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Abstract

Automatic License Plate Recognition (ALPR) is a technology that might play a big-
ger part in our everyday lives than we realize. It is the reason we can now pay for
parking using an app and no longer need a parking receipt when parking at the
local shopping center. The reason for all this is the fact that mobile devices have
become increasingly powerful, and our technologies more efficient. These tech-
nological advances make ALPR more accessible than ever. One of the questions
answered in this paper is how accessible has this become? In this research project,
a series of experiments are performed using open-source ALPR implementations
on mobile and less mobile devices in order to find out how well they perform.
The results show that mobile devices costing $50 USD perform ALPR well enough
to be a viable option for a small-scale ALPR system. As part of our experiments,
we look at the efficiency of these devices and show that mobile devices are both
more cost-effective and power-efficient for ALPR than their more powerful coun-
terparts. Another question we answer is why ALPR sometimes fails.

We create our own dataset, adhering to privacy regulations, as well as testing
that the ALPR implementations used in this project have the potential for being
used in a privacy-friendly manner.
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Sammendrag

Automatisk Bilskiltgjennkjenning ALPR er en teknologi som spiller en større del
i hverdagen vår enn vi kanskje tror. Det er grunnen til av vi kan betale for park-
ering med en app, slipper å ta parkeringsbillett når vi parkerer ved det lokale
kjøpesenteret. Grunnen til dette er at mobile enheter har blitt stadig kraftigere,
og teknologiene mer effektive. Disse teknologiske fremskrittene har gjort ALPR
mer tilgjengelig enn noen sinne. En av spørsmålene stilt i denne oppgaven er hvor
tilgjengelig har det blitt? I dette forskningsprosjektet utfører vi en series med ek-
sperimenter med bruk av tre ALPR implementasjoner på mobile- og mindre mobile
enheter for å finne ut hvor bra disse yter. Resultatene viser at mobile enheter som
koster 50 amerikanske dollar utfører ALPR godt nok til å være en god kandidat for
små-skala ALPR systemer. Som del av eksperimentene våre ser vi på effektiviteten
til disse enhetene, og viser at mobile enheter både er mer kostnadseffektive og
mer energieffektive enn større enheter. Et annet spørsmål vi svarer på er hvorfor
ALPR innimellom feiler.

Vi har også laget vårt eget datasett, som følger personvernsreglement, i tillegg
til å teste om ALPR implementasjonene brukt i prosjektet har potensiale for å bli
brukt på en personvernsvennlig måte.
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Chapter 1

Introduction

Automated reading of license plate contents from images is a technology that
has been around since 1976 [1], and ever since, the technology has gotten better,
faster, and more portable. This project regards the topic of Automatic License Plate
Recognition using low-power, portable devices. The background for this topic
is the feasibility and performance of mobile low-power devices for such a task
while also maintaining compliance with Norway’s privacy laws. Portable mini-
computers and mobile devices are becoming cheap and available to most people,
allowing hobbyists and enthusiasts to develop solutions for their projects. ALPR
implementations are commonly used by businesses and city services. Some typical

Figure 1.1: ALPR detection example. Anonymized.

uses for mobile ALPR systems are toll systems on private roads, vehicle scanning
by parking attendants, or police searching for specific vehicles or looking up in-
formation on one. In Norway, ALPR has also become more prevalent on ferries,
and the Norwegian Public Roads Administration utilize ALPR in section speed con-

1



2 E. Einmo: ALPR Performance on Mobile Devices

trol [2]. One of the features that make tiny computing devices like the Raspberry
Pi the most interesting is the possibility for all sorts of add-ons and modifications
supported by the devices. For example, powering the device off solar power and
a battery in the middle of the woods where no power infrastructure is available.
Such devices can also be fitted with mobile-data connections to provide network
connectivity where this is needed.

ALPR solutions often incorporate machine learning algorithms to identify ob-
jects, such as vehicles and license plates, and read the actual characters of the
license plate. How quickly the plate needs to be recognized depends heavily on
the use case of the implementation. Implementations where police want on-the-fly
information, a toll gate where the plate needs processing before opening, or any
implementation where the volume of vehicles is high, are examples where rapid
processing will be of higher importance. While for example, a system at a toll road
that sends invoices after the fact allows for slower processing times, as the invoice
is not sent until the next day. Precision is another metric that will have varying
importance. However, reading the correct plate is essential in many implement-
ations, as reading the actual plate in an automated fashion is the entire point of
having an ALPR system. Correct detection is crucial in cases where money is in-
volved. These two parameters, speed and precision are influenced by a few factors.
The first one is hardware. The device used to perform the needed calculations is
a significant factor in how long the process will take. A more powerful device will
naturally be able to process more data quicker and therefore perform the task
quicker. Another factor is the algorithms and methods being used to perform each
of the actions of the ALPR. More efficient algorithms will perform quicker and
more precisely, which is especially important for low-power devices.

A faster method will typically have lower precision and vice versa; therefore,
a trade-off between speed and accuracy is the reality. Having powerful hardware
and efficient algorithms and methods will allow better flexibility regarding the
trade-off between speed and precision.

1.1 Keywords

Automatic License Plate Recognition, ALPR, Automatic Number Plate Recognition,
ANPR, License Plate Recognition, LPR, Raspberry Pi, NVIDIA Jetson, Computer
Vision, Machine Learning, Portable Devices, Optical Character Recognition, OCR,
Privacy, License Plate, Image Resolution, Image Resolution Performance, ALPR
Performance, Mobile Device Performance, Power Efficiency, Price to Performance.

1.2 Problem Description

Complete automatic license plate recognition systems are too expensive for cer-
tain implementations. These are the systems one can find at entries to parking lots
and similar commercial implementations. Such implementations often come with
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multiple cameras utilizing ALPR, for example, to bill parked vehicles automat-
ically. In situations where you want a remote implementation, having a power-
efficient device might be more important. Nevertheless, with computing techno-
logy becoming smaller and more efficient, mobile platforms like the Raspberry Pi,
NVIDIA Jetson, and smartphones are becoming powerful. This increase in com-
puting performance for relatively cheap and portable devices means that they be-
come capable of increasingly computationally complex tasks. The question, then,
is whether these devices have reached a point where they can effectively be used
to perform machine learning and other relevant processing well enough to per-
form ALPR?

As ALPR implementations require imaging and computer vision to function,
cameras and image parameters/attributes can affect performance. Creating a cus-
tom dataset will allow for more images to test on. A bonus is control over cameras
used, image parameters, and attributes.

1.3 Privacy Considerations

With the introduction of GDPR, Norwegian and EU laws are strict regarding per-
sonal information and, by extension, the processing of license plates [3][4], ALPR
in these regions needs to be performed in a privacy-friendly manner. Using on-
line ALPR solutions introduces a variable in the form of sending information to
a third party. Therefore, the security and privacy of the data are outside of the
control of the person using the solution. A serious company responsible for pri-
vacy might also be regarded as a positive; however, in cases where one wants to
ensure that privacy and security are upheld, it is an uncontrollable variable. Hav-
ing an implementation running locally on a device can allow for the creation of
privacy-friendly solutions around that ALPR software.

With the processing of personal information being so strict, this also applies
to the research in this project. Therefore, all processing and data collection is per-
formed in accordance with Norwegian Centre for Research Data (NSD) guidelines.
Any example images used in this thesis are included with consent from the vehicle
owner.

1.4 Justification, Motivation, and Benefits

With the various device types that can be used for ALPR implementations, find-
ing the one that performs within the required performance parameters for imple-
mentation can be difficult. Having comparable performance metrics for different
hardware as well as open-source implementations can aid in finding the most
cost-effective solution for the task at hand. Mobile devices are low-powered and
can easily be powered using batteries, making them even more portable. Power
consumption and efficiency are also factors for these kinds of applications.
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With this information, people looking to create an ALPR system can utilize this
resource to help decide what suits their needs.

1.5 Research Questions

To concretize the project’s main goals, the research questions and accompanying
sub-questions are listed below.

• 1. How well does mobile hardware like the Raspberry Pi and NVIDIA Jetson
perform with an ALPR implementation?

1a) How well do they compare to more powerful devices like laptops
and desktops?

1b) What platform delivers the best price to performance ratio?
1c) How well do the open-source implementations perform?

1c.1) Are the open-source implementations privacy-friendly?
• 2. What physical and technical factors stand out with regards to affecting

performance?
2a) How much do image parameters like image resolution affect ALPR

performance?

1.6 Contributions

This section will highlight a list of this project and the thesis’ contributions.

Comparative Performance

Directly comparable performance metrics for mobile, low-power devices, showing
the capabilities of such devices. With benchmark performance metrics from more
common, relatively high-powered devices. In addition to comparable performance
of different ALPR software implementations, and information about implementa-
tion of these on various platforms.

Factors Affecting Performance

An investigation into various technical and physical factors that affect the per-
formance of ALPR. Helping put forward what factors should be considered and
mitigated when setting up an ALPR system.

Dataset

A custom dataset is created, with detailed information about the contents and
annotation.
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Privacy Consideration

Privacy considerations in multiple contexts. First, directly for ALPR implementa-
tions and their handling of data. And secondly, considering European and Nor-
wegian regulations surrounding license plates as personal data, and the obstacles
this entails regarding research projects.

Efficient Solutions

Matching the performance of devices to price and energy consumption, tying res-
ults regarding price-to-performance. This information can help choose economic-
ally responsible and sustainable choices when planning an ALPR system.

1.7 Thesis Structure

The thesis follows a slightly expanded IMRaD structure, with an introduction,
background, methodology, experiment, results, discussion, and conclusion chapters.
The modifications give a more natural segmentation to the project’s presentation
and prevent chapters from dragging on forever. Chapter 1 contains the introduc-
tion, which introduces the topic as well as the reason for and goals of the project.
Chapter 2 presents background information on the topic. The processes and tech-
nologies used in ALPR are introduced, alongside some existing work related to
the topic of ALPR on Mobile Devices. Chapter 3 presents the broad methodology
utilized to answer the research questions for the project. Chapter 4 continues sim-
ilarly with the experimentation and experimental setup used in the project. This
section presents the technical details behind the technologies and devices used in
the project and the implementation process of the ALPR software solutions. Also
presented in this section is the experimentation process and result analysis. We
created this process to gather scientifically sound results, metrics, and datasets.

Chapter 5 relates to the results gathered during the project, and the analysis
and discussion of these. The chapter starts with broad and more general results,
presented using graphs, tables and figures to present and compare data in an
easily understandable and visual manner. After this introduction, the chapter fo-
cuses on narrower topics, with more specific comparisons and analysis of data
obtained from the experiments. This is where one can find common reasons for
failed detections and further investigation of the impact of image resolution on
ALPR performance.

Chapter 6 is the discussion chapter. Here, the process of the project as a whole
and the various parts of the project are discussed. Finally, chapter 7, where con-
clusions for the thesis and project are drawn, and suggestions for future work are
presented.

Extra content and resources are appended to the end of the thesis, in the ap-
pendix.





Chapter 2

Background/Technology

2.1 Automatic License Plate Recognition

Automatic License Plate Recognition (ALPR) is the process of utilizing computer
vision to read the contents of a license plate. ALPR appears under a few differ-
ent names; LPR (License Plate Recognition) and ANPR (Automatic Number Plate
Recognition) are a few commonly encountered. This chapter presents the typical
ALPR process and information about the steps involved in turning an image of a
license plate into characters in a file.

2.1.1 ALPR Process

ALPR implementations are not all precisely the same; there are some variations
to the process depending on the implementation. Some steps appear in most, if
not all, implementations. Naturally, some steps are required to finish the task at
hand. The two most prominent parts of the process are license plate detection and
Optical Character Recognition. These two processes detect where the license plate
is in the image and read the characters off it. Accompanying these can be various
stages of pre-processing, character segmentation, and post-processing steps. As
the ALPR process requires multiple steps, the process typically follows a pipeline
containing each step of the process. A general ALPR pipeline can be seen in figure
2.1.

Pre-processing License plate
detection/isolation

Input: Image/
video frame

Mid-processing Optical Character
Recognition Post-processing

Figure 2.1: ALPR Pipeline visualized. Dashed boxes are optional steps.

7
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2.1.2 Pre-processing

The pre-processing serves to simplify the rest of the steps of the pipeline. Image
modifications can be part of the pre-processing. For example, downscaling the
input image in order to speed up processing. Another example is vehicle detection
and segmentation, which ALPR-Unconstrained utilizes. This process detects all
supported vehicles in the image, segments the part of the image that contains the
vehicle, and sends just that portion of the image to the next step of the process.

2.1.3 License Plate Detection

License plate detection is one of the fundamental steps in any successful ALPR im-
plementation. While it, in theory, is possible to apply OCR to an image without any
pre-processing, this is quite likely to encounter a whole host of false detections.

There are a few various approaches to finding license plates in an image, but
typically an algorithm or neural network models are utilized to look for the dis-
tinct shape of license plates. OpenALPR utilizes the Local Binary Patterns (LBP)
algorithm to locate potential license plates [5]. ALPR-Unconstrained utilizes ma-
chine learning in the form of a Convolutional Neural Network (CNN). More spe-
cifically, a network called Warped Planar Object Detection Network, designed to
detect license plates on warped surfaces [6].

2.1.4 Mid-Processing

Some implementations apply processing between the detection of the license plate
and OCR. These steps typically aim to improve OCR performance by processing
the license plate area to make it as easy as possible for the OCR.

False-Positive Detection

One of the mid-processing steps that can be applied is a check to see whether
the detected license plate area actually is a license plate. OpenALPR does this by
performing binarization on the image, which turns the color data in the affected
area to binary, or in other words, black and white. The next step applied is a
character analysis, where the binarized image is scanned for potential license plate
characters [5]. If none are found, the plate is discarded, which saves processing
time by not processing false detections later in the process.

Plate Realignment

One of these steps, utilized in one way or another by all three implementations
in this project, is "deskew" or plate realignment. Plate realignment is the process
of aligning license plates with the image plane, removing skew if the license plate
is at an angle. The CNN used for license plate detection in ALPR-Unconstrained
incorporates this step in the detection process, as the WPOD-NET model applies
a transformation to the detected license plate just after detection [6].
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OpenALPR performs edge detection to find the edges of the license plate before
re-aligning the license plate [5].

Character Segmentation

Character segmentation is the process of detecting and isolating each individual
character. This process can also be implemented as part of the OCR, as it im-
proves the performance of OCR. The character segmentation utilized in ALPR-
Unconstrained is part of the Optical Character Recognition, using a modified You
Only Look Once (YOLO) object detection system [6].

