
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Aksel Baardsen

Phishing and Social Engineering
Attack Detection by Applying
Intention Detection Methods

Phishing Detection using Intent Detection
Methods

Master’s thesis in Information Security
Supervisor: Sule Yildirim Yayilgan
Co-supervisor: Sarang Shaikh
June 2022

M
as

te
r’s

 th
es

is

Aksel Baardsen

Phishing and Social Engineering Attack
Detection by Applying Intention
Detection Methods

Phishing Detection using Intent Detection Methods

Master’s thesis in Information Security
Supervisor: Sule Yildirim Yayilgan
Co-supervisor: Sarang Shaikh
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

Nowadays, email and SMS are used daily by almost everyone in the developed
part of the world. A threat which follows this trend is phishing. Phishing and
social engineering attacks are among the most common form of cyberattacks
experienced, as they are not complex for an attacker to put together. In this
thesis we attack the phishing problem using models gathered from the domain
of intention detection. Intent detection is a sub-genre of natural language pro-
cessing, and is very important in computer systems revolving around human
interaction. Applications of intent detection are present in chat-bots, network
intrusion, e-commerce, and more. Concretely, we test three of the state of the
art intention detection models against a dataset consisting of both phishing and
benign emails. By analyzing the text in emails using these models we correctly
identify the vast majority of malicious emails; the intention detection models
performed as well as the current state of the art in email phishing detection.
Through the experiments in this thesis it was also found that not analyzing
phishing emails using these models did not degrade the classification quality
of the models.

iii

Sammendrag

Nå til dags brukes e-post og SMS daglig av nesten alle i verden. En trus-
sel som følger denne trenden er phishing. Phishing og manipulasjonsangrep
er blant de vanligste formene for nettangrep som oppleves nå til dags, siden
de ikke er vanskelige for en angriper å utføre. I denne oppgaven angriper
vi phishing-problemet ved å bruke modeller samlet fra intensjonsdeteksjons-
domenet. Intensjonsdeteksjon er en undersjanger av naturlig språkbehandling,
og er svært viktig i datasystemer som dreier seg om menneskelig interaksjon.
Intensjonsdeteksjon er allerede tilstede i chat-roboter, nettverksinntrenging, e-
handel og mer. Konkret tester vi tre moderne intensjonsdeteksjonsmodeller mot
et datasett som består av både phishing og godartede e-poster. Ved å analys-
ere teksten i e-poster med disse modellene klarer vi å identifisere de aller fleste
ondsinnede e-poster; modellene for intensjonsdeteksjon gjorde det like bra som
de nåværende toppmodellene innen phishing-deteksjon av e-poster. Gjennom
eksperimentene i denne oppgaven ble det også oppdaget at det å ikke ana-
lysere nettlenker i phishing e-poster ikke forværret klassifikasjonskvaliteten til
modellene.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . ix
Tables . xi
Code Listings . xiii
1 Introduction . 1

1.1 Topic covered by the project . 1
1.2 Keywords . 2
1.3 Problem description . 2
1.4 Justification, motivation and benefits 2
1.5 Research questions . 3
1.6 Planned contributions . 3

2 Related Works . 5
2.1 Intent detection . 5

2.1.1 Computational methods 6
2.1.2 Deep Neural Networks 7
2.1.3 BERT & Transformers 9

2.2 Phishing and Social Engineering 11
2.2.1 Phishing types . 11
2.2.2 URL Analysis . 13
2.2.3 Text Analysis . 14
2.2.4 Datasets . 16

3 Choice of Methods . 19
3.1 Computational methods . 19

3.1.1 Bidirectional Long Short-Term Memory (Bi-LSTM) . . . 19
3.1.2 Gated Recurrent Unit (GRU) 22
3.1.3 Convolutional Neural Network (CNN) 22
3.1.4 BERT . 23

3.2 Dataset selection . 25
3.3 Performance evaluation . 25

4 Experiments . 29
4.1 Experimental design . 29
4.2 Experimental setup . 31

vii

viii Baardsen: Phishing Detection using Intent Detection Methods

4.3 Datasets . 32
4.3.1 Enron Corpus . 32
4.3.2 Nazario Corpus . 34
4.3.3 Merging and Splitting Datasets 37

4.4 Tokenization and Embedding 38
4.5 Implementation . 38

4.5.1 BiLSTM . 39
4.5.2 BiGRU . 39
4.5.3 CNN . 40
4.5.4 BERT using FFNN . 40

5 Results . 41
5.1 Confusion Matrices per Algorithm 41
5.2 Classification Results . 43

6 Discussion . 45
7 Conclusion . 49
8 Future work . 51
Bibliography . 53

Figures

2.1 Illustration of a simple perceptron 7
2.2 Example of a phishing email. Extracted from the Nazario Phish-

ing Corpus [31]. 12

3.1 Simple visualization of an LSTM cell. 21
3.2 Simple illustration of a GRU cell. 22
3.3 Illustration of a CNN with one layer. 24
3.4 Formula for accuracy . 26
3.5 Formula for recall . 26
3.6 Formula for precision . 26
3.7 Formula for F1-score . 26

4.1 Experimental design. 30

5.1 BiLSTM on NO_URL . 41
5.2 BiLSTM on URL . 41
5.3 BiGRU on NO_URL . 42
5.4 BiGRU on URL . 42
5.5 CNN on NO_URL . 42
5.6 CNN on URL . 42
5.7 BERT-FFNN on NO_URL . 43
5.8 BERT-FFNN . 43

ix

Tables

2.1 Datasets used for phishing detection in the literature. 17

4.1 Specifications of the cloud testing platform. 32
4.2 Preprocessing steps performed on the Enron corpus before ex-

porting as .csv file. 33
4.3 Preprocessing steps performed on the Nazario corpus before ex-

porting as .csv file. 36
4.4 Preprocessing steps performed on the combination of Enron and

Nazario. 37

5.1 Final results of all experiments. 44

xi

Code Listings

4.1 Text tokenization and embedding implementation 38
4.2 BiLSTM implementation . 39
4.3 BiGRU implementation . 39
4.4 CNN implementation . 40
4.5 BERT-FFNN implementation 40

xiii

Chapter 1

Introduction

In this day and age, people frequently communicate using Internet based ser-
vices - whether it be for professional or personal uses. Although this is often
described as a positive direction for society, as it allows for easier communic-
ation, it has opened up a door for social engineering which was previously
limited to phone calls and SMS’s. Social engineering related crimes such as
online phishing has soared in popularity in the past years, to the point where
even ‘call-centers’ have been established to systematically lure trusting people
to give up assets. This thesis explores methods to detect such social engineer-
ing attacks, and attempts to apply existing techniques from another field to
enhance the already existing methods.

1.1 Topic covered by the project

This thesis will delve into the technology behind understanding the inten-
tions that lay within human language, or more precisely, natural language.
The majority of methodologies explored within the realm of natural language
processing (NLP) are computational in nature, hence this master’s thesis will
focus on the computational methods employed in intent detection and apply
these onto the phishing problem area in an appropriate manner. Intent de-
tection is used in a multitude of applications, as it gives a machine a more
thorough understanding of human language. This increased understanding is
what advances areas of applicability of NLP, such as personal assistants which
can, with time, be used for increasingly more tasks. As intent detection require
proper semantic understanding of natural language, simple machine learning
methods will not be evaluated in this thesis. Instead, the focus of this mas-
ter’s thesis will be on deep learning methods using mainly neural networks and
transformers.

1

2 Baardsen: Phishing Detection using Intent Detection Methods

1.2 Keywords

Natural Language Processing, Digital Forensics, Cybersecurity, Phishing at-
tacks, Machine Learning, Deep Learning

1.3 Problem description

As it stands now, a lot of emails with malicious intent are not picked up by
automatic spam filters on the way to the recipient. Services such as Outlook
does its job partly by flagging emails that originate outside the organization of
the recipient. However, this is far from enough to eradicate the phishing prob-
lem. A whole bunch of malicious emails still pass through regularly employed
filters, and even though they may be marked as ‘External,’ they are often still
opened and seen by the recipient. By just opening such an email, we, as em-
ployees or private people, have made the first stage of the attack a success.
Then, if the email is enticing enough, the recipient might reply to continue the
conversation, or they might click a link taking them to a fabricated website of
someone else’s intellectual property.

To combat malicious emails, the commonly used filters employ a variety of
methods. These methods include analysis of links in the email body, as well
as scanning files for malicious hashes. Often times this is enough to detect
attacks and prevent the recipient from ever seeing the mail. However, there are
bound to be false negatives from such filters - mails marked as safe when they
indeed are not. Therefore, it is important to shift the attention of the phishing
detection task more towards the implicit meaning behind the text written in
email. Of course the URLs’ and files’ validity and origin should always be
questioned, but if phishing can be detected from just the intent behind the
email body, it will be possible to more accurately detect targeted emails in
attacks such as spear-phishing.

1.4 Justification, motivation and benefits

To fight the issue of having malicious mail floating around in one’s inbox it
is important to have a rigorous real-time system in place which does not let
as many malicious mails as possible through. The product of this thesis will,
if positive results are achieved, advance the field of phishing detection and
effectively merge the intent detection and phishing detection problem together.
This means that the advancement in one of the field most likely will also be
an advancement in its counterpart.

This thesis will also advance the community’s understanding of which meth-
ods might be best suited for the stakeholder’s purpose, because the thesis will,
in addition to traditional metrics used to evaluate performance of classifiers,
use program runtime as a relevant metric. Stakeholders which will benefit from
this thesis are any corporation who deal with email server hosting and/or email

Chapter 1: Introduction 3

filtering services, as state of the art methods will be evaluated on their efficiency
time-wise. Evaluating the method as thus will help potential stakeholders in
making a decision on which methods are the best, which might reduce cost
used on filtering-related hardware.

But, the most important reason for even doing this thesis is simple; further
improve upon guarding the public from malicious third-parties. Everyone who
use messaging-services or email will benefit from the product of this thesis if
the service they use chose to employ some change in their filtering based on
this thesis’ product.

1.5 Research questions

In order to solve the problem posed, we need to find out:

Q1. What is the state of the art in phishing detection of emails?
Q2. What is the state of the art in intent detection?
Q3. Can phishing emails be detected reliably without examining URL’s or

file attachments?
Q4. Will applying intent detection methodologies to the email phishing de-

tection problem increase accuracy, precision and recall compared to the
state of the art found in Q1?

Q5. Does applying intent detection methodologies to the email phishing de-
tection problem decrease classification time compared to the state of the
art in phishing detection?

1.6 Planned contributions

The main contributions of this thesis will be testing and comparing perform-
ance metrics of phishing detection methods which have not been performed
before. The main goal and hypothesis for this thesis is that formulating the
phishing detection problem into an intention detection problem and then ap-
plying the state of the art intent detection methods onto it will increase the
performance metrics used to evaluate successful phishing detection, including
program run-time. Also, the thesis will conclude on whether analyzing URLs
in phishing emails provide benefits for classification results, or whether they
can be excluded.

As a result of this thesis, intent detection methodologies will be examined
and the most relevant framework for intent detection of social media posts
will be used in the METICOS project as a step in user feedback analysis of
automated border control systems.

Chapter 2

Related Works

There is a lot of work done related to classification of written phishing and
social engineering attempts. A simple search using Google Scholar lands sev-
eral tens of thousands of hits for ‘phishing detection’, and it is a hard task to
prioritize which ones are the best. This chapter will prepare the reader with
knowledge of the existing phishing and social engineering detection methods,
establish what phishing is, and contents which are needed to understand the
works in this thesis. In addition, the topic of intent detection and natural lan-
guage processing (NLP) will also be introduced, as these are main components
of the thesis.

The first part will introduce the reader to the problem of intent detection.
Then, the next section will consist of a rundown of what the most popular
computational methods used today to uncover intent in texts. Thereafter, the
next part will introduce the reader to the topic of phishing and social engin-
eering and its prevalence in the world. Following this introduction, the next
section will elaborate on both the history of phishing detection and the state
of the art methods used today to uncover phishing in written texts. Lastly,
the importance of datasets in phishing detection will be discussed alongside a
presentation of widely used datasets collected from other articles.

2.1 Intent detection

Intention detection, intention classification and intention mining are all widely
used and similar names representing extracting intention out of a string of text.
There are of course other uses for the terms, such as intent detection in videos
to uncover crimes [1], but in this thesis the focus will be on intent detection in
short texts. Furthermore, in this thesis, all of the three terms presented at the
start of this paragraph will be referred to and presented as ‘intent detection’
in order to avoid confusion down the line.

To start off, it is important to establish a level understanding of what an
intention itself is when it comes to text written by normal humans. According
to the Merriam-Webster dictionary intention is "a determination to act in a

5

6 Baardsen: Phishing Detection using Intent Detection Methods

certain way" [2], and this is used as the be-all end-all definition when inten-
tion or intent is written in this thesis. This vague definition of intention is an
umbrella-term of all explicit or underlying meanings of text.

