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Abstract

In a world with rapid change in technology and the use of social media (SM), a
growing attack surface with a fast distribution of fake images to a vast audience
is an increasing problem. The two most used image tampering techniques are
copy-move forgery (CMF), where copied objects are from within the same image,
and splicing forgery (SF) where the copied objects originate from another image.
Many attempts to develop deep learning models for image tampering detection
have been proposed in the literature. However, many of them have not considered
the possibility that tampered images can be additionally post-processing in im-
age editing programs and be compressed when transferred on social media (SM).
This thesis explores the impact of using test images post-processed with rotation,
JPEG compression, blurring, and brightening. We test the impact on a convolu-
tional neural network (CNN), and the transfer learning models ResNet-50 and
ResNet-101, and error level analysis (ELA) is used as a pre-processor to highlight
tampering regions. We propose an improved ResNet-50 model with an F1 score
of 98% when presented with images not post-processed. We address the perform-
ance drop in experiments with post-processed images, and we address that using
ResNet-101, a deeper model than ResNet-50, does not result in increased perform-
ance. Another variable that caused the performance drop was ELA, which depends
on analyzing images that have not lost data due to additional JPEG compression.
This research can conclude that ELA is not a suitable post-processing technique
to rely on when investigating images that may be post-processed or transferred
online. The depth and complexity of deep learning models have an impact on the
accuracy and performance. Good detection accuracy on testing images, similar to
training images, does not equal good detection accuracy on new types of image
transformations.
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Sammendrag

I en verden som endrer seg i stor hastighet innen teknologi, og bruk av sosiale
medier, en ny angrepsflate hvor distribuering av forfalskede bilder kan spre seg
til et stort publikum på bare sekunder. De to mest brukte teknikkene for bildema-
nipulering er copy-move forgery (CMF) hvor kopierte objkekter kommer fra det
samme bildet, og splicing forgery (SF) hvor kopierte objekter er fra andre bilder.
Mange forsøk på å utvikle dype maskinlæringsmodeller for deteksjon av manip-
ulerte bilder har vært presentert i litteraturen. Det som ikke addresseres i mange
av disse modellene er mulighetene for at bilder kan bli retusjert og komprimert un-
der overføring på sosiale medier. Denne oppgaven utforsker utforsker effekten av
testing med manipulerte bilder som har blitt ytterligere prosessert med rotasjon,
JPEG kompresjon, blur og lysendring. Vi testet effecten på et convolutional neural
network (CNN), og de to transfer learning modellene ResNet-50 og ResNet-101,
og vi brukte error level analysis (ELA) som en preprosessor til å lyse opp manip-
ulerte objekter i bildene. Vi foreslår en ResNet-50 model som oppnådde en F1 skår
på 98% på bilder uten ytterligere prossesering. Vi diskuterer ytelsesnedgangen i
eksperimentene hvor bildene har vært ytterligere prossesert, og vi diskuterer at
bruk av ResNet-101 som er et dypere nettverk sammenlikned med ResNet-50 ikke
fører til bedre ytelse. En annen variabel som kan ha forårsaket ytelsesnedgangen
er ELA som ikke egner seg som preprosesseringsteknikk på bilder som er blitt
komprimert med JPEG. Dette prosjektet konkluderer at ELA ikke er egnet som
preprosesseringsteknikk når bilder som kan ha blitt komprimert under overførelse
på sosiale medier. Dybden og kompleksiteten i en dyp læringsmodell spiller også
inn på treffsikkerheten og ytelse. Bra deteksjonstreffsikkerhet på testbilder som er
lik til treningsbilder vil ikke automatisk bety at modellen er robust for nye typer
transformasjoner.
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Chapter 1

Introduction

In a digital age where thoughts, opinions, and life updates are shared with friends,
family, and the public on social media (SM) platforms, the possibility of reaching
a massive audience is just a click away. Not only is it possible to broadcast content
on different platforms, as long as terms of services are withheld, but the content
may not be checked for its integrity by a third party before it is published, so it
depends on people to be able to distinguish real and fake images and news art-
icles [1]. People’s knowledge of distinguishing between real and altered truth may
also vary because of training and source criticism. These skills have become more
critical because there is a growing tendency for people to access news mainly on
SM sites. Studies on how teenagers in Norway consume news reveals that they get
access to news mainly from social media sites. As much as 63% of teenagers of age
9-18 years state that they get access to news mainly on Snapchat, Facebook, and
YouTube, and 88% of Teenagers of age 17-18 years say that they also read online
news articles from established newspapers [2]. Using images or fake images in
distributing untruthful information can amplify the message’s visual effects. Hu-
mans tend to be better at recalling articles and news if they contain images than
remembering content in pure text articles [3].
A fake image can be defined as a photograph that has been altered with an image
editing program that changes the message in the image. Over the last couple of
years, image tampering techniques have increased in popularity, and it is used
to transform an image from representing its actual content to represent a mod-
ified version of its true self. More sophisticated scams may also utilize more ad-
vanced image manipulation techniques, such as color correction, blurring lines,
and smoothing the tampered area to make it harder for the human eye to detect
the scam. Image tampering can be done with widely available editing tools such
as Paint.NET [4], GIMP [5] and Adobe Photoshop [6].

copy-move forgery (CMF) is one of the most used and most researched im-
age tampering techniques in the research field. It is the art of copying objects or
regions from the same image and pasting it to another location in the image. An-
other popular image tampering technique is splicing forgery (SF), where objects
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2 M. Vassenden: Image Forgery Detection

from other images are pasted in the image. A motivation for using copied areas
from the same image is because it may appear more natural. After all, colors and
objects may appear more valid than the image’s composition and context [7]. The
copied object can be used to hide elements in an image or cover up evidence which
can give deceptive information.

One example of CMF is shown in figure Figure 1.1. The Iranian military pub-
lished the tampered image of a successful missile launching, but the original image
reveals that one of the missiles never left the ground [8]. Image tampering has
also been done in academic research. For example, Tijdink et al. discovered that
15% of their survey responders reported that they had tampered with their re-
search results within the last three years. Image manipulation can be one of the
methods they use to manipulate research [9].

a) Original Image b) Tampered image

Figure 1.1: Iranian missile launching [8]

1.1 Problem Description

The use of SM platforms in people’s everyday life has increased the importance of
being able to distinguish between tampered and legitimate images. Distributors
of tampered images can reach a greater audience in a short amount of time. As
earlier described, many people get access to news through SM platforms. There-
fore, people must distinguish between news from established media channels and
shared opinions that can contain tampered images to affect people’s beliefs, which
have been done in political elections [10]. Facebook and Twitter are also two of
the most popular sites used to distribute falsified information [1]. SM sites often
use lossy compression on images to eliminate problems with bandwidth and give
users faster uploading of web pages [11]. This means that images that have been
uploaded and downloaded can be exposed to compression multiple times, which
may lead to loss of information. Another aspect of images that have been manip-
ulated with CMF or SF is that the distributor of the image may try to retouch the
image to make it look as legitimate as possible, which means that images can be
exposed to multiple manipulations such as blurring, color correction, and scaling.
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1.2 Justification and Motivation

Many authors have proposed comprehensive models that detect CM and SF, and
the models may seem appropriate to use in a forensics examination. However,
many models are trained and tested on images from the same dataset which may
indicate that the test images have been post-processed similarly to the training
images. The creators of the CASIA datasets [12] have tried to create tampered im-
ages as close to real-world images as possible, but that does not mean that models
that have been trained and tested on their datasets are suitable for real-world CM
and SF image detection tasks. Some convolutional neural network (CNN) models
are trained with augmented data to increase the accuracy of the model because
it may perform better if it is trained on more samples than the original dataset
included. Using augmentation may be advantageous because of the benefits of
making the model robust for certain transformations. Still, the limitations lie in
the developer’s imagination to imagine which transformations the model is trained
on.

1.3 Research Questions

1. Which combinations of backbone models, hyperparameters, and optimizers
provide good accuracy and performance for the detection of CM and SF
images in standard datasets?

2. Which image pre-processing techniques can assist in CMF and SF detection?
3. How do the models and pre-processing pipelines developed from RQ1 and

RQ2 perform on tampered images that have been processed with other
transformations than those present in the training images?

1.4 Contribution

This study proposes a CNN model that uses ResNet-101 as a transfer learning
model for feature extraction, with two dense layers at the top of the model to
predict the model. This research proposes a transfer learning model that uses
ResNet-101 as a backbone model with two dense layers and a fully connected
layer to classify tampered ad legitimate images. The model differs from previous
works with the approach of training the model on the training data and testing the
model on training data that have been augmented with augmentation the model
has not trained on. The results will be compared with tests done on test data that
have been augmented with augmentation that the model has trained on.
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1.5 Outline

The thesis is structured accordingly; Chapter 2 introduces relevant background
and theory regarding detection models for CM and SF, which are important for
the reader to have knowledge about to understand the experiments and proposed
results. Chapter 3 introduces the methods that are used in this thesis to answer the
research questions. Chapter 4 introduces the reader to the experimental setup and
model architectures. Chapter 5 presents the results achieved with the proposed
method and experimental setup. Chapter 6 is a discussion and analysis of the
results, before the final conclusion in Chapter 7.



