
Evaluating Publish/Subscribe Protocols for use in Constrained N
etw

orks
Em

il Paulin Andersen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Emil Paulin Andersen

Evaluating Publish/Subscribe
Protocols for use in Constrained
Networks

Master’s thesis in Informatics: Software Engineering
Supervisor: Frank T. Johnsen
Co-supervisor: Michael Engel
June 2022M

as
te

r’s
 th

es
is

Emil Paulin Andersen

Evaluating Publish/Subscribe Protocols
for use in Constrained Networks

Master’s thesis in Informatics: Software Engineering
Supervisor: Frank T. Johnsen
Co-supervisor: Michael Engel
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Table of Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Research Objective . 4

1.2.1 Research Questions . 4

1.3 Research Methodology . 4

1.4 Premises . 4

1.5 Scope . 4

1.6 Contributions . 5

1.7 Outline of Thesis . 5

2 Background and Previous Research 6

2.1 Application . 6

2.1.1 Defense . 6

2.1.2 Civilian . 7

2.2 Network Models . 7

2.3 Publish/Subscribe Pattern . 8

2.4 MQTT . 9

2.5 MQTT-SN . 10

2.6 Quality of Service . 10

2.7 Topics . 12

2.8 MQTT Packet Format . 12

2.8.1 Control Header . 12

2.8.2 Remaining Length . 13

2.8.3 Variable Header . 14

2.8.4 Payload . 14

2.8.5 Packet Example . 14

2.8.6 Message Sequence Chart . 15

2.9 MQTT-SN Packet Format . 16

2.9.1 Message Header . 16

2.9.2 Message Variable Part . 17

2.9.3 Packet Example . 17

2.10 ZeroMQ . 17

2.10.1 Transport Protocols . 18

2.10.2 Socket API . 18

i

2.10.3 ZeroMQ with the Publish/Subscribe Pattern 19

2.10.4 Message Format . 20

2.10.5 Intermediary Message Handling . 20

2.10.6 Previous Studies on ZeroMQ . 21

3 Development 22

3.1 Technology . 22

3.2 Supported Protocols . 23

3.3 Test Framework . 23

3.4 Frontend Application . 25

3.5 Data Storage . 27

3.6 Complete Architecture . 28

4 Test Setup 32

4.1 Netem . 32

4.2 MQTT . 33

4.3 MQTT-SN . 33

4.4 ZeroMQ . 34

4.5 Data . 36

5 Results 37

5.1 MQTT . 37

5.2 MQTT-SN . 39

5.3 ZeroMQ with TCP . 41

5.4 ZeroMQ with PGM . 43

6 Analysis 46

6.1 5G . 46

6.2 Tactical Broadband . 48

6.3 SATCOM . 50

6.4 NATO Narrowband . 51

6.5 CNR with 1% Loss . 53

6.6 CNR with 10% Loss . 55

6.7 MQTT . 56

6.8 MQTT-SN . 57

6.9 ZeroMQ with TCP . 57

6.10 ZeroMQ with PGM . 58

ii

6.11 Summary . 58

7 Recommendations 60

7.1 Cutoffs . 60

7.2 MQTT . 61

7.3 MQTT-SN . 61

7.4 ZeroMQ with TCP . 62

7.5 ZeroMQ with PGM . 62

8 Conclusion 64

8.1 MQTT . 64

8.2 MQTT-SN . 65

8.3 ZeroMQ . 65

9 Future Work 66

9.1 Developing an MQTT-SN Client . 66

9.2 Additional Testing with ZeroMQ . 66

9.3 Configuring the TCP Stack . 66

9.4 Open Sourcing the Analysis Tool . 66

Appendix 71

A Additional Details About the Analysis Tool 71

B Virtual Machine Configuration . 72

C iPerf3 . 73

D MQTT-SN Setup . 74

E ZeroMQ with PGM Setup . 75

F Results for MQTT . 76

F.1 5G . 76

F.2 Tactical Broadband . 76

F.3 SATCOM . 77

F.4 NATO Narrowband Waveform . 78

F.5 CNR with 1% loss . 79

F.6 CNR with 10% loss . 81

G Results for MQTT-SN . 83

G.1 5G . 83

G.2 Tactical Broadband . 84

G.3 SATCOM . 85

iii

G.4 NATO Narrowband . 86

G.5 CNR with 1% loss . 87

G.6 CNR with 10% loss . 88

H Results for ZeroMQ with TCP . 91

H.1 5G . 91

H.2 Tactical Broadband . 91

H.3 SATCOM . 92

H.4 NATO Narrowband . 93

H.5 CNR with 1% loss . 94

H.6 CNR with 10% loss . 95

I Results for ZeroMQ with PGM . 97

I.1 5G . 97

I.2 Tactical Broadband . 97

I.3 SATCOM . 98

I.4 NATO Narrowband . 99

I.5 CNR with 1% loss . 100

I.6 CNR with 10% loss . 100

iv

Acknowledgement

I would like to thank my supervisors, Frank T. Johnsen and Michael Engel, for their
excellent support and guidance through this master thesis. They have given me good
advice and feedback throughout this semester, always guiding me in the right direction,
which I am very grateful for.

I would also like to give a special thanks to my friends and family, who have suppor-
ted and encouraged me through my years of studying and acquiring my degree. This
accomplishment would not have been possible without them.

1

Abstract

Today, many devices and sensors produce large quantities of data that need to be pro-
cessed to retrieve valuable information. The number of devices grows as new technology
rapidly emerges, which in turn produces even more data that must be handled in one
way or another. Many of these devices are simple in design and do not possess the com-
putational power to perform this work themselves. This is especially the case in fields
like machine learning, where there is a need for large data sets to be processed in order to
identify patterns and provide predictions. Since these devices cannot do this work them-
selves, there is a significant need for some way to transport this data to another device or
system that is capable of handling this task. There are many solutions out there today
that are specifically designed to perform this task, and this thesis will investigate sev-
eral protocols that have this responsibility. The protocols all use the publish/subscribe
pattern, an architectural pattern used to exchange messages between systems. The first
two protocols we have investigated in this study include MQTT and MQTT for Sensor
Networks (MQTT-SN), which are covered by OASIS specifications. MQTT-SN is a sim-
plified UDP-based alternative to MQTT. The third and final protocol we have looked at
is ZeroMQ.

To allow systems to exchange messages, there is a need for a network that they can
communicate over. These networks are not always reliable and do not always operate
in suitable environments that allow for efficient communication. This is especially the
case in the defense sector, where they use radio networks with limited bandwidth that is
prone to errors in transmission. There are also many scenarios in the civilian sector that
requires efficient communications over constrained networks.

Through experimentation, this thesis has evaluated how the MQTT, MQTT-SN, and
ZeroMQ protocols have performed in different network environments with different sets
of limitations. To conduct these experiments, we have created an analysis tool that is
specifically made for this task. The tool was able to run tests with the protocols we
wanted to evaluate, and it was also able to emulate the networks we wanted to test the
protocols in. Each test provided data on the protocol’s performance, which we later
analyzed, enabling us to compare the protocols against each other directly. Based on
the analysis of each protocol, we have concluded that they are suitable for use in less
constrained networks but struggle with efficient communication in the more challenging
ones. MQTT-SN stands out among the protocols we have evaluated in that it provides
the most efficient and reliable message transportation in most networks.

2

1 Introduction

During the last couple of decades, there has been a substantial increase in electronic
devices used for many different purposes. The devices have become smaller in size, and
the computations they have to perform have increased in complexity. Gartner defines
the Internet of Things (IoT) as ‘a network of physical objects that contain embedded
technology to communicate and sense or interact with their internal states or the external
environment’ [1]. IoT has become an essential aspect of daily life, helping us automat-
ically manage simple and complex tasks without much hassle. These devices may seem
simple on the surface, but as with many computer systems, they depend upon many
thoughtful design decisions to develop the software systems. They often have limited
resources like storage and computing power to keep costs down. In order to take full
advantage of their capabilities, the system needs to be developed around these limita-
tions. The quantity of data produced by these devices is increasing, and it is not always
efficient nor possible to process this data on the system locally. Therefore, there has
become a need to move the data responsibility to other systems with more computing
power and better data processing. The data should be sent from one system to another
in an efficient and fault-tolerant manner. This message exchange must happen across a
network, which might not always be reliable. This introduces a new problem, which we
are investigating in this thesis.

In this thesis, we will investigate several protocols within the publish/subscribe pattern
[2] and evaluate their performance in constrained networks. The protocols we will in-
vestigate include MQTT [3], MQTT for Sensor Networks (MQTT-SN) [4] and ZeroMQ
[5]. The purpose is to compare the protocols and reveal if they are suitable for use
when the objective is to transport messages in a manner that can be considered effective.
Discovering that a protocol is suitable for use can benefit military use-cases where oper-
ations take place in environments where communications can be considered challenging.
Not only the defense sector can benefit from this research. Many civilian use-cases exist
where communication between systems is essential, for instance, in search and rescue op-
erations, where remote environments can provide many complex challenges for network
communication.

Disconnected, intermittent connectivity, and low-bandwidth (DIL) is a definition intro-
duced by Scott et al. [6], which describes key attributes of a network that can lead to
issues when systems need to communicate. The term introduces a description of how
critical data will need to be delivered in a military scenario, even in the case of DIL
networks. The term can also be applicable in other scenarios, especially in the case of
natural disasters, where networks have become significantly degraded or replaced by ad
hoc networks. To simulate networks that can be considered DIL, we have used several
models to introduce limitations on the network with various constraints.

1.1 Motivation

The increase in the use of systems that are responsible for sending large quantities of
data has increased the need for ways to achieve this objective in a matter that is both
reliable and swift. There has been a significant increase in commercial IoT devices that
benefit many users but need to rely on external systems for data aggregation and analysis
to provide valuable information. The military faces many scenarios where the need for
communication is vital for the commanders and units to achieve their objectives suc-
cessfully. Operations often occur in locations where the network coverage is constrained
and prone to problems. Therefore, they need to rely on networks with low bandwidth
and a high packet loss probability. This issue can cause a significant hindrance to the
operations due to unreliable means of communication, which can be critical to mission
success.

3

1.2 Research Objective

This research aims to evaluate several publish/subscribe protocols and investigate their
performance in networks that are limited due to circumstances in the environment where
they are deployed, specifically networks that are considered to have DIL characteristics.
The metrics we have investigated are from both the network and application layers. On
the network layer, we specifically want to look at the total number of packets sent, data
rate, message sizes, retransmissions, and duplicate acknowledgments. For the application
layer, we want to look at the number of messages sent, the packet loss, transmission delay,
and the number of times the clients have disconnected during the testing phase. The
most important metrics we are looking into are the transmit delay and packet loss on the
application layer. The reason is that in the use cases we are investigating, the protocols
require a high degree of efficiency. Therefore, the metrics gathered on the network layer
will be used as additional information to supplement and give reason to our main findings.

1.2.1 Research Questions

We have identified two research questions that will answer our research objective for this
thesis.

1. RQ1: Can we correctly evaluate the performance of publish/subscribe protocols
in DIL networks?

2. RQ2: Which DIL networks are the publish/subscribe protocols most suited for?

1.3 Research Methodology

This thesis uses an empirical research method described in Wohlin et al. [7]. The research
bases itself on controlled experimentation, a quantitative research method. Experiment-
ation focuses on observing changes in a highly controlled setting, manipulating some
variables while others are fixed to measure changes. This requirement is fulfilled by the
test environment we have in our analysis tool. The fixed variables in our experiments
have been the protocol settings which are not changed during a testing session. The
variables we are manipulating are the settings used to emulate the various DIL networks.
The data collected then reveal the key factors that determine the experiment’s outcome.
There is a focus on validity when performing experiments to ensure that the results are
not affected by external variables.

1.4 Premises

This research is a continuation of previous work conducted during the preparatory project
(IT3915) for the master’s thesis [8]. We developed an analysis tool for testing and
analyzing publish/subscribe protocols during that project, which we continue to use
during this thesis. Therefore, we have data from testing using the MQTT protocol which
we are including in this study in order to compare and evaluate it to two other protocols,
namely MQTT-SN and ZeroMQ. We are also implementing new features in the analysis
tool to support these protocols.

1.5 Scope

The work in this thesis continues the previously conducted research on the evaluation
of publish/subscribe protocols in distributed systems. NATO IST-150 (NATO Core
Services profiling for Hybrid Tactical Networks) is a research task group that has the

4

objective of investigating Service-Oriented Architecture (SOA) in the tactical domain
[9]. The group has analyzed standards and techniques that can be suitable for use in
networks characterized as DIL [10]. They have experimented with the MQTT protocol
for use in tactical networks, and their findings show that the protocol is promising for
these use cases. ZeroMQ also finds itself to be one of the more promising protocols for
use in constrained networks [11].

For this reason, we further investigate these protocols to determine their usability for
the use-cases mentioned. Other studies in the context of the IST-150 group has also
evaluated the performance of both the MQTT and MQTT-SN protocol [12]. The study
found that they were suitable alternatives to using protocols like CoAP [13], which is
purposefully made to be used in constrained networks [14]. Therefore, the goal of this
research is to further the studies previously conducted by the research task group within
the scope of publish/subscribe protocols.

This thesis focuses on evaluating the protocols based on the ‘L’ in DIL, meaning that
the networks we use have considerably low bandwidth. The reason for not investigating
the ‘D’ and ‘I’ is that the protocols we are using do not function without access to a
network, and there is no purpose for us to test these protocols in this manner.

Several security features are built into the protocols we have looked at and are optional
parameters that can be used if needed. We have decided not to focus on the security
aspects related to distributed communication. Security is an important aspect but re-
quires many considerations, which due to time constraints, we have not pursued during
this study.

1.6 Contributions

The contributions of this thesis are twofold: First, we have developed a test environment
for performing repeatable, controlled, and reliable protocol tests and evaluations. Second,
this study contributes by extending the knowledge of publish/subscribe protocols and
their use in scenarios where reliable and quick communication is vital to operations.
The comparisons between the protocols make their strengths and weaknesses clear for
different situations. The recommendations can help select the appropriate options when
implementing a solution where these requirements are of high importance.

1.7 Outline of Thesis

The thesis is organized as follows: Chapter 2 describes the background for what we have
investigated as well as details about each of the protocols we have looked at. Chapter 3 de-
scribes the development and structure of the analysis tool we have developed. Chapter 4
gives an overview of the test setup we used when conducting tests for each of the pro-
tocols and the configurations we have used. Chapter 5 provides the combined results
for each test we have conducted. The complete description from each test can be found
in appendices F to I. Chapter 6 provides a detailed description of the analysis we per-
formed. In chapter 7 we give recommendations for the use of the protocols in each of
the networks. Chapter 8 provides our conclusion to the research done in the thesis and
provides answers to our research questions. In chapter 9 we have recommendations for
what to look into in the future. The appendices from A to E gives a detail description
the setup we have used, while appendices F to I as mentioned gives the a full description
of each result we had during testing.

5

2 Background and Previous Research

This section describes the reasons we have to investigate our objective in this research.
Based on the current needs and challenges faced, the use cases and applications for the
defense and civilian sectors have been described. Next, we will describe the network
models used to emulate the DIL networks. We also detail the publish/subscribe pattern
used by the protocols described in this chapter. In the preparatory project for this thesis,
we have previously provided the details on the MQTT and MQTT-SN protocols. The
sections related to Quality of Service (see section 2.6), Topics (see section 2.7) and Packet
Format (see section 2.8 and 2.9) have been taken from this project, including the figures
and tables.

2.1 Application

2.1.1 Defense

An important criterion when military forces are operating at the tactical level is situ-
ational awareness, which requires a need for regular communication and rapid information
sharing. In military operations, there is a need for units and commanders to communicate
about evolving situations using devices with message-sharing capabilities over networks
that often can be inconsistent and lacking in bandwidth. Therefore there is a demand for
ways to ensure that this data exchange transpires rapidly, without loss of information.
Some cases also require a large volume of data due to the need to share vital information
during the operation. This data can range from low-frequency data points like GPS
coordinates of units and vehicles to video recording and streaming in real-time.

Combined operations is a concept used by the military which describes operations that
rely on tight cooperation by different units of the armed forces in order to achieve the
mission objective [15]. This concept involves soldiers on the ground and support services
like air and naval forces, communicating and sharing intelligence through an information
network. Research and development within the defense sector have produced increasingly
advanced technology and hardware that will support the modern soldier in a digitally
connected environment.

Figure 1: Movement data of the mechanized battalion from the Anglova scenario [16]

The act of research and experimentation is not always practical to do out in the field and
is often relegated to experimentation in labs. During these experiments, the issue arises

6

that the results might not always apply to the real world. This concern is especially the
case in the military, where the variables found in real-world scenarios are inherently diffi-
cult to account for. This problem can be solved either through simulation or emulation,
which can provide more accurate representations of conditions faced during a real-world
situation. The Anglova scenario is an emulation scenario developed as part of the NATO
IST-124 Research Group and is used for experimentation over tactical network environ-
ments similar to the ones we have investigated [17]. The scenario simulates a realistic
military operation with a mechanized battalion and provides positional movement data,
which can be seen in figure 1. Anglova has been used by researchers in order to ex-
periment and test protocols and is therefore proven as a good scenario that provides a
realistic military setting for experimentation.

Examining and comparing the performance of protocols specialized for this purpose can
provide meaningful recommendations for use cases that provide better and more efficient
communication for military forces.

2.1.2 Civilian

During emergencies, like natural disasters, there is a need for operations to be conducted
to save lives. Most of these operations rely on communications between people with
different duties and responsibilities, which implies that different systems need to be able
to talk to each other. There is also a need for victims of a disaster to communicate
with rescue workers or broadcast their position. Many emergencies happen in locations
outside the area covered by networks that provide stable connections, which can impose
a problem for data transmission. There might still be issues with communications in
locations with developed infrastructure, as the infrastructure is likely to be damaged
due to the disaster. The volume of data that needs to be transmitted can also cause
a hindrance by bottlenecking certain critical systems. The need for reliable and fast
communication is therefore essential in these scenarios.

There has been several advancements made within IoT and Smart Cities technologies
in later years, which means that a lot of sensors and data can be available in the case
of a disaster situation [18]. The concept of Smart Cities is relatively new. It can be
defined as a place where networks and services can be used more efficiently by the use of
new technology that provides benefits in managing the urban environment [19]. Disaster
situations might also occur in Smart Cities, and there is a need to plan for such events
by using the assets these cities provide. Agencies responding to the events will need
to quickly connect to the available resources and systems that can provide them with
information about many vital aspects that can supply an overview of the situation and
help save lives quickly.

By understanding how the protocols behave and how their performance is affected when
deployed in networks that simulate these environments, we can better understand how
to implement them into systems.

2.2 Network Models

In order to simulate DIL networks with varying degrees of constraints, we have designed
several network models that emulate realistic networks used by the military and NATO
today, as mentioned in section 2.1.1.

The network models can be seen in table 1. We have used the same network models
that we have previously used in the preparatory project [8]. However, We have added
a model to simulate low-band 5G networks, as this is an area of interest for military
powers around the world, where many are looking at integrating 5G technology into
their military networks [20].

7

Tactical Broadband radios are designed to be used in challenging outdoor environments,
i.e., the tactical battlefield [21]. The radios will provide secure and reliable communic-
ation capabilities for outdoor use, where the communication distance can be up to 100
kilometers during line of sight conditions. This network model provides relatively high
throughput and reliability compared to the other networks we have used.

SATCOM is a satellite communications service that NATO has used for over 15 years.
The service provides super high frequency (SHF) and ultra-high frequency (UHF) com-
munications access. SHF is used for static and deployed stations on the ground, while
UHF is used for tactical communications [22]. In this thesis, we have focused on testing
with a SATCOM model more similar to what is provided by UHF.

NATO Narrowband Waveform is a standard developed by NATO to provide a single-
channel ad hoc network that will serve voice and data traffic [23].

Combat Network Radio (CNR) is a type of radio that operates in a push-to-talk manner,
with the purpose of command and control of combat, combat support, and combat
service support during military operations [24]. It operates in a network that provides
both a half-duplex circuit and either a single radio frequency or a set number of radio
frequencies.

The defense sector uses the networks covered in this section, but there are also cases where
these networks are shared and used by the civilian sector. Humanitarian Assistance
and Disaster Relief (HADR) is an example of where the civilian meets the military,
requiring interoperability, and where sharing of networks and data becomes important
[25]. Therefore, the network models are relevant for not only defense but also for civilians.

Network Data rate Latency Loss percentage
Low-band 5G 100 mbit/s 20 ms 0%
Tactical Broadband 2 mbit/s 100 ms 1%
SATCOM 250 kbit/s 550 ms 0%
NATO Narrowband Waveform 16 kbit/s 500 ms 0%
CNR 9.6 kbit/s 100 ms 1% / 10%

Table 1: Tactical network models

2.3 Publish/Subscribe Pattern

Figure 2: Publish/Subscribe pattern

The publish/subscribe messaging pattern is used for communication between systems
where some have the role of producing information that will be exchanged with another

8

that subscribes to that information. This research compares the MQTT, MQTT-SN,
and ZeroMQ protocols, which all fall inside this communication paradigm.

The publish/subscribe pattern requires that there are producers and consumers. MQTT
and MQTT-SN also require an intermediary that can handle the filtering and distribution
of messages from publisher to subscriber. Figure 2 shows an overview of this architecture
with both publishers and subscriber systems, as well as an intermediary message broker.
There can be an arbitrary amount of publishers or subscribers, and they do not have
to correspond exactly. One could, for example, have one publisher and ten subscribers,
or vice versa. MQTT uses a broker as an intermediary responsible for managing the
connections with the publisher and subscriber systems. With this implementation, the
clients do not need to be aware of each other; they are only required to know about the
message broker to forward or receive messages. The initial connection setup requires that
the client forwards some information about themselves to the broker. The setup config-
uration can deviate between implementations, but the broker usually needs information
about the client’s name, role, and protocol-specific details. When a publishing client for-
wards a message to the broker, the broker needs to handle filtering to send the message
to the correct clients. This process happens through a topic-based system in MQTT,
but other protocols may also use content-based systems. With the topic-based system,
the publisher clients decide a topic for the message it wants to send, and the subscriber
clients that wish to receive this message subscribe to the broker with the same topic.
This allows the broker to filter out the clients that have not subscribed and send the
message to the clients that have.

2.4 MQTT

Figure 3: General MQTT architecture

MQTT is an industry-standard protocol for message transfer that allows for different
levels of Quality of Service (QoS). MQTT uses the publish/subscribe pattern and there-
fore uses publishers, subscribers, and a broker, as can be seen in figure 3. Here the
messages are fed from the publisher into the broker, which sends the messages to the
subscriber. The protocol is lightweight, provides low overhead, and is suitable in environ-
ments that have challenging network topologies. It provides benefits in persistent sessions
and a high level of scalability. MQTT usually uses TCP for data transmissions, but this is
not required. The only requirements for implementing the protocol are that the transport
protocol is ordered, provides bi-directional connections, and has lossless communication.
This means that, in theory, MQTT could be implemented using another protocol for
transport, e.g., Stream Control Transmission Protocol (SCTP) [26]. The use of TCP
provides additional guarantees in combination with the QoS settings but increases the
overhead for the protocol to some extent. MQTT is also data-agnostic, meaning that it
allows the use of many data formats in its messages. The size requirements for MQTT
limit the payload of a message to approximately 256 MB [27].

9

2.5 MQTT-SN

Figure 4: General MQTT-SN architecture

The MQTT-SN protocol is an alternative to the MQTT protocol while sharing many of its
characteristics. Like MQTT, the MQTT-SN protocol has both topics and QoS settings.
The main difference between the protocols is that, unlike MQTT, MQTT-SN does not
require a reliable transport protocol, thus removing the need for a permanent connection.
The transport protocol used by MQTT-SN is UDP. Using UDP means that the protocol
does not provide the same insurance for message delivery as MQTT, which uses TCP.
The use cases for MQTT-SN are mostly in applications that run on low power and low-
cost devices, like sensors. These devices are usually basic in their complexity and send
out small amounts of data with varying frequencies. MQTT-SN has an advantage over
MQTT in that it reduces the size of the message by changing how it handles topics. The
topic implementation is detailed in section 2.7. The protocol also contrasts with MQTT
in the use of gateways. A gateway is responsible for receiving MQTT-SN messages and
converting them into MQTT messages that are forwarded to a broker. There are two
types of gateways in MQTT-SN: the transparent gateway and the aggregate gateway.
A transparent gateway receives one or more MQTT-SN connections from clients and
converts these into the same number of MQTT streams to the broker. An aggregate
gateway also takes one or more MQTT-SN streams but instead only produces a single
MQTT stream to the broker. Figure 4 shows the general architecture of MQTT-SN using
a transparent gateway, as can be seen by the matching number of MQTT-SN and MQTT
connections to and from the gateway.

2.6 Quality of Service

Both MQTT and MQTT-SN provide different levels of quality of service. There are 0
(fire and forget), 1 (at least once), and 2 (only once). Publisher clients set the QoS
level when publishing messages, sending it with each published message. The subscriber
clients specify the QoS they wish to have by sending a subscription message to the broker
containing the QoS level. It is important to note that if a message is published with a
higher QoS than what the subscriber has subscribed to, the message will be sent from
the broker to the subscriber using the QoS defined in the subscription, not what the
publisher has set when sending the message. This means that if the subscriber has
set QoS to 0, there is no guarantee that the message arrives in the end even if it was
published using QoS 1 or 2. MQTT-SN also has an additional level, 3 or -1, which
provides additional services not found in MQTT 1. On the publisher side, they decide
the QoS when publishing a message. This study will be limited to QoS 0 and 1 for
MQTT-SN, while tests from MQTT will use all QoS levels.