A common way of performing character segmentation is utilizing vertical his-
tograms along the detected plate area. OpenALPR utilizes this method for charac-
ter segmentation [5]. This projection shows which portions of the area contain the
most features/objects. Prior to utilizing histogram object detection, applying pre-
processing to the license plate can increase performance, especially in challenging
scenarios like noisy images [7].

2.1.5 Optical Character Recognition

Optical Character Recognition (OCR) is the process of utilizing computer vision
to read characters from an image. In the case of ALPR, it is typically done util-
izing machine learning algorithms to determine what characters are most likely
matches for the characters on the given image. A rudimentary approach to OCR
is template matching [8]. This approach uses character segmentation and then
attempts OCR on these segments by comparing the segment area with a set of
character templates. The character template with the highest likeness gets chosen
as the likely correct character.

Another method for OCR is using Extracted Features [9]. This method is typic-
ally faster, as it only focuses on the pixels of features within a segment. According
to research by Lubna et al., implementations utilize Support Vector Machines for
character detections using this method [9].

A common OCR method for open-source software is to use the open-source lib-
rary Tesseract-OCR [10]. Tesseract was created by Hewlett-Packard Laboratories
and has since been developed by various companies, including Google from 2006
to 2018. Different versions of Tesseract utilize various methods for OCR. Tesseract
4 utilizes Long Short-Term Memory neural net and a focus on line recognition for
OCR [10].

The combination of the characters with the highest confidence are combined
and presented as the result. The exception is if there is post-processing applied.

2.1.6 Post-Processing

Applying post-processing to results can help choose the correct plate by analyzing
multiple alternatives for the correct solution. Post-processing in ALPR is essentially
the sorting and choosing of the correctly detected license plate.
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Confidence Checking

A simple form of post-processing is comparing the confidence of each of the presen-
ted results and choosing the result provided with the highest confidence. For solu-
tions where a single license plate is required, like for a parking attendant, applying
confidence checks for vehicle detection as well can increase the chances the right
vehicle gets chosen, as vehicles further back in the image will typically return
smaller confidence. While suggestions with high confidence are chosen, sugges-
tions with low confidence levels can be discarded. This sort of post-processing
is implemented by OpenALPR, where the desired number of detections with the
highest confidence can be returned to the user [5].

Pattern Matching

Pattern matching is a post-processing step where license plate formats are utilized
to choose likely correct detections. OpenALPR has this type of post-processing as
an optional step [11]. Pattern matching utilizes knowledge about the character
pattern of license plates that are likely to be encountered. For example, an imple-
mentation utilizing this in Norway would look for the pattern for standard Norwe-
gian license plates of two letters followed by five numbers. If any of the proposed
detections match this pattern, they can be prioritized. Personalized plates could
potentially break with this pattern and lead to problems with this post-processing
method. This type of post-processing was applied by S. T. H. Rizvi et al., using the
format of Italian plates, resulting in a full plate accuracy increase of 13 percent
[12].

2.1.7 Factors Affecting ALPR

P. Mukhija et al. have surveyed the topic of factors affecting license plate recogni-
tion. They provide a list of challenges relating to ALPR from an Indian standpoint
[13]. P. Mukhija et al.’s research provide a list of external and internal challenges to
the ALPR process. External factors like damaged license plates, obstructed license
plates, and lighting conditions. And internal factors like hardware and image res-
olution.

2.1.8 ALPR Pipeline for OpenALPR

The pipeline for one of the software implementations used in this project in its
default state can be seen in figure 2.2. In the figure, we can see how there are five
steps of mid-processing applied and a single post-processing step.

2.2 ALPR Performance on Mobile Devices

Previous research exists on the topic of Automatic License Plate Recognition on
mobile devices. Publications relevant to the topic of this project are presented
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Input: Image/
video frame

License plate
detection/isolation
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Binarization Char
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Plate Edge
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Optical Character
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Output: License
Plate Prediction
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Confidence

Sort

Figure 2.2: ALPR Process pipeline utilized by OpenALPR.

here.
A master thesis written at NTNU related to the topic was published in 2017. In

that thesis, the researcher Peter K. Ringset created an ALPR implementation for an
iPhone 5 [14]. That project achieved an accuracy of up to 87%, with a processing
time of only 50ms.

Another implementation on the Android platform from 2016 achieved 96-98%
detection accuracy, with processing times of around half a second [15].

S. Fakhar A G et al. created an implementation for the previous generation
of the Raspberry Pi, the 3B. Their implementation resulted in an 85% successful
recognition rate, with image-processing times of up to three seconds [16].

S. T. H. Rizvi, et al. performed tests on GPU-equipped mobile platforms with a
custom ALPR implementation on Italian license plates [12]. They applied model-
simplification for the mobile platforms, resulting in quick ALPR detections of 492
ms for the NVIDIA Jetson TX1, and approximately 550 ms for the Nvidia Shield
K1 tablet.





Chapter 3

Methodology

3.1 Literary/Resource Research

While the brunt of the literary research for the project was conducted during the
pre-project planning stage, there is always the potential for more useful inform-
ation to be found. The main portion of the research conducted in the pre-project
was searching for potential ALPR-implementations and learning about various
methods utilized to perform ALPR. During the project, we will gain more know-
ledge on the topic and can therefore use this knowledge to perform better searches
for relevant information. A secondary objective for this part of the methodology
is the potential of finding more potential open-source ALPR software that can be
implemented and experimented on during this project. Literary research in itself
is a minor part of the project.

The research process will be ongoing as we learn about new technologies,
techniques, and other information encountered during the project. This research
will be conducted by doing keyword searches for specific topics and technologies
to obtain more information.

3.2 Experimentation

In order to answer the research questions for this project, a series of practical
experiments will be performed. These tests will attempt to answer the questions
by performing ALPR using mobile devices and measuring their quantitative per-
formance. The same tests will also be run on more powerful devices that are less
mobile, where performance results will be used as a comparative benchmark. Dif-
ferent software solutions will be implemented and tested on as many devices as
possible to test their performance and versatility and to confirm whether such
open-source software can be run in a privacy-friendly manner. Three software im-
plementations, all available on GitHub, were chosen for the project. UltimateALPR
[17], OpenALPR [18], and ALPR-Unconstrained [19]. Implementing all three soft-
ware implementations on as many devices as possible allows us to gather a large

13
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number of data points from many experiment variations.
Experiments are conducted according to a pre-defined process. This process

ensures that the data collected is as similar as possible across all devices and soft-
ware implementations and eliminates potential third variables that can influence
the results. Detailed information about the experimentation and setup used can
be found in chapter 4.

3.2.1 Privacy / Offline Capability

In order to test whether the various implementations can operate in a privacy-
friendly manner, the capabilities for offline computation will be tested. This test
will be conducted by performing ALPR on devices with their internet connectivity
disabled. These tests will ensure that the devices can perform the entire process
on the device without sending data elsewhere.

3.2.2 Metrics

Two categories of metrics are measured to evaluate the performance of each of the
implementations. These categories are accuracy and speed. The most important
metrics will be the accuracy metric of correctly identified plates, as well as the
time taken to get that result. Each measurement is made for each dataset on each
device, using each implementation.

Accuracy

For this project, the measurement of accuracy is done in multiple ways, as there
are several different stages of the ALPR process that can be interesting to look
at with regard to accuracy performance. Each of the metrics used to measure
accuracy can be found listed below.

• Plate Recognition Rate
Plates recognized entirely correctly.
Also referred to as "Correct Plates" (Corr. Plates)

• Plate Detection Rate
Images where a plate was found at all.

• Character Recognition Rate
Characters correctly recognized, where plates were recognized.

Calculation The calculation of plate recognition rate can be seen in formula 3.1.

|CorrectPlates|
|DS|

∗ 100 (3.1)

Calculating license plate detection rate uses the count of images where one or
more license plates were detected and dividing that by the total number of images
across all the datasets. The equation used can be seen in equation 3.2.
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|Detect ions|
|DS|

∗ 100 (3.2)

Calculation of character recognition rate uses equation shown in equation 3.3.
The number of correct characters is divided by the total number of characters on
detected plates.

|CorrectCharacters|
|DetectedCharacters|

∗ 100 (3.3)

Speed

Speed is measured using timing. This metric looks at the time elapsed between
the time an action has started and ended. The actions measured for this project
were the time taken for the entire loading and detection of each dataset, initiation
of the ALPR engine, and time taken for each detection.

Engine initiation is measured to see the time taken for the engine to load
on the devices. Timing of the entire dataset includes the initiation of the ALPR
implementation, loading and detection of each image, and writing the resulting
plates to the output file. For each individual plate, the time includes the time from
a plate is presented to the program, and a result is written to a variable.

• Init Time
Time taken for the engine to initialize (where applicable).

• Detection Time
Time taken for a plate to be detected and read.

• Total Time
Total time taken for detection of an entire dataset.

Information on how the timing is implemented in code is located in section
4.3.4.

Calculation

Detection Time is the average of all detections across a dataset. Average detection
time is calculated differently, depending on the implementation. Calculations are
either made using a python function or a spreadsheet; more information about
this in section 4.6.1 in the next chapter.

For UltimateALPR and OpenALPR, we have access to the time for each plate
detection and gather a list of these. We can calculate the average value with for-
mula 3.4, where T is the set (list) of all detection times t.

|T |
∑

i=1
t i

|DS|
(3.4)
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We do not have access to the detection time for each detection made with
ALPR-Unconstrained, as it processes the entire dataset for each step of the pro-
cess before moving to the next. However, we can calculate an average detection
time using the total time taken for detecting all images in the entire dataset. The
calculation can be seen in formula 3.5

TotalT ime
|DS|

(3.5)

3.2.3 Secondary Experiment

A secondary experiment was conducted using resized versions of the custom data-
set. The reason for this was to help answer the research question regarding resol-
ution and its impact on ALPR performance. While the custom dataset and Olavs-
plates datasets contain images of different resolutions, there are also several other
factors different between these images. Performing secondary tests using resized
datasets allows us to control these third variables. More information about how
this experiment was conducted can be found in section 4.5.2.

3.3 Data Collection

Data collection, in this case, is the collection of datasets of images containing
vehicles with license plates visible. Despite all implementations used in the pro-
ject coming with pre-trained models, a dataset is still needed to benchmark the
implementations. Datasets consisting of vehicles with visible license plates in vari-
ous conditions are desirable. The focus of this project is the use of ALPR in Norway,
which makes Norwegian license plates the focus. EU plates are also relevant, as en-
countering vehicles from other EU and Schengen countries are not unlikely. Plates
from most countries in the EU/Schengen area are pretty similar, likely making the
models transferable.

While there exist datasets of EU plates online, they are not typically easy to
acquire. We contacted the owners/holders of several datasets that were seem-
ingly available. However, they were not allowed to share these due to privacy
concerns. License plate numbers in the EU are regarded as personal information
under GDPR, making sharing such information troublesome [3][4]. Thus, we will
create our own dataset to test the implementations further. Creating a custom
dataset will also allow us to create more edge-case scenarios to compare the im-
plementations on more grounds than simply accuracy and speed. Further, we can
control the images to be taken in a particular manner, at certain times of day, and
with the potential for different weather conditions.
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3.4 Result Analysis

After conducting the experiments and gathering the results, these results need to
be analyzed. The results are to be collected in a spreadsheet to allow for calcu-
lations, comparisons, and other analyses to be conducted visually and practically.
The spreadsheet will be standardized across devices, at least as far as practic-
ally possible. An example collection of runs from the spreadsheet can be found
in appendix A.1.3 Having this standardization allows for consistent comparisons
between the experiments with all the various combinations.

The data analysis will compare quantitative results in the form of time meas-
urements for speed and various rates of correct detections for accuracy. We can
look at common factors in incorrect or failed detections by examining the im-
ages where ALPR did not give a correct result. This examination of images can
help uncover which license plate types fail most commonly, characters being mis-
interpreted. The analysis is the part of the project where most of the research
questions will be answered. Here we will find answers to which physical and tech-
nical factors affect ALPR performance and all performance comparisons between
devices. Further information about how the analysis is performed can be seen in
section 4.6.





Chapter 4

Experimentation and
Experimental Setup

In order to answer the research questions, complex experiments using various
devices, cameras, software implementations, and datasets are conducted. These
experiments and the setup behind these will be presented in this chapter.

4.1 Environments

All implementations are run on various Linux interactions. The two mobile devices
run native Linux distributions, while the desktop and laptop utilize Windows Sub-
system for Linux (WSL) to run Ubuntu 18.04 virtualized on top of Windows 10.

The scripts used to test the implementations for this project are programmed
using Python. While consisting of python scripts, ALPR-Unconstrained is run by
calling a bash-script. This script calls each of the processes’ scripts and sends data
along to the next step using this bash script. Python is not the fastest programming
language, but it makes the implementation process the quickest for the sake of the
project and researcher. As all implementations are implemented using Python,
the results are still comparable with one another. Faster results could likely be
achieved using more low-level languages like C.

The scripts are called either directly through the terminal or using an SSH
connection in order to limit unnecessary resource usage.

4.2 Devices

Choosing devices for performance testing was done according to a few criteria.
The project’s focus is mobile devices, which is a rather extensive category of
devices. Varying performance and price points are desirable. Cost and accessib-
ility are also factors, especially due to the large semiconductor shortage plaguing
the world for the last year [20].

19
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With the impressive performance of modern mobile devices, even running ma-
chine learning tasks has become quite feasible. This goes for both devices that only
have a CPU present, but perhaps even more prominently GPU-enabled devices.
This section presents the devices used in this project.

4.2.1 Mobile Devices

Some of the large appeal of these mobile devices is their low power consumption
and the large number of possibilities for add-ons and modifications. There is a
whole host of add-ons by third parties and even the Raspberry Pi Foundation. On
their site, a wide variety of add-ons are available for purchase, like Raspberry Pi
Camera modules, a Touch display, and Power-over-Ethernet add-ons, to mention
a few [21]. These and other third-party products and a wide variety of sensors
and other devices can be connected to the Raspberry Pi and NVIDIA Jetson via the
General-Purpose Input/Output interface. The GPIO supports a variety of interface
options [22][23]. In addition to GPIO, the pinouts on the boards include power
delivery for both 3.3V and 5V, making powering external add-ons and devices
easily accessible.

Raspberry Pi 4B

The Raspberry Pi is a tiny, USB-powered, single-board computer with a footprint
approximately the size of a credit card. Featured on the Raspberry Pi is a set of
pins, the GPIO (General-Purpose Input/Output) interface, allowing for a large
variety of physical modifications and attachments to be added to the device. Fur-
ther, the Pi has a 2-lane MIPI CSI camera port, allowing for the usage of Rasp-
berry’s own Pi Camera modules. Full-size USB 2.0 and 3.0 ports will also enable
the use of a wide variety of USB cameras with Linux driver support.