Intent detection is a hot topic within natural language processing (NLP)
these days. It is used in social media platforms to detect intents such as harm
and hate speech [3, 4], in the commerce industry to help predict what custom-
ers want to buy [5–7], in chat-bots to unravel which response is desired from
the bot [8–11], and the list goes on. In concise terms, intent detection in the
practice of computers determining the purpose of a text segment using a de-
termined methodology. This methodology can of course vary from the selection
of features which represent the text, to the computational method employed
to ultimately classify the intent of the given text.

There are two main categories of intent [12]: explicit intent and implicit
intent. Explicit intent is when a string of text has no ulterior motives or goals,
such as ‘I am going to eat ice cream in five minutes,’ whereas implicit intent is
when the intent of a string is not directly conveyed in a single, isolated, string.
To use the previous example, the explicit intent is to eat ice cream in five
minutes, but there might be an implicit intent hidden beneath that statement,
such as ‘I am hungry, but not for a proper meal’. This thesis will focus entirely
on explicit intent detection. In this thesis we will also only deal with single
intent detection where a string of text is only assigned one label, as opposed
to multi-intent detection [12] where multiple intents are assigned to a string of
text.

2.1.1 Computational methods

Machine learning is a subset of computational methods, in which algorithms, or
models, form their decision making based on the data presented to it [13]. Basic
machine learning algorithms, such as support-vector machine (SVM), Naive
Bayes and Random Forest (RF) are generally not suited for intent detection
due to them not having the capability to properly understand the semantics in
a given text [12]. This statement is represented well by Akulick and Mahmoud
[14] who in 2017 attempted to classify intents in their dataset using n-grams,
Parts-of-Speech and SVM. Their findings show that SVM’s performance is
abysmal, achieving around a 40% accuracy rate. However, in 2019, Larson
et. al. [15] also performed intent classification on the CLINIC dataset, but
insead of using n-grams as a feature, they instead opted for Bag of Words
(BoW). This resulted in around 90% accuracy for in-scope intents, but below
20% accuracy for out-of-scope intents. Nonetheless, SVM fell behind all of the
deep-learning methods considerably both in in-scope and out-of-scope intent
detection problems.

Chapter 2: Related Works 7

W1

W2

Σ θ()

Input layer Output layerInput data

X1

X2

Activation function

Output

Figure 2.1: Illustration of a simple perceptron

2.1.2 Deep Neural Networks

Deep Neural Networks (DNN) are a subset of Machine Learning methods,
which is based on the concept of using neurons in computing [13]. The concept
of neurons themselves stem from biology, as our brain contain neurons which
are thought to dominate the function of the brain [16]. This section will go
through the popular methods of tackling the intent detection problem through
three different variations of DNNs.

A simple perceptron is a neural network which consist of a set of input
vectors, neurons, a bias, and an activation function [13, 16], as illustrated in
figure 2.1. A DNN can be thought of a simple perceptron which consist of
many layers of neurons connected to each other by form of weights. In figure
2.1 there is only one layer (the input layer), but in a DNN there are many
hidden layers between the input layer and output layer.

An example of a technique used to format text into formats which can
be input to neural networks is FastText [15]. Larson et. al. [15] achieved an
accuracy comparable to SVM using FastText. Balodis et. al. [17] combined
FastText’s embedding with different types of DNNs across different languages,
which resulted in generally good accuracies compared to its counterpart, which
implies that FastText is best used alongside other computational methods to
achieve optimal results.

Convolutional neural networks

Convolutional neural networks (CNNs) are a variation of deep neural networks
which were originally used in image processing [12, 13]. These differ from reg-
ular neural networks in the fashion of having convolutional layers, meaning
convolution operations are applied on the input data between each connected

8 Baardsen: Phishing Detection using Intent Detection Methods

convolutional filter in the model [13]. This computational method has been
used for multiple-intent detection when used on syntactic features and for fea-
ture engineering, but has limitations when it comes to representation of results
[12]. Larson et. al. [15] tested a CNN on their CLINIC dataset, and achieved
good results compared to the other models tested, where the accuracy was
relatively high for both in-scope and out-of-scope intents (where scope refers
to whether the model has been trained on the classification material). Wang
et. al. [18] proposed to combine CNN with bidirectional gated recurrent unit
(BGRU) to achieve better results in intent detection. The results state that
the model performed well with different parameters for layers, but the model
was only tested on a Chinese dataset, not an English one.

Recurrent neural networks

Recurrent neural networks (RNNs) vary from other neural networks by imple-
menting one or several feedback-connections [13]. Recurrent neural networks
have been used in intent detection, but the most basic implementation of an
RNN has several problems such as Gradient explosions [12]. Therefore, the
field has opted to use a version of RNNs which solves the problems associated
with RNNs: Long short-term memory.

Long Short-Term Memory

Long short-term memory (LSTM) improves upon traditional RNNs by includ-
ing a module for retaining (and forgetting) memory, making it better suited
for intent detection [12]. The network is better suited for text classification,
because it more accurately is able to figure out which words (or features) are
important in a sequence by utilizing the improved memory.

Ting He et. al. [19] tested an LSTM on both the ATIS and SNIPS data-
sets. LSTM performed among the worst of the methods tested, only besting
attention-based RNN in one instance. Wang et. al. [18] tested LSTM against
several other methods, where LSTM performed the worst out of the deep-
learning methods tested - only performing better than the traditional non-
deep machine-learning methods Naive Bayes and SVM. Gennaro et. al. [20]
showed, by experimentation, that using more hidden dimensions resulted in
better accuracy when using traditional LSTM.

Bi-LSTM

Bidirectional Long Short-Term Memory (Bi-LSTM) differ from the ‘traditional’
LSTM model by not entirely depending on previous results, but also on future
iterations [21]. This has resulted in general performance increase in intent de-
tection [12]. Recently, in 2021, Qin et. al. [22] incorporated Bi-LSTM into their
proposed model, utilizing its functionality for producing a slot-aware represent-
ation. The results from this methodology indicate better performance metrics

Chapter 2: Related Works 9

for intent classification on the MixATIS and MixSNIPS datasets compared
to other state of the art methods. Miyazaki et. al. [23] combined BERT for
embedding, Bi-LSTM, and a feed-forward neural network in order to create a
model which outperformed others on the Incident Streams dataset, which is a
dataset sourced from Twitter used in a competition in 2018. Their accuracy
was better than all of the other contestants, but the precision and recall of the
method were remarkably low.

GRU

Liu et. al. [12] stated that Gated Recurrent Unit (GRU) is an improvement of
the standard LSTM model. The reason why is due to GRU being able to retain
longer pieces of information, as well as the ability to learn semantics of a given
text. Wang et. al. [18] discussed the debate of Bi-LSTM versus Bi-GRU, where
they mention that a concrete conclusion about which method is better is not
reachable, but they show that CNN-Bi-GRU performed the best in their tests
compared to CNN-Bi-LSTM. Firdaus et. al. [24] compared Bi-LSTM and Bi-
GRU across the ATIS, TRAINS and FRAMES datasets. The result from that
article shows Bi-LSTM and Bi-GRU perform very similarly, firmly affirming
that concretely stating which is better is a difficult problem.

2.1.3 BERT & Transformers

In 2018, Google released a paper introducing the new state of the art in natural
language processing, Bidirectional Encoder Representations from Transformers
(BERT) [25]. BERT is a transformer, and ever since its publication it has been
widely adopted and tested within the realm of intent detection. It is frequently
used in conjunction with other deep learning methods such as CNNs and RNNs
in order to achieve better performance than by using them in a stand-alone
fashion.

In 2020, Balodis et. al. [17] used BERT’s embedding together with a CNN,
LSTM and a Bi-LSTM network to judge its performance against FastText
embeddings in intent detection problems across several datasets. As expected,
BERT performed the best, i.e. had the best accuracy, most of the time.

As mentioned earlier, Miyazaki et. al. [23] also used BERT for embedding
the text for use with other deep-learning methods (without fine-tuning it to the
dataset used), and achieved the best accuracies of detecting intents compared
to the other methods.

In the paper which introduce the CLINIC dataset, Larson et. al. [15] also
use BERT for classifying intent in their dataset. BERT performed the best,
with a significantly higher intent detection accuracy and f1-score than other
methods tested.

He et. al. [26] presented a novel method for intent detection in which a CNN
was combined with BERT. The results show that their method achieved signi-
ficantly higher intent detection accuracy on both an English dataset (ATIS) as

10 Baardsen: Phishing Detection using Intent Detection Methods

well as on a Chinese dataset (YTBD) compared to the other state of the art.

Chapter 2: Related Works 11

2.2 Phishing and Social Engineering

Phishing and social engineering attacks are some of the most frequent cyber-
attacks nowadays. According to IBM Security’s X-Force Threat Intelligence
Index published in early 2022, phishing attacks are the most common vector
by which attacks are successful by [27]. In addition, phishing is also identified as
being the most widespread attack vector in cyberattacks [28]. This is a strong
indicator that both organizations and individuals need to put more effort into
successfully detecting and preventing phishing and social engineering attacks
in order to prevent potentially massive disasters. A survey conducted in 2021
asked participants to rank a list of emails on a range of ‘safe’ to ‘suspicious’
[29]. The surprising finding from this survey is that the mean correctness of the
participant’s choices in the survey only amount to 62%. An accuracy of just
above fifty-fifty is definitely not good, meaning there is a good chance many
of the participants would have fallen for some of the phishing attempts. One
option to decrease successful phishing attacks, which will be the focus of this
thesis, is prevention, or blockage, of such phishing attempts before they even
reach the target.

In this thesis, henceforth, the term ‘phishing’ will be used as a collective
term for both ‘phishing and social engineering’, as the two terms are often
interchanged. The term ‘phishing’ will be used in a manner which falls under
the definition given by Bowcut [30], in that phishing is a technique by which
an attacker entice the victim to perform a harmful action while not having a
clue that the action is harmful to either oneself or an organization. Although
this definition is vague in defining the contents of the attack, it best sums
up the attack method without leaving obscure instances out of the definition.
The main feature of the phishing attack is that its target is not computer
systems themselves, but instead the users controlling the computer systems.
A prime example of such formulation can be observed in figure 2.2, wherein a
cybercriminal impersonated the ‘Wells Fargo Team’ to make the victim send
them debit card information using a custom software supplied in the email.

2.2.1 Phishing types

Phishing is not just a straight-forward collection of attack vectors. Different
pieces of literature disagree on exactly which categories of phishing there are,
but this section aims to summarize which categories exist, and establish which
ones are included in the scope of this thesis.

First, there is the regular phishing attack. According to Bowcut [30], this
type is what people most commonly think of when hearing the word ‘phishing’.
The regular phishing attack targets the everyday person, and the attack (often
in the form of a fraudulent email) is often mass produced. Mass producing a
phishing attacks refer to the attacker using the same template for every single
victim without altering the contents of the message. A popular example of
such an attack is the ‘Nigerian Prince’ scam [32], which is an example of an

12 Baardsen: Phishing Detection using Intent Detection Methods

Dear Customer,

Your monthly Wells Fargo=AE statement is now available. To

view it,

Please download the attached file below and fill out all the

requested info=

rmation

debit card Pin is required to complete the process.

Thanks,
The Wells Fargo Team

Figure 2.2: Example of a phishing email. Extracted from the Nazario Phish-
ing Corpus [31].

advance-fee scam where an attacker would pretend to be a wealthy distant
relative, but required a ‘small sum’ of money transferred to their account first
before they could give the victim their ‘gift’.

Secondly, Bowcut [30] highlights the first category of specialized phishing
attacks: whale phishing. In this category, the phishing email is especially craf-
ted for an intended recipient. These mails are not mass-sent out, as this would
increase the risk of the mail being caught in a spam-filter or other filters. Since
these emails are carefully created to hook the victim, it may take the attacker
some time to actually gather intelligence on the victim in order to make the
email appear benign. Since the emails are so meticulously crafted, the victims
are much more likely to take the bait. Reiterating the most important aspect:
spear phishing is a targeted attack.

The third category of phishing attacks is called ‘spear phishing’. It shares
a lot of similarities with whale phishing, but the main difference is that spear
phishing is aimed at a circle of individuals, not a singular individual [30]. For
example, a spear phishing attack is made to target the IT administrators of an
organization, while a whale phishing attack instead would just target the CIO
(Chief Information Officer). Whale phishing often require a lot more effort and
research of the individual person and their social circuit than the other forms
of phishing.

Lastly, Bowcut [30] lists ‘smishing’ as the final category of phishing. The
only feature separating this category from regular phishing is that smishing
happens via SMS, not email. This can perhaps be a more effective method to
hook a victim, seeing that there is a significantly higher response rate for SMS’s

Chapter 2: Related Works 13

than emails [33]. However, for the sake of simplicity, in this thesis smishing will
be a part of the general phishing category, as the attack vector too similar to
phishing done via email.

