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Abstract

Increasing development on autonomous vehicles and concern on ship navigation safety
put forward a higher requirement for ship motion forecasting technology. The predic-
tions of ship motion in the near future can give the operator (autonomous ship operating
system or human) ample time to respond and avoid dangerous operations. Therefore,
modeling and predicting the behavior of ships have been pursued extensively to enhance
state estimation and motion control. Vessels operating on the surface of the ocean are
exposed to an array of uncertainties, such as the external perturbations produced by
wind, waves, and sea currents, etc. Creating an advanced model that comprehensively
represents the system and its interaction with its immediate environments has always
been challenging. Existing ship motion prediction approaches leverage a wide variety
of modeling techniques. The dynamic models can propagate the estimated states into
the future. Still, due to the nonlinearity, time-varying dynamics, and coupling with
also time-varying environments, it is difficult to derive a good state estimator with high
accuracy from observing and understanding the complex system. The fast advancement
in instrumentation and data analysis techniques offers an alternative solution by con-
structing end-to-end models based only on data sampled from ships. For the lack of
physical interpretability and inspection of internal structure, these data-based models
do not always meet the expectations. The new knowledge and technology to bridge the
gap are in demand.

The physics-data hybrid concept is an approach of cooperation, differentiation, and
maximizing the potential of both models. Either model offers partial solutions for the
vessel system. To ensure optimal outcomes, different modeling principles are working
in a cooperative way, which requires the capabilities of both segments to operate as
efficiently as possible. Leveraging the speed and flexibility advantages of the data-driven
technologies and ensuring the robustness and quality of the high-fidelity physics-based
model, the cooperative modeling appears to provide fast and accurate predictions for
offshore surface vessels.

This dissertation exploits the physics-data cooperative modeling methodology and
contextualizes the synthesis in maritime motion prediction. In the hybrid framework,
modeling principles and formats of fusion aligned differently at various operation scenar-
ios. Three case studies are conducted to validate the developed physics-data cooperative
models for optimization and prediction. The first one relates to physics-based disciplines
and enabling applications. The rest deploy two forms of cooperation. Experiments are
carried out in both simulator and the vessel R/V Gunnerus operating in the real world.
The results confirm the enhanced mode quality and prediction performance observed for
the physics-data cooperative models.
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1
Introduction

The maritime industrial clusters are experiencing a digital revolution. The advances in
digital technology are continuously pushing the boundaries of ship technology towards
intelligence more in line with the demanding marine operations. It can be seen that the
modern marine vessels operate increasingly autonomously through strongly interacting
subsystems, which are dedicated to a specific, primary objective of the vessel or may
be part of the general essential ship operations. Between subsystems, they exchange
data and make coordinated operational decisions, ideally without any user interaction.
Designing, operating, and life cycle service supporting such vessels is a complex and
intricate engineering task requiring an efficient development approach to consider the
mutual interaction between subsystems and the inherent multi-discipline.

Vessels operating on the surface of the ocean are exposed to an array of uncertain-
ties, which may come in terms of environmental disturbances such as winds, waves, and
currents, actuator faults resulting from long-term operations, signal loss during maneu-
vering etc. Ensuring navigation safety and security, technologies of developing an ad-
vanced model that comprehensively represents the current states and accurately reveals
the likely future conditions of the ship are always in demand. Digital twin, enabling the
concurrent combination of the physical world with its digital counterpart, appears as a
potential solution for the next generation of advanced marine simulation [1]. As a virtual
representation of the physical asset, the digital twin monitors and controls the physical
entity, while the physical entity can send data to update its virtual model. In this way,
offerings such as real-time prediction, optimization, and improved decision-making are
within reach. In order to make digital twin concepts in ship life cycle service a success,
its accurate digital representation will be indispensable and must flexibly adapt with its
physical counterpart. This dissertation explores the concept of physics-data cooperative
modeling methodology and contextualizes it by offering predictive insights and decision
support for the modern ship.

1.1 Background and motivation

The increasing availability of live sensor data and digital technologies are accelerating
the marine industries towards an intelligent era [2]. High-level automation in ship design
and operation is increasingly emphasized by academia and industry to increase compet-
itiveness and enhance efficiency. The digital twin (DT) is introduced as a concept that
delivers superior solutions in the area of health management, optimization and decision
support, and remote and autonomous operation. In the technology outlook 2030 recently
published by DNV GL1, digital twins are emerging as a quantum leap from earlier efforts

1Bringing it all together: Digital twins, https://www.dnv.com/to2030/technology/
bringing-it-all-together-digital-twins.html, Data accessed 25-February-2022
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CHAPTER 1. INTRODUCTION

at modeling complex systems. Kongsberg AS proposed the Kognitwin Energy concept
to support a higher degree of automation of decisions2. Even more complex systems and
greater interactions between the physical and virtual spaces in digital twins require the
twinship model to best describe and flexibly adapt the time-varying vessel status.

1.1.1 Physics-based modeling

Naturally, the ship dynamic simulation initiates from the understanding of the marine
system. The traditional approach has been utilized in a way to postulate a deter-
ministic model structure and treat its parameters as being imperfectly known. It is
expected to be a precise description of a ship’s dynamics (position, velocity, etc.) and
its surrounding environment (wind, wave spectrum, etc.). To capture the ship’s hydro-
dynamic effects, many models have been proposed by pioneers, such as the 1 degree of
freedom (DOF) Nomoto model for autopilot heading control [3], 3 DOF maneuvering
model of Abkowitz [4], the nonlinear or linearized dynamic positioning (DP) model, and
the mathematical modeling group (MMG) model [5], etc. They are carefully used to
provide a tractable and inexpensive approximation of the actual ship behaviors in many
routine engineering and design activities, e.g., domain exploration, sensitivity analysis,
development of empirical models, and optimization. The models as mentioned above
are developed according to physical and hydrodynamics knowledge, as well as naval ar-
chitecture principles [6]. It has been widely accepted that the modeling process is a
compromise between simplicity to use and fidelity in the representation of reality. De-
ciding which phenomena and assumptions should be incorporated into the model is not
easy, which relies intensely on sufficient observations, expert domain knowledge, as well
as sound judgment in establishing hypotheses that support the validity of the model.
When it comes to ship dynamics, usually complex ordinary differential equations are
derived theoretically to define how the vessel performs over time. Although the approx-
imate simulation model is acceptable if at least the most relevant characteristics are
reflected, its fidelity still suffers from the disturbance of unpredictable environments and
process noise due to approximation errors or unmodelled inputs [7].

Despite increased efforts paid to optimize the model structure, it still has circum-
stances deriving adequate models associated with parameter uncertainty. The parameter
error is mainly produced from uncertainties related to defining the practical values of
the hydrodynamic parameters [8]. The efforts and time needed to develop parameters
should not be underestimated. The most reliable manner is thought to be experimen-
tally determined. But this way could also be the most time-consuming and expensive.
Only a limited number of hull ships have had any coefficients determined experimen-
tally. While the use of a modern simulation environment, for instance, computer fluid
dynamics (CFD), could facilitate the task [9]. If the system identification techniques are
applied, the data quantity and quality for model tuning is always the main concern [10].
Ill-prepared data may give rise to deterioration. Given the accuracy deficiencies as well
as the considerable efforts that went into the modeling process, the physics-based (PB)
models are not always prioritized in demanding operations.

2This is Kognitwin energy, https://www.kongsberg.com/digital/solutions/kognitwin-energy/
this-is-kognitwin-energy, Data accessed 25-February-2022
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1.1.2 Data-driven modeling

The development of the information industry and advanced measuring instruments boost
the data-driven (DD) modeling approaches and open up new possibilities for optimiza-
tion and decision support. Onboard sensors can capture physical effects such as defor-
mation or vibration under real-life conditions that cannot always be easily described by
numerical models. By diving only into the data monitored, a data-based model could be
established without explicit knowledge of the physical behavior of the system [11]. As
an end-to-end technique, the DD approaches implicitly simulate the dependencies be-
tween the system’s input and output variables and yield a sophisticated black-box model
with plenty of parameters appropriately tuned. During the last decade, the number of
researchers active in this area has considerably increased. The well-known machine
learning (ML) domain is being increasingly used as a forecasting and analyzing tool to
support effective decisions in operations in the marine context. Within certain data-
intensive areas, like behavior learning and image recognition, the technology can deliver
state-of-the-art performance [12].

While the flip side of this advantage is that large quantities of process data are
required before the DD approaches are helpful. Once the data is ill-prepared, like the
data volume is limited or the distribution is unbalanced, the performance of DD models
could be far away from expectations. Moreover, the DD approaches are often criticized
for the inherent ’black box’ nature so that pure DD models are failing to gain full
acceptance within fields rooted in engineering with zero risk tolerance [13].

1.1.3 Physics-data cooperative modeling

The physics-based and data-driven modeling can build into the context of the situation
they are engaged in. From a broader perspective, the physics-data hybrid philosophy is
one of cooperation, differentiation, and maximizing the potential of both participants in
the modeling community. In the hybrid concept deployed as Fig. 1.1, modeling principles
and styles of synthery have aligned differently in different operation scenarios. Briefly,
the methodology and mission must be compatible to ensure optimal outcomes. By
identifying the pros and cons of the physics and data modeling, conclusions are drawn
that this hybrid concept is motivated by requisites from technical and practical aspects:

Physics

Physics knowledge‐
based modeling

Data‐driven 
machine learning

Physics‐data 
cooperative modeling

Figure 1.1: An illustration of physics-data cooperation.

• Technical advance: the hybrid model potentially integrates the advantages of both
participants.
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• Practical necessity: the hybrid model aims at situations where partial but not
complete details (physics or data) are known about a system.

The core of this idea is that different modeling principles work in a cooperative way,
which requires the capabilities of all the segmentation to operate as efficiently as possible
to lower the modeling threshold and costs while enhancing the reliability, stability, and
flexibility of the system. As a result, the yielded solutions are expected to provide fast
and accurate predictions for optimization and autonomous control for offshore surface
vessels. The terms cooperative, collaborative, and hybrid will be interchangeably used
in the same context. Leveraging the speed and flexibility advantages of the data-driven
technologies and ensuring the robustness and quality of the high-fidelity physics-based
model, the cooperative modeling appears promising.

1.2 Research questions

The focus of this dissertation is concerned with physics-data cooperative modeling for
ship motion prediction. It prompts the first question of this dissertation:

• Can existing data-driven or physics-based modeling methods provide
predictions as desired?

In order to answer this question, it is necessary to investigate the state-of-the-art tech-
nologies in maritime modeling and prediction context and how they are being applied
for different operational scenarios. Reviewing and summarizing the related work will
lead to the next research question:

• What are the challenges with applying physics-based and data-driven
methods to predict ship motion?

There are always assumptions involved in the physics deterministic model and ML mod-
els. To figure out what they can and cannot do, one has to dive into the basic principles
behind each approach. For the classic numerical models in naval architecture, the gov-
erning equations are derived from Newton-Euler or Lagrange laws and fluid mechanisms.
The analytical models render the inherently nonlinear characteristics of ship systems and
are able to simulate ships, high-speed craft, underwater vehicles, and floating structures
within a valid scope [14]. In contrast, the ML is learning from experience, which requires
the test data to be sampled independently and identically from the same distribution as
the training data [15]. However, the marine vehicles are operating in a highly nonlinear
and dynamic environment, so the assumptions cannot be met everywhere. Thus the
following research question appears:

• When and where should either physics-based or data-driven approaches
be used?

