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Abstract

Quantum chemical calculation is currently a large and important field within chem-
istry, and has been more important the past few years as computational technology
has advanced. However, there are still many challenges within this field, the largest
one being that accurate methods are not applicable on large systems as they are too
expensive in terms of computational time and memory space. This thesis will look
at two different large-scale quantum methods, the quantum mechanical/molecular
mechanical method and the fragmented molecular orbital method, which in differ-
ent ways divide the main system into subsystems to make the calculations more
affordable. Of course, this is not without problems, as all subsystems must be put
together without losing important properties, and in some cases covalent bonds
must be broken to achieve usable subsystems. The methods are shown to have
different advantages, which mainly becomes apparent when we are interested in a
specific area of the system or if the whole system is equally important to consider.
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2 THEORETICAL BACKGROUND

1 Introduction

As an alternative or addition to experimental chemistry, computational chemistry
is an important asset to have when experiments are too expensive, hard to get
precise or just to support experimental data. In contrast to experiments, the com-
putational environment is very controllable, as you can set the system however you
like. Generally, we divide the different chemical mechanics into quantum (QM) and
molecular (MM) mechanics. The main difference between the two is that QM takes
into account electronic effects and behaviour, while MM tries to generalize the be-
haviour of the atoms using classical mechanics and thus neglecting the existence of
individual electrons. This neglection can result in inaccuracies, as the interaction
between electrons are crucial to get an exact description of a molecular system. The
downside is that QM calculations are very expensive, in form of computational time
and memory space, and are currently restricted to small systems. To be able to do
calculations on larger systems, one must manipulate the system or the calculations
to reduce the cost. For example, this can be done by doing quantum calculations on
the most essential part of the system and then apply the effects of the surrounding
system with molecular mechanics, by using a force field. This is the way of the
QM/MM approach. Another way to approach the problem is with fragmentation
methods, where the system is divided into smaller systems which are calculated
separately and then combined to get information regarding the whole system. This
thesis will consider some of the fundamental concepts behind wave function theory
and some calculation methods such as Hartree-Fock, and some electron-correlation
methods. The main focus will be on the large-scale methods QM/MM and the frag-
mentation method Fragmented Molecular Orbitals (FMO), where we will consider
some challenges and advantages with using these as an extension to the conventional
electronic structure methods. We will also compare costs of the different methods,
as this is the main bottle-neck of quantum calculations, in addition to look at which
systems it would be most beneficial to use either a QM/MM or FMO calculation.

2 Theoretical Background

2.1 Wave function theory

Most quantum methods are based on wave function theory, which states that a
quantum state of an isolated system can be totally described by a wave function,
Ψ. This function can give us a variety of information regarding our system, such
as the probability-distribution of a particle, as well as the expectation value of the
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2.1 Wave function theory 2 THEORETICAL BACKGROUND

energy, different momenta, electric dipole moments and so on [1]. These can be found
as the expectation value of the Hermitian operators representing the corresponding
observables. If we let Ω be the observable and Ω̂ be its Hermitian operator, the
expectation value becomes [1],

〈
Ω̂
〉
=

〈
Ψ
∣∣∣Ω̂∣∣∣Ψ〉

⟨Ψ | Ψ⟩
. (2.1)

When using a normalized wave function, the denominator is equal to 1. This arises
from the probability-distribution (⟨Ψ | Ψ⟩) often decided to be equal to 1 for the
guarantee of the particle’s existence. It is also important that the operator is
Hermitian, as this provides real eigenvalues/observables.

The Hermitian operator representing the energy of the system (E) is the Hamilton
operator, often called the Hamiltonian, Ĥ. We can let the Hamiltonian work on an
unknown eigenfunction, which gives us the famous differential equation known as
the time-dependent Schrödinger equation [2],

iℏ
d

dt
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩, (2.2)

with ℏ being the reduced Planck constant. If the Hamiltonian is time-independent,
which is the case for free molecules, we can separate the time-dependency from the
equation, resulting in the time-independent Schrödinger equation,

Ĥ|Ψ⟩ = E|Ψ⟩. (2.3)

One of the most essential and quantum mechanically accurate approximations to
this day is the Born-Oppenheimer approximation (BOA). As the weight difference
between the electrons and the nuclei is very large, the movement of the nuclei can
be considered to stay constant compared to the electrons. This allows us to separate
the total wave function of into an electronic (ψe(r;R)) and a nuclear (ψN(R)) wave
function [3]. The electronic wave function depends on the position of the electrons
(r) and uses the position of the nuclei (R) as a parameter. The nuclear wave
function only depends on the position of the nuclei [1].

|Ψ(r,R)⟩ = |ψe(r;R)⟩ |ψN(R)⟩. (2.4)

4



2 THEORETICAL BACKGROUND 2.1 Wave function theory

Following the BOA we get an electronic Schrödinger equation (Equation 2.5), with
a corresponding electronic Hamiltonian (Ĥe) and a nuclear Schrödinger equation
(Equation 2.6), with the nuclear Hamiltonian (ĤN),

Ĥe(r,R)|ψe(r,R)⟩ = Ee(R)|ψe(r,R)⟩, (2.5)

(
ĤN(R) + Ee(R)

)
|ψN(R)⟩ = E|ψN(R)⟩. (2.6)

As we can observe, the ability to solve the equation for the total energy relies
on solving the electronic Schrödinger equation first, to find the potential energy
surface (Ee), that can later be used in the nuclear Schrödinger equation. The
electronic Hamiltonian contains terms describing the kinetic energy of the electrons
(T̂e), the electron-electron Coulomb interactions (V̂ee), the potential energy between
the electron and the nuclei (V̂Ne), and the potential energy from the nuclei-nuclei
repulsion (V̂NN) as a constant:

Ĥe = T̂e + V̂ee + V̂Ne + V̂NN . (2.7)

The nuclear Hamiltonian contains only the kinetic energy of the nuclei. In electronic
structure theory, the main focus is usually to find good approximations for the
electronic equation. This is because the unapproximated problem can only be solved
exact for a single hydrogen atom and the hydrogen molecule, H +

2
[4], in other words

only single-electron systems.