In this thesis, the focus will be on the former categories which are text-
oriented. This includes traditional phishing via Email and SMS services tar-
geting any victim - be they a commoner or a high ranking employee of a large
organization.

2.2.2 URL Analysis

One of, if not the, the most popular methods for detecting phishing is to simply
analyze URLs or domains. This technique is quite useful, as the methodologies
of detecting illegitimate domains are well established and are known to work
well. Researchers and companies employ these methods both in scanning emails
for malicious content, but also for blocking domains from service.

Barraclough and Woodward [34] combined popular methods, such as black-
listing and heuristic based approaches, for phishing URL detection to create a
phishing URL detection model. By combining some of the most popular meth-
ods, their model managed to achieve performance-metrics on par with the state
of the art in malicious URL detection. The researchers also employed run-time
as a metric to prove that the model was efficient, which is not common for
researchers to supply.

To detect phishing URLs, Ozcan et. al. [35] employed deep neural net-
works (DNN), inspired by the works in the field of natural language processing
(NLP). Through the experiments performed, the results show that using DNNs
closely resembling the state of the art in NLP perform much better in expos-
ing phishing URLs than traditional machine learning methods, as their hybrid
DNN-BiLSTM model perform similarly to the best algorithms in the field.

Lansley et. al. [36] combined URL analysis with text analysis in order to
improve detection rates of social engineering (phishing) attacks in the new
and improved ‘SEADer++ v2’. By first analyzing a URL’s reputation on a
scale from 1-100 and then analyzing text on features such as spelling quality,
stop-words, and basic topic modeling the authors achieved decent results in
classifying phishing emails and messages. However, this novel method of com-
bining different algorithms fall short of the current state of the art, where the
average accuracy, precision and recall are significantly higher. This might be
due to the authors using traditional machine learning algorithms for classific-
ation instead of using transformers or DNNs, but the authors concluded that
fuzzy logic is the best next step to improve the algorithm. In PhiBoost [37],
the authors used AdaBoost, adaptive boosting, alongside custom features ex-
tracted from the URLs in order to classify a URL as malicious or not. They
achieved performance metrics very similar to the state of the art, but the au-
thors suggest testing the classification model in a real-time environment to
further evaluate its performance.

14 Baardsen: Phishing Detection using Intent Detection Methods

While purely analyzing URLs can be sufficient in many cases, Vijayalak-
shmi et. al. [28] notes that there are methods employed where the websites
themselves are scanned (web content analysis) and compared to legitimate
sites in order to determine whether the website is used for phishing or not,
referred to page similarity evaluation. There is a clear disadvantage in using
this approach, as it is much more resource demanding than simply analyzing
a URL. However, in cases where the URL analysis method does not suffice,
employing web-page similarity evaluation methods might increase the classi-
fication accuracy.

Another novel approach to detecting phishing attacks is by analyzing net-
work packets themselves. Rendall et. al. [38] proposed a model which analyzes
DNS packets using supervised machine learning. Although novel, the approach
did not achieve accuracies nearing the state of the art, topping off at 84% using
SVM for classification.

2.2.3 Text Analysis

A more relevant methodology is the approach of text analysis. These methods
try to mainly analyze the text in the phishing scams instead of just the link,
as just analyzing a URL or attachments can cause false positives especially in
communication between two close people.

Linguistics Inspired Methods

Some researchers have tested if linguistic analysis of emails is a viable method
for detecting phishing emails. One example is Valecha et. al. [39] who in early
2022 published a paper in which they attempt to use persuasion cues to accur-
ately identify phishing attempts. The essence in their methodology is to identify
whether the sender is attempting to convince the receiver into performing an
action, such as transfer money or give up a password. Using Word2Vector, a
neural network model, alongside five machine learning classifiers they achieved
high accuracies. However, the accuracies presented fall short of the state of the
art by several percentage points.

Natural Language Processing Techniques

Verma et. al [40] proposed a model for combining text analysis, link analysis,
and email header analysis in 2012 named PhishNet-NLP. For the text analysis
part of the model, parts of speech tagging, stop word removal and character
normalization algorithms were used. By combining the scores from these sep-
arate parts, the model achieved close to state of the art results, with above
97% accuracy when tested on the Nazario phishing corpus [31].

Smadi et. al. [41] created a highly complex model for phishing email detec-
tion using a dynamically evolving deep neural network using a reinforcement
learning approach. Their model, which consists of dynamic feature evaluation

Chapter 2: Related Works 15

and extraction, an ever changing deep neural network, and a reinforcement
learning agent, managed to completely outperform the state of the art when
the paper was published in 2017. However, this model did not purely analyze
text. In fact, the features selected (or rather shown) in the paper mostly re-
volve around other data found in the email, such as HTML scripts, headers
and URLs. Only 9 of the 50 proposed features were extracted from the text in
the email body.

Sonowal et. al. [33] performed smishing detection using traditional machine
learning techniques. By using mostly text related features such as spelling,
parts of speech, and character count. Employing the Random Forest classifier,
they managed to achieve 98.66% accuracy with an F1-score of 94.72, which
was at the time a better performance than the state of the art in smishing.

Combining deep neural networks with traditional machine learning meth-
ods have been successfully shown to be a reliable method for phishing email
detection. Bountakas et. al. [42] used the state of the art in feature extraction
such as Word2Vec and BERT for the purpose of extracting features from the
emails. Then, by employing popular traditional machine learning algorithms
such as decision trees for classification of emails, they were able to achieve
performance metrics close the state of the art. However, the false positive and
false negative rates fell short of what is expected of the state of the art.

Jonker et. al. [43] recently published an article closely related to this thesis,
in that their goal was to transfer NLP methods onto the problem of phishing
detection. By using deep-learning methods such as LSTM, other deep neural
networks, and BERT they achieved substantially good results. However, al-
though they achieved good results, they note that since they got better results
than anticipated using standard models they did not implement proper state-
of-the-art modifications to those models like is done in this thesis.

Semantic analysis of text is a prominent subcategory of Natural Language
Processing, and is closely related to intent detection. Peng et. al. [44] combined
semantic analysis approaches with URL analysis in order to produce a model
used for phishing detection of emails which performed very well compared to
only using NetCraft - a link analysis tool used to detect phishing emails. Due to
the good performance of the model, the researchers concluded that semantic
analysis techniques are highly proficient in detecting social engineering. By
performing a semantic analysis of text, Khan et. al. [45] were able to detect
phishing emails fairly accurately. Their algorithm compared verb-object pairs
found in sentences with a blacklist of such pairs, alongside finding if the verb-
object pair was a question or an order. By then using traditional machine
learning techniques, they crafted a decision tree from the blacklist, and detec-
tion of malicious mails were done based on this. Although the results do not
come close to the accuracies from transformers and deep neural networks, it
was a novel methodology in the phishing domain.

16 Baardsen: Phishing Detection using Intent Detection Methods

2.2.4 Datasets

Table 2.1 shows a listing of different datasets which have been utilized in
the literature reviewed. It is important to note their existence and contents,
as some of these will be selected for use in the experiments in this thesis.
The most common data by far is plaintext emails, not organized any further,
meaning content extraction is necessary to use them. A common theme for the
reviewed literature is that most use a balanced dataset, i.e. there are a similar
amount of phishing emails as there are benign emails. Since this is definitely
not representative of a real scenario, one must keep in mind that the results
might be skewed.

Chapter 2: Related Works 17

Dataset Label examples Description

Enron [46] {Subject, Body} The Enron dataset is the largest dataset com-
prised of emails written by real employees of En-
ron. It also contains the employees’ inbox, some
emails of which contain content from personal
use outside of the organization. Emails from this
dataset is often used as the ‘benign’ mails in
phishing email detection, as the emails are the
most popular and well-known to be an accurate
representation of real emails written by the av-
erage Joe or Joanne.

HoneyTrap [47] {Subject, Body} MillerSmiles.co.uk is a website dedicated to
archiving phishing and email spoofing scams,
and carry a database of over 2.6 million entries
long full of phishing scams dating as far back as
to 2004. Accessing the archive, however, is not
free. The owners charge 180 British pounds per
month for a commercial license to use it. On the
website itself there is an ‘browse archive’ feature,
but the entries do not showcase the full bodies
of the emails.

UCI SMS Spam [48] {spam, ham} The UCI SMS Spam Collection consists of a
plethora of both benign (ham) and spam SMS
messages. Several studies have used this dataset
for phishing detection, as most spam email and
SMS are either in the category of phishing or ad-
vertisement. Of course, the advertisement SMS’s
have been removed from the dataset when used
in phishing classification.

Nazario [31] {To, Body} The Nazario Phishing Corpus is a collection of
phishing emails collected from the period of 2015
to 2021, last updated in February in 2022. It
is freely available online, but the data is not
cleaned, and only exist in the form of plaintext
and mbox files.

Nigerian Scams [49] {Message-Id, To} The Fradulent E-mail Corpus is a collection of
‘Nigerian scam’ emails dating from 1998 to 2007 -
they are old. Hence, this dataset represents tech-
niques used in the early dates of the Internet. It
is available on Kaggle, but the data itself only
exist in the form of a single text file.

Table 2.1: Datasets used for phishing detection in the literature.

Chapter 3

Choice of Methods

This section aims to inform the reader of the methods used in this paper
to answer the research problem. It will firstly go over the different criteria
for selecting computational methods which will be evaluated in this thesis,
and thereafter the criteria for dataset selection will be presented. Lastly, the
methods by which the computational algorithms will be evaluated is explained.

3.1 Computational methods

This thesis’ aim is to apply the state-of-the-art (SOTA) in the field of intent
detection on to the field of phishing detection in order to determine whether
Natural Language Processing is sufficient for protecting against phishing at-
tacks. In order to achieve this, the SOTA in both intent detection and phishing
detection have been identified in section 2 and understood. This section will
present the computational methods which have been selected for use in the
experiments. The main criterion for any computational methodology to be
considered for evaluation is that it fits into the definition of SOTA for intent
detection and is not currently a part of the state of the art in phishing de-
tection. The implementation of these methods will be described in detail in
section 4.

3.1.1 Bidirectional Long Short-Term Memory (Bi-LSTM)

The first deep neural network chosen for classification was Bidirectional Long
Short-Term Memory (Bi-LSTM), which is a specific implementation of a Recur-
rent Neural Network (RNN). LSTM aims to reduce the problem of exploding
and vanishing gradient problems of a bare-bones RNN [50]. Exploding and
vanishing gradients are a problem in which the earliest inputs into the model
influence the network less the longer the total input string is. Essentially, this
means that RNNs have short-term memory, making the model less useful for
longer inputs. The following is an explanation of the LSTM model using for-
mulae from Sak et. al. [50] and Olah [51]:

19

20 Baardsen: Phishing Detection using Intent Detection Methods

Firstly, the LSTM cell calculates what should be forgotten from the previ-

ous cell by performing the sigmoid activation function (σ) on the information

from the previous hidden state (ht−1) and the current input (xt), which returns

an integer between 0 and 1 for each input. The closer the value to 1 means to

keep the information, while the closer the output value to 0 means the oppos-

ite. Note that b denotes bias vectors, and W represent weights between gates

in the network.

ft = σ(Wf · [ht−1, xt] + bf) (3.1)

Next is the first step of the input gate. A similar action to the first equation

is performed, although it uses different weights and a different bias for the

calculation. This ensures a different result in the computation, hence why the

output of the first equation cannot be used for both the forget and input gate.

The output of this equation dictates which values will be changed.

it = σ(Wi · [ht−1, xt] + bi) (3.2)

The second step of the input gate produce a vector Ca
t containing new

values which will affect the updating of the old cell state by performing the tanh

activation function with similar parameters that the aforementioned sigmoid

functions got, with its own weights and bias.

Ca
t = tanh(WC · [ht−1, xt] + bC) (3.3)

Then, the old cell state is updated by first multiplying the output of the

forget gate with the old cell state, which decide which values are kept or forgot-

ten. This result is then added upon by the result of the input gate, producing

the new cell state representing this particular cell Ct.

Ct = ft × Ct−1 + it × Ca
t (3.4)

Again, to decide which cell state values will be output ot a sigmoid activa-

tion function is performed is performed on the previous hidden state and the

current input.

ot = σ(Wo · [ht−1, xt] + bo) (3.5)

Chapter 3: Choice of Methods 21

σ tanh

tanh
X

+X

X

σ σ
ht-1

Ct-1
Ct

ht

xt

(3.1) (3.2) (3.3)

(3.4)

(3.5)

(3.6)

Figure 3.1: Simple visualization of an LSTM cell.

Lastly, the model produces the new hidden state ht by first performing the

tanh activation function on the current cell state to get values in the range of

+−1, and then multiplying the result with the output achieved in the previous

formula.

ht = ot × tanh(Ct) (3.6)

The LSTM model is further illustrated in figure 3.1, in which the different
equations are annotated where they are performed using dotted boxes.