The most suitable solution could be accessed from two aspects—principle and phe-
nomenon. Pursuing interpretability and robustness or matching as much of reality as
possible is a decision to be made before stepping into the modeling process. Except for
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the subject customization, the decision is also constrained by the available object condi-
tions. If the process data of the system or a specific scenario is not qualified to construct
a data-driven predictive model, then the physics-based model is the only solution. In
seeking the balance between two choices, the following research question is raised:

• Why should a physics-data hybrid model be implemented? And where
could it be applied for?

The physics-data hybrid modeling concept is proposed from several considerations. 1),
the state-of-art modeling approaches are not qualified to meet the stringent requirements
on the interaction of digital twin model construction. 2), the hybrid modeling method-
ology aims to leverage both strengths and bridge the gap between two disciplines: learn
from the knowledge and learn from experience. 3), in many real cases in the maritime
domain, there exists some but not complete knowledge of the system. Meanwhile, some
but insufficient data are available about the modeled process. These limitations lead
to neither purely physics-based models nor solely data-driven models. In other words,
when one model type suffers from inadequacies and cannot be applied independently,
we expect that they can cooperate and complement each other.

• How can data-driven approach be combined with ship physics knowl-
edge?

As mentioned above, the physics-data cooperative modeling appears promising in con-
structing a digital-twin ship. The exploration of the possible hybrid modeling methods
will be the primary challenge. According to different requirements and scenarios, the
hybrid modeling form will vary. Therefore, determining the architecture is the first to be
paid attention to when performing hybrid modeling. Furthermore, the model structure
optimization problems should be stressed.

• How to evaluate the physics-data hybrid model?

Ships often operate in complex environments with significant uncertainties, and the
data comes from different sensory equipment. Ship speed, orientation, and positions
are sampled from sensors such as Global Navigation Satellite Systems (GNSS), gyro-
scopes, accelerometers, etc. And the propulsion systems are monitored by the signal of
power consumption, Revolution per Minute (RPM), torque, propeller or rudder angles,
etc. Ideally, uncertainty analysis and sensitivity analysis, as integral assessments of the
modeling process, could be used to inform the confidence of the results. While until
now, there is no existing standard for hybrid modeling evaluation, and how to access
the hybrid model is still an open question. Although the global "best model" is still
pending, we can at least decide which model best suits the current local scenario. Upon
this consideration, the following research question arises:

• How can the physics-data hybrid model benefit a digital twin?

Ship motion prediction is an enabling tool for operations involving ships and their imme-
diate environment. It is widely applied to support the decision-making process, enhance
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situational awareness, and detect collisions by revealing the likely future states of a ship.
To achieve prediction, the physics-data cooperative model works in two ways. One is
to improve data-driven models by simulating data for a wide range of operating condi-
tions. The other is to improve the physics model to better match reality by integrating
data-driven components. Either way will provide an enhanced representative model for
the twinship. In this dissertation, the application scenarios involve situational aware-
ness, such as component’s status and system identification, and forecasting on what will
happen if a specific action is taken, also referred to as what-if analysis.

1.3 Scope of work

1.3.1 Research objectives

In seeking to answer the above research questions, this dissertation seeks to obtain the
following research objectives (ROs):

√
RO1: Exploring the physics-data cooperation architecture. The main
target is to leverage the physics-data cooperative modeling technology
and provide predictive insights into the facilities, enabling solid decision-
support onboard.

The main objective of this thesis is to develop a physics-data hybrid modeling approach
that enhances motion prediction for marine vessels, which will be highlighted in all
publications. Hybrid could take several forms, stemming from particular situations.
While to support the development of hybrid methods, the single physics-based models
are needed to be investigated as the enabling technology, which is covered in paper I
and IV. Stepping further into the hybrid modeling domain, methodologies are proposed
and explained in paper II, III, V, and VI.

√
RO2: Assessing the status the components of the ship and identifying
their exterior effects using physics-based modeling method.

The continuous monitoring of the internal components’ status is a crucial enabler to
provide higher reliability and safety. Inspecting the propulsion components’ healthy
conditions and resulting effects on the ship’s maneuverability is required to be fast and
efficiently implemented because of the detrimental effects of a breakdown. While since
the vessel is not allowed to work continuously under faulty conditions, the high-quality
labeled data scarcity is always an obstacle to data-driven fault diagnosis. Thereby,
physics-based modeling is the best available solution to detect and isolate failures. The
development of fault detection and isolation model for thruster is covered in paper I,
and the propulsion unit retrofit effect research is conducted in paper IV.

√
RO3: Identifying the maneuvering model of the ship in realistic distur-
bance by estimating the unknown parameters.

Apart from being aware of the status of the components, the integral ship dynamic
properties are of particular concern when developing predictive control strategies. As
discussed before, the environmental effects on the ship are difficult to accurately model,
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but their results are not to be ignored. Identifying the ship dynamics in disturbed
environments is thus practically important for real-time forecasting. With the ship
maneuvering model plant known, the uncertain parameters could be estimated and tuned
using experimental data and advanced data-driven techniques. Paper II presents a
complete study on this topic. At the same time, it is noticed that the model plant
is clarified in this context, and partial information on parameters is missing. If even less
prior knowledge is known about a system, how could we construct an extensive model
upon that? That answer leads to the following research objective.

√
RO4: Deriving representative models of a ship by incorporating and
adapting other domains’ knowledge properly.

Benefiting from the physical knowledge from a well-developed domain, for example, a
benchmark ship, the modeling process of the target research vessel is expected to be no-
ticeably enhanced. The goal is to investigate the feasibility and strategies of identifying,
incorporating, and adapting the specific domain knowledge to facilitate the target ship
modeling.

1.3.2 Interconnection between the research objectives

The interconnection between the research objectives and publications is shown in Fig. 1.2.
To fulfill RO2, two case studies are presented: one is regarding thruster failure detection
and isolation, and the other concerns the thruster retrofit process.

For RO3, one case study of identifying the hydrodynamic derivatives in the ship
maneuvering model is presented. It discusses the estimation performance in the existence
of environmental disturbances, and this work is covered in Paper II. Moreover, several
related works on model uncertainty analysis and sailing status recognition are taken in
to achieve RO3.

The last objective RO4 delivers three case studies validating the knowledge transfer
concept by physics-data combination. The representative model derived in paper III is
based on a best available numerical model from a shorter version of the research vessel.
While in paper V, the surrogate model of the target ship adapts the knowledge trans-
ferred from a benchmark source ship. For the vessels whose rough simulation model is
available, we propose a cascaded hybrid model in paper VI. The validation cases involve
various operational scenarios, including standard zigzag/circle maneuvers, docking op-
erations, as well as drifting when shutting down the active dynamic positioning control.
In paper VI, we also compare the capacities of physics-based, data-driven, and physics-
data cooperative models and try to present a discussion on the assortment of modeling
principles.

1.4 Structure of the dissertation

This introductory chapter presented the background for the dissertation research, clar-
ifying its main objectives and defining the scope of work. The rest of this dissertation
unfolds as follows. Chapter 2 introduces the proposed physics-data cooperative model-
ing framework and methodology. The foundations of the physics-based and data-driven
model are also explained in detail. Chapters 3, 4 and 5 present case studies that show
the use of developed hybrid approaches for ship motion prediction and system awareness.
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RO2: physics‐
based 

modeling

RO3: system 
identification

RO4: 
knowledge 
transferring

Paper I: thruster failure detection

Paper IV: thruster retrofit

Motion prediction Model optimization Autonomous control

Paper iv: parameter estimation with wind

Paper II: parameter identification under disturbance

Paper III: incorporating knowledge

RO1:  hybrid 
modeling 
methodology Paper v: uncertainty analysis

Paper V: transfer learning

Paper VI: physics‐informed data‐driven 

Paper ii: bias compensation

Paper iii: future control change

Paper i: patter cognition

Figure 1.2: Overview of research objectives and interconnection with published paper. The
capital roman letters indicate publications on which the thesis is based, and lower roman
letters indicate associated publications.

Chapter 6 concludes the dissertation, summarizes the contributions and indicates the
directions for future works. The first-author publications listed on page ix are shown in
the appendices.
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2
Physics-data cooperative model for motion predictions

This chapter explores the physics-data cooperative modeling technology and how it
could be applied in maritime context to provide predictive insights. Fig. 2.1 presents
an illustration of the physics-data collaborative approach to support demanding ocean
applications. In the physics space, when clarifying the parameter sets in the simulation
model through model tests or full-scale sea trials, the physics-based model of a ship
sailing on the water is constructed. There is no doubt that this modeling process relies
on domain expertise and thorough investigation. At the same time, the real-world ship
in service is monitored and lots of operational data are accumulated to a database, from
which the data-driven models are trained and validated. Communicating and bridging
the two separate models will provide solid support to ship motion predictions, model
optimizations, as well as autonomous control, etc. Section 2.1 proposes the physics
and data integration methods. The fundamental principles of physics-based and data-
driven modeling are explained in Section 2.2 and 2.3, respectively. Finally, Section 2.4
introduces the experimental platforms from which the analysed data are obtained.

sensors

GNSS, MRU

Thruster log

Wind sensor, 
radar, etc.

Physics‐based 
modeldomain expertise 

Data‐driven 
model

Model test

Full‐scale trial

Database

parameters

Motion prediction

Remote control

Model optimization

cooperation

Azimuth 
thruster

Tunnel
thruster

Yaw

Surge

Sway

Sway

Current

Wave 

Wind

Figure 2.1: Illustration of physics-data cooperative modeling for decision support.

2.1 Hybrid modeling methodology

Both the model-based and data-driven approaches can be used for marine system mod-
eling, and each has its advantages and drawbacks as summarized in Table. 2.1. The PB
models have a deep understanding of the system dynamics, and they do not need data
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to model the system. Still, they may need data for calibrating their effectiveness. In
contrast, DD models rely on data solely without considering the dynamics of the plants,
which empowers the DD models to apply to vast types of systems. However, data can
never be complete to capture all complex patterns of the considered system and ensure
stable out-of-sample performance [16]. Therefore, hybrid modeling bridging the gap be-
tween knowledge models and data-driven models is proposed. The core idea of hybrid
modeling is that different modeling principles are working in a coordinated way, where
the capabilities of both segments operate as efficiently as possible to lower the modeling
threshold while enhancing the reliability and flexibility of the system.

Table 2.1: Pros and cons of model-based and data-driven methods.

Approach Advantages Limitations

Physics-based

• derived on fundamental theoret-
ical principles.

• has universal validity in range of
conditions for which the model’s
assumptions hold.

• requires simplifying assump-
tions.

• mathematical solutions are com-
plex.

• needs extensive domain knowl-
edge.

• hard to accommodate with noise
and uncertainties.

• lengthy trials and efforts are
needed to go into the modeling
process.

Data-driven

• ensures better match with the
reality.

• requires little domain knowl-
edge.

• enables accommodate uncer-
tainties.

• requires a large amount of high-
quality data.

• yields uninterpretable black-box
model

• restricts to range of scenarios ex-
perienced in training data set.