The BOA is a very good approximation on closed shell systems, however, it fails
whenever two or more states have very similar energy [5]. This is because of the
adiabatic coupling term in the nuclear Hamiltonian, which is inversely proportional
with the energy difference of two states, causing the potential to reach infinity
for states with equal energy. This happens, for instance, in electron transfers.
Furthermore the BOA is invalid if the electrons are exchanged with heavier particles,
such as antiprotons or muons [5]. This is due to the assumption of size difference,
meaning that for an antiproton, the nuclei will not remain consistent compared to
the electron.

The wave function is often described by Slater-determinants, as they can describe
multi-fermonic systems, as well as satisfy the anti-symmetry constraint [1], and thus
the Pauli-principle, by changing the sign upon the exchange of two fermions:
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2.1 Wave function theory 2 THEORETICAL BACKGROUND

|Ψ(x1,x2, ...,xN)⟩ = −|Ψ(x2,x1, ...,xN)⟩, (2.8)

where xi is a compound coordinate consisting of the spacial coordinate ri and the
spin coordinate ωi. A Slater-determinant is created from a linear combination of
spin-orbitals (|ϕ(x)⟩), and for a generalized system we get,

|Ψ(x1,x2, . . . ,xN)⟩ =
1√
N !

∣∣∣∣∣∣∣∣∣∣
|ϕ1 (x1)⟩ |ϕ2 (x1)⟩ · · · |ϕN (x1)⟩
|ϕ1 (x2)⟩ |ϕ2 (x2)⟩ · · · |ϕN (x2)⟩

...
... . . . ...

|ϕ1 (xN)⟩ |ϕ2 (xN)⟩ · · · |ϕN (xN)⟩

∣∣∣∣∣∣∣∣∣∣
. (2.9)

The factor 1√
N !

is the normalizing factor, used to fulfill the requirement of a nor-
malized N -electron wave function.

When considering electrons, one must take into account both spatial and spin
properties. The spatial property describes the coordinates of an electron in space,
whereas spin is an angular momentum property, proven to have an important role
in electron behaviour [6]. Following the Pauli exclusion principle, each electron can
be uniquely described by a spin orbital, a function made up of a spatial and spin
function.

The wave function can be described as a determinant containing both the spacial
and the spin functions. It can be sufficient to only use one Slater-determinant
(Hartree-Fock), however, we can also make a linear combination of two or more
Slater-determinants (configuration interaction, MCSCF, coupled-cluster, MP2, and
more) to improve the wave function. Generally, adding more determinants gives
a more accurate result, but at a much higher computational cost, so these factors
must be considered when deciding on a calculation method.

The largest challenge within the computational chemistry field is as previously
stated, the cost of quantum mechanical calculations. These tend to scale heavily
with the system size. Thus, when comparing the cost of a calculation, it is very
convenient to compare the scaling of cost with the system size. We often denote
polynomial scaling with the notation O(Nn), O() is used for the asymptotic scal-
ing order, N is the system size, and n is the specific scaling. A system scaling
with O(N3), implies that doubling the system size, increases the calculation time
eightfolds.

6



2 THEORETICAL BACKGROUND 2.2 Hartree-Fock Theory

2.2 Hartree-Fock Theory

2.2.1 Variational theorem

Hartree-Fock (HF) is a variational method, meaning it parameterizes the wave
function with a Slater-determinant and then minimizes the energy. Such methods
follow the important variational theorem, stating that the expectation value the of
energy of a normalized wave function will always be higher or equal to the actual
energy, E0

[7]:

〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉 ≥ E0, (2.10)

This is true for all variational methods, including e.g. MCSCF and CI.

2.2.2 Basis sets

In HF it is convenient to introduce basis sets, containing different basis functions,
which are used in linear combinations to describe the atomic orbitals (AOs). There
are different ways to define the basis functions, but we often use Gaussian-type func-
tions as they are proven to give efficient results for larger systems [8]. After obtaining
a description of the AOs, one can use these functions in new linear combinations to
create molecular orbitals (MOs).

To increase the accuracy of a HF calculation, the basis set can be expanded, meaning
we increase the number of basis functions. When using an infinitely large basis set,
the conversion point of the calculation is called the HF-limit energy, and following
the variational principle, this will always be higher than the actual energy minimum.

2.2.3 Hamiltonian

As usual, we want to approximate the solution of the electronic Schrödinger equa-
tion, Equation 2.5. In HF we do this by using a single Slater-determinant. The MOs
defining the determinant are found as eigenfunctions to the Fock-operator, which
is found by collecting all one-electron operators into one term, ĥ(i), and adding the
effective two-electron term, v̂ee(i), for the i-th electron:

f̂(i) = ĥ(i) + v̂ee(i). (2.11)

The difference between the Fock-operator in HF and the general Hamiltonian is
that the electrostatic repulsion between the electrons, described in v̂ee(i), is approx-
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2.2 Hartree-Fock Theory 2 THEORETICAL BACKGROUND

imated by a mean-field method, meaning each electron only see an average of the
other electrons. This results in the v̂ee(i) term consisting of a Coulomb (Ĵ) and
exchange (K̂) term:

v̂ee(i) =
N∑
j=1

(
Ĵj(i)− K̂j(i)

)
, (2.12)

with N being the number of electrons, and the sum over j is the sum over all other
electrons that i interacts with.