The bidirectionality of the Bi-LSTM model simply describe that the pro-
cess described above is also performed in the other direction on the input, i.e.
starting the processing from the end of the input string. We consider the bid-
irectional model for this thesis instead of the standard model due to its general
performance being better in NLP tasks, as found in section 2.

22 Baardsen: Phishing Detection using Intent Detection Methods

xt

σ
tanh

X

σ
X

+X

l-

ht-1 ht

Figure 3.2: Simple illustration of a GRU cell.

3.1.2 Gated Recurrent Unit (GRU)

A Gated Recurrent Unit (GRU) is a variation of the LSTM model which com-
bines the forget and input calculations into one unit [51]. This model was first
proposed by Cho et. al. [52], and also merges cell states and hidden states into
one singular entity. Due to these combinations, the model is less complex, re-
quiring less tensor operations to function, making it more light-weight. Being
light-weight compared to LSTM means that running the model will either (1)
require less computational resources, (2) complete program execution quicker
than its LSTM counterpart or (3) both. The removal of one activation function
(square box) which makes the algorithm quicker can be seen in the illustration
in figure 3.2.

3.1.3 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a specialized deep feed-forward
neural network which was primarily used for image classification since its con-
ception [13]. Since the model was designed for processing imagery, most im-
plementations support 2-dimensional input data and also the application of

Chapter 3: Choice of Methods 23

2-dimensional convolution operations. However, many implementations also
support 1-dimensional and 3-dimensional convolutions [53]. Using the imple-
mentation which allows for one-dimensional input data is beneficial for users
which want to use CNNs for classifying text data, as the network theoretically
can receive an input of a raw string or a tokenized string.

Figure 3.3 depicts a simple CNN with just one convolutional layer. Firstly,
the input data of length n is inserted into the model. This input data can be
manually extracted features from a sequence of words (sentence or paragraph),
word embeddings from that same sequence or tokenized words from the input
data. Then, the convolutional layer processes the input using a set of convo-
lution filters, whose job it is to select important features. These convolutional
filters contain both biases and weights which are modified using the process
of back-propagation, similar to a standard feed-forward neural network [13].
After the convolution filters have been applied, the selected features from all
of the inputs in the input vector are combined into a single vector once again,
which is then fed into a classifier. A commonly used algorithm for classification
is softmax [54]. When softmax has finished the classification we have the final
output from the CNN for input x.

3.1.4 BERT

Bidirectional Encoder Representations from Transformers, or BERT for short,
have been used in some of the best performing models in the literature re-
viewed back in section 2. As the name implies, the model consists of multiple
transformers, which themselves are deep neural networks [25]. BERTs imple-
mentation of the transformers architecture is heavily derived from the model
proposed in [55], and use multiple such transformers stacked together in order
to achieve state-of-the-art performance [25]. Specifically, in the version ‘BERT-
base-uncased’ which is the most commonly used, BERT is implemented with
12 transformer blocks (layers), a hidden size of 768, and 12 self-attention heads
[25].

There are two main selling points to BERT: pre-training and bidirectional
self-attention. Firstly, as the model’s self attention mechanism is bidirectional it
is able to better understand the meaning of a string of text. This is because, as
explained in the other bidirectional models, the model is able to understand the
context of words or tokens in the sentence as a whole instead of understanding
its meaning contextual only to its position from the start of the input. Secondly,
the pre-training of the model shorten training times of derivative models, as
only fine-tuning of parameters are required [56]. Turc et. al. [56] provided
several other sized models of BERT on GitHub in 2019, hoping the smaller
pre-trained models can be used in environments where resources are scarce.
Since the BERT authors recommend using BERT for feature extraction [56],
the model will also be tested with a standard feed-forward neural network
similar to the simple perceptron depicted in figure 2.1

24 Baardsen: Phishing Detection using Intent Detection Methods

X1

X2

Xn-1

Xn

Input Convolution filtering Pooling Classification Output

ySoftmax

Figure 3.3: Illustration of a CNN with one layer.

Chapter 3: Choice of Methods 25

Tokenization and Embedding

Tokenization refers to the process of interpreting strings as numbers. This
method is often used in deep learning tasks, as the implemented models of-
ten cannot handle raw strings. BERT can be used for both character/word
embeddings which are fed into another classifier, or it can be used as a clas-
sifier itself. In this thesis, BERT has been selected for testing in experiments
as a word embedder for other neural networks, namely Bi-LSTM, Bi-GRU,
CNN and FFNN. The reasoning behind this decision is derived from section 2,
where BERT was identified as the best performing word tokenizer tool for use
in conjunction with other deep neural network architectures.

3.2 Dataset selection

In this thesis it is important to select the correct datasets on which to estimate
the performance of the selected computational methodologies. The datasets to
be used have been selected from table 2.1, which present datasets used in the
literature reviewed.

From the table identifying the existing datasets in section 2.2.4 the phish-
ing dataset from Nazario [31] was chosen to be used in the experiments due
to its popularity in the community of phishing detection [43]. Other phish-
ing datasets such as MillerSmiles was not chosen due to it not being readily
available without a paywall, or simply due to lack of unique examples.

The ever popular Enron dataset was chosen to represent the benign portion
of emails in the final dataset, as it is one of the few datasets recognized for
containing real emails collected by the CALO project [46]. To ensure the emails
used are indeed benign, only emails sent by Enron employees will be considered
as benign, while the rest will be discarded.

– Nazario Phishing Corpus
– The Enron dataset

The chosen datasets will in the end be concatenated into one large dataset,
with each entry having a label identifying which dataset it belongs to. Keeping
the origin of every entry in the dataset allows for showing statistics in the
end related to the datasets themselves, and is expected to result in a decent
discussion about the qualities of each dataset and models. The concatenated
dataset will then also be duplicated, and all URLs and emails will be removed
from all message bodies in the duplicate dataset in order to be able to answer
research question Q3..

3.3 Performance evaluation

The most used, and most useful, metrics for evaluating performance in ma-
chine learning algorithms are accuracy, precision, recall, and the f1-score (also

26 Baardsen: Phishing Detection using Intent Detection Methods

referred to as f-measure) [16]. These scores are popular due to the information
they convey. They are based on the concept of negatives and positives in a
binary classification scenario, and their ‘false’ variants. A true positive (TP)
is when a classification algorithm has classified an unclassified item correctly.
A false positive (FP), however, is when a computational method predicts a
class as positive, but its real label was negative. The same logic applies to true
negative (TN), where the classifier predicts negative correctly, and to false
negatives (FN) where the classifier labels data as negative, when it was indeed
positive. Below, these terms are used in order to define the metrics mentioned
at the beginning of this paragraph:

Accuracy =
TP + TN

TP + TN + FP + FN

Figure 3.4: Formula for accuracy

Recall =
TP

TP + FN

Figure 3.5: Formula for recall

Precision =
TP

TP + FP

Figure 3.6: Formula for precision

F1 = 2 · Precision ·Recall

Precision+Recall

Figure 3.7: Formula for F1-score

In addition, classification time will also be considered a metric in order to
facilitate answering research question Q5. After every computational method
has been evaluated using these metrics, for every metric, for every computa-
tional method on every dataset, the mean performance metric will be presented
as the resulted performance of the model. The result will be a table (or mul-
tiple) which contain every computational method evaluated, with the mean of
their performance metrics, i.e. two columns for each of the performance metrics
presented above for each dataset. This is the main method by which we will
attempt to answer research question Q3., Q4., and Q5., as this experiment ap-
proach is estimated to contain enough information about each computational
method to draw proper conclusions. In formal terms, this will be quantitative

Chapter 3: Choice of Methods 27

research project. At the same time, a literature review in the form of Related
Works (section 2) will also be present, in which Q1. will be answered, as well as
parts of the rest of the questions which cannot be answered by this experiment.

Chapter 4

Experiments

This chapter will walk the reader through the specifics of the implementation of
the experiments performed. The overall description of the methodology of the
experiments can be found in chapter 3, while this chapter covers specific steps
and parameters not walked through in the previous chapter. First, the chapter
outline and experimental design is illustrated and explained. Thereafter, the
chapter goes through the preprocessing steps performed on the datasets used
in the experiments, including the merging of the two total datasets which each
represent a class each. Then, there is a section dedicated to providing inform-
ation on how the tokenization and embedding was performed on the dataset.
Lastly, the specific details of the implemented intent detection methods will
be explored and explained.

4.1 Experimental design

This section is meant to provide the reader with an overview of the design of the
experiments performed in an attempt to answer the research questions posed
in section 1. Figure 4.1 depicts the design of the experiments using arrows
depicting flow in the process. As with any machine learning and deep learning
task, the process can be divided into three phases: dataset preparation, feature
extraction and data classification. The premise of the design is to merge two
datasets, preprocess them so that they fit into the feature extraction model, and
then perform classification on those extracted features using methods found in
the state-of-the-art in intent detection.

The Nazario [31] and Enron [46] datasets serve as the base of the exper-
iments performed in this thesis. Enron represents actual emails written by
Enron employees, as opposed to any other artificial email dataset. Nazario,
however, represents phishing emails, and is composed of emails that Jose Naz-
ario collected from their personal inbox ever since 2004. The Enron dataset is
extracted from a Kaggle project [57] as it comes in a neat .CSV file, while the
Nazario dataset is directly collected from their website [31].

29

30 Baardsen: Phishing Detection using Intent Detection Methods

Enron Nazario

Preprocessing

Clean

Preprocessing

Tokenizer

Embedding

NO_URL URL

Bi-LSTMGRU CNN BERT

Figure 4.1: Experimental design.

Chapter 4: Experiments 31

After first fetching the two datasets from their respective sources, prepro-
cessing is performed on each of them. The purpose of preprocessing the datasets
is to only output relevant data from the original dataset for further cleaning
down the pipeline. Since the results of the classification will depend on the
information removed from this step in the process, it is important to be care-
ful to only process the data in a way which preserve the data we want from
the emails - words. Dataset preprocessing was performed in parallel on both
dataset, with 12 steps used on the Enron dataset and 11 steps for the Nazario
dataset.

When both datasets have been preprocessed by themselves they are then
merged together to form a ‘complete’ dataset. However, this combined data-
set also needs some additional cleaning as it will be split into two separate
datasets wherein one has all the URLs in the email’s bodies replaced by the
string ‘URL’ (including quotation marks), and the other dataset has all URLs
outright removed from all email bodies (these datasets are named ‘URL’ and
‘NO_URL’ respectively in figure 4.1).

Then, for each dataset we split them into a training and testing subset.
In these experiments the datasets are split at a 80/20 ratio for the training
and testing subsets respectively. The following steps are performed on both
datasets’ training and test subsets, but are written as performed on just one
dataset for simplicity’s sake: First, both of the subsets are passed through
a tokenizer each. This ensures that the data is transformed into a format
which the embedder in the next step can interpret, including padding entries
to ensure same length for each email. Second, the tokenized version of the
subsets are passed into the BERT transformer. The output from which will
serve as the features from the emails. For each token extracted from the emails
the embedder creates 768 features for. That means e.g. for a subset with 100
samples which have a length of 50 there will be a feature vector of size [100,
50, 768], effectively meaning 38’400 features for every email.

Finally, the subset’s features are fed into the four models used for classi-
fication. Here, the metrics on time for training the model, final classification
time, accuracy, recall, and precision are extracted. These are the results, and
are presented in chapter 5.

4.2 Experimental setup

The planned experiments require high computational power in order to run in
a timely manner. Training each model for each dataset is what takes the most
time, not the actual classification, due to the large scale of the models and the
heaps of data which need to be processed. All experiments were performed on
a relatively powerful virtual machine provided by NTNU, the most important
specifications of which can be seen in table 4.1.

Note that the GPU in table 4.1 is shared across multiple users in the cloud,
and therefore only 8GB VRAM was allocated to this machine as opposed to the

32 Baardsen: Phishing Detection using Intent Detection Methods

Ubuntu LTS 20.04 Virtual Machine
CPU Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz, 8-cores

Memory 88.4GB
GPU Nvidia Tesla A100 8GB VRAM

Table 4.1: Specifications of the cloud testing platform.

total 24GB available on the graphics card. Also, there are only eight CPU-cores
present, as this was also a limitation posed by the available resources at the
time they were requested. Due to the limited VRAM on the GPU, the size of the
models trained are also limited. The deep neural networks implemented in this
thesis are derived from existing implementations in PyTorch, documentation
for which can be found in [58]. All of the code used in this thesis is Python
code. For timing code runtime ‘time.perf_counter()’ is used, as it is the most
accurate for timing code implemented in the Python ‘time’ library [59].

4.3 Datasets

As mentioned in section 3, we will use two datasets for experimentation on
different intent detection methodologies. First, the Enron corpus, which was
chosen to represent benign data due to its credibility and widely adopted use,
is preprocessed in a manner which results in only text being left behind for the
computational methods to process. Then, the same is done to the Nazario cor-
pus, which was chosen as the de-facto phishing corpus due to its wide-spread
use in the phishing detection problem. Afterwards, both datasets were com-
bined into a singular dataset before being processed further with tokenization
and embedding algorithms.