1The setting is known as -1, but the flag used in messages is set to the decimal number 3. This
setting reduces some of the requirements related to client connections and must use one of two specific
topic types [28].

10

Figure 5: Packet sent using QoS level 0

Table 5 shows a message being sent using QoS 0. The publisher client is shown sending
a single packet containing the message to the broker. The packet is not guaranteed to
be delivered and, therefore, should be used on low-priority packets.

Figure 6: Packets sent using QoS level 1

Table 6 shows a message being sent using QoS 1. The publisher sends a packet with
the message to the broker, which returns an acknowledgment packet confirming that the
message was received. It is important to note that this level of service does not ensure
that duplicate messages do not arrive at the other end. This setting is used for messages
of some importance and must arrive, but where duplicates do not matter.

Figure 7: Packets sent using QoS level 2

Table 7 shows a message being sent using QoS 2. The publisher sends a message to
the broker and receives a packet acknowledging the message. If the publisher does not
receive this message from the broker, it sends a new packet containing the same message.
In addition to the message, it also sets the duplicate flag in the packet to let the broker
know that this is not a new message. When the publisher retrieves an acknowledgment,
it stores the packet and discards the original message. At this time, the publisher sends
a new packet which, in return, the broker responds with a comply packet, ending the
transmission. This solution does cause significantly more overhead than the other QoS
levels but does ensure that no duplicate messages arrive.

11

2.7 Topics

Topics are used by both the MQTT and the MQTT-SN protocol and are a way for cli-
ents to share information. The format of the topics is UTF-8 strings with words that
give meaning to a category or data source, delimited by a forward slash ‘/’. A typical
example of a topic is, ‘MyHouse/Basement/Temperature’, which implies that the topic
is temperature data for the basement in your house. The publishing client is respons-
ible for registering the topic, which it will send relevant data about to the broker. The
subscriber is then responsible for subscribing to the corresponding topic. A subscribing
client is not only limited to a single topic and can subscribe to multiple topics by the use
of wildcards [29].

There are some differences in howMQTT-SN handles topics related to MQTT. In MQTT-
SN, the topic name is replaced by a short, two-byte topic id. This change aims to reduce
the strain on bandwidth as data is not published with the full topic name, as is the case
in MQTT. Instead, a topic name is registered through a procedure where clients register
a topic name with the gateway. The gateway will assign a topic id and return it to the
relevant clients if the registration is accepted. The publishing client will then use this
topic id when publishing messages. There is an option where we can use pre-defined
topics, meaning there is no need for a registration procedure. In this case, the topic id
has already been mapped to a topic name that is known by both the clients and gateway.
This is indicated by a flag set in the message. The subscriber still needs to subscribe to
a pre-defined topic id. Lastly, there is an option to use short topic names. These names
have to be a fixed length of two octets. Like with a pre-defined topic id, there is no need
to register the topic in this case. Both pre-defined and short topics still require the client
to subscribe using the correct topic id.

2.8 MQTT Packet Format

Figure 8: MQTT Message packet format

Figure 8 shows the packet format of MQTT messages. The packet header consists of a
single byte control field and a remaining length field that varies from 1 to 4 bytes. These
two fields are the fixed header and must be included in every message. This means that
the smallest size of any MQTT packet will be two bytes long, as these fields are required.
In addition to the fixed header, there is also the variable header and the payload, which
can be of varying lengths and only present in some packets.

2.8.1 Control Header

Figure 9: Control header

12

The control header contains two fields, consisting of 4 bits each. The first field represents
the command type of the packet. For example, a CONNECT message will contain the
value of 1, telling the receiving broker that this is a connect message. The remaining 4
bits of the control header are reserved for control flags. For a publish command to the
broker, the 0th bit tells the broker if the message will be retained, the 1st and 2nd bit
tells the broker what QoS level the message is, and the 3rd bit tells the broker whether
the message is a duplicate or not.

Table 2 shows an overview of the message types used in the MQTT protocol. There
are a total of 16 message types. The value column shows the value that the message type
represents in the first four bits of the control header. The direction of flow shows who
can send and receive the packet. CONNACK messages can only be sent from the server,
meaning the message broker. A message like PUBACK is only used with QoS 1, while
PUBREC, PUBREL, and PUBCOMP are used with QoS 2, which can be seen in figure
6 and 7.

Table 2: Control packet types from the MQTT version 3.1.1 specification [3]

2.8.2 Remaining Length

This field is reserved for information about the length of the variable header and the size
of the payload in the message. The 7th bit in each byte is reserved for a continuation
flag. The continuation flag is needed to know if the remaining length field continues into
another byte and is part of the remaining length field.

13

2.8.3 Variable Header

The variable header contains the packet identifier. The information found in the identifier
is the protocol name, the protocol level, and the connection flags. Before the protocol
name, there is a two-byte long field representing the protocol name’s length. These
connection flags can be seen in table 3. Will is used if a client disconnects to let other
clients know that the original client is currently offline. This is only utilized in the case
that a clients disconnect abruptly. How the will is handled can be set by the flags. The
packet identifier is not required for every packet. Examples of packets requiring a packet
identifier are PUBLISH, PUBACK, SUBSCRIBE and UNSUBSCRIBE.

Bits 7 6 5 4 3 2 1 0
User Name
Flag

Password
Flag

Will
Retain

Will
QoS

Will
Flag

Clean
Session

Reserved

Table 3: Connect flags in variable header

2.8.4 Payload

The payload contains the data that is sent with the message. This field is optional as
some messages do not need the sending of data. A DISCONNECT message is an example
of a packet that does not have a payload.

2.8.5 Packet Example

Table 4 shows an example of what an MQTT packet looks like. The message is of type
CONNECT, which can be seen from the value of the fixed header. None of the control
flags are set in this example. The remaining length is 17 bytes, including the variable
header and payload. Next comes the variable header, which first provides the length of
the rest of the protocol name. Then comes the protocol name and version before the
connection flags. In this case, the connection flag is set for a clean session. The keep
alive for this client is set to 60 seconds. Lastly, there is the payload, where the first two
bytes provide the length, and the rest is the Client id. In this case, the client id is ‘hello’.

14

Byte Field Hex Value
1 Fixed Header 0x1 1
2 Remaining Length 0x11 17
3 Variable Header Length 0x0
4 0x4 4
5 Protocol and Version 0x4d M
6 0x51 Q
7 0x54 T
8 0x54 T
9 0x4 4
10 Connection Flags 0x2 2 (Clean Session)
11 Keep Alive 0x0
12 0x3c 60
13 Payload Length 0x0
14 0x5 5
15 Payload Data 0x68 H
16 0x65 E
17 0x6c L
18 0x6c L
19 0x6f O

Table 4: Example of a packet containing a CONNECT message

2.8.6 Message Sequence Chart

Figure 10: Message sequence diagram

Figure 10 shows a message sequence chart of a typical message transaction using MQTT
with QoS level 1. Here, both clients connect to the broker and receive a reply that the
connection is successful. Once the subscribing client has connected, the publisher can
begin publishing messages. Since we use QoS 1, the broker responds with a PUBACK
message to acknowledge that the packet has been received. When the PUBACK message
has been sent, the broker can send the message to the subscriber. Since the subscriber

15

has subscribed with QoS 1, they respond with a PUBACK message that lets the broker
know that they have received the message.

2.9 MQTT-SN Packet Format

Figure 11: MQTT-SN message packet format

The MQTT-SN packet format is slightly different from the MQTT format, as can be seen
in figure 11. It consists of a message header and a message variable part. The message
header is either two or four bytes long and is required in every MQTT-SN message. The
message variable part is not required for all messages.

2.9.1 Message Header

Figure 12: Message header

Figure 12 show the format of the message header. The length field indicates the length
of the of the message. If the first byte has the value 0x01, then the length field is three
bytes long, where the remaining two bytes specify the total size of the message. This
means that the message has a maximum length of 65 535 bytes. If the message has a
size smaller than 256 bytes, the first byte is used to denote the length. MQTT-SN does
not support message fragmentation.

The message type field is one byte long and is reserved for the message type. Table 5
show the message types in MQTT-SN and their value.

16

Table 5: MQTT-SN message types from the MQTT-SN specification [4]

2.9.2 Message Variable Part

The message variable part contains information that depends on the message type. Rel-
evant information in the variable part can be client id, data, flags, duration, topic id,
topic name, etc.

2.9.3 Packet Example

Table 6 shows an example of a CONNECT message sent with MQTT-SN. The message
is similar to the CONNECT message sent with MQTT, but the total size of the message
is reduced.

Byte Field Hex Value
1 Length 0xB 11
2 MsgType 0x04 4
3 Flags 0x2 2 (Clean Session)
4 ProtocolId 0x1 1
5

Duration
0x0

6 0x3c 60
7

ClientId

0x48 H
8 0x45 E
9 0x4c L
10 0x4c L
11 0x4f O

Table 6: Example of a packet containing a CONNECT message

2.10 ZeroMQ

ZeroMQ (also called ØMQ, 0MQ, or zmq) is a messaging library that provides asyn-
chronous transactions between distributed or concurrent applications. Unlike the other
protocols we have investigated in this study, ZeroMQ does not require an intermediary
message broker, which explains its naming. Removing an intermediary can provide be-
nefits in that there will not be a single point of failure. The protocol can use a variety

17

of patterns, e.g., request-reply, publish-subscribe, and client-server. We have used the
publish/subscribe pattern since that is the focus of our thesis. The developers state two
goals that explain their reasoning for developing the library: to solve the issues many
developers face when needing to connect any code to any other code, anywhere, and the
second is making it as easy as possible to use [30]. It is lightweight and fast, similar to
the characteristics found in MQTT and MQTT-SN, but it is also advertised as being
more configurable.

2.10.1 Transport Protocols

ZeroMQ supports different methods of transportation, including In-Process (INPROC),
Inter-Process (IPC), Pragmatic General Multicast (PGM) [31] and TCP [32]. INPROC
and IPC are mainly used for local communication transportation within an application
running the same process. PGM is a reliable multicast protocol that detects packet loss
or out-of-order messages, unlike UDP. Since we have used TCP as a transport protocol
during our testing with MQTT, we also chose to use this for ZeroMQ to make the
comparisons more in line with each other. In addition to testing with TCP, we have
also tested using the PGM protocol, the only multicasting protocol we have used during
testing. All other protocols have used unicast. This allows us to see if there are any
benefits to transporting messages in this way, and we can compare reliable unicast and
reliable multicast in ZeroMQ.

PGM shares similarities to both UDP and TCP. The similarity with UDP is that both
protocols support multicasting, where one destination can address data to many other
clients. It also shares the characteristics of TCP by the fact that it is aimed at applications
that require ordered and duplicate free data transmission and require good reliability [33].

2.10.2 Socket API

ZeroMQ provides a socket API that provides an easy-to-use interface that hides much
of the more complex message processing underneath. In ZeroMQ, sockets can be used
to initialize, close, configure, send, and receive messages. Sockets can either bind or
connect to each other. According to the documentation, the server should use the binding
method while the client should use the connect method [34]. Some of the changes to the
regular sockets include: one socket can have many outgoing and incoming connections,
the connections happen in the background and if a connection is broken it will try to
re-establish it, and the connections can not be managed by the application directly, this
happens through the socket API. Unlike TCP sockets that stream bytes, ZeroMQ sockets
carry messages designed for performance.

Figure 13: Difference between HTTP and ZeroMQ on the wire

ZeroMQ is not a net neutral carrier, meaning that it is not compatible if one tries to
send HTTP requests or receive HTTP responses. This compatibility issue is due to the
difference in framing between HTTP and ZeroMQ messages, shown in figure 13.

Sockets have different types depending on the messaging pattern utilized. The type used

18

will determine the semantics of the socket and how it will manage routing and message
queuing. Table 7 shows an overview of the different socket types based on the messaging
pattern. In this thesis, we have focused on the publish/subscribe pattern consisting of
the PUB, XPUB, SUB, and XSUB sockets. The PUB socket type distributes messages
to all connected clients and works unidirectional. The SUB socket is used by a subscriber
to subscribe to messages coming from a publisher client. The PUB socket is not allowed
to receive messages, while the SUB socket is not allowed to send messages. The XPUB
socket works similarly to the PUB socket but allows the reception of subscribe messages.
The same is true for the XSUB socket, in that it can send subscribe messages. Their
practicality is found when implementing an intermediary between many publishers and
subscribers. The intermediary will read subscriptions from the XSUB socket and send
them to the XPUB socket. The benefit of using XPUB and XSUB sockets is that we get
filtering through the intermediary, similar to a message broker.

Message Pattern Socket Name Short Description

Request-Reply

REQ
Used by a client to send requests to and
receive replies from a service

REP
Used by a service to get requests and
return replies to a client

DEALER Asynchronous replacement for REQ
ROUTER Asynchronous replacement for RES

Publish/Subscribe

PUB Publishes data from a publisher client

XPUB
Can receive subscriptions from clients in
the form of receiving messages

SUB
Subscribes to data being sent from a
publishing client

XSUB
Can send messages with a subscription to
another socket

Pipeline
PUSH

Can talk to anonymous PULL clients and
send messages

PULL
Can talk to anonymous PUSH clients and
receive messages

Exclusive Pair PAIR
Can connect to a single client and send or
receive messages. Does not perform filtering

Client-Server
CLIENT

Can talk to one or more SERVERS and
send or receive messages

SERVER
Can talk to zero or more CLIENTS and
send or receive messages

Table 7: Socket types and their respective pattern in ZeroMQ

2.10.3 ZeroMQ with the Publish/Subscribe Pattern

ZeroMQ works in the same way as MQTT and MQTT-SN in that a subscription must
be set before a subscribing client can receive any messages. The subscriber can subscribe
to a number of messages that can also be unsubscribed at any time. The PUB and SUB
socket pairs are asynchronous and can be started independently of one another. Since
they are asynchronous, there might be a situation where the publisher publishes some
messages that the subscriber does not receive. This will often happen because of the time
it takes a client to initialize a TCP connection, and this requires some synchronization
between the two client types.

The subscriber can connect to more than one publisher. The protocol will try to interleave
the incoming messages so that no publisher causes bottlenecking issues. The publisher
requires at least one subscriber to send messages. If no subscribers are connected, it will
drop all messages. In some cases, the subscriber is slower than the publisher. In this case,
the publisher will queue up messages sent to the subscriber in the future. This can cause

19

some issues but can be handled through the use of high water marks. High water mark
is one of the options available to tune with ZeroMQ and allows us to set a number on
the messages that will be stored in the queue [35]. If the limit is reached on the socket, it
will enter what is called an exceptional state depending on the socket. It will then either
block or drop the messages. In version 3 or higher, the filtering of messages happens on
the publisher when using TCP or IPC. When using PGM, the filtering happens on the
subscriber side.

2.10.4 Message Format

In ZeroMQ, a message can either be one or more parts. Each message part is a zmq msg t
object, and the parts can either be sent separately in the low-level API or as a wrapped
multipart message in the higher-level API. Messages can be zero-length which can be
used for signaling between systems. A message that is in the process of being sent will
not be transmitted immediately, meaning that it will need to fit into memory in the case
of larger multipart messages. A multipart message is not sent on the wire until the last
part is sent. This also means that we will either receive all parts of a message or none.
While ZeroMQ runs on top of TCP, it can provide higher throughput from this message
batching technique.

2.10.5 Intermediary Message Handling

Figure 14: Implementation of an intermediary message broker in ZeroMQ

ZeroMQ is inherently brokerless, which provides some benefits in terms of performance,
but there are use cases where an intermediary or proxy is helpful to reduce complexity.
With the publish/subscribe pattern, we have publishers and subscriber clients. If we have
a setup where we have one static publisher and several dynamic subscribers, we do not
require an intermediary. The publisher can configure an endpoint that each subscriber
can connect to, which is simple and easy to manage. The complexity comes when we
need to have more than one publisher. Each subscriber and publisher would need to
be coupled correctly, which introduces many challenges. This problem would be solved
with an intermediary that works as a fixed point that the publishers and subscribers can
connect to, which can be seen in figure 14. The responsibility of connecting clients will

20

be handled by the intermediary, reducing the responsibility of the other clients at the
cost of some performance. This is similar to how the message broker works in MQTT. In
figure 14 we see that the sockets types on the message broker are the XPUB and XSUB
sockets, which are helpful when needing to filter messages. We can also see that the
message broker uses the bind method while the other clients use the connect method,
the recommended configuration for ZeroMQ.

When filtering messages in ZeroMQ, we can use what is called an ‘envelope’. Usually,
all subscribers will receive the messages sent from the publisher they are subscribed to.
However, if we only want to see specific messages, envelopes can be helpful. The envelope
frame is a key located in front of the data frame which will be sent. It is similar to the
topics found in MQTT and MQTT-SN and needs to be specified on the publisher when
it publishes a message and the subscriber when it subscribes.

2.10.6 Previous Studies on ZeroMQ

A study from 2020 [11] has evaluated the performance of the Data Distribution Service
(DDS) protocol [36], MQTT and ZeroMQ under use in different IoT traffic conditions.
Both MQTT and DDS are considered industry standards regarding messaging protocols
for use in IoT. The study has looked into how the protocols perform under different load
conditions regarding latency and throughput. The tests were performed with simulations
of realistic data flows found in IoT scenarios, including high-frequency, periodic, and
sporadic data. The results show that DDS operated better with the highest throughput
while testing with most of the high-frequency data-flow use cases. In one to many
tests (one publisher, seven subscribers), ZeroMQ achieved higher throughput in all test
cases. The results did show that for lower (64B) and medium (2KB) message sizes,
ZeroMQ did perform slightly better than DDS in periodic data-flow tests when evaluating
latency. With these message sizes, MQTT had much higher latency. At larger message
sizes, MQTT performed better than DDS and ZeroMQ, with a flat latency while using
increased publishing rates.

Another study from 2021 [37] has evaluated several group communication protocols and
their scalability over synchronized cooperative broadcast. The protocols compared in
the study include: NATS [38], DisService [39], GDEM and NORM with ZeroMQ [40].
The metrics used to evaluate the protocols are delivery ratio, latency, and bandwidth
utilization. The scenario used for experimentation is the Anglova scenario [17], with four
companies, each having 24 nodes available. The experiments involved four tests, where
each new test increased the number of nodes with an additional company, meaning that
the first test used 24 nodes while the last test used all 96 nodes. The results show that
NORM with ZeroMQ performed best when comparing the delivery ratio. These tests
were conducted with no cutoff time for message delivery. With a cutoff time of 5 or 10
seconds, ZeroMQ-NORM performed slightly below that of DisService and GDEM. Tests
using latency as a metric shows that ZeroMQ-NORM is second best, behind DisService.
Looking at bandwidth utilization, ZeroMQ performs second worst, behind NATS.

21

3 Development

In order to test the performance of the protocols in DIL networks, we have developed an
analysis tool running in Python (version 3.8.10). The tool can run tests with a specific
setup and produce logs stored for analysis. This allows us to analyze and evaluate the
performance of each protocol on the application layer. The tool is also able to save net-
work data with the use of the network analysis tool, tcpdump [41]. Tcpdump saves packet
information in a PCAP file [42], which can later be analyzed in the network analysis tool,
Wireshark [43]. The decision to make an analysis tool for this thesis was mainly to have
a test setup that we could configure to measure what we needed from each protocol. This
would also give us more control and allow us to gather data and make relevant statistics
for our research. The work on this tool was started during the preparatory project [8],
where we implemented support for the Tactical Broadband, SATCOM, NATO Narrow-
band, and CNR network models, as well as the MQTT protocol. We have expanded the
tool to include 5G as a network model and the MQTT-SN and ZeroMQ protocol during
this thesis.

We have looked at several other solutions that provided testing environments for the
protocols we have investigated. However, the issues with these were mainly that they
did not cover the range of protocols or provide statistics for the specific metrics we wanted
to test. One example of a test tool that we looked at before deciding on developing our
own was pymqttbench [44], but this tool only allows for testing of the MQTT protocol
and does not emulate DIL networks.

We also looked at the Common Open Research Emulator (CORE), and Extendable
Mobile Ad-hoc Network Emulator (EMANE), which is a combination of tools used for
network simulation research in the defense sector [45]. These tools can simulate radio
models and run scenarios similar to what we have used in our testing. The drawback of
using CORE and EMANE is that the tool is large, complex, and requires a reasonable
understanding of the hardware to configure the setup correctly. Instead, we have chosen
to use the Netem tool as a basis for creating and emulating the network models tested in
this thesis. This is because Netem is empirically and statistically correct [46]. The use
of Netem helps support RQ1 in that we correctly evaluate the protocols with this as our
basis of emulation.

During our research, we found that the MQTT-SN and ZeroMQ with PGM protocols had
little adoption, meaning that we would need a custom solution for our experimentation.
The solution we have developed has given us more control and allowed us to make sure
that we can fulfill the test requirements for this thesis.

The analysis tool allows for the dynamic configuration of MQTT, MQTT-SN, and ZeroMQ
clients. The tool initializes the emulation of the DIL networks (see section 4.1), which can
be changed for each test. We have used the Pandas library in Python (version 1.4.0) [47]
to store logs and create statistics during each test run. During our testing, the analysis
tool has created large amounts of data, which is why we have used a database to store
data from each of the tests. Lastly, we have also implemented a frontend application.
Through the frontend, we can configure and view tests as they are running and compare
results from previously run tests. Additional details about the analysis tool that has not
been described in this chapter can be found in appendix A.

3.1 Technology

When building our tool, we had to decide on several different technologies. As we had
started developing the tool in Python, we saw no reason to change it for this thesis. The
Plotly Dash framework (version 2.1.0) [48] was used for developing the frontend and is
purpose-made for creating applications used for data analysis. We have expanded our
frontend with many new functionalities that were easy to implement using this frame-

22

work. To make the application look more professional and user-friendly, we have used
Bootstrap with Plotly Dash (version 1.1.0), which introduces components that enhance
these aspects. The incentive for creating a frontend for the analysis tool was mainly to
show the statistics in a presentable and intuitive manner. This allows for easier compar-
isons between protocols and provides us with simple ways to export figures.

The database we have used to store data from each of the tests is MySQL (version
5.7.38) [49]. The database is hosted on an NTNU server running Ubuntu (version
0.16.04.1). This means that the database connection requires us to either be on a NTNU
network or be connected to one through VPN. The database we have used is a relational
database that suits the needs of our project, meaning that it supports the structure of
the data we have generated during testing. This allows for more straightforward queries
that can be handled on the database server, limiting the operations needing to be done
on the client application. Some data storage also happens on the client, but these are
primarily backups that mirror what is saved in the database. We have used the Pandas
library, which is suitable for these types of tasks.

3.2 Supported Protocols

During this thesis, we have included two new protocols in our analysis system, namely
MQTT-SN and ZeroMQ. We did have support for MQTT-SN in the preparatory project
but have made several changes to allow for testing of the protocol.

With the inclusion of MQTT-SN, we have implemented a publisher and subscriber client
that can send and receive messages over the network we have used to evaluate the pro-
tocols. We have two types of publisher and subscriber clients, as we wanted to test out
two client implementations. The first one is a custom C to Python converted client that
we have modified and used to fit our tool. The client has been modified so that it would
be more similar to what we used when testing MQTT. Some limitations prevent us from
having a more comparable client to MQTT, namely that it does not support QoS 2 and
has fewer availiable statistics (number of disconnecting clients). The other MQTT-SN
client type we have implemented in our tool is a Java client. This client is called using
the subprocess module in Python. From initial testing, this client was found to be too
slow, most likely due to subprocess calls, but we still have kept support for it.

The ZeroMQ clients we have implemented are also based on our MQTT clients as much
as it was possible. We used the code recommended by the ZeroMQ developers to create
the clients, with a few modifications to make it usable in our system. Both the TCP
and PGM protocols use similar clients, where the only change is how they connect to the
message broker.

3.3 Test Framework

Figure 15: Architecture of the test framework

23

Figure 15 shows the components that compose the test framework. The testrunner
component is responsible for configuring the clients and running the test based on the
parameters that it is given. The testrunner uses the Netem networking tool [50] to limit
the network based on the network model (section 4.1 describes Netem in detail). The
given configuration parameters are stored in the database. Each client is separated into
their own thread to run many clients in parallel. This allows us to simulate many devices
sending and receiving messages simultaneously. The testrunner will initialize the correct
number of publishers and subscribers based on the protocol type given as a parameter.
The publishing clients will use the datagenerator component to create the data that
will be exchanged. There is support for two types of messages, either GPS data with
latitude, longitude, and altitude points or image data in the PNG format. In addition
to this data, the datagenerator will add additional metadata that provides information
about the message sent. This includes timestamps and message id, among other relevant
metadata. Information related to the clients and the data sent is stored both locally
and in the database. The testrunner will also initialize the subscriber clients, which will
subscribe to the given topic. The utils components contain additional helpful methods
for the testrunner component and include functions that store logs locally and create
some statistics.