NVIDIA Jetson Nano

The NVIDIA Jetson Nano Developer Kit is a tiny computer similar to the Rasp-
berry Pi but has the added benefit of a GPU attached. It is slightly larger along
all dimensions yet still plenty portable. Another benefit of the Jetson Nano is the
ability to run in a low-power mode, drawing only 5 watts, which could be helpful
in particularly power-constrained scenarios. Onboard the Jetson Nano is the same
set of pins as on the Raspberry Pi, enabling compatibility with many of the same
add-ons [23]. The presence of full-size USB ports and video outputs in the form
of HDMI and DisplayPort is also convenient.

4.2.2 Computers

Desktop Computer

The researcher’s personal desktop computer was utilized as a benchmark. It is a
custom built computer with a powerful processor and graphics card. The perform-
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Figure 4.1: NVIDIA Jetson Nano used in this project.

ance could be comparable to running the service on a GPU-enabled server.

GPU-Equipped Laptop

An MSI GL62M gaming laptop was used as a less-portable but still mobile altern-
ative. This laptop is equipped with a modest NVIDIA GTX 1050 graphics processor,
allowing for hardware acceleration using the GPU where applicable. It is worth
noting that this laptop is approaching five years old at the time of this project.

4.2.3 Device Specifications

Table 4.1 contains a list of key device specifications for the devices used in this
project.

4.2.4 Cameras

The cameras used to capture images for the Custom Dataset were the Raspberry Pi
v2 camera and a Huawei Mate 20 Pro smartphone. Further camera specifications
can be found in table 4.2.

Huawei Mate 20 Pro

The camera setup for the Huawei Mate 20 Pro is quite straightforward. Images
were taken using the smartphone’s default camera application and the phone’s
main camera. Both horizontal and vertical orientation was used.

Raspberry Pi Camera Setup

The camera setup for the Raspberry Pi included the Raspberry Pi 4B, with the
camera and the Raspberry Pi Touch Display. These add-ons and the device were all
encompassed within a 3D-printed case to allow for easy handling and portability.
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Table 4.1: Key device specifications.

Spec Desktop Laptop Jetson Nano Raspberry Pi

CPU AMD 5900x Intel
i5-7300HQ

ARM A57 ARM A72

CPU Cores 12, 24thread 4 4 4

CPU Speed 4.8 GHz 3.5 GHz 1.43 Ghz 1.5 GHz

GPU NVIDIA
RTX 2080 Ti

NVIDIA
GTX 1050

NVIDIA 128-
core Maxwell

N/A

CUDA Cores 4352 640 128 N/A

GPU FLOPS
(FP32)

13400
GFLOPS
[24][25]

1862
GFLOPS
[26]

235.8
GFLOPS
[27]

N/A

RAM 32GB DDR4 8GB DDR4 4GB LPDDR4 4GB LPDDR4

Power* 550 W 150 W 5/10 W** 15 W
* Maximum system power draw. ** Depending on power mode.

Table 4.2: Camera specifications.

Spec Pi Camera V2 Mate 20 Pro

Still Resolution 8 Megapixel 40 Megapixel

Image Resolution* 3280 x 2464 3648 x 2736

Image Density 72 dpi 96 dpi

Optical Size 1/4" 1/1.7"
*Used during data collection

The setup can be seen in figure 4.2, notice the cutout on the back of the device for
the camera. To power the setup, we used a power bank providing power across
a high-quality USB cable at 2.4 amps, 5 volts, which was enough power for this
setup.

In order to capture the images, a short script was created. The script is loc-
ated in appendix A.2.1. This script first counts the number of images (files) in the
destination folder. Next, the raspistill command that comes pre-installed with
Raspbian [28] is called using os.system(), with the previously counted num-
ber iterated once as the filename. This approach was chosen as the pre-existing
raspistill command functions well enough for the purpose. The image is stored
in the desired folder as a standard JPEG image at the default resolution. A desktop-
shortcut was created to easily call the script when outside collecting data. The
script opens a terminal and calls the script using Python.
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Figure 4.2: Image of Raspberry Pi Camera setup.

4.3 Implementation

Setup and programming were conducted during this project in order to set up
devices, equipment, and integrations correctly to collect the results needed to
answer the research questions. Further programming was done in order to parse
results and generate statistics. The ALPR implementations for this project are all
python-based. Some are written in different languages, but all have a python-
interface.

4.3.1 Requirements

The software used in this project should be available as an open-source ALPR
solution. The software needs to be able to be used in a privacy-friendly manner.
In other words, it needs to be able to run locally on the device, without having to
send images or license plate information off the device to perform ALPR. A python
interface is also a big preference, as we are most familiar with this programming
language. Compatibility with multiple platforms is needed, as the software needs
to be tested across platforms in order to be able to compare results.

4.3.2 ALPR Software Implementations

The three ALPR open-source implementations chosen for this project are ulti-
mateALPR [17], OpenALPR [18], and a Python3-port[29] of ALPR-Unconstrained
[19][6].

Both UltimateALPR and OpenALPR have paid alternatives, where a solution
more tailored to different scenarios is available. Rekor, the creators of openalpr,
even has online services, like their CarCheck Vehicle Recognition API [30]. But
as one of the requirements for this project is to run the software locally on the
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devices, this is not relevant to the project.
Implementations were relatively straightforward for the first two, as their re-

spective GitHub releases are built like SDKs. Scripts were written for each of them
that first initializes the relevant ALPR engine, then feeds it images from a given
directory one by one. The results from these are returned as JSON, which is then
parsed for the first license plate and presented to the user, as well as being written
to a CSV file. Each CSV file has a unique filename, which follows a standardized
format: device_software_dataset_run#.csv. This CSV file contains the engine
initiation time, followed by one line for each of the supplied images. Each line con-
tains the original filename, the result given by the ALPR engine with the highest
confidence, and the time taken for the image to be processed. The timing is done
outside the ALPR engine, in the script itself—more information on timing in sec-
tion 4.3.4.

The third software, ALPR-Unconstrained, works slightly differently, as the soft-
ware is based around entire directories rather than single images. Entire director-
ies are loaded, and each step is executed for the entire directory before going to
the next step. This process is done through python scripts being called in a bash
script. Therefore, timing each plate detection is complex, and an average of the
entire detection time is used as a substitute.

The code for the experiment implementations can be found at GitHub, note
that these are subject to change as time moves on and maintenance and improve-
ments are added. UltimateALPR, alongside installation instructions and required
files at 1. OpenALPR just contains the test script, and requires OpenALPR install-
ation alongside 2. Installation instructions (For Ubuntu-Linux) can be found at
OpenALPRs own GitHub 3. ALPR-Unconstrained ended up bewing timed using
a bash feature (see section 4.3.4), and the Python3-port used can be found at
GitHub 4.

4.3.3 Resolution and Image Statistics

In order to calculate statistics about image sizes for entire datasets, a python script
was written. imgSize.py can be found in appendix A.2.2, listing A.2 The script
uses the OS package to walk through entire datasets, and Pillow to gather various
information about each of the images in the dataset. Information gathered consists
of image resolution (width and height) and file size. After gathering information
about every image in the dataset, various metrics are calculated. The minimum
and maximum values for width and height are presented to the user. Counts and
the proportion of images in landscape vs. portrait orientation are calculated by
looking at which axis has the highest pixel count. Further, the average resolution
for each axis is calculated and the average pixel count for the images in the dataset.

1https://github.com/Erlein/ultimateALPR-SDK
2https://github.com/Erlein/OALPR-TestScript
3https://github.com/openalpr/openalpr/wiki/Compilation-instructions-(Ubuntu-Linux)
4https://github.com/xeonqq/alpr-unconstrained

https://github.com/Erlein/ultimateALPR-SDK
https://github.com/Erlein/OALPR-TestScript
https://github.com/openalpr/openalpr/wiki/Compilation-instructions-(Ubuntu-Linux)
https://github.com/xeonqq/alpr-unconstrained
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Finally, the average file size is calculated.

4.3.4 Timing programming

The timing is done in two different ways, depending on the software used in the
implementation. Mainly, the timing is done by implementing counters in strategic
points in the python scripts. The other way is utilized for ALPR-Unconstrained,
where the program is run by calling a bash-script that further calls python scripts.
Here, the python scrips have timing implemented in each of the scripts in order
to time steps, and the whole program is timed by calling the bash script using
time <script> in the terminal. This command returns the time elapsed between
the start and end of the script or command [31].

In order to measure time in python scripts, variables are created using clocks
from the python time library [32]. The variable is created at the timing point’s
start and then subtracted from the clock at the end of the timing window.

The clock used for this project is perf_counter() [33]. It has a much higher
resolution than the standard time() clock [34]. process_time() [35] was also
considered, as it has the same resolution as perf_counter(), however
process_time() counts CPU time rather than system-wide timing. CPU time is
problematic in multi-threaded processes, as we want time elapsed in the real
world.

4.4 Datasets

In addition to the custom dataset created for this project specifically, we acquired
access to a second dataset. There exists a collection of plates publicly available
on the internet called Olavsplates [36]. Olavsplates is a collection of images of
vehicles with all different variations of license plates from many different coun-
tries. After contacting the owner, we were allowed to perform testing on these
images. The images were scraped from the website hosting the images and are
therefore quite low-resolution; however, the size and variation in the dataset make
it quite applicable for the testing in this project.

Scraping the images was done with a python script, which collects the target
page using curl[37] and parses the HTML before sorting the images in the desired
output directory. The scraper is not included nor appended in the report, as we
do not want to supply tools for scraping images without permission.

4.4.1 Data Collection

The dataset creation will be outlined in this subsection. In order to create a data-
set, we first needed permission from NSD. After that, the data collection can be
conducted. Data collection takes place in the form of photographing vehicles.
These photos will be categorized based on difficulty and various other criteria,
and this process is outlined in subsection 4.4.2.
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NSD Application & Privacy

As license plates are regarded as personal information in Norway, an application
to the Norwegian Centre for Research Data (NSD) is required in order to create a
dataset with images of Norwegian vehicles. This is to ensure that the acquisition,
storage, and processing of the personal data of Norwegian citizens happens safely
and legally.

The application resulted in permission to create a dataset of images of vehicles
in Norway and the processing of the license plates on these vehicles in accordance
with the required guidelines. Participants in the dataset, a.k.a. the owners of the
vehicles in question, will need to be informed. An information pamphlet was cre-
ated together with NSD. This pamphlet is required to be provided to the owner
of the vehicle or attached to the vehicle photographed for the project to inform
the participant about the project and their rights regarding participation. Unfor-
tunately for the project, images from the dataset can not be used as examples in
this thesis as a consequence of these requirements. The pamphlet is included in
appendix A.4, written in Norwegian.

Photographing Vehicles

The dataset was collected by taking photos of vehicles around the local area. Vari-
ous vehicles are photographed; however, the natural distribution of these was
limited by having to photograph parked vehicles. Therefore, the dataset is quite
heavy on cars and vans, with a few additions of trailers and lorries. Motorcycles
and mopeds are not present in the dataset, as none were present when collecting
data. This lack of two-wheeled vehicles is likely due to data collection occurring
in spring.

Different cameras were used to photograph vehicles. These are listed in the
"cameras" section of the devices chapter, at 4.2.4. Differences in images produced
by the two cameras can be seen in figure 4.3, sub-figures 4.3a and 4.3c. The Pi
Camera has a wider angle lens and a taller aspect ratio. Having varied cameras
allows the possibility to see whether cameras with different specifications and
performance impact the ALPR performance.

The images are taken to mimic typical ALPR system implementations; either
mounted cameras at a toll booth, gate, or similar, or that of a parking attendant
taking photos of vehicles and scanning their plates. Four sample images from the
dataset can be seen in figure 4.3. A portion of the images has some more con-
siderable variation, like more acute angles and such, to allow for testing of how
well the implementations deal with edge cases. Examples of this can be vehicles
parked near objects, making it difficult to photograph their plates head-on.

4.4.2 Metadata/Categorization

We manually analyzed the images in the dataset to extract and categorize various
qualitative and quantitative factors about the image. This "metadata" was cre-
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(a) Sample image. Mate 20 Pro (b) Snowy car. Vehicle close by.

(c) Sample image. Pi Camera (d) Dirty Car.

Figure 4.3: Example images from custom dataset.

ated to allow for faster and more detailed analysis of what factors affect ALPR
performance. Simultaneously the images are categorized based on the perceived
"difficulty" of plate detection. The difficulty is a qualitative categorization based
on how difficult reading the plate is for a human. For example, a dark image of a
car with a license plate full of snow will be much more challenging to read than
that of a properly lit image of a clean car.

The categories contained groupings of data to keep them somewhat simple
to compare. For example, the angle was estimated based on a template with four
zones, depending on the highest angle from the plane of the license plate. An
illustration of this template is available in appendix A.4,

A list of some of the entries in each category can be seen below. The ones
marked "grouped" have a set of possible answers, while the others are less strict.

• Difficulty
Qualitative, grouped - Easy, Moderate, Difficult

• Vehicle Orientation
Front/rear

• Lighting Conditions
Qualitative, grouped - Bright, Light, Neutral, Dim, Dark

• Plate Obstruction
Qualitative, grouped - None, Slight, Some, Severe

• Obstruction Type
None, Dirt, Snow, Shade, Pole ...
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Table 4.3: Dataset categorization.

Category Description

Difficulty Perceived difficulty of reading plate (for a human)

Vehicle Orientation Front or rear of vehicle

Lighting Conditions How light is it outside?

Plate Obstruction Is there anything obstructing the plate?

Obstruction Type What is obstructing the plate? Snow/dirt/item?

Camera Which camera was the image taken with?

Portion of Vehicle Is the whole vehicle in the image?

Angle(Plane) How severe is the angle compared to plate?

Vehicle Type Which type of vehicle is it?

• Camera
Pi Camera V2, Mate 20 Pro

• Portion of Vehicle
Whole, Lower half, ...

• Angle(Plane)
grouped - Straight, Slight, Some, Severe

• Vehicle Type
Wagon, SUV, Trailer, ATV, MC, Hatchback, ...

4.4.3 Dataset Information

There are two primary datasets used for this project, the custom dataset and the
dataset from Olavsplates.

Custom Dataset

The dataset created for this project, called the "Custom Dataset" in this report,
contains images of parked vehicles from around the local area. Images for this
dataset were taken using two different cameras, the Raspberry Pi V2 camera and
a Huawei Mate 20 Pro smartphone. The images are of high resolution. The custom
dataset contains 118 images.