2.2.4 The Roothaan-Hall equations

The HF method is the starting point for many quantum chemical calculations,
including some QM/MM and some fragmentation methods, as it is the most el-
ementary ab initio approach in wave function theory [9]. In HF we use a single
Slater-determinant to describe the wave function, so for each electron in the sys-
tem, we get:

f̂(i)|ϕi⟩ = ϵi|ϕi⟩. (2.13)

Combining the equations for every electron allows us to derive the Roothaan-Hall
equations for closed shell systems (Equation 2.14), by introducing a basis set of
AOs, which is solved to get the energy minimum of the MOs:

FC = SCϵ, (2.14)

where F is a matrix containing the Fock-operators (f̂(i)) of all electrons in the
system and is also depending on C. C is a matrix containing the AO contributions
to the MOs, S is an overlap matrix, describing the overlap between the different non-
orthogonal AOs and ϵ is the energies of the associated MOs. As the Fock-operator
depends on C, one must first make a guess on the MO coefficients, and then solve
the equation to get a new and improved C-matrix. This new matrix is then used
again to solve the equation and the process is repeated until self consistency is
reached (shown in Figure 2.1). The result of a HF calculation is the energies to
the different MOs. These orbital energies can then be put into the Schrödinger
equation and be solved for the energy of the system.

8



2 THEORETICAL BACKGROUND 2.3 Electron-correlation methods

Input molecular geometry

Initial guess of C-matrix

Calculate
new C: Solve
FC = SCϵ

Self con-
sistent? Is
Cnew ≈ C ?

HF calculation complete

Yes

No

Figure 2.1: The process of running a HF calculation.

The cost of running a HF calculation depends heavily on the implementation and
can vary from O(N4) to O(N2), depending on the evaluation of the integrals. HF
is thus not a very expensive method, however, it lacks the very important terms of
electron correlation, which is replaced by an approximation of the electron interac-
tions as the Coulomb-Exchange term shown in Equation 2.12.

2.3 Electron-correlation methods

Simply put, the electron-correlation describes how the motion of an electron is
affected by the presence of other electrons [10], and is the reason the Schrödinger
equation cannot be solved exactly for systems with more than one electron. As
HF is explicitly lacking this property, it is incapable of accurately describing dis-
sociation or bond formation [4]. Instead, the correction to the electron of interest
is approximated by an average of the surrounding electrons [1]. For many-electron
systems, only using HF can thus be very inaccurate. The electron-correlation en-
ergy (Ecorr) is often defined as the difference between the exact energy (E0) and
the HF-limit energy (ϵ0) [7],

Ecorr = E0 − ϵ0 (2.15)

9



2.3 Electron-correlation methods 2 THEORETICAL BACKGROUND

To be able to get a good approximation on the correlation energy, many so-called
electron-correlation methods have been developed.

2.3.1 Post-Hartree-Fock methods

Most of the electron-correlation methods are based on HF and has thus been named
post-HF methods.

Configuration Interaction

The main feature of configuration interaction (CI) is the expansion of the wave
function as multiple Slater-determinants (Φ), instead of just one, as used in HF [11].
Starting with the HF ground state (|HF ⟩), and then including various excited states
(shown in Equation 2.16 as Φa

i and Φab
ij ), CI tries to get a better approximation of

the electron-correlation.

|ΨCI⟩ = c0|HF ⟩+
∑
ai

cai |Φa
i ⟩+

∑
a>b,i>j

cabij |Φab
ij ⟩+ ... (2.16)

The indices denotes the excitation from the occupied MOs i and j to the virtual
MOs a and b. How many excitation sums are included is described in the name, for
example, CISD include Single and Double excited determinants, whereas Full CI
(FCI) includes all possible excitations for the given basis set formed by the Slater-
determinants. To obtain the exact solution for a system one would need infinite
basis sets, however, for logical reasons, this is not possible. The FCI solution is thus
considered the exact solution for a given basis [12].

As in HF (Equation 2.14), the ground state is found by minimizing the expectation
value of the energy with respect to the CI coefficients, c, by solving the equation [12],

HCIC = Cϵ. (2.17)

However, this time the right hand side of the equation does not include the overlap
matrix, S. This is because the equations are expressed in a basis containing or-
thogonal Slater-determinants, making the overlap matrix the identity matrix, which
can thus be excluded [12]. It is also important to note that the C matrix here de-
notes a vector containing the CI coefficients, whereas in HF, the C matrix contains
the MO coefficients. Logically, the complete basis of Slater-determinants increases
extremely fast and the size of the Hamiltonian expands with the number of Slater-

10



2 THEORETICAL BACKGROUND 2.3 Electron-correlation methods

determinants squared. This makes it very challenging to run a Full CI calculation
on larger systems.

Full CI calculation scales with O(NdetN
4) [13], Ndet being the number of Slater-

determinants, which also have a scaling of O
(∑

k

(
nocc

k

)(
nvir

k

))
, with k being the

number of excited determinants, and nocc and nvir, being the number of occupied
and virtual orbitals, respectively. Furthermore, the size of the HCI-matrix becomes
extremely large for FCI, so that a calculation on CO using PySCF [14] with the basis
set cc-pVDZ, which includes 28 basis functions, would need 80TB of memory, which
is not available on most computers.