Chapter 2

Background

This chapter provides relevant background information about theory, technolo-
gies, and related work to the research topic.

2.1 Copy-Move and Splicing Forgery

CMF is an image tampering technique that uses copied objects from an image and
pastes it to another location within that image, as mentioned in section Chapter 1.
The technique is simple because it mainly requires an image editing program. Im-
age splicing is a similar tampering technique to CMF, but the copied object ori-
ginates from another photograph. Tampered images can be made less noticeable
if the image’s creator applies post-processing by blurring sharp edges, color cor-
rections, and flipping or rotating copied objects to hide more obvious traces of
tampering.

Two of the techniques that have been used in the literature for CMF detection
are passive and active detection. Active techniques involve the extraction of data
from the image, digital watermarking, or digital signatures to verify the integrity
of the image. The digital signature or watermark is inserted into the picture, and
the recipient of the image may then verify it. Passive techniques use algorithms
to detect tampered areas in the image that may seem invisible to the naked eye,
but forged attempts can leave traces discovered by block- and key-point-based al-
gorithms and machine learning approach [13].

Block-based methods divide images into overlapping or non-overlapping blocks.
The technique can eliminate time complexity when images are processed suitably
for detecting smoothed regions. Typical feature extractions that have been com-
bined with block-based techniques are Discrete Cosine Transform DCT and Dis-
crete Wavelet Transform DWT. Extracted features in each block are then compared
to determine if two or more blocks contain a similarity score above a threshold to
determine if there is a match between blocks.

5
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One research project that used block-based methods is Liu et. al. [14]. The au-
thors used the simple linear iterative clustering (SLIC) algorithm to perform a
super-pixel segmentation to solve the problem with time complexity. The advant-
age of the technique is that the CMF model can analyze a smaller amount of pixels
to extract features. The method involves segmenting the image into patches that
consist of pixel groups with similar levels of brightness and color. Harris corner
detection can then be applied to the super-pixels to detect tampered areas. The
results showed that the model was robust towards rotation attacks and smoothed
areas. Key Point-based algorithms have provided sufficient results for detecting
geometrical transformed and scaled areas. The downside of the method is that
it is less effective at detecting smoothed or small tampered areas. David Lowe’s
Scale Invariant Feature Transform (SIFT) [15] is a key-point based algorithm used
in computer vision. SIFT is used for object matching and object comparison in
computer vision by extracting key points from one image and comparing them
with key points from another image. SIFT is robust for added noise, scaling, and
rotation of objects, but the method has some drawbacks. The algorithm is com-
putationally expensive due to the number of feature vectors computed in each
image, and it does not solve the issue of lack of detection of small objects and
smooth, tampered areas [16].

2.2 Metric Description

The performance can be evaluated by calculating precision, recall, and F1 score.
The precision score, described in equation Equation (2.1) can give an indicator of
how well the model is performing when it comes to predicting true positives. The
formula calculates how many true positives were predicted and divides it by the
number of predicted true positives plus false positives. A high precision score will
indicate that the model can make predictions relevant to the study. A recall score
can describe the test’s sensitivity and indicates how well the model is at correctly
predicting true positives out of all data samples. F1 score is used to determine the
harmonic mean of precision and recall by combining the results of both of them.
If the dataset is imbalanced, the F1 score can be used to evaluate the perform-
ance because false positive and false negative results are encountered. Weighted
average is a practical method in classification problems where the dataset is im-
balanced. The method encounters how much each data sample has contributed. In
other words, data samples in a class with fewer samples in an imbalanced dataset
will be weighted more compared with a data sample from the class in majority.
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Precision=
TruePosi t ives

TruePosi t ives+ FalsePosi t ives
(2.1)

Recal l =
TruePosi t ives

TruePosi t ives+ FalseNegatives
(2.2)

F1= 2 ∗
Precision ∗ Recal l
P recision+ Recal l

(2.3)

Speci f ici t y =
TrueNegatives

TrueNegatives+ FalsePosi t ives
(2.4)

Another method used to evaluate a test is Area Under the receiver operating
characteristic Curve (AUC) which is used to measure the specificity and sensit-
ivity score of a test. The sensitivity score is calculated with the same formula as
recall score in formula Equation (2.2), and the specificity score is calculated with
equation ?? ??. An AUC score tells us the probability between 0 and 1 for a ML
model to correctly predict classes in a test, according to a selected threshold. A
high AUC score indicates that the model correctly predicted a larger selection of
the data samples.

2.3 Dataset

Benchmark datasets used in the research field such as CASIA2.0 and CASIA1.0 are
created by using the same image editing tool on all sample images [12]. The cre-
ators have tried to create more realistic tampered images by including scaling and
rotation on copied objects, and some images in CASIA2.0 are also post-processed
with blurring. However, it is up to the imagination of the image editor to determ-
ine how comprehensive each manipulation is.

2.4 Convolutional Neural Network

Convolutional neural networks are deep learning models that use convolutional
layers to perform linear operations to learn useful features from input data [17].
The philosophy behind the CNN architecture is that the nodes in each hidden layer
act similarly to neurons in the human body, where neurons are connected and can
feed forward information. The architecture of CNNs improves traditional neural
networks. For example, it creates smaller outputs than the original input because
it creates smaller kernels, also called sparse interaction. In other words, the oper-
ation is less computational expensive compared to traditional architectures where
all input nodes are talking to output nodes in the hidden layers. The kernels use
tied weights, meaning that the network learns a set of weights instead of learning
many parameters in separate nodes, so the weights in one input are connected
with the weights applied in another input in the architecture.
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CNN is a popular architecture in computer vision because it can learn useful
features from images. After all, it is less computationally expensive, and it uses tied
weights to connect different inputs, as described earlier in this section. Another
advantage of CNN is that it does not involve as much manual preprocessing as
traditional ML models such as Support Vector Machine (SVM) because it learns
features, and it is useful when working with massive datasets that can provide a
big hypothesis space for the model [18]. One variable that is critical when training
CNN is to have many data samples for the model to train on. If not, the model
may reach overfitting, which will be described later in section Section 2.4.3. Loss
functions are used in CNN to minimize the training error so that the model will
classify data correctly. The function is activated during back-propagation, and it
returns the partial derivative value for each weight in the network. For binary
classification problems, the loss function binary cross-entropy is an appropriate
one to use, and it is given in formula Equation (2.5), taken from [19] "where M
is the number of training examples, ym is the target label for training example m,
xm is the input for training example m, and hθ is the model with neural network
weights θ ".

Jbce = −
1
M

M
∑

m=1

[ym ∗ log(hθ (xm)) + (1− ym) ∗ log(1− hθ (xm))] (2.5)

One optimization function used in CNN is the Adam optimization function
[20], a gradient-based optimization used to optimize the learning objectives within
classification problems with large datasets used in ML models. Adam is calculated
by first taking the gradients for the stochastic objective with the formula Equa-
tion (2.6). The updated biased first moment is calculated with formula Equa-
tion (2.7). The second updated biased momentum is calculated with formula
Equation (2.8). Bias corrected the first moment is calculated with formula Equa-
tion (2.9). The bias-corrected second raw moment is computed by formula Equa-
tion (2.10), and the last step is to update the parameters with formula Equa-
tion (2.11).

gt =∆θ

∫

t
(θt−1) (2.6)

mt = β1 ∗mt−1 + (1− β1) ∗ g t (2.7)

v1 = β2 ∗ vt−1 + (1− β2) ∗ g2
t (2.8)

m̂t =
mt

(1− β t
1)

(2.9)

v̂t =
vt

(1− β t
2)

(2.10)
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θt = θt−1 −α ∗
m̂t
p

v̂t + ε
(2.11)

The second optimization function vastly used for optimization in ML is Stochastic
Gradient Descent (SGD) which is calculated with equation Equation (2.12) to get
the weights updated during training [21].

w= w−α∇Li(w) (2.12)

Over the past couple of years, computational neural network (CNN) models
have become more popular due to the simplicity of image prepossessing, feature
extraction, and fine-tuning between layers. Moreover, CNN models have shown
to provide good performance in terms of accuracy without the trad off with time
complexity, as proposed by Goel et. al [22] who created a novel dual branch CNN
model by using Keras as backend. The model is robust for geometrical transform-
ation in copied objects, but it is computationally expensive and tends to produce
false positives when training on legitimate images. A support vector machine
(SVM) is then used for the final classification of the test images.