From the functionality point of view, the PB and DD models could work together
in three modes: completeness, cooperation and competition, as shown in Fig. 2.2. As
the definition suggests, when one model reflects the majority of the system but with
some details missing, the other model comes to work for the completeness. While if the
two models both capture certain properties, which are much likely to be discriminative,
they are trying to work out a resolution in a coordinated way so that everybody is
accommodated, and both participants come out benefiting. If the two candidates are
both proven to be qualified representing the system, they will be competing with each
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other. Characterizing different features, they will rank differently depending on the
mission requirements.

data
physics

data

physics

𝑀𝑀

Complementary 
model 

Cooperative 
model 

Competitive 
model 

Figure 2.2: Functional interactions of PB and DD model components.

From the methodology perspective, hybrid modeling could be implemented in mul-
tiple ways. According to the structural interaction between the PB models and DD
models, we categorize it as Fig. 2.3 shows. M1 and M2 are two model participants con-
structed on different disciplines. Specifically speaking, if M1 is assigned as the physics-
based model, then M2 turns out data-driven, and controversially, if M1 is data-driven
one, and M2 will be the physics induced one. It is seen in this figure that the synthesis
of two separate domain models takes three forms:

(1) Insertion: where a global model M1 is adopted, the other model M2 functions
interpolated to M1.

(2) Cascaded: where the two models work in a sequential way, with the information
cascading from M1 to M2.

(3) Parallel: where the two models work in a parallel way, the outcome of each model
is summed up to the ultimate result.

𝑀𝑀𝑀𝑀 𝑀 𝑀

(a) Insertion

𝑀𝑀𝑀𝑀 𝑀 𝑀

(b) Cascaded

𝑀𝑀𝑀𝑀 𝑀 𝑀

(c) In parallel

Figure 2.3: Categories of physics-data hybrid modeling architectures.

2.1.1 Insertion

As Fig. 2.3a indicates, insertion can take place in two directions depending on the
definition ofM1: One is data-optimized physics-based model and the other one is physics-
informed data-driven.
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Data-optimized physics-based model

It is applied when the model structure is available from deep understanding of the un-
derlying process, still some parameters need to be estimated from the observed data [17].
The optimized physics model is getting improved in terms of accuracy and reliability.
The ship dynamics is usually modeled as (2.1) reflecting the knowledge of the ship hull’s
geometry, mass distribution, propeller characteristics, main engine consumption, etc.

ẋ(t) = f(x, u, θ)

y(t) = Cx(t)
(2.1)

where the x ∈ Rn is the state vector of the vessel system, u ∈ Rm is the control signal,
y ∈ Rp is the output vector and f is the nonlinear function of ship dynamics.

Fitting a model within a given structure is the most cases a lesser problem which is
often established by an optimization method as (2.2) shows.

ŷi = f(xi, θ)

θ∗ : min
θ

n∑

i=1

∥ŷi − yi∥

y∗ = f(x, θ∗)

(2.2)

where y and ŷ are the observations of target variable measurements and estimates re-
spectively.

The optimizations applied to estimate specific parameters for a model structure
built on physical grounds are widely recognized as a case of grey-box modeling [18]. In
this situation, it is often assumed that the parameters of such models can be assigned
physical meaning. For interpretation of model parameters to be justified, the results
of the parameter estimation process must show a low degree of dispersion [19], e.g.,
be independent of the initial guess parameter vector for the estimation algorithms. By
uniquely determining the model parameters from the process data, the resulting model
is expected to reproduce and generalize the ship motions. Lots of intelligent algorithms
are proposed in this subject, such as the genetic algorithms [20, 21], Support Vector
Machine (SVM) approach [22, 23], etc.

In marine systems, the nonlinear maneuvering model identification is made, in prac-
tice, by conducting maneuvers with the ship using rudder and thrusters/propellers for
excitation. However, with limits to the possible excitation, all parameters are rarely
identifiable [8]. On the one hand, not all parameters in the maneuvering model can be
obtained using system identification, no matter what input-output samples are given
and which optimization scheme is adopted. On the other hand, parameter drift happens
to some hydrodynamic coefficients, which means the obtained coefficients deviate from
their valid values. Various solutions have been put forward to improve the identification
process, such as constrain the parameter relations to achieve convergence [24], inten-
tionally design the excitation signals to cover the maximum dynamic information [25],
reconstruct the model [26][27], preprocess the training data [28], and so on.
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Physics-informed data-driven model

As opposed to the previous kind of interpolation, physics knowledge is employed to
improve the data-driven segment on the interpretability of the underlying system in this
approach.

The general data-driven modeling process is completed in two phases: (i) training
phase, a set of data is used to induce a model that best fits them, according to specific
criteria; (ii) the trained model is employed for prediction and control purposes of the
marine system. Targeting a regression problem when representing a continuous system
aims to find the best-approximating function h(x), where h : Rn → R. During the
training phase, the quality of the regressor h(x) is measured according to a loss function
ℓ(h(x), y), which calculates the discrepancy between the true and the estimated output.
The empirical error representing the average discrepancy is reported by a model over
the entire training dataset Dn (n is the sample length):

Ln(h) =
1

n

n∑

i=1

ℓ(h(xi), yi) (2.3)

Except for minimizing the empirical error Ln(h) (empirical risk) as much as possible,
the model complexity R(h) (structural risk)also has to be taken into account. The overall
criterium for selecting the best-approximating model consists of these two metrics:

h∗ : min
h

Ln(h) + λR(h) (2.4)

where λ is a hyperparameter that regulates the trade-off between the overfitting ten-
dency, related to the minimisation of the empirical error, and the underfitting tendency,
related to the minimisation of structural error. The optimal value for λ is problem-
dependent, and tuning this hyperparameter is a non-trivial task.

Looking into the DD process, several possible ways of knowledge fusion are indicated
to enhance the DD model.

• Feature selection: Selecting appropriate features that are derived from physical
understanding of the process is an effective way to encode the priori knowledge
in DD models [29]. Moreover, employing physics-based features in DD models
potentially reduces the number of independent model features and reduces the risk
of model overfitting.

• Custom loss function: Incorporating the physical understanding into the train-
ing loss functions, the ML models may provide a physically consistent, good ap-
proximate solution to the system [30, 31]. The knowledge could be preserved in
the form of initial conditions, boundaries, residual errors, etc. In general, the cus-
tomized loss function can be defined as h∗ : minh Ln(h) + λR(h) + λpfp, where
the physics-based equations fp are used as an additional regularization term in the
loss function of the networks.

• Insert knowledge layer: Extending the network topology by inserting a physics-
related layer could be an alternative [32, 33]. This way the first principle physics-
based information is decomposed, memorized, and integrated into the DD model.
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2.1.2 Cascaded

This hybrid structure is also referred to as the serial approach, as shown in Fig. 2.3b.
This form of the hybrid is approached by carrying the information leveraged by one
model forward into the other model and providing a strongly correlated insights. It
could be evolved in two directions: 1)leveraging physics knowledge to data models or 2)
passing data mining information to the physics-based model.

For the first manner, the domain expertise of the underlying system in processed
and carried forward into the DD component in the form of inputs, so that the non-
parametric component of the DD model is strongly linked to the physics. It is opposed
to relying on the universal approximation property of any purely DD method. Such a
relationship is expressed as (2.5).

ẋ = f(x, u, θ)

y∗ = g(x, u, ẋ)
(2.5)

where x is the state of the vessel system. u and y∗ are registered as system control and
output, respectively. f represents the physical-based model, and the production of the
reference model is integrated as an additional input to the the nonlinear DD model g.
It could be a neural network (NN) that represents a transfer function from the base
physical model to the representative model of the target system.

For the second situation, data-driven techniques are utilized to facilitate and op-
timize the physics understanding. For instance, when the sensitivity analysis is im-
plemented for the hydrodynamic coefficients in the mathematical model, the numerical
model could be simplified by omitting the less related components [34]. Another signif-
icant benefit of data analysis before stepping into the modeling phase is the enabling
of locally modeling on a specific context. Thus, in addition to the global general model
which preserves the majority of the underlying process characteristics, the introduction
of multiple local models covering discriminative features allows unlocking more potential
properties. The ensemble of multi-local models or the integration of global-local models
would both advance the physical understanding.

2.1.3 Parallel

The parallel manner refers to those methods which consist of a DD learner that compen-
sates the process model in the sense of correcting the error, as shown in Fig. 2.3c. It has
been widely accepted that modeling errors are unavoidable but influenceable aspects of
identification practice. Moreover, it is not reasonable to model the behavior of a pro-
cess entirely through deterministic relations. The PB model derived from fundamental
theoretical principles is assumed to be noise-free and capture specific dynamic charac-
teristics. And the DD model is utilized in parallel to accommodate the bias issues and
deliver accurate results by accounting for uncertainties and nonlinearities that cannot
be easily modeled in the PB and correcting noise.

Usually, the practice of using a DD learner to model the residuals from a model
is referred to as "bias correction", acknowledging that there is likely to be some error
in the complex mathematical representation of the system [35]. The summation of PB
predictions and DD compensation takes the following form.
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y∗p = f(x, u, θ)

y∗d = g(x)

y∗ = y∗p + y∗d

(2.6)

The DD predictions y∗d are usually generated through supervised learning algorithms.
For instance, in [36], a long-short term memory (LSTM) neural network was integrated
into the ship dynamic model to compensate for the unmodeled behavior and inaccuracies.
Similarly, in [37], a Gaussian process (GP) regressor was trained to correct the physics-
based model’s systematic errors.

From the review above, the main principles of the physics-data cooperation are
introduced and categorized according to the structural characteristics of interaction.
Among them, the first two hybrid ways are mainly investigated in this thesis. Although
the third way is not fully developed in this thesis, it is studied in cooperation with team
members, and covered in the co-authored publications. The present thesis aims to be
detailed in definitions and applications of specific categories while providing a broad
perspective of the hybrid philosophy.

2.2 Fundamentals of the physics-based model

The physics-based models describing ship dynamics could be formulated in the frequency-
domain or the time-domain. When the model structure is determined, proper parameters
need to be tuned within physically reasonable ranges to reflect the specific properties as
close to reality. In this section, the simulation model of the ship motion will be elab-
orated. This thesis deals with ocean scenarios including standard maneuvers (Kempf’s
zigzag and turning circle), ship docking, and dynamic positioning, with the forward
speed varying from high-speed to low-speed. Depending on the cruising speed and mo-
tion of directions, the nonlinear maneuvering model as well as the linearized DP model
describing the horizontal motions (surge, sway, and yaw) are employed for simulation
and prediction.

2.2.1 Maneuvering model

The 3 DOF horizontal plane maneuvering model describes relations between actuators,
external environmental disturbances, and the hull [14]. The ship model based on the
rigid-body kinetics is expressed as (2.7):

η̇ = R(ψ)ν

MRB ν̇ + CRB(ν)ν +MAν̇r + CA(νr)νr +D(νr) +Dn(νr)νr = τc + τwind + τwave
(2.7)

where η = [x, y, ψ]T is the ship position vector containing the north, east positions and
yaw angle in the Earth-tangential North-East-Down (NED) frame. ν = [u, v, r]T is the
ship velocity vector in surge (longitudinal axis), sway (lateral axis), and yaw (rotation
about the up-down axis) directions in the ship’s coordinate, respectively. R(ψ) is the
horizontal plane rotation matrix which is given as (2.8):
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R(ψ) =



cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (2.8)

In the ship’s coordinate frame, the model reflects the ship response due to the forces
including wind, waves, thrusters, hull friction, and inertia. Here, νr = ν−νc is the relative
velocity vector through water, νc = [uc, vc, 0]

T is the generalized ocean current velocity
of an irrotational fluid. MRB ∈ R3×3 is the vessel’s rigid-body mass matrix, and MA

is the added mass matrix. CRB(ν) ∈ R3×3 and CA(νr) ∈ R3×3 are the skew-symmetric
Coriolis and centripetal matrices of the rigid body and the added mass. D(νr) ∈ R3×3

and Dn(νr) ∈ R3×3 are the linear, and nonlinear damping matrices, which are functions
of the relative velocity νr between the vessel and the current.