Olavsplates

The images collected from Olavsplates.com are split into four for this project. On
the website, the images of Norwegian vehicles are categorized depending on what
type of plates are in the collection. For example, "Currently Issued License Plates."
The images are split into the following categories:
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• Currently Issued - 118 images
License plates currently issued for vehicles in Norway.
Contains a relatively high proportion of personalized plates.

• Former Issues Still Valid - 90 images
Older license plates that are still valid. Contains old formats like plates

with dashes in them, agricultural license plates and plates with registration
stickers.
• Duplicates - 72 images

Same types of images as that of "Currently Issued" plates.
• Duplicates Former Issues - 201 images

Same types of images as that of "Former Issues Still Valid."

4.4.4 Dataset Statistics

This section presents statistics about the datasets used in this project. All images
used in this project are in JPEG format.

Table 4.4: Dataset resolutions.

Stat \DS Avg. Resolution Avg. Pixel Count Avg. Filesize

Custom DS 3110 x 2924 8 896 082 3.397 MB

Currently Issued 600 x 421 252 808 0.125 MB

Former Issues 573 x 415 240 602 0.105 MB

Duplicates 600 x 431 258 392 0.124 MB

Dup. FormerIssues 493 x 353 179 889 0.065 MB

Table 4.4 shows the average resolution and pixel count for the images in each
dataset. The images from Olavsplates have a maximum of 600 pixels in their
largest dimension. These images are of a lower resolution than those in the Cus-
tom Dataset that contains images taken with a modern smartphone and the Rasp-
berry Pi camera v2. Looking at the resolution of the Olavsplates datasets, the
DuplicatesFormerIssues dataset has the lowest resolution of all the images. This
is because these images are of older vehicles and therefore contain more images
that are older and lower resolution.

Table 4.5 shows what proportion of images are taken in landscape and por-
trait format. The images taken for the Custom Dataset were taken in the manner
that was most convenient, and to provide a more varied dataset. Image taken in
portrait mode can be helpful in scenarios where there are more vehicles nearby
to avoid these getting in the image.
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Table 4.5: Dataset image format.

Stat \DS Landscape Portrait Landscape %

Custom DS 68 50 57.6 %

Currently Issued 113 5 95.8 %

Former Issues 84 6 93.3 %

Duplicates 68 4 94.4 %

Dup. FormerIssues 185 16 92.0 %

4.4.5 Dataset Modification

A python script was written to automate resizing entire datasets for the low- vs.
high-resolution image tests. The script uses the os python package in order to
traverse directories, and the Pillow Python package to open, resize and save the
images. Images are loaded from one directory, resized using .resize() [38] by a
given factor along each axis before being saved to an output directory. Standard
JPEG compression is applied, as images are saved using .save() with default
parameters for .jpg images [38].

4.5 Experimentation

A process to ensure consistent and comparable experimentation was created. Due
to a large number of devices and other variables, this sort of rigorous process was
necessary to avoid problems in the experimentation phase.

4.5.1 Process

The experimentation is run according to a set checklist to ensure that the process
is as similar across all devices, repeatable, and eliminates as many third variables
as possible. Following is the checklist followed for each of the tests.

• Prepare
Make sure all needed resources are loaded onto the device.

• Connection
Reboot device.
Connect using SSH (where applicable).
Wait 1 minute for any background processes to finish.

• Experimentation
Navigate to the appropriate directory.
Perform experiments (3 runs)

Perform run.
Wait 20 seconds to allow the device to cool.
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Iterate output filename, repeat.
• Reset

Offload files with results.
Reboot device to prepare for the next set of runs.

This checklist is created to keep the experiments as real-world as possible, i.e.,
limiting background tasks by rebooting the system just before the tests are run and
running several sequential tests to allow any potential use of cache to take effect.
A waiting period after the device has booted is also enforced in order to avoid any
potential startup tasks taking up resources. Everything needed for the specific test
is installed onto the device before the test, including the datasets. The connection
to the device is then established using ssh, in order to avoid any unnecessary
resources being spent on a VNC (virtual desktop) connection. The exception for
this is the desktop and laptop environments, which are running traditional desktop
OSes (Windows) and are in daily use. For these, the tests will be conducted in a
terminal with minimal background tasks running. When everything is ready, the
device has been rebooted, and a connection is established, three consecutive tests
are conducted back-to-back, with results gathered for each run. The results from
each run are written to CSV files, which can be extracted for analysis after the
tests are run.

After the tests are conducted, and results are written to a standardized Comma
Separated Values (CSV) format across all the implementations, it is offloaded from
the device for further analysis. When the CSV files are offloaded, they are then
parsed with an automated script that calculates various statistics (more about
this in 4.6), which are put in a spreadsheet for further comparison. In addition
to the parsing script, the results get a manual overview to spot any anomalies
or patterns that can help answer the research question regarding performance-
altering factors.

4.5.2 High- vs. Low-Resolution Image Experiments

Initial Analysis

In order to determine whether the resolution of images has a significant impact
on ALPR performance for mobile devices, we analyzed the results. A comparison
between the results for the Custom Dataset and the CurrentlyIssued dataset from
Olavsplates were compared. These two were chosen for this comparison because
the datasets are of same size, and with similar contents. With the Custom Dataset
being recently created, a large portion of the dataset contains newer license plates,
which is also the case in the CurrentlyIssued dataset, where the contents are of
currently issued license plate types.

Secondary Experiment

A secondary experiment was conducted after analyzing the results from the primary
experimentation. This experiment was performed by resizing the Custom Dataset
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(a) Full resolution (b) Half resolution

(c) One-sixth resolution (d) One-twelfth resolution

Figure 4.4: Portion of sample image showing effects of dataset resizing.

to eliminate third-variables between the different datasets of varied sizes. More
information about this experiment is located in section 4.5.2. The resizing was
done using the python script described in section 4.4.5, where the dataset was
resized to half, 1/6th, and 1/12th size. The reasoning behind the 1/6th size was
that it resulted with similar size to that of the Olavsplates datasets, while the half
and 1/12th sizes were halves of the original and sixth sizes to have a larger sample
size. Figure 4.4 shows a portion of a sample image taken from each of the resized
datasets. The samples show the data lost during each of the resizing steps. For ref-
erence, the portion of the image shown in sub-figure 4.4a has a higher resolution
than the entire source image for sub-figure 4.4d. As the images are saved with a
high quality of 90, the characteristic blocking from JPEG compression is not too
prevalent.

Table 4.6: Resized dataset resolutions.

Stat \DS Avg. Resolution Avg. Pixel Count Avg. Filesize

Full Size 3110 x 2924 8 896 082 3.397 MB

Half Size 1555 x 1462 2 224 020 0.279 MB

1/6th Size 518 x 487 246 885 0.039 MB

1/12th Size 259 x 244 61 721 0.012 MB

This secondary experiment was a last-minute endeavor in order to gather a
little more information. Therefore, it was only run on a single device due to time
constraints, using only two software implementations.
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4.5.3 Special Characters

To test special characters, some are already present in the datasets the tests were
conducted with. Not all three of the special letters in the Norwegian alphabet are
present in these datasets. A one-off test where a manipulated image of a modified
plate with the three letters "ÆØÅ" (plus some other dummy letters) was presented
on a vehicle to the models. The image used was known to provide ample detection
from.

Figure 4.5: Custom plate used for manipulation in special character test.

Figure 4.5 shows the license plate that was manipulated onto the vehicle in
the image used. The image can not be shown, due to inability to gather consent.
The character-combination used is not claimed as a personalized plate as of the
writing of this project.

4.6 Results and Analysis

After collecting all the data from the experiments, we are left with in excess of
200 CSV files containing the detection results from all the runs. These need to be
analyzed, and the results gathered in a spreadsheet for further comparison.

4.6.1 Statistics Gathering/Metric Calculation

A Python script was written in order to parse the results from the CSV files and cal-
culate metrics from these. The script can be found in appendix A.2.3. statistics.py
takes a CSV file as an input argument and parses each of the lines of this file. The
script takes into account which software was used, as there is some variation of
what information is accessible in the CSV file based on which software was run.
It checks the filename for which software the run is for. For example, the result
files for ALPR-Unconstrained do not contain the detection time for each run, and
for UALPR, we need to ignore the last characters.

Parsing through the lines in the CSV file, we start at the top. The first line of
the CSV file contains the init time. The last line contains the total time for the
detection of the entire dataset, with the exception of ALPR-U, where this is read
by timing the bash-script, which runs each step of the program, as explained in
section 4.3.4.

Each of the lines in between contains the result from a unique image in the
dataset. The format of this result contains the true plate and the detected plate.
For UALPR and OALPR, these lines also contain a detection time in seconds.
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Accuracy

Each line undergoes a comparison between the genuine and predicted plate. The
first step of the process is to check whether the predicted plate contains the string
"NoPlateFound", which is the case where no plate was detected. A counter for
failed detections is iterated if the string is found, and the script moves on to the
next line.

If a plate was detected, the first step is directly comparing the true plate and
the predicted plate, string to string. If it is a match, it is counted as an "identical"
match, and the number of characters is added to the counters for total and correct
characters.

If the two are not an exact match, the true plate and predicted plate lengths
are compared. In the cases where they are the same length, each character of the
genuine plate is compared with its character-counterpart in the predicted plate.
Correct characters iterate the counter for correct characters, and the number of
characters in the plate is added to the total.

If the plates are of different lengths, a complex shift-checking algorithm is
applied to the comparison. In short, characters can be compared with other char-
acters than characters of the same index. The shift-checking allows for checking
each character of the shorter string with n places further along the longer string in
cases where the characters do not match. n is the difference in length between the
two strings. The shift length will be applied to the subsequent characters whenever
a shift is applied and results in characters matching. If the shift is still smaller than
n, more can still be applied again in cases where the characters do not match. For
anyone wanting to delve into how this functions properly, the code is available in
appendix A.3, in the findAcc() function of the statistics.py script. Matching
characters are counted, and the total number of characters is also counted.

At the end of the script, the number of plates detected are calculated using the
total number of plates and subtracting the failed plates. Next, the correct plates are
presented. Following this, the character statistics are presented, using the counters
for correct and total characters.

Timing

Where the detection time is present, this is stored in a list until the end of the
program, where calculations will be made. For UALPR and OALPR, average, me-
dian, minimum, and maximum prediction times are calculated using the list of
collected times. These are then presented to the user at the end of the script to be
transferred into a spreadsheet.

For ALPR-Unconstrained, the run is timed as the experiments are being per-
formed, and the timings are stored in the spreadsheet directly. In the spreadsheet,
the average detection time is calculated using the total time taken divided by the
number of images in the dataset.



Chapter 4: Experimentation and Experimental Setup 35

4.7 Difficulties/Problems

UltimateALPR blocks detection of the last character without a product license. An
application for an evaluation license was submitted; however, we never heard any-
thing back. To circumvent problems when calculating metrics, the last character
was ignored when evaluating performance results for UALPR. This is unfortunate,
as it might affect results, however only for the very last character.

An oversight while programming made the results worse than they potentially
could have been. There was no post-processing implemented, which led to results
being worse than they should have been, as it led to some background detec-
tions. UltimateALPR was affected the worst from this, as OpenALPR has some
post-processing built in. However, this does show the performance of the ALPR
solutions in their default state, but not their best state.





Chapter 5

Results and Analysis

During this project, a total of 218 test runs were made across five datasets, four
devices, and three software implementations, with three runs for each combina-
tion (plus a few re-runs). This, combined with various timing and accuracy stat-
istics, resulted in more than 2500 data points. The numbers being presented and
analyzed for each of the 75 software-hardware-dataset combinations is the aver-
age of the three runs made for each. Short-hand naming for the software imple-
mentations is used for the tables and graphs in this section. The legend for these
is listed below.

• UALPR = UltimateALPR
• OALPR = OpenALPR
• ALPR-U = ALPR-Unconstrained

The results section is split into parts, each with a different focus area. The first
two sections show a broad overview of the accuracy and timing results, where
we will start to answer the primary research question of ALPR performance on
mobile devices. After these first two sections, the following sections look more
in-depth at answering the research questions by comparing the performance with
a focus on software, hardware, and datasets. Following these sections, the focus
is on price-per-performance and factors affecting ALPR performance. Finally, the
results regarding privacy requirements are mentioned.

5.1 Accuracy

In this section, the overall accuracy results from the project will be presented.
These show proportions across all datasets combined. The NVIDIA Jetson only
has one entry per table here, as the power modes did not affect the detection
accuracy.

37
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5.1.1 Correct Plates

Table 5.1 shows the proportion of plates that were exactly correctly identified.
These numbers are the percentage of correct detections of the total number of
images across all datasets.

Table 5.1: Proportion of correctly identified plates across all datasets.

Device \Software UALPR OALPR ALPR-U

Jetson 82.3% 28.7% 45.6%

Raspberry Pi 82.8% 28.1% N/A

Laptop 84.1% 30.1% 45.2%

Desktop 84.5% 28.1% 45.6%

The results show that the accuracy for each software implementation has a
pretty consistent accuracy across all the devices, with a variation of just about
two percent. However, there is a considerable variation in performance between
the software implementations, with a difference of as much as 56,4%!

5.1.2 Identified Plates

Table 5.2 shows the proportion of images where at least one license plate was
detected. It is worth mentioning that this count includes any detection of what
the implementation thinks is a license plate. Therefore, there is the possibility of
false detections (false positives) present in this data.

Table 5.2: Proportion of images where a license plate was detected.

Device \Software UALPR OALPR ALPR-U

Jetson 96.8% 61.3% 77.1%

Raspberry Pi 96.5% 61.3% N/A

Laptop 96.0% 60.1% 65.4%

Desktop 96.3% 61.3% 77.1%

The results of the detection rate are similarly consistent across all devices for
each implementation, with one exception for the laptop running ALPR-Unconstrained.

5.1.3 Character Recognition

Table 5.3 shows the proportion of characters that were correctly read. This result
is not calculated using all characters from the true plates in the dataset, but the
characters from images where the ALPR implementation attempts to read char-
acters off what it has detected as a license plate. Potential false plate detections
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are also included in this, where the software might try to perform OCR on either
the incorrect license plate or something it perceives as a license plate but is really
not. Therefore, the results presented here need to be taken with a grain of salt.

Table 5.3: Proportion of confirmed correctly read characters (OCR).

Device \Software UALPR OALPR ALPR-U

Jetson 91.4% 82.6% 82.1%

Raspberry Pi 92.1% 82.6% N/A

Laptop 92.5% 83.6% 82.1%

Desktop 92.8% 82.6% 82.1%

Results from OCR show consistently good results across all devices and im-
plementations. The results are consistent across devices and depend more on the
software.