Multiconfigurational Self-Consistent Field

In contrast to CI, multiconfigurational self-consistent field (MCSCF) minimizes the
energy with respect to both the CI and the MO coefficients simultaneously, instead
of just the CI coefficients, thus this method can be considered a hybrid between CI
and HF [4]. As a result of the wave function being a sum of Slater-determinants, we
need an additional variational parameter to the CI wave function in Equation 2.16,
that being an orbital rotation operator, e−κ̂ [15],

|ΨMCSCF ⟩ = e−κ̂
∑
i

ciΦi. (2.18)

The scaling of MCSCF highly depends on the active space and how many deter-
minants are present in the system. The non-CI part of MCSCF has a scaling
depending of the implementation of HF, whereas the the CI part has the same
scaling as normal CI [16].

Coupled-Cluster Theory

Coupled-Cluster Theory (CC) is a solution to some of the most severe problems
with CI; the lack of size-extensivity and the challenge of effectively implementing
the method [4]. Here we expand the expression of the wave function, by multiplying
the exponential of the cluster-operator, T̂ , to some wave function [17],

|Ψ⟩ = eT̂ |Ψi⟩. (2.19)

The operator T̂ depends how many excitations are explicitly included as parameters
in the calculation. It can be expanded as,
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2.3 Electron-correlation methods 2 THEORETICAL BACKGROUND

T̂ = T̂1 + T̂2 + T̂3 + ..., (2.20)

where T̂1 describes single excitations, T̂2 describes double excitations, and so on.
The nomenclature is similar to that of CI, meaning CCSD is the Coupled-Cluster
name for the method including the Single and Double excitations. Even though
CCSD only explicitly contain the single and doubly excitation operators in T , when
we Taylor-expand the exponential cluster-operator working on the HF ground state
(|HF ⟩), the result is a linear combination of determinants containing contributions
of all the excited determinants,

eT̂ |HF ⟩ = (1 + T̂1 + T̂2 +
1

2
T̂ 2
1 +

1

2
T 2
2 + T̂1T̂2 + ...)|HF ⟩. (2.21)

The outcome is an improved accuracy, without increasing the cost of the calculation.
More explicitly, this means a CCSD calculation is more accurate than a CISD
calculation, even though they both have a scaling of O(N6) [18] [19].

Møller-Plesset Perturbation Theory

In Møller Plesset perturbation theory (MPn, where n denotes the order of perturba-
tions added) the main concept relies on adding a small perturbation, or change, to
a known and solvable problem to find an approximation of the electron-correlation
to the exact unknown solution [4]. The perturbation (V̂ ) is added as a Rayleigh-
Schrödinger perturbation (RS), Taylor expanded to a decided order (n), making
MP a special case of RS. The perturbation operator for such a system is defined
as the difference between the Hamiltonian (Ĥ, seen in Equation 2.7) and the Fock
Operator (f̂) [20],

V̂ := Ĥ − f̂ =⇒ Ĥ = f̂ + λV̂ . (2.22)

The parameter λ is a real parameter describing the size of the perturbation. After
getting this updated Hamiltonian, the Schrödinger equation can be solved for one
order of perturbation at the time.

Trivially, the cost scales with increased order of perturbations, where an MP2 cal-
culation has the asymptotic scaling of O(N5) [21].

12



2 THEORETICAL BACKGROUND 2.3 Electron-correlation methods

2.3.2 Kohn-Sham Density Functional Theory

In density functional theory (DFT), we take a step away from the wave function
theory, and describe the energy of a system using density functions in stead of
wave functions [22]. The Hohenberg-Khon theorem states that there exist a density
functional that has a minima equal to the exact ground state energy of a system [23].

The most popular DFT method is Kohn-Sham DFT (KS-DFT), which introduces
some orbitals that is used to find the electron density. The density functional (ρ)
can be expressed as a sum of orbitals (Φi):

ρ =
∑
i

|Φi|2. (2.23)

The KS-DFT Hamiltonian is similar to that of HF, except with an added exchange-
correlation term modifying the single electron Fock-operator [24],

f̂KS(i) = v̂K + v̂ext + v̂C + v̂xc, (2.24)

Consisting of the kinetic energy of an electron (v̂K), the electronic potential of the
nuclei (v̂ext), the Coulomb interactions (v̂C), and the exchange-correlation energy
(v̂xc).

From this we can derive the eigenvalue problem [1],

f̂KS(i)|Ψi⟩ = ϵi|Ψi⟩. (2.25)

After obtaining these equations, they can be solved in the same manner as HF (Fig-
ure 2.1), with an initial guess of the electron density, instead of MO coefficients.
The downside of KS-DFT is that it is hard to get an accurate parameterization of
the exchange-correlation from the density only, as the density is a three-coordinate
property, whilst the exchange-interaction is a 4N -dimensional property, where N
is the number of electrons. The exchange energy is a result of the anti-symmetry
properties of the wave functions, and the correlation arises from the electrons having
real-time interactions and wanting to avoid each other. This is an important con-
tribution to the total energy, and without an accurate description of the exchange-
interaction, which affects electrons with the same spin, properties such as Hund’s
rule becomes invalid.

13



3 LARGE-SYSTEM QUANTUM APPROACHES

3 Large-System Quantum Approaches

This being said, it should be obvious that it is crucial to have alternative methods
able to handle larger systems with high accuracy. A few such approaches will be
discussed, these being QM/MM and the fragmentational method FMO.