External force components generally come from three sources (the ocean current-
induced force has been accounted by the relative velocity νr):

• τc ∈ R3— the control vector consisting of forces and moments produced by the
thruster system;

• τwind ∈ R3— force induced by wind acting at a certain angle relative to the ship;

• τwave ∈ R3— force induced by waves. This force is not directly measurable and the
drift component is generally observed as nonzero slowly varying process.

The generalized control force τc is obtained by translating the individual thruster
forces, that act at specific locations on the ship hull, to the ship’s body frame, as shown
in (2.9).

τc = T (δ)FT (2.9)

where δ is the thruster orientation angle, and T (δ) is the thrust configuration matrix,
which describes the geometrical locations of the thrusters. τc = [τx, τy, τn]

T refers to
the control force vector acting on the vessel. FT consists of forces produced by tunnel
thruster, main propellers, or azimuth thrusters, respectively.

The individual propeller thrust T and torque Q are generally formulated as a func-
tion of shaft speed n in revolution-per-minute, time-varying states xp, and fixed thruster
parameters θp [38]. The thruster models (2.10) are generic models parameterized to fit
the research vessel.

T = fT (n,xp, θp)
Q = fQ(n,xp, θp)

(2.10)

The wind force is the only environmental disturbance that can be estimated based
on the wind speed and velocity measured on board. The deterministic model to estimate
wind forces is given in (2.11).

τw =
1

2
ρaV

2
rw




CX(γrw)AFW
CY (γrw)ALW

CN(γrw)ALWLoa


 (2.11)
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The relative wind speed is defined as Vrw =
√
u2rw + v2rw and attack angle γrw =

−atan2(vrw, urw), where urw = u − Vw cos (βw − ψ), and vrw = v − Vw sin (βw − ψ).
Vw and βw represent the wind speed and its direction, respectively. CX ,CY , and CN are
wind coefficients specific for the hull or superstructure shape. AFW and ALW are frontal
and lateral projected areas and Loa is the overall length of the ship.

Except for the feedforward estimation method of environmental loads like (2.11),
they could also be modeled as a stochastic process [14]. Such a process can represent
the slowly varying environmental forces and moments due to wind loads, second-order
wave drift forces, and current forces. The overall effects of environmental factors as well
as unmodeled nonlinear dynamics are lumped into a bias term b ∈ R3. The resulting
model becomes

η̇ = R(ψ)ν

ḃ = w1

Mν̇ + Cν +Dν = RT (ψ)b+ τc + w2

(2.12)

Alternatively, the bias could be modeled as first-order Markov process (2.13).

ḃ = −T−1b+ w1 (2.13)

In (2.12), the variables wi(i = 1, 2) are zero-mean Gaussian noise vectors representing
model uncertainty.

2.2.2 Dynamic positioning model

The DP models are valid for station-keeping and low-speed maneuvering up to approx-
imate 2m/s where the linear assumption is a good solution for simplification. For hor-
izontal motion of a fully actuated offshore surface vessel exposed to wind disturbances,
considering the surge, sway and yaw motion components, the linearized mathematical
model of ship in DP maneuvering is expressed as [14]:

η̇ = R(ψ)ν

Mν̇ +Dν = τc + τwind
(2.14)

where, η = [x, y, ψ]T is the ship position vector in the NED frame. ν = [u, v, r]T is
the ship velocity vector in the body-fixed frame. The rotation matrix is specified by
(2.8). M = MRB + MA is the ship’s inertia matrix including added mass. D is the
linear damping matrix. τc is the generalized control forces which are distributed among
the thrusters as indicated in (2.9). The thruster configuration matrix depends on the
location and orientation of thrusters. The wind force τwind acting on the vessel moving
at a forward speed are estimated as (2.11).

2.3 Principles of the data-driven model

Data-driven method is the general term for constructing models based on analysing
data. The term machine learning is often used interchangeably, which refers to the
computational methods that learn through experience. Problem learning indicates the
process of improving a certain performance of a certain task through a certain type of
training experience. The experience is expressed in the format of data and therefore the
methods are called data-driven.
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Depending on whether labels (or corresponding target values) are provided to train
and evaluate a model, the process can be divided into two paradigms: supervised learn-
ing and unsupervised learning. Both learning strategies can be used for solving the
classification, regression, and ranking tasks. For the motion prediction applications, the
supervised learning methods which usually focus on function approximation are chosen
to perform the regression problems. Generally, given the training data set in the form of
a collection of (x, y) pairs, the task is to find a function f so that a prediction y∗ = f(x∗)
can be made to a query x∗ based on the training data. The input x could be a vector or
other complex objects, like images. The function f may take many forms depending on
the learning algorithms. For example, f could be explicitly expressed as a parameterized
function and the parameters are determined by the training data through an optimiza-
tion process, or f as well as its parameters are implicitly determined simultaneously by
a search process with tunable hyperparameters.

Recent years have seen plenty of machine learning algorithms developed to cover
different data and tasks. As clarified before, only the supervised machine learning models
are focused to tackle the regression problems in this thesis. The following are some of
the algorithms that have been used as modeling tools in this dissertation.

2.3.1 Support vector regression

Support vector regression (SVR) is an effective method for modeling and interpolating
nonlinear functions. It was formally proposed in the 1990s [39] and is widely used
for regression analysis for its global optimal solution. Given the training data sets
S = {sk|sk = (xk, yk), xk ∈ Rn, yi ∈ R}mk=1 where x and y represent the input and
corresponding target values respectively, m is the sample length, the basic idea of SVR
is to fit a function f(x) = ⟨w, x⟩ + b onto a training data set. The weights vector w, b
can be obtained by solving the optimization problem:

min
w,b

1

2
||w||2 + C

n∑

i=1

(ξi − ξ∗i )

s.t. − ϵ− ξ∗i ≤ ⟨w, xi⟩+ b− yi ≤ ϵ+ ξi

ξi, ξ
∗
i ≥ 0

(2.15)

where ξ and ξ∗ are slack variables representing the deviation from a predefined gap
with hyperparameter ϵ. The hyperparameter C denotes the strength of the regulariza-
tion which is inversely proportional to C. The minimization solution is offered by the
Lagrangian multiplier technique, which by itself leads to a dual optimization problem:

min
α,β

1

2

m∑

i,j=1

(αi − βi)(αj − βj)k(xi, xj)

+ ϵ
m∑

i=1

(αi + βi)−
m∑

i=1

yi(αi + βi)

s.t. 0 ≤ αi, βi ≤ C

(2.16)

where α, β are the Lagrangian multipliers, k(xi, xj) is a kernel function which is used
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to account for nonlinearities. The conditions for optimality is based on Karush-Kuhn-
Tucker conditions (KKT). The resulting solution of the function f is given as:

f(x) =
m∑

i=1

(αi − βi)k(xi, xj) + b (2.17)

The kernel functions have several choices, such as the linear, polynomial, radial basis
function, etc. To implement the parameter identification application, the linear kernel
function which is expressed as k(xi, xj) = xTi xj is adopted.

2.3.2 Multi-layered perceptron

The multi-layered perceptrons (MLPs) are neural network models that work as universal
approximators. An MLP is specified with an input layer, one or multiple hidden layer,
and an output layer. Fig. 2.4 decipts a general structure of such a network. Each
neuron in the hidden layer applies an activation function to the sum of the inputs from
the previous layer. The input features are passed on to an input function u, which
computes the weighted sum of the input features:

u(x) =
n∑

i=1

wikxi + bk (2.18)

where w is the weight vector, and b is the bias vector. x is the input features. The
resulting sum is then passed onto an activation function a, which produces the output
of the neuron:

ok = a(u(x)) (2.19)

In relation to Fig. 2.4, the output of node k is calculated according to (2.19). The fre-
quently used activation functions for the hidden layer nodes are the sigmoid, hyperbolic
tangent, Rectified Linear Unit (ReLU), etc. Learning in MLPs relates to adjusting its
perceptrons’ weights so as to provide low error on the training data. This process is
traditionally done using the backpropagating algorithm, which attempts to minimize
the loss function, typically mean square error (MSE).

Input layer hidden layer

Input featurei 𝑥

Input featurej𝑥

Input featuren𝑥

𝑤

𝑤

𝑤

𝑏

u
f

bias

bias

output layer

Figure 2.4: Structure of a general MLP.
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2.3.3 Long short-term memory

Different from the feedforward MLP, Long short-term memory (LSTM) is a type of re-
current neural networks (RNN). As opposed to traditional RNN, the LSTM introduces
a memory cell that regulates the information flow in and out of the cell. As shown
in Fig. 2.5, the memory cell consists of three non-linear gating units that protect and
regulate the cell state. The introduction of these gating units enables selectively remem-
bering and forgetting the input data. When the input xi passes through the memory
cell, it selectively stores the information and allows it to affect the output. Thus, the
LSTM is capable of learning the long-term dependencies in the data and is often used in
applications dealing with time sequences. For each element in the input sequence, the
LSTM computes the following function:

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxi + bif +Whfht−1 + bhf )

gt = tanh(Wigxi + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(2.20)

Where f, i, o and c represent the input gate, the forgetting gate, the output gate and
the cell state, respectively. ht−1 and ct−1 are hidden state and cell state of the LSTM
structure at the t− 1 time step. ht,ct, and xt are the hidden state, cell state at time t,
xt is the input vector at time t. W and b are the weights and bias in the LSTM cell. σ
refers the activation function sigmoid σ(x) = 1/(1+e−x), tanh is the hyperbolic tangent
function, and ⊙ is the Hadamard product.

Xt

𝝈𝝈 𝝈𝝈 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝝈𝝈

×

×

+
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

×

ht

ht

stst-1

ht-1

Xt+1

ht+1ht-1

Xt-1

st-1 st

Figure 2.5: Schematic illustration of a LSTM cell.

2.4 Experimental platforms and data collection

For the duration of the Ph.D project, three main experimental platforms have been used
extensively to develop and validate the modeling approaches proposed in this thesis.

20



CHAPTER 2. PHYSICS-DATA COOPERATIVE MODEL FOR MOTION PREDICTIONS

Three high-fidelity simulators and one NTNU-owned real-world vessel are engaged to
sample ship operation data.

2.4.1 OSC simulator

The Offshore Simulation Centre1(OSC) specializes in providing realistic and integrated
simulator solutions for a variety of applications, including training in best practice for
critical operations and virtual prototyping. The simulator features a simulated envi-
ronment in which a user may manipulate the wind, waves, and ocean current to mimic
environmental conditions. A multi-purpose offshore vessel is selected for the tests per-
formed in the OSC simulator. Fig. 2.6 depicts the real-life vessel and its simulation
solution. The numerical models of the vessel, the simulated environmental disturbances
and thrust-producing devices were used in the project. Its main dimensions are given
in Table. 2.2. This offshore vessel is equipped with two main propellers, one retractable
thruster forward, two side tunnel thrusters forward, and two aft [40], as shown in Fig. 2.7.
The simulated vessel solutions of DP and zigzag maneuvers were applied for paper I and
V.