5.2 Speed

In this section, we present the broad timing results from the project. The tables
presented in this section contain averages of data for runs across all datasets. The
reason for this is the sheer amount of runs. The NVIDIA Jetson has two entries for
each of the tables in this section, as the different power modes change the power
consumption, resources available to the device, and in turn the timing.

Table 5.4 shows the average of the total time across all datasets for each
device-software pair. The total time is the time from the script is called, until it is
finished, including initialization, loading of images and detection.

Table 5.4: Average Total time for all datasets and devices. (In seconds)

Device \Software UALPR OALPR ALPR-U

Jetson 5W 33.303 90.125 526.494

Jetson 10W 23.413 57.485 260.959

Raspberry Pi 34.689 67.319 N/A

Laptop 16.417 20.445 264.782

Desktop 5.939 11.250 48.863

Table 5.5 shows the average of the average detection times across all datasets
for each device-software pair. The average detection time is the average time taken
for an implementation to return a result after being given an image.
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Table 5.5: Average Detection time for all datasets and devices. (In seconds)

Device \Software UALPR OALPR ALPR-U

Jetson 5W 0.371 0.756 5.103

Jetson 10W 0.192 0.481 2.495

Raspberry Pi 0.284 0.558 N/A

Laptop 0.107 0.155 2.251

Desktop 0.039 0.129 0.431

5.3 Software Performance

In this section, results will be presented, focusing on the software implementations
and their performance at detecting and reading the license plates in each of the
datasets. The graphs marked with "no Pi" in them do not feature the data produced
on the Raspberry Pi, because the Raspberry Pi failed to produce results for the
ALPR-Unconstrained implementation and is therefore omitted to have directly
comparable results.
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Figure 5.1: Average plate detection time across all devices.

Figure 5.1 shows the average amount of time, in seconds, for a license plate
to be read by each of the ALPR implementations. The number used is an average
across all devices. OpenALPR and UltimateALPR are similar in performance, with
the most significant variation present when detecting the images in the Custom
Dataset. ALPR-Unconstrained, however, is quite a bit slower across all datasets.
Similar results appear in the graph shown in figure 5.2, which shows the average
total time taken for detection of entire datasets.

For both graphs showing time used for detection, ALPR-Unconstrained comes
out slower than the rest. UltimateALPR and OpenALPR have more similar per-
formance. However, UALPR is slightly faster for most datasets, and approximately
three times faster for the Custom Dataset. UALPR has the lowest time of 22.5
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Figure 5.2: Average total time across all devices.

seconds for the averages, with OALPR using almost twice as long at 43.7 seconds.
ALPR-U comes in at 271,4 seconds, 12 times slower than UALPR.

Taking a look at the accuracy, the graph in figure 5.3 shows the proportion of
correctly identified license plates across all of the datasets. The numbers used are
averages of the results across all devices.
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Figure 5.3: Average proportion of correct license plates across all devices.

UltimateALPR returns the highest accuracy regarding correctly identified li-
cense plates for all except one dataset. ALPR-Unconstrained has similar perform-
ance for the Custom Dataset and the Duplicates set. OpenALPR fares worse when
it comes to accuracy, with the best result from detecting the Custom Dataset, with
approximately 40% of the images correctly identified. On average, UALPR fares
the best at 74% correctly identified license plates, followed by ALPR-Unconstrained
with a 49% correct plate rate, and OpenALPR with 26%.
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5.3.1 Dataset Performance

With the multiple datasets used for this project, looking at performance variations
can give some insight into some factors that affect performance. We can see the
differences in the performance of the datasets in the graphs presented earlier in
this chapter, namely figures 5.1, 5.2, and 5.3. In figure 5.1 we see the average de-
tection time for each individual image. This shows the time taken for the Custom
Dataset takes significantly longer than the four Olavsplates datasets. Detection
of images in the Custom Dataset takes 2.5 times longer than the average of the
Olavsplates datasets. For the four Olavsplates datasets, the difference between the
highest and lowest average detection time is 25%.

Table 5.6: Average correctly identified plate accuracy for each dataset and soft-
ware.

SW \DS Custom
Dataset

Currently
Issued

FormerIssues
StillValid

Duplicates Duplicates
FormerIss

Avg Olavs-
plates

UALPR 77.7% 92.4% 60.0% 59.7% 81.1% 73.3%

OALPR 40.7% 29.7% 8.3% 31.3% 25.0% 23.6%

ALPR-U 73.2% 60.2% 25.6% 65.3% 22.4% 43.3%

Avg 63.8% 50.8% 31.3% 52.1% 42.8% 46.7%

Table 5.6 shows the average rate of correctly identified license plates across all
devices for each software implementation. They essentially show the performance
of each software implementation on each of the datasets. Looking at the averages
of all the Olavsplates sets and comparing it to the Custom Dataset, UALPR har only
slightly better accuracy when identifying the Custom Dataset. OALPR and ALPR-
U, on the other hand, get their performance almost halved, at approximately 40%
worse performance for Olavsplates compared to the Custom Dataset.

On average, the dataset with the highest success rate regarding correctly iden-
tified license plates is the Custom Datasets. It is the best performing dataset for
two of the three software implementations. The worst performing dataset on av-
erage is the FormerIssuesStillValid dataset. It gathered the worst results for two
of the implementations and just barely not the worst for the last of the three, with
less than 0.3% difference.

The worst combination of software implementations and dataset was Open-
ALPR identifying FormerIssuesStillValid, only successfully identifying 8.3% of the
plates in the supplied dataset. The best combination was UALPR identifying the
CurrentlyIssued dataset, with 92.4% of the plates correctly identified.
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5.4 Device Performance

This section contains comparisons of the performance of the individual devices.
Comparisons will be made between the same dataset(s) and implementations dir-
ectly. By extension, this will mean that the Raspberry Pi only has two implement-
ations of data, rather than the three for the other devices.

5.4.1 Accuracy

Figure 5.4 shows the accuracy achieved for each of the software implementa-
tions. As mentioned in section 5.3, there is a considerable variation in the accur-
acy achieved for each software implementation. However, the variation between
the devices is much smaller, with the most significant variation being 2.17% for
UALPR. The
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Figure 5.4: Hardware Average Device Correct Plates Accuracy

Table 5.7: Delta of device accuracy.

UALPR OALPR ALPR-U

Max ∆ 2.17% 2.00% 0.33%

UALPR accuracy results look like a natural progression, with accuracy per-
formance increasing as the device gets increasingly powerful. However, this is not
the case for the two other implementations, where there is no apparent direct
connection between hardware performance and accuracy.

5.4.2 Speed

The graph in figure 5.5 shows the average detection time, sorted for each device in
a stacked column. The average detection time used for this graph is the average
for all datasets. It is worth noting that ALPR-U is not present on the Raspberry
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Pi. For the average detection time, a lower number is quicker. There is variation
between both the devices and the software.
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Figure 5.6: Average detection time for devices across all datasets.
ALPR-U on the secondary axis.

Looking at the graph in figure 5.6, with the results from ALPR-U plotted on a
secondary axis, we can see that the times seem consistent across software imple-
mentation, except for ALPR-U on the Laptop.

The results indicate that the slowest performing device is the NVIDIA Jetson
in LowPower mode, with its power limited to 5 watts and only two of the four CPU
cores. (NVIDIA removed the documentation for this, alternate documentation is
provided in appendix A.3.1.) Next is the Raspberry Pi, which the Jetson tightly
follows in FullPower mode, where it gets to utilize all four CPU cores and the
GPU. The Laptop and Desktop have even quicker performance, with the laptop
using 22% of the 5W Jetson, and Desktop at 12%.
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Table 5.8: Average Plate Detection Time with Deltas

SW \Device Jetson 5W Pi Jetson 10W Laptop Desktop

UALPR 0.371 0.284 0.192 0.107 0.039

OALPR 2.522 1.926 1.618 0.530 0.317

Average 1.447 1.105 0.905 0.319 0.178

∆ 100% 76% 63% 22% 12%

5.5 Hi-Res vs. Low-Res Images

Results from comparisons between high- and low- resolution images are presented
in this section. This regards both results from the primary and secondary experi-
ments.

5.5.1 Accuracy

Smaller images contain less data, which sounds like it might be detrimental to the
accuracy performance in computer vision situations. The graph seen in figure 5.7
shows the correct plate accuracy results from the Custom Dataset, containing high-
resolution images, and the CurrentlyIssued portion of the Olavsplates dataset,
which containins lower resolution images.
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Figure 5.7: High-res vs Low-res dataset correct plates accuracy.

Looking at the results in figure 5.7, OALPR and ALPR-U seem to perform bet-
ter on the larger images, while UALPR has worse performance, by almost 15%.
One reason for this is the prevalence of background detections; in other words,
vehicles in the background are selected as the primary target rather than the inten-
ded vehicle. Background detections are particularly prevalent for UALPR on the
Custom Dataset, with 15 occurrences of this issue. The higher resolution can make
it easier for the ALPR to detect vehicles in the background and process these as



46 E. Einmo: ALPR Performance on Mobile Devices

well. Background detections can be mitigated by implementing post-processing,
using the detections with the highest confidence values as the primary target.
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Figure 5.8: Detection accuracies and correct plates for resized datasets.

The experiments conducted with the resized Custom Dataset have more dir-
ectly comparable results. Accuracy results in the form of plate detections, and cor-
rect detections can be seen in figure 5.8. Much like with speed performance, the
effect of resolution depends on what ALPR software is utilized. Here, UALPR has
impressive consistency, even for the lowest-resolution images, where even reading
the plate as a human becomes difficult. The detection rate for UALPR is consistent
for full, half, and 1/6th resolution, while the correct plate increases! The increase
is likely due to the lack of post-processing, sometimes providing wrong plates as
results (read more in section 4.7). As the resolution decreases, background detec-
tions become less likely, as vehicles and license plates further away become less
and less detailed. The overall detection rate and correct detections dip as the res-
olution reaches the 1/12th original resolution, and detections of the main subject
in the image become difficult.

OALPR accuracy decreases in a predictable pattern as the resolution decreases,
except for correct plates on the half-size dataset, where it increases with just un-
der one percent. This might be the same reason for UALPR, as there is no post-
processing of results. There is a massive drop for the 1/12th resolution dataset,
with only five detected and three correct license plate detections out of the 118
images.

In general, the resolution impacts performance; however, utilizing images that
are not too high resolution appears to be beneficial with regards to the trade-off
between accuracy and speed. Speed performance gets better quicker than accur-
acy gets worse for this type of image, with vehicles photographed from a relatively
short distance. Images taken from further away, perhaps of multiple vehicles in
cases where ALPR over multiple lanes of a road for example, will likely bene-
fit from having higher resolution. As the implementations are implemented in
this project, a resolution about that of the 1/6th resolution Custom Dataset or
that of the Olavsplates datasets seems to be a quite good middle-ground for Ul-
timateALPR, while for OALPR, somewhere between the resolutions of Custom
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Dataset half and 1/6th.

5.5.2 Speed

When looking at the average detection time for the various datasets presented in
section 5.3, one can see that the Custom Dataset takes significantly longer than
the Olavsplates datasets across all three software implementations. Information
about the datasets, including average resolution, pixel count, and file size, can be
seen in table 4.4 in section 4.4.4. The Olavsplates dataset with the largest avg pixel
count is Duplicates, with 258 392 average pixel count, only 2.9% of the average
pixel count of images in the Custom Dataset. A graph with the data from the table
overlayed can be seen in figure 5.9.
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Figure 5.9: Average plate detection time across all devices with average pixel-
count.

All implementations used more time to detect images in the Custom Dataset.
This is likely due to the larger amounts of data in each image to be processed. To
what extent the performance scales with regards to data size is difficult to conclus-
ively decide based on these data points, but there is a clear impact on performance
as the images get larger. The same goes for performance on hardware implement-
ations, as shown in the graph in appendix 5.10, which features average detection
times for high- vs. low-resolution images for UltimateALPR and OpenALPR. All
devices use longer to detect images that are larger in size. For OpenALPR, the ef-
fect is so significant that the Jetson in LowPower mode performing detection on
the smaller images even outperforms the Desktop on large images. ALPR-U has a
similar distribution to that of UALPR. A graph of that distribution can be found in
appendix A.1.1.

The results from the experiments utilizing resized datasets can be seen in fig-
ure 5.11. This graph makes it apparent that it is software-dependent to which
extent the resolution affects the detection speed. UALPR shows a considerable
cut in detection time from full resolution to half, with the time dropping to below
half of the full time. It is worth remembering that despite the resolution only being
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Figure 5.10: Average plate detection time for high vs low-res images.

"halved," this is along two axes and with JPEG compression on top. The average
file size for images in the half-size dataset is only 8% of the full size (see table 4.6,
section 4.5.2). For the following resolutions, the results show diminishing returns
for processing speed as the resolutions continue being reduced, With only a re-
duction in average detection time from 0.115 to 0.105 between 1/6th and 1/12th
resolutions.

OALPR shows a more surprising behavior, with a low reduction of only between
full and half resolution, but a massive reduction when going from half to 1/6th
resolution. We can speculate in the reason for this being the time saved for only
doing part of the processing for images where no vehicles or license plates are
found, as it starts failing detections for more and more images. Or simply that the
size of the data being processed is so small that bandwidth, memory, or storage
limitations disappear, and the software becomes more efficient. Investigating this
must be left for future work due to time constraints.
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5.6 Price per Performance

There are multiple ways to measure price per performance. The main focal points
used for this project will be the price in terms of monetary value and power budget.
Accuracy per time is also a consideration when looking at which software imple-
mentation to use, which is also presented in this section. Power budgets are often
considerations when using mobile devices like the Raspberry Pi and NVIDIA Jet-
son, as these can operate on battery power in remote locations. Information about
the devices and hardware specifications are listed in table 4.1 and in section 4.2.1.
As there is no clear correlation between device and accuracy performance, the fo-
cus of this section will be the speed of the devices.

Table 5.9: Device Prices and Power draw.

Stat \Device Raspberry Pi NVIDIA Jetson Laptop Desktop

Price ($USD) $59* $99* $827 $3000**

Power (Watts) 15 W 5/10 W 150 W 550 W
*Prices from official retailers **Purchase price estimation

5.6.1 Price

Pricing for the mobile devices was calculated during the middle of May. For the
Laptop and Desktop, the price at purchase was utilized. Prices might be found in
other currencies and converted to USD using mid-may conversion rates.