2.4.1 Transfer Learning

Transfer learning has become a more relevant approach to machine learning over
the past couple of years due to the possibility of reusing a trained model on new
data. There are three options of how to used a ResNet transfer learning architec-
ture [23]. The first approavh is to update all of the pre-trained weights during
training. The second approach is to only update weights on specified layers of the
ResNet model during training. Finally, the third approach is only to update the
top layer of the ResNet architecture and set the rest of the pre-trained weights as
not trainable during training to prevent them from being updated. One of the ad-
vantages of the third approach is that the model must not be trained from scratch
but instead use the pre-trained weights to classify new data. [24] One argument
that speaks for transfer learning is that training of a new model can be done much
faster because the knowledge of the pre-trained model is reused. Another advant-
age of this method is that the model may provide better performance in classifica-
tion problems where there are a limited amount of data samples for training and
cross-validation [18]. The pre-trained models are capable of learning new prob-
lems in a much faster manner because they are capable of generalizing new data
because they have trained on a vast selection of images, such as the ImageNet
database that contains 1000 classes, and because of the convolutional layers, de-
scribed earlier in section Section 2.4. The models can also extract new and helpful
features faster from the new images that it is fed with, because there are similar
classification problems that the model has already been trained on, which means
that weights are generated based on training on other data samples.
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There are many different transfer learning models out there, such as VGG16,
VGG19, AlexNet, ResNet-50, and ResNet-101. The ResNet models are some of the
deepest transfer learning models out there that are capable of training the deepest
layers. This element is further described in section Section 2.5. One is not limited
to only using the transfer learning models with pretrained weights, because it is
possible to unfreeze the weights and train the model from scratch, if it suits the
classification problem. Unfreezing weights means that the weights are updated
during training, and extracted features from the ImageNet is not utilized during
training of a new classification problem. Moreover, if a pretrained model suits
the classification task, a pretrained model can be loaded with the ML framework
we selected for the project. One example where a pre-trained model may be ad-
vantageous is in classification problems when there is a limited amount of data
samples available for training a model.

Transfer learning methods have increased their popularity in CMF and SF over
the past couple of years. Wilsey et al. used the five pretrained transfer learning
models VGG-16, VGG-19, GoogleNet, Inception-v3, and Alexnet to detect SF in
the DSO-1 dataset. The outputs from each model were used to train a SVM for
further classification of the images. The pre-trained models achieved better accur-
acy than state-of-the-art research using hand-crafted feature extractors. In [25],
Wu et al. used the VGG16 architecture as the backbone model in a deep matching
and validating network used to detect and locate CMF and SF in image pars from
the sun2012 and Microsoft COCO datasets. In this context, image pairs indicate
that the original and tampered image are compared to locate tampered objects.
The research achieved an F1 score of 86%, precision score of 94%, and a recall
score of 78%. Kadam et al. used the transfer learning models ResNet-101 and
MobileNet v1 to detect CMF on the CASIA 2.0 database and SF on the CASIA 1.0
dataset [26]. Pandey et al. proposed a transfer learning model that used ResNet-
101 as a backbone model without a custom layer on top of the transfer learning
model. Instead, the network used ELA as a feature extractor to detect tampered
areas in the CASIA 2.0 dataset [27]. The research achieved a weighted average F1
score of 88%, which is one of the best with ResNet-101 as the backbone model,
but the researchers do not provide precision and recall scores. Ahmed et al. [28]
used the pre-trained ResNet-50 and ResNet-101 models to compare their ability
to detect image forgeries on a computer-generated dataset.

Liu et al. [29] proposed a constrained image splicing detection and localiza-
tion model trained on the CASIA dataset. They used ResNet-50 and VGG16 as the
feature extractors and a decoder architecture. The model is fed with pairs of au-
thentic and spliced images and is processed with feature maps, before fine-grained
masks are computed to locate the tampered object. Meena et al meena2021res50
used Resnet-50 as the backbone model to extract features to detect SF on the
CUISIDE dataset. Feature extraction was done by generating a noise residual map
for each image, the noise print is used to extract the fingerprint of the camera
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model that was used to take the picture. For the final classification, the author
used a SVM classifier that achieved a detection accuracy of 97.24%. Pomari et
al. used ResNet-50 with illuminant maps as a feature extractor to find lighting in
small areas in images [30]. The authors also used a SVM for the final classification
method instead of using a traditional softmax classifier. The model achieved an
accuracy score of 96%. Nath et al. nath2021res50 used ResNet-50 as the backbone
model for the detection of CMF and SF on the CASIA 2.0 dataset without using
any extra mechanism for feature extraction. The model achieved an F1 score of
95.4%, a precision score of 96.6%, and a recall score of 94.1% Jaiswal et al. [31]
proposed an image tampering detection model trained on the CASIA 2.0 dataset.
The model used ResNet-50 as the backbone model with custom architecture, and
the three different classifiers: k-nearest neighbors, Naïve Bayes, and SVM, for final
image classification. They achieved the best results with the SVM classifier with
an accuracy score of 0.7026, a specificity score of 0.7497, and a sensitivity score of
0.6339. Specificity and sensitivity measure how the model predicted "authentic"
and "tampered" images.

Saba et al. used a pre-trained ResNet-101 and a custom CNN architecture on
the six different datasets to detect CMF. The six datasets were; CG-1050-v1 [32],
CG-1050-v2 [33], Coverage [34], MICC-F2000 [35] and Copy-move Forgery Data-
set [36] and a unified dataset. Zhou et al. [37] proposed an R-CNN network to
detect and locate tampered areas. The R-CNN network uses a two-stream archi-
tecture with one RGB stream that extracts manipulation artifacts, and one noise
stream that detects differences in noise streams between tampered and authentic
objects. They use a transfer learning architecture with ResNet-101 for the RGB
stream for feature extraction. They used CASIA 2.0 for training and CASIA 1.0
for testing. They also tested how data augmentation affected the training results,
and they concluded that implementing augmentation for flipping improved the
accuracy of the model, but augmentation methods such as JPEG compression and
adding noise did not improve the results in a significant way. They also tested the
model on images from the NIST Nimble 2016 [38] dataset, compressed with JPEG
compression of quality 70% and 50% to test if their model was robust to compres-
sion attacks, and the results show that the the model is robust. They measured the
accuracy in Area Under the receiver operating characteristic Curve (AUC) whitch
measures the specificity and sensitivity of the test.

2.4.2 Data Augmentation

One method used for preprocessing is data augmentation, and the method in-
volves the inclusion of augmentations to data samples in the data set. A great
variety of possible augmentation methods can be applied, and it depends on the
classification problem of which augmentations should be applied or not. Aug-
mentation is not always required to achieve good accuracy when using CNN and
transfer learning (TF), as proven in [39] [40] [41] [42]. However, it is a technique
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that can prevent overfitting, described in section Section 2.4.3, increase accuracy,
and provide the model with more data samples during training.

2.4.3 Overfitting

A problem that may occur when training a machine learning model is that the
model can predict well during training. Still, validation and testing may result
in high training errors, and the model cannot learn how to distinguish between
classes [43]. This problem is called overfitting and may occur when there is too
little training data. The model cannot learn the general features that distinguish
the classes because the input data introduced a too large hypothesis space for the
model to handle. For example, validation data is either too homogeneous or het-
erogeneous, which means that the data is either too similar or differs too much
to let the model learn valuable features. This phenomenon can lead to learning of
either noisy data or learning only a few features that will not be useful when the
model is introduced to real-world data.

The solution to overfitting and learning noisy features is to implement mech-
anisms such as early stopping, class weights, dropout, and data augmentation
described earlier. Early stopping is used to stop the model from continuing train-
ing if the training or validation metrics do not improve or the accuracy of the
metrics starts to decrease, which should be avoided. Class weight is implemented
by defining a parameter that gives the class in the minority to be weighted more
than the other class that is over-represented [44]. The reduced learning rate is
a method used to schedule a reduction of the learning rate if a metric is not im-
proving over time. Applying dropout layers after dense layers are done to “thin"
out the model. A set of neurons and their connections to previous and forward
layers are dropped [45] during each epoch. The set of neurons is selected with
a given probability, and this is done during each epoch, so the neurons are only
temporarily dropped.
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2.5 Residual Networks

Previously, deep neural network (DNN) was created on the philosophy that deeper
layers were equal to better performance and accuracy. However, the main problem
with deeper layers at the time was that it was complicated to optimize deeper lay-
ers because deep layers were difficult to train. The work of He et al. [46] resulted
in what we know today as residual networks, and their ideas are used in ResNet-
50 and ResNet-101 architecture today. Their idea was that instead of letting input
x be changed linearly through each layer in a layered model, they introduced skip
connections where the model learns the difference between input x and the out-
put of each skip function f (x), instead of the function H(x) that represents the
calculated output of the input x after it has gone through the stacked layers, see
Figure 2.1. This results in the residual function:

f (x) + x (2.13)

Where F(x) equals the change in parameters for x after each weight layer in
the residual block, and x is the identity function, the residual block’s default input.
A residual network is a network consisting of multiple of these residual blocks.

Figure 2.1: Illustration of skip connections in the residual network, taken from
[47]

ResNet-50 and ResNet-101 are made up of multiple residual blocks that creates
two very deep networks of 50 and 101 layers. To reduce time complexity and
the dimensions, because of the depth of the ResNet-50 and ResNet-101 networks,
the authors of residual networks came up with the bottle neck building blocks
solution that uses three layers in each residual block instead of two layers. The
convolutional layers in the bottleneck block are built up of 1x1, 3x3 and 1x1
convolutions, see Figure 2.2. The first 1x1 layer is used to lower the dimension
from the input so that the second 3x3 layer has a smaller bottleneck to manage,
before the third 1x1 layer reduce back the dimensions. ResNet-50 consists of 16
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three-layered bottleneck residual blocks, and ResNet-101 consists of 33 bottleneck
blocks.