24

3.4 Frontend Application

Figure 16: Configuration page

25

Figure 17: Statistics page

26

During this thesis, the frontend application has been expanded to a multi-page applic-
ation to minimize complexity and increase intuitiveness. There are now two pages, one
containing the configuration as can be seen in figure 16, and one containing the results
as can be seen in figure 17. We can select the parameters we want to use during a test
on the configuration page, including the protocol, network model, data type, duration,
publish delay (time between each sent message), and the number of nodes we want to
use. Once the parameters have been set, we can run the test, sending the configuration
parameters to the analysis framework which initializes the clients. As the test is running,
we can view statistics from that test on the page. If the data type is GPS, the map will
show the coordinates of each node. The map we have used is a Dash Leaflet component
(version 0.1.23) [51]. The statistics table shows the available metrics we wish to look at
including minimum, average, and max delay. The data table shows the data received
from the subscriber nodes as they receive a packet. We can view and compare tests that
we have previously run on the results page. Here we can load in tests and view them in
various different charts. There is also a statistics table that shows the general statistics
we want to look at on the application layer.

3.5 Data Storage

Figure 18: Structure of database in MySQL

Figure 18 shows the structure of the MySQL database, including the tables, their fields,
and their relation. The database structure is identical to the one we have used in the
preparatory project. To fetch data from the database, we can use join commands that
give us relevant statistics that can be presented in the frontend application. Information

27

relevant to each test is stored in a table that has a relation to a separate table containing
the test configuration. Every test will have nodes, meaning the clients used for the
protocols. This node can either be of type publisher or subscriber and has relevant
information about their name, topic, and QoS. Based on the node type, it will either
relate to a publisher log or a subscriber log. The publisher log will contain information
about who the receiving client is, the data’s id, a message id, and the time when the
message was sent. The data id references the data contained in the message, which is
stored in a separate table (see section 4.5 for more on the data types). The subscriber log
contains similar fields to that of the publisher log. The differences are that the subscriber
log stores information about when the message was received and the calculated transmit
time for the specific message.

3.6 Complete Architecture

Figure 19: System overview

Figure 19 shows all the modules that make up the analysis tool and include: the test
framework, frontend, and database connector. In addition, there is also the external
MySQL database. From the figure, we can observe how the modules interact. The test
framework contains a connection to the message broker (or, in the case of MQTT-SN,
the gateway) that is located on the virtual machine (see section 4 for more on the virtual
machine setup). To upload data to the database, the test framework uses several methods
in the database connector. The configuration of each test is set in the frontend, which
sends the configuration parameters to the test framework, which then runs the test.
To get the queries used to fetch data from the database, the frontend also uses methods
from the database connector. In addition to providing methods for uploading and getting
queries, the database connector maintains the connection to the MySQL database.

28

Figure 20: Overview of the test framework module

Figure 21: Dependencies of the test framework module

Figure 20 gives an overview of the test framework module and its components, while
figure 21 shows its dependencies. Some dependencies are built-in in Python, while some
are external (pandas, paho.mqtt.client, and zmq) and require installation via the Package
Installer for Python (PIP). Note that there is no package for MQTT-SN as there does
not exist one for Python.

29

Figure 22: Overview of the frontend module

Figure 22 gives an overview of the frontend module, developed using the Plotly Dash
framework. The application layout is rendered through the Dash App, which also in-
stantiates the application. The Dash App contains the pages of the multi-page applic-
ation. Each page is responsible for rendering the layout and have callback functions
used to interact with the interface. The layout on each page imports different sections
of the page from the Components and renders them. The Components are split up into
different files, meaning that one file contains the graphs while another contains the stat-
istics table. Some of the Components are styled (in addition to the styling provided
by Bootstrap), and these styles are found in Assets. To visualize graphs, the frontend
module uses Plotly which provides a range of different graph types that are simple to
implement into the Dash application itself. Most of the interface and the tables use the
Dash-Bootstrap library that provides pre-styled components. The map component uses
Leaflet to display positional information in a map. The Pandas library is mainly used to
manage the data fetched from the database.

Figure 23: Overview of the database-connector module

Figure 23 shows the database connector module. We have used MySQL Connector
(version 8.0.28) [52] to connect the frontend and the test framework to the database.
DB Fetch has methods for getting queries to be sent to the database, while DB Upload
has methods for posting data to the database. The DB Fetch and the DB Upload com-

30

ponents require the connection maintained in the DB Connector module to query the
database. The only dependency used in this module is mysql.connector.

Figure 24: Sequence diagram showing the data flow through the modules

Figure 24 is a diagram that shows the frontend and test framework interacting with the
database connector to upload and fetch data. The sequence begins with a command
from the frontend to the test framework to start the test. The test framework will then
configure and set up the clients, using the user’s parameters in the frontend. Information
about the test and the test configuration is then sent to the database through methods
in the database connector. After a test has started, data will continuously be uploaded
to the database from each client in the test framework. Finally, when data from a
test populates the database, the frontend can fetch it through methods in the database
connector.

31

4 Test Setup

In this study, we have tested the MQTT, MQTT-SN, and ZeroMQ protocols. The goal
was to evaluate the performance of each of the protocols, with the main metrics being
data rate, message size, packet loss, and transmit delay. We have used the analysis tool
we have developed to run the tests, which allows for dynamic configurations for clients
and network models. The setups for the clients are similar, but there are some changes
due to differences in the protocols and certain limitations. To run the setup, we use a
Linux machine running Ubuntu (version 20.04.3 LTS), where we can configure and run
the tests. On the machine, we have set up a virtual machine (also running on Ubuntu),
which works as a server that the clients can connect to when running a test. Having the
virtual machine running on the same hardware, we can disregard time synchronization,
which would be an issue if the clients needed to communicate across separate physical
machines. The virtual machine has been set up using the Oracle VM Virtualbox (version
6.1) [53]. The specific settings used for the virtual machine can be found in appendix B.

We have used data that is similar to a previous study [12] in order to simulate a Blue
Force Tracking (BFT) scenario. BFT is a system that provides situational awareness
and gives an overview of the situation on the battlefield to commanders and troops [54].
In addition, we have also used image data which is useful in conveying information that
words and numbers cannot, like objects or people. A more detailed description on data
in section 4.5.

4.1 Netem

#!/bin/bash

echo "... to RESET do: sudo tc qdisc del dev vboxnet0 root"

sudo tc qdisc add dev vboxnet0 root Netem rate 9.6kbit loss 1% delay 100ms

Listing 1: Netem script for setting the CNR network model with 1% loss

In order to simulate the network models we wanted to test with, we have used the network
emulation tool Netem. The tool has allowed us to configure the network connection
between the host computer and the virtual machine, changing parameters like network
delay, packet loss, and available bandwidth. This useful tool allows us to evaluate how
the protocols perform in different environments. The Netem configurations for each test
(see network details in table 1) are found in a shell script, which the analysis program will
run at the start of each test. Once the test has concluded, the limitations are removed.
Listing 1 shows the script that runs at the start of a test using the CNR network model
with 1% loss. Here we see that vboxnet0, which is the interface to the virtual machine,
is limited to a data rate of 9.6 kbit/s, with a 1% loss factor and a 100 millisecond delay.
Similar settings are used to configure and simulate the remaining network models we
wished to test. To validate that the Netem limitations are correctly set during a test,
we have used iPerf3 [55]. iPerf3 is a network monitoring tool that, when used, showed
that the limitations on the network were as they should be during testing. This tool
has helped establish that the basis of our protocol evaluation is correct since it validates
the use of Netem to emulate the network models, which is what we want to answer with
RQ1. Appendix C has more detail on how we used iPerf3.

32

4.2 MQTT

Figure 25: Test setup for MQTT

Figure 25 shows the setup we have used for testing the MQTT protocol, not including
the gateway component which is used for MQTT-SN. The test setup was designed during
the preparatory project, and the results are carried over from this study, excluding the
tests for the 5G network model. This test setup was used as the basis for all other tests
we have conducted with other protocols.

We have 27 clients of each type, which communicate through a message broker for filtering
based on the topic. Every publisher client has a corresponding subscriber client, which
shares the same topic for publishing and subscribing. For all tests conducted with MQTT,
we have used a test duration of 10 minutes and a delay between each published message
of 10 seconds. With MQTT, we have tested with all QoS levels and used both the GPS
and image data types. This means that for each network model, we ran two tests. This
configuration has, as mentioned, been inspired by what was used in the study by Johnsen
et al. [12]. We increased the number of clients to 27 of each type to have 9 for each
QoS in our test with MQTT. When we first started testing the MQTT protocol in the
preparatory project, this was a number that allowed us to produce a good amount of
data for each QoS level, and it is what we have used for testing ZeroMQ as well.

As a broker, we have used the Eclipse Mosquitto [56] message broker (version 1.6.9),
which is both simple and lightweight. The clients we have used are from the paho-mqtt-
library (version 1.5.1) [57].

4.3 MQTT-SN

The setup we have used for MQTT-SN is based on the one in figure 25, which uses
a similar setup to MQTT. The difference is the inclusion of a gateway in addition to
the broker. The gateway used is the Eclipse Paho MQTT-SN transparent gateway [58].
Details on setting up the gateway can be found in appendix D. In addition to the gateway,

33

we also need clients that can send and receive MQTT-SN messages. For this, we have
used a custom C to Python translated solution [59].

While testing the MQTT-SN protocol, we have used two test variations. The standard
test variation is MQTT-SN to MQTT-SN, meaning that the publishers produce MQTT-
SN messages, and the subscribers are configured to receive MQTT-SN messages. The
other variation is a hybrid that is more common to see in other implementations. The
hybrid variation has publishers sending MQTT-SN messages to the gateway, which then
forwards them to the broker as MQTT messages. The subscribing clients are standard
MQTT clients that will receive MQTT messages.

We encountered some issues trying to configure the clients and get them to work, which
has resulted in some limitations when testing the protocol. The limitations include
problems sending image data and using QoS level 2. Due to this, all tests are run using
GPS data and QoS levels 0 and 1. In addition to this, we have only run the MQTT-SN
tests using 18 clients instead of the 27 we have used for the other protocols. This was
due to issues getting the clients to keep a stable connection with the gateway as they
were being initialized. Otherwise, the configurations are the same, meaning that each
test runs for 10 minutes with a publish delay of 10 seconds. Each network model has two
tests, one for each variation.

4.4 ZeroMQ

Figure 26: Test setup for ZeroMQ

Figure 26 show the setup we have used when testing with ZeroMQ. The setup was
designed to replicate the tests we conducted using the MQTT and MQTT-SN protocols.
The setup is configured to use 27 clients of both the subscriber- and publisher types,
as we have used for MQTT. As previously mentioned, ZeroMQ does not provide out-
of-the-box, ready-to-use clients. The client needs to be implemented by the developer
and we have created our own clients that use the publish/subscribe pattern. The clients
are inspired by patterns detailed in the ZeroMQ documentation [60]. Both clients are

34

lightweight, with minimal configuration changes aside from what is standard and what
we require to gather statistics for testing.

import zmq

xpub_addr = 'tcp://*:5000'

xsub_addr = 'tcp://*:5001'

context = zmq.Context()

#create XPUB

xpub_socket = context.socket(zmq.XPUB)

xpub_socket.bind(xpub_addr)

#create XSUB

xsub_socket = context.socket(zmq.XSUB)

xsub_socket.bind(xsub_addr)

#create poller

poller = zmq.Poller()

poller.register(xpub_socket, zmq.POLLIN)

poller.register(xsub_socket, zmq.POLLIN)

print(zmq.zmq_version())

while True:

get event

event = dict(poller.poll())

print(event)

if xpub_socket in event:

message = xpub_socket.recv()

print("[BROKER] xpub_socket recv message: %r" % message)

xsub_socket.send(message)

if xsub_socket in event:

message = xsub_socket.recv()

print("[BROKER] xsub_socket recv message: %r" % message)

e = xpub_socket.send(message)

print(e)

Listing 2: Code used for the message broker

We have developed our custom solution for the intermediary message broker that is as
lightweight and simple as possible. This intermediary works by providing two endpoints
using the special XSUB and XPUB sockets, which the clients can connect to. This in-
termediary is located on the virtual machine similar to the broker and gateway used by
MQTT and MQTT-SN. Listing 2 shows the code to the message broker. The address for
the special X PUB and X SUB sockets are configured with the TCP protocol, allowing
connections from any address as long as it is on port 5000 (subscriber) or 5001 (publish-
ers). The broker then polls for incoming messages, stored as events, and then sends the
message as soon as possible to the corresponding receiver. The implementation we have
used is based on one created by a developer on GitHub [61].

We have not only tested ZeroMQ using the TCP protocol but also PGM in order to test a
protocol that supports reliable multicasting. The setup we have used is similar to the one
we used for TCP, and we still utilize a message broker on the virtual machine where all
messages are filtered. The only change needed is to configure ZeroMQ to use PGM. PGM
requires the use of raw sockets, where raw sockets mean that one can determine all parts
of a packet manually [62]. This is restricted in Linux, which can cause some issues with
the implementation, and we have instead opted to use the encapsulated PGM protocol
(EPGM). The only difference with EPGM is that the PGM packet is encapsulated into a
UDP packet, meaning that we have circumvented the Linux restrictions. Details around
how to configure ZeroMQ with PGM can be found in appendix E.

35

The settings used for testing are the same as with MQTT, meaning a test duration of
10 minutes and 10 seconds between each published message. ZeroMQ does not provide
QoS levels like MQTT, which means that each network model has been tested one time
using this setup.

4.5 Data

{

"type": "Feature",

"geometry": {

"type": "Point",

"coordinates": {

"lat" : 10.704024011040783,

"lon" : 59.9261147278993,

"alt" : 0

}

},

"properties": {

"country": "NOR",

"unit": "NOR-UNIT002",

"node_name": "PUB_NOR_1",

"node_id": 11,

"msg_id": 12,

"data_id" : 00c4901d-c6f2-4a69-8b76-58c58ce90211,

"timestamp": 2021-11-30 09:32:36.435350

}

}

Listing 3: Format of a message with GPS data that has been published

The messages that have been sent over the network contain data that simulates informa-
tion that could be sent in real-life scenarios. We have in our testing used two data types,
GPS and images. This was to compare the sending of smaller messages in the form of
GPS data to larger ones in the form of images. Both civilian and military applications
need to establish where people and objects are, making GPS data highly relevant for
many scenarios. The use of image data is also relevant to provide additional information,
either directly or through post-processing in the form of machine learning. The data was
packaged in a JSON object [63], using the GeoJSON [64] format for transfer with the
protocols. The image data we have used during testing comes in the PNG format with
a resolution of 20 by 20 pixels and is encoded as a byte string and packaged inside the
JSON message, alongside other relevant information. Listing 3 shows an example of how
the data is structured. In this instance, the data is of the type GPS.

36

5 Results

This section describes our results while testing the MQTT, MQTT-SN, and ZeroMQ pro-
tocols. The IST-150 research group has previously conducted experiments with MQTT
using the Tactical Broadband network model (both real and through emulation) [12].
Our results from the same tests support the findings from the research group, which
solidifies the results from our testing and substantiates the answer to RQ1. This section
presents the combined results from each protocol on the network and application layer,
categorized by the data used during the test. For the complete test results, look at
appendices F to I.

5.1 MQTT

Table 8 shows the gathered results from all tests with GPS data on the network layer.
From the results we have some observations:

• The data rate decreases as the network models become more challenging. The
CNR models have much lower data rates than the other tested models. Tactical
Broadband has the highest data rates at 25 kbit/s, while both CNR models have
the lowest at 10 kbit/s.

• The message sizes remain the same size for Tactical Broadband, SATCOM, and
NATO Narrowband tests. The sizes increase drastically when using CNR with 1%
and 10% loss.

• Retransmissions and duplicate acknowledgments happen rarely compared to the
number of packets sent using the Tactical Broadband and SATCOM network mod-
els. There is a slight increase using NATO Narrowband, but the most significant
increase happens with the CNR models, which both have a high amount of retrans-
missions and duplicate acknowledgments.

Network
model

Data rate Avg msg size TCP retransmissions Dup ACK

5G 24 kbit/s 482 bytes 0 1

Tactical broadband 25 kbit/s 482 bytes 82 27

SATCOM 23 kbit/s 482 bytes 28 27

NATO narrowband 22 kbit/s 482 bytes 313 313

CNR 1% loss 10 kbit/s 718 bytes 1957 713

CNR 10% loss 10 kbit/s 669 bytes 1729 560

Table 8: Results from all standard tests using GPS data on the network layer

Table 9 shows the gathered results from all tests with image data on the network layer.
From the results we have some observations:

• The 5G network model test had the highest data rate at 69 kbit/s. The following
tests showed a decline in data rates, with NATO Narrowband and CNR having the
lowest.

• The message sizes vary significantly in the different network model tests. The 5G
network model test had the highest at 1553 bytes, while SATCOM had the lowest
at 467 bytes.

• The 5G, Tactical Broadband, and SATCOM tests caused very few retransmissions
and duplicate acknowledgments, while NATO Narrowband and CNR tests caused
many retransmissions and duplicate acknowledgments. During the test with 5G,
there were zero retransmissions and duplicate acknowledgments.

37

Network
model

Data rate Avg msg size TCP retransmissions Dup ACK

5G 69 kbit/s 1553 bytes 0 0

Tactical broadband 40 kbit/s 521 bytes 121 61

SATCOM 22 kbit/s 467 bytes 162 167

NATO narrowband 4.28 kbit/s 1078 bytes 1424 341

CNR 1% loss 2.64 kbit/s 1041 bytes 1406 347

CNR 10% loss 2.84 kbit/s 920 bytes 1596 330

Table 9: Results from all standard tests using image data on the network layer

Table 10 shows the gathered results from all tests with GPS data on the application
layer. From the results we have some observations:

• The 5G, Tactical Broadband, SATCOM, and NATO Narrowband network models
had no issue transmitting messages and recorded zero packet loss.

• QoS 0 and 1 had the same or similar transmit delay using the 5G, Tactical Broad-
band, and SATCOM network models. QoS 2 had a much larger transmit delay
with these models compared to QoS 0 and QoS 1.

• CNR with 1% and 10% loss caused issues with message transmissions for all QoS
levels.

• QoS 1 saw a large increase in packet loss from the CNR test with 1% loss, where
it was zero, to the test with 10% loss. QoS 0 had a reduction in the amount of
packet loss.

• QoS 0 had much lower transmit delays than QoS 1 and QoS 2 when using the CNR
network models. QoS 2 had the highest transmit delays, while QoS 1 was slightly
lower but still high.

• The number of disconnected clients increased with the QoS level on the CNR test
with a 10% loss.

Network
model

QoS
Messages
Sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Disconnections

5G
0 536 0% 0.04 s 0.07 s 0.99 s 0
1 532 0% 0.04 s 0.07 s 1.23 s 0
2 531 0% 0.04 s 0.09 s 0.63 s 0

Tactical broadband
0 540 0% 0.11 s 0.12 s 0.45 s 0
1 540 0% 0.11 s 0.12 s 0.44 s 0
2 540 0% 0.31 s 0.33 s 0.74 s 0

SATCOM
0 540 0% 0.57 s 0.60 s 1.16 s 0
1 540 0% 0.57 s 0.62 s 0.74 s 0
2 539 0% 1.69 s 1.78 s 2.41 s 0

NATO narrowband
0 540 0% 1.24 s 3.92 s 10.02 s 0
1 533 0% 2.62 s 5.31 s 12.45 s 0
2 532 0% 9.55 s 19.00 s 40.25 s 0

CNR 1% loss
0 357 75 (21.01%) 0.62 s 28.58 s 94.43 s 17
1 214 0% 3.37 s 146.39 s 512.25 s 18
2 258 60 (23.26%) 13.67 s 226.88 s 610.17 s 18

CNR 10% loss
0 421 36 (8.55%) 0.55 s 33.80 s 120.18 s 9
1 315 61 (19.37%) 1.19 s 82.14 s 500.62 s 15
2 259 160 (61.78%) 4.10 s 85.05 s 185.67 s 18

Table 10: Results from all tests using GPS data on the application layer

Table 11 shows the gathered results from all tests with image data on the application
layer. From the results, we have some observations:

• Message transmission went without any issues, and there was no recorded packet
loss when testing with 5G, Tactical Broadband, and SATCOM network models.

38

• The transmit delay was similar to when testing with GPS data for the 5G and
Tactical Broadband network models.

• The packet loss and transmit delays were significant for tests with NATO Narrow-
band and CNR with both 1% and 10% loss. Very few messages were sent, and most
were lost during these tests, where the lowest packet loss was 85.86% with QoS 0
using the NATO Narrowband network model.

• Tests using NATO Narrowband and CNR had many clients disconnect.

Network
model

QoS
Messages
Sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Disconnections

5G
0 532 0% 0.04 s 0.09 s 1.32 s 0
1 533 0% 0.04 s 0.08 s 1.18 s 0
2 533 0% 0.04 s 0.11 s 2.21 s 0

Tactical broadband
0 540 0% 0.11 s 0.15 s 0.74 s 0
1 540 0% 0.11 s 0.16 s 0.58 s 0
2 539 0% 0.32 s 0.41 s 1.44 s 0

SATCOM
0 540 0% 0.63 s 2.20 s 4.35 s 0
1 540 0% 0.61 s 1.86 s 4.38 s 0
2 539 0% 3.16 s 4.34 s 5.54 s 0

NATO narrowband
0 99 85 (85.86%) 1.51 s 23.05 s 50.16 s 18
1 101 92 (91.09%) 17.87 s 24.79 s 33.59 s 18
2 108 108 (100%) NA NA NA 18

CNR 1% loss
0 104 95 (91.35%) 6.97 s 35.22 s 59.02 s 18
1 106 97 (91.51%) 5.58 s 34.57 s 57.64 s 18
2 108 108 (100%) NA NA NA 18

CNR 10% loss
0 105 99 (94.29%) 5.30 s 30.67 s 49.63 s 18
1 106 97 (91.51%) 6.66 s 40.10 s 58.87 s 18
2 105 105 (100%) NA NA NA 18

Table 11: Results from all tests using image data on the application layer

5.2 MQTT-SN

Table 12 shows the gathered results from all standard tests on the network layer. From
these results, we can observe that:

• The tests from Tactical Broadband to CNR with 1% loss had identical data rates
at 13 kbit/s. 5G had a data rate that was slightly lower at 12 kbit/s, while CNR
with 10% loss had a much lower rate at 4.09 kbit/s.

• Average packet size remained the same across all tests at 432 bytes.

Network
model

Data rate Avg message size

5G 12 kbit/s 432 bytes
Tactical Broadband 13 kbit/s 432 bytes
SATCOM 13 kbit/s 432 bytes
NATO Narrowband 13 kbit/s 432 bytes
CNR 1% loss 13 kbit/s 432 bytes
CNR 10% loss 4.09 kbit/s 432 bytes

Table 12: Results from all tests using the standard implementation on the network layer

Table 13 shows the combined results for all hybrid tests (the hybrid concept was discussed
in section 4.3) on the network layer. From these results we can observe that:

39

• The data rate was consistently higher for MQTT than MQTT-SN. The highest
data rate from MQTT was 7.56 kbit/s, while the highest from MQTT-SN was 6.69
kbit/s.

• MQTT had consistently larger average message sizes than MQTT-SN, which is to
be expected as the purpose of MQTT-SN is to reduce the overall message size.

Network
model

Data rate Avg message size
MQTT MQTT-SN MQTT MQTT-SN

5G 7.35 kbit/s 6.69 kbit/s 484 bytes 432 bytes
Tactical Broadband 7.55 kbit/s 6.48 kbit/s 484 bytes 432 bytes
SATCOM 7.05 kbit/s 6.49 kbit/s 484 bytes 432 bytes
NATO Narrowband 7.20 kbit/s 6.47 kbit/s 484 bytes 432 bytes
CNR 1% loss 7.56 kbit/s 6.54 kbit/s 484 bytes 432 bytes
CNR 10% loss 4.23 kbit/s 4.42 kbit/s 483 bytes 432 bytes

Table 13: Results from all tests using the hybrid implementation on the network layer

Table 14 shows the combined results for the standard tests on the application layer. From
these results, we can observe that:

• There is some variation in the number of messages sent with each protocol. Most
tests resulted in around 540 messages being sent. The tests with CNR had the
lowest amount of packets sent at 420.

• The tests with the 5G, Tactical Broadband, SATCOM, and NATO Narrowband
network models had no issue transmitting messages in regards to packet loss. The
packet loss was zero across all these tests.

• The tests using the CNR network model with 1% and 10% were the only tests that
had packet loss. The packet loss was not high with 1% loss, where only six packets
were lost with QoS 0 and 4 packets lost with QoS 1. The test using 10% loss had
a packet loss of 100%, which is significantly more than any other test.

• The transmit delay was low across all tests, excluding CNR with 10% loss where no
messages were received. The lowest delay was found using the 5G network model,
with an average delay of 0.09 seconds. The highest delay was found using CNR
with 1% loss, at 4.39 seconds using QoS 1.

• QoS 0 had lower average delays than QoS 1 during all tests.