(a) (b)

Figure 2.6: The selected offshore vessel and its simulation in the OSC simulator.

Table 2.2: Physical parameters of the OSC-simulated vessel.

Description Parameters Value
Length over all Loa[m] 93.8

Length between perpendiculars Lpp[m] 82.7
Breadth middle B[m] 23.058

Draught T [m] 7.5
Deadweight DWT [t] 4925
Design speed U [knot] 17.5

2.4.2 Co-simulation

Co-simulation refers to an enabling tool, where distributed sub-systems makes up a
global simulation. Each sub-system is a simulator which allows to be modeled with
its own tool in its domain, and is broadly defined as a black-box capable of exhibiting
behavior. In a co-simulation algorithm, the interactions between these sub-simulators

1The Offshore Simulation Centre, https://osc.no/, Data accessed 08-March-2022
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Figure 2.7: Thruster configuration the vessel simulated in OSC.

are synchronized at discrete communication points. Generally, the sub-simulators accept
inputs (from other sub-simulators), advance in time with a built-in solver routine up to
the next communication point, and finally output some results [41]. The results may in
turn be used as inputs to other sub-simulators. The Functional Mock-up Interface (FMI)
standard is a commonly used standard for co-simulation, and a model implementing the
FMI is known as a Functional Mock-up Unit (FMU). The FMI enables an FMU exported
by one tool to interoperate with a variety of host tools and for host tools to orchestrate
interactions between FMUs exported by a variety of other tools [42]. A system can then
be modelled as a collection of interconnected FMUs.

Vico, developed by our team [43], is a generic co-simulation framework based on the
Entity-Component-System software architecture that supports the FMI as well as the
System Structure and Parameterization2 (SSP) standards. The user may manipulate the
wind, waves, and ocean currents to mimic environmental conditions. The experiments
implemented by co-simulation cover standard zigzag maneuver and docking operations
of a NTNU-owned research vessel Gunnerus, and the related works are expanded in
paper III and IV.

The co-simulation setup for a zigzag maneuvering experiment is presented in Fig. 2.8,
and each block represents an FMI-compatible model. The environmental conditions are
specified as initial values for the VesselModel which is developed by SINTEF Ocean.
The Zig-zag Controller is developed by the author in Python, and the Azimuth model
is supplied by the thrust manufacturer Kongsberg Maritime. The simulation fidelity of
the models used in the experiments was verified against the actual ship in terms of ship
speed, course, and power consumption [44].

2.4.3 Research vessel Gunnerus

The research vessel (R/V) Gunnerus3 as seen in Fig. 2.9, which is owned and operated
by NTNU, was put into operation in 2006. It is equipped with the latest technol-
ogy for a variety of research activities within biology, technology, geology, archaeology,
oceanography, and fisheries research [45]. In addition to research, the ship is used for
educational purposes and is an important platform for marine courses at all levels and
disciplines. Table. 2.3 holds the main dimensions of the vessel. The R/V Gunnerus was
equipped with twin fixed-pitch ducted propellers and rudders and one tunnel thruster
from Brunvoll. In 2015, the R/V Gunnerus went through a thruster refit, and the
original propellers were replaced with Permanent Magnet (PM) rim-drive azimuthing

2Standard for configuring simulations that consist of FMUs, https://ssp-standard.org/, Data accessed
08-March-2022

3The R/V Gunnerus, https://www.ntnu.edu/gunnerus, Data accessed 08-March-2022
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Figure 2.8: Diagram showing the relationship of components in co-simulation of executing
zigzag maneuver.

thrusters, and its layout is presented as Fig. 2.10. The original propellers were 5-bladed,
high skew type with a diameter of 2.0 meters that rotated in a 19A type duct profile,
and the new azimuthing thrusters incorporates a ring propeller in a tailor-made duct
with a diameter of 1.9 meter with four blades having a forward skewed shape. Fig. 2.11
shows the propulsion configuration on Gunnerus before and after retrofit, where the left
is the origin pitch propeller with ice-fins, and the right is the refitted azimuth thruster
provided by Rolls-Royce. The same diesel-electric system supplied the propulsion and
maneuvering power before and after the conversion. In 2019, the vessel was elongated
to 36.25m from original 31.25m. All other geometrical and propulsion characteristics
except the length dimensions remained the same. Because of the elongation, there are
two versions of the vessel, which are both used in this project.

Figure 2.9: Starboard side-view of the R/V Gunnerus.

As a research vessel, there are many data acquisition systems installed onboard the
Gunnerus, like thrusters, power generators, navigational sensors, and motion control
systems, etc. The number of mensurable sensor channels is high, and for the motion
prediction purpose, we are interested in the data originating from GPS receiver, a motion
reference unit (MRU), compasses, a wind sensor, and sensors reflecting orientation and
rotational speed of thrusters. The sensor channels related to motion prediction are listed
in Table. 2.4. For all measurements in the data set, a sampling rate of 1 Hz was observed.
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Table 2.3: Physical parameters of the R/V Gunnerus.

Description Parameters Short version Elongated version
Length over all Loa[m] 31.25 36.25

Length between perpendiculars Lpp[m] 28.9 33.9
Breadth middle B[m] 9.6 9.6

Draught T [m] 2.7 2.7
Design speed U [knot] 9.6 9.6
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Figure 2.10: The thruster configuration the R/V Gunnerus.

2.4.4 MSS toolbox

The Marine Systems Simulator4 (MSS) is a Matlab and Simulink library for marine
systems. It includes models for ships, underwater vehicles, unmanned surface vehicles,
and floating structures. The library also contains guidance, navigation, and control
(GNC) blocks for real-time simulation [46]. Being widely used in marine simulation, the
toolbox provides resources for the implementation of mathematical models of benchmark
ships, such as the Mariner class vessel [47], the container vessel, and so on. Thus the
toolbox is usually used as a verification platform in marine research. In this thesis, the
experiments implemented in paper II are conducted in this simulator.

2.5 Chapter summary

This chapter clarifies the physics-data cooperative modeling methodology and possible
manners in the maritime domain. The fundamentals of physics-based and data-driven
modeling disciplines are introduced. In addition, the experimental platforms and data
acquisition that are utilized in this dissertation are presented. Fig. 2.12 displays how
these models and media are engaged in the following chapters. According to the outlined
research objectives, chapters 3-5 each cover one objective validated by relevant case
studies. Chapter 3 presents the applications of physics-based modeling for facilitating
a ship’s dynamic model as well as its components, and its experiments are performed
on OSC and co-simulation. Chapter 4 discusses ship dynamic optimization issues by
identifying the hydrodynamic derivatives, categorized as a physics-data collaborative
way. The MSS toolbox is taken to generate ship maneuvering data. And in chapter
5, knowledge transfer is conceptualized by integrating the physics-based maneuvering
model and data-driven model based on both real-life and simulation data. The three
case studies constitute the main objectives of this dissertation, which are to exploit the
physics-data cooperative modeling disciplines for ship motion prediction.

4Marine Systems Simulator (MSS), https://github.com/cybergalactic/MSS, Data accessed 08-March-2022
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Figure 2.11: The propulsion arrangement of the R/V Gunnerus before and after retrofit.

Table 2.4: Data channels sensed onboard the R/V Gunnerus.

Signal Channels Unit

GPS

Latitude ddmm.mmmm
Longitude ddmm.mmmm
Surge velocity knots
Sway velocity knots
Course angle deg
Speed over ground knots

MRU

Heading angle deg
Heading rate deg/s
Roll angle deg
Pitch angle deg
Heave displacement m
Roll rate deg/s
Pitch rate deg/s
Heave rate m/s

Wind sensor Wind direction deg
Wind speed knots

Thruster

Port thruster rotational speed %
Port thruster angle deg
Starboard thruster rotational speed %
Starboard thruster angle deg
Tunnel thruster rotational speed %

Physics‐based model

Maneuvering
model, applied for 
zigzag, turning 
circle, docking 
operations

DP model

Data‐driven model

SVR

MLP

LSTM

Experiment platform

OSC

Co‐simulation

Real‐life 
R/V Gunnerus

MSS toolbox

OSC

Co‐simulation

Chapter 3

Chapter 4

Chapter 5

Figure 2.12: Interconnection of the PB and DD models as well as data source contained in
different chapters.
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3
Case study: Model-based thruster failure detection and

retrofit

This chapter presents research results related to the physics-based model, covering the
contents of paper I and IV. During the service life of a vessel, continuously monitoring,
diagnosis, and prognostics of components are essential for ship health management and
leverage alert for maintenance or conversions. Thrusters, as the main propulsion units
used to position a modern vessel, will inevitably undergo faults due to long-time oper-
ation in the complex ocean environment. To avoid miserable damage to safety and the
economy, timely diagnosis and isolating failed thruster are of great significance. Once
faults are detected, decisions of maintenance or conversions can be made. It is reported
that by replacing expired components or updating the outdated technology to the latest
operational standards, the service life could be significantly prolonged, and the capa-
bility will be enhanced meanwhile [48]. Yet, since modern ships are becoming more
complex and integrated, retrofitting them is a complex and intricate engineering task.
A co-simulation-based thruster retrofit study is conducted to optimize the refit process
and speed up the simulation. This chapter proposes a model-based approach for thruster
failure detection and isolation (FDI) of a dynamically positioned offshore vessel. And
the vessel conversion study is performed based on the research vessel Gunnerus.

3.1 Thruster failure detection and isolation

3.1.1 Methodology

An effective failure detection and isolation scheme is proposed for detecting thruster
failure in dynamically positioning offshore surface vessels, as shown in Fig. 3.1. When
one thruster fails to work normally, the ship’s DP performance will diverge from the
fault-free status. Thus ship position and orientation in the earth-fixed frame are selected
as monitoring states. Failure detection and failure isolation are both included in the
proposed framework. This figure specifies three modules in the schema, including ship
measurements, mathematical modeling, and failure diagnosis.

In the real ship experiment or simulator, the DP operation is performed through
a DP controller. For a fully actuated offshore surface vessel, the horizontal motions—
surge, sway, and yaw movements are of great interest. The control force generated
from the controller will be further allocated by an allocation algorithm to corresponding
thrusters. And then, the vessel can be maneuvered towards the reference point by
these thrusters. The simulation process is marked with a red dash line in Fig. 3.1.
The mathematical model for ship maneuvering in the framework can be derived from
Newton-Euler or Lagrange methods. The interaction between ship hull, propulsion force,
and hydrodynamic effect is represented by a set of complex differential equations. At
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present, there are several variants for ship maneuvering, such as the Nomoto model
and nonlinear maneuvering model [49]. The residual signal, which reflects the variation
between model-predicted state and sensor data, flows into the fault diagnosis module
in the framework. The fault diagnosis module includes two components. The first one
is used for detecting the existence of failures; the other one is to isolate the sources
of failures. In a predefined detection time window, by applying the thruster command
from the controller to the established mathematical model, an estimated ship state will
be obtained. A ship behavior-based residual generator in the detection time window
is introduced. It is designed to keep a low level in the fault-free phase and increase
to exceed a threshold when a thruster failure occurs. In the isolation phase, residuals
are further analyzed to configure the location of the failure by means of probability
analysis. It ends up with a probabilistic model, from which better knowledge about the
confidence of failure location, as well as more meaningful information to the end-user,
can be gained.