1x1, 32

3x3, 32

1x1, 128
3x3, 32

3x3, 32

32 dimensions 128 dimensions

relu

relu

relu

relu

relu

Figure 2.2: Illustration of the ResNet bottleneck architecture [46]

2.6 Error Level Analysis

error level analysis is a technique used in image forensics for the detection of ma-
nipulated areas by using JPEG compression to its advantage. JPEG compression
is a standard method used to reduce the image size via a lossy compression tech-
nique. The process includes dividing the image into blocks of size 8x8 that are
further processed with color transformation and down-sampling before a quant-
ization table is applied to calculate the DCT coefficients [48].
The practical aspect of using JPEG compression is to bring down the size of an
image that will be transferred over the Internet. The compression can be almost
unnoticed by the human eye without comparing the original image with the com-
pressed image.

When performing an ELA on images, the first step is to save a copy of the
image with another compression quality between 0 and 99. The second step is to
calculate the extreme values between the original and compressed images. If the
image has not been tampered with, the error levels in the 8x8 blocks should be ap-
proximately at the same level. On the other hand, if the image has been tampered
with in a certain way, the error levels in the 8x8 blocks will be different because
an image is compressed the first time it is saved with the JPEG format. The image
had gone through a second compression when it was resaved in an image editing
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program. Editing programs such as Photoshop use their own JPEG quantization
table for JPEG compression. A disadvantage of using ELA to detect manipulated
images is that for each time an image is resaved, the error levels in the image may
be reduced for each time. This indicates that the error levels will stand less out
when error levels are computed on images that have been compressed multiple
times, as can happen when it is up and downloaded on numerous websites.

Jabeen et al. [49] used ELA as a feature extractor of the input images in their
proposed CNN model. The model was trained on CASIA 2.0 with a precision score
of 81% and a recall score of 61%. Sari et al. [50] used a CNN architecture with
ELA for preprocessing to detect CMF and SF in images. They tested how ELA with
quality of 90%, 50% and 10% affected the detection rate of the model. They con-
cluded that ELA with quality of 50% gave the best testing accuracy event though
the artefacts in the tampered objects were not as visible compared with ELA of
90% quality.
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Method

3.1 Datasets

The three CMF and SF detection models must be trained and evaluated on a data-
set with images containing copied objects from the same photo or other photos.
Using datasets already used in academic research will ensure the possibility for the
experiment to be repeated by others. It will also ensure the possibility of compar-
ing our research with related work. The dataset should be as close to real-world
examples as possible and contain a great variety of motives to feed the model.
This will also ensure that one can be sure that the model can detect a forgery in
different contexts, such as scaled, rotated, smoothed, and small areas.

CASIA v1.0 and CASIA v2.0 are two of the most used datasets for detecting
image splicing and CM forgery and may be one of the most suitable datasets for
this project. CASIA v2.0 is also one of the datasets with the highest number of
data samples in one dataset, it is publicly available and can be downloaded for
free from Kaggle [51].. The two datasets were created by [12], who used Adobe
Photoshop to edit the images. CASIA v2.0 contains 7491 valid images and 5124
manipulated images in JPEG and tif format. The dataset provides a variety of im-
ages containing people, nature, buildings, and animals. The class distribution is
71.5% of the image samples are "authentic", and 28.5% are "tampered". We ini-
tially split the dataset into 80% for training, 10% for validation, and 10% for
testing purposes for all the three models used in this paper. CASIA v2.0 is a more
comprehensive dataset than CASIA v1.0, because the dataset creators have ap-
plied post-processing techniques such as as blurring in the manipulated images
to create a more realistic dataset. In other words, some of the data samples have
already been post-processed to a certain extent. However, for this research, we
wanted to investigate the impact of extra post-processing that can be applied to
images, for example if tampered images are transferred over social media, and
therefore the CASIA 2.0 dataset fits the purpose of this research.

17
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3.2 Experiment

To run experiments to answer the first research question, how a SF model will
be at predicting tampered images that have gone through a transformation pro-
cess it has not trained on, a CM and SF model must be trained on the respective
dataset mentioned in section Section 3.1. For this particular experiment, we se-
lected a machine learning approach. It is possible to set up a machine learning
environment from scratch. Still, it is more practical to use the Keras framework
as a high-level API that is integrated with TensorFlow as the low-level API. Using
Keras and TensorFlow enables the possibility of setting up a neural network en-
vironment that is up and running in a fast manner.

The Keras API offers a variety of pre-trained models that can be used for trans-
fer learning. The models are pre-trained on the ImageNet dataset, an image data-
base of more than 1000 categories [52]. ResNet-50 and ResNet-101 are two of
the backbone models for image classification offered by Keras, and they are the
two transfer learning models used in this study [23]. Keras applications come
with pre-trained weights, so one does not need to train a model from scratch. The
philosophy is that transfer learning models can reuse pre-trained weights from
one classification problem in another classification problem. The method is also
practical to use when the number of data samples is limited, because the amount
of data samples is less vital when a transfer learning model is trained for a new
classification problem, and this is very desirable because the dataset used in this
project only contains about 12, 000 images in total.

Keras offers different possibilities on how to use ResNet models for training.
The third approach with freezing all weights except from the top layer is selected
for this research, because the pre-trained parameters ensure that the network is
trained in a faster manner compared with training it from scratch. This approach is
also preferable because the number of data samples is limited. The ResNet transfer
learning model architectures selected for our research are a ResNet-101 model
with a proposed custom architecture on top after the pretrained layers, and a
ResNet-50 model with custom architecture from Hebbar et al. [53]. A ELA-CNN
model with the architecture from Sari et al. [50] is also selected.

3.3 Evaluation

To answer the third research question from section Section 1.3, on how do the mod-
els and pre-processing pipelines developed from RQ1 and RQ2 perform on tampered
images that have been processed with other transformations than those present in
the training images?, the model is evaluated with the metrics described in section
Section 2.2 which are F1, recall and precision score.

During training, the models that achieve the best validation accuracy, which
in this context is F1, precision, and recall score, will be selected as the models
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used for further testing. A pre-trained model is loaded into a separate script that
executes the test and displays accuracy metrics and a confusion matrix for each
test. Each pre-trained model will be tested on different test datasets, and one
of them will be a dataset that has not gone through any extra transformations
before ELA is applied. This is to ensure that the results contain a baseline of the
model’s accuracy when it tests on images in the same format as the training and
validation image set. The other test datasets will contain different transformations
before applying ELA on each input image.

3.3.1 Confusion Matrix

FP, FN; TP, TN

3.4 Pre-processing

One of the steps in the startup phase of setting up a machine learning model is
to pre-process the data that will be fed to the model. This process aims to pre-
pare the data for the particular classification problem. It can eliminate irrelevant
noise and ensure that the model can process each image faster because less data
is processed. Some typical techniques for pre-processing images are changing file
format, grayscaling, blurring, brightening, and resizing, to mention a few.

We converted images in tif format to jpeg format because ELA is used to eval-
uate the difference in JPEG images by comparing the error levels between the
original image and a resaved image with a lower quality level, in this case, 90%
quality. We performed data augmentation on the ResNet-101 model with height
shift range, rotation range of 20%, vertical flip, and horizontal flip. The CASIA
2.0 dataset is limited in the number of data samples. One mitigation to the issue
of data limitation is to implement data augmentation, which provides the model
with several more data samples compared with the original dataset [54]. Aug-
mentation can also be applied to prevent overfitting due to the philosophy that
models may achieve better accuracy when training on big datasets, which is not
always possible to create. The mentioned augmentation methods were selected
because they differ from the test datasets’ transformations, and the model can
still benefit from data augmentation.
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Experimental Setup

4.1 Environmental setup Setup

We did the experiments on a Windows 10 desktop and a Ubuntu server. The Win-
dows 10 desktop had an Intel Core i7-7700k processor running at 4.20GHz, with
four cores and eight threads. In addition, the computer has 16 GB of RAM and an
NVIDIA GTX 970 graphics card with 4GB of video memory (VRAM). For storage, a
quick M.2 SSD was used. The Ubuntu server with 90 GB RAM, 8vCPU, and a 1/4
of a Tesla v100 with 8 GB GPU-RAM [55]. In addition, the server has an NVIDIA
driver and CUDA packages. We used Python version 3.9.7 as the programming
language to implement the models with the listed packages in table Section 4.1.

4.2 TensorFlow and Keras

TensorFlow is an open-source machine learning platform created by the Google
Brain team, and it works as a backend together with high-level APIs. The library
makes it possible for people to set up state-of-the-art machine learning environ-
ments and machine learning models. TensorFlow also has a great community and
documentation that gives users a lot of resources when using the library. In addi-
tion, it is compatible with a selection of programming languages, such as Python
and C++. This is why the framework was selected for this study. Keras is another
open-source library used together with TensorFlow as a high-level API. The lib-
rary provides functionality for fine-tuning ml models with optimizers and layers
for activation functions, dropout, and batch normalization.