Network
model

QoS
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

5G
0 540 0% 0.07 s 0.09 s 1.27 s
1 540 0% 0.07 s 0.10 s 0.82 s

Tactical Broadband
0 540 0% 0.15 s 0.17 s 1.31 s
1 538 0% 0.15 s 0.19 s 0.91 s

SATCOM
0 540 0% 0.57 s 0.59 s 0.92 s
1 540 0% 0.57 s 0.60 s 0.70 s

NATO Narrowband
0 540 0% 0.72 s 1.68 s 3.64 s
1 540 0% 1.35 s 2.95 s 4.20 s

CNR 1% loss
0 540 6 (1.11%) 0.47 s 2.09 s 4.38 s
1 540 4 (0.74%) 1.24 s 4.39 s 6.40 s

CNR 10% loss
0 420 420 (100%) NA NA NA
1 420 420 (100%) NA NA NA

Table 14: Results from all tests using the standard implementation on the application
layer

40

Table 15 shows the combined results for the hybrid tests on the application layer. From
these results, we can observe that:

• Most tests had 540 messages sent, except Tactical Broadband which sent 538 mes-
sages and CNR with 10% loss, which only sent 480 messages using QoS 0 and 360
messages using QoS 1.

• As with the standard tests, only the CNR network model tests had packet loss.
During the test using CNR with 1% loss, QoS 0 lost only 5 messages, and QoS 1
lost 6. The packet loss increased while testing using CNR with 10% loss, where
QoS 0 had a packet loss of 20.21%, and QoS 1 had a packet loss of 25%.

• The transmit delays were low across all tests. The 5G test had the lowest average
delay with 0.03 seconds, while CNR with 1% loss had the highest with 4.77 seconds.

• During all tests except for 5G, QoS 0 had lower average delays than QoS 1.

Network
model

QoS
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

5G
0 540 0% 0.02 s 0.03 s 0.23 s
1 540 0% 0.02 s 0.03 s 0.12 s

Tactical Broadband
0 540 0% 0.15 s 0.16 s 0.51 s
1 538 0% 0.15 s 0.17 s 0.44 s

SATCOM
0 540 0% 0.57 s 0.61 s 1.02 s
1 540 0% 0.57 s 0.62 s 1.02 s

NATO Narrowband
0 540 0% 0.72 s 2.00 s 4.13 s
1 540 0% 1.04 s 2.79 s 4.92 s

CNR 1% loss
0 540 5 (0.93%) 0.47 s 2.17 s 7.12 s
1 540 6 (1.11%) 2.53 s 4.77 s 8.12 s

CNR 10% loss
0 480 97 (20.21%) 0.46 s 1.67 s 5.78 s
1 360 90 (25%) 1.10 s 3.13 s 5.00 s

Table 15: Results from all tests using the hybrid implementation on the application layer

5.3 ZeroMQ with TCP

Table 16 shows the combined results from all tests using GPS data on the network layer.
From these results we can see that:

• The highest data rate was achieved during the tests with the 5G and Tactical
Broadband network models, at 20 kbit/s. SATCOM had a data rate that was
slightly lower at 19 kbit/s, while the tests with NATO Narrowband and CNR
network models had significantly lower at 9.80 kbit/s, 8.51 kbit/s, and 9.58 kbit/s.

• The 5G, Tactical Broadband, SATCOM, and NATO Narrowband tests had the
same message size of 488 bytes. CNR with 1% loss had a size that was 5 bytes
bigger at 493 bytes, and CNR with 10% loss had a size that was 14 bytes higher at
532 bytes.

• 5G, Tactical Broadband and SATCOM had no significant amount of retransmis-
sions or duplicate acknowledgments. NATO Narrowband and CNR with 1% loss
had higher amounts, while CNR with 10% loss had the highest.

41

Network
model

Data rate Avg msg size TCP retransmissions Dup ACK

5G 20 kbit/s 488 bytes 0 0
Tactical broadband 20 kbit/s 488 bytes 24 0
SATCOM 19 kbit/s 488 bytes 0 0
NATO narrowband 9.80 kbit/s 488 bytes 95 137
CNR 1% loss 8.51 kbit/s 493 bytes 154 256
CNR 10% loss 9.58 kbit/s 532 bytes 232 471

Table 16: Results from tests using GPS data on the network layer

Table 17 shows the combined results from all tests using image data on the network layer.
From these results we see that:

• The SATCOM network model had the highest data rate at 20 kbit/s. 5G and
Tactical Broadband had slightly lower data rates at 19 kbit/s and 18 kbit/s. These
results were significantly higher than that of other models. CNR with 1% had a
much higher data rate than NATO Narrowband and CNR with 10% loss, at 12
kbit/s. The NATO Narrowband network model had the lowest data rate at 3.69
kbit/s.

• There is some variation in message sizes from all of the tests. The CNR model
with 1% loss had the largest average message size at 1359 bytes, while 5G had the
lowest at 497 bytes. The Tactical Broadband and SATCOM network models had
slightly larger average message sizes at 500 and 506 bytes.

• Retransmissions and duplicate acknowledgments were low using the 5G, Tactical
Broadband, and SATCOM network models. The numbers increased using the
NATO Narrowband and CNR with 1% loss network models, while the CNR model
with 10% loss had the highest overall.

Network
model

Data rate Avg msg size TCP retransmissions Dup ACK

5G 19 kbit/s 497 bytes 0 0

Tactical broadband 18 kbit/s 500 bytes 73 38

SATCOM 20 kbit/s 506 bytes 71 71

NATO narrowband 3.69 kbit/s 1044 bytes 242 248

CNR 1% loss 12 kbit/s 1359 bytes 272 340

CNR 10% loss 3.94 kbit/s 1166 bytes 335 286

Table 17: Results from tests using image data on the network layer

Table 18 shows the combined results from all tests using GPS data on the application
layer. From these results, we see that:

• All tests sent the same number of messages at 1593.

• The 5G, Tactical Broadband, SATCOM, and NATO Narrowband network models
had zero packet loss during their tests. Both CNR tests had the same packet loss,
where 133 messages were lost.

• The transmit delay was relatively low using the 5G, Tactical Broadband, and SAT-
COM network models. The test using 5G had the lowest delay at 0.12 seconds.
The delay increased in the CNR tests. The highest delay was 54.34 seconds using
CNR with 10% loss, which is slightly higher than the test using CNR with 1% loss,
which was 45.72 seconds.

42

Network
model

Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

5G 1593 0% 0.03 s 0.12 s 0.39 s
Tactical broadband 1593 0% 0.11 s 0.21 s 0.73 s
SATCOM 1593 0% 0.58 s 0.66 s 1.06 s
NATO narrowband 1593 0% 0.76 s 2.83 s 5.81 s
CNR 1% loss 1593 133 (8.35%) 0.91 s 45.72 s 162.75 s
CNR 10% loss 1593 133 (8.35%) 5.73 s 54.34 s 185.58 s

Table 18: Results from all tests using GPS data on the application layer

Table 19 shows the combined results from all tests using image data on the application
layer. From these results, we see that:

• All tests were able to send 1566 messages each.

• The 5G, Tactical Broadband, and SATCOM models had zero packet loss, and
the packet loss was much higher using the NATO Narrowband and CNR network
models. Of these, NATO Narrowband had the lowest packet loss where 76.56% of
the messages were lost, and CNR with 10% loss had the highest at 97.30%.

• The transmit delay for the 5G, Tactical Broadband, and SATCOM network models
were relatively low, and 5G was the quickest at 0.36 seconds. The delay was much
higher with the other network models, with the highest being NATO Narrowband,
with an average delay of 269.58 seconds.

Network
model

Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

5G 1566 0% 0.05 s 0.36 s 0.75 s
Tactical broadband 1566 0% 0.14 s 0.47 s 1.41 s
SATCOM 1566 0% 0.63 s 1.82 s 3.59 s
NATO narrowband 1566 1199 (76.56%) 1.54 s 269.58 s 515.58 s
CNR 1% loss 1566 1488 (95.02%) 6.88 s 56.94 s 139.07 s
CNR 10% loss 1566 1514 (97.30%) 7.67 s 89.60 s 325.54 s

Table 19: Results from all tests using image data on the application layer

5.4 ZeroMQ with PGM

Table 20 shows the combined results from all tests using GPS data on the network layer.
From these results we can see that:

• The highest data rate was found using CNR with 10% loss, at 52 kbit/s. 5G had
a data rate of 28 kbit/s, significantly lower than the other models, where all had
data rates above 40 kbit/s.

• The 5G, Tactical Broadband, and SATCOM network models had the same average
message size of 491 bytes. NATO Narrowband had the largest average message size
at 523 bytes. CNR with 1% had a size of 492 bytes, while CNR with 10% loss had
a size of 493 bytes.

43

Network
model

Data rate Avg message size

5G 28 kbit/s 491 bytes
Tactical Broadband 42 kbit/s 491 bytes
SATCOM 40 kbit/s 491 bytes
NATO Narrowband 45 kbit/s 523 bytes
CNR 1% loss 49 kbit/s 492 bytes
CNR 10% loss 52 kbit/s 493 bytes

Table 20: Results from all tests using GPS data on the network layer

Table 21 shows the combined results from all tests using image data on the network layer.
From these results we see that:

• 5G had the highest data rate at 637 kbit/s. As the networks became more challen-
ging, the data rates decreased significantly. CNR with 1% loss had the lowest data
rate at 27 kbit/s.

• As with the data rates, the average message size decreased when the networks
became more challenging. 5G had the largest average size at 1310 bytes, while
CNR with 10% loss had the lowest at 183 bytes.

Network
model

Data rate Avg message size

5G 637 kbit/s 1310 bytes
Tactical Broadband 502 kbit/s 1184 bytes
SATCOM 263 kbit/s 1136 bytes
NATO Narrowband 72 kbit/s 186 bytes
CNR 1% loss 27 kbit/s 208 bytes
CNR 10% loss 31 kbit/s 183 bytes

Table 21: Results from all tests using image data on the network layer

Table 22 shows the combined results from all tests using GPS data on the application
layer. From these results we see that:

• The number of messages sent varies greatly from test to test. 5G had the highest
number of messages sent at 1619, while CNR with 10% loss had the lowest with
1565 messages sent.

• The 5G, Tactical Broadband, and SATCOM network models lost no messages dur-
ing their tests. NATO Narrowband had a packet loss just below 50%. CNR with
1% loss had the highest packet loss at 73.88%.

• The average delay was low while using the 5G, Tactical Broadband, and SACOM
network models. 5G had the lowest delay at 0.10 seconds. NATO Narrowband and
the CNR models had a significantly higher delay. The CNR models transmitted
at just below 2 minutes, where CNR with 1% loss had the highest delay at 115.23
seconds.

44

Network
model

Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

5G 1619 0% 0.03 s 0.10 s 1.03 s

Tactical Broadband 1568 0% 0.15 s 0.31 s 1.94 s

SATCOM 1584 0% 0.58 s 0.72 s 1.10 s

NATO Narrowband 1592 770 (48.37%) 0.89 s 66.17 s 98.18 s

CNR 1% loss 1566 1157 (73.88%) 1.75 s 115.23 s 224.01 s

CNR 10% loss 1565 954 (60.96%) 1.30 s 102.75 s 140.94 s

Table 22: Results from all tests using GPS on the application layer

Table 23 shows the combined results from all tests using image data on the application
layer. From these results we see that:

• As with GPS data, the number of messages sent from each test varies greatly. 5G
sent the most messages at 1593, while CNR, with a 1% loss, sent the least by only
1522.

• We can see that only the 5G network model test had no packet loss. Tactical
Broadband did not have a significant loss since only two messages went missing.
SATCOM had some loss at 12.77%, while the NATO Narrowband and CNR tests
had most of the messages missing.

• We can see that the delay was considerable regardless of the network model. Tac-
tical Broadband had the lowest delay at 1.67 seconds, while CNR with 1% loss had
the highest delay at 201.47 seconds.

Network
model

Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

5G 1593 0% 0.04 s 3.07 s 8.51 s

Tactical Broadband 1543 2 (0.13%) 0.18 s 1.67 s 6.56 s

SATCOM 1566 200 (12.77%) 0.84 s 14.76 s 56.52 s

NATO Narrowband 1540 1378 (89.48%) 1.70 s 116.62 s 222.08 s

CNR 1% loss 1522 1397 (91.79%) 14.93 s 201.47 s 353.92 s

CNR 10% loss 1532 1429 (93.28%) 9.98 s 196.52 s 348.02 s

Table 23: Results from all tests using image on the application layer

45

6 Analysis

Using the analysis tool we developed, we tested the MQTT, MQTT-SN, and ZeroMQ
protocols using different network models. The main objective was to test these protocols
in how they performed in networks with varying degrees of limitations. This section will
analyze all protocols categorized by the network model. The results will focus on data
gathered from the application layer; namely, average transmit delay and packet loss.

6.1 5G

Figure 27: Average transmit delay times using the 5G network model with GPS data

Figure 27 shows how the protocols performed regarding average transmit delay during
the tests with the 5G network model using GPS data. Note that both tests with ZeroMQ
are positioned in the QoS 0 category. This will be the same for all the coming figures.
Table 24 shows the packet loss for each protocol. Most of the protocols had low delays, at
around 100 milliseconds per message. The protocol that stands out most is MQTT-SN
with the hybrid variation, which is significantly quicker than the others. This was likely
due to UDP, which has much less overhead than TCP. The standard variation is in line
with the other protocol, so there might be some delay introduced by the clients used
since this variation uses both MQTT-SN clients for publishing and subscribing. Looking
at the QoS levels for MQTT and MQTT-SN, we see that the higher QoS levels had no
significant impact on the average delay of the protocols, which is to be expected in this
type of network.

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard
0 0%
1 0%

MQTT-SN Hybrid
0 0%
1 0%

ZeroMQ TCP None 0%
ZeroMQ PGM None 0%

Table 24: Packet loss from tests with the 5G network model using GPS data

46

Figure 28: Average transmit delay times using the 5G network model with image data

Figure 28 shows how the protocols performed regarding average transmit delay during the
tests with the 5G network model using image data. Note that since we did not perform
tests with MQTT-SN using image data, the figure shows no results for this protocol.
Table 25 shows the packet loss for each protocol. Here we see that the MQTT protocol
had marginally higher delays than the tests with GPS data, which is expected due to the
increase in message size. The ZeroMQ protocol showed a large increase in delay times
for the TCP and PGM tests. The increased message size seems to have a greater effect
while sending with these protocols than with MQTT, especially for PGM. The network
statistics show that the number of packets created by multicasting is high, which may
have affected performance somewhat.

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard
0 NA
1 NA

MQTT-SN Hybrid
0 NA
1 NA

ZeroMQ TCP None 0%
ZeroMQ PGM None 0%

Table 25: Packet loss from tests with the 5G network model using image data

47

6.2 Tactical Broadband

Figure 29: Average transmit delay times using the Tactical Broadband network model
with GPS data

Figure 29 shows how the protocols performed in regards to average transmit delay during
the tests with the Tactical Broadband network model using GPS data. Table 26 shows
the packet loss for each protocol. Here we see similar results to that of the 5G tests,
where the protocols had mostly similar delay times, with MQTT-SN using the hybrid
variation being the quickest. We can see that using MQTT with QoS 2 had the highest
delay, which had a bigger effect using this network model than with the 5G model. We
saw an increase in the number of retransmissions and duplicate acknowledgements during
this test which might indicate that some of the messages had issues during transmission.

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard
0 0%
1 0%

MQTT-SN Hybrid
0 0%
1 0%

ZeroMQ TCP None 0%
ZeroMQ PGM None 0%

Table 26: Packet loss from tests with the Tactical Broadband network model using GPS
data

48

Figure 30: Average transmit delay times using the Tactical Broadband network model
with image data

Figure 30 shows how the protocols performed in regards to average transmit delay during
the tests with the Tactical Broadband network model using image data. Table 27 shows
the packet loss for each protocol. We again see that ZeroMQ performed worse than
MQTT, at least with QoS 0 and 1. QoS 2 had a slightly higher average transmit time,
indicating that the reassurance introduced by this QoS level has a significant impact on
performance. The test using ZeroMQ with PGM had a significantly higher average delay
than that of MQTT and ZeroMQ with TCP. Comparing this test using PGM to the
one done with the 5G network model, we can see that the delay is significantly lower.
This was unusual since the 5G model is not as restricted as the Tactical Broadband
model. Here we can see that ZeroMQ with PGM has some packet loss. Only 0.13% of
the messages were lost, but this was unusual to see in a network of this type from our
experience.

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard
0 NA
1 NA

MQTT-SN Hybrid
0 NA
1 NA

ZeroMQ TCP None 0%
ZeroMQ PGM None 0.13%

Table 27: Packet loss from tests with the Tactical Broadband network model using image
data

49

6.3 SATCOM

Figure 31: Average transmit delay times using the SATCOM network model with GPS
data

Figure 31 shows how the protocols performed in regards to average transmit delay during
the tests with the SATCOM network model using GPS data. Table 28 shows the packet
loss for each protocol. As with the previous network models, we can see that the average
delay is similar across the protocols. The only exception is MQTT with QoS 2, which
has a delay of almost two seconds. This is again because QoS 2 introduces quite a bit
of overhead in the form of handshakes and acknowledgments compared to QoS 0 and 1.
The average delay is somewhat higher than the previous network models, but this was
expected as the SATCOM network model introduces a delay of 550 milliseconds.

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard
0 0%
1 0%

MQTT-SN Hybrid
0 0%
1 0%

ZeroMQ TCP None 0%
ZeroMQ PGM None 0%

Table 28: Packet loss from tests with the SATCOM network model using GPS data

Figure 32: Average transmit delay times using the SATCOM network model with image
data

50

Figure 32 shows how the protocols performed in regards to average transmit delay during
the tests with the SATCOM network model using image data. Table 29 shows the
packet loss for each protocol. The results follow a similar pattern to the other tests with
image data in that the ZeroMQ using the PGM protocol is slower than MQTT. The
main difference we see here is that ZeroMQ with TCP has a lower transmit delay than
MQTT, even with QoS 0. In the previous comparison with Tactical Broadband, we saw
that ZeroMQ had a much higher delay than MQTT. PGM also had a significant packet
loss, which we have not experienced while testing any other protocol using SATCOM.
There was also some packet loss from the Tactical Broadband test, but this was very
little and may be due to connection issues at startup. The packet loss for SATCOM is
much higher at over 12%, which can not be attributed to startup issues. The results also
show that the delay has increased more for MQTT than for the tests using GPS data.
This was especially the case with QoS 2. We know from the results on the network layer
that the data rate decreased significantly in the test using this network model compared
to the other models.

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard
0 0%
1 0%

MQTT-SN Hybrid
0 0%
1 0%

ZeroMQ TCP None 0%
ZeroMQ PGM None 12.77%

Table 29: Packet loss from tests with the SATCOM network model using image data

6.4 NATO Narrowband

Figure 33: Transmit delay times using the NATO Narrowband network model with GPS
data

Figure 33 shows how the protocols performed in regards to average transmit delay during
the tests with the NATO Narrowband network model using GPS data. Table 30 shows
the packet loss for each protocol. Here the results indicate that MQTT starts to struggle
with higher levels of QoS. There is a slight increase in delay from QoS 0 to 1, and
then a large increase in delay when QoS 2 is used. Both variations of the MQTT-SN
implementation perform well even though the network has increased limitations. In this
test, the standard variation of MQTT-SN outperformed the hybrid. ZeroMQ with TCP
also showed lower delays than MQTT, even with QoS 0. Looking at the network statistics,

51

ZeroMQ had both a higher data rate and a lower amount of retransmissions and duplicate
acknowledgements. ZeroMQ with PGM showed a high average delay, significantly higher
than any of the other protocols, indicating that it struggles in this network. We can
also see this from the packet loss and the fact that PGM is the only protocol with any
messages lost.

Protocol QoS Packet Loss

MQTT
0 0%
1 0%
2 0%

MQTT-SN Standard
0 0%
1 0%

MQTT-SN Hybrid
0 0%
1 0%

ZeroMQ TCP None 0%
ZeroMQ PGM None 48.37%

Table 30: Packet loss from tests with the NATO Narrowband network model using GPS
data

Figure 34: Average transmit delay times using the NATO Narrowband network model
with image data

Figure 34 shows how the protocols performed in regards to average transmit delay during
the tests with the NATO Narrowband network model using image data. Table 31 shows
the packet loss for each protocol. Here we can observe that all protocols struggle to
transmit messages efficiently regarding both the amount of delay and packet loss. MQTT
has the lowest delay, but it is still high compared to the GPS test. ZeroMQ with TCP has
the highest average delay. Looking at the network statistics, we can see that the message
size is much larger than the previous network models. This indicates that TCP tries to
merge messages into a single packet before sending it over the network. This might cause
delays since TCP will spend time creating the new packets before trying to send them
over the network. Most of these packets will fail to be sent, causing TCP to retry the
transmission, causing a delay. This will also cause a bottleneck on the network, causing
other packets not to be sent. We can also observe a large increase in retransmissions and
duplicate acknowledgments compared to the other network models. From the network
statistics for PGM, we see that the average message size was considerably smaller than
with the previous network models, indicating that the protocol splits the message up
into many multi-messages. The protocol tries to guarantee the delivery of all parts of a
multi-part message, which causes very few messages to arrive, which can be seen from
the amount of packet loss.

52

Protocol QoS Packet Loss

MQTT
0 85.86%
1 91.09%
2 100%

MQTT-SN Standard
0 NA
1 NA

MQTT-SN Hybrid
0 NA
1 NA

ZeroMQ TCP None 76.56%
ZeroMQ PGM None 89.48%

Table 31: Packet loss from tests with the NATO Narrowband network model using image
data

6.5 CNR with 1% Loss

Figure 35: Average transmit delay times using the CNR network model with 1% loss
with GPS data

Figure 35 shows how the protocols performed in regards to average transmit delay during
the tests with the CNR network model with 1% loss using GPS data. Table 32 shows the
packet loss for each protocol. These results show that most protocols start to struggle
with efficient message transmission in this type of network. MQTT has high delays with
QoS 0, which only increases with QoS 1 and 2. The number of retransmissions and
duplicate acknowledgments were also much higher during this test for MQTT. ZeroMQ
also has high delays for both TCP and PGM. This was expected as CNR is one of the
most limited networks we have investigated. Protocols using TCP will be limited by
the number of packets sent across the network due to the guarantees set by the protocol
itself and the QoS level and because TCP attempts to resend messages repeatedly. This
was also the case with the NATO Narrowband network model, but we see an increase
in retransmissions and duplicate acknowledgments during these tests. MQTT-SN is the
only protocol that performs well in this network, with significantly lower delay than other
protocols. This was the case for both QoS 0 and 1.

53

Protocol QoS Packet Loss

MQTT
0 21.01%
1 0%
2 23.26%

MQTT-SN Standard
0 1.11%
1 0.74%

MQTT-SN Hybrid
0 0.93%
1 1.11%

ZeroMQ TCP None 8.35%
ZeroMQ PGM None 73.88%

Table 32: Packet loss from tests with the CNR network model with 1% loss using GPS
data

Figure 36: Average transmit delay times using the CNR network model with 1% loss
with image data

Figure 36 shows how the protocols performed in regards to average transmit delay during
the tests with the CNR network model with 1% loss using image data. Table 33 shows
the packet loss for each protocol. Here we see similar results to that of the tests with
NATO Narrowband, where all protocols have difficulties transmitting messages. MQTT
still has the lowest average delay, but it is still high at 30 seconds. Here we see the lowest
data rates compared to the other network models. For ZeroMQ, we also see the largest
average message size, indicating that TCP attempts to package many messages into a
single packet. As with MQTT, PGM had the lowest data rate during this test, and the
average message size was also low from being split into multi-part messages.

Protocol QoS Packet Loss

MQTT
0 91.35%
1 91.51%
2 100%

MQTT-SN Standard
0 NA
1 NA

MQTT-SN Hybrid
0 NA
1 NA

ZeroMQ TCP None 95.02%
ZeroMQ PGM None 91.79%

Table 33: Packet loss from tests with the CNR network model with 1% loss using image
data

54

6.6 CNR with 10% Loss

Figure 37: Average transmit delay times using the CNR network model with 10% loss
with GPS data

Figure 37 shows how the protocols performed in regards to average transmit delay during
the tests with the CNR network model with 10% loss using GPS data. Table 34 shows
the packet loss for each protocol. This is the most constrained network that we have
tested, and again we see that most of the protocols have high delays and can not deliver
messages efficiently regarding speed. The exception is MQTT-SN using the hybrid test
variation, which shows low delays. The standard variation of the MQTT-SN test did not
manage to receive any messages and therefore performed worse than the hybrid variation.
This is the only test showing a significant decrease in data rate while using MQTT-SN,
which shows that this protocol struggles somewhat in transmitting messages.

Protocol QoS Packet Loss

MQTT
0 8.55%
1 19.37%
2 61.78%

MQTT-SN Standard
0 100%
1 100%

MQTT-SN Hybrid
0 20.21%
1 25%

ZeroMQ TCP None 8.35%
ZeroMQ PGM None 60.96%

Table 34: Packet loss from tests with the CNR network model with 10% loss using GPS
data

55

Figure 38: Average transmit delay times using the CNR network model with 10% loss
with image data

Figure 36 shows how the protocols performed in regards to average transmit delay during
the tests with the CNR network model with 1% loss using image data. Table 35 shows
the packet loss for each protocol. We see similar results here where no protocols could
transmit messages efficiently. This shows that these networks are challenging, even if the
protocols are developed for use in limited networks with poor bandwidth.