+
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Figure 3.1: Thruster failure detection and isolation architecture.

Fault diagnosis

In the DP operation scenario, the vessel is supposed to keep steady at one fixed position
(x0, y0) with orientation ψ0 in the earth-fixed frame. The control force is distributed
into each thruster, and then the vessel will be propelled towards the fixed point by the
corresponding thrust.

In the failure detection module, a detection time window is adopted to evaluate
the residuals between model reference sequences and measurement data. The states of
the dynamic model under the command thrust can be estimated by solving the model
differential equations. In the window [t0, tT ], the residuals are defined as:

r(t) =
√
e2x + e2y exp(eψ) (3.1)

where ex = x̂ − x, ey = ŷ − y, eψ = ψ̂ − ψ, [x̂, ŷ, ψ̂] are model estimated ship position
and heading, [x, y, ψ] represents real ship position and heading. After the residuals are
generated, the detection of failure can be performed through the following rules, where
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δ refers to the threshold obtained through several simulation experiments.
{
r(t) ≤ δ normal

r(t) > δ failure
(3.2)

Define the initial state of model as X0 = [η(t0), ν(t0)]
T , with the residual signal

r(t0) = 0. If there is no residual in the period [t0, t0 + ∆t] exceeds the threshold, the
detected period is judged normal. Then the window slides to the next period [t0 +
∆t, t0 + 2∆t]. This process will continue until an abnormal alarm happens. The value
of the threshold is determined on the basis of a large number of experiments. In this
paper, the threshold value is defined as:

δ = µ+ kσ (3.3)

where µ and σ are the mean and standard deviation of residuals in faulty-free status.
The selection of k value is critical, which represents a trade-off between a low false-alarm
rate and a high sensitivity to failures.

Once a fault is detected, the next problem to be solved is distinguishing the failure
mode. According to the mathematical expression of DP maneuvering, the ship model
reference sequences in healthy and different failure conditions can be built, respectively.
At the time td when fault detection residual surpasses a given threshold, failure isolation
can be accomplished by probability analysis between the actual successor sequence and
the predicted state sequences based on an analytical model. In the detected faulty
period [td, te], a corresponding residual sequence is generated for each failure mode. The
mean integral of residual is considered to obtain a quantitative comparison between the
results of different failure mode simulations. The mean integral of the residual index,
normalized with respect to the time length of the faulty period, is expressed as

si =
1

T

∫ te

td

r(t)dt, i = 1, 2, ...N (3.4)

where N represents the number of failure mode. The probability of each failure mode is
calculated according to

Pi = 1− si∑6
i=1 si

(3.5)

The highest probability indicates that the relevant failure mode has the most similar
features to the detected abnormal.

3.1.2 Experimental results

To validate the effectiveness of the proposed thruster failure detection and isolation
method, simulation experiments of DP maneuvering under different failure scenarios are
conducted. The selected simulation vessel is equipped with two main thrusters, two
tunnel thrusters at the bow and two tunnel thrusters at the stern, as shown in Fig. 3.2.

The thruster configuration matrix has the form:
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Figure 3.2: Thruster configuration for the offshore surface vessel.

T =



0 0 0 0 1 1
1 1 1 1 0 0
L1 L2 −L3 −L4 −L5 L6


 (3.6)

where Li(i = 1, ..., 6) are the moment arms in yaw. The allocation of the six thrusters is
symmetrical with respect to the longitudinal axis of the vessel. The two main thrusters,
two bow tunnel thrusters, and two stern tunnel thrusters are considered three pairs of
thrusters, and the same force demand is applied to both thrusters in each pair when
they are running in fault-free status. It is worth noting that in the selected vessel, the
bow tunnel thrusters and stern tunnel thrusters are located near, where the distances
db = L1 − L2 and ds = L4 − L3 are pretty small, almost 1/40 of the vessel length.

Model validation

The mathematical model is constructed with the known mass, damping terms, and un-
known wind coefficients. Thus, the coefficients CX , CY , CN in the estimation expression
need to be identified first. The normal DP simulation data {(ti, Xi), i = 1, 2, ..., n} from
the OSC simulator is divided into two sets, the first set is used to identify the unknown
wind coefficients in the mathematical model by applying the least square method and
the second set is selected to test the effectiveness and accuracy of the mathematical
model.

The results are displayed in Fig. 3.3. It can be seen that the ship trajectory generated
by the mathematical model fits well with the simulation data. This fact illustrates the
applicability of the proposed failure detection method, which lies in the residuals between
the model reference sequence and ship data.

Detection and isolation results

To verify the effectiveness of the proposed method, simulation experiments under dif-
ferent thruster failure modes are carried out. Single thruster failure cases are designed
as Table 3.1 shows, where ’0’ refers to 100% thruster invalid, and ’1’ represents normal
status.

Fig. 3.4a shows the residual results of two bow tunnel thrusters’ failure. This failure
is characterized by an abrupt invalid of a thruster, whose actual speed freezes at 0 while
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(a) Identified wind coefficients of the vessel. (b) Validation of mathematical model ref-
erence with identified parameters and sim-
ulator results.

Figure 3.3: Mathematical model validation results.

Table 3.1: Thruster failure cases of simulation.

Case th1 th2 th3 th4 th5 th6

011111 0 1 1 1 1 1
101111 1 0 1 1 1 1
110111 1 1 0 1 1 1
111011 1 1 1 0 1 1
111101 1 1 1 1 0 1
111110 1 1 1 1 1 0

(a) The residual signal of bow thruster fail-
ure mode.

(b) Probability analysis results of bow
thruster failures.

Figure 3.4: Bow thruster failure detection and isolation.

command speed is as usual. It can be seen that the fluctuations of the residual signal
at t = 531.4s and t = 1421.4s are strong, implying failure happens. If the residual value
is greater than the threshold, it can be judged as a failure. For a low false alarm rate,
the threshold (red dash line) should be set no less than k = 1 for bow tunnel thruster
detection. The probability of each failure mode is analyzed according to the rule (3.5),
and the results are presented in Fig. 3.4b. For the two detected faulty periods, to
determine the location of the failed thruster, the residual sequence of each failure mode
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(a) Residual signal of main thruster failure
cases.

(b) Probability analysis results of main
thruster failures.

Figure 3.5: Main thruster failure detection and isolation.

is generated, as shown in Fig. 3.6(a)-(b). It shows that in the first abnormal period, the
performance of the ship is the most similar to 011111 failure mode, and in the second
period, 101111. It is worth mentioning that in these two faulty cases, 011111 and 101111
failure modes have a pretty high similarity, manifested in little difference in diagnosis
probability. The reason is that these two bow thrusters are located quite close to each
other.

Figure 3.6: Residuals of each failure mode in detected faulty period. (a) first anomaly in bow
thruster; (b) second anomaly in bow thruster; (c) first anomaly in main thruster; (d) second
anomaly in main thruster.
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The residuals caused by each primary thruster failure characterize different peak
values in Fig. 3.5a. This is caused by the position difference of the two main thrusters
to the wind direction. Here the threshold for failure detection is also set at k = 1.
The failure mode residual comparison results are presented in Fig. 3.6c-d. It can be
seen that the main thruster failure has rather different features compared with tunnel
thruster failure because main thrusters and tunnel thrusters provide disparate force to
maintain the ship’s position under wind disturbances. According to Fig. 3.5b, one can
get that the first detected anomaly is caused by port main thruster failure and the second
starboard main thruster.

3.2 Co-simulation based thruster retrofit

This study presents the propulsion retrofit process using the co-simulation technique,
and the dynamic properties of the retrofitted devices are analyzed and discussed. Co-
simulation, as an enabling tool, lessens the modeling pressure and promotes efficiency
benefiting from the re-usability of different elements. The research vessel Gunnerus
went through a thruster refit in 2015. The origin twin fixed-pitch ducted propellers and
rudders were replaced with the Permanent Magnet rim-drive azimuthing thrusters. The
ship maneuvering capabilities are simulated to document the effect of the change in the
propulsion system.

3.2.1 Co-simulation setup

The ship maneuvering simulation is set up as Fig. 3.7 shows. Each block represents an
FMU of which the input and output variables are declared. The experiment is performed
in Vico [43].
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Figure 3.7: Diagram showing the relationship of the engaged ship components.

An overview of FMUs applied in the maneuvering simulation is presented. All the
FMUs, except the VesselModel and PMAzimuth, are developed by the authors using
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PythonFMU [50].

1. VesselModel
The vessel model reflects the vessel’s hydrodynamic properties, such as the mass,
resistance, and cross-flow drag, as well as restoring forces. It is a 6DOF time-
domain simulation model developed by MARINTEK’s vessel simulator VeSim [51].
Summing all the external forces acting on the ship, the dynamic equations of vessel
motions are then solved.

2. PID controller
The PID controller is created to generate shaft speed and rudder angle commands
according to Eq. 3.7. In the control law, the k{·} is the parameter enabling tuning,
and the predefined approach speed ud as well as the ship heading ψd are issued by
the ZigzagController.

RPM = kpu(u− ud) + kiu

∫ t

0

(u− ud)dt+ kdu
d

dt
(u− ud)

δ = kppsi(ψ − ψd) + kipsi

∫ t

0

(ψ − ψd)dt+ kdpsi
d

dt
(ψ − ψd)

(3.7)

3. Zigzag controller
It is a logistic solver without numerical computation. Given the current ship speed
and heading, it can tell to which side the rudder should turn and deliver the
command saturation to the connected PID controller.

4. PMAzimuth
It is a hydrodynamic model of the azimuth thruster without actuator, implemented
by the manufacturer Kongsberg Maritime using VeSim. Feeding a specific RPM
and angle command, vessel speed, as well as the loss factor into the model, it
produces a 3DOF force in heave, surge, and sway directions.

5. Propeller
Both the propeller and rudder are generic models parametrized to R/V Gunnerus.
The surge force related to the propeller is calculated with:

τp = f(n, u) (3.8)

where n is the propeller shaft speed (r/min), and u is the vessel’s surge velocity.
Note that the sway force and yaw moment due to propeller are neglected as they
have smaller magnitudes compared to those of hull and rudder components.

6. Rudder
The rudder is modelled according to [52]. It can be expressed as:

τr = g(u, v, r, n, δ, θ) (3.9)

where u, v, r are the velocities in surge, sway, and yaw directions respectively. And
δ is the rudder angle. θ refers to the hull-rudder interaction coefficients.
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3.2.2 Results analysis

Ship maneuvering experiments with a different set of propulsion units are implemented.
It is also worth noticing that the ship maneuverability could be affected by water depth,
environmental forces, ship speed, and hydrodynamic derivatives. To ensure the results
comparable, identical settings except only the propulsion units are employed. The ship is
assuming cruising on calm and deep water without external environmental disturbances.

Zigzag Maneuver

Zigzag trajectories for the ship using both the pitch propellers and azimuth thrusters are
simulated. Two test scenarios are presented and compared in Fig. 3.8-3.9. Differences
in turning velocities are observed in these figures. A more noticeable yaw velocity dis-
tinction between the pitch propeller and azimuth arises during 10◦ turn command. The
statistical results are summarized in Table. 3.2. It could be observed that the measured
key time parameters in the azimuth group are effectively decreased. This conclusion
reveals that the ship with azimuth installed reaches the desired course in a shorter time
and responds more quickly to the given command.
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Figure 3.8: 10◦/10◦ zigzag at high speed.
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Figure 3.9: 20◦/20◦ zigzag at high speed.