4.3 Preprocessing

Preprocessing is a method used to prepare data before training, validation, and
testing in a machine learning model. The outcome of the preprocessing stage, as
described in section Section 3.4, can eliminate data that is unnecessary, reduce
the computational complexity by modifying the data, and provide the model with

21
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Table 4.1: List of Python packages

Package Version
Tensorflow 2.6.0

Tensorflow-addons 0.15.0
Keras 2.6.0

Keras-Applications 1.0.8
Keras-Preprocessing 1.1.2

Keras-resnet 0.2.0
Matploitlib 3.5.1
Scikit-learn 1.0.1

Numpy 1.19.5
opencv-python 4.5.3.56

Pillow 8.3.2
Imutils 0.5.4

consistent data. We converted images from tif format to JPEG format with the
Python library Pillow. The library returns an image object that is resaved with the
Image.save() [56] function in JPEG format with a quality of 95%, which is the
highest compression quality Pillow offers [57].

A small amount compresses Tif images after JPEG converting. Section 4.3
shows the difference between a tif image before and after converting. The image
is zoomed in to demonstrate the difference more clearly. Pillow does not resize
images unless specified when it saves the image, so all the converted images are
not resized in this stage. The disadvantage of converting images to JPEG is that
they lose some quality in the converting stage and can become more difficult for
the model to detect than images not converted to JPEG format. We used the Imu-
tils library to rotate images 45◦, and OpenCV to mirror images and rotate them
180◦. ELA is applied on training, validation, and ordinary test images after image
formating to JPEG. We created the test datasets by applying the respective trans-
formation for that particular test before applying ELA to the images.

Color channels of images are converted from RGB to BGR with preprocess_input
because it is a prerequisite for the ResNet Keras Application. The color channels
are then individually zero-centered with respect to the imageNet dataset, and This
process is preceded before the images are fed to the model [58].
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(a) Tif image (b) Converted JPEG image

Figure 4.1: Image a is the original image before it was converted to JPEG format
in image b.

4.4 Proposed Model Architectures

Early stopping was implemented to monitor the validation loss metric for all three
models tested in this experiment. For the ResNet-50 and ELA-CNN model, the pa-
tience was set to 10, meaning that the training will stop if the validation loss
metric has not improved over the last 10 epochs. For ResNet101, the early stop-
ping patience was set to 50 epochs. A class weight metric was implemented in
the ResNet101 model to mitigate imbalanced data. The CASIA 2.0 dataset con-
tains 7484 data samples for the authentic class, and 5130 data samples from the
tampered class. The authentic class makes up approximately 68% of the entire
dataset, indicating that the dataset may be a little bit imbalanced. The authors
of the ResNet-50 model [53] implemented a ReduceLROnPlateau function that
can reduce the learning rate in a defined metric that has not improved [59]. The
same function was also implemented in the ResNet-101 model with f actor = 3,
and the factor variable was defined as f actor = 2 in ResNet-50. Min_lr was set to
0.001 and a patience of 10 epochs was defined in both the models. In both ResNet
models, the validation loss function is monitored, and the patience is defined as
for each 10th epoch, the validation loss must have improved.

A dropout layer of 0.15 was implemented after the first dense layer, and a
dropout of 0.25 was implemented after the second dense layer in ResNet-101.
Finally, a dropout of 0.25 was implemented after the dense layer in ResNet-50.
The purpose of using ResNet-101 and ResNet-50 as base models, and the ELA-
CNN model is to answer research question 1, "Which combinations of backbone
models, hyperparameters, and optimizers provide good accuracy for the detection
of CM and SF images in standard datasets?". The purpose of comparing ResNet-
50 and ResNet-101 is to test if using a deeper model will have any effect when
it comes to testing on images the model has not trained on compared with less
deep architectures. The custom architecture on to of the pre-trained ResNet-50
model in Figure 4.3 is from the research of Hebbar et al. [53], and the same



24 M. Vassenden: Image Forgery Detection

architecture inspires the custom architecture of ResNet-101, see Figure 4.2. The
ELA-CNN model architecture is from [50]. The pre-trained weights are frozen in
the ResNet models by defining the include_top parameter in the backbone model
declaration is set to false. Input images are resized to 224x224x3 in the proposed
ResNet-101 model, and images are resized to 256x256x3 in the ResNet-50 and
ELA-CNN model. The optimizer function Adam with a learning rate 0.0001 was
used in ResNet-50, SGD with learning rate 0.0001 was used in the ResNet-101
model, and a learning rate of 0.00001 for the ELA-CNN model. The relu activation
function was used in all dense and convolutional layers in all of the three models.
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Figure 4.2: Architecture for pipeline utilising ResNet-101

Data augmentation is applied to avoid overfitting and for accuracy improve-
ment in the proposed ResNet-101 model. The rotation range is set to 30% and
indicates that the images are rotated randomly with a rotation range up to 30%.
Vertical flip indicates that the images are tilted randomly at a vertical angle, and
the same random flip is applied for horizontal flipping. The last applied augment-
ation is the height shift range which is set to 20%, and it indicates that the height
of the images is shifted randomly by up to 20%. None of the pre-trained weights in
the ResNet-101 model are updated during training, details around the advantages
of not updating pre-trained weights are described in section Section 3.2. Outputs
from the pre-trained backbone model are fed to the first layer in the ELA-CNN
model which is a global average pooling (GAP) layer. The GAP layer is followed
by a flatten layer that flattens the input tensor and converts it to a one-dimensional
tensor. The third layer is a dense layer with 1024 dimensions and a relu activation
function, followed by a dropout layer of 0.15. The fifth layer is a dense layer with
256 dimensions, relu activation function, followed by a dropout layer of 0.25.
Dense layer three and five have also included the Keras l2 kernel regularizer func-
tion [60] that is calculated with equation Equation (4.1). The function applies a
penalty to the parameters in a layer when the parameters are optimized during
training.

loss = l2 ∗ reducesum(square(x)) (4.1)

The last layer is a dense layer with one dimension and a sigmoid activation func-
tion used for the final binary classification.
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Parameters Value
Epochs 250

Image resize 224x224
Batch size 32

Learning rate 0.0001

Table 4.2: List of parameters for Resnet-101

4.5 ResNet-50

The first layer in the custom architecture on top of the ResNet-50 transfer learn-
ing model is a GAP layer, followed by a dense layer of 256 dimensions. The dense
layer is followed by a dropout layer of 0.25. The last layer is a dense layer with
one dimension and a sigmoid activation function used for the final binary classi-
fication. The model was trained for 29 epochs in total. Figure 4.3 demonstrates
the ResNet-50 model described in this section. Figure 4.4 shows F1, precision and
recall graphs from training and validation.
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Dropout = 0.25
Dense=1 

Activation =
Sigmoid

Input image 
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Original Image Applied ELA

Figure 4.3: Architecture for pipeline utilising ResNet-101 [53]

The first layer in the ELA-CNN architecture consists of a convolutional layer
with a kernel size of 3x3 and 32 dimensions. The third layer is a max-pooling
layer with a pool size of 2x2. The third layer is a convolutional layer with 64
dimensions and a kernel size of 3x3, followed by a second max-pooling layer
with a pool size of 2x2. The last layer is a dense layer with one dimension and
the activation function is sigmoid.
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Figure 4.4: Training and validation graphs from the training of ResNet-50. (a) is
F1 score, (b) is precision score and (c) is recall score

4.5.1 Testing

The models that obtained the highest F1, recall, precision score during training,
and k-fold cross-validation are saved for later testing. The saved models are loaded
into a testing script developed with Keras [61] and TensorFlow [62]. The test script
passes the pre-trained model to a predicting generator that extracts a NumPy ar-
ray of predicted labels. We defined a threshold of 0.5 to determine if the predicted
labels from a test were either “authentic" or “tampered". The outcome of each pre-
diction is a NumPy array with the model’s confidence level of what each test image
should be classified as [63]. Because the classification problem is binary, any con-
fidence level below 0.5 means that the model predicted the class as authentic, and
anything above 0.5 means that the model predicted the class as tampered. The
predicted labels from the data generator are then compared with true labels from
the testing dataset.

After the test predictions have been extracted, it is possible to display inform-
ation that can be used to determine how well the model performed in terms of
predicting number of true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). The results are displayed in a confusion matrix for better
visualization of the test, and the results are used for computing F1, precision, and
recall evaluation scores. For each test, the scores are also displayed as a classific-
ation report which provides scores for how well the model predicted each class,
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Parameters Value
Epochs 12

Image resize 256x256
Batch size 32
Optimizer SGD

Learning rate 0.00001

Table 4.3: List of parameters for CNN model

and it shows the weighted average sum for each prediction. We used the Python
library scikit-learn [64] to generate the confusion matrix, and classification report
because it is a handy library for data visualization and analysis in computer vision.