Protocol QoS Packet Loss

MQTT
0 94.29%
1 91.51%
2 100%

MQTT-SN Standard
0 NA
1 NA

MQTT-SN Hybrid
0 NA
1 NA

ZeroMQ TCP None 97.30%
ZeroMQ PGM None 93.28%

Table 35: Packet loss from tests with the CNR network model with 10% loss using image
data

6.7 MQTT

The MQTT protocol performs well in the least challenging network models, including 5G,
Tactical Broadband and SATCOM. The average delay is relatively low across all tests
compared to the other protocols, and there is no sign of any packet loss. Running with
27 clients that publish messages every 10 seconds does not seem to strain the protocol’s
transport capabilities with the configuration we have used in these tests. This implies
that the MQTT protocol should be able to scale to even more clients or handle a higher
data rate by lowering the time between published messages. Comparing the QoS in each
of these tests, we can see that QoS 0 and 1 are comparable because they provide similar
average delays. QoS 2, on the other hand, has a much higher average transmit time
throughout the tests. Looking at network layer statistics, we can see that this is due to
the increased overhead introduced by the reliability guarantees used by QoS 2.

The message sizes remain the same size for 5G, Tactical Broadband, SATCOM, and
NATO Narrowband tests. The sizes increase drastically when using CNR with 1% and
10% loss compared to the other models. From observations done, this seems to happen
due to messages being packaged together and sent as one message. This only applies to
messages sent using QoS 1 and QoS 2. The reason for this might be due to TCP packet

56

batching, which is used to increase efficiency by reducing the number of packets sent over
the network at a time.

Summarizing the MQTT protocol tests, we can see that the protocol performs well with
the 5G, Tactical Broadband, and SATCOM network models. Running 27 clients of each
type and a publishing delay of 10 seconds did not cause any significant performance is-
sues, even with a larger message size. Both network models produce similar data rates,
and there were very few retransmissions and duplicate acknowledgments relative to the
number of packets sent.

While testing the NATO Narrowband network model, there were not many issues when
sending GPS data. No messages were lost, and the data rate was similar to the previous
models. The most significant change was the average delay, which was many times bigger
than the previous models, but performance can still be considered reasonable. Using im-
age data that produced larger message sizes, the test showed that the protocol struggled
regardless of QoS level. Packet loss was high, and so was the delay in messages. The
number of clients that disconnected was also very high.

The CNR network model tests with 1% and 10% loss had significant performance is-
sues regardless of data type. Very few messages were sent compared to the tests with
the other models, and packet loss was high. Sending larger messages with image data
caused all packets to be lost for QoS 2 and nearly all to be lost using QoS 0 and 1.
QoS 0 had the lowest delay during these tests but was still relatively high. Many clients
disconnected during these tests, which can explain the low amount of messages sent. One
discrepancy with the tests was that using image data and CNR with 1% loss, the number
of disconnected clients was quite low compared to other tests.

6.8 MQTT-SN

Summarizing the results, we can see that the tests had good results using the 5G, Tactical
Broadband, and SATCOM network models using both the standard and hybrid test
variations. NATO Narrowband and CNR with 1% loss also produced good results while
being a bit slower than the other models. The tests using the CNR network models with
1% loss showing good results can be somewhat surprising as it is one of the more limited
models. These models also produced similar data rates, except 5G using the standard
test variation.

The test using CNR with 10% showed poor results using the standard test, the data rate
was very low, and the packet loss was 100%. The results from the hybrid test did show
surprisingly good results, even if it did have some packet loss. Where all messages were
lost using the standard version, the hybrid version had a maximum packet loss of 20.21%
using QoS 0. The transmit delays were also low, being even lower than that of NATO
Narrowband and CNR with a 1% loss.

The results will be affected by the changes we have made to the setup compared to
MQTT. We are using fewer clients, which will have positively affected the results. Un-
fortunately, we have been limited in testing due to the clients we have used, which does
not allow us to make a direct comparison to MQTT. The issues we have had with the
clients may have affected the results from testing, which is important to consider.

6.9 ZeroMQ with TCP

Summarizing the results, we can see that ZeroMQ with TCP performs relatively well
regarding reliability using the 5G, Tactical Broadband, SATCOM, and NATO Narrow-
band network models. Using GPS data, they all have similar data rates and average
message sizes. The number of retransmissions and duplicate acknowledgments is also

57

very low. The delay found in the tests shows that the protocol is relatively slow with
the test setup we have used. Tactical Broadband also had higher delays than what was
expected. NATO Narrowband had very good results, looking at packet loss and delay.
Compared to the less limited network models, it did have some TCP retransmissions and
duplicate acknowledgments.

Using image data, 5G, Tactical Broadband, and SATCOM provided good results when
looking at reliability. Fewer messages were sent, but there was zero packet loss recorded.
NATO Narrowband showed poor results using image data. Most of the messages were
lost, and the transmit delays were high. The data rate was also low, and the average
message size increased a lot compared to the 5G, Tactical Broadband, and SATCOM
models. CNR with 1% and 10% loss had even worse results, which shows that the
increase in message size is not sustainable for these network models. We see that CNR
with 10% loss did have a lower average delay than NATO Narrowband, but it should be
noted that very few messages arrived.

6.10 ZeroMQ with PGM

Summarizing the results from ZeroMQ with PGM showed that the protocol performed
well with the 5G, Tactical Broadband, and SATCOM network models using GPS data
regarding the delay. The protocol struggled with larger message sizes and showed poor
performance most tests. We see similar problems with the TCP transport protocol and
there might be an issue with the configuration used for both of the protocols. We also use
the same message broker, which might affect the results we are seeing. From the statistics
on the network layer, we see that the protocol has a much larger data rate than any of
the other protocols we have tested. This is due to the fact that this is the only multicast
protocol used, whereas all the others are point-to-point (unicast). Multicast will create
more packets than unicast because ZeroMQ packets are sent out to all possible clients
on the network. The results showed that the data rate was much higher with image data
than with GPS data. The results in regards to packet loss showed that several packets
were lost, even using the Tactical Broadband and SATCOM network models. This was
the only protocol that had packet loss during tests with these network models, which
signifies issues. One aspect that could be looked more into is removing the message
broker, which might have caused a bottleneck while using multicasting. There might
also be certain configuration parameters that can be configured to make the protocol
more efficient, although we tried several different configurations that had no effect.

6.11 Summary

The results show that most protocols achieve good performance in the less challenging
networks like 5G, Tactical Broadband and SATCOM. The fact that the protocols perform
well in a low-band 5G network is not surprising, as this network is the least demanding
of the tested models. There are still some results that are a bit worse than expected.
ZeroMQ with TCP, in particular, has relatively high delays compared to MQTT and
MQTT-SN in some of the networks. The delays are still low, below one second, but
this is much higher than the other protocols with only a few milliseconds of delay. The
PGM protocol also has much higher transmit delays than TCP, which should not be
the case due to less congestion on the network. This might be due to issues with the
configuration of the protocol and problems getting multicasting to work with the virtual
machine. Tuning the options should be considered for future studies.

It should be noted that the data rates captured during testing are reduced slightly because
of the cool-down period after the initial duration of the tests. This was due to smaller
ping request/reply packets sent because of the 60 seconds keep alive set when configuring
the clients, especially with MQTT and MQTT-SN.

58

ZeroMQ also showed worse results for the Tactical Broadband and SATCOM network
models using image data. While still not poor, the results were not as good as expected,
considering the networks’ relatively low challenge. It should be noted that during our
testing with PGM, we ran into an issue with the firewall blocking our ability to send
multicast messages, which had to be manually overridden to continue the sending of
messages. This will have had some effect on the results and the delays found. While
ZeroMQ supports PGM, it is not commonly used, and the implementation may not be
as optimized as when running ZeroMQ with TCP. Compared to MQTT-SN, which uses
UDP, it showed much better results overall than that of ZeroMQ with PGM. This may
be because of the lower amount of clients used and the fact that we did not run with
QoS 2 simultaneously, which would have produced more traffic on the network.

None of the protocols seemed to be able to handle the most challenging of the network
models, except for MQTT-SN. Both the standard and the hybrid test variation handled
CNR with a 1% loss reasonably well, and this was without much packet loss or delay.
The hybrid test variation also seemed to handle CNR with 10% loss very well compared
to most of the other protocols tested.

59

7 Recommendations

Based on the results from testing, we have decided on recommendations for each pro-
tocol to answer RQ2. The network models and their limitations have been considered
when providing insight into which protocols should be used for a specific network. The
evaluation criteria we have used to give recommendations are mainly based on the packet
loss and latency experienced during testing. These metrics are compared to the inherent
limitations set by each model, as can be seen from the network models in table 1. The
expectations we have for each protocol will change based on how challenging the network
is, but it should maintain the ability to send and receive messages efficiently.

7.1 Cutoffs

The following list explains the reasoning for the cutoffs we have set for recommending
the protocol for use in the specified network model:

• For 5G, we have set the cutoff to be 200 milliseconds for the delay and 0% for
packet loss. The 5G network model has an inherent delay of 20 milliseconds, which
is relatively low. The cutoff has been set ten times higher as we know the protocol
will add additional delay during transmission. We do not expect any packet loss
from this network model because it does not simulate any loss, and it is the least
limited network we are using.

• For Tactical Broadband, we have set the cutoff to be 400 milliseconds for the delay
and 0% for packet loss. Compared to the 5G model, the data rate is much lower
but still higher than many other network models. We expect an increase in delays
compared to 5G due to the inherent delay of 100 milliseconds, but it should not
be much higher than 5G. The model simulates a loss of 1%, but we do not expect
any packets to be lost due to the TCP protocol, as TCP will try to resend them if
they fail.

• For SATCOM, we have set the cutoff to be 750 milliseconds for the delay and
0% for packet loss. For image data, we have increased the cutoff to 2.5 seconds
for delay. SATCOM has a lower data rate than 5G and Tactical Broadband, but
it should still be sufficient for sending smaller messages without any issues. The
inherent delay is somewhat higher than the other network models we have used,
at 550 milliseconds. However, we do not expect much additional delay time other
than what the protocol adds. Therefore, we also do not expect any packet loss
from this model. For image data, we have increased the cutoff to 2.5 seconds due
to the lower data rate, which can affect sending larger messages.

• For NATO Narrowband, we have set the cutoff to be 4 seconds for the delay and
5% for packet loss. For image data, the cutoff for the delay is increased to 10
seconds, and the packet loss should be less than 10%. The NATO Narrowband
network model is one of the more challenging models we have tested, and therefore
the requirement for delay and packet loss is lower. The protocols should still be
required to transmit messages in a manner considered efficient. Our cutoff for the
delay is quite a bit higher than the previous models, which is mainly due to the low
data rate, which will affect the transmission of messages, especially with TCP, as
the protocol will cause a large amount of traffic on the network as it tries to resend
dropped packets. For this reason, we have increased the cutoff for image data, as
this will cause even larger packets to travel over the network. We also expect some
packet loss due to congestion on the network. The cutoff for delay and packet loss
for image data should not be higher, as it would not meet the requirements for fast
and efficient communication.

• For both CNR models, we have set the cutoff to be 10 seconds for delay and 10%
for packet loss. The CNR models we have tested are the most challenging of the

60

network models we have looked at and also have the highest overall cutoffs. The
requirements are the same for both GPS and image data, as any higher delay than
this will be too slow, and any higher packet loss will be too unreliable.

7.2 MQTT

Table 36 shows the recommendations for MQTT. We have provided one recommendation
for each network model and one for each of the two data types we have used. If the
protocol is recommended, there is also a recommendation for the QoS level. We have
recommended MQTT for use in the 5G, Tactical Broadband, and the SATCOM network
models. The protocol showed good results for both data types, meaning that it can
handle a range of message sizes. No significant extra delay was introduced with the
protocol on top of the limitations from each network model. We only recommend using
QoS 0 and QoS 1, as these provided the most efficient transmission. QoS 2 has too
much overhead, and the additional benefits are not worth the additional delay added
in any of the networks. MQTT is not recommended for use in any more challenging
networks, except for NATO Narrowband with GPS data. The protocol can handle this
network model well with smaller message sizes. We only recommend using QoS 0 with
this network model, as QoS 1 introduces too much additional delay.

Protocol Network Model Data Type Recommended QoS
GPS Data Yes 0 and 1

5G
Image Data Yes 0 and 1
GPS Data Yes 0 and 1

Tactical Broadband
Image Data Yes 0 and 1
GPS Data Yes 0 and 1

SATCOM
Image Data Yes 0 and 1
GPS Data Yes 0

NATO Narrowband
Image Data No
GPS Data No

CNR 1% Loss
Image Data No
GPS Data No

MQTT

CNR 10% Loss
Image Data No

Table 36: Recommendations for MQTT

7.3 MQTT-SN

Table 37 shows the recommendations for MQTT-SN. The table is divided up into the
recommendations for the standard variation and the hybrid variation. Both variations
showed similar results for the different network models. MQTT-SN is recommended for
use in the 5G, Tactical Broadband, SATCOM, NATO Narrowband, and CNR with 1%
loss network models. It showed good performance in all of these networks using smaller
message sizes. We only tested with QoS 0 and 1, and we recommend using both in all
networks except CNR. CNR with 10% loss showed too much packet loss and is therefore
not recommended.

61

Protocol Variation Network Model Recommended QoS
5G Yes 0 and 1
Tactical Broadband Yes 0 and 1
SATCOM Yes 0 and 1
NATO Narrowband Yes 0 and 1
CNR 1% Loss Yes 0

Standard

CNR 10% Loss No
5G Yes 0 and 1
Tactical Broadband Yes 0 and 1
SATCOM Yes 0 and 1
NATO Narrowband Yes 0 and 1
CNR 1% Loss Yes 0

MQTT-SN

Hybrid

CNR 10% Loss No

Table 37: Recommendations for MQTT-SN

7.4 ZeroMQ with TCP

Table 38 shows the recommendations for ZeroMQ using the TCP protocol for transport.
The protocol works well with the 5G, Tactical Broadband, SATCOM, and NATO Nar-
rowband network models, but only with smaller message sizes. The protocol did not show
good results with a larger message size and is therefore not recommended for use, unlike
MQTT and MQTT-SN. The exception is with the SATCOM network model, where the
protocol showed good results. The results were even better than we experienced with
MQTT using QoS 0. The protocol struggles too much in the CNR network models to
be recommended for usage in this type of network. In CNR with 1% loss, this is mostly
due to the delay, as the packet loss is relatively low.

Protocol Network Model Data Type Recommended
GPS Data Yes

5G
Image Data No
GPS Data Yes

Tactical Broadband
Image Data No
GPS Data Yes

SATCOM
Image Data Yes
GPS Data Yes

NATO Narrowband
Image Data No
GPS Data No

CNR 1% Loss
Image Data No
GPS Data No

ZeroMQ (TCP)

CNR 10% Loss
Image Data No

Table 38: Recommendations for ZeroMQ with TCP

7.5 ZeroMQ with PGM

Table 39 show the recommendations for ZeroMQ using PGM as the transport protocol.
Here the recommendations are similar to that of ZeroMQ with TCP. The exception
is NATO Narrowband and SATCOM with image data which showed very high delays
compared to the other protocols, making it unsuitable in this type of network. PGM
showed slightly worse results than the other protocols in most networks, but we still
recommend it based on our evaluation criteria. The recommendations are only for smaller
message sizes, which is expected as it is a multicast protocol.

62

Protocol Network Model Data Type Recommended
GPS Data Yes

5G
Image Data No
GPS Data Yes

Tactical Broadband
Image Data No
GPS Data Yes

SATCOM
Image Data No
GPS Data No

NATO Narrowband
Image Data No
GPS Data No

CNR 1% Loss
Image Data No
GPS Data No

ZeroMQ (PGM)

CNR 10% Loss
Image Data No

Table 39: Recommendations for ZeroMQ with PGM

63

8 Conclusion

In this thesis, we have investigated several protocols that fall within the publish/subscribe
pattern used for message transportation. We have looked at how these protocols perform
in various military network models considered DIL. The research has been conducted to
try and answer the following research questions:

1. RQ1: Can we correctly evaluate the performance of publish/subscribe protocols
in DIL networks?

2. RQ2: Which DIL networks are the publish/subscribe protocols most suited for?

To answer RQ1, we can say ‘Yes’ to the fact that we can correctly evaluate the per-
formance of publish/subscribe protocols in DIL networks. The tool we have created to
evaluate the protocols bases its emulation on Netem, which is proven to be correct (see
chapter 3, chapter 4 and chapter 5). The emulation of the DIL networks has been val-
idated using iPerf3, which shows that the parameters we have used to limit the network
have been correctly applied. Our findings on both the network and application layer
show that the results correlate to that of previous studies with the Tactical Broadband
network model [12].

In order to evaluate these protocols, we have run several tests using different data types
to see how the protocols performed in these networks. The main metrics we have looked
at are delay and packet loss, found by statistics taken on the application layer. We have
also looked at other metrics related to the network layer. In order to run these tests, we
have developed an analysis tool that is built explicitly for this purpose.

To answer RQ2, we can from our results in chapter 5,the analysis in chapter 6, and
our recommendations in chapter 7 see that most protocols are suited for use in less
challenging networks like 5G, Tactical Broadband and SATCOM. For MQTT, this is the
case with both small and large message sizes. For ZeroMQ, this is not the case, and we
find that the protocol is mostly suitable with smaller message sizes, regardless of whether
the transport protocol is TCP or PGM. We can see that the MQTT-SN protocol is most
suited for use in DIL networks. This answer is more complicated since the protocol is
not evaluated on the same premises as the other protocols. Still, the results were good,
and the increase in clients should not have that big of an impact on the results in regards
to delay and packet loss. Since MQTT-SN uses UDP, it does not have the additional
guarantees that come with TCP and we can see that using it has been beneficial in the
more limited networks we have used.

Based on our analysis, we have come to a conclusion for each of the protocols based on
how they performed in each of the networks.

8.1 MQTT

MQTT shows good performance in the less limiting networks we have tested. The pro-
tocol shows no issues in transmitting messages, both in regards to delay and packet loss.
Using QoS 2 showed that the amount of overhead caused issues for the protocol, primar-
ily due to the extra steps needed before a message transmission was completed. Due to
this, we only recommend using QoS 0 and 1, as the overhead is mostly reduced with these
settings. The tests with more limiting networks show that the protocol struggled and is
therefore not found suitable for use. The protocol was the easiest to set up and use com-
pared to the other protocols, and this is to be expected, as MQTT is an industry-standard
protocol in IoT.

64

8.2 MQTT-SN

Our results show that MQTT-SN had good results for almost all tests. The delay was
low with both test variations across all network models, and the protocol outperformed
the other ones in most tests. The packet loss was also comparatively low. Both QoS 0
and 1 showed good results, but QoS 0 was most times faster than QoS 1. The only issues
were found during the test using the CNR network model with a 10% loss. Here, only
the hybrid test variation could send and receive messages. Even though the network is
quite limited, it showed good results, both in terms of delay and packet loss. Still, the
packet loss was too high for us to be able to recommend its usage in such a network.
While overall results are good, the implementation limitations have restricted us from
adequately being able to compare it to the other protocols. Setting up the protocol was
not an easy task and was significantly more difficult than the other two protocols we
have investigated, except for ZeroMQ with PGM.

8.3 ZeroMQ

ZeroMQ showed the overall poorest results from the protocols we have tested. TCP had
some promise with smaller message sizes, where the results were comparable to that of
MQTT and MQTT-SN. However, the test with larger message sizes showed that the
protocol had issues, both in terms of delay and packet loss. PGM provided the overall
worst results, especially with larger message sizes. The poor results might be due to the
test implementation, which is difficult to say without more testing. The results may have
been better without a broker, but the downside is the increased complexity in setting up
and connecting the clients. Setting up the protocol with clients was relatively simple,
but there were certain networking issues with getting PGM to work as it is not well
supported in ZeroMQ.

65

9 Future Work

After the studies that have been conducted in this thesis, we have some topics that we
would like to propose for future studies into evaluating publish/subscribe protocol in
challenging networks.

9.1 Developing an MQTT-SN Client

Our results show good promise for the use of MQTT-SN. The issue with our testing is
that we could not create a test environment comparable to what was used for MQTT
and ZeroMQ. This was primarily due to difficulties finding a Python client that we
could incorporate into our analysis tool, and we had to use a custom client with several
limitations. By creating our client from the ground up, we can better understand the
client and make it work better with the test requirement we have to evaluate the protocol.
The benefits can also be found in allowing us more ways to understand events that happen
during a test, e.g., implementing a callback feature for when a client disconnects. This
would also allow us to test with QoS 2 and larger message sizes, as we can then tailor
the client to the MQTT-SN specifications correctly.

9.2 Additional Testing with ZeroMQ

During this thesis, we have evaluated ZeroMQ with both the TCP and PGM protocols for
message transport. ZeroMQ supports several protocols for this purpose, and it would be
interesting to investigate how it performs using UDP. Since MQTT-SN showed promising
results while using UDP, it would be valuable to also gather data on how it compares
to ZeroMQ. It must be said that there was little support for PGM in ZeroMQ, and this
might also be the case with UDP, but it should still be tested as the implementation
should not be considerably difficult.

ZeroMQ provides a range of configuration options, and we have only used a basic con-
figuration for this thesis. The performance could be improved with some changes to the
setup, which would be interesting to experiment with. A solution could be to create a
setup that did not use a message broker, as this could affect the performance by becoming
a bottleneck.

9.3 Configuring the TCP Stack

The TCP stack in the Linux kernel is highly customizable and could therefore be tweaked
to gain performance benefits while using the publish/subscribe protocols we have used
in this thesis. A user-level TCP stack can potentially remove some of the Linux TCP
overhead by eliminating system calls [65].

9.4 Open Sourcing the Analysis Tool

The tool we have created during the preparatory project and further developed in this
thesis has allowed us to conduct tests on various publish/subscribe protocols in a man-
ner that was repeatable, controlled, and reliable. The tool also allows for a dynamic
configuration, meaning that the user can perform tests that differ from the ones we have
conducted and tailor them to suit their test requirements. By making it open source, we
allow other researchers and developers to use the tool for purposes of testing protocols, as
well as modify it to their own needs, e.g., implementing support for additional protocols.

66

References

[1] Gartner, Internet of things (iot), https : / / www . gartner . com / en / information -
technology/glossary/internet-of-things, Accessed on 2022.06.08.

[2] Matthew O’Riordan, Everything You Need To Know About Publish/Subscribe, https:
//ably.com/topic/pub-sub, Accessed on 2022.06.07.

[3] OASIS, MQTT Version 3.1.1, http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
mqtt-v3.1.1-os.html# Toc398718018, Accessed on 2022.06.08.

[4] ——, MQTT For Sensor Networks (MQTT-SN) Protocol Specification Version 1.2,
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN spec v1.
2.pdf, Accessed on 2022.06.08.

[5] The ZeroMQ authors, ZeroMQ An open-source universal messaging library, https:
//zeromq.org/, Accessed on 2022.06.08.

[6] K. L. Scott, T. Refaei, N. Trivedi, J. Trinh and J. P. Macker, ‘Robust communic-
ations for disconnected, intermittent, low-bandwidth (DIL) environments’, 2011 -
MILCOM 2011 Military Communications Conference, pp. 1009–1014, 2011.

[7] Claes Wohlin, Martin Höst, Kennet Henningsson, 13 Empirical Research Methods
in Web and Software Engineering, http://www.wohlin.eu/web05.pdf, Accessed on
2022.06.08.

[8] Emil P. Andersen, Creating an analysis tool for testing and evaluating the mqtt pro-
tocol, https://github.com/EPA1/Preparatory-Project/blob/main/NTNU Preparatory
Project.pdf, Accessed on 2022.06.08.

[9] T. H. Bloebaum, N. J. Kevin Chan, F. T. Johnsen and A. T. Marco Manso, ‘Nato
core services profiling for hybrid tactical networks’, NORTH ATLANTIC TREATY
ORGANIZATION, AC/323(IST-150)TP/1008, Mar. 2021. [Online]. Available: https:
//www.sto.nato.int/publications/STO%5C%20Technical%5C%20Reports/STO-TR-
IST-150/%5C$%5C$TR-IST-150-ALL.pdf.

[10] M. Manso, K. C. Norman Jansen, T. H. B. Andrew Toth and F. T. Johnsen, Mobile
Tactical Force Situational Awareness: Evaluation of Message Broker Middleware
for Information Exchange, ICCRTS 2018, Pensacola, Florida, USA.

[11] Z. Kang and A. Dubey, ‘Evaluating DDS, MQTT, and ZeroMQ Under Different
IoT Traffic Conditions’, 2020. [Online]. Available: http://www.dre.vanderbilt.edu/
∼gokhale/WWW/papers/M4IoT2020.

[12] F. Johnsen et al., ‘Evaluating publish/subscribe standards for situational awareness
using realistic radio models and emulated testbed’, Oct. 2019.

[13] Z. Shelby, K. Hartke and C. Bormann, The Constrained Application Protocol
(CoAP), RFC 7252, Jun. 2014. doi: 10.17487/RFC7252. [Online]. Available: https:
//www.rfc-editor.org/info/rfc7252.

[14] Carsten Bormann, Coap, https://coap.technology/, Accessed on 2022.06.08.

[15] David Pike, The importance of communications in the military, https : / / blog .
samtec .com/post/the- importance- of - communications - in - the-military/, Accessed
on 2022.06.08, Aug. 2021.