The prices for each device are listed in table 5.9, where one can see the steep
increase in both power consumption and price as soon as we move from mobile
devices over to more regular consumer devices. Figure 5.12 shows the price in
USD for each license plate detection per second. The average is the average of
the result from UALPR and OALPR, omitting ALPR-U, as one of the devices is
missing a result for this. The calculation is done by dividing the price of a device
on the average amount of license plate detections that device can do per second.
For example, the NVIDIA Jetson is priced at $99 and can perform 5.221 license
plate detections per second in 10W-mode. This places the Jetson at 36.74 USD
per license plate detections per second. A bit of an odd statistic, but it shows price
per performance in this case.

Looking at the results presented in the graphs in the figure, the Desktop and
Laptop are multiple times as expensive compared to both the Jetson and the Pi,
with the Desktop being the definitively most expensive option. The Raspberry Pi
and the NVIDIA Jetson in 10W mode have similar performance per price, with
the Pi coming out slightly ahead with its lower price point. Putting the Jetson in
low-power mode nearly doubles the price per performance.

In turn, UALPR is the software implementation that gives the best performance
per price for all devices in this comparison.
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Figure 5.12: Hardware Cost Efficiency. Distribution of Dollars per Plate Detec-
tions per Second.

5.6.2 Power

Power consumption can be quite crucial in scenarios where a device does not have
access to the power grid. Whether it is powered by battery power or maybe even
solar power, the lower the power it consumes, the easier it becomes to build a
power system around a device away from common power infrastructure. This is
some of the appeal for devices like the Raspberry Pi and NVIDIA Jetson, as these
can be easily powered by either USB, through GPIO pins, or in the Jetsons case,
even DC barrel-jack power, which gives quite a few options when it comes to
providing power. Therefore, having a device that provides high performance per
power consumed can be desirable. In other words, a device able to perform ALPR
efficiently.

The graph in figure 5.13 shows the efficiency of each device in the form of
plate detections per second per watt of power consumption. In order to stay dir-
ectly comparable, the average is only taken between UALPR and OALPR, as ALPR-
Unconstrained is missing the readings for the Pi. The power consumption of each
of the devices can be seen in table 5.9 or in table 4.1 in section 4.2.3. A higher
number of detections per second for each watt of power consumed indicates better
efficiency. Results seen in figure 5.13 show that there is little difference between
the efficiency of the Jetson in low and high power mode. The CPU-only Raspberry
Pi performs at just below half efficiency compared to the GPU-equipped Jetson.
And last come the Laptop and Desktop, with their power-hungry low efficiency
but relatively high speeds.
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Figure 5.13: Hardware Power Efficiency. Distribution of Plate Detections per
Second per Watt.

There seems to be a correlation between lower power consumption and ef-
ficiency for these devices. The exception being the results achieved for ALPR-
Unconstrained, where the Jetson in 10W-mode performed ever so slightly more ef-
ficiently than in 5W-mode, and the Desktop performed 30% better than the laptop.

5.7 Failed Detections

None of the software integrations used for this project achieved a 100% correct
plate detection accuracy. In this section, some of the possible reasons for this result
will be analyzed, and observations made during the project will be presented.
Reasons for failures depend on the individual software implementations and the
functionality and methods used by these. It is worth noting that it can be difficult
to distinguish between vehicle and license-plate detection errors, as some ALPR
implementations simply return the predicted answer. There are various reasons
for failed detections, which happen at various stages in the ALPR process. At the
early stages of the process, there might be vehicle types that are not supported
or some external factors that make it difficult for the model to detect a car in the
image. Even if a vehicle is detected, the license plate might not be found in the
image. At the end stages of the process, characters might be misread on the license
plate, resulting in the incorrect output.
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5.7.1 General

Some of the causes leading to failed detections, in general, are factors that make
it difficult for the software to complete all the steps of ALPR. Reasons for this can
be factors like obstructions in front of the vehicle or even license plate, includ-
ing snow and dirt. Images taken in dark environments or bright environments
where the image, or parts of the image, ends up being either underexposed or
overexposed. The software implementations with the better detection rate and
correct plate accuracy rates deal better with these types of images, as both types
are present in the datasets used in these projects. OpenALPR appeared to struggle
where plates were not consistently lit, with detection failures on images where
portions of the license plate were shaded.

5.7.2 Vehicle Detection

When it comes to vehicle detection, there are multiple scenarios and factors that
can lead to failures. This only applies to ALPR software that applies vehicle detec-
tion. Some implementations skip this step and simply apply license-plate detec-
tion. During this project, several potential reasons for failures were encountered.

Unsupported vehicles can be one reason for failed detections. If an imple-
mentation is limited in which vehicles the detection model supports, for example,
only having trained a detection model for cars, it might fail or perform worse
when presented with other vehicle types like trucks, buses, motorcycles, or trail-
ers. UALPR failed at detecting one type of trailer while succeeding at another. The
trailer it failed to detect was open, with no front or rear panels, while the success-
fully detected trailer had tall sides and a tarp over the top. The detector might
have trained on only some particular types of trailers and could not detect others.
There is not enough data on this particular issue collected in this project, so more
research would need to be done in order to draw any concrete conclusions. We
will have to leave this for future work.

Incorrect vehicle detection is also a factor, primarily if no post-processing is
implemented. Vehicles in the background can be detected and analyzed before
the primary subject in the image. Background detection was the most prominent
reason for incorrect vehicle detection in this project.

In general, the most common factor for failed detections is license plate ob-
struction. The most normal case for this is a car that is too dirty or covered with
snow. Secondary is plates that are less common, like the green plate with black
text. The following subsections will present various reasons for failures across
different categories.

5.7.3 License Plate Detection

License plate detections can depend on factors such as license plate types, how
dirty the license plate is, and whether there are any other obstructions that can
disrupt detection. The detection quality depends on the detector used in the ALPR
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software implementation and how well it is trained. One particular type of license-
plate detection failure was prevalent in this project. That was the detection of
advertising or other text on the vehicle detected as a license plate rather than the
license plate itself.

Figure 5.14: Reflection detected as license plate..

Another case of false detection is objects roughly shaped as a license plate
within the bounds of a detected car. ALPR-U draws the result of detections on
the given image, and the researcher’s car gave such a result and can therefore
be used as an example. This result can be seen in figure 5.14, where the "license
plate" detected by ALPR-Unconstrained is drawn in red on the hood of the car.

5.7.4 Character Detection

Sometimes during the Optical Character Recognition part of the ALPR process,
much like humans, computers might mistake some characters for other, similar
characters. This section will highlight which characters are typically misread by
the various implementations used in this project. These statistics are gathered by
manually analyzing the results of detections from each of the software implement-
ations.

The definitively most misread characters were zeroes and O’s. Mixups between
these two characters went both ways; however, which way depended on the im-
plementation. UltimateALPR only mistook both the "O" and "0" for each other once
for each of the two; in other words, both characters were equally mistaken for the
other. OpenALPR, on the other hand, misread both zeroes and O’s more than the
other two implementations, with 0’s read as O 33 times across all datasets and O
as 0 18 times. Interestingly, which of the two characters was misread the most de-
pended on which dataset was analyzed. ALPR-Unconstrained misread O as zero
18 times but did not have any false detections the other way around. Another
character often misinterpreted was W. It tended to get interpreted as either the
letter N or split into multiple characters as "VV" or "VN."
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Something of note here is that as of 20th August 2021, standard Norwegian
license plates do not contain the letter O [39]. This means the letter should only
be present on personalized plates. With the majority of license plates still being
regular plates, the implementations that favor the number 0 will likely statistically
fare better. This majority of zeroes over "O"’s will be represented in the results in
this project, as there are more zeroes present in the datasets than the letter O.

A complete list of misidentified characters can be found in appendix A.1.4. The
characters and character combinations most commonly misinterpreted during the
experiments in this project are:

• M and N
• 1, J, I , L, and T

U as J
• B, 8 and 3
• S and 5
• G and 6
• O, 0, Q, D, and C
• W as "VN" or "VV"

None of the three implementations used in this project recognized the hy-
phen as a character. The hyphen is typically present on antique vehicles and some
state cars. At first, this might seem like a problem; however, when looking up
vehicles online, it seems like this character is ignored. This is at least the case on
the Norwegian Public Roads Administration’s page, where it is possible to lookup
information on vehicles using their registration number [40].

The Norwegian characters "Æ," "Ø," and "Å" seem like they are not suppor-
ted by the implementations either. Of these three letters, only "Ø" is present in
the datasets in a minimal number of cases. A single-case test was conducted to
confirm this, presented in section ??. UltimateALPR detected "ÆØÅ" as "EOA,"
ALPR-Unconstrained returned the result "E0A" (notice the zero), while OpenALPR
ignored "Æ" and "Ø", and returned an "A" for the "Å."

License plate incompatibility is also a problem encountered in this project. This
problem is quite software-specific, as this is method-specific. Two-tiered plates
were problematic for two of the implementations tested in this project. OpenALPR
tended to miss the top row of such plates entirely, resulting in only reading the
numbers for plates with the standard two-letter-five-number format.

N  AB 
12345 

N  AB 
12345 

N  AB 
12345 

UltimateALPR OpenALPR ALPR-Unconstrained 

Figure 5.15: License Plate Reading Patterns.
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A visualization of the different behaviors for this specific type of plate can be
seen in figure 5.15. ALPR-Unconstrained had a different behavior for two-tiered
plates. It consequently read these plates in the wrong order. The OCR was applied
strictly left-to-right, resulting in the top row being read in-between the bottom
row. The result from the example given in figure 5.15 would be "12A3B45".

Misidentifications

False-positive detections also happen from time to time. One, in particular, ap-
peared for all three implementations across the project. This false detection was
for plates with the outdated validation stickers used in Norway between 1993
and 2012 before being replaced with the use of ALPR [41][42][43]. The registra-
tion/validation sticker was typically placed between the two leading letters and
the five following numbers, figure 5.16 shows a visualization of how this looked
for a regular license plate. This led to cases where this sticker read as characters
for all implementations.

N  AB 12345 2012

Figure 5.16: Visualization - License Plate Validation Sticker on Standard Plate.

• UALPR
Read as "I" x2

• OALPR
Read as "I" x11

• ALPR-U
Read as "I" x21
Read as "1" x3
Read as "C" x2

Cases for each of the implementations across all datasets (across only one
device) can be seen in the list above. ALPR-U has the most cases of these false
detections and even read the registration sticker as C twice. Validation stickers
also had another consequence for ALPR-Unconstrained. In a few instances, the
sticker led to clustering of characters on either side of it, leading to the characters
surrounding the sticker being ignored. This is especially prevalent on older license
plates, where this designated space was not accounted for, and the gap between
the leading letters and the numbers was slightly narrower.
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5.7.5 Camera Performance

In the custom dataset we know which cameras took the images. This section in-
vestigates whether there is a significant correlation between camera used and
ALPR performance. Table 5.10 shows the number of failed detections for each of
the two cameras used in the custom dataset. Note that background detections are
left out of this data. The table shows that the dataset has 70% images taken with
the Mate 20 Pro, leaving 30% for the Pi Camera. For every software, the rate is
slightly lower, with UALPR at 6% lower.

Table 5.10: Failed detections per camera.

Mate 20 Pro Pi Camera V2 Mate %
UALPR 7 4 64 %
OALPR 46 22 68 %
ALPR-U 20 10 67 %
DS Total 83 35 70 %

Due to the low number of images in this dataset, however; it is difficult to draw
any conclusions based on this limited data. There seems like a slight correlation,
but the images taken with the Pi could be more difficult overall. The use of two
different cameras does not seem to have had a large impact on the experiments.
Performing thorough comparisons between cameras will have to be left for future
work.

5.8 Privacy/Offline Implementations

All three software implementations used in this project were tested for on-device
processing capabilities. The result from these tests are that all devices were able
to perform ALPR with no internet connectivity. Thus, all processing happens on
the device itself.



Chapter 6

Discussion

6.1 Dataset Creation

We built a custom dataset to increase the research results for this project. It al-
lowed for the creation of a tailored dataset for the research intentions of this pro-
ject. While creating and annotating the dataset, the realization of many varying
factors for images, like lighting conditions, shadows, license plate types, vehicle
types, and how clean the vehicle became apparent. Photographing vehicles had
a positive impact in the sense that it gave us more knowledge about the imaging
part of the ALPR process and the product of the dataset itself.

During the application process and conversations with the Norwegian Centre
for Research Data, we learned about privacy regarding research projects and what
is considered personal information. The fact that license plates are considered per-
sonal information, and what processes have to be in place to process this informa-
tion. Going through the application process and ensuring that the data collection
followed Norwegian law was informative and time-consuming. The application
required background work with regard to planning various potential alternate
angles to be used during the project in order to ensure that the permission given
by NSD covers any changes to the methodology. This planning and the applica-
tion process took up much time and led to the dataset creation being pushed back
further in the project than planned. Additionally the extra work of designing and
printing an information pamphlet to inform participants of the data collected.

The dataset is of high quality, with detailed annotation. It is unfortunate that
it can not be shared and is required to be deleted after the end of the project.
The reason for this is regulation, and that part of the agreement stipulates that
the personal data collected during the project should not be retained longer than
necessary to complete the project.

The impact of these regulations was visible from the other end when we tried
obtaining other datasets, as sharing datasets containing license plates has become
complicated regarding privacy. This limitation can hamper research, and a privacy-
friendly way to share this information would be desirable.
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6.1.1 Minor Environmental Impact of Research Project

The information pamphlet created together with NSD resulted in two pages of
text. To limit the resource usage and environmental impact of having to provide
each participant with this pamphlet, the paper was printed such that each A4 page
resulted in two copies of the pamphlet. This halved the resource usage while still
being easy enough to read.

Hopefully, all the pamphlets were recycled; however, this is not something we
have control over. The author did not find any of the pieces of paper in the area
where data was collected in the weeks after, which at least indicates they were
not improperly discarded. With the information being on a light piece of paper
placed between the windshield and wipers of the vehicles, there is a chance some
might have come loose due to wind.

6.2 Implementation

Through this project, we implemented three different software solutions. This por-
tion of the project was one of the most time-consuming, as in addition to the ex-
pected setup, it required much troubleshooting to get working across all platforms.
In this section, we present a discussion on this implementation process.

6.2.1 Software Implementations

The various software implementations chosen for the project were of varying qual-
ity, making them suitable for the project. UltimateALPR and OpenALPR were ad-
equately developed and relatively easy to integrate into custom solutions. ALPR-
Unconstrained was somewhat more cumbersome but a complete program in itself.
ALPR-U only needed some minor adjustments in order to add timing, and already
had support for detecting directories of images.

6.2.2 Implementations Process

The implementation process includes installation and setup of all components to
achieve full functionality on each device.