Chapter 5

Results

The experimental results described in this chapter are used to answer the third
research question, How do the models and pre-processing pipelines developed from
RQ1 and RQ2 perform on tampered images that have been processed with other trans-
formations than those present in the training images?, described in Section 2.2. The
term “accuracy" is used as a collective description of the three metrics F1, preci-
sion and recall when describing them in general for each test. A further discussion
with comparisons between the models and different variables that could have af-
fected the results is presented in the discussion in Chapter 6. All experiments are
performed with the three pre-trained models that have shown the best results
from the training stage, also described earlier in ??. There have been done nine
different tests to evaluate the accuracy of the models.

5.1 Tests

This section describes results from the nine tests done during testing.

5.1.1 Testing on normal test images

The ResNet-50 model achieved the best results from test 1 with a weighted aver-
age score of 98% in F1, recall, and precision.
The proposed ResNet-101 model achieved an F1 score of 70%, a precision score
of 71%, and a recall score of 69%. The ELA-CNN model achieved an F1 score of
47%, a precision score of 58%, and a recall score of 60%.

5.1.2 Testing on brightened images

Test number two involved testing on images pre-processed with brightening. The
test was done to imitate cases where the image’s creator has brightened the image
as a mechanism to avoid the image being detected as fake [65]. The application
of brightening is one of the simple methods that can be done by an editor using an
image editing program. In this test, ResNet-50 got an F1 and recall score of 62%,

29
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a) Normal training images b) Brightened images

c) Gaussian Blur
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Figure 5.1: F1, precision and recall score

and a precision score of 65%. ResNet-101 got an F1 score of 51, a precision score
of 57%, and a recall score of 52%. The ELA-CNN model achieved an F1, precision,
and recall score of 54%.
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Figure 5.2: F1, precision, and recall score from tests done on ResNet-50
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5.1.3 Testing on Gaussian Blur

Test number three used images pre-processed with the Gaussian blur blurring
algorithm to imitate blurring attacks involving edges on tampered areas. Gaussian
blur, in particular, is a technique typically used for blurring areas in the image
and making other subjects draw the viewer’s attention. Some purpose for using
Gaussian blur by image editors is to smooth out regions that will not be the focus
of the image. In other words, other subjects will pop out and drag the viewer’s
attention [66]. The Gaussian blur function from OpenCV [67] was used in the
post-processing script with a kernel size of 5x5. The ResNet-50 model achieved
an F1 and a recall score of 62%, and a precision score of 65%. The ResNet-101
model achieved an F1 score of 51%, a precision score of 57%, and a recall score
of 52%. The ELA-CNN model achieved an F1, precision, and recall score of 54%.
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5.1.4 JPEG Compression

JPEG compression happens, for example, when images are resized or uploaded on
Facebook [11]. This test aimed to find out if there are any differences in accuracy
between tests with different compression.

a) JPEG compression quality 60 b) JPEG compression quality 80

c) JPEG compression quality 90
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Figure 5.5: F1, precision and recall score

JPEG Compression of Quality 60

The fourth test was done with a JPEG compression of 60%, the test with the lowest
compression rate. ResNet-50 obtained the highest F1 score of 49%, a precision
score of 67%, and a recall score of 61%. The ResNet-101 model achieved the
second-best F1 score of 44%, a precision score of 45%, and a recall score of 59%.
The ELA-CNN model achieved an F1 score of 25%, a precision score of 36%, and
a recall score of 40%.

JPEG Compression of Quality 80

The fifth test was done with a compression quality of 80%. ResNet-50 got an F1
score of 63%, a precision score of 69%, and a recall score of 67%. ResNet-101 had
an F1 and precision score of 56% and a recall score of 57%. The confusion matrix
in Table 5.1 shows that the model predicted 522 out of 742 "authentic" images,
and 197 out of 519 "tampered" images. The ELA-CNN model achieved an F1 score
of 49%, a precision score of 53%, and a recall score of 48%.
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Table 5.1: Confusion matrix of JPEG compression quality 80% test for ResNet-
101

True
class

Predicted class

Authentic Tampered

Authentic′ TP
522

FN
220

Tampered′ FP
322

TP
197

Table 5.2: Confusion matrix of JPEG compression quality 90% test for ResNet-
101

True
class

Predicted class

Authentic Tampered

Authentic′ TP
667

FN
77

Tampered′ FP
383

TP
136

JPEG Compression of Quality 90

The sixth test was done with a compression quality of 90%, which is also the same
percentage as the ELA images are compared with. The ResNet-50 model achieved
an F1 score of 62%, a precision score of 73%, and a recall score of 67%. The
ResNet-101 model achieved an F1 score of 59% and a precision and recall score
of 64%. The confusion matrix in Table 5.2 shows that in this test, the ResNet-101
model predicted 667 out of 742 images correctly as the "authentic" class, and it
predicted 136 out of 519 images correctly as the "tampered" class. The ELA-CNN
model achieved an F1 score of 41%, a precision score of 49%, and a recall score
of 53%.



34 M. Vassenden: Image Forgery Detection

5.1.5 Flipped Images

Testing on Images Flipped 45◦

The seventh test in this research tested on images rotated with 45◦as seen in
Figure 5.6. The image contains edges filling the gaps from where the picture has
rotated. ResNet-50 achieved an F1 score of 45%, a precision score of 61%, and
a recall score of 59%. The ResNet-101 model achieved an F1 score of 44%, a
precision score of 51%, and a recall score of 59%. The ELA-CNN model achieved
the highest F1 score with 53%, a precision score of 54%, and a recall score of
57%.

Figure 5.6: Image sample from test set with the 45◦rotation

Flipped 180◦

ResNet-50 achieved an F1 score of 56%, precision of 68%, and a recall score of
64%. ResNet-101 also achieved an F1 score of 56% and a precision score of 63%.
The recall score was 62%. The ELA-CNN model obtained an F1 score of 44%, a
recall score of 52%, and a recall score of 57%.

Mirrored Images

A mirrored image is an image that has been rotated 225◦.

ResNet-50 obtained a significantly better performance compared to the other
models, as seen in figure Figure 5.7, with an F1 score of 84%, precision of 86%,
and recall score of 65%. ResNet-101 achieved an F1 and recall score of 71% and
a precision score of 72%. The ELA-CNN model achieved an F1 score of 52%, a
precision score of 55%, and a recall score of 58%.
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a) Flipped 45° b) Flipped 180°

c) Mirrored images
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Figure 5.7: F1, precision and recall score

(a) Vertical image (b) Image rotated 180◦

Figure 5.8: Demonstration of test image samples rotated with 45◦and 180◦.





Chapter 6

Discussion

The purpose of this chapter is to discuss the results and analysis from chapter
Chapter 5. In addition, the discussion will answer the objectives of the research
questions.

6.1 Dataset

To answer research question number three; how do the models and pre-processing
pipelines developed from RQ1 and RQ2 performs on tampered images that have been
processed with other transformations than those present in the training images?, we
used the CASIA 2.0 dataset for training and testing. Normal testing images and
the post-processed images serve to find out if transformations done to the image
will have any effects on the model’s capability of detecting tampered images. We
observed that the ResNet-101 model depended on training and validating enough
data samples to learn how to classify the images correctly. In contrast, the ELA-
CNN model had the opposite issue and acquired fewer data samples during train-
ing to classify images in tests. Only testing samples were post-processed before
ELA was applied. The image samples that were only going to be post-processed
with different rotations could have been transformed after ELA was applied. How-
ever, one of the weaknesses of ELA is that information in the image can be lost
when JPEG are resaved after some retouching or editing. Because of that, it was
more suitable for the project to test the model on images that potentially had lost
some information after post-processing.

6.2 Baseline testing

The first test was the baseline test, and it was done with testing images without
any transformations to create a baseline for how well the models performed when
they predicted data samples that had not yet been transformed. The baseline test-
ing is part of the research done to answer research question 3 because the baseline
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test is used to determine how the model is performing in comparison with tests on
transformed images. The results from the nine tests presented in Chapter 5 con-
tribute to answering how well the model performed when it was represented with
transformed images compared with the baseline test. One hypothesis was that the
models would achieve the best scores in the baseline test because the test samples
would be closest to the training samples. Another hypothesis was that models
would not drop in performance when represented with images transformed with
different rotation ranges because edges and corners around the tampered areas
would not have been exposed to any extra post-processing.

6.3 Analysis

This section presents an analysis of the results that have been represented in this
chapter. The analysis will take a deep dive into different variables in the tests and
compare the respective tests.

