar strength as results reported in another study investigating reliability of hip abductor 

strength testing in side-lying position (38). The controlled design of this study is considered 

as a strength. The low number of teams did not allow a cluster-randomization, therefore the 

controlled design was chosen over a randomized design. If a randomized design for group 

allocation of participants had been conducted, participants in the control group could have 
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been exposed to the training program by being on the same handball team as participants in 

the intervention group. The controlled design allowed whole teams in either control or 

intervention group and thereby blinding of the control group to the training program. By using 

this controlled design there were a risk of selection bias between the two groups. However, 

there were no significant differences between the groups in either the descriptive statistics or 

mean values on test performance at baseline. Another strength of this study was the 

supervision of the training program in the intervention group. At least one of the researchers 

involved in this study was present at all training sessions conducted by the intervention group 

and could instruct all participants properly and register compliance at each session.  

There are also some limitations to this study. More reflexive markers could have been 

used during the biomechanical assessment. Especially, since some markers were masked 

when the participants performed the different jump tasks, leading to missing data on some 

participants regarding knee abduction moments. Lack of effect of the training program on hip 

abductor strength is a clear limitation of the study. In the design phase of this study, it was 

decided that it would be most effective to conduct the training program immediately after 

usual team training to maximize compliance. Low adherence to the training program, 

especially at the end of the intervention period might be a reason to the absence of change in 

hip abductor strength. A reason to this could have been large match exposure in the last weeks 

of the intervention period. This led to low attendance on usual team training sessions, which 

again influenced compliance in this study. Almost all of the training sessions in the 

intervention group were conducted immediately after the usual team training. However, a 

minority of our training sessions were conducted before intervention teams usual training. On 

these sessions, participants were given at least 30 min recovery before team training began. 

The physiotherapist who performed all screening tests at baseline and post-test were blinded 

to group allocation of the participants. Although, the physiotherapist might have remembered 

persons and screening points between baseline and post-test.  Further, many Spearman rho 

correlation tests were done in the analysis of these results. This could have led to some 

spurious correlations. Emphasis have not been paid to results were correlations on only one of 

two legs existed. Significant correlations on both legs of similar strength are more trustworthy 

than results found on only one leg. 

There were no reported injuries due to the testing procedure or the functional strength 

training program. However, the risk of delayed onset of muscular soreness as a response to 

the training program were present. The training program was conducted immediately after the 
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interventions teams finished their team training. Subjects who participated as controls were 

offered the possibility to perform the training program after post-test was completed. 

In conclusion, some correlations were found between the three testing procedures at 

baseline. The training program conducted by the intervention group increased knee control 

during screening and reduced knee valgus in take-off phase of counter movement jump and at 

initial contact of an in-jump task. However, hip abduction strength was not increased during 

the intervention period. Thus, when returning from an injury or signing on for new team 

athletes should therefore be revised to a comprehensive evaluation including different testing 

procedures, since none of the testing procedures analyzed in this study can predict outcome of 

the other procedures.  

  



24 

 

References 

1. Ladenhauf HN, Graziano J, Marx RG. Anterior cruciate ligament prevention 

strategies: are they effective in young athletes - current concepts and review of literature. Curr 

Opin Pediatr. 2013;25(1):64-71. 

2. Parkkari J, Pasanen K, Mattila VM, Kannus P, Rimpela A. The risk for a cruciate 

ligament injury of the knee in adolescents and young adults: a population-based cohort study 

of 46 500 people with a 9 year follow-up. Br J Sports Med. 2008;42(6):422-6. 

3. de Loes M, Dahlstedt LJ, Thomee R. A 7-year study on risks and costs of knee injuries 

in male and female youth participants in 12 sports. Scand J Med Sci Sports. 2000;10(2):90-7. 

4. Seil R, Rupp S, Tempelhof S, Kohn D. Sports injuries in team handball. A one-year 

prospective study of sixteen men's senior teams of a superior nonprofessional level. Am J 

Sports Med. 1998;26(5):681-7. 

5. Renstrom P, Ljungqvist A, Arendt E, Beynnon B, Fukubayashi T, Garrett W, et al. 

Non-contact ACL injuries in female athletes: an International Olympic Committee current 

concepts statement. Br J Sports Med. 2008;42(6):394-412. 

6. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, et al. 

Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the 

Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):1512-32. 

7. Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K. A meta-analysis of the incidence 

of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction 

regimen. Arthroscopy. 2007;23(12):1320-5.e6. 

8. Arendt E, Dick R. Knee injury patterns among men and women in collegiate 

basketball and soccer. NCAA data and review of literature. Am J Sports Med. 

1995;23(6):694-701. 

9. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, et al. 

Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: 

Mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc. 

2009;17(7):705-29. 

10. Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: 

Part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299-311. 

11. Huston LJ, Greenfield ML, Wojtys EM. Anterior cruciate ligament injuries in the 

female athlete. Potential risk factors. Clin Orthop Relat Res. 2000(372):50-63. 

12. Murphy DF, Connolly DA, Beynnon BD. Risk factors for lower extremity injury: a 

review of the literature. Br J Sports Med. 2003;37(1):13-29. 



25 

 

13. Toth AP, Cordasco FA. Anterior cruciate ligament injuries in the female athlete. J 

Gend Specif Med. 2001;4(4):25-34. 

14. Boden BP, Dean GS, Feagin JA, Jr., Garrett WE, Jr. Mechanisms of anterior cruciate 

ligament injury. Orthopedics. 2000;23(6):573-8. 

15. McNair PJ, Marshall RN, Matheson JA. Important features associated with acute 

anterior cruciate ligament injury. N Z Med J. 1990;103(901):537-9. 

16. Koga H, Nakamae A, Shima Y, Iwasa J, Myklebust G, Engebretsen L, et al. 

Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 

injury situations from female team handball and basketball. Am J Sports Med. 

2010;38(11):2218-25. 

17. Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior 

cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 

2004;32(4):1002-12. 

18. Emery CA, Meeuwisse WH. The effectiveness of a neuromuscular prevention strategy 

to reduce injuries in youth soccer: a cluster-randomised controlled trial. Br J Sports Med. 

2010;44(8):555-62. 

19. Gilchrist J, Mandelbaum BR, Melancon H, Ryan GW, Silvers HJ, Griffin LY, et al. A 

randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female 

collegiate soccer players. Am J Sports Med. 2008;36(8):1476-83. 

20. Hagglund M, Atroshi I, Wagner P, Walden M. Superior compliance with a 

neuromuscular training programme is associated with fewer ACL injuries and fewer acute 

knee injuries in female adolescent football players: secondary analysis of an RCT. Br J Sports 

Med. 2013;47(15):974-9. 

21. Kiani A, Hellquist E, Ahlqvist K, Gedeborg R, Michaelsson K, Byberg L. Prevention 

of soccer-related knee injuries in teenaged girls. Arch Intern Med. 2010;170(1):43-9. 

22. Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, et al. 

Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior 

cruciate ligament injuries in female athletes - 2-year follow-up. Am J Sports Med. 

2005;33(7):1003-10. 

23. Soligard T, Myklebust G, Steffen K, Holme I, Silvers H, Bizzini M, et al. 

Comprehensive warm-up programme to prevent injuries in young female footballers: cluster 

randomised controlled trial. BMJ. 2008;337:a2469. 

24. Steffen K, Myklebust G, Olsen OE, Holme I, Bahr R. Preventing injuries in female 

youth football--a cluster-randomized controlled trial. Scand J Med Sci Sports. 

2008;18(5):605-14. 



26 

 

25. Walden M, Atroshi I, Magnusson H, Wagner P, Hagglund M. Prevention of acute 

knee injuries in adolescent female football players: cluster randomised controlled trial. BMJ. 

2012;344:e3042. 

26. Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of 

fundamental movements as an assessment of function - part 2. N Am J Sports Phys Ther. 

2006;1(3):132-9. 

27. Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of 

fundamental movements as an assessment of function - part 1. N Am J Sports Phys Ther. 

2006;1(2):62-72. 

28. Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the 

use of fundamental movements as an assessment of function - part 1. Int J Sports Phys Ther. 

2014;9(3):396-409. 

29. Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the 

use of fundamental movements as an assessment of function-part 2. Int J Sports Phys Ther. 