[16] NATO IST-124 Research Task Group, Anglova Scenario, https ://anglova .net/,
Accessed on 09.06.2022.

[17] N. Suri et al., ‘The angloval tactical military scenario and experimentation envir-
onment’, in 2018 International Conference on Military Communications and In-
formation Systems (ICMCIS), 2018, pp. 1–8. doi: 10.1109/ICMCIS.2018.8398729.

[18] M. Pradhan, ‘Interoperability for disaster relief operations in smart city environ-
ments’, in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 2019,
pp. 711–714. doi: 10.1109/WF-IoT.2019.8767169.

67

https://www.gartner.com/en/information-technology/glossary/internet-of-things
https://www.gartner.com/en/information-technology/glossary/internet-of-things
https://ably.com/topic/pub-sub
https://ably.com/topic/pub-sub
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718018
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718018
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_spec_v1.2.pdf
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_spec_v1.2.pdf
https://zeromq.org/
https://zeromq.org/
http://www.wohlin.eu/web05.pdf
https://github.com/EPA1/Preparatory-Project/blob/main/NTNU_Preparatory_Project.pdf
https://github.com/EPA1/Preparatory-Project/blob/main/NTNU_Preparatory_Project.pdf
https://www.sto.nato.int/publications/STO%5C%20Technical%5C%20Reports/STO-TR-IST-150/%5C$%5C$TR-IST-150-ALL.pdf
https://www.sto.nato.int/publications/STO%5C%20Technical%5C%20Reports/STO-TR-IST-150/%5C$%5C$TR-IST-150-ALL.pdf
https://www.sto.nato.int/publications/STO%5C%20Technical%5C%20Reports/STO-TR-IST-150/%5C$%5C$TR-IST-150-ALL.pdf
http://www.dre.vanderbilt.edu/~gokhale/WWW/papers/M4IoT2020
http://www.dre.vanderbilt.edu/~gokhale/WWW/papers/M4IoT2020
https://doi.org/10.17487/RFC7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://coap.technology/
https://blog.samtec.com/post/the-importance-of-communications-in-the-military/
https://blog.samtec.com/post/the-importance-of-communications-in-the-military/
https://anglova.net/
https://doi.org/10.1109/ICMCIS.2018.8398729
https://doi.org/10.1109/WF-IoT.2019.8767169

[19] European Commission website, Smart cities, https://ec.europa.eu/info/eu-regional-
and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-
cities en, Accessed on 2022.06.07.

[20] Steven Walker, Daniel Rice, Mark Kahn, John Clark, Why the World’s Militaries
are embracing 5G, https ://spectrum. ieee .org/ lockheed -martin - 5g, Accessed on
2022.06.08.

[21] ASELSAN, GRC-5220 Tactical Broadband ETHERNET Radio, https : / / www .
aselsan.com.tr/en/capabilities/military-communication-systems/military-broadband-
multimode-radiolinks/grc5220-tactical-broadband-ethernet-radio, Accessed on 2022.06.08.

[22] NATO, SATCOM Post-2000 (Archived), https://www.nato.int/cps/en/natohq/
topics 50092.htm, Accessed on 2022.06.08.

[23] Tore J. Berg, NATO Narrowband Waveform (NBWF) - multilevel-level precedence
and preemption for IP traffic, https://ffi-publikasjoner.archive.knowledgearc.net/
handle/20.500.12242/953, Accessed on 2022.06.08.

[24] military-history.fandom, Combat-net radio, https://military- history.fandom.com/
wiki/Combat-net radio, Accessed on 2022.06.08.

[25] U.S. Naval War College,Humanitarian Assistance and Disaster Response (HA/DR):
Home, https://usnwc.libguides.com/hadr, Accessed on 2022.06.08.

[26] Randall R. Stewart, Stream Control Transmission Protocol, RFC 4960, Sep. 2007.
doi: 10.17487/RFC4960. [Online]. Available: https://rfc-editor.org/rfc/rfc4960.txt.

[27] IBM, MQTT restrictions and limitations, https://www.ibm.com/docs/en/watson-
iot-platform?topic=messaging-restrictions-limitations, Accessed on 2022.06.07.

[28] Steve Cope, Introduction to MQTT-SN (MQTT for Sensor Networks), http : //
www.steves-internet-guide.com/mqtt-sn/, Accessed on 2022.06.08.

[29] Packt,Understanding wildcards, https://subscription.packtpub.com/book/application
development/9781787287815/1/ch01lvl1sec18/understanding-wildcards, Accessed on
2022.06.08.

[30] The ZeroMQ authors, Chapter 1 - Basics, https : / / zguide . zeromq . org / docs /
chapter1/, Accessed on 2022.06.08.

[31] Tony Speakman et al., PGM Reliable Transport Protocol Specification, RFC 3208,
Dec. 2001. doi: 10.17487/RFC3208. [Online]. Available: https://www.rfc- editor.
org/info/rfc3208.

[32] O.S Tezer, How To Work with the ZeroMQ Messaging Library, https : / /www .
digitalocean.com/community/tutorials/how- to-work-with- the- zeromq-messaging-
library, Accessed on 2022.06.08.

[33] Andreas Giannopoulos, D58: Pragmatic General Multicast, http://www0.cs.ucl.ac.
uk/research/darpa/pgm/PGM FINAL.html, Accessed on 2022.06.08.

[34] The ZeroMQ authors, Chapter 2 - Sockets and Patterns, https://zguide.zeromq.
org/docs/chapter2/, Accessed on 2022.06.08.

[35] Martin Sustrik, Martin Lucina, Zmq setsockopt(3), http://api.zeromq.org/2-1:zmq-
setsockopt.

[36] Object Management Group, Inc, What is DDS?, https://www.dds-foundation.org/
what-is-dds-3/, Accessed on 2022.06.08.

[37] N. Suri et al., ‘Evaluating the scalability of group communication protocols over
synchronized cooperative broadcast’, in 2021 International Conference on Military
Communication and Information Systems (ICMCIS), 2021, pp. 1–9. doi: 10.1109/
ICMCIS52405.2021.9486407.

[38] NATS Doc, The Streaming Protocol, https://docs.nats.io/legacy/stan/streaming/
protocol, Accessed on 2022.06.08.

[39] N. Suri et al., ‘Disservice: A peer-to-peer disruption tolerant dissemination service’,
Oct. 2009, pp. 1–8, isbn: 1424452384. doi: 10.1109/MILCOM.2009.5379952.

68

https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en
https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en
https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en
https://spectrum.ieee.org/lockheed-martin-5g
https://www.aselsan.com.tr/en/capabilities/military-communication-systems/military-broadband-multimode-radiolinks/grc5220-tactical-broadband-ethernet-radio
https://www.aselsan.com.tr/en/capabilities/military-communication-systems/military-broadband-multimode-radiolinks/grc5220-tactical-broadband-ethernet-radio
https://www.aselsan.com.tr/en/capabilities/military-communication-systems/military-broadband-multimode-radiolinks/grc5220-tactical-broadband-ethernet-radio
https://www.nato.int/cps/en/natohq/topics_50092.htm
https://www.nato.int/cps/en/natohq/topics_50092.htm
https://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/953
https://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/953
https://military-history.fandom.com/wiki/Combat-net_radio
https://military-history.fandom.com/wiki/Combat-net_radio
https://usnwc.libguides.com/hadr
https://doi.org/10.17487/RFC4960
https://rfc-editor.org/rfc/rfc4960.txt
https://www.ibm.com/docs/en/watson-iot-platform?topic=messaging-restrictions-limitations
https://www.ibm.com/docs/en/watson-iot-platform?topic=messaging-restrictions-limitations
http://www.steves-internet-guide.com/mqtt-sn/
http://www.steves-internet-guide.com/mqtt-sn/
https://subscription.packtpub.com/book/application_development/9781787287815/1/ch01lvl1sec18/understanding-wildcards
https://subscription.packtpub.com/book/application_development/9781787287815/1/ch01lvl1sec18/understanding-wildcards
https://zguide.zeromq.org/docs/chapter1/
https://zguide.zeromq.org/docs/chapter1/
https://doi.org/10.17487/RFC3208
https://www.rfc-editor.org/info/rfc3208
https://www.rfc-editor.org/info/rfc3208
https://www.digitalocean.com/community/tutorials/how-to-work-with-the-zeromq-messaging-library
https://www.digitalocean.com/community/tutorials/how-to-work-with-the-zeromq-messaging-library
https://www.digitalocean.com/community/tutorials/how-to-work-with-the-zeromq-messaging-library
http://www0.cs.ucl.ac.uk/research/darpa/pgm/PGM_FINAL.html
http://www0.cs.ucl.ac.uk/research/darpa/pgm/PGM_FINAL.html
https://zguide.zeromq.org/docs/chapter2/
https://zguide.zeromq.org/docs/chapter2/
http://api.zeromq.org/2-1:zmq-setsockopt
http://api.zeromq.org/2-1:zmq-setsockopt
https://www.dds-foundation.org/what-is-dds-3/
https://www.dds-foundation.org/what-is-dds-3/
https://doi.org/10.1109/ICMCIS52405.2021.9486407
https://doi.org/10.1109/ICMCIS52405.2021.9486407
https://docs.nats.io/legacy/stan/streaming/protocol
https://docs.nats.io/legacy/stan/streaming/protocol
https://doi.org/10.1109/MILCOM.2009.5379952

[40] The ZeroMQ authors, Norm transport notes, http://wiki.zeromq.org/topics:norm-
protocol-transport, Accessed on 2022.06.08.

[41] The Tcpdump Group, Tcpdump and libcap, https://tcpdump.org/, Accessed on
2022.06.08.

[42] G. Harris, Ed. and M. Richardson Sandelman, Pcap capture file format, https :
//tools.ietf.org/id/draft-gharris-opsawg-pcap-00.html, Accessed on 2022.06.08.

[43] Wireshark Foundation, About Wireshark, https://www.wireshark.org/, Accessed on
2022.06.08.

[44] Matthew Treinish and Jeremy Stanley, Pymqttbench, https://github.com/mtreinish/
pymqttbench, Accessed on 2022.06.08.

[45] J. Ahrenholz, T. Goff and B. Adamson, ‘Integration of the core and emane network
emulators’, in 2011 - MILCOM 2011 Military Communications Conference, 2011.
doi: 10.1109/MILCOM.2011.6127585.

[46] A. Jurgelionis, J.-P. Laulajainen, M. Hirvonen and A. I. Wang, ‘An empirical study
of netem network emulation functionalities’, in 2011 Proceedings of 20th Interna-
tional Conference on Computer Communications and Networks (ICCCN), 2011,
pp. 1–6. doi: 10.1109/ICCCN.2011.6005933.

[47] NumFOCUS, Pandas, https://pandas.pydata.org/, Accessed on 2022.06.08.

[48] Plotly, Plotly dash, https://plotly.com/dash/, Accessed on 2022.06.08.

[49] Oracle Corporation, MySQL, https://www.mysql.com/, Accessed on 2022.06.08.

[50] Linux Foundation, Netem, https : / /wiki . linuxfoundation . org / networking / netem,
Accessed on 2022.06.08.

[51] OpenStreetMap contributors, Dash Leaflet, https://dash- leaflet.herokuapp.com/,
Accessed on 2022.06.08.

[52] Oracle Corporation, MySQL Connector/Python Developer Guide, https : / / dev .
mysql.com/doc/connector-python/en/, Accessed on 2022.06.08.

[53] ——, Virtualbox, https://www.virtualbox.org/, Accessed on 2022.06.08.

[54] National Air and Space Museum, The Blue Force Tracker System, https://timeandnavigation.
si.edu/multimedia-asset/the-blue-force-tracker-system, Accessed on 2022.06.08.

[55] J. Dugan et al., iPerf - The ultimate speed test tool for TCP, UDP and SCTP,
https://iperf.fr/, Accessed on 2022.06.08.

[56] Eclipse Foundation, Eclipse Mosquitto™ An open source MQTT broker, https://
mosquitto.org/, Accessed on 2022.06.08.

[57] ——, Paho-mqtt, https://pypi.org/project/paho-mqtt/, Accessed on 2022.06.08.

[58] ——, MQTT-SN Transparent Gateway, https://eclipse.org/paho/index.php?page=
components/mqtt-sn-transparent-gateway/index.php, Accessed on 2022.06.08.

[59] Steve Cope, Using The Python MQTT-SN Client, http ://www.steves - internet -
guide.com/python-mqttsn-client/, Accessed on 2022.06.08.

[60] The ZeroMQ authors, Chapter 5 - Advanced Pub-Sub Patterns, https ://zguide .
zeromq.org/docs/chapter5/, Accessed on 2022.06.08.

[61] rickyteng, Zeromq xpub xsub example.md, https : / / gist . github . com / rickyteng /
0acfc9f42325e59ff6360a9a82035e50, Accessed on 2022.06.08.

[62] Linux Manual Page, Raw(7), https://man7.org/linux/man-pages/man7/raw.7.html,
Accessed on 2022.06.08.

[63] T. Bray, ‘The JavaScript Object Notation (JSON) Data Interchange Format’,
Google, Inc., RFC 7159, Mar. 2014, pp. 1–15. [Online]. Available: https://datatracker.
ietf.org/doc/html/rfc7159.

[64] H. Butler, M. Daly, A. Doyle, S. Gillies, T. Schaub and S. Hagen, The GeoJSON
Format, RFC 7946, Aug. 2016. doi: 10.17487/RFC7946. [Online]. Available: https:
//rfc-editor.org/rfc/rfc7946.txt.

69

http://wiki.zeromq.org/topics:norm-protocol-transport
http://wiki.zeromq.org/topics:norm-protocol-transport
https://tcpdump.org/
https://tools.ietf.org/id/draft-gharris-opsawg-pcap-00.html
https://tools.ietf.org/id/draft-gharris-opsawg-pcap-00.html
https://www.wireshark.org/
https://github.com/mtreinish/pymqttbench
https://github.com/mtreinish/pymqttbench
https://doi.org/10.1109/MILCOM.2011.6127585
https://doi.org/10.1109/ICCCN.2011.6005933
https://pandas.pydata.org/
https://plotly.com/dash/
https://www.mysql.com/
https://wiki.linuxfoundation.org/networking/netem
https://dash-leaflet.herokuapp.com/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://www.virtualbox.org/
https://timeandnavigation.si.edu/multimedia-asset/the-blue-force-tracker-system
https://timeandnavigation.si.edu/multimedia-asset/the-blue-force-tracker-system
https://iperf.fr/
https://mosquitto.org/
https://mosquitto.org/
https://pypi.org/project/paho-mqtt/
https://eclipse.org/paho/index.php?page=components/mqtt-sn-transparent-gateway/index.php
https://eclipse.org/paho/index.php?page=components/mqtt-sn-transparent-gateway/index.php
http://www.steves-internet-guide.com/python-mqttsn-client/
http://www.steves-internet-guide.com/python-mqttsn-client/
https://zguide.zeromq.org/docs/chapter5/
https://zguide.zeromq.org/docs/chapter5/
https://gist.github.com/rickyteng/0acfc9f42325e59ff6360a9a82035e50
https://gist.github.com/rickyteng/0acfc9f42325e59ff6360a9a82035e50
https://man7.org/linux/man-pages/man7/raw.7.html
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://doi.org/10.17487/RFC7946
https://rfc-editor.org/rfc/rfc7946.txt
https://rfc-editor.org/rfc/rfc7946.txt

[65] E. Y. Jeong et al., ‘Mtcp: A highly scalable user-level tcp stack for multicore
systems’, in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’14, Seattle, WA: USENIX Association, 2014,
pp. 489–502, isbn: 9781931971096.

70

Appendix

A Additional Details About the Analysis Tool

The analysis tool includes the test framework, frontend, and database connector modules
as specified in Chapter 3. The project includes a requirement.txt file which will install
the required dependencies for the project. Installing the requirements can be achieved
through the command ‘pip install -r requirements.txt -v’. Once the requirements are
installed, the program can be started by running the main.py file, located at the root of
the project directory.

Data used for packaging messages are found in the data folder in the root directory.
We have both GPS data and image data. The GPS data comes from several GPX files
containing coordinates (latitude and longitude). The image data is a single file used for
all tests. Any data can be added or removed from these folders. For GPS data, the file
name format must be specified as a node’s name, e.g., ‘NOR-UNIT001.gpx’.

Due to time constraints, we could not make the frontend fully configurable, meaning that
some settings are stored and loaded through JSON files. These files can be found in the
config folder in the root directory. These include some settings that are already handled
by the frontend, such as protocol and test duration, while others relate to the name of
the nodes, their topic, and the IP address of the broker.

Data saved locally from each test are stored in the logs folder, which is found at the
project’s root. Logs are divided up into live and post data, where live is data from every
publisher node and every subscriber node. Post data are collected data and statistics.
This is also where the network data is saved in a PCAP file.

The database is tightly coupled to the tool and is located on an NTNU server. As
mentioned in Chapter 3, the connection to the database requires the user to either be
on an NTNU network or be connected through one with the use of VPN. Unfortunately,
this requirement is a limitation in the tool’s usage, as the user cannot fetch or upload
data without a connection to the database. In chapter 9, section 9.4 we mention that the
tool should be open sourced in the future. This would include removing the dependency
of having the database on an NTNU server and allowing custom data storage solutions.

71

B Virtual Machine Configuration

This section describes the configuration of the virtual machine that we have used. Most
of the settings we have used are the default ones when configuring a virtual machine
through VirtualBox.

Figure 39: Virtual Machine settings

Figure 40: Virtual Machine network settings

Figure 39 gives an overview of the settings we have used when configuring the virtual
machine. The machine has a base memory of 4955 MB and video memory of 64 MB,
which is enough to run the brokers and gateway for our tests. For the network settings,
we have used a ‘Host-only’ adapter, which can be seen in figure 40. As shown in the
figure, there is also an adapter 1, which we have set up to allow internet access for the
virtual machine. This is not strictly necessary to have in the setup.

72

C iPerf3

To run iPerf3, we will first need to start a server on the virtual machine. To run the
server, use the following command: ‘iperf3 -s’. Once the server is running on the virtual
machine, open the terminal on the host machine and run the following command: ‘iperf3
-c IP address’, where the address of your virtual machine replaces the IP address.

Figure 41: Results from running Iperf3 in the terminal

Figure 41 shows the results from running iPerf3. in this figure, iPerf3 was run after
starting a test using the SATCOM network model. We can see that the test with iPerf3
ran for 14.36 seconds, and the bitrate was 217 kbit/s, which is slightly below the limitation
set by Netem, which is 250 kbit/s. The reason for this is other traffic on the network
from the test currently running. If we see that the results are far outside what we would
expect, then we know that the Netem configuration has not been properly set and should
restart the test.

73

D MQTT-SN Setup

This section describes the setup for running MQTT-SN with our analysis tool. This
mainly involves setting up the gateway to receive and send messages from the clients.

The gateway we have used during this thesis is the paho mqtt-sn gateway which can be
found on GitHub. In order to set up the gateway, we need to do the following steps:

1. download and unzip the files from the Github

2. Run the command ‘cd paho.mqtt-sn.embedded-c/MQTTSNGateway’

3. Run the command ‘./build.sh udp’

4. Run the command ‘cd bin’

5. Finally, run the command ‘./MQTT-SNGateway’, optionally add ‘gateway.conf’ at
the end of the command.

Figure 42: The MQTT-SN gateway running in the terminal

The gateway should now be up and running and will look like what can be seen in figure
42. If we run the MQTT broker on a different port than the standard 1883, we will
need to change this in the gateway.conf file. The value that needs to be changed is the
one for ‘BrokerPortNo’. We had some issues with the number of clients exceeding the
maximum allowed for the gateway during testing. This mainly happened with the more
challenging network models. This may have been because the clients disconnected several
times during the test, and they would reconnect as new clients, adding to the current
client count. For this reason, the value for ‘MaxNumberOfClients’ should be increased.
We have used a value of 5000, but this may be excessive. No other changes should be
necessary to replicate the test setup we have used.

74

https://github.com/eclipse/paho.mqtt-sn.embedded-c

E ZeroMQ with PGM Setup

This section describes the configurations needed to get PGM working with ZeroMQ.

ZeroMQ does not come with support for PGM through the standard installation of the
zmq package. Enabling PGM requires a custom installation which involves a few steps.
The following steps should install ZeroMQ and enable the use of PGM for the clients. We
followed this process on both the local and virtual machines before testing the protocol.
This process may require that we first uninstall zmq through a ‘pip uninstall zmq’ process.
Note that some of the commands may require the ‘sudo’ prefix.

1. First, we need to download the ZeroMQ package from the ZeroMQ Github. We
have used the newest version, zeromq-4.1.8.tar.gz.

2. Run the command ‘tar zxvf zeromq-4.1.8.tar.gz’ in the directory where you have
downloaded the package to.

3. Run the command ‘cd zeromq-4.1.8’

4. Run the command ‘apt-get install libpgm-dev’

5. Run the command ‘./configure –with-pgm && make && make install’

6. Finally, run the command ‘pip install –no-binary :all: pyzmq’

ZeroMQ should now be configured and usable with the PGM protocol. Note that PGM
requires raw IP sockets that require certain privileges on Linux. We instead opted to use
EPGM, which does not require any special privileges.

self.socket.connect("epgm://vboxnet0;224.0.0.1:6788")

Listing 4: Connecting to broker from client

Listing 4 show the connection string that is used to connect to the broker with PGM. It
is similar to using TCP, but there are a few changes. The protocol is now set to ‘epgm’
instead of ‘tcp’. The endpoint, after the ‘//’ now consists of an interface (in our case
vboxnet0), followed by a semicolon, then comes the multicast address, a colon, and the
port number. Note that EPGM will not work on a loopback adapter on Linux, meaning
that we can not send messages to ourselves on the same machine, requiring either another
physical machine or a virtual machine. The virtual machine we have used is set up as a
‘Host-only’ network, but it should also work with a ‘Bridged’ network.

xpub_addr = 'epgm://192.168.56.101;224.0.0.1:6788'

xsub_addr = 'epgm://224.0.0.1:6787'

Listing 5: Binding the endpoints on the broker

Listing 5 shows the addressing on the broker to bind the endpoints. The connection
string is similar to that which is found on the client. The interface is different because
it uses the local/host machine interface. ZeroMQ accepts the interface as either a name
specified by the operating system or an IPv4 address in its numerical representation. In
listing 4 we have used the name, while in listing 5 we have used the IPv4 representation.

75

https://github.com/zeromq/zeromq4-1/releases

F Results for MQTT

F.1 5G

Table 40 shows the results from the tests using the 5G model on the network layer. From
the results we see that the test with GPS data produced 8702 packets, while the test
with image data produced 8714 packets. The test with GPS data had a data rate of 24
kbit/s while the test with image data had a the data rate of 69 kbit/s. GPS data had
a minimum message size of 477 bytes, an average of 482 bytes and a maximum of 484
bytes. Image data had a minimum message size of 90 bytes, an average 1553 bytes and a
maximum of 5885 bytes. The test with GPS data had 0 retransmissions and 1 duplicate
ACK. The test with image data produced 0 retransmissions and 0 duplicate ACKs.

Data Type GPS Image
Total packets 8702 8714
Data rate 24 kbit/s 69 kbit/s
Min message size 477 bytes 90 bytes
Avg message size 482 bytes 1553 bytes
Max message size 484 bytes 5885 bytes
TCP retransmissions 0 0
Duplicate ACKs 1 0

Table 40: Results from 5G tests on the network layer

Table 41 shows the results from the tests using the 5G model on the application layer.
From the results using GPS data we see that 536 messages were sent with QoS 0, 532
messages with QoS 1 and 531 messages with QoS 2. Zero packet loss was recorded for all
QoS levels. The minimum delay was 0.04 seconds for all QoS levels. QoS 0 and QoS 1 had
an average delay of 0.07 seconds, while QoS 2 had an average delay of 0.09 seconds. No
clients disconnected during the test. From the results using image data we see that 532
messages were sent using QoS 0, 533 messages with QoS 1 and 533 messages with QoS 2.
Zero packet loss was recorded for all QoS levels. The minimum delay was 0.04 seconds
for all QoS levels. QoS 0 had an average delay of 0.09 seconds, QoS 1 had an average
delay of 0.08 seconds and QoS 2 had an average delay of 0.11 seconds. The maximum
delay using QoS 0 was 1.32 seconds, 1.18 seconds using QoS 1 and 2.21 seconds using
QoS 2. No clients were disconnected during the test.

Data type QoS
Message
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Disconnections

GPS

0 536 0% 0.04 s 0.07 s 0.99 s 0
1 532 0% 0.04 s 0.07 s 1.23 s 0
2 531 0% 0.04 s 0.09 s 0.63 s 0
Total/Avg 1599 0% 0.04 s 0.08 s 0.95 s 0

Image

0 532 0% 0.04 s 0.09 s 1.32 s 0
1 533 0% 0.04 s 0.08 s 1.18 s 0
2 533 0% 0.04 s 0.11 s 2.21 s 0
Total/Avg 1598 0% 0.04 s 0.09 s 1.57 s 0

Table 41: Results from 5G tests on the application layer

F.2 Tactical Broadband

Table 42 shows the results from testing with Tactical Broadband on the network layer.
The total number of packets captured was 8816 for GPS data and 9260 for image data.
The data rate produced by GPS data was 25 kbit/s, and 40 kbit/s for image data. The
average message size was 477 bytes for GPS and 521 bytes for images. With GPS data

76

the number of retransmissions were 82 and the number of duplicate ACKs were 27. Image
data produced 121 retransmissions and 61 duplicate ACKs.