Table 3.2: The zigzag characteristics for the ship before and after propulsion unit retrofit.

Characteristics 10◦/10◦ 10◦/10◦ 20◦/20◦ 20◦/20◦

pr azi gain[%] pr azi gain[%] pr azi gain[%] pr azi gain[%]
Approach speed [m/s] 4.7 4.78 - 2.4 2.5 - 4.7 4.73 - 2.45 2.47 -

ta [s] 13.7 8.9 35 24.25 15.6 35.7 8.95 6.45 27.9 14.9 10.4 30.2
ts [s] 3.6 2.9 19.4 5 3.6 28 10.8 8.25 23.6 16.3 12.2 25.2
tA [s] 31.9 21.3 33.2 54.4 35.25 35.2 34.5 26.25 23.9 55.6 40.7 26.8
tT [s] 60.3 40.75 32.4 103.2 67 35.1 64.15 50.3 21.6 103.8 78.75 24.1

First overshoot angle [◦] 2.17 2.37 -9.2 1.57 1.6 -1.9 6.64 6.7 -0.9 4.6 4.7 -2.1
Second overshoot angle [◦] 2.2 2.42 -10 1.58 1.61 -1.9 6.87 6.68 2.8 4.8 4.36 9.2
Average overshoot angle [◦] 2.2 2.42 -10 1.576 1.6 -1.5 7.01 6.7 4.4 4.92 4.35 11.6

Turning Circle

The turning circle maneuver experiments are conducted under the resembling co-simulation
structure but replacing the Zigzag controller with Turning controller. The execution an-
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gle and speed are distinguished into two categories: 10◦ and 20◦ with higher and lower
approach speeds, respectively.

The statistical maneuver results are presented in Table. 3.3. One test case is vi-
sualized, as shown in Fig. 3.10. The ship equipped with either the conventional pitch
propellers and rudders or azimuths is approaching at similar speeds before execution.
From Fig. 3.10a, a drop in surge speed is observed when the rudder is instantiated,
and the reduction in pitch propeller is more apparent compared to that of the azimuth.
Meanwhile, a more significant turning velocity is offered by the azimuth. The out-
performance in response velocities is expected to lead to a narrower turning radius
verified in Fig. 3.10b. Moreover, the statistical results show that the angle command
affects the propulsion performance more than the approach speed.
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(a) The ship’s surge and yaw speed when
circling at 10◦ with a fast speed.
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Figure 3.10: 10◦ turning circle properties at higher speed.

Table 3.3: The turning characteristics for the ship before and after propulsion unit retrofit.

Characteristics 10◦ 10◦ 20◦ 20◦

pr azi gain [%] pr azi gain [%] pr azi gain [%] pr azi gain [%]
Approach speed [m/s] 4.7 4.8 - 2.4 2.5 - 4.7 4.7 - 2.4 2.5 -

Steady turning radius [m] 237.5 185.5 21.9 237.8 186.3 21.6 90.4 91.3 -1 93.2 92.9 0.32
Maximum transfer [m] 476.2 370.6 22.2 476.4 371.9 21.9 190.7 184.8 3.1 195.1 187.7 3.8
Maximum advance [m] 266.7 200.5 24.8 265.5 200.3 24.5 127.8 108.9 14.8 128.3 109.6 14.6

Transfer [m] 227.5 173.7 23.6 227.2 173.9 23.4 88.1 82.2 6.7 88.8 82.5 7.1
Advance [m] 266.4 200.1 24.9 265.2 199.9 24.6 127 108.1 14.9 127.4 108.7 14.7

Tactical diameter [m] 475.9 370.2 22.2 476.1 371.5 22.0 189.96 184.1 3.1 194.2 186.9 3.8

3.3 Chapter summary

This chapter aims to present the enabling technology related to the physics-based model.
A linearized DP model is used to detect and isolate the thruster failures during maneu-
vering, and a co-simulation-based simulation is conducted to support ship conversions.
From the two studies, one can see that the physics-based model qualifies to work effec-
tively on qualitative predictions rather than drawing quantitative conclusions. It has to
approve that even if numerous efforts and time are devoted to pursuing a high-fidelity
physical model, the model’s accuracy might still be unable to match the reality as much
as the data-driven derived one. However, if attention is turned from accuracy to the ten-
dency, the not-so-accurate simulation model works well to offer constructive solutions.
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In short, when it is somewhat capable of representing reality, even if the errors
still exist, the simulation model is proven competent by revealing the potential move-
ment trends. Findings inspire the following work on physics-data cooperative modeling
technology.
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4
Case study: Parameter identification

This chapter presents research results from paper II. Pursuing high-fidelity models that
reflect the ship’s dynamics as well as its interaction with environments is always being
prompted by both academies and industries. At the same time, the complex ocean
environments add difficulty since the ship dynamics can vary with the sailing status,
such as the trim or loading conditions. Therefore, a general hydrodynamic-based model
is always far from expectations. However, the continuous measurements data permit
the model optimization, which significantly promotes the model reliability and broads
the model-related applications. This chapter uses the SVM approach—a data-driven
algorithm to identify the ship’s hydrodynamic derivatives when the vessel is subject to
stochastic environments.

4.1 Methodology

The parameter identification of the ship maneuvering model is complex due to the re-
spective hydrodynamic effects. Normally, the ship dynamics are described by a group
of derivative equations associated with linear and nonlinear terms. Specifically, the
identification process is described in Fig. 4.1. The regression model, derived from the
ship maneuvering model, determines the input and output features of the SVM. Af-
ter preparing the data containing ship motion and propulsion commands, the SVM is
extensively trained, generating optimal coefficients. The estimated model is obtained
and could be further examined by substituting the identified results back into the ship
maneuvering model. Particularly, the generalization capability of the identified model
should be stressed properly.

The training datasets include the vessel’s multiple different maneuvers. Note that
the ship motion data should be taken extra cleaning treatment to eliminate the mea-
surement noise if it is collected from the onboard sensors.

Figure 4.1: Scheme of parameter identification for ship maneuvering model.
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4.1.1 Ship regression model

The non-dimensional forms of hydrodynamic forces/moments in the 3DOF Abkowitz
model of an offshore surface vessel are expressed as Eq. (4.1).
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(4.1)

where the hydrodynamic derivatives X ′
(·), Y

′
(·), N

′
(·) are the parameters that need to be

identified. u′, v′, r′ are the non-dimensional velocities in surge, sway, and yaw directions.
The Abkowitz model is generally considered a nonlinear hydrodynamic model, whereas

it can be viewed as a linear model concerning the hydrodynamic parameters. The motion
equations are discretized by using Euler’s stepping method, and the derived regression
model is shown as Eq. (4.2).

u′(n+ 1)− u′(n) = AX(n)

v′(n+ 1)− v′(n) = BY ((n)

r′(n+ 1)− r′(n) = CN((n)

(4.2)

where n and n+ 1 are the adjacent sampling time steps. A,B,C are parameter vectors
formed by hydrodynamic derivatives to be identified. X(n), Y (n), N(n) are the variables
vectors expressed as:

X(n) =
U2

L
× ∆t

m−X ′
u̇

× [u′, u′2, u′3, v′2, r′2, r′v, δ′2, u′δ′2, v′δ′, u′v′δ′, u′v′2,

u′r′2, u′v′r′, r′δ′, u′r′δ′, 1]T

Y (n) =
U2

L
× ∆t

S
× [v′, r′, v′3, v′2r′, r′3, v′r′2, v′u′2, r′u′2, v′u′, r′u′, δ′, δ′3,

u′δ′, u′2δ′, v′δ′2, v′2δ′, r′δ′2, r′2δ′, r′v′δ′, 1, u′, u′2]T

N(n) =
U2

L2
× ∆t

S
× [v′, r′, v′3, v′2r′, r′3, v′r′2, v′u′2, r′u′2, v′u′, r′u′, δ′, δ′3,

u′δ′, u′2δ′, v′δ′2, v′2δ′, r′δ′2, r′2δ′, r′v′δ′, 1, u′, u′2]T

(4.3)

where S = (m′−Y ′
v̇)(I

′
zz−N ′

ṙ)−(m′x′g−Y ′
ṙ )(m

′x′g−N ′
v̇). The rudder angle is represented

by δ and δ′ = δ. It should be mentioned that the five zeros frequency added mass

40



CHAPTER 4. CASE STUDY: PARAMETER IDENTIFICATION

derivatives X ′
u̇, Y ′

v̇ , Y ′
ṙ , N ′

v̇, and N ′
ṙ usually have enough preciseness, which can be found

in semi-empirical formulas or calculated through strip theory. They can always be
estimated beforehand. Only the parameter sets A, B, and C are unknown and they will
be identified by the SVM algorithm. Mention that the hydrodynamic derivatives X ′

(·)
in surge equation are simply obtained by (4.4) once the vector A is determined. While
bi and ci, (i = 1, 2, . . . , 22) are not direct hydrodynamic coefficients in sway and yaw
motion equation, they need further treatment by (4.5).

X ′
(·) =

L(m′ −X ′
u̇)

∆t
A (4.4)

[
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SL2
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SL2

]−1 [
B
C

]
(4.5)

In general, the identification process is conducted as the following steps:

(1) Collect the sample experiment data {(ti, ui, vi, ri, δi), i = 1, . . . , l} based on full-
scale sea trials or simulation.

(2) Construct the input and output vectors for each SVM regressor according to (4.2).

(3) Train the SVM regressor and optimize the hydrodynamic coefficients.

(4) Substitute the identified results back into model (4.1) to get identified ship model.

(5) Verify the generalization performance of the obtained model.

4.2 Experimental results

In this section, the effectiveness of the SVM-based identification algorithm will be in-
vestigated in a standard vessel model with and without disturbance.

4.2.1 Identification without disturbance

The experiments are performed in the Marine Systems Simulator [46] developed by the
Norwegian University of Science and Technology and cooperating groups. The Mariner
class vessel [47] is selected as a benchmark for verification in this study. It should be
noted that in the hydrodynamic model of the Mariner class vessel, only 10 hydrodynamic
coefficients in the surge motion equation, 15 in the sway equation, and 15 in the yaw
equation are considered, and the others are zeros. The SVM regressor is implemented
by using Scikit-learn [53] in Python. Following the procedure, as shown in Fig. 4.1,
the parameters are identified and verified against the planar motion mechanism (PMM)
experimental values, as shown in Table. 4.1. It can be seen that most of the numerical
coefficients agree well with the benchmark values.

4.2.2 Identification under disturbance

When preparing the disturbed maneuver data, the bias w1 ∈ R3×1 and process noise
w2 ∈ R3×1 are defined according to the rule proposed by Sutulo et al. [54]:

wi = max(φi)k0ikiς (4.6)
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Table 4.1: Identified non-dimensional hydrodynamic coefficients (×10−5).