4.3.1 Enron Corpus

Firstly, before any processing can commence, the dataset is downloaded from
Kaggle [57]. It is the 2015 version of the dataset, and is the dataset which is
recommended for use in research and other projects [46]. Enron dataset comes
in a comma-separated values (.csv) file. This file separates the folder in which
the emails were located in from the entire email. The info contained in the
email-column is all the metadata from the email, including, but not limited
to, the sender, recipient, content-type, and the actual email body. Since we
only desire the email body, one of the first preprocessing steps we do, although
not listed in table 4.2, is extract the email body from the other data deemed
useless in the experiments. Table 4.2 enumerates the preprocessing work, and
this section is dedicated to explaining every step in the process.

Starting off with over half a million email samples in the corpus, we first
remove all emails which were not sent by an Enron employee. This is to en-
sure that no spam or phishing emails which might have been present inside

Chapter 4: Experiments 33

SN# Preprocessing Action Emails
1 Starting corpus size 517’401
2 Remove all emails which was not located

in a folder containing the string ‘sent’.
126’846

3 Remove emails which are forwarded or re-
directed, indicated by the subject of the
email containing one of the strings {‘fw:’,
‘fwd:’, ‘re:’}. Also remove emails which
contain inline attachments or any of the
strings {‘to:’, ‘cc:’, ‘subject:’}.

33’061

4 Remove emails which contain the string
‘——-’.

31’109

5 Remove emails which were sent by
‘no.address@enron’.

31’096

6 Remove duplicate emails. 31’096
7 Remove parts of emails which are not

written by the sender. The email body
is split on one of the strings in {‘—
Original Message’, ‘— Original Message’,
‘—Forwarded by’, ‘— Forwarded by’}.

31’096

8 Remove all emails starting with ‘>’,
twice.

31’083

9 Remove emails which contain more than
2’000 characters in the email body.

30’395

10 Replace character codes:

• ‘=01’ with ‘” (apostrophe)
• ‘=20\n’ with ‘ ’
• ‘=20\r\n’ with ‘ ’
• ‘\n’ with ‘ ’
• ‘\r\n’ with ‘ ’
• ‘=09’ with ‘ ’
• ‘\t’ with ‘ ’
• ‘ ’ with ‘ ’

30’395

11 Remove emails containing less than 21
words.

21’067

12 Remove duplicate emails. 16’442

Table 4.2: Preprocessing steps performed on the Enron corpus before ex-
porting as .csv file.

employee’s inboxes. Furthermore, this step also attempts at ensuring that no
duplicate emails are present in the corpus.

34 Baardsen: Phishing Detection using Intent Detection Methods

Then, the emails whose subject or bodies contain the strings ‘fw:’, ‘fwd:’,
and ‘re:’ were removed from the dataset. Removing emails which contain these
strings removes the vast majority of emails containing text not written by
the sender, making it better represent a real email, as we attempt to detect
phishing emails when they first are sent.

Preprocessing step 4 delete all string which contain seven dashes in a row
in the email body. This is because when the experiments were performed and
the dataset manually explored, several emails which contained this string had
an inline attachment, possibly not written by the author of the email.

Step 5 is removing emails sent by the address ‘no.address@enron.com’.
By performing this step we ensure that the entire corpus represent mails in
the personal ‘sent’ mailboxes of Enron employees, making the dataset more
representative of benign emails.

In step 6 we simply remove all emails which are duplicate. This step does
not produce any results, but it is important to ensure that all instances in the
dataset are unique to prevent over-representation of one message.

Then, in step 7, all emails are checked if they contain pre-determined strings
which indicate that the message was forwarded and contain the message of
some other sender. If these strings are detected in an email, that string and
everything following that string is removed from the email body, resulting in
an email body which only consist of the sender’s written text.

The eighth step removed all instances of the character ‘>’. Since some
emails which are forwarded might have the original message’s content repres-
ented with that character, so removing emails which start with that character
further ensures that the dataset only contain text from the respective senders.

Step 9 removes all emails which contain 2’000 or more characters. This step
removes some outliers in the dataset which could make the subsequent token-
ization, embedding and classification take a lot more resources to successfully
process.

In the tenth step, all character codes commonly found in the emails with an
appropriate representative. Since formatting of the email body is not import-
ant in this thesis, all escaped characters and character codes which represent
different formatting were replaced with a single space character (‘ ’).

The second to last step removed emails which contained 20 words or less,
making sure that emails containing just a few words (or in some cases just a
letter) are deleted. Lastly, but most importantly, all emails whose bodies were
equal were removed and replaced with the first instance. This is the final step,
and prevents over-representation of single email messages. The remainder of
the dataset were written to a CSV file for future use.

4.3.2 Nazario Corpus

The Nazario dataset was retrieved from Jose Nazario’s own website [31], wherein
one can find several files containing phishing emails from the years 2015-2021.

Chapter 4: Experiments 35

For the experiments in this thesis, the file ‘private-phishing4.mbox’ is chosen
to represent the phishing emails in the final dataset. However, as these emails
come in the format of ‘.mbox’, they first have to be extracted. Before extract-
ing the dataset, the bash command ‘!iconv -f utf-8 -t utf-8 -c private-phishing4

.mbox > pp4’ is applied on the file, as the email parser was not able to decode
some of the content. This command ensures that the file is readable with a
UTF-8 typeset. Unlike with the format of the Enron dataset, all emails in the
mbox file are not separated and need to be separated. Extracting the emails
from the mbox file is the first step presented in table 4.3.

The second step of preprocessing the Nazario corpus is one of the most
important steps. It replaces all the HTML link tags with the actual link they
are pointing to. This is the main method by which URLs are extracted, as
image sources are not included in the links extracted. However, if the HTML
link tag does not point anywhere the tag is simply replaced by an empty string.

Since a lot of the phishing emails contain HTML and CSS code, the Python
library ‘BeautifulSoup’ is used to strip away all of such code from all emails’
bodies in the dataset. Doing this ensures that most of the code in the phishing
emails are removed.

Fourth, all escape characters which were found are removed from the email
bodies. This is again to ensure that the email bodies contain mostly scammer-
written messages.

In the fifth step all emails which contain the ‘@’-sign are removed from
the corpus. All emails could be interpreted and removed from email bodies to
ensure no emails are in the corpus, but since a lot of emails remain after this
step, the emails containing ‘@’ were simply removed.

Sixth, all emails sent from the address ‘service@paypal.com’ were removed.
These emails were identified to be spam-emails instead of phishing emails, and
were therefore not wanted in the final corpus.

A problem caused by converting the entire mbox file to UTF-8 is that
some emails were not properly interpreted by the parser. Such mails always
contained byte-codes which all started with ‘0x’. Therefore, all emails whose
bodies contain such code were removed from the dataset in step seven.

In step 8, similarly to the Enron dataset, all emails which contained less
than 21 words were removed. This was done for the same purpose as with the
Enron dataset - to ensure a proper representation of emails. This also removes
outliers whose bodies might be empty after other preprocessing steps.

Step 9 removes all emails whose bodies contain ‘doctype html’. As this
string is indicative of there being HTML code in the email which was not
properly removed in step 3, all emails containing this string were removed.

Then, as with the Enron corpus, all emails which contain more than 2’000
characters were removed from the dataset. A find here is that there are a
lot more emails which contain more than 2’000 characters than in the Enron
dataset.

Lastly, phishing emails ending with ‘=’ were removed from the corpus.

36 Baardsen: Phishing Detection using Intent Detection Methods

SN# Preprocessing Action Emails
1 Extract mails from private-

phishing4.mbox
3’534

2 Replace HTML <a>-tags with the href’s
inside them (if the href field is not
empty).

3’534

3 Remove HTML tags and CSS code from
the email’s body.

3’534

4 Replace escape characters:

• ‘=01’ with ‘” (apostrophe)
• ‘=20\n’ with ‘ ’ (space)
• ‘=20\r\n’ with ‘ ’
• ‘\n’ with ‘ ’
• ‘\r\n’ with ‘ ’
• ‘=09’ with ‘ ’
• ‘\t’ with ‘ ’
• ‘ ’ with ‘ ’
• ‘\xa0’ with ‘ ’
• ‘=A9’ with ‘ ’
• ‘=C3’ with ‘ ’

3’534

5 Remove all messages containing at least
one instance of the character ‘@’.

3’259

6 Remove all emails from PayPal (‘ser-
vice@paypal.com’).

3’226

7 Remove all emails containing byte codes
(‘ 0x’).

3’099

8 Remove all emails which contain less than
21 words.

2’967

9 Remove all emails containing ‘doctype
html’.

2’963

10 Remove all emails whose body contains
more than 2’000 characters.

2’565

11 Remove all emails whose body ends in
‘=’.

2’435

Table 4.3: Preprocessing steps performed on the Nazario corpus before ex-
porting as .csv file.

Upon manual inspection of the dataset, emails ending with an equals-sign
were broken by either the preprocessing, parsing, or they were broken upon
arrival to the mbox. Therefore all such emails were deleted from the dataset.
The remainder of the dataset were written to a CSV file for future use.

Chapter 4: Experiments 37

4.3.3 Merging and Splitting Datasets

After preprocessing the two datasets, both datasets had to be merged in order
to perform the final cleaning. The cleaning steps performed on the remaining
datasets have been listed in table 4.4. The purpose of this section is to explain
the preprocessing steps described in the table.

SN# Preprocessing Action Emails
1 Remove all email bodies with more than

120 words.
—

2 Extract 300 emails from each corpus 600
3 Duplicate dataset 600
4 Replace all URL instances with either a

blank string or ‘URL’.
600

5 Replace all characters which are not used
for punctuation or in the alphabet with
‘ ’.

600

6 Remove all stopwords from all emails. 600
7 Remove all emails with less than 21 words

in the body.
474

Table 4.4: Preprocessing steps performed on the combination of Enron and
Nazario.

In step 1 all email bodies containing more than 120 words were removed.
The main driver for this decision was that, during experimentation the feature
dimensions became very large and therefore it became a lot more demanding
to process the models. Therefore we eliminate emails with a larger email body.

Step 2 also has the same reasoning as the preceding step. Here, 300 samples
from each of the Nazario and Enron datasets are extracted and combined into
a single dataset. During the experimental phase it was observed that the GPU
on which the computations were run ran out of memory when running the
classifiers on larger sample sizes.

Thereafter, this single copy was duplicated. These two datasets are the
premise for the two versions of the same dataset, one in which all URLs are
replaced with an empty string. The other version of the dataset will have all
its URLs replaced by ‘URL’. Replacing those URLs are done in step 4.

Step 5 then replaces all characters which are not in a predefined range with
a single space. To do this a regular expression was used. The regular expression
removes all characters from the emails’ bodies which are not in the alphabet,
an apostrophe, or a punctuation character. Doing this helps reducing feature
dimensionality substantially.

Then, in step 6 all stopwords are removed from the text. Stopwords are
words commonly found in text, and are not necessary in most text classification
scenarios as they do not add any value. The stopwords used in this thesis was

38 Baardsen: Phishing Detection using Intent Detection Methods

gotten from the NLTK Python library using the code: ‘from nltk.corpus import stopwords’.
The NLTK stopword corpus consist of 179 words, some of which are compound,
and some of the stopwords included in the list are ‘[“I”, “a”, “is”]’. Removing
such stopwords also contribute to reducing the dimensionality of the features
later on.

Lastly, all emails whose bodies contain less than 21 words are removed
from the corpus. Although this is an arbitrary line to draw, it represent emails
which contain more than a simple request or response. As the dataset cleaning
is finished each of the two dataset are left with 290 emails representing the
phishing emails and 184 emails representing the benign emails, for a total of
474 emails.

4.4 Tokenization and Embedding

For tokenization and embedding of the preprocessed and cleaned datasets we
use ‘bert-base-uncased’, as described in section 3.1.4. To use the model we
simply import it in Python which downloads the model automatically, as seen
in listing 4.1. The data is first ran through the BERT Tokenizer, which we
are using the Fast version of. This produces tokens for every word in every
email. Since the BERT model requires all data to be of the same length when
embedding, the tokenizer is equipped with ‘padding=True’ to pad all emails which
contain less tokens than the rest.

Code listing 4.1: Text tokenization and embedding implementation
from transformers import BertTokenizerFast, BertModel
tokenizer = BertTokenizerFast.from_pretrained(’bert-base-uncased’)
model = BertModel.from_pretrained("bert-base-uncased")

Create Tokens and Embeddings for every word/token in a set of data
def TokenEmbed(data):

t1 = time.perf_counter()
with torch.no_grad():

encoded_input = tokenizer(data.tolist(), return_tensors=’pt’,
padding=True, truncation=True)

output = model(**encoded_input)
t2 = time.perf_counter()
return encoded_input, output, t2-t1 # Tokens, mail_embedding, runtime

4.5 Implementation

This section will go over the specifics of the implemented models and show-
case the essential part of the code which represent the model design. All code
listings depict Python code, as all experiments were run using Python 3 using
Jupyter Notebook and Visual Studio Code. The parameters of the models were
standardized as much as possible. Therefore, all models ran for 15 epochs dur-

Chapter 4: Experiments 39

ing testing. All of the models also used the ‘BCEWithLogitsLoss()’ function
for calculating loss in every epoch.