Data Type GPS Image
Total packets 8816 9260
Data rate 25 kbit/s 40 kbit/s
Min message size 477 bytes 90 bytes
Avg message size 482 bytes 521 bytes
Max message size 484 bytes 1589 bytes
TCP retransmissions 82 121
Duplicate ACKs 27 61

Table 42: Results from Tactical Broadband tests on the network layer

Table 43 shows the results from both tests on the application layer. Both tests sent 1620
messages each and the packet loss was zero percent. For GPS data with QoS 0 and QoS
1, the average transmit delay was 0.12 seconds, while it was 0.33 seconds for QoS 2.
The lowest delay found was 0.11 seconds for QoS 0 and 1, while the highest delay was
0.74 seconds using QoS 2. Using image data with QoS 0 gave an average delay of 0.15
seconds, 0.16 seconds with QoS 1 and 0.41 seconds for QoS 2. The lowest delay found
was using QoS 0 and 1 with 0.11 seconds, while the highest delay was found using QoS
2 at 1.44 seconds. None of the clients disconnect during both tests.

Data type QoS
Message
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Disconnections

GPS

0 540 0% 0.11 s 0.12 s 0.45 s 0
1 540 0% 0.11 s 0.12 s 0.44 s 0
2 540 0% 0.31 s 0.33 s 0.74 s 0
Total/Avg 1620 0% 0.18 s 0.19 s 0.54 s 0

Image

0 540 0% 0.11 s 0.15 s 0.74 s 0
1 540 0% 0.11 s 0.16 s 0.58 s 0
2 539 0% 0.32 s 0.41 s 1.44 s 0
Total/Avg 1619 0% 0.18 s 0.24 s 0.92 s 0

Table 43: Results from Tactical Broadband tests on the application layer

The following network tests will display transmit delay data in a barchart. This was not
included in tests using the 5G and Tactical Broadband network models due to the low
times found, making them not suitable for visual presentation and comparison.

F.3 SATCOM

Table 44 shows the results from testing using SATCOM on the network layer. The
total number of packets captured was 8833 for GPS data and 8824 for image data. The
data rate from the test using GPS data is 23 kbit/s and 22 kbit/s for image data. The
average message size for GPS data is 482 bytes and 467 bytes for images. The GPS
test had 28 retransmissions and 27 duplicate ACKs, while the test with images had 162
retransmissions and 167 duplicate ACKs.

77

Data Type GPS Image
Total packets 8833 8824
Data rate 23 kbit/s 22 kbit/s
Min message size 477 bytes 90 bytes
Avg message size 482 bytes 467 bytes
Max message size 484 bytes 1589 bytes
TCP retransmissions 28 162
Duplicate ACKs 27 167

Table 44: Results from SATCOM tests on the network layer

Figure 43: Average delay per QoS using the SATCOM network model

Figure 43 shows that the average delay was higher when using image data over GPS
data. Table 45 shows the results from tests on the application layer with the SATCOM
network model. Each test had a total of 1619 messages sent and both had a packet loss
of zero percent. For the test with GPS data, the average delay was 0.60 seconds using
QoS 0, 0.62 seconds using QoS 1 and 1.78 seconds using QoS 2. The lowest delay found
was 0.57 seconds using QoS 0 and 1. The highest delay was found using QoS 2 and was
2.41 seconds. For the test with image data the average delay was 2.20 seconds for QoS
0, 1.86 seconds for QoS 1 and 4.34 seconds for QoS 2. The lowest delay found was 0.61
seconds using QoS 1, and the highest delay was 5.54 seconds using QoS 2. None of the
clients disconnected during both of the tests.

Data type QoS
Message
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Disconnections

GPS

0 540 0% 0.57 s 0.60 s 1.16 s 0
1 540 0% 0.57 s 0.62 s 0.74 s 0
2 539 0% 1.69 s 1.78 s 2.41 s 0
Total/Avg 1619 0% 0.94 s 1.00 s 1.44 s 0

Image

0 540 0% 0.63 s 2.20 s 4.35 s 0
1 540 0% 0.61 s 1.86 s 4.38 s 0
2 539 0% 3.16 s 4.34 s 5.54 s 0
Total/Avg 1619 0% 1.47 s 2.80 s 4.76 s 0

Table 45: Results from SATCOM tests on the application layer

F.4 NATO Narrowband Waveform

Table 46 shows the results from testing with the NATO Narrowband model on the net-
work layer. The total number of packets captured was 8615 for GPS data and 8541 for
image data. The data rate for GPS data was 22 kbit/s and 10 kbit/s for images. The
average message size was 482 bytes for GPS and 1343 bytes for images. Testing using
GPS data had 313 retransmissions and 313 duplicate ACKs. For image data the number
of retransmissions was 1347 and the number of duplicate ACKs was 619.

78

Data Type GPS Image
Total packets 8615 655
Data rate 22 kbit/s 4.28 kbit/s
Min message size 477 bytes 90 bytes
Avg message size 482 bytes 1078 bytes
Max message size 488 bytes 1588 bytes
TCP retransmissions 313 1424
Duplicate ACKs 313 341

Table 46: Results from NATO Narrowband tests on the network layer

Figure 44: Average delay per QoS using the NATO Narrowband network model

Figure 44 shows that the average delay was significantly higher when using image data.
It also shows that no messages arrived using QoS 2. Table 47 shows the results from
the application layer. The number of messages sent using GPS data was 1605 and there
was no packet loss. The average delay found was 3.92 seconds using QoS 0, 5.31 seconds
using QoS 1 and 19.00 seconds using QoS 2. The smallest delay found was 1.24 seconds
using QoS 0 and the highest was 40.25 seconds using QoS 2. No clients disconnected
during the test with GPS data. For image data, a total of 308 messages were sent. QoS
0 had a packet loss of 85.86%, QoS 1 had a loss of 91.09% and QoS 2 lost all messages.
The average delay was 23.05 seconds using QoS 0 and 24.79 seconds using QoS 1. The
lowest delay found was 1.51 seconds using QoS 0 and the highest was 33.59 seconds using
QoS 1. For all QoS levels, 18 clients disconnected during the test.

Data type QoS
Message
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Disconnections

GPS

0 540 (0%) 1.24 s 3.92 s 10.02 s 0
1 533 (0%) 2.62 s 5.31 s 12.45 s 0
2 532 (0%) 9.55 s 19.00 s 40.25 s 0
Total/Avg 1605 (0%) 13.41 s 9.41 s 20.91 s 0

Image

0 99 85 (85.86%) 1.51 s 23.05 s 50.16 s 18
1 101 92 (91.09%) 17.87 s 24.79 s 33.59 s 18
2 108 108 (100%) NA NA NA 18
Total/Avg 308 285 (92.53%) 9.69 s 23.92 s 83.75 s 54

Table 47: Results from NATO Narrowband tests on the application layer

F.5 CNR with 1% loss

Table 48 shows the results on the network layer using the CNR network model with 1%
loss. The total number of packets sent during testing with GPS data was 2556 and 410
with image data. GPS data had a data rate of 10 kbit/s and image data had a rate of
2.64 kbit/s. The average message size was 718 bytes using GPS data and 1041 bytes
using image data. The number of retransmissions was 1957 and the number of duplicate

79

ACKs was 713, using GPS data. For image data the number of retransmissions was 1406
and the number of duplicate ACKs was 347.

Data Type GPS Image
Total packets 2556 410
Data rate 10 kbit/s 2.64 kbit/s
Min message size 81 bytes 90 bytes
Avg message size 718 bytes 1041 bytes
Max message size 2962 bytes 1588 bytes
TCP retransmissions 1957 1406
Duplicate ACKs 713 347

Table 48: Results from CNR tests with 1% loss on the network layer

Figure 45: Average delay per QoS using the CNR network model with 1% loss

Figure 45 shows that the average delay was higher when using GPS data than image
data for QoS 1. We can also see that no messages arrived for QoS 2 when sending image
data. Table 49 show the results for CNR with 1% loss on the application layer. The
total number of messages sent using GPS data was 829. QoS 0 had a 21.01% loss, QoS 1
had a 0% loss and QoS 2 had the highest loss with 23.26% loss. The average delay was
28.58 seconds using QoS 0, 146.39 seconds using QoS 1 and 226.88 seconds using QoS
2. The lowest delay recorded was 0.62 seconds using QoS 0 and the highest delay was
610.17 seconds using QoS 1. QoS 0 had 17 clients disconnect, while QoS 1 and 2 had 18
clients disconnect during the test. Using image data, a total of 318 messages were sent.
QoS 0 had a packet loss of 91.35%, QoS 1 had a packet loss of 91.51% and QoS 2 lost
all messages. The average delay for QoS 0 was 35.22 seconds and QoS 1 had an average
delay of 34.57 seconds. The lowest delay found was 5.58 seconds using QoS 1 and the
highest delay was 59.02 seconds using QoS 0. All QoS levels had 18 clients disconnect
each during the test.

Data type QoS
Message
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Disconnections

GPS

0 357 75 (21.01%) 0.62 s 28.58 s 94.43 s 17
1 214 0% 3.37 s 146.39 s 512.25 s 18
2 258 60 (23.26%) 13.67 s 226.88 s 610.17 s 18
Total/Avg 829 135 (16.28%) 5.89 s 255.90 s 227.86 s 53

Image

0 104 95 (91.35%) 6.97 s 35.22 s 59.02 s 18
1 106 97 (91.51%) 5.58 s 34.57 s 57.64 s 18
2 108 108 (100%) NA NA NA 18
Total/Avg 318 300 (94.34%) 6.28 s 34.90 s 58.33 s 54

Table 49: Results from CNR tests with 1% loss tests on the application layer

80

F.6 CNR with 10% loss

Table 50 show the test results using CNR with 1% loss on the network layer. Using
GPS data the total number of packets sent was 2729 and using image data the number
was 494. The data rate for tests with GPS data was 10 kbit/s and 2.84 kbit/s using
image data. The average message size was 669 bytes with GPS data and 920 bytes with
image data. Using GPS data the number of retransmissions was 1729 and the number of
duplicate ACKs was 560. For image data the number of retransmissions was 1596 and
the number of duplicate ACKs was 330.

Data Type GPS Image
Total packets 2729 494
Data rate 10 kbit/s 2.84 kbit/s
Min message size 76 bytes 90 bytes
Avg message size 669 bytes 920 bytes
Max message size 1717 bytes 1588 bytes
TCP retransmissions 1729 1596
Duplicate ACKs 560 330

Table 50: Results from CNR tests with 10% loss on the network layer

Figure 46: Average delay per QoS using the CNR network model with 10% loss

Figure 46 shows that using QoS 0, GPS data had a higher average delay over image data.
Using QoS 1, the average delay was also much higher when sending GPS data. QoS 2
had no messages arrive when sending image data. Table 51 show the results from the
application layer. Using GPS data the number of messages sent was 995. QoS 0 had a
packet loss of 8.55%, QoS 1 had a packet loss of 19.37% and QoS 2 had a packet loss of
61.78%. The average delay for QoS 0 was 33.80 seconds, for QoS 1 it was 82.14 seconds
and for QoS 2 it was 85.05 seconds. The lowest delay found was 0.55 seconds using QoS
0 and the highest delay was 500.62 seconds using QoS 1. QoS 0 had 9 clients disconnect,
QoS 1 had 15 clients disconnect and QoS 2 had 18 clients disconnect. The test with
image data had a total of 316 messages sent. QoS 0 had a packet loss of 94.29%, QoS 1
had a loss of 91.51% and QoS 2 lost all messages. The average delay for QoS 0 was 30.67
seconds and for QoS 1 it was 40.10 seconds. The lowest delay found was 5.30 seconds
using QoS 0 and the highest delay was 58.87 seconds using QoS 1. All QoS levels ad 18
clients disconnect each.

81

Data type QoS
Message
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Disconnections

GPS

0 421 36 (8.55%) 0.55 s 33.80 s 120.18 s 9
1 315 61 (19.37%) 1.19 s 82.14 s 500.62 s 15
2 259 160 (61.78%) 4.10 s 85.05 s 185.67 s 18
Total/Avg 995 257 (25.83%) 1.95 s 67.00 s 268.82 s 42

Image

0 105 99 (94.29%) 5.30 s 30.67 s 49.63 s 18
1 106 97 (91.51%) 6.66 s 40.10 s 58.87 s 18
2 105 105 (100%) NA NA NA 18
Total/Avg 316 301 (95.25%) 5.98 s 35.39 s 54.25 s 54

Table 51: Results from CNR tests with 10% loss tests on the application layer

82

G Results for MQTT-SN

Using MQTT-SN we have ran the same test as with MQTT. The only exceptions are that
we have not tested using QoS 2 and only used 18 clients. This is due to the clients we
have used do not support QoS higher than 1. There exists other clients that do support
QoS 2, but they have other issues that make them unsuitable for test. Unfortunately this
means that no direct comparison can be made between MQTT and MQTT-SN when it
comes to QoS 2.

G.1 5G

Table 52 shows the results from the standard test using the 5G model on the network
layer. The results show that 4520 packets where produced, and the data rate was 12
kbit/s. The minimum message size found was 429 bytes, the average message size was
432 bytes and the maximum was also 432 bytes.

Protocol Standard
Total packets 4520
Data rate 12 kbit/s
Min message size 429 bytes
Avg message size 432 bytes
Max message size 432 bytes

Table 52: Results from the 5G test on the network layer (Standard)

Table 53 shows the results from the hybrid test using the 5G model on the network layer.
We can see that MQTT produced 2070 packets while MQTT-SN produced 1692 packets.
MQTT had a data rate of 7.35 kbit/s and MQTT-SN had a data rate of 6.69 kbit/s.
With MQTT the minimum message size was 480 bytes, the average was 484 bytes and
the maximum was 485 bytes. MQTT-SN had a minimum message size of 429 bytes, an
average of 432 bytes and a maximum of 432 bytes.

Protocol MQTT MQTT-SN
Total packets 2070 1692
Data rate 7.35 kbit/s 6.69 kbit/s
Min message size 480 bytes 429 bytes
Avg message size 484 bytes 432 bytes
Max message size 485 bytes 432 bytes

Table 53: Results from the 5G test on the network layer (Hybrid)

Table 54 shows the results from using the 5G model on the application layer. The
standard test produced 1076 messages with zero packet loss. The minimum delay was
0.07 seconds using both QoS levels. The average delay was 0.09 seconds for QoS 0, and
0.10 seconds for QoS 1. The max delay was 1.27 seconds using QoS 0 and 0.82 seconds
using QoS 1. From the hybrid test we see that 1080 messages were produced and that
zero packet loss occurred during the test. The minimum delay was 0.02 seconds for both
QoS levels. The average was the same for both QoS levels at 0.03 seconds. QoS 0 had a
maximum delay of 0.23 seconds, while QoS 1 had a maximum delay of 0.18 seconds.

83

Test Variation QoS
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Standard
0 539 0% 0.07 s 0.09 s 1.27 s
1 537 0% 0.07 s 0.10 s 0.82 s
Total/Avg 1076 0% 0.07 s 0.10 s 1.05 s

Hybrid
0 540 0% 0.02 s 0.03 s 0.23 s
1 540 0% 0.02 s 0.03 s 0.12 s
Total/Avg 1080 0% 0.02 s 0.03 s 0.18 s

Table 54: Results from 5G tests on the application layer

G.2 Tactical Broadband

Table 55 shows the results from the standard test using the Tactical Broadband model
on the network layer. From the results we see that 4378 packets were produced, and the
data rate was 13 kbit/s. The minimum message size found was 429 bytes, the average
message size was 432 bytes and the maximum message size was also 432 bytes.

Protocol Standard
Total packets 4378
Data rate 13 kbit/s
Min message size 429 bytes
Avg message size 432 bytes
Max message size 432 bytes

Table 55: Results from the Tactical Broadband test on the network layer (Standard)

Table 56 shows the results from the hybrid test using the Tactical Broadband model on
the network layer. The MQTT protocol produced 2033 packets, while the MQTT-SN
protocol produced 1672 packets. MQTT had a data rate of 7.55 kbit/s, while MQTT-SN
had a data rate of 6.48 kbit/s. The minimum message size found with MQTT was 480
bytes, the average was 484 bytes and the maximum was 485 bytes. With MQTT-SN the
minimum message size was 429 bytes, while the average and maximum was 432 bytes.

Protocol MQTT MQTT-SN
Total packets 2033 1672
Data rate 7.55 kbit/s 6.48 kbit/s
Min message size 480 bytes 429 bytes
Avg message size 484 bytes 432 bytes
Max message size 485 bytes 432 bytes

Table 56: Results from the Tactical Broadband test on the network layer (Hybrid)

Table 57 shows the results using the Tactical Broadband model on the application layer.
From the results we see that the standard test produced 538 messages using QoS 0 and
536 messages using QoS 1. No packet loss occurred during the test. The minimum delay
was 0.15 seconds for both QoS levels. QoS 0 had an average delay of 0.15 seconds, while
QoS 1 had an average delay of 0.19 seconds. The maximum delay was 1.31 seconds using
QoS 0 and 0.91 seconds using QoS 1. From the hybrid test we see that QoS 0 produced
540 messages while QoS 1 produced 538 messages. There was zero packet loss during
the test. Both QoS levels had a minimum delay of 0.15 seconds. QoS 0 had an average
delay of 0.16 seconds, while QoS 1 had an average delay of 0.17 seconds. The maximum
delay was 0.51 seconds using QoS 0, and 0.44 seconds using QoS 1.

84

Test Variation QoS
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Standard
0 538 0% 0.15 s 0.17 s 1.31s
1 536 0% 0.15 s 0.19 s 0.91 s
Total/Avg 1074 0% 0.15 s 0.18 s 1.11 s

Hybrid
0 540 0% 0.15 s 0.16 s 0.51 s
1 538 0% 0.15 s 0.17 s 0.44 s
Total/Avg 1078 0% 0.15 s 0.17 s 0.48 s

Table 57: Results from Tactical Broadband tests on the application layer

G.3 SATCOM

Table 58 shows the results from the standard test using the SATCOM model on the
network layer. From the results we see that 4464 packets were produced and the data
rate was 13 kbit/s. The minimum message size was 429 bytes, the average was 432 bytes
and the maximum was also 432 bytes.

Protocol Standard
Total packets 4464
Data rate 13 kbit/s
Min message size 429 bytes
Avg message size 432 bytes
Max message size 432 bytes

Table 58: Results from the SATCOM test on the network layer (Standard)

Table 59 shows the results from the hybrid test using the SATCOM model on the network
layer. From the results we can see that MQTT produced 2080 packets, while MQTT-SN
produced 1692 packets. MQTT had a data rate of 7.05 kbit/s, while MQTT-SN had a
data rate of 6.49 kbit/s. MQTT had a minimum message size of 480 bytes, an average
of 484 bytes and a maximum of 485 bytes. MQTT-SN had a minimum message size of
429 bytes, an average of 432 bytes and a maximum of 432 bytes.

Data Type MQTT MQTT-SN
Total packets 2080 1692
Data rate 7.05 kbit/s 6.49 kbit/s
Min message size 480 bytes 429 bytes
Avg message size 484 bytes 432 bytes
Max message size 485 bytes 432 bytes

Table 59: Results from SATCOM tests on the network layer (Hybrid)

Figure 47: Average delay using the SATCOM network model

85

Figure 47 shows that both test had an almost identical average transmit delay. Results
from the application layer is shown in table 60. From the standard test we see that QoS
0 and 1 produced 540 messages each. No loss occurred during the test. The minimum
delay found was 0.57 seconds for both QoS levels. The average was the same for both
QoS levels at 0.59 seconds. The max delay was 0.72 seconds for QoS 0 and 0.70 seconds
for QoS 1. For the hybrid test, 540 messages were produced from both QoS levels and
no packet loss was recorded. The minimum delay was 0.57 seconds for both QoS levels.
The average delay was 0.61 seconds for QoS 0 and 0.62 seconds for QoS 1. The highest
delay was the same at 1.02 seconds for both QoS levels.

Test Variation QoS
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Standard
0 540 0% 0.57 s 0.59 s 0.72 s
1 540 0% 0.57 s 0.60 s 0.70 s
Total/Avg 1080 0% 0.57 s 0.60 s 0.66 s

Hybrid
0 540 0% 0.57 s 0.61 s 1.02 s
1 540 0% 0.57 s 0.62 s 1.02 s
Total/Avg 1080 0% 0.57 s 0.62 s 1.02 s

Table 60: Results from SATCOM tests on the application layer

G.4 NATO Narrowband

Table 61 shows the results from the standard test using the NATO Narrowband model
on the network layer. The test produced 4464 packets and had a data rate of 13 kbit/s.
The minimum message size was 429 bytes, the average was 432 bytes and the maximum
was also 432 bytes.

Protocol Standard
Total packets 4464
Data rate 13 kbit/s
Min message size 429 bytes
Avg message size 432 bytes
Max message size 432 bytes

Table 61: Results from the NATO Narrowband test on the network layer (Standard)

Table 62 shows the results from the hybrid test using the NATO Narrowband model on
the network layer. The MQTT protocol produced 2076 packets, while the MQTT-SN
protocol produced 1692 packets. MQTT had a data rate of 6.98 kbit/s and MQTT-SN
had a data rate of 6.47 kbit/s. MQTT had a minimum message size of 480 bytes, an
average of 484 bytes and a maximum of 485 bytes. MQTT-SN had a minimum message
size of 429 bytes, an average of 432 bytes and a maximum of 432 bytes.

Data Type MQTT MQTT-SN
Total packets 2076 1692
Data rate 7.20 kbit/s 6.47 kbit/s
Min message size 480 bytes 429 bytes
Avg message size 484 bytes 432 bytes
Max message size 485 bytes 432 bytes

Table 62: Results from NATO Narrowband tests on the network layer (Hybrid)

86

Figure 48: Average delay using the NATO Narrowband network model

Figure 48 shows that the standard test variation has a slightly higher average transmit
delay than the hybrid variation. Table 63 shows the results from testing on the application
layer using the NATO Narrowband network model. From the standard tests we see that
both QoS levels produced 540 messages each, with no packet loss. The minimum delay
for QoS 0 was 0.72 seconds, while it was 1.35 seconds for QoS 1. The average delay was
1.68 seconds for QoS 0 and 2.95 seconds for QoS 1. Max delay was found to be 3.64
seconds for QoS 0 and 4.20 seconds for QoS 1. From the hybrid tests we see that both
QoS levels produced 540 messages each with no packet loss. The minimum delay was
0.72 seconds for QoS 0 and 1.04 seconds for QoS 1. The average delay for QoS 0 was
2.00 seconds, while QoS 1 had an average of 2.80 seconds. The max delay using QoS 0
was 4.13 seconds, while it was 4.92 seconds using QoS 1.

Test Variation QoS
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Standard
0 540 0% 0.72 s 1.68 s 3.64 s
1 540 0% 1.35 s 2.95 s 4.20 s
Total/Avg 1080 0% 1.04 s 2.32 s 3.92 s

Hybrid
0 540 0% 0.72 s 2.00 s 4.13 s
1 540 0% 1.04 s 2.80 s 4.92 s
Total/Avg 1080 0% 0.88 s 2.40 s 4.53 s

Table 63: Results from NATO Narrowband tests on the application layer

G.5 CNR with 1% loss

Table 64 shows the results from the standard test using the CNR model with 1% loss
on the network layer. The test produced 4406 packets and had a data rate of 13 kbit/s.
The minimum message size was 429 bytes, the average was 432 bytes and the maximum
was also 432 bytes.

Protocol Standard
Total packets 4406
Data rate 13 kbit/s
Min message size 429 bytes
Avg message size 432 bytes
Max message size 432 bytes

Table 64: Results from the CNR test on the network layer with 1% loss (Standard)

Table 65 shows the results from the hybrid test using the CNR model with 1% loss on the
network layer. The results show that 2033 MQTT packets were produced, while MQTT-
SN produced 1679 packets. MQTT had a data rate of 7.56 kbit/s, while MQTT-SN had
a data rate of 6.54 kbit/s. MQTT had a minimum message size of 480 bytes, an average

87

of 484 bytes and a maximum of 485 bytes. MQTT-SN had a minimum message size of
429 bytes, an average of 432 bytes and a maximum of 432 bytes.

Data Type MQTT MQTT-SN
Total packets 2033 1679
Data rate 7.56 kbit/s 6.54 kbit/s
Min message size 480 bytes 429 bytes
Avg message size 484 bytes 432 bytes
Max message size 485 bytes 432 bytes

Table 65: Results from CNR tests on the network layer with 1% loss (Hybrid)

Figure 49: Average delay using the CNR network model with 1% loss

Figure 49 shows that both test had similar average transmit delay. Table 66 shows the
results from tests on the application layer. From the standard test we see that QoS
0 produced 480 messages and had a packet loss of 1.11%, while QoS 1 produced 540
messages and had a packet loss of 0.74%. The minimum delay found was 0.47 seconds
using QoS 0 and 1.24 seconds using QoS 1. The average delay was 2.09 seconds for QoS
0 and 4.39 seconds for QoS 1. QoS 0 had a maximum delay of 4.38 seconds. For the
hybrid test we see that both QoS levels produced 450 messages each where QoS 0 had a
packet loss of 0.93% and QoS 1 had a packet loss of 1.11%. The minimum delay for QoS
0 was 0.47 seconds, and 2.53 seconds for QoS 1. The average delay was 2.17 seconds for
QoS 0 and 4.77 seconds for QoS 1. The maximum delay was 7.12 seconds for QoS 0 and
8.12 seconds for QoS 1.