6.3.1 ResNet-50 Results Analysis

The first baseline test done on testing images without any extra post-processing
gave the ResNet-50 model the best testing results, see Figure 5.2, and it was the
overall best test results compared with the two other models we tested in this
research, shown in Figure 5.1a. Another interesting testing result is the mirrored
image test, where the accuracy of ResNet-50 dropped a little bit, but not drastically
as we would expect. One explanation can be that the JPEG compression after the
transformation did not result in a too great feature loss. Another variable is that
the mirrored transformation does not introduce an entirely new hypothesis space
for the model, so it can still extract relevant features from the test images. By a too
large hypothesis space, we mean too complex and too many different images for
the model to extract useful features. The three tests with images compressed with
three different qualities show a minimal difference in accuracy when comparing
the results from JPEG compression with 80% and 90%. However, we expected
the results to be more different when considering that JPEG compression is lossy
and ELA can only highlight tampered areas as long as the image has not lost too
much information in post-processing and compression processes. However, when
we compared the results from JPEG compression with 60% quality, we saw a dif-
ferent result with a more significant drop in F1 score, see Figure 5.2, which can
indicate that the test images contained less useful features that ELA could high-
light.

The more significant difference in F1 score compared to recall and preci-
sion can also indicate that the model predicts several more data samples as the
same class, compared with the two previous tests on JPEG compression. The two
tests with Gaussian blur and brightening are two tests that involve typical post-
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Table 6.1: An evaluation report from the JPEG compression 60 test of ResNet-50
with macro average and weighted average scores

PrecisionRecall F1

Authentic 0.60 0.99 0.75

Tampered 0.77 0.06 0.12

Accuracy 0.61

Macro average 0.68 0.53 0.43

Weighted average 0.67 0.61 0.49

processing mechanisms used for hiding hard edges and lines that can reveal that
something in the image has been tampered with. The test results are similar to the
test results from the JPEG compression with 80%, so there is an indicator that the
test images have lost some relevant features because of JPEG compression after
the images were resaved after post-processing.

6.3.2 ResNet-101 Results Analysis

This section contains an analysis of the testing results of the proposed ResNet-101
model, and the testing results are shown in Figure 5.3.

The baseline test with normal testing images gave an F1 score of 70%, a pre-
cision score of 71%, and a recall score of 69%. Therefore, one of the hypotheses
we had was that the trained models would achieve the best testing results on
the test images closest to the training samples, which was not completely correct
in this test. However, the ResNet-101 transfer learning model accomplished the
best testing results in the test with mirrored images instead of the baseline test,
even though the performance only increased by 1-2%. One explanation can be
that the ResNet-101 model has trained with data augmentation, and it may have
learned useful features from the rotation range, vertical flip, and horizontal flip
augmentations. The model may also extract features with ELA because the JPEG
compression after the transformation did not result in a too significant loss, and
the images did not introduce a new hypothesis space for the model. In contrast,
the tests on images transformed with brightening and Gaussian blur show that
the detection rate is more affected by typical post-processing operations. It can be
because edges and corners that pop out with ELA may be more smooth, and the
image may have lost information due to JPEG compression when we resaved the
photo after the post-processing. Our ResNet-101 model did not train on blurred
and brightened images, so the new testing transformations may have introduced
a much more complex hypothesis space.
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The ResNet-101 model had its most significant performance drop in the test
with images compressed with a 60% quality, where the F1 score decreased to 44%.
The totality of the test indicates that the model classifies most of the images as the
"authentic" class, which means that the test had many FP and FN predictions. The
model accuracy in the two other tests on images compressed with 80% and 90%
quality did not drop as much, and the results were similar to the Gaussian blur
and brightening test. Out of the three tests with different JPEG compression, the
ResNet-101 model achieved the best scores on the test with a compression qual-
ity of 90%, which we expected because the test samples were similar to the data
the model had trained on. However, the results indicate that the model struggles
to classify images as the correct class when the ELA pre-processing lose features.
Also, the main difference between the prediction results from JPEG compression
with 90% and JPEG compression with 80%, see confusion matrix in Table 5.1,
is that the model predicts fewer false positives on images compressed with 90%
quality, demonstrated in Table 5.2. One explanation for the significant difference
between the scores in the JPEG compression tests is that ELA has fewer artifacts to
light up in the image, which indicates that the features that the ResNet-101 model
uses to classify images correctly are less present in the data samples compressed
with 60% compared to images compressed with 80 and 90%.

The model achieved the second-lowest prediction results were achieved on
the test on images flipped 45◦. The F1 score is much lower than the precision and
recall score, indicating that the model predicts many test samples as the same
class, which gives many false positives and false negatives in the test. One can
also argue that the tampered objects should have been highlighted by ELA. Still,
because the 45◦rotation introduced black corners, we created a new element that
may have confused the model because it may have introduced new artifacts that
the model was unfamiliar with. In other words, the 45◦transformation may not be
a practical test for a real-world scenario. However, the result can indicate that the
inclusion of abnormal elements in images results in a more drastic performance
drop. Another interesting variable is that the ResNet-101 model trained on im-
ages augmented with a rotation range of 30%. One would expect that the model
would have been more prepared to detect rotated images, but training on a ro-
tation range of 30% may have been too small compared to 45◦. Another third
variable is that the rotation range implementation in Keras may exclude black
edges from rotation, height shift range, and vertical and horizontal flip augment-
ation methods. It indicates that the model is not extracting features from black
edges.

6.3.3 ELA-CNN Results Analysis

We trained the ELA-CNN model on what we thought was the complete training
and validation dataset, but because of a human error, the ELA-CNN model did
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a validation split on the training images, instead of using the initially intended
validation data. We trained the model on the complete training and validation
set after the bug was discovered, but the model did not produce any useful test
results. Adding several more dense layers and dropout layers were also tested to
create a bigger and more complicated network, but the tests did not improve the
results any further. One theory is that images in the validation split may have been
too complex images for the model to extract useful features from. Another vari-
able is introducing a too large hypothesis space with many different and several
more difficult images for the model to train on. The increase in number of data
samples when the validation set was introduced can also be the cause to why the
model was not able to produce results. Not producing any results is defined as all
images was predicted as the "authentic" class. The solution to the issue was that
the ELA-CNN model trained on 72% of the initially intended training data, and
validated on the other 8% of the training set. The model produced useful testing
results with the modified training and validation split. We tested the ELA-CNN
model on the same testing sets as the ResNet-50 and ResNet-101 models. The
ELA-CNN model had not trained or validated on any of the images in the testing
set, but the model had trained on a less amount of images compared to the two
ResNet models.

In the first test with baseline testing samples, the model achieves its best test-
ing results with an F1 score of 55%, a precision score of 58%, and a recall score of
60%. The result from the baseline test was as expected, and it provided the best
testing scores for the model. However, what was not expected was that the rest of
the eight tests provided very similar accuracy scores as the baseline test. One test
that stood out was the test on JPEG compression with a quality of 60%, where the
model achieved a significantly low F1 score of 25%. The result can reveal that the
compression has erased a significantly more amount of information that the ELA
pre-processing is depending on and that the convolutional layers, in general, are
struggling with extracting useful features for image classification.

One less likely explanation is that the model can detect post-processed tampered
images on the same level as the baseline test because it is not as affected by the
transformations as the two ResNet models. Another theory is that because the
model was struggling to produce results when trained on the same training and
validation sets as the ResNet models, it is probably not deep or advance enough
to learn which features are helpful when distinguishing between tampered and
legitimate images. One observation regarding the dataset that the ELA-CNN ar-
chitecture was initially trained and tested on in the research of Sari et al. [50],
is that the dataset is a small selection of images from CASIA 2.0, The images are
also similar in the style of tampering. In other words, it trained on more straight-
forward data samples that may not require an as deep or advanced ML model to
distinguish between tampered and legitimate images. However, in this research,
the model has been tested on more sophisticated tampering than the dataset used
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in the study of [50]. In addition, it has been tested on images with extra post-
processing as vel. One explanation for why the ELA-CNN model has a much lower
performance than the ResNet networks is that the model’s architecture is not com-
plex enough to learn useful features. However, the depth of the transfer learning
models of 50 and 101 layers also indicates that the ResNet models can extract
more complex features in the deeper layers, compared with the depth of the ar-
chitecture of the ELA-CNN [28]. Also, suppose the ELA-CNN is better at learning
basic features such as edges and corners. In that case, the results from the research
of Sari et al. [50] can be explained by the fact that a more unified dataset contains
more similar edges and corners that are easier to learn for a less complex model.

6.4 Comparison of the Models

This section provides a comparison of the models that were tested in this research
and related work. The results of ResNet-50 are also compared with performance
and accuracy results from Hebbar et al. [53].

The ResNet-50 model was trained for 29 epochs which is eight epochs more
compared with the 10 epochs the model was trained on in [53]. However, we im-
proved the F1, precision, recall, and accuracy score. The training time per epoch
was also reduced from taking 20 minutes per epoch in [53], to taking 108 seconds
using the desktop, and 67 seconds on the Ubuntu server, shown in Table 6.2. Our
improved F1, precision, and recall score results can be because of our fine-tuning
of the ReduceLROnPlateau function with factor=2 and min_lr=0.001 was bet-
ter. We selected the respective parameters after testing several hyper-parameters
because the authors of [53] did not define which hyper-parameters they used.
Table 6.3 shows a score comparison of the ResNet-50 model used in our research
and scores from related work that have used ResNet-50 to detect CMF and SF.