UltimateALPR

UltimateALPR had proper instructions for installation and pre-compiled binaries
for each platform used in this project. The only requirements to make it work were
the installation of appropriate TensorFlow libraries on Linux x86 platforms and a
python setup using an included script. Some problems were encountered on the
NVIDIA Jetson, but these were resolved using linux/aarch64 binaries rather than
the jetson/aarch64 binaries. Setup instructions can be found alongside the code
at GitHub 1. Note that this repository can change over time, due to maintenance

1https://github.com/Erlein/ultimateALPR-SDK

https://github.com/Erlein/ultimateALPR-SDK
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and upgrades.

OpenALPR

OpenALPR put up a little bit of a fight while being installed; however, this was
primarily due to an outdated Python package that did not work with the setups
used in this project. This issue is resolved by building and installing Openalpr from
source, as per the instructions supplied on the GitHub for the software, available
at GitHub 2.

ALPR-Unconstrained

The first software chosen and attempted implemented during the project. ALPR-
Unconstrained is open-source software easily cloned from GitHub, installed with
a few setup commands, and run through a supplied script. This process worked
fine for the Desktop and Laptop, with Linux running on the regular x86_64 ar-
chitecture. However, making this work on the Raspberry Pi was a different story.
First, the software is written with Python 2.7 and requires a set of Python librar-
ies, namely TensorFlow with Keras frontend and OpenCV. The specific versions
required are not available for Raspberry Pi. After hours of attempting to make it
work, we found a Python3-port of the project, which was opted for instead. For
Python3, we were able to acquire/build the required packages. Most of the pro-
gram worked; however, OCR did not return any results for an unknown reason.
Implementing ALPR-U entirely on the Pi was abandoned, as it had already claimed
too much time.

However, this lengthy process did make the installation for the NVIDIA Jetson
much less painless, which ended up working relatively quickly. Python package
support is a lot more prevalent on aarch64 than armvl7.

6.2.3 Takeaways from Implementation

Two main things should have been done differently in the implementation process.
First, ALPR-Unconstrained should have been abandoned on the Raspberry Pi way
sooner than it did. All the time spent trying to make it work could have been better
spent looking for other ALPR solutions to implement and test, which likely could
have improved the results.

Secondly, the lack of post-processing of the results from the ALPR implement-
ations could have given slightly more representative results. This realization came
too late to rectify. A check for which of the results provided by the ALPR software
has the highest confidence or another way to ensure the correct plate is used for
the result would have been desirable.

When images have been sent through ALPR and a result is returned, it is typ-
ically returned in JSON format or some list. This is either to give multiple al-
ternatives in cases where the ALPR is not 100% confident etc. What we did not

2https://github.com/openalpr/openalpr/wiki/Compilation-instructions-(Ubuntu-Linux)

https://github.com/openalpr/openalpr/wiki/Compilation-instructions-(Ubuntu-Linux)


60 E. Einmo: ALPR Performance on Mobile Devices

account for when programming is that the lists are not necessarily sorted for con-
fidence, size, or other metrics when given to the user. The first plate returned
from the ALPR implementation was used for this project, as this was thought
to be most likely the most prominent and correct plate on the image. There are
cases where the first result returns incorrectly, for example, in UALPR, where in
situations where there is a second car visible in the background, that car might
be processed first and returned as the first car, and therefore also the first identi-
fied plate when results return. This background detection leads to the wrong plate
(and often very incorrectly read plates as distant plates are very noisy) being com-
pared to the true plate of the vehicle in focus on the image. An oversight that was
discovered too late in the project to correct. However, the method is similar across
all the three implementations, meaning that the chance for failure is the same for
all, and the images tested are the same, and, therefore, hopefully, do not skew the
comparative results too heavily.

The comparison shows the performance of the ALPR implementations in their
default state, and it is worth noting that the results could have been better with
some slight post-processing implemented. A manual review of the results from
the custom dataset detections for one of the devices showed that UltimateALPR
was affected the most by this, with 15 background detections for the custom data-
set. OpenALPR had two, while ALPR-Unconstrained had none. These were cases
where the detections clearly had read the plate of a car visible in the background.

6.3 Experimentation

The experimentation process was efficient and precise, as it was properly planned.
Having an experimentation process planned out and ready to go made sure the
experimentation process went smoothly. Writing the direct results to files for later
statistics collection was a good idea, as it helped us by making the tedious process
of collecting all the numbers a separate part of the process and did not disrupt
the data collection during the experiments. The only hiccups encountered during
experimentation were some minor heat-soak, where a device did not have ample
time cooling down between runs and therefore got hot enough to trigger some
thermal throttling. Thermal throttling is a safety mechanism where the device
limits power to the processing units to prevent overheating. This, in turn, lowers
performance. Exploring thermal throttling as a potential issue with mobile devices
performing ALPR would be an interesting topic to pursue but is outside this pro-
ject’s scope.

The statistics collection could have been further automated by exporting the
numbers generated into a format that could easily be pasted into the spreadsheet.
Automation would also help limit human error, as the process relied on some
manual reading and typing of numbers from the terminal into the spreadsheets
manually.
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6.4 Analysis

Due to the organized nature and relative standardization of the results spread-
sheets, accessing the numbers for comparisons was simple. When performing
analysis, due to the large number of tests and data points, comparisons between
broader categories like devices and software implementations were made using
averages. This has the unfortunate consequence of potentially introducing some
statistical errors.

Missing data points for an entire device-software pair complicated the ana-
lysis a bit. Any direct comparison or average statistic between the three software
implementations could not include data from the Raspberry Pi, as it could lead to
bias or skew in the data.

6.4.1 Differences in Analysis of Pi vs. No-Pi Data

Cases where the Raspberry Pi results were omitted in case of skew appeared a few
times in the project. For example, in section 5.3 in the Results chapter. Here, the
timing performance across all the different datasets for each software implement-
ation was presented.
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Figure 6.1: Average Detection time for each dataset, Pi and No-Pi data plotted.

Figure 6.1 shows the average detection time across each dataset for each soft-
ware implementation. This figure is similar to one of the figures presented in 5.3;
however, this time, it has the data from the Raspberry Pi plotted alongside to look
at the effect that data has on the results. The graph only shows UltimateALPR
and OpenALPR, which are the two software implementations affected. Differences
between the data with and without the Pi are not too significant; however, the dif-
ference reaches as much as 14% for some.

Looking at the same type of data for accuracy, figure 6.2 shows correct plates
for UALPR, with Pi and No-Pi data plotted alongside each other. The differences
are minor for most datasets, with a few plates difference for each. With the excep-
tion of the "Duplicates" dataset, where the No-Pi data is significantly worse, with a
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Figure 6.2: Correct Plates Accuracy for each dataset, Pi and No-Pi data plotted.

drop of almost 12.3%. A similar figure for OALPR can be found in appendix A.1.2,
figure A.2.

Differences in the Pi vs. No-Pi data indicate that comparing ALPR-U with the
No-Pi data from UALPR and OALPR likely was the correct choice with regards to
keeping the data as comparable as possible.

6.4.2 Low- vs. High-resolution Images

During the analysis, while looking for the answer to what sort of impact resol-
ution has on the results, it became apparent that the data was not conclusive.
There were too many differences between the datasets other than the resolution
that could potentially influence the results. Especially because of the lack of post-
processing, giving more false detections for the Custom Dataset compared to the
lower resolution dataset of Olavsplates. Therefore, a quick secondary experiment
with resized dataset was conducted. This experiment was quick, as the experi-
mentation framework was already in place, and only a script to resize the dataset
was needed to perform the tests. Results from the tests gave a second set of data
to draw conclusions from, which was quite valuable in this case.

6.4.3 Metric Calculation

The character accuracy calculation presented in section 4.6.1 is not perfect. While
this approach allows for cases where the ALPR detection has either missed or ad-
ded characters, there is the possibility that the shift can lead to "incorrect" detec-
tions (false negatives) where there were true ones. It also does not catch scenarios
where the detection has added and missed the same number of characters. Apply-
ing this algorithm is still considered beneficial, as some manual review indicates
the shift-checking algorithm resulting in more true positives than false negatives
with these datasets.
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6.5 Offline/Privacy Experimentation

The software implementations were tested and succeeded at performing ALPR
without internet connectivity. This was a requirement for this project, especially
due to the Custom Dataset and the guidelines imposed by the NSD surrounding
the privacy of the contents of said dataset.

More thorough testing of whether the device shares information would have
been desirable, however due to time constraints was dropped. Other such tests
could include network packet monitoring, in order to see whether the software
sends information off the device, despite performing all the processing locally.

We still got results that prove that these ALPR systems can be used in a privacy
friendly manner. The limitation will be the system built around them, and how
they handle the data.

6.6 Societal Consequences

Some of the information in this paper could potentially be used for malicious
purposes. Information about factors that typically lead to failures in ALPR could
potentially be used by a bad actor in an attempt to circumvent ALPR detection.
Research regarding circumventing ALPR is suggested for future work.

The positive outcomes from the information provided can help with both mon-
etary value, law enforcement, and energy consumption. Developers or hobbyists
looking to implement an ALPR implementation can utilize the findings in this pa-
per to make an informed choice of what device and software will provide the
best solution in their situation. This informed choice will allow the savings of
both money and power consumption. With the results regarding failed detections,
measures can be implemented to limit these and enhance performance.

With the low bar for entry with setting up a simple variant of an ALPR system,
there are considerations to be made about the degree of surveillance potentially
being conducted. While anyone can technically set up ALPR or camera surveil-
lance, there are quite strict regulations regarding this in Norway. Any person in-
tending to set up any form of camera surveillance will need to learn these rules
and have a legal basis or basis for processing for the video surveillance [44].
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Conclusion

7.1 Summary

Four devices were tested across three different ALPR software implementations
during this project. These combinations were tested against five varied datasets,
with a second experiment conducted with resized datasets. A custom dataset was
created containing 118 images of vehicles. The devices tested were of different
price points, mobility, performance, and power consumption.

One of the leading research questions for the thesis regarded the performance
of mobile devices running ALPR and comparisons of their performance compared
to more powerful devices. During the project, it has become abundantly clear that
while these low-powered mobile devices perform ALPR well enough that they are
suitable in many situations. Regarding device performance, having a GPU present
impacts performance in a significant way when it comes to efficiency. The NVIDIA
Jetson, with its 10W power consumption, beats out the 15W Raspberry Pi in de-
tection speed. Larger devices with larger power budgets and price points perform
better; however, mobile devices perform the best regarding price-to-performance
and power-consumption-to-performance by a significant margin.

The experiments provided much information about the performance of the
devices and software implementations. Results indicate that the main factor for
license plate detection accuracy is the software utilized, not the hardware. On
the other hand, speed depends on both factors, with hardware being important,
but software coming in as an almost just as important factor. For comparisons,
the fastest device achieved a 0.43 second average detection time for the slowest
software implementation, while the slowest device achieved 0.37 seconds for the
fastest software. Again, that time was cut down to almost 1/10th by being run on
the fastest device.

One of the sub-questions, and requirements for this project, was the ability
to run these devices in a privacy-friendly and secure manner. This was proven
possible, as the implementations could run successfully on devices without inter-
net connectivity, meaning ALPR detection can happen without sending data away
from the device. With this ability, privacy and security rely on the platform built
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around the ALPR implementations to handle the data responsibly.
Image resolution affects the performance of automatic license plate recogni-

tion. Lower resolution images are detected faster than images with high resolu-
tion; however, the accuracy performance suffers when the resolution gets too low.
Applying clever feature-scaling techniques like UltimateALPR does with object-
scaling helps reduce the impact of resolution on performance. Certain license
plate types are more challenging to read than others, especially for some soft-
ware implementations. All three implementations had a different way of reading
two-tiered license plates, with only one being correct. And green plates with black
text used by some commercial vehicles in Norway had a tendency to be harder to
detect than others.

The registration stickers present between 1993 and 2012 can lead to some
issues with false detections. These false detections were present across all imple-
mentations, but more so for some than others.

Optical Character Recognition is not perfect for machines, much like humans.
Characters that are similar can be mistaken for each other. The most common
misinterpretation of characters was between 0 (zero) and the letter "O". These
misconceptions were one of the primary reasons for ALPR failure in this project,
with dirty and snow-covered cars being secondary. Dirty cars are a common factor
both for complete license plate detection failure, as well as mistakes in OCR.

7.2 Future Work

During this project, multiple potential research problems were encountered, which
would be interesting to pursue, but were outside the scope and time of this project.
Continuations or extensions of the research made in this paper is a natural starting
point. Performing comparative evaluations using more software implementations,
devices, and datasets. Utilizing devices from other categories like servers for high-
performance comparisons or exceptionally low-power devices used for Internet
of Things could yield exciting results. Implementation of post-processing to the
implementations used in this project to see how big of an impact it has on the res-
ults. The post-processing method of pattern matching works well when plates are
standardized; however, could the personalized license plates available in Norway
(and other countries) result in the post-processing having a worse or even negat-
ive impact? Investigating weaknesses in vehicle detection models where training
has occurred on datasets with minor variation. For example, are models trained
almost exclusively on SUVs good at detecting sports cars?

Investigating whether thermal throttling can be a problem impacting perform-
ance for mobile devices performing ALPR. Devices like the Raspberry Pi comes
with a processor without any cooling solution, which can run hot during heavy
loads. Prolonged ALPR processing, like a live video feed of a high-traffic area,
could perhaps lead to overheating and subsequently thermal throttling?

Further investigations of the effects of resolution and image compression on
ALPR performance is an interesting point that can be explored to a significantly
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larger extent than in this project. For example, pitting various image-compression
methods, image file formats, and more variations in resolutions to uncover which
part of the image-scaling process most significantly impacts performance.

Analyzing misuse-cases in order to disrupt ALPR. Using existing research and
experimenting with various modifications of vehicles and license plates in order
to attempt disrupting ALPR detections. Seeing to what extent legal modifications
can hinder license plate detection. Such research will need proper ethical consid-
eration, as information could be used for unethical activity.
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Appendix A

Additional Material

A.1 Additional Graphs/Tables

A.1.1 ALPR-Unconstrained Avg. Detection Time Hi vs. Low-res Per-
formance
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Figure A.1: ALPR-Unconstrained Average plate detection time for high vs low-res
images.

A.1.2 Pi vs No-Pi Data Correct Plates OALPR
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Figure A.2: Correct Plates Accuracy for each dataset, Pi and No-Pi data plotted.

A.1.3 Spreadsheet Format Example

This appendix shows the format used in the results-spreadsheet. The tables are
presented section-wise, while in the spreadsheet these are attached horizontally.
(meaning, table A.2 is a continuation to the right of table A.1 etc. in the spread-
sheet) Each group of runs contains three valid runs, with the last row containing
average values of the three runs. These averages are the numbers utilized as the
results for the run.