Test Variation QoS
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Standard
0 540 6 (1.11%) 0.47 s 2.09 s 4.38 s
1 540 4 (0.74%) 1.24 s 4.39 s 6.40 s
Total/Avg 1080 10 (0.93%) 0.86 s 3.24 s 5.39 s

Hybrid
0 540 5 (0.93%) 0.47 s 2.17 s 7.12 s
1 540 6 (1.11%) 2.53 s 4.77 s 8.12 s
Total/Avg 1080 11 (1.02%) 1.50 s 3.47 s 7.62 s

Table 66: Results from CNR tests on the application layer with 1% loss

G.6 CNR with 10% loss

Table 67 shows the results from the standard test using the CNR model with 10% loss
on the network layer. The test produced 1672 packets and the data rate was 4.09 kbit/s.
The minimum message size was 430 bytes, the average was 432 bytes and the maximum
was also 432 bytes.

88

Protocol Standard
Total packets 1672
Data rate 4.09 kbit/s
Min message size 430 bytes
Avg message size 432 bytes
Max message size 432 bytes

Table 67: Results from the CNR test on the network layer with 10% loss (Standard)

Table 68 shows the results from the hybrid test using the CNR model with 10% loss on
the network layer. The MQTT protocol produced 1370 packets, while the MQTT-SN
protocol produced 1200. MQTT had a data rate of 4.23 kbit/s and MQTT-SN had a
data rate of 2.37 kbit/s. MQTT had a minimum message size of 480 bytes, an average
of 483 bytes and a maximum of 485 bytes. MQTT-SN had a minimum message size of
429 bytes, an average of 432 bytes and a maximum of 432 bytes.

Data Type MQTT MQTT-SN
Total packets 1370 1200
Data rate 4.23 kbit/s 4.42 kbit/s
Min message size 480 bytes 429 bytes
Avg message size 483 bytes 432 bytes
Max message size 485 bytes 432 bytes

Table 68: Results from CNR tests on the network layer with 10% loss (Hybrid)

Figure 50: Average delay using the CNR network model with 10% loss

Figure 50 shows that no messages were received while running the standard test. Table
69 shows the results from tests using the CNR model with 10% loss on the application
layer. From the standard test we can see that 840 messages were produced. During the
test all of the messages were lost. From the hybrid test, 480 messages were sent using
QoS 0 and 360 messages were sent using QoS 1. 20.21& of the messages were lost using
QoS 0 and 25% of the messages were lost using QoS 1. The minimum delay was 0.46
seconds using QoS 0 and 1.10 seconds using QoS 1. The average delay was 1.67 seconds
using QoS 0 and 3.13 seconds using QoS 1. The maximum delay was 5.78 seconds using
QoS 0 and 5.00 seconds using QoS 1.

89

Test Variation QoS
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

Standard
0 420 420 (100%) NA NA NA
1 420 420 (100%) NA NA NA
Total/Avg 840 840 (100%) NA NA NA

Hybrid
0 480 97 (20.21%) 0.46 s 1.67 s 5.78 s
1 360 90 (25.00%) 1.10 s 3.13 s 5.00 s
Total/Avg 840 187 (22.26%) 0.78 s 2.40 s 5.39 s

Table 69: Results from CNR tests on the application layer with 10% loss

90

H Results for ZeroMQ with TCP

H.1 5G

Table 70 shows the results from testing using the 5G model on the network layer. From
the results we can see that the test using GPS data produced 3486 packets, while the test
using image data produced 3445 packets. the test with GPS had a data rate of 20 kbit/s
and image data had a data rate of 19 kbit/s. The test using GPS data had a minimum
message size of 485 bytes, an average of 488 bytes and a maximum of 490 bytes. The
test using image data had a minimum message size of 98 bytes, an average of 497 bytes
and a maximum of 1595 bytes. Zero retransmissions and duplicate ACKs where found
in both tests.

Data Type GPS Image
Total packets 3486 3445
Data rate 20 kbit/s 19 kbit/s
Min message size 485 bytes 98 bytes
Avg message size 488 bytes 497 bytes
Max message size 490 bytes 1595 bytes
TCP retransmissions 0 0
Duplicate ACKs 0 0

Table 70: Results from 5G tests on the network layer

Table 71 shows the results from testing using the 5G model on the application layer. The
test using GPS data produced 1593 messages and had zero packet loss. The minimum
delay was 0.03 seconds, the average was 0.12 seconds and the maximum delay was 0.39
seconds. The test using image data produced 1566 messages with zero packet loss. The
minimum delay was 0.05 seconds, the average delay was 0.36 seconds and the maximum
delay was 0.75 seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1593 0% 0.03 s 0.12 s 0.39 s
Image 1566 0% 0.05 s 0.36 s 0.75 s

Table 71: Results from 5G tests on the application layer

H.2 Tactical Broadband

Table 72 shows the results from testing the Tactical Broadband model on the network
layer. Using GPS data, 3534 packets were produced, while image data produced 3017
packets. The data rate using GPS data was 20 kbit/s and 18 kbit/s for image data. GPS
had an minimum message size of 485 bytes, an average of 488 bytes and a maximum of 490
bytes. The test using image data had a minimum messsage size of 98 bytes, an average
size of 500 bytes and a maximum of 1595 bytes. The test with GPS data produced 24
retransmissions and 0 duplicate ACKs, while image data produced 73 retransmissions
and 38 duplicate ACKs.

91

Data Type GPS Image
Total packets 3534 3105
Data rate 20 kbit/s 18 kbit/s
Min message size 485 bytes 98 bytes
Avg message size 488 bytes 500 bytes
Max message size 490 bytes 1595 bytes
TCP retransmissions 24 73
Duplicate ACKs 0 38

Table 72: Results from Tactical Broadband tests on the network layer

Table 73 shows the results on the application layer. The test using GPS data produced
1593 messages where zero messages were lost. The minimum delay was 0.11 seconds, the
average delay was 0.21 seconds and the maximum delay was 0.73 seconds. The test using
image data produced 1566 messages where zero messages were lost. The minimum delay
was 0.14 seconds, the average delay was 0.47 seconds and the maximum delay was 1.41
seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1593 0% 0.11 s 0.21 s 0.73 s
Image 1566 0% 0.14 s 0.47 s 1.41 s

Table 73: Results from Tactical Broadband tests on the application layer

The following network tests will display transmit delay data in a barchart. This was not
included in tests using the 5G and Tactical Broadband network models due to the low
times found, making them not suitable for visual presentation and comparison.

H.3 SATCOM

Table 74 show the results from using the SATCOM model on the network layer. Using
GPS data 3448 packets were produced, while image data produced 3372 packets. The
data rate when testing with GPS data was 19 kbit/s and 20 kbit/s for image data. GPS
had a minimum message size of 485 bytes, an average size of 488 bytes and a maximum
size of 490 bytes. Image data had a minimum message size of 98 bytes, an average of 506
bytes and a maximum of 1595 bytes. The test using GPS data produced 0 retransmissions
and 0 duplicate ACK, while image data produced 71 retransmissions and 71 duplicate
ACKs.

Data Type GPS Image
Total packets 3448 3372
Data rate 19 kbit/s 20 kbit/s
Min message size 485 bytes 98 bytes
Avg message size 488 bytes 506 bytes
Max message size 490 bytes 1595 bytes
TCP retransmissions 0 71
Duplicate ACKs 0 71

Table 74: Results from SATCOM tests on the network layer

92

Figure 51: Average delay using the SATCOM network model

Figure 51 shows that image data had a much higher average transmit delay than GPS
data. Table 75 shows the results from testing on the application layer. The test using
GPS data produced 1593 messages and had a packet loss of zero percent. The minimum
delay was 0.58 seconds, the average delay was 0.66 seconds and the maximum delay was
1.06 seconds. The test using image data produced 1566 messages where zero messages
were lost. The minimum delay was 0.63 seconds, the average was 1.82 seconds and the
maximum was 3.59 seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1593 0% 0.58 s 0.66 s 1.06 s
Image 1566 0% 0.63 s 1.82 s 3.59 s

Table 75: Results from SATCOM tests on the application layer

H.4 NATO Narrowband

Table 76 shows the results from testing using the NATO Narrowband model on the
network layer. GPS data produced 1645 packets and image data produced 876 packets.
The data rate from using GPS was 9.80 kbit/s and 3.69 kbit/s from using image data.
GPS had a minimum message size of 485 bytes, an average of 488 bytes and a maximum of
490 bytes. Image data had a minimum message size of 98 bytes, an average of 1044 bytes
and a maximum of 1514 bytes. The test using GPS data produced 95 retransmissions and
137 duplicate ACKs, while image data produced 242 retransmissions and 248 duplicate
ACKs.

Data Type GPS Image
Total packets 1645 500
Data rate 9.80 kbit/s 3.69 kbit/s
Min message size 485 bytes 98 bytes
Avg message size 488 bytes 1044 bytes
Max message size 490 bytes 1514 bytes
TCP retransmissions 95 242
Duplicate ACKs 137 248

Table 76: Results from NATO Narrowband tests on the network layer

93

Figure 52: Average delay using the NATO Narrowband network model

Figure 52 shows that image data had a significantly higher average transmit delay than
GPS data. Table 77 shows the results from testing on the application layer. The test
using GPS data produced 1593 messages, where zero message were lost. The minimum
delay was 0.76 seconds, the average was 2.83 seconds and the maximum delay was 5.81
seconds. The test using image data produced 1566 messages, where 1199 messages where
lost. The minimum delay was 1.54 seconds, the average delay was 269.58 seconds and
the maximum delay was 515.58 seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1593 0% 0.76 s 2.83 s 5.81 s
Image 1566 1199 (76.56%) 1.54 s 269.58 s 515.58 s

Table 77: Results from NATO Narrowband tests on the application layer

H.5 CNR with 1% loss

Table 78 shows the results from testing using the CNR model with 1% loss on the network
layer. The test using GPS data produced 1508 packets, while image data produced 563
packets. The data rate using GPS was 8.51 kbit/s, and 12 kbit/s for image data. The test
using GPS data had an minimum message size of 306 bytes, an average of 493 bytes and
a maximum of 1514 bytes. The test using image data had a minimum message size of 82
bytes, an average of 1359 bytes and a maximum of 1514 bytes. GPS data produced 154
retransmissions and 256 duplicate ACKs, while image data produced 272 retransmissions
and 340 duplicate ACKs.

Data Type GPS Image
Total packets 1508 1048
Data rate 8.51 kbit/s 12 kbit/s
Min message size 306 bytes 82 bytes
Avg message size 493 bytes 1359 bytes
Max message size 1514 bytes 1514 bytes
TCP retransmissions 154 272
Duplicate ACKs 256 340

Table 78: Results from CNR tests with 1% loss on the network layer

94

Figure 53: Average delay using the CNR network model with 1% loss

Figure 53 shows that image data had a significantly higher average transmit delay than
GPS data. Table 79 shows the results from testing on the application layer. The test
using GPS data produced 1593 messages, where the packet loss was 8.35%. The minimum
delay was 0.91 seconds, the average delay was 45.72 seconds and the maximum delay was
162.75 seconds. The test using image data produced 1566 messages, and the packet loss
was 95.02%. The minimum delay was 6.88 seconds, the average delay was 56.94 seconds
and the maximum delay was 139.07 seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1593 133 (8.35%) 0.91 s 45.72 s 162.75 s
Image 1566 1488 (95.02%) 6.88 s 56.94 s 139.07 s

Table 79: Results from CNR tests on the application layer with 1% loss

H.6 CNR with 10% loss

Table 80 shows the results from testing using the CNR model with 10% loss on the
network layer. The test using GPS data produced 1597 packets, while the test using
image data produced 563 packets. The data rate from the GPS test was 9.58 kbit/s,
and 3.94 kbit/s for image data. GPS data had a minimum message size of 304 bytes,
an average of 532 bytes and a maximum of 1754 bytes. The test using image data had
a minimum message size of 98 bytes, an average of 1166 bytes and a maximum of 1595
bytes. The GPS test produced 232 retransmissions and 471 duplicate ACKs, while the
Image test produced 335 retransmissions and 286 duplicate ACKs.

Data Type GPS Image
Total packets 1597 563
Data rate 9.58 kbit/s 3.94 kbit/s
Min message size 304 bytes 98 bytes
Avg message size 532 bytes 1166 bytes
Max message size 1754 bytes 1595 bytes
TCP retransmissions 232 335
Duplicate ACKs 471 286

Table 80: Results from CNR tests with 10% loss on the network layer

95

Figure 54: Average delay using the CNR network model with 10% loss

Figure 54 shows that the average transmit delay was much higher for image data over
GPS data. Table 81 shows the results from testing on the application layer. The test
using GPS data produced 1593 messages and the packet loss was 8.35%. The minimum
delay was 5.73 seconds, the average delay was 54.34 seconds and the maximum delay was
185.58 seconds. The test using image data produced 1556 messages and the packet loss
was 97.30%. The minimum delay was 8.97 seconds, the average delay was 89.60 seconds
and the maximum delay was 398.51 seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1593 133 (8.35%) 5.73 s 54.34 s 185.58 s
Image 1556 1514 (97.30%) 8.97 s 89.60 s 398.51 s

Table 81: Results from CNR tests on the application layer with 10% loss

96

I Results for ZeroMQ with PGM

I.1 5G

Table 82 shows the results from testing using the 5G model on the network layer. From
the results we can see that the test using GPS data produced 18 222 packets, while the
test using image data produced 110 357 packets. the test with GPS had a data rate of
28 kbit/s and image data had a data rate of 637 kbit/s. The test using GPS data had
a minimum message size of 488 bytes, an average of 491 bytes and a maximum of 493
bytes. The test using image data had a minimum message size of 171 bytes, an average
of 1310 bytes and a maximum of 1494 bytes.

Data Type GPS Image
Total packets 18 222 110 383
Data rate 28 kbit/s 637 kbit/s
Min message size 488 bytes 171 bytes
Avg message size 491 bytes 1310 bytes
Max message size 493 bytes 1494 bytes

Table 82: Results from 5G tests on the network layer

Table 83 shows the results from testing using the 5G model on the application layer. The
test using GPS data produced 1619 messages and had zero packet loss. The minimum
delay was 0.03 seconds, the average was 0.10 seconds and the maximum delay was 1.03
seconds. The test using image data produced 1593 messages with zero packet loss. The
minimum delay was 0.04 seconds, the average delay was 3.07 seconds and the maximum
delay was 8.51 seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1619 0% 0.03 s 0.10 s 1.03 s
Image 1593 0% 0.04 s 3.07 s 8.51 s

Table 83: Results from 5G tests on the application layer

I.2 Tactical Broadband

Table 84 shows the results from testing the Tactical Broadband model on the network
layer. Using GPS data, 22 262 packets were produced, while image data produced 81
980 packets. The data rate using both GPS was 42 kbit/s and 502 kbit/s for image data.
GPS had an minimum message size of 488 bytes, an average of 491 bytes and a maximum
of 493 bytes. The test using image data had a minimum messsage size of 156 bytes, an
average size of 1184 bytes and a maximum of 1494 bytes.

Data Type GPS Image
Total packets 22 262 81 980
Data rate 42 kbit/s 502 kbit/s
Min message size 488 bytes 156 bytes
Avg message size 491 bytes 1184 bytes
Max message size 493 bytes 1494 bytes

Table 84: Results from Tactical Broadband tests on the network layer

Table 85 shows the results on the application layer. The test using GPS data produced
1568 messages where zero messages were lost. The minimum delay was 0.15 seconds, the

97

average delay was 0.31 seconds and the maximum delay was 1.94 seconds. The test using
image data produced 1543 messages where 2 messages were lost. The minimum delay
was 0.18 seconds, the average delay was 1.67 seconds and the maximum delay was 6.56
seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1568 0% 0.15 s 0.31 s 1.94 s
Image 1543 2 (0.13%) 0.18 s 1.67 s 6.56 s

Table 85: Results from Tactical Broadband tests on the application layer

The following network tests will display transmit delay data in a barchart. This was not
included in tests using the 5G and Tactical Broadband network models due to the low
times found, making them not suitable for visual presentation and comparison.

I.3 SATCOM

Table 86 show the results from using the SATCOM model on the network layer. Using
GPS data 17 976 packets were produced, while image data produced 3070 packets. The
data rate when testing with GPS data was 40 kbit/s and 263 kbit/s for image data. GPS
had a minimum message size of 488 bytes, an average size of 491 bytes and a maximum
size of 493 bytes. Image data had a minimum message size of 171 bytes, an average of
1136 bytes and a maximum of 1494 bytes.

Data Type GPS Image
Total packets 17 976 103 608
Data rate 40 kbit/s 263 kbit/s
Min message size 488 bytes 171 bytes
Avg message size 491 bytes 1136 bytes
Max message size 493 bytes 1494 bytes

Table 86: Results from SATCOM tests on the network layer

Figure 55: Average delay using the SATCOM network model

Figure 55 shows that image data had a much higher average transmit delay than GPS
data. Table 87 shows the results from testing on the application layer. The test using
GPS data produced 1584 messages where zero messages were lost. The minimum delay
was 0.58 seconds, the average delay was 0.72 seconds and the maximum delay was 1.10
seconds. The test using image data produced 1566 messages where 12.77% of the mes-
sages were lost. The minimum delay was 0.84 seconds, the average was 18.93 seconds
and the maximum was 56.52 seconds.

98

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1584 0% 0.58 s 0.72 s 1.10 s
Image 1566 200 (12.77%) 0.84 s 14.76 s 56.52 s

Table 87: Results from SATCOM tests on the application layer

I.4 NATO Narrowband

Table 88 shows the results from testing using the NATO Narrowband model on the
network layer. GPS data produced 38 878 packets and image data produced 57 618
packets. The data rate from using GPS was 45 kbit/s and 72 kbit/s from using image
data. GPS had a minimum message size of 331 bytes, an average of 523 bytes and a
maximum of 1494 bytes. Image data had a minimum message size of 171 bytes, an
average of 186 bytes and a maximum of 1494 bytes.

Data Type GPS Image
Total packets 38 878 57 618
Data rate 45 kbit/s 72 kbit/s
Min message size 331 bytes 171 bytes
Avg message size 523 bytes 186 bytes
Max message size 1494 bytes 1494 bytes

Table 88: Results from NATO Narrowband tests on the network layer

Figure 56: Average delay using the NATO Narrowband network model

Figure 56 shows that image data had a significantly higher average transmit delay than
GPS data. Table 89 shows the results from testing on the application layer. The test
using GPS data produced 1592 messages, where 770 messages were lost. The minimum
delay was 0.89 seconds, the average was 66.17 seconds and the maximum delay was 98.18
seconds. The test using image data produced 1540 messages, where 1378 messages where
lost. The minimum delay was 1.70 seconds, the average delay was 116.62 seconds and
the maximum delay was 222.08 seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1592 770 (48.37%) 0.89 s 66.17 s 98.18 s
Image 1540 1378 (89.48%) 1.70 s 116.62 s 222.08 s

Table 89: Results from NATO Narrowband tests on the application layer

99

I.5 CNR with 1% loss

Table 90 shows the results from testing using the CNR model with 1% loss on the network
layer. The test using GPS data produced 49 188 packets, while image data produced 23
107 packets. The data rate using GPS was 49 kbit/s, and 27 kbit/s for image data. The
test using GPS data had an minimum message size of 488 bytes, an average of 492 bytes
and a maximum of 914 bytes. The test using image data had a minimum message size
of 171 bytes, an average of 208 bytes and a maximum of 493 bytes.

Data Type GPS Image
Total packets 49 188 23 107
Data rate 49 kbit/s 27 kbit/s
Min message size 488 bytes 171 bytes
Avg message size 492 bytes 208 bytes
Max message size 914 bytes 493 bytes

Table 90: Results from CNR tests with 1% loss on the network layer

Figure 57: Average delay using the CNR network model with 1% loss

Figure 57 shows that image data had a significantly higher average transmit delay than
GPS data. Table 91 shows the results from testing on the application layer. The test
using GPS data produced 1566 messages, where 1157 messages were lost. The minimum
delay was 1.75 seconds, the average delay was 115.23 seconds and the maximum delay
was 224.01 seconds. The test using image data produced 1522 messages, where 1397
messages were lost. The minimum delay was 14.93 seconds, the average delay was 201.47
seconds and the maximum delay was 353.92 seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1566 1157 (73.88%) 1.75 s 115.23 s 224.01 s
Image 1522 1397 (91.79%) 14.93 s 201.47 s 353.92 s

Table 91: Results from CNR tests on the application layer with 1% loss

I.6 CNR with 10% loss

Table 92 shows the results from testing using the CNR model with 10% loss on the
network layer. The test using GPS data produced 46 543 packets, while the test using
image data produced 40 872 packets. The data rate from the GPS test was 52 kbit/s,
and 31 kbit/s for image data. GPS data had a minimum message size of 488 bytes,
an average of 493 bytes and a maximum of 914 bytes. The test using image data had
a minimum message size of 171 bytes, an average of 183 bytes and a maximum of 491
bytes.

100

Data Type GPS Image
Total packets 46 543 40 872
Data rate 52 kbit/s 31 kbit/s
Min message size 488 bytes 171 bytes
Avg message size 493 bytes 183 bytes
Max message size 914 bytes 491 bytes

Table 92: Results from CNR tests with 10% loss on the network layer

Figure 58: Average delay using the CNR network model with 10% loss

Figure 58 shows that the average transmit delay was much higher for image data over
GPS data. Table 93 shows the results from testing on the application layer. The test
using GPS data produced 1565 messages, where 954 messages were lost. The minimum
delay was 1.30 seconds, the average delay was 102.75 seconds and the maximum delay
was 140.94 seconds. The test using image data produced 1532 messages, where 1429
messages were lost. The minimum delay was 9.98 seconds, the average delay was 196.52
seconds and the maximum delay was 348.02 seconds.

Data type
Messages
sent

Packet
loss

Min
delay

Avg
delay

Max
delay

GPS 1565 954 (60.96%) 1.30 s 102.75 s 140.94 s
Image 1532 1429 (93.28%) 9.98 s 196.52 s 348.02 s

Table 93: Results from CNR tests on the application layer with 10% loss

101

Evaluating Publish/Subscribe Protocols for use in Constrained N
etw

orks
Em

il Paulin Andersen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Emil Paulin Andersen

Evaluating Publish/Subscribe
Protocols for use in Constrained
Networks

Master’s thesis in Informatics: Software Engineering
Supervisor: Frank T. Johnsen
Co-supervisor: Michael Engel
June 2022M

as
te

r’s
 th

es
is

	Introduction
	Motivation
	Research Objective
	Research Questions

	Research Methodology
	Premises
	Scope
	Contributions
	Outline of Thesis

	Background and Previous Research
	Application
	Defense
	Civilian

	Network Models
	Publish/Subscribe Pattern
	MQTT
	MQTT-SN
	Quality of Service
	Topics
	MQTT Packet Format
	Control Header
	Remaining Length
	Variable Header
	Payload
	Packet Example
	Message Sequence Chart

	MQTT-SN Packet Format
	Message Header
	Message Variable Part
	Packet Example

	ZeroMQ
	Transport Protocols
	Socket API
	ZeroMQ with the Publish/Subscribe Pattern
	Message Format
	Intermediary Message Handling
	Previous Studies on ZeroMQ

	Development
	Technology
	Supported Protocols
	Test Framework
	Frontend Application
	Data Storage
	Complete Architecture

	Test Setup
	Netem
	MQTT
	MQTT-SN
	ZeroMQ
	Data

	Results
	MQTT
	MQTT-SN
	ZeroMQ with TCP
	ZeroMQ with PGM

	Analysis
	5G
	Tactical Broadband
	SATCOM
	NATO Narrowband
	CNR with 1% Loss
	CNR with 10% Loss
	MQTT
	MQTT-SN
	ZeroMQ with TCP
	ZeroMQ with PGM
	Summary

	Recommendations
	Cutoffs
	MQTT
	MQTT-SN
	ZeroMQ with TCP
	ZeroMQ with PGM

	Conclusion
	MQTT
	MQTT-SN
	ZeroMQ

	Future Work
	Developing an MQTT-SN Client
	Additional Testing with ZeroMQ
	Configuring the TCP Stack
	Open Sourcing the Analysis Tool

	Appendix
	Additional Details About the Analysis Tool
	Virtual Machine Configuration
	iPerf3
	MQTT-SN Setup
	ZeroMQ with PGM Setup
	Results for MQTT
	5G
	Tactical Broadband
	SATCOM
	NATO Narrowband Waveform
	CNR with 1% loss
	CNR with 10% loss

	Results for MQTT-SN
	5G
	Tactical Broadband
	SATCOM
	NATO Narrowband
	CNR with 1% loss
	CNR with 10% loss

	Results for ZeroMQ with TCP
	5G
	Tactical Broadband
	SATCOM
	NATO Narrowband
	CNR with 1% loss
	CNR with 10% loss

	Results for ZeroMQ with PGM
	5G
	Tactical Broadband
	SATCOM
	NATO Narrowband
	CNR with 1% loss
	CNR with 10% loss