3.1 The QM/MM approach

The Quantum Mechanics/Molecular Mechanics (QM/MM) method is a hybrid
method between quantum and molecular mechanics. This means in essence that
we divide our system into two parts, where one is described by classical mechanics
and one by quantum mechanics (Figure 3.1). In MM we use different kinds of force
fields to describe properties such as small-amplitude vibrations, torsions, van der
Waals interactions and electrostatic interactions [25], and are often used in molecular
dynamic (MD) simulations on large and complex organic-, biological- [26], inorganic-
[27] and solid-state systems, like heterogeneous catalysis [28]. The disadvantage of
an MM approach is that it does not consider changes in the electronic structure
like bond-breaking/forming, charge transfer or electronic excitation, as individual
electrons are not taken into account. These properties are described by QM. QM
calculations are, however, very expensive to run, as we have been discussing pre-
viously, which is why it can be beneficial to approximate parts of the system with
MM.

QM/
Primary 

Subsystem

MM/ 
Secondary Subsystem

:

Figure 3.1: System divided by which method each part is treated with. The inner, primary
subsystem and the outer secondary system is calculated by using QM and MM
methods, respectively.

14



3 LARGE-SYSTEM QUANTUM APPROACHES 3.1 The QM/MM approach

3.1.1 Energy calculation

When finding the total energy of a QM/MM system one must choose a way to
handle the interactions between the systems. Generally, this can be done with two
different schemes; additive and subtractive.

In the additive method, the energy (Eadditive
total ) is a sum of the energies from the QM

subsystem (Eprimary
QM ), the MM subsystem (Esecondary

MM ) and the interaction energy
between the two (Einteraction):

Eadditive
total = Esecondary

MM + Eprimary
QM + Einteraction. (3.1)

The MM calculations are only carried out on the secondary subsystem, the QM
calculations on the primary subsystem and the last term is the coupling between
the two systems. The additive scheme is as of today the most common method [29].

In the subtractive method we do an MM calculation on the whole system and a QM
calculation of the active site/primary subsystem. The MM calculation of the whole
system and the QM calculation are added together and then the MM calculation
of the primary subsystem is subtracted:

Esubtractive
total = Esystem

MM + Eprimary
QM − Eprimary

MM . (3.2)

The advantage with this method is that it is simple, with no explicit term for the
coupling between the primary and secondary subsystems. However, for this to work
one needs a complete set of MM parameters for the primary subsystem, which can
be challenging. In addition, the coupling term is only described in MM terms,
which leaves out, among other things, the precise electrostatic interactions of the
electrons, as MM treats the electrostatics as point charges, which are not included
in the Hamiltonian [29].

The energy of the MM force field expression explains the bonded terms (includ-
ing bond stretching, angle bending, torsion and deformations), Lennard-Jones type
van der Waals interactions and Coulomb interactions between rigid point charges [29].
Implementations of these force fields exist in software like AMBER [26], CHARMM [30]

and GROMACS [31]. Calculating the QM expression is in essence to solve the S.E [32],
shown in Equation 2.5. As the number of systems having an exact solution is very
limited [1], approximations of the energy is essential. In practice DFT or other
semi-empirical methods are very common, as they are easy to use and quite cheap
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compared to other more accurate methods, like post-HF ab initio methods, includ-
ing MP2 and CC [29].

In the additive scheme, finding the interaction term between the QM and MM
systems can be quite challenging and expensive [33]. As with the total energy, these
interactions are additively separable into QM and MM interactions [33]. The MM
interaction is easy to calculate and the is done by applying the same force field as
earlier and provides a good estimate for steric effects, as well as other molecular
properties described by the subtractive method earlier. In QM interaction the
electronic effects are taken into account. Generally, we consider the electrostatic
interactions to fully describe the electronic embedding, and it is therefore used
as the only interactive force in the quantum part of the coupling term [27]. The
electrostatic interactions are interactions between charged particles [32].

3.1.2 Challenges

Using QM/MM on a small molecule surrounded by others can be easy, however,
one of the largest problems occur when a molecule is to large to be included in the
primary subsystem, and a covalent bond has to be cut off between the QM and MM
subsections. To make up for physically unrealistic situations, this problem can be
dealt with in various ways, where the two most popular methods are link atoms or
local orbitals.

Link atoms

In the link atom method, an atom, usually hydrogen [34], is placed in the middle a
bond as shown in Figure 3.2. The link atom can also be methyl groups or pseudo-
halogen atoms parameterized to be similar to the associated MM fragment [35].

R

R

C H C

MM QM

Figure 3.2: An arbitrary system showing the hydrogen link atom at the QM-MM interface.

However, using such a method results in a non-defined specific energy term, as all
systems must be treated differently to make up for the energy difference provided
by the link atom. In many implementations the Coulomb interactions between the
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MM system and the link atom is excluded from the QM Hamiltonian. This can,
however, result in an unrealistic partial charge on the link atom, due to a charge
polarization on the primary subsystem [36]. The placement of the link atom is shown
to have a significant impact on the result, and it is desired to be placed as far away
from the reaction in question as possible, without leaving a very negative impact
on the efficiency [37].