4.5.1 BiLSTM

The bidirectional LSTM used for experiments can be seen in listing 4.2. Here,
the LSTM network consist of a single bidirectional LSTM layer fully connected
to a linear layer, which in turn produce the output. The input size of the LSTM
is equal to the number of features produced for each word embedding (768).
The size of the hidden layer in the LSTM was set to 256, as this was comfortable
to run on the graphics card. The learning rate of the model was set to 0.005.

Code listing 4.2: BiLSTM implementation
LSTM Class
class LSTM1(nn.Module):

def __init__(self, num_classes, input_size, hidden_size, num_layers, bi, drop):
super(LSTM1, self).__init__()
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,

num_layers=num_layers, batch_first=True, bidirectional=bi,
dropout=drop)

self.fc_1 = nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()

4.5.2 BiGRU

The implementation of the bidirectional GRU network in listing 4.3 is based on
the implementation of the BiLSTM model, hence why the code is very similar.
The only difference from the description provided in the BiLSTM section, is
that this network use the ‘torch.nn.GRU’ layer instead of a LSTM layer. Other
than that the parameters and design are the same, with 768 input features and
256 features in the hidden layer of the GRU. The learning rate of the model
was set to 0.005.

Code listing 4.3: BiGRU implementation
GRU Class
class LSTM1(nn.Module):

def __init__(self, num_classes, input_size, hidden_size, num_layers, bi, drop):
super(LSTM1, self).__init__()
self.lstm = nn.GRU(input_size=input_size, hidden_size=hidden_size,

num_layers=num_layers, batch_first=True, bidirectional=bi,
dropout=drop)

self.fc_1 = nn.Linear(hidden_size, num_classes) # fully connected 1
self.relu = nn.ReLU()

40 Baardsen: Phishing Detection using Intent Detection Methods

4.5.3 CNN

The convolutional neural network was implemented much in the same manner
as the two previous models using ‘torch.nn.Conv1d’, as seen in listing 4.4. How-
ever, as the model is not related to recurrent neural networks, it has different
input parameters. The input dimension remain the same at 768, as the embed-
dings never change. But, the model is equipped with three different instances
of the aforementioned module, with filter sizes of 3, 5 and 7 respectively with
100 filters per instance. The learning rate of this model was set to 0.001.

Code listing 4.4: CNN implementation
Convolutional Neural Network with varying filter sizes
class CNN(nn.Module):

def __init__(self, embedding_dim, n_filters, filter_sizes, output_dim,
dropout_rate):

super().__init__()
self.convs = nn.ModuleList([nn.Conv1d(embedding_dim,

n_filters,
filter_size)

for filter_size in filter_sizes])
self.fc = nn.Linear(len(filter_sizes) * n_filters, output_dim)
self.dropout = nn.Dropout(dropout_rate)

4.5.4 BERT using FFNN

Lastly, the FFNN classifier using BERT is implemented using a simple dense
layer (torch.nn.Linear) which takes 768 features and outputs just one neuron
containing one array of integers, representing the predicted class for each in-
put email. The implementation of the classifier can be observed in listing 4.5.
Since this classifier is much less ‘smart’, it was equipped with a learning rate
of 0.1 instead of 0.001 or 0.005, as it had trouble with learning fast in the
predetermined epoch space of 15.

Code listing 4.5: BERT-FFNN implementation
Feed-forward neural network for classification with BERT
class BERTClass(nn.Module):

def __init__(self, embedding_dim, output_dim, dropout):
super(BERTClass, self).__init__()
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(embedding_dim, output_dim)

Chapter 5

Results

This chapter presents and comments on all of the results from the experiments
performed. The experimental design which lead to these results are described
in chapter 4. Firstly, all of the classification results are presented on a per-
algorithm basis using confusion matrices for both datasets the algorithms were
trained and tested on. Afterwards, all of the results are pooled together in
a table to make comparisons between algorithms easier. This table contains
all of the relevant metrics for measuring performance, which were outlined in
chapter 3.

5.1 Confusion Matrices per Algorithm

Before diving into the results it is important to understand that the confusion
matrices do not show the count of objects classified as one or the other, but
rather the percentage of the entire dataset used that was classified in every
cell. Also, rows indicate the actual classification labels for the data, while the
columns represent the classifiers prediction. Lastly, the captions of each figure
represent which algorithm used on which dataset, where ‘NO_URL’ and ‘URL’
refer to the two almost-identical datasets created following the steps in chapter
4.

Figure 5.1: BiLSTM on
NO_URL Figure 5.2: BiLSTM on URL

41

42 Baardsen: Phishing Detection using Intent Detection Methods

Starting off with the results achieved from BiLSTM, we observe that the
performance is identical on both versions of the dataset. 37% of all emails
were correctly classified as benign, whereas 2.1% of the corpus were incorrectly
classified as phishing emails, meaning for both datasets there was 2.1% false
positives. All phishing emails were classified correctly, with 61% of all the
emails in the corpus being classified as phishing emails (Nazario).

Figure 5.3: BiGRU on
NO_URL Figure 5.4: BiGRU on URL

Moving on to the BiGRU model, we actually observe some difference between
the classifications on the datasets. In the ‘NO_URL’ dataset 38% of all emails
were correctly classified as benign, with 1.1% of all emails being incorrectly
classified as phishing emails. Adding to this, 1.1% of all emails were incorrectly
classified as benign (false negatives) while 60% of all emails were correctly clas-
sified as phishing emails. On the other hand, with the ‘URL’ dataset we observe
a change in the classification of benign emails, where the correct classification
of the entire corpus is 37%, while 2.1% of all emails were incorrectly classified
as phishing emails. However, the phishing emails were classified with the same
accuracy as with the ‘NO_URL’ dataset.

Figure 5.5: CNN on
NO_URL Figure 5.6: CNN on URL

The CNN model was able to achieve good results as well. For both datasets
the model managed to correctly identify all the phishing emails from the Naz-
ario corpus as phishing emails, but there are some false positives among the

Chapter 5: Results 43

benign emails. On the ‘NO_URL’ dataset, the model classified 3.2% of benign
emails incorrectly as phishing emails, compared to on the ‘URL’ dataset where
only 2.1% of benign emails were incorrectly classified.

Figure 5.7: BERT-FFNN on
NO_URL Figure 5.8: BERT-FFNN

Lastly, the BERT-FFNN model achieved interesting results. We observe
that for the ‘NO_URL’ dataset, 38% of all emails were correctly classified
as benign, with 1.1% of the corpus being incorrectly classified as phishing.
However, the model classified 37% of the dataset incorrectly as benign, meaning
37% of classification results were false negatives. For the ‘URL’ the results are
similar, but an increase in false negatives with 4.2% of the dataset being falsely
identified as phishing emails. There is also a decrease, compared to the results
achieved on the ‘NO_URL’ dataset, in false negatives, in which ‘only’ 27% of
the emails were incorrectly identified as benign.

5.2 Classification Results

The summary of all the confusion matrices above can be found in table 5.1. In
addition to the results found in the confusion matrices, this table also supply
the calculated accuracy, precision, recall, and f1-score for each of the models on
both datasets. A brand new feature addition are the ‘training time’ and ‘test
time’. These metrics were supplied in addition to the aforementioned ones,
as they are required for answering research question Q5. The title of the most
accurate method is tied between BiLSTM, BiGRU and CNN, on both datasets,
as all of them achieved 97.9% accuracy. The same models also compete for the
highest f1-score, as all three also ends up with at least one instance of an f-1
score of 0.989. In classification time, however, we observe that there is a clear
difference in the tested methods. The method with both the highest training
time and test time is BiLSTM, while the fastest algorithm implemented was
BERT-FFNN by a large margin. All of these results will be discussed up against
their relevant research questions in chapter 5.

44 Baardsen: Phishing Detection using Intent Detection Methods

Method Dataset Accuracy Precision Recall f1 Training Time Test Time
BiLSTM URL 0.979 1 0.979 0.989 1.668s 0.013s
BiGRU URL 0.968 0.989 0.979 0.984 1.261s 0.010s
CNN URL 0.979 1 0.979 0.989 1.026s 0.006s
BERT-FFNN URL 0.684 0.714 0.942 0.812 0.034s 0.001s
BiLSTM NO_URL 0.979 1 0.979 0.989 1.653s 0.010s
BiGRU NO_URL 0.979 0.989 0.989 0.989 1.273s 0.010s
CNN NO_URL 0.968 1 0.968 0.984 0.995s 0.007s
BERT-FFNN NO_URL 0.621 0.628 0.983 0.766 0.033s 0.002s

Table 5.1: Final results of all experiments.

Chapter 6

Discussion

This chapter will discuss the results found in chapter 5. Firstly, the goals of the
thesis will be explained once again. Then, the main points of discussion will be
comparing the results of the different models for every dataset, and hypothes-
izing why some models performed better than the others. These comparisons
also include the two time metrics, as that is where the most variance has been
observed across the different models. Lastly, some caveats and possible pitfalls
with the experiments performed in this thesis will be discussed.

We planned to utilize the state of the art in the intent detection domain on
the phishing email detection problem to test whether it would improve clas-
sification metrics compared to the state of the art in the phishing detection
domain. To do this we first surveyed the state of the art in both the intent
detection and phishing detection domains in chapter 2. The state of the art
in the intent detection domain were then tested in the experiments section on
the phishing detection problem. We also intended to quantify whether phish-
ing emails could be reliably detected without examining file attachments and
URLs, hence why two separate datasets were used in the experiments. The last
research question posed is directed at whether the intent detection methods
could be faster than the methods used in the current phishing detection state
of the art, which resulted in us recording the metrics for classification training
and testing runtime.

The performance of the intent detection models implemented in the exper-
iments section perform comparably well to the already existing state of the art
in phishing detection. For example, Jonker et. al. [43] applied similar methods
to the phishing detection problem, using both LSTM and CNN. But, instead of
using BERT for embeddings they used Word2Vec, which is also a popular em-
bedding algorithm. With the LSTM and CNN models they achieved accuracies
of 98.5% and 98.4% respectively, which is almost a percent higher than the best
results documented in our experiments. In addition they tested BERT purely
for classification, which achieved an accuracy of 98.9%. However, the highest
f1-score achieved in their paper was 98.94 for BERT, while our tested models
also achieved an f1-score of 98.9 consistently. Even though their results have

45

46 Baardsen: Phishing Detection using Intent Detection Methods

higher accuracies, the f1-scores for their results and the results in this thesis
are the same. This can be explained by the discrepancy in dataset size, since
Jonker et. al. used a dataset size of over 20 times that of which is used in
this thesis. Having such a small dataset increases the sensitivity in the accur-
acy metric for every misclassification, hence why the accuracy decreases very
much with only one false positive or false negative. While Jonker et. al. achieved
state of the art results classifying phishing emails on text, Barraclough et. al.
[34] performed phishing detection on phishing URLs using standard feature
extraction methods and machine learning methods such as Naive Bayes and
J48. Using those methods they achieved accuracies of 99%-99.3% . Pure URL
classification is expected to have higher accuracies, as unknown domains can
be ruled out mostly using white- and blacklisting techniques in addition to
machine learning.

From the results, however, we do observe that whether an URL is present
or not in the email body does not play a large role in classification, as seen
in the confusion matrices in chapter 5, the results are very similar for every
model on both versions of the dataset. This is probably due to the wording
used in phishing emails, as the scammers can e.g. be more assertive or beg-
ging in the phishing email text. The methods proposed by Valecha et. al. [39]
reinforce this finding, as they also achieved good classification accuracies up-
wards of 95%-95.9% by only analyzing text based behavioral features. Since
BERT is excellent at extracting relevant features during the embedding stage,
our hypothesis is that the emails, after preprocessing, contain vastly different
language when comparing benign to phishing emails, which make classification
easier for the models. This is especially true when stopwords are removed, as
they represent the most frequent occurring words in the English language.

Whether the models tested in this thesis were slower or faster than other
models is hard to quantify, as the exact hardware as used in the literature is
used for our experiments. In this thesis we used cuda (GPU) acceleration for
classification, as it is a lot faster than classifying using a CPU. However, in
literature such as [34, 60, 61], a CPU is used instead for classification. It should
be mentioned that those papers use a lot less complex models for classifica-
tion than the models used in this thesis. Mostly, only models whose purpose
is to be used not only for research supply classification times, as resource con-
sumption is an important factor when deploying such models in a production
environment. The models in [34] only take 0.006 seconds to classify their data-
set, while the models in [60] take 0.4-23.9 seconds for classification depending
on the model complexity. Comparatively, the state of the art models in our
thesis use 0.013-0.006 seconds for classification, which is almost equal to the
best classification times in [34].