The ResNet-50 did also achieve better performance compared with the pro-
posed ResNet-101 model. One explanation to the difference in accuracy can lay
in the depth of the two networks. The authors of residual network architecture
[46] explains that deeper networks can have higher training errors because of
the depth and dimensions in the architecture. The increase in training error does
not indicate that the model is overfitting. Instead it has started to converge, and
adding more layers and complexity is not the solution to the problem. In our case,
we have added more layers on top of the ResNet-101 architecture which means
that we have added more complexity to a already complex network.

Our proposed ResNet-50 model also got better accuracy and recall score than
Jaiswal et al. [31] on testing on standard CASIA 2.0 images. Our ResNet-101 and
ResNet-50 models did not achieve better performance on JPEG compression tests
on the CASIA 2.0 dataset than Zhou et al. [37] on JPEG compression tests with
quality 50% and 70% on the NIST16 [38] dataset, where they god an F1 pixel
score of 67.7%. However, their model was trained with the augmentation method



Chapter 6: Discussion 43

of image flipping, and the augmentation improved their results. Similarly, in our
proposed ResNet-101 model, we used data augmentation to improve the model.
In addition, we used several more augmentation methods, such as height shift
range, rotation range and. Our results are not entirely comparable to the study of
Zhou. They used a pixel-based F1 score and AUCscore; because they also detected
the location of tampered areas.

Table 6.2: Table of seconds per epoch during training on desktop and Ubuntu
server

Model Desktop Ubuntu Server

ResNet-101 155 seconds 88 seconds

ResNet-50 108 Seconds 67 seconds

ELA-CNN 8 seconds 6 seconds

Table 6.3: Comparison between the presented results from the ResNet-50 transfer
learning model and related work that have used ResNet-50 in CMF and SF.

Model Dataset F1 Precision Recall Accuracy

ResNet-50 model CASIA 2.0 98 98 98 98%

Nath et al. [68] CASIA 2.0 95.4% 96.6% 94.1% 97.58%

Jaiswal et al. [31] CASIA 2.0 - - 63.37 70.26%

Compared with state-of-the-art research, our proposed ResNet-101 model has
not achieved better performance than other studies that have used ResNet-101
as a backbone model for detecting CMF and SF. Pandey et al. [27] achieved and
weighted average F1 score of 81%, but the precision, and recall scores are not
provided in their research, so those metrics are not compared with our study.
However, Pandey’s transfer learning model did not use any custom layers on top
of the ResNet-101 architecture. The added complexity of introducing more layers
on top of the 101 layered ResNet-101 architecture can be one of the factors why
our proposed ResNet-101 architecture did not achieve a better weighted average
F1 score. Table 6.4 shows the difference in performance between our ResNet-101
model and related work that have used ResNet-101 in their architectures.

Ahmed et al. got better performance when using ResNet-50 than ResNet-101,
but they used the same architecture on top of the backbone models, which is not
done in this research where the ResNet models have different architectures on top
of the pre-trained models. However, they concluded that using ResNet-101 did not
improve the detection rate in their research. They concluded that useful features
for detecting tampered objects are more fundamental features such as edges and
corners, which can be extracted in the top layers. Therefore, they do not need
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Table 6.4: A comparison between results from our proposed ResNet-101 model
and related work that have used the ResNet-101 architecture for transfer learning
to detect CMF and SF.

Model Dataset F1 Precision Recall AUC
F1
pixel

Accuracy

ResNet-101
model

CASIA 2.0 70% 71% 69% - - 69%

Pandey et al. [27] CASIA 2.0 88% - - - -

Kadam et al. [69] CASIA 1.0 66% 67% 66% - -

Zhou et al. [37]
CASIA
2.0/1.0

- - - 79.5% 79.5% -

Table 6.5: Comparison of F1, precision and recall score with similar research
with ResNet-101 as the backbone model. The - indicates that the authors have
used other evaluation metrics. The F1 pixels score indicates how well the model
detected pixels within a tampered object for object detection

deeper layers that are more difficult to train to extract the respective features. Liu
et al. also considered using ResNet-101 as their feature extractor. Still, they con-
cluded that the architecture involved too many deep layers with almost twice the
amount of parameters compared with the ResNet-50 architecture. One of the vari-
ables that could have affected the final testing results in the baseline test on the
proposed ResNet-101 model is that we introduced more custom layers with more
parameters in a network that already consists of 101 layers. One of the more in-
teresting results is that the model achieved almost the same score in the test with
mirrored images. The result can be a coincidence, or it can also be because we
chose a network with deep convolutional layers that learns other patterns, as well
as the most standard patterns for edges and corners, so it was not affected by the
test, compared with the ResNet-50 model in figure Figure 5.2. Another test that
speaks against this theory regarding the ResNet-101 model being able to learn
useful features in the deeper layers, which are helpful for geometric attacks, is
the test with 180◦flipped images. One can argue that the transformation is not
too different from the transformation of the mirrored images, but the detection
rate decreased. One theory is that objects within the picture have switched loca-
tions. However, it would be logical to assume that ELA would highlight tampered
areas. Compared with the brightened and blurred testing images, the testing im-
ages would not have lost too much information when they were resaved. However,
the test result was almost the same as the brightened image test.
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6.5 Implementation issues

One issue with how ResNet-101 was implemented was that the deprecated Keras
Application package might conflict with the new core Keras repository. The is-
sues with the includes can also have a root cause in that the author had little
experience with the implementation of transfer learning architectures. With that
being said, the model was up and running after some trial and error, which is
part of learning new technologies and skills. The author has learned significantly
more about how transfer learning models are used in practice, residual networks,
and why the architecture stands out compared to other models. New knowledge
about how models are fine-tuned, how data augmentation affects learning, and
the effect of early stopping to avoid overfitting has also been obtained during the
project.





Chapter 7

Conclusion

We have presented three CNN models, one with a CNN architecture, and two of
them were different transfer learning architectures. We trained the selection of
different models on the CASIA 2.0 dataset to answer the first research question,
"Which combinations of backbone models, hyperparameters, and optimizers provide
good accuracy and performance for the detection of CM and SF images in standard
datasets?". The analysis of the baseline test revealed that the ResNet-50 backbone
model provided the best accuracy scores out of the three models. We also im-
proved the training time per epoch. We improved the F1, precision, recall, and
accuracy score of the ResNet-50 transfer learning model compared to the previ-
ous study that used the same architecture by fine-tuning the reduced learning rate
function ReduceLROnPlateau. The results can also indicate that the ResNet-50 ar-
chitecture provides a proper depth compared to the ResNet-101, which may be too
deep to detect CM and SF, because of the converging issue with deeper networks.
We also discovered that the ELA-CNN model did not provide valid results when
trained and validated on the complete train and validation set. We conclude that
the ELA-CNN architecture is not advanced and deep enough for the classification
task in this thesis.

We used the pre-processing technique ELA to highlight tampered areas in im-
ages to answer the second research question, "Which image pre-processing tech-
niques can assist in CMF and SF detection?". ELA has shown to be an effective
pre-processing technique when it compares error levels with JPEG images that are
not compressed several times, as proven in the baseline test of the ResNet-50 and
ResNet-101 models. The drawback of ELA is the single point of failure with JPEG
compression, which is also the factor that makes ELA brilliant as a pre-processing
technique to highlight tampered objects. Results from the nine experiments in
this thesis indicate that ELA is vulnerable when it is represented with images that
have been compressed multiple times on, e.g. SM sites that use compression or
after image editing. ELA was not proven to be as helpful for the ELA-CNN model.
However, as described earlier, the results may have a root cause in the model’s
architecture, not necessarily because of the pre-processing technique.

47
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We tested all the three models on the same nine test datasets, where eight of
them were post-processed with a rotation, compression, blurring, or brightening
attack before they were post-processed with ELA. The tests were done to answer
the third research question, "How do the models and pre-processing pipelines
developed from RQ1 and RQ2 perform on tampered images that have been pro-
cessed with other transformations than those present in the training images?" The
objective of the experiments was to test if we could trigger a failure in the detec-
tion accuracy in any of the models by presenting them with test images that they
had not trained on. The results achieved in the proposed experiments revealed
that the Two ResNet models achieved significantly lower scores when they were
tested on images with different transformations from the training set. The only
exception is the test with mirrored images, where the ResNet-101 achieved bet-
ter accuracy scores than the baseline test, and the ResNet-50 achieved decent
performance. The ELA-CNN model achieved almost identical accuracy scores on
eight out of nine tests, supporting our claim regarding the lack of complexity in
the model’s architecture. The results from the experiments do also indicate that
good detection accuracy in the baseline test did not equal good performance in
the other test with different post-processings.

The overall results in this thesis show that the post-processing of images can
affect the detection accuracy of CNN and transfer learning models when using ELA
for pre-processing. Therefore, our recommendation for future work is to use other
pre-processing techniques such as DCT and DWT with ResNet or other transfer
learning models to detect image manipulation in post-processed images. We also
recommend testing unfreezing of more layers in the ResNet-50 architecture to test
if it can affect the detection accuracy.
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