Using a link atom is a very simple approach, which can also lead to errors. By
using a this approach the degrees of freedom will not be correct, even if the link
atom is restricted to be as similar to the broken bond as possible. There will also
most likely be errors in polarity. In addition, one must consider if the link atom is
to interact with the MM section. If the interaction is taken into account, one might
observe unrealistic phenomena. However, if this is neglected the polarization in the
interface might become overwhelmed [38]. This is because of the short bond length
between the link atom and its neighbours, which is normally around 0.5 Å for a
C-C bond. Thus the point charge of the original MM atom interferes with the total
charge density [25]. The last problem can be corrected by using pseudo-halogens,
among some other parameterized groups instead of the normally used hydrogen [38].
Another way to solve this is by setting the charge of the MM atom closest to the
interface to zero. This can be done to the first MM atom (Z1 scheme), the first
and second MM atom (Z2 scheme), and so on. The downside of this approach is
that the total charge of the MM system changes, and a neutral system can become
charged. To prevent this, force fields such as CHARMM, let the sum of charges
over a given group be zero during the parameterization of the force field, this allows
for some charge changes on specific atoms, while preventing the total charge of the
system to be disturbed. Methods that preserve the total charge has been shown to
more robust than the Z1/Z2 schemes [25].

Local orbitals

The second option is to use local orbitals, for example in a local self-consistent field
(LSCF). Such a field is created by treating the bonds in the QM/MM interface with
a set of frozen spin-orbitals or strictly localized bond orbitals (SLBO), placed on
the nearest QM atom. In contrast to the link atom approach, local orbital methods
provide a QM description around the interface atoms [33].

By being "frozen", the orbitals in question are excluded from the energy optimiza-
tion, however, they still contribute to the total energy, but as they are excluded
from the optimization, this contribution does not change [38]. The energy of the
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SLBOs only depend on the frontier atoms and is thus considered to be transferable
between systems [29]. This makes it possible to do the SLBO calculation on a much
smaller system and then transferring it to the large QM/MM system [38]. However,
this means that the LSCF method is depending on parameters from other model
studies for each new system.

As with all approximative methods, LSCF have many related methods with some
deviations. One example is the generalized Hybrid orbitals (GHO) method. The
difference from LSCF is in essence the placement of the localized and frozen orbitals,
which are placed on the nearest MM atom. These orbitals are divided into active
and auxiliary orbitals, where the active orbital in included in the SCF optimization.
With this follows the advantage of not needing an assisting system to decide these
parameters [35].

However, such methods are much more technically challenging to implement, com-
pared to the link atom method. For example, one must make sure the orbitals do
not mix, by adding orthogonality contains to the orbitals. In addition, there are
some parameters depending on force fields, basis sets and the QM method chosen,
that must be determined before the calculation can begin, which are not necessarily
transferable between systems and can therefore be a challenge to get accurate [29].

3.1.3 Scaling

As the MM calculation is very cheap compared to the QM calculation, the scaling
is solely depending on the QM method and the size of its region.

3.2 Fragmentation methods

Fragmentation methods are an alternative where the system is also divided into
smaller parts, but instead of using an MM approximation, all fragments are treated
with QM. The goal is to combine the results from the different fragments to predict
the properties of the whole system [39]. Fragmentation methods include many dif-
ferent approaches, including the systematic molecular fragmentation (SMF), com-
bined fragmentation method (CFM) and molecular orbital method (FMO). SMF
and CFM group atoms based on bonds and similar chemical properties and com-
bine the results into an expression based on the exclusion/inclusion principles [40].
In comparison, the characteristics of FMO is that it includes electrostatic forces,
as a field, for the whole system in each fragment [41]. From now on, we will only
discuss the FMO method.
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The advantage of FMO, is that dealing with cleaved covalent bond are not as hard
as seen previously the QM/MM method. The Coulomb field which is added here
is almost enough to saturate the lone bonds and the other adjustments needed are
easier to implement [41].

The starting point of doing an FMO calculation is dividing the system. The spe-
cific grouping can depend on, among other things, the QM method chosen for the
calculations, often used are MP2, CC, MCSCF and DFT [41]. When working with
chemical systems as electron density distributions, in comparison to spherical par-
ticles, the electron density within each fragment should be as localized as possible,
so choosing the right fragmenting is crucial. For example would it be obvious to
keep a benzene ring within the same fragment [41].

3.2.1 Energy calculation

The total energy expression of a FMO system is given as [41],

E =
N∑
I

EI +
N∑

I>J

(EIJ − EI − EJ) . (3.3)

The first sum is the energy of all the monomer sections (EI), shown as I, J and K,
in Figure 3.3. N is the number of fragments. The second term is the interaction be-
tween all combinations of dimers (EIJ). As we can see, the energy of the individual
monomers is subtracted as they are already included in the first term.

K
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J

K

I

J

K

I

J

K

I

J

K

I

J

K

I

J

K

Figure 3.3: Visualisation of the different terms in Equation 3.3. I, J and K denotes different
fractions and the active parts are colored purple. The first row shows the one-body
terms, whereas the second row shows the two-body terms.

To increase accuracy, it is possible and proven efficient, to include a more body-
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terms, and by adding a third, the energy expression will become [42]:

E =
N∑
I

EI +
N∑

I>J

(EIJ − EI − EJ)

+
N∑

I>J>K

{(EIJK − EI − EJ − EK) − (EIJ − EI − EJ)

− (EJK − EJ − EK)− (EKI − EK − EI)} .

(3.4)

However, adding a lot more terms can make the calculations very expensive. And as
the three-body term almost covers the ab initio properties for some systems [42], this
is in many cases not necessary. How many body-terms are present is expressed in the
name as FMOX, with X being the number of body-terms. Therefore, Equation 3.3
is actually the energy expression of an FMO2 system.