The results also show that using a less complex neural network for classifica-
tion is not suitable for phishing detection. the BERT-FFNN model consistently
performed worse the other models, and the state of the art, with accuracies ran-
ging from 62.1% to 68.4%. Such poor accuracies were expected, as the model

Chapter 6: Discussion 47

is simply a larger version of the simple perceptron illustrated back in figure
2.1. However, it should be noted that due to the lack of model complexity, the
BERT-FFNN model performs classifications around ten times faster than the
other models. If any of the models used in this thesis were to be considered
for use in a production environment, the best choice would most likely be the
CNN model. Although the CNN model scored worse than BiGRU and BiL-
STM models on the ‘NO_URL’ dataset, both the CNNs training and testing
times were much lower than its competitors.

The two main drawbacks of the models used in this thesis are: i) small
imbalanced dataset for both training and classification, and ii) lack of proper
result validation. Since the models were trained on small datasests, it is likely
that not many different email topics are used for training and testing. This
lack of uniqueness in emails might have artificially increased the accuracy of
the models, as the benign and phishing emails might use entirely different
words and terms. Also, the dataset was imbalanced in the favor of the phishing
dataset. We believe that is the reason behind there being a lot more false
positives than false negatives when testing, as the model has been fed more
phishing emails and thus has a bigger context around phishing emails than
benign emails. Due to the limited resources (VRAM) on the GPU we were not
able to perform classification on larger datasets, but leave this as future work.
As for the lack of result validation, we were originally going to use stratified
K-Fold validation as it is the most common validation technique used [16] for
machine learning problems, but the implementation kept leaking the GPU’s
VRAM, causing the models to crash during training due to running out of
available VRAM. To mitigate the problem of not using any formal validation
methods on the models, the models were run from scratch more than five
times each. The median performance of those runs were used and presented in
chapter 5. Although this is not a complete remedy, it ensures to a large degree
that the possible outliers are not presented as the results.

Nevertheless, the results from the experiments performed in this thesis
show that intent detection methods perform equally as well as the pre-existing
state of the art in phishing detection. The results also show that these models
are not dependent on whether a phishing email contains a URL, making these
models well suited for detecting more targeted attacks such as spear- and
whale-phishing. Lastly, it is also demonstrated that the classification times of
the models are on equal footing with the state of the art in URL phishing
detection.

Chapter 7

Conclusion

There were three main goals of this master’s thesis related to the phishing
detection problem. These goals were to i) identify whether applying models
from the intention detection domain onto the problem of phishing detection
increased performance metrics compared to the pre-existing state of the art
in phishing detection, ii) quantify how much the presence of URLs in emails
contributed to the classification performance metrics, iii) and to figure out how
the classification time of the applied models were in comparison to existing
phishing detection models.

In order to meet these goals, we first selected two datasets to represent
the phishing problem. The Enron dataset [46] was used to represent benign
emails, while the Nazario dataset [31] was chosen to represent malicious phish-
ing emails. These two datasets went through a thorough preprocessing before
being sent to BERT for the tokenization and embedding process. The em-
beddings from the emails were then fed into four different models (BiLSTM,
BiGRU, CNN and BERT-FFNN) which classified the emails as either benign
or malicious (phishing).

Through the results achieved in this thesis we have answered all research
questions posed in chapter 1. We show that the models inspired by intention
detection methods (BiLSTM, BiGRU and CNN) all perform equal to the ex-
isting state of the art in the phishing detection domain in terms of accuracy,
precision and recall. Adding on to those metrics, we also show that whether an
email contains a URL or not does not affect the models’ classification perform-
ance in any meaningful manner. Lastly, we show that the classification times
of the models also are comparable to the state of the art in phishing detection.
In conclusion, this thesis has answered the five research questions that were
posed and show that models from the intention detection problem area can
effectively be applied onto the phishing detection problem.

49

Chapter 8

Future work

For future work, we propose testing the models used in this thesis using the full
dataset from the dataset preprocessing phase. As discussed earlier, the dataset
used in this thesis was small and imbalanced. This might have resulted in
biased results, so therefore the models should be tested on a balanced version
as well - with more email samples from each original corpus. In addition, the
models should also be run using the same methodology in this thesis, but with
stratified K-Fold validation. This was also discussed before, but something
went wrong during the implementation making stratified K-Fold validation
near impossible. Although some remedies were put in place, the models should
be tested again to ensure as un-biased results as possible from the models.
These models could also be tested on entirely different datasets, as there are
a lot of phishing emails out there and the Nazario corpus does not guarantee
that every possible phishing scam is included.

If a phishing detection model based on natural language processing ideas is
to be deployed in the real world, more metrics than classification time would
be needed to quantify how much resources the model use. We therefore propose
that in future iterations researchers should also include peak memory (RAM
or VRAM) usage for the model. Gathering these data will make it easier for
potential stakeholders to decide on which models to deploy, as there most
likely will be a cost/benefit trade-off. All classification run-times should also
be tested on both CPUs and GPUs for comparison.

The intent detection problem, from which the models came, mostly deal
with multiple classes. It might be useful for researchers to attempt at classifying
emails into different sub-classes such as ‘financial fraud’ and ‘identity theft’. An
implementation as such could enhance the field by allowing for more nuanced
analysis of emails to prevent specific security breaches. Also, this could help
with analyzing email phishing scam trends.

Furthermore, it is rumored that Google is going to release BERTs successor,
MUM [62]. The release seems to be just speculation, but if it is released in the
near future, it is probably going to become the new state of the art in many
natural language processing domains. Therefore, it should also be tested on

51

52 Baardsen: Phishing Detection using Intent Detection Methods

the phishing detection problem, as we did with BERT.

Bibliography

[1] U. V. Navalgund and K. Priyadharshini, ‘Crime intention detection sys-
tem using deep learning,’ in 2018 International Conference on Circuits
and Systems in Digital Enterprise Technology (ICCSDET), IEEE, 2018,
pp. 1–6.

[2] Merriam-Webster, Intention. Merriam-Webster.com Dictionary. [Online].
Available: https://www.merriam-webster.com/dictionary/intention
(visited on 23/03/2022).

[3] H. Purohit and R. Pandey, ‘Intent mining for the good, bad, and ugly use
of social web: Concepts, methods, and challenges,’ in Emerging Research
Challenges and Opportunities in Computational Social Network Analysis
and Mining, N. Agarwal, N. Dokoohaki and S. Tokdemir, Eds. Cham:
Springer International Publishing, 2019, pp. 3–18. doi: 10.1007/978-3-
319-94105-9_1. [Online]. Available: https://doi.org/10.1007/978-3-
319-94105-9_1.

[4] Y. Senarath and H. Purohit, ‘Evaluating semantic feature representations
to efficiently detect hate intent on social media,’ in 2020 IEEE 14th
International Conference on Semantic Computing (ICSC), IEEE, 2020,
pp. 199–202.

[5] M. Koniew, ‘Classification of the user’s intent detection in ecommerce
systems-survey and recommendations.,’ International Journal of Inform-
ation Engineering & Electronic Business, vol. 12, no. 6, 2020.

[6] L. Li, L. Sun, C. Weng, C. Huo and W. Ren, ‘Spending money wisely:
Online electronic coupon allocation based on real-time user intent de-
tection,’ in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, 2020, pp. 2597–2604.

[7] X. W. Zhao, Y. Guo, Y. He, H. Jiang, Y. Wu and X. Li, ‘We know what
you want to buy: A demographic-based system for product recommend-
ation on microblogs,’ in Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, ser. KDD
’14, New York, New York, USA: Association for Computing Machinery,
2014, pp. 1935–1944, isbn: 9781450329569. doi: 10 . 1145 / 2623330 .
2623351. [Online]. Available: https : / / doi . org / 10 . 1145 / 2623330 .
2623351.

53

https://www.merriam-webster.com/dictionary/intention
https://doi.org/10.1007/978-3-319-94105-9_1
https://doi.org/10.1007/978-3-319-94105-9_1
https://doi.org/10.1007/978-3-319-94105-9_1
https://doi.org/10.1007/978-3-319-94105-9_1
https://doi.org/10.1145/2623330.2623351
https://doi.org/10.1145/2623330.2623351
https://doi.org/10.1145/2623330.2623351
https://doi.org/10.1145/2623330.2623351

54 Baardsen: Phishing Detection using Intent Detection Methods

[8] A. Arora, A. Shrivastava, M. Mohit, L. S.-M. Lecanda and A. Aly, ‘Cross-
lingual transfer learning for intent detection of covid-19 utterances,’ Face-
book, 2020.

[9] C. Abbet, M. M’hamdi, A. Giannakopoulos, R. West, A. Hossmann, M.
Baeriswyl and C. Musat, ‘Churn intent detection in multilingual chatbot
conversations and social media,’ arXiv preprint arXiv:1808.08432, 2018.

[10] A. Nigam, P. Sahare and K. Pandya, ‘Intent detection and slots prompt
in a closed-domain chatbot,’ in 2019 IEEE 13th International Conference
on Semantic Computing (ICSC), IEEE, 2019, pp. 340–343.

[11] B. Gamage, R. Pushpananda and R. Weerasinghe, ‘The impact of using
pre-trained word embeddings in sinhala chatbots,’ in 2020 20th Interna-
tional Conference on Advances in ICT for Emerging Regions (ICTer),
IEEE, 2020, pp. 161–165.

[12] J. Liu, Y. Li and M. Lin, ‘Review of intent detection methods in the
human-machine dialogue system,’ in Journal of Physics: Conference Series,
IOP Publishing, vol. 1267, 2019, p. 012 059.

[13] N. Anantrasirichai and D. Bull, ‘Artificial intelligence in the creative
industries: A review,’ Artificial Intelligence Review, pp. 589–656, 2021.

[14] S. Akulick, E. S. Mahmoud et al., ‘Intent detection through text min-
ing and analysis,’ in Proceedings of the Future Technologies Conference
(FTC), Vancouver, Canada, 2017, pp. 29–30.

[15] S. Larson, A. Mahendran, J. J. Peper, C. Clarke, A. Lee, P. Hill, J. K.
Kummerfeld, K. Leach, M. A. Laurenzano, L. Tang and J. Mars, ‘An
evaluation dataset for intent classification and out-of-scope prediction,’
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), 2019. [Online]. Available:
https://www.aclweb.org/anthology/D19-1131.

[16] I. Kononenko, Machine learning and data mining : introduction to prin-
ciples and algorithms. Chichester: Horwood, 2007, isbn: 9781904275213.

[17] K. Balodis, J. Kapočiūtė-Dzikienė and R. Skadin, š, ‘Intent detection
problem solving via automatic dnn hyperparameter optimization,’ Ap-
plied Sciences, vol. 10, no. 21, 2020, issn: 2076-3417. doi: 10.3390/
app10217426. [Online]. Available: https://www.mdpi.com/2076-3417/
10/21/7426.

[18] Y. Wang, J. Huang, T. He and X. Tu, ‘Dialogue intent classification
with character-cnn-bgru networks,’ Multimedia Tools and Applications,
vol. 79, no. 7, pp. 4553–4572, 2020.

https://www.aclweb.org/anthology/D19-1131
https://doi.org/10.3390/app10217426
https://doi.org/10.3390/app10217426
https://www.mdpi.com/2076-3417/10/21/7426
https://www.mdpi.com/2076-3417/10/21/7426

Bibliography 55

[19] T. He, X. Xu, Y. Wu, H. Wang and J. Chen, ‘Multitask learning with
knowledge base for joint intent detection and slot filling,’ Applied Sci-
ences, vol. 11, no. 11, 2021, issn: 2076-3417. doi: 10.3390/app11114887.
[Online]. Available: https://www.mdpi.com/2076-3417/11/11/4887.

[20] G. Di Gennaro, A. Buonanno, A. Di Girolamo, A. Ospedale and F. A. N.
Palmieri, ‘Intent classification in question-answering using lstm-architectures,’
in Progresses in Artificial Intelligence and Neural Systems, A. Esposito,
M. Faundez-Zanuy, F. C. Morabito and E. Pasero, Eds. Singapore: Springer
Singapore, 2021, pp. 115–124. doi: 10.1007/978-981-15-5093-5_11.
[Online]. Available: https://doi.org/10.1007/978-981-15-5093-5_11.

[21] W. Ullah, A. Ullah, I. U. Haq, K. Muhammad, M. Sajjad and S. W. Baik,
‘Cnn features with bi-directional lstm for real-time anomaly detection in
surveillance networks,’ Multimedia tools and applications, vol. 80, no. 11,
pp. 16 979–16 995, 2021, issn: 1380-7501.

[22] L. Qin, F. Wei, T. Xie, X. Xu, W. Che and T. Liu, ‘Gl-gin: Fast and
accurate non-autoregressive model for joint multiple intent detection and
slot filling,’ arXiv preprint arXiv:2106.01925, 2021.