Table A.1 contains general information about the run being run. This inform-
ation is which number in the series of runs each line is, device run on, software
utilized, which dataset is used and any other notes. The note typically contains
information about power-modes utilized, like in the example.

Table A.1: General Run Information

Run # Device Software Dataset Note

1 NVIDIA Jetson UALPR Custom Dataset 5W LowPower mode

2 NVIDIA Jetson UALPR Custom Dataset 5W LowPower mode

3 NVIDIA Jetson UALPR Custom Dataset 5W LowPower mode

Avg NVIDIA Jetson UALPR Custom Dataset 5W LowPower mode

Table A.2 contains the timing-section of the spreadsheet. Here, the various
timing-information from each run is logged. Init shows the initiation-time for the
run, total shows the time taken for detection of the entire dataset, including ini-
tiation. Next we have average and median license plate detection times, followed
by the minimum and maximum times.

The final table, table A.3 contains the accuracy-portion of the runs. Here, the
dataset size, number of detections, and entirely correctly detected plates are col-
lected. From this information, the detection rate, failed detections and correct
detection rates are calculated. Finally, character-count from detected plates, and
the correct detections from these are gathered, and correct OCR rate is calculated.
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Table A.2: Results Timing Section.

Init Total (real) Avg. det. Median det. Min Max

0.626 87.286 0.719 0.706 0.397 1.392

0.462 85.599 0.71 0.698 0.398 1.376

0.473 85.204 0.707 0.696 0.397 1.36

0.520 86.030 0.712 0.700 0.397 1.376

Table A.3: Results Accuracy Section.

DS Size Dets. Det. rate Failed: Corr. Corr. % Chars Corr OCR %

118 113 95.763 % 5 89 75.424 % 677 567 83.752 %

118 113 95.763 % 5 89 75.424 % 677 567 83.752 %

118 113 95.763 % 5 89 75.424 % 677 567 83.752 %

118 113 95.763 % 5 89 75.424 % 677 567 83.752 %

A.1.4 Full List of Misidentified Characters

Table A.4 contains the list of misidentified characters for all three implementa-
tions.
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A.2 Code Listings

A.2.1 Raspberry Pi Camera Code

takePhoto.py Counts how many images (files) are already in the destination
folder. Then calls the built-in raspistill command in terminal with the num-
ber counted in the previous step plus one.

Code listing A.1: Raspberry Pi Camera - Image capture script

import os

count = len(os.listdir("/home/pi/DSimgs"))
command = "raspistill␣-o␣/home/pi/DSimgs/piImg" + str(count) + ".jpg"
os.system(command)

A.2.2 Dataset Statistics - Image Resolutions

Script traversing given dataset and collecting image data from each of the images.
Calculating statistics using this data, returning average pixel-count, file size and
resolutions.

Code listing A.2: Dataset Statistics - Image Resolutions

# Get average resolution of images in directory
import os # OS interaction
import argparse # Argument perser
from PIL import Image # Pillow Image module.

# Argument parsing
ap = argparse.ArgumentParser() # Init argparser
ap.add_argument("-i", "--input", dest="input", type=str, required=True,

help="Input␣directory␣path␣(required).")
args = ap.parse_args()

# Variables/lists
width = []
width2 = []
height = []
height2 = []
filesize = []
landscape = 0
pxcount = []

# Walk directory, collect data.
path = os.walk(args.input) # Walk dir
for r, dir, files in path:

for file in files:
if ".jpg" in file:

img = Image.open(args.input + file)
w, h = img.size
fs = os.path.getsize(args.input + file)
print(args.input + file, w, h)
# Default data:
width.append(w)
height.append(h)
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filesize.append(fs)
pxcount.append(w*h)
# Collections using largest dimension as width.
if w >= h:

width2.append(w)
height2.append(h)
print("Landscape")
landscape += 1

else:
width2.append(h)
height2.append(w)
print("Portrait")

# Output and calculations
## General statistics
print("\nImage␣formats:␣Landscape", landscape, "Portrait:", len(width)-landscape)
print("Avg␣Pxcount:", round(sum(pxcount)/len(pxcount)))
print("Avg␣Filesize:", round((sum(filesize)/len(filesize))/1024/1024, 3),"MB␣\n")

# Resolution stats
print("Min␣max␣Widths:", min(width), max(width))
print("Min␣max␣Heights:", min(height), max(height))
avgW = round(sum(width)/len(width))
avgH = round(sum(height)/len(height))
print("Average␣w,h:", avgW, avgH)
print("") # spacer
# "True" avg size
print("Min␣max␣width2s:", min(width2), max(width2))
print("Min␣max␣height2s:", min(height2), max(height2))
avgW2 = round(sum(width2)/len(width2))
avgH2 = round(sum(height2)/len(height2))
print("Average␣w,h:", avgW2, avgH2)

A.2.3 Metric Calculation

The script that parses CSV result files and returns calculated metrics.

Code listing A.3: Result Parsing - Metric Calculation

# Collect statistics from run-results.
import os
import argparse
import csv
import numpy as np

# Argument parsing
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", dest="input", type=str, required=True,

help="Input␣csv␣file␣(required).")
args = ap.parse_args()

# Global variables
init = 0 # Init time
predTimes = [] # List containing all prediction times.
minTime = 0 # Lowest timing value
maxTime = 0 # Highest timing value
detAs = [None] * 41 # Detected-as list
totals = [0,0] # Totals to keep track of character stats
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identicals = 0 # Counter for identical detections.
failures = 0 # Plates not detected.

## FUNCTIONS
# Trim only filename and return in uppercase
def isolatePlate(file):

if "_" in file:
if software == "UALPR": # If UALPR, trim last character.

return file.partition("_")[0].upper()[:-1]
else:

return file.partition("_")[0].upper()
else:

if software == "UALPR":
return file.partition(".jpg")[0].upper()[:-1]

else:
return file.partition(".jpg")[0].upper()

# Assign incorrect character to list
def assignWrong(a, b): # Character a incorrectly assigned as b

pos = None # Init variable
print(a) # Debug
# Get index for a
if ’0’ <= a <= ’9’:

pos = int(a)
elif a == ’Æ’:

pos = 36
elif a == ’Ø’:

pos = 37
elif a == ’Å’:

pos = 38
elif a == ’.’:

pos = 39
elif a == ’-’:

pos = 40
elif 65 <= ord(a) <= 90:

pos = ord(a) - 55
print(a,"assigned␣to␣index:", pos) # Debug

# Error checking:
if pos == None or not 0 <= pos <= 40:

print("Position␣out␣of␣bounds,␣invalid␣character", a , "given!␣Skipping!")
return False

# Iterate ticker and add charcter to list.
if detAs[pos] == None:

detAs[pos] = b
else:

detAs[pos] += b # Add character to list of "detected as"

# Find accuracy with shift
def findAcc(truePlate, predicted):

corrPlate = [0] * len(truePlate) # List tracking correct
detections.

corrPred = [None] * len(predicted) # List trackign correct
prediction indexes.

maxShift = abs(len(truePlate) - len(predicted)) # Maximum shift (diff)
shift = 0 # Current shift
goodShift = 0 # Highest assumed correct shift

for n, char in enumerate(predicted):
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# 1. Compare character
if truePlate[n + shift] == predicted[n]:

# Letter correct
corrPlate[n + shift] = 1
corrPred[n] = (n + shift)

# Else (does not match), apply shift
else:

if shift < maxShift:
while range(maxShift - shift): # Up until maxShift

shift += 1 # Apply shift
if truePlate[n + shift] == predicted[n]:

# Shift seems correct, keep shift.
goodShift = shift
corrPlate[n + shift] = 1
corrPred[n] = (n + shift)
break

else:
if shift == maxShift: # If maxShift reached and failed

shift = goodShift # Set shift back to last known
"good" shift

break

print("CorrPlate:\t", truePlate,"\t", corrPlate)
print("CorrPred:\t", predicted, "\t", corrPred)
corrCount = 0
for index in corrPred:

if not index == None:
corrCount += 1

print("Characters␣correct:", corrCount ,"/", len(corrPlate))
return corrCount

# Count entries in csv file.
with open(args.input) as f:

fileLen = sum(1 for line in f)

# Detect software utilized. (Used for applying vaious tweaks)
if args.input.split("_")[1] == "UALPR":

print("Ultimate␣ALPR␣detected!\n")
software = "UALPR"

elif args.input.split("_")[1] == "OALPR":
print("OpenALPR␣detected!\n")
software = "OALPR"

elif args.input.split("_")[1] == "ALPR-U":
print("ALPR␣Unconstrained␣detected!\n")
software= "ALPR-U"

else:
print("ERROR␣detecting␣software!\n")
exit()

# Open csv file and read contents.
with open(args.input) as csvFile:

csvReader = csv.reader(csvFile, delimiter = ",") # Read CSV file
line = 0 # Counter
for row in csvReader: # For each row

# Variables
corr = 0 # Counter for correct chars

# Sort special lines
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if line == 0: # First line contains init time.
init = row[0]
print("Init␣time:", row[0])

elif line == fileLen - 1: # Last line contains the total time used.
print("\n---------------------------␣Statistics␣

---------------------------")
print("Filename:", args.input.split("/")[-1], "\n")
print("TIMING:")
if software == "ALPR-U":

print("Output␣generation␣time:", row[1], "\n")
else:

print("Init␣time:", init)
print("Total␣time:", row[1])

# Loop the rest of the lines
else: # For all other lines..

print("Plate:",isolatePlate(row[0]))
plate = isolatePlate(row[0]) # Isolate plate
if software == "UALPR": # If UALPR, trim last character.

print("Pred␣:",row[1][:-1])
pred = row[1][:-1] # Gather prediction

elif software == "ALPR-U":
if len(row) > 1:

print("Pred␣:",row[1])
pred = row[1] # Gather prediction

else:
pred = "NoPlateFound"

else:
print("Pred␣:",row[1])
pred = row[1] # Gather prediction

if not software == "ALPR-U":
print("Pred␣time:", row[2],"\n")
predTimes.append(float(row[2])) # Append prediction time to list.

# Skip calculations if no plate was detected.
if "NoPlateFoun" in pred:

print("No␣plate␣found!\n")
failures += 1
line += 1
continue

# Perform comparisons
if plate == pred: # If identical (correctly identified)

corr = len(plate) # Set correct character count to all.
identicals += 1
print("Identical")

else: # If not identical
print("Not␣identical")
# Check length
if len(plate) == len(pred): # If same length, check each character

against eachother
print("Same␣#␣of␣characters")
for n, char in enumerate(plate):

if char == pred[n]:
print(char, pred[n], "same␣character.")
corr += 1

else:
print(char, pred[n], "different␣characters.")
assignWrong(char, pred[n])

else:
print("Different␣#␣of␣characters")
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# If length differs
# Apply shift-checking (Real ooprog/algmet hours)

if len(pred) > len(plate):
print("Prediction␣longer␣than␣plate!")
corr = findAcc(pred, plate)

else:
corr = findAcc(plate, pred)
print("Shifted␣corr:", corr)

# Calculate correct-rate
print(corr, "of", max(len(plate) ,len(pred)))
totals[0] += corr
totals[1] += max(len(plate),len(pred))
print(str(round((corr/len(plate)*100),3)) + "%␣accuracy.\n")

print("")
line += 1 # Iterate line counter

# Calculate and display statistics
if not software == "ALPR-U":

print("Average␣prediction␣time:", round(np.average(predTimes),3))
print("Median␣prediction␣time:", round(np.median(predTimes),3))
print("Lowest␣prediction␣time:", min(predTimes), "highest:", max(predTimes),"\n

")

# Plates correctly detected:
print("PLATE␣STATISTICS:")
print("Plates␣detected:", (fileLen - 2) - failures, "of", fileLen - 2)
print(identicals, "of", fileLen - 2, "plates␣correctly␣detected␣and␣read.")
print("Correct␣plate␣detections:␣" + str(round((identicals/(fileLen-2))*100,3)), "

%\n")

# Character statistics
print("CHARACTER␣STATISTICS/OCR:")
print(totals[0], "of", totals[1], "characters␣correctly␣recognized.")
print("OCR␣accuracy:␣" + str(round((totals[0]/totals[1])*100,3)) + "%")

# BETA FUNCTIONALITY: Does not work too well, needs more post-processing! Won’t
spend time on it though.

print("\nBETA␣FUNCTION:")
print("Incorrectly␣identified␣characters:")
print("\t␣Char:\t␣Identified␣as:")
for n, char in enumerate(detAs):

if char is not None:
if 0 <= n <= 9:

print(’\t’, n, ’\t’, char)
elif n == 39:

print(’\t’, ".", ’\t’, char)
elif n == 40:

print(’\t’, "-", ’\t’, char)
else:

print(’\t’, chr(n + 55), ’\t’, char)
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A.3 Additional Sources/Information

A.3.1 NVIDIA Jetson Power Mode

NVIDIA removed the documentation for the power modes for the NVIDIA Jetson
Nano during the project. As an alternative, here is the power model definitions,
gathered from the deivice itself. /etc/nvpmodel.conf

Figure A.3: Power model definitions for the NVIDIA Jetson Nano.
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Table A.4: Misidentified Characters Full List.

TRUE UALPR OALPR ALPR-U

A 1H R4

B E

C G0

D C C C

E 9L

G 6 6

H "II"

I J

J III

L 1I II EI

M NNNNN

N M

O 0 0 900

R B

S 5 I

T 1I

U L JJ

V U

W "VV"N "VN"x3 "VV"x3

X K K

Y V

Ø "OE"

Å

1 IIIT I77III I

2 Z

3 J B

4 II

5 S

6 0G4 0

8 B 9

9 0 I 6

0 O OOQOOOOOOOOOOD
OOOOOOOOOO
OOOOOOOOOOO

QDC

-

MISSED —————-
J—–

78JID01I515VKL
0342315X5I
UII9J1ST1WL1
25ØEA82–RA6D230
8ØØOUL-5–211TR7
41L–12E021 T3-A6P4

–C-A——— TF 2S TF2
– BT S RT UY BD 91 D
ST SU3 - DL 4 A- TS EL
GA – BP TV



84 E. Einmo: ALPR Performance on Mobile Devices

A.3.2 Metadata/Categorization - Angle

Helping chart to help determine and illustrate the severity of angles from license
plate plane. Green = straight, yellow = slight, orange = some, and red = severe.

Figure A.4: Image depicting angle severity to plane of license plate.
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A.4 NSD Information Pamphlet

Here you can find the NSD information pamphlet that was provided participants
in the dataset. It is written in Norwegian.
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