3.2.2 Challenges

As with all QM methods, molecular integral calculations are a large restriction. It
is therefore often benefitial to exchange accuracy with faster, but more inaccurate,
semi-empirical methods [9]. One example is combining FMO with DFT, which has
been shown to be able to compute calculations on 106 atoms, with a time scaling on
O(N1.21) for FMO2-DFT, the same calculations computed with full SCC-DFT has
a scaling of O(N3.09) [43]. However, DFT is not always preferable as it fails to get
a good approximation of the exchange correlation. Nonetheless, this proves that it
is possible to reduce the scaling from being cubic to almost linear, using the FMO
method.

As mentioned, FMO2 is often accurate enough for most systems, however, in some
cases FMO3 and FMO4 might be necessary. Examples of such systems include bio-
logical systems of alanine dodecamer and chignolin [44], and segmentation of amino
acids on peptides [45] for FMO3 and FMO4 respectively. However, the accuracy of
FMO4 methods is observed to have an incremental cost of 10 times that of a cor-
responding FMO2 calculation, for some systems [45]. As usual, one must therefore
compare the cost of accuracy to what is needed for the system.

There is also the problem of breaking covalent bonds, even though it is not as prob-
lematic as in QM/MM, some precautions needs to be taken into account. Normally,
this is done by adding the bond-electrons to one of the fragments and restrains are
added to the Fock-operator to make sure the electrons does not become part of the,
for instance, core electrons of the fragment they are attached to [46]. One can also
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add local orbitals, such as in QM/MM, where the occupied MOs used to describe
the detached orbitals are frozen [46].

3.2.3 Scaling

For FMO the scaling will become O(mnf(nN
m
)), with f() being the original scaling

of the QM method chosen, m being the number of equally sized fragments and n

the number of terms included in the energy calculation, so for FMO2 n is 2 and
so on. To put this in some context, we can compare costs by reformulating the
expression for the cost:

O
(
mnf

(
nN

m

))
=⇒ O

(
mn

(
nN

m

)k
)

= O
(
nkmn−kNk

)
= O

(
mn−kNk

)
.

(3.5)

The term nk can be neglected as it is not dependant on the system size nor the
number of fragments, as k is the exponent of the original cost, meaning k = 2 for
HF and k = 6 for CCSD. If we first consider a problem using HF with FMO2, where
we let k = 2 and n = 2, we get a scaling of O (m0N2). As we can see, regardless of
the fragment size, FMO2 has the same scaling as a HF calculation.

If we now look at CCSD, where k = 6 and again n = 2 we will get, O (m−4N6),
which shows that increasing m, will decrease the cost. It is, however, important
to note that if one increases the number of fragments a lot, the accuracy of the
calculation can be reduced. This could be compensated with by using a higher
body term, such as FMO3 or higher. Another aspect to consider is fact the the
level of body terms to include. If n is higher than p, adding fragments is not cost
efficient, meaning that FMO6 has the same cost as CCSD and FMO7 is actually
more expensive.

4 Case studies

Up until now, we have looked at a general study of the different methods, and some
of their characteristics. To get a better understanding of their behavior, we will
consider two case studies, where we look at the methods using HF. We will also
for simplicity use restricted HF (closed shell system) and have no broken covalent
bonds.
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4.1 HF in QM/MM

Let us consider a simple QM/MM system, where the QM region consists of some
molecular system, X, surrounded by other molecules, Y . In this case study, we
will approximate the MM interaction with an electrostatic embedding, where the
molecules, Y , are given partial atomic charges (PACs). To start off, we need to
find an expression for the electronic Hamiltonian of the QM region. This is done
by reformulation the expression for electronic Hamiltonian i Equation 2.7, to only
consider the electrons in X, using the addtive scheme [29],

ĤX
e = T̂X

e + V̂ X
ee + V̂ X

Ne + V̂ X
NN + V̂ XY

e,MM + V̂ XY
N,MM . (4.1)

We have also added two terms, V XY
e,MM and V XY

N,MM , which take into account the
interactions between the PACs and the particles in X. V XY

e,MM is the interaction
between the electrons in X and the PACs in Y , and can be written as [29]:

V̂ XY
e,MM = −

∑
Ii

qI
|ri −RI |

. (4.2)

Where qI is the charge of particle I, and |ri −RI | the distance between electron i

and PAC I.

Naturally, V XY
N,MM thus consider the interactions between the nuclei in X and the

PACs in Y . This can be written as [29],

V̂ XY
N,MM = −

∑
Iζ

qIZζ

|Rζ −RI |
. (4.3)

We must now also consider the charge of the nuclei in X, expressed as Zζ . Except
for this, the terms are similar to that of Equation 4.2, with Rζ being the position
of nuclei in X.

From here, we can set up an expression for the expectation value for our new
Hamiltonian, ĤX

e , as seen previously in Equation 2.11. This gives us the Fock-
operator and its eigenvalue problem [29],

f̂QM/MM(i)|Φi⟩ = ϵi|Φi⟩, (4.4)

with a modified Fock-operator including the XY terms in the one-electron operator,
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f̂QM/MM(i) = h̃X(i)+V̂ X
ee , h̃X(i) = ĥX(i)+V̂ XY

e,MM+V̂ XY
N,MM , (4.5)

which can be formulated as some Roothaan-Hall-like equations,

FQM/MMC = SCϵ, (4.6)

and the SCF calculation can begin, equally to that in Figure 2.1. As we can see the
only significant deviation from the original HF calculation, is the Fock-operator,
which now includes impacts from the PACs of the surroundings.