[23] T. Miyazaki, K. Makino, Y. Takei, H. Okamoto and J. Goto, ‘Label em-
bedding using hierarchical structure of labels for Twitter classification,’
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), Hong Kong, China: Asso-
ciation for Computational Linguistics, Nov. 2019, pp. 6317–6322. doi:
10.18653/v1/D19- 1660. [Online]. Available: https://aclanthology.
org/D19-1660.

[24] M. Firdaus, H. Golchha, A. Ekbal and P. Bhattacharyya, ‘A deep multi-
task model for dialogue act classification, intent detection and slot filling,’
Cognitive Computation, vol. 13, no. 3, pp. 626–645, 2021.

[25] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, ‘Bert: Pre-training
of deep bidirectional transformers for language understanding,’ arXiv
preprint arXiv:1810.04805, 2018.

[26] C. He, S. Chen, S. Huang, J. Zhang and X. Song, ‘Using convolutional
neural network with bert for intent determination,’ in 2019 International
Conference on Asian Language Processing (IALP), 2019, pp. 65–70. doi:
10.1109/IALP48816.2019.9037668.

[27] IBM, ‘X-force threat intelligence index 2022,’ IBM Corporation, New
Orchard Road, Armonk, NY 10504, Tech. Rep., Feb. 2022. [Online].
Available: https : / / www . ibm . com / downloads / cas / ADLMYLAZ (visited
on 25/04/2022).

https://doi.org/10.3390/app11114887
https://www.mdpi.com/2076-3417/11/11/4887
https://doi.org/10.1007/978-981-15-5093-5_11
https://doi.org/10.1007/978-981-15-5093-5_11
https://doi.org/10.18653/v1/D19-1660
https://aclanthology.org/D19-1660
https://aclanthology.org/D19-1660
https://doi.org/10.1109/IALP48816.2019.9037668
https://www.ibm.com/downloads/cas/ADLMYLAZ

56 Baardsen: Phishing Detection using Intent Detection Methods

[28] M. Vijayalakshmi, S. Mercy Shalinie, M. H. Yang and R. M. U, ‘Web
phishing detection techniques: A survey on the state-of-the-art, tax-
onomy and future directions,’ Iet Networks, vol. 9, no. 5, pp. 235–246,
2020.

[29] Z. M. Hakim, N. C. Ebner, D. S. Oliveira, S. J. Getz, B. E. Levin, T.
Lin, K. Lloyd, V. T. Lai, M. D. Grilli and R. C. Wilson, ‘The phishing
email suspicion test (pest) a lab-based task for evaluating the cognitive
mechanisms of phishing detection,’ Behavior research methods, vol. 53,
no. 3, pp. 1342–1352, 2021.

[30] S. Bowcut, Phishing attacks: A complete guide, https://cybersecurityguide.
org/resources/phishing/, Accessed: 2022-04-26, 11th Feb. 2022.

[31] J. Nazario, Phishing email dataset, https://monkey.org/~jose/phishing/,
Accessed: 2022-05-02, 12th Feb. 2022.

[32] AARP, Nigerian scams, https://www.aarp.org/money/scams-fraud/
info-2019/nigerian.html, Accessed: 2022-04-26, 28th Oct. 2020.

[33] G. Sonowal, ‘Detecting phishing sms based on multiple correlation al-
gorithms,’ SN Computer Science, vol. 1, no. 6, pp. 1–9, 2020.

[34] P. Barraclough, G. Fehringer and J. Woodward, ‘Intelligent cyber-phishing
detection for online,’ Computers & Security, vol. 104, p. 102 123, 2021,
issn: 0167-4048. doi: https://doi.org/10.1016/j.cose.2020.102123.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167404820303965.

[35] A. Ozcan, C. Catal, E. Donmez and B. Senturk, ‘A hybrid dnn–lstm
model for detecting phishing urls,’ Neural Computing and Applications,
pp. 1–17, 2021.

[36] M. Lansley, S. Kapetanakis and N. Polatidis, ‘Seader++ v2: Detecting
social engineering attacks using natural language processing and machine
learning,’ in 2020 International Conference on Innovations in Intelligent
Systems and Applications (INISTA), IEEE, 2020, pp. 1–6.

[37] A. Odeh, I. Keshta and E. Abdelfattah, ‘Phiboost-anovel phishing de-
tection model using adaptive boosting approach,’ Jordanian Journal of
Computers and Information Technology (JJCIT), vol. 7, no. 01, 2021.

[38] K. Rendall, A. Nisioti and A. Mylonas, ‘Towards a multi-layered phishing
detection,’ Sensors, vol. 20, no. 16, p. 4540, 2020.

[39] R. Valecha, P. Mandaokar and H. R. Rao, ‘Phishing email detection
using persuasion cues,’ IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 2, pp. 747–756, 2022. doi: 10.1109/TDSC.2021.
3118931.

[40] R. Verma, N. Shashidhar and N. Hossain, ‘Detecting phishing emails the
natural language way,’ in European Symposium on Research in Computer
Security, Springer, 2012, pp. 824–841.

https://cybersecurityguide.org/resources/phishing/
https://cybersecurityguide.org/resources/phishing/
https://monkey.org/~jose/phishing/
https://www.aarp.org/money/scams-fraud/info-2019/nigerian.html
https://www.aarp.org/money/scams-fraud/info-2019/nigerian.html
https://doi.org/https://doi.org/10.1016/j.cose.2020.102123
https://www.sciencedirect.com/science/article/pii/S0167404820303965
https://www.sciencedirect.com/science/article/pii/S0167404820303965
https://doi.org/10.1109/TDSC.2021.3118931
https://doi.org/10.1109/TDSC.2021.3118931

Bibliography 57

[41] S. Smadi, N. Aslam and L. Zhang, ‘Detection of online phishing email
using dynamic evolving neural network based on reinforcement learning,’
Decision Support Systems, vol. 107, pp. 88–102, 2018.

[42] P. Bountakas, K. Koutroumpouchos and C. Xenakis, ‘A comparison of
natural language processing and machine learning methods for phishing
email detection,’ in 16th International Conference on Availability, Reli-
ability and Security, ser. ARES 2021: The 16th International Conference
on Availability, Reliability and Security, Association for Computing Ma-
chinery, pp. 8887–12, isbn: 1-4503-9051-X.

[43] R. A. A. Jonker, R. Poudel, T. Pedrosa and R. P. Lopes, ‘Using natural
language processing for phishing detection,’ in Optimization, Learning
Algorithms and Applications, A. I. Pereira, F. P. Fernandes, J. P. Coelho,
J. P. Teixeira, M. F. Pacheco, P. Alves and R. P. Lopes, Eds., Cham:
Springer International Publishing, 2021, pp. 540–552, isbn: 978-3-030-
91885-9.

[44] T. Peng, I. Harris and Y. Sawa, ‘Detecting phishing attacks using natural
language processing and machine learning,’ in 2018 IEEE 12th interna-
tional conference on semantic computing (icsc), IEEE, 2018, pp. 300–
301.

[45] M. T. F. Khan et al., ‘Detecting phishing attacks using nlp,’ Turk-
ish Journal of Computer and Mathematics Education (TURCOMAT),
vol. 12, no. 2, pp. 369–372, 2021.

[46] William W. Cohen, Enron email dataset, https://www.cs.cmu.edu/
~enron/, Accessed: 2022-04-26, 8th May 2015.

[47] MillerSmiles, Phishing scams and spoof emails at millersmiles.co.uk, http:
//www.millersmiles.co.uk/index.php, Accessed: 2022-04-26, 2022.

[48] T. A. Almeida, J. M. G. Hidalgo and A. Yamakami, ‘Contributions to the
study of sms spam filtering: New collection and results,’ in Proceedings of
the 11th ACM symposium on Document engineering, 2011, pp. 259–262.

[49] R. Tatman, Fraudulent e-mail corpus, https://www.kaggle.com/datasets/
rtatman/fraudulent-email-corpus, Accessed: 2022-05-02.

[50] H. Sak, A. Senior and F. Beaufays, ‘Long short-term memory based re-
current neural network architectures for large vocabulary speech recog-
nition,’ arXiv preprint arXiv:1402.1128, 2014.

[51] C. Olah, Understanding lstm networks, https : / / colah . github . io /
posts/2015-08-Understanding-LSTMs/, Accessed: 2022-05-18, 27th Aug.
2015.

[52] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk and Y. Bengio, ‘Learning phrase representations using rnn
encoder-decoder for statistical machine translation,’ arXiv preprint arXiv:1406.1078,
2014.

https://www.cs.cmu.edu/~enron/
https://www.cs.cmu.edu/~enron/
http://www.millersmiles.co.uk/index.php
http://www.millersmiles.co.uk/index.php
https://www.kaggle.com/datasets/rtatman/fraudulent-email-corpus
https://www.kaggle.com/datasets/rtatman/fraudulent-email-corpus
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

58 Baardsen: Phishing Detection using Intent Detection Methods

[53] Torch Contributors, Convolution layers, https://pytorch.org/docs/
stable/nn.html#convolution-layers, Accessed: 2022-05-30, 2019.

[54] MathWorks, What is a convolutional neural network? https : / / se .
mathworks.com/discovery/convolutional- neural- network- matlab.
html#how-they-work, Accessed: 2022-05-30.

[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser and I. Polosukhin, ‘Attention is all you need,’ Advances in
neural information processing systems, vol. 30, 2017.

[56] I. Turc, M.-W. Chang, K. Lee and K. Toutanova, ‘Well-read students
learn better: On the importance of pre-training compact models,’ arXiv
preprint arXiv:1908.08962v2, 2019.

[57] W. Cukierski, The enron email dataset, https : / / www . kaggle . com /
datasets / wcukierski / enron - email - dataset, Accessed: 2022-05-15,
2016.

[58] Torch Contributors, Torch.nn, https://pytorch.org/docs/stable/nn.
html, Accessed: 2022-05-15, 2019.

[59] Python Software Foundation, Time — time access and conversions, https:
//docs.python.org/3/library/time.html#time.perf_counter, Ac-
cessed: 2022-05-15, 2019.

[60] M. Almseidin, A. A. Zuraiq, M. Al-Kasassbeh and N. Alnidami, ‘Phish-
ing detection based on machine learning and feature selection methods,’
iJIM, vol. 13, no. 12, 2019.

[61] Y. Sawa, R. Bhakta, I. G. Harris and C. Hadnagy, ‘Detection of social en-
gineering attacks through natural language processing of conversations,’
in 2016 IEEE Tenth International Conference on Semantic Computing
(ICSC), IEEE, 2016, pp. 262–265.

[62] H. Marius, Rip bert: Google’s mum is coming, https://towardsdatascience.
com/rip-bert-googles-mum-is-coming-cb3becd9670f, Accessed: 2022-
05-15, 2022.

https://pytorch.org/docs/stable/nn.html#convolution-layers
https://pytorch.org/docs/stable/nn.html#convolution-layers
https://se.mathworks.com/discovery/convolutional-neural-network-matlab.html#how-they-work
https://se.mathworks.com/discovery/convolutional-neural-network-matlab.html#how-they-work
https://se.mathworks.com/discovery/convolutional-neural-network-matlab.html#how-they-work
https://www.kaggle.com/datasets/wcukierski/enron-email-dataset
https://www.kaggle.com/datasets/wcukierski/enron-email-dataset
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.html
https://docs.python.org/3/library/time.html#time.perf_counter
https://docs.python.org/3/library/time.html#time.perf_counter
https://towardsdatascience.com/rip-bert-googles-mum-is-coming-cb3becd9670f
https://towardsdatascience.com/rip-bert-googles-mum-is-coming-cb3becd9670f

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Aksel Baardsen

Phishing and Social Engineering
Attack Detection by Applying
Intention Detection Methods

Phishing Detection using Intent Detection
Methods

Master’s thesis in Information Security
Supervisor: Sule Yildirim Yayilgan
Co-supervisor: Sarang Shaikh
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Topic covered by the project
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Planned contributions

	Related Works
	Intent detection
	Computational methods
	Deep Neural Networks
	BERT & Transformers

	Phishing and Social Engineering
	Phishing types
	URL Analysis
	Text Analysis
	Datasets

	Choice of Methods
	Computational methods
	Bidirectional Long Short-Term Memory (Bi-LSTM)
	Gated Recurrent Unit (GRU)
	Convolutional Neural Network (CNN)
	BERT

	Dataset selection
	Performance evaluation

	Experiments
	Experimental design
	Experimental setup
	Datasets
	Enron Corpus
	Nazario Corpus
	Merging and Splitting Datasets

	Tokenization and Embedding
	Implementation
	BiLSTM
	BiGRU
	CNN
	BERT using FFNN

	Results
	Confusion Matrices per Algorithm
	Classification Results

	Discussion
	Conclusion
	Future work
	Bibliography