2014;9(4):549-63. 

30. Kiesel K, Plisky PJ, Voight ML. Can Serious Injury in Professional Football be 

Predicted by a Preseason Functional Movement Screen? N Am J Sports Phys Ther. 

2007;2(3):147-58. 

31. O'Connor FG, Deuster PA, Davis J, Pappas CG, Knapik JJ. Functional movement 

screening: predicting injuries in officer candidates. Med Sci Sports Exerc. 2011;43(12):2224-

30. 

32. Chorba RS, Chorba DJ, Bouillon LE, Overmyer CA, Landis JA. Use of a functional 

movement screening tool to determine injury risk in female collegiate athletes. N Am J Sports 

Phys Ther. 2010;5(2):47-54. 

33. Gribble PA, Brigle J, Pietrosimone BG, Pfile KR, Webster KA. Intrarater reliability of 

the functional movement screen. J Strength Cond Res. 2013;27(4):978-81. 

34. Smith CA, Chimera NJ, Wright NJ, Warren M. Interrater and intrarater reliability of 

the functional movement screen. J Strength Cond Res. 2013;27(4):982-7. 

35. Bohannon RW. Adoption of hand-held dynamometry. Percept Mot Skills. 

2001;92(1):150. 

36. Bohannon RW. Research incorporating hand-held dynamometry: publication trends 

since 1948. Percept Mot Skills. 1998;86(3 Pt 2):1177-8. 

37. Hebert LJ, Maltais DB, Lepage C, Saulnier J, Crete M, Perron M. Isometric muscle 

strength in youth assessed by hand-held dynamometry: a feasibility, reliability, and validity 

study. Pediatr Phys Ther. 2011;23(3):289-99. 



27 

 

38. Thorborg K, Petersen J, Magnusson SP, Holmich P. Clinical assessment of hip 

strength using a hand-held dynamometer is reliable. Scand J Med Sci Sports. 2010;20(3):493-

501. 

39. Wang CY, Olson SL, Protas EJ. Test-retest strength reliability: hand-held 

dynamometry in community-dwelling elderly fallers. Arch Phys Med Rehabil. 

2002;83(6):811-5. 

40. Bohannon RW. Make tests and break tests of elbow flexor muscle strength. Phys Ther. 

1988;68(2):193-4. 

41. Schmidt J, Iverson J, Brown S, Thompson PA. Comparative reliability of the make 

and break tests for hip abduction assessment. Physiother Theory Pract. 2013;29(8):648-57. 

42. Rowe J, Shafer L, Kelley K, West N, Dunning T, Smith R, et al. Hip strength and knee 

pain in females. N Am J Sports Phys Ther. 2007;2(3):164-9. 

43. Homan KJ, Norcross MF, Goerger BM, Prentice WE, Blackburn JT. The influence of 

hip strength on gluteal activity and lower extremity kinematics. J Electromyogr Kinesiol. 

2013;23(2):411-5. 

44. Kelln BM, McKeon PO, Gontkof LM, Hertel J. Hand-held dynamometry: reliability of 

lower extremity muscle testing in healthy, physically active,young adults. J Sport Rehabil. 

2008;17(2):160-70. 

45. Kristianslund E, Faul O, Bahr R, Myklebust G, Krosshaug T. Sidestep cutting 

technique and knee abduction loading: implications for ACL prevention exercises. Br J Sports 

Med. 2014;48(9):779-83. 

46. Myer GD, Ford KR, Khoury J, Succop P, Hewett TE. Biomechanics laboratory-based 

prediction algorithm to identify female athletes with high knee loads that increase risk of ACL 

injury. Br J Sports Med. 2011;45(4):245-52. 

47. Hewett TE, Myer GD, Ford KR, Heidt RS, Jr., Colosimo AJ, McLean SG, et al. 

Biomechanical measures of neuromuscular control and valgus loading of the knee predict 

anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports 

Med. 2005;33(4):492-501. 

48. Frohm A, Heijne A, Kowalski J, Svensson P, Myklebust G. A nine-test screening 

battery for athletes: a reliability study. Scand J Med Sci Sports. 2012;22(3):306-15. 

  

 