4.2 HF in FMO

Let us now consider a fragment, X, surrounded by multiple other fragments, Y .
We start off by expressing the Hamiltonian for one fragment in an FMO2 system,
which has to be solved for each fragment in the system [46]:

ĤX
e = T̂X

e + V̂ X
ee + V̂ X

Ne + V̂ X
NN + V̂ XY

ee + V̂ XY
Ne . (4.7)

T̂X
e , V̂ X

ee , V̂ X
Ne and V̂ X

NN , still describe interactions within fragment X. The new
terms for FMO are V̂ XY

ee and V̂ XY
Ne . V̂ XY

ee includes the interaction between the
electrons in X and the electrons in Y , via the electron density in the fragments Y
(ρY ) [46]:

V̂ XY
ee =

∑
i∈X

∑
Y ̸=X

∫
ρY (r′)

|ri − r′|
dr′, (4.8)

with ri and r′ being the positions of electrons inX and the fragment Y , respectively.

V̂ XY
Ne is the interaction between the electrons in X and the nuclei in Y [46], and can

be expressed as the charge in the nuclei (ZI) divided by the difference coordinates
of the nuclei (RI) and the different electrons (ri):

V̂ XY
Ne =

∑
i∈X

∑
I

(
− ZI

|ri −RI |

)
. (4.9)

V̂ XY
ee and V̂ XY

Ne are implemented as a modification of the Fock-operator, (f̂(i)), as
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an addition to the one-electron operator (ĥ(i)) [46],

f̂FMO(i) = h̃(i) + V̂ X
ee , h̃(i) = ĥX(i) + V̂ XY

ee + V̂ XY
Ne . (4.10)

If we introduce a basis for our system, we can again formulate the Roothaan-Hall
equations [46],

F FMOC = SCϵ, (4.11)

with F FMO being the matrix containing the modified Fock-operator for FMO.

5 Comparison

After looking at these two moderately different methods, one can try to consider in
which cases one is better than the other. Generally, we can say that on electronic
systems, QM methods are more accurate. Based on this, one could assume that
FMO would be preferable in most cases. However, is the cost of running QM on
the whole system necessarily worth the extra cost, or would an approximate force
field be accurate enough?

We cannot only look at the accuracy of the methods but should take into account
the cost of actually running the calculation. For QM/MM the limiting factor is of
course the QM calculation, which we will give the scaling O(f(N)), where f(N) is
the asymptotic scaling of the method used, and N the size of the QM region. As
we have seen previously in Section 3.2.3, FMO seems to be highly cost efficient for
methods with an originally large scaling, as long as we do not consider very high
coupling terms, such as in FMO4 or higher. For cheaper methods, such as HF, we
saw that using FMO does not reduce the scaling.

From looking at the case studies, we see that the mathematical difference is the
modification of the Fock-operator and thus also the Fock-matrix. In HF/MM we
have additional potential energies between the electrons and nuclei in the QM sec-
tion and with the electrostatic embedding in the MM region, both based on their
atomic charges and the distance between them (see Equation 4.2-4.3). Similarly,
FMO-HF includes the electrostatics between the electrons in a given fragment and
the nuclei in the remaining fragments, using the same method (Equation 4.9). The
interaction between the electrons in different fragments, however, is based on the
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electron density in the secondary fragments (Equation 4.8). Another thing to note,
is that when solving the RH equations in FMO-HF, one must so for each fragment
in the system, as the Fock-operator only considers one main fragment at the time.
This, however, is very easy to parallelize [41].

The main qualitative difference between FMO and QM/MM is that QM/MM is a
focused method, while FMO is not. This being that QM/MM considers a small part
of the system to prioritize, and optimizes the calculation to fit this area. FMO on
the other hand, tries to have the same accuracy on the whole system. Due to this,
one would often prefer QM/MM if the reaction or region of interest is small [32], as it
might not be very dependent on the electrons far away. Another example illustrating
the focused/unfocused property is by comparing geometry optimizations. QM/MM
is a very common method used for such calculations [47] [48] [49], however, only the
primary subsection will get an accurate geometry. Geometry optimizations have also
been developed using FMO-HF [50] [51] and FMO-MP2 [52], with sufficient accuracy,
which optimizes the whole system.

However, this also depends on what properties we are interested in. If we consider
a core-excitation of a single electron, the electron will be heavily shielded from the
outer electrons by the valence electrons of the molecule. In this case QM/MM might
be a sufficient method compared to e.g. a valence excitation. Due to the weaker
shielding effect of the valence electrons, it might be necessary to apply QM to a
much larger region, and FMO could be preferable. As FMO looks at all fragments
of the whole system equally, the result is that one needs to do all the calculations
for every fragment, in contrast to QM/MM, where you only have one subsystem of
interest.

6 Conclusion

We have now looked at some of the benefits and challenges with different large-
scale quantum methods, which are important to be able to do calculation on larger
systems. The most important is that they are both able to reduce the cost while
at the same time being able to account for electronic properties at high accuracy,
depending on the conventional QM method chosen. The biggest challenge with
these methods are the breakage of covalent bonds, which can result in inaccuracy
and more complicated implementation, depending on the correction method. To
create a hierarchy of FMO and QM/MM does not seem beneficial as they are both
good methods for different kinds of systems, with QM/MM being a focused method,
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while FMO is not. So the method should be chosen based on what properties one is
interested in. Overall, large-scale methods seem like an important part of the future
development in quantum chemistry and could solve many problems regarding the
state-of-the-art bottlenecks of large-system simulations, which currently only can
be solved using cheaper semi-empirical methods.
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