X-Coef SVM PMM Y-coef SVM PMM N-coef SVM PMM
X ′
u -182.5 184.0 Y ′

v -1158.2 -1159.9 N ′
v -262.4 -264.0

X ′
uu -116.6 -110.0 Y ′

r -498.1 -498.8 N ′
r -165.4 -166.0

X ′
uuu -220.0 -215.0 Y ′

vvv -8150.4 -8078.5 N ′
vvv 1667.5 1636.0

X ′
vv -923.0 -899.0 Y ′

vvr 15312.0 15358.0 N ′
vvr -5484.0 -5483.0

X ′
rr 13.8 18.0 Y ′

vu -1156.2 -1160.0 N ′
vu -250.6 -264.0

X ′
rv 779.3 798.0 Y ′

ru -497.3 -498.9 N ′
ru -162.2 -166.0

X ′
δδ -94.6 -95.0 Y ′

δ 277.6 278.0 N ′
δ -139.0 -139.0

X ′
uδδ -190.2 -190.0 Y ′

δδδ -89.6 -90.0 N ′
δδδ 42.3 45.0

X ′
vδ 92.3 93.0 Y ′

uδ 554.3 556.1 N ′
uδ -270.0 -278.0

X ′
uvδ 86.1 93.0 Y ′

uuδ 271.7 278.0 N ′
uuδ -87.8 -139.0

Y ′
vδδ -3.6 -4.0 N ′

vδδ 17.5 13.0
Y ′
vvδ 1213.1 1190.1 N ′

vvδ -476.2 -489.0
Y ′
0 -8.6 -8.0 N ′

0u 8.0 6.0
Y ′
0uu -2.7 -4.0 N ′

0uu -0.4 3.0

where ς is the discrete zero-mean Gaussian white noise process. φ is the primary clean
reference response. max(φi) refers to the maximum absolute value of the clean response
and it scales the noise signal to the origin response. k is a response specific reduction
factor, which is set to be 0.05 for rudder angle response, 0.2 for the surge velocity, and
1.0 for other remaining responses. k0 is the general reduction factor used to label the
noisy extent, which is assumed to be 5%, 10%, and 20% as listed in Table. 4.2.

To investigate the effect of disturbance level on the identification results, experi-
ments are designed according to Table. 4.3. To eliminate the outliers in the random
process, every case is executed in one hundred trials. The Savitzky-Golay filter is ap-
plied to preprocess and smooth the training data. The identified parameters are found
to be normally distributed, and thus the average is chosen as the general solution. The
identified models at different disturbance levels are obtained by substituting those re-
sults. Typically, the extensively trained SVM results are able to reproduce the training
trajectory. Therefore, a more critical evaluation of the model fidelity is that it should be
capable of predicting other maneuvers that the SVM has not been trained on. An 18◦

turning circle operation is then undertaken to examine its generalization performance.
The comparisons between the SVM predictions and origin model reference in 3DOF ve-
locities, heading angle, and ship trajectory are shown in Fig. 4.2. It can be seen that the
model identified under disturbance and process noise could basically capture the ship’s
dynamic properties and generate a relatively accurate response. The prediction errors
at NL1 and NL2 are considered allowable. Generally, the deviation gets more extensive
when the disturbance level is higher. Note that at the same disturbance level NL1, the
variation of surge speed is more evident than that of sway and yaw speed.

To quantitatively measure the prediction errors, the maneuvering characteristics for
turning circles are calculated and listed in Table. 4.4. The table shows that the predicted
maneuver properties at different disturbance levels have various deviations from the
model reference. More concretely, at NL1 and NL2, the discrepancies are almost lower
than 10%, while at NL3, the errors are around 20%. It reveals that when the ship is
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Table 4.2: Disturbance/noise level set up.

Noise Level (NL) k0
NL0 0%
NL1 5%
NL2 10%
NL3 20%

Table 4.3: Experiment case set up.

Case Disturbance bias Process noise
1 NL1 NL1
2 NL2 NL1
3 NL3 NL1

Table 4.4: Maneuvering characteristics comparison between SVM predictions and model refer-
ence.

Maneuvering characteristics Model reference SVM-NL1 SVM-NL2 SVM-NL3
Value (m) Value (m) Deviation (%) Value (m) Deviation (%) Value (m) Deviation (%)

Steady turning radius 667 644 3.5 595 10.8 707 6.0
Maximum transfer 1279 1306 2.1 1242 2.9 1594 24.6
Maximum advance 746 801 7.4 796 6.7 905 21.3

Transfer at 90 (deg) heading 546 578 5.9 557 2.0 694 27.1
Advance at 90 (deg) heading 742 796 7.3 791 6.6 895 20.6

Tactical diameter at 180 (deg) heading 1275 1302 2.1 1237 3.0 1586 24.4

exposed to gentle and moderate environments, the identified model is able to keep its key
characteristics, and its predictive capability could be considered acceptable. Although
relatively obvious dispersions in NL3 scenario are observed, it could still indicate a
potential path in the short future. These results reveal that the SVM-based approach
could realize parameter identification in the disturbed environment to a certain accuracy,
which practically extends the applicable scope in scenarios.

4.3 Chapter summary

This chapter presents a case study on interpolation kind of physics-data cooperation
by estimating the model parameters through data-driven tools. An SVM-based sys-
tem identification procedure is produced for the scenario where the ship maneuvers in
stochastic environments. By taking the 3DOF Abkowitz model plant as known, ma-
neuver data is utilized to optimize the uncertain hydrodynamic derivatives subjected
to unavoidable environmental influence. The estimated ship model matches the reality
better, proving the positive effects of data engagement.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: The SVM predictions at different disturbance levels compared with model reference
of 18◦ turning circle.
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5
Case study: Knowledge transfer

High-fidelity models capable of accurately predicting ship motion are critical for pro-
moting innovation and efficiency in the maritime industry. Creating an advanced model
that comprehensively represents the system and its interaction with dynamic environ-
ments has always been challenging. Many models cover partial, not complete, domain
knowledge about the underlying system. Benefiting from the collected process data,
the physics-data cooperative model is promising to enhance the model quality and of-
fer accurate predictors. How to implement the cooperation is of interest and has been
investigated in this chapter. This chapter is based on the research results from papers
III, V, and VI.

5.1 Incorporating approximate dynamics into data-driven calibrator

This section proposes a physics-data cooperative model to develop the representative
model for the elongated R/V Gunnerus, based on the best available approximate dy-
namics offered by the short version Gunnerus. The proposed approach is validated in
both simulator and real-world full-scale sea trials.

5.1.1 Methodology

The hybrid model contains two complementary parts originating from two separate
domains: model-based and data-driven. The way they collaborate is expressed as:

Ẋ = f(X, u)

y = g(X, u, f(X, u))
(5.1)

where X is the state of the approximate system. u and y are registered as representative
system control and output, respectively. f represents the preliminary model based on
physical disciplines, and the output of the reference model is integrated as an additional
input to the neural network model g, which functions to map the prior model to the
representative model of the new system.

The complete flowchart of the proposed model is shown in Fig. 5.1. The model
groundwork (top yellow box) is built on a hydrodynamic model of a similar vessel. It
serves to provide approximate ship states X̂ = [η̂m, ν̂m]

T reacting to the control command
and environment configuration. [RPM(t0), δ(t0)]

T is the propulsion system feedback,
and [βw(t0), Vw(t0)]

T refers to the wind conditions. Similar hydrodynamic properties
characterize the reference model, and therefore, acceptable model dispersion is within
expectation. Upon the preliminary model, the data-driven NN calibrator (bottom green
box) is built to map the rough dynamics to a surrogate model that is able to accurately
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predict ship behaviors. It is believed that the preliminaries of the ship dynamics are
carried forward into the data-driven model by means of informative input.

Hull model

Thruster model

Wind model

+

+
+

Model groundwork (short R/V Gunnerus)

Data-driven calibrator

Actual ship
position

Supervised learning

Ve
ct

or
iz

e 
fe
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Measured ship motion
response (position,

velocity...)

Propulsion system
feedback

Onboard environment
sensors

At current time instance

Representative model 

Elongated  R/V Gunnerus

Ship position predictions

Figure 5.1: A complete flowchart showing the incorporating of approximate dynamics into the
data-driven calibrator.

A fully connected feed-forward NN model is applied as a calibrator. Three hidden
layers are specified in the network architecture, and each hidden layer contains ten
neurons. The input features include prediction time ahead of the current instance, model
predicted vessel velocities and positions in the horizontal plane, propulsion feedback, and
external environmental factors. Supposing prediction starts at t0, the corresponding
input vector and desired output will be expressed as:

• Input:[ti, ν̂m(t0 + ti
∣∣t0), η̂m(t0 + ti

∣∣t0), RPM(t0), δ(t0), βw(t0), Vw(t0)]

• Output: η̂(t0 + ti
∣∣t0)

where ti ∈ [t0, t0 + th] is the forward time interval, η̂m(t0 + ti
∣∣t0) represents the reference

model predicted positions starting from t0. RPM(t0), δ(t0), βw(t0), and Vw(t0) are sensor
data recorded at t0.

5.1.2 Experimental results

Simulation studies

The zigzag simulation experiments are conducted in Vico, the co-simulation platform
developed by our team. To evaluate the predictive model performance, the following
metrics are applied:

• Mean absolute error (MAE) (5.2) for evaluating errors in north and east directions.

• Average distance error (5.3) for evaluating mean variation from actual location.

MAE =
1

N

N∑

1

|x̂i − xi| (5.2)
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(a) Predicted ship positions of model-
based and hybrid approach

(b) The average distance errors of two ap-
proaches.

Figure 5.2: The predictive performance of hybrid approach in simulation studies.

eave =
1

N

N∑

1

√
(x̂i − xi)2 + (ŷi − yi)2 (5.3)

where N refers to the sample number.
By performing both reference model prediction and hybrid method, we obtain the

forecasting performance of 30 seconds in the future during the zigzag maneuver in calm
water, as shown in Fig. 5.2a. The green star marks the start position of each prediction.
This figure shows that the hybrid approach calibrates the turning maneuverability of the
reference model as the prediction horizon grows. The slight discrepancies observed at
trace J are caused by the control command transiting when prediction starts, and such
sequences are initially not covered in the training data. In that case, the calibration
performance might be somewhat degraded. Fig. 5.2b shows the variation of average
error of both approaches with respect to each training example. It indicates that the
hybrid method works well in decreasing errors and improving prediction accuracy.

Full-scale trials

The maneuvering experiment of elongated R/V Gunnerus was conducted in November
2019 in Trondheim, Norway. During this process, thirteen sensor channels related to the
ship motion of the vessel were sampled, including positions, velocities, environments, as
well as commands.

During maneuvering, the thruster turning angle and ship heading are changing, as
shown in Fig. 5.3a. In this process, the tunnel thruster is turned off. By integrating the
sampled signals in the current instance as well as the preliminary mathematical model
outputs into the neural network, the desired positions at the next instance are obtained.
The prediction interval is 15 seconds, and the calibration results are verified as shown in
Fig. 5.3b. It is viewed that the hybrid predictions have a satisfactory agreement with the
actual ship trajectory compared with those propagated by the reference mathematical
model. The hybrid predictive model is proven effective and can be applied in realistic
ocean scenarios.
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(a) Azimuth turning angle and ship head-
ing during maneuvering.

(b) Hybrid predictions in comparison with
model predictions in real life.

Figure 5.3: The predictive performance of hybrid approach in real-life experiment.

5.2 Knowledge transferring across ships

Incorporating the prior domain knowledge into the data-driven models gives an insight
into the grey-box modeling. As found in the last section, when the approximate ship
dynamics are carried on and fed into the neural network, the predictive performance of
the research vessel is greatly enhanced. However, concerns must be taken when applying
this method on other ships other than the vessel used in the previous study. The reason
lies in the fact that the knowledge to be transferred is provided by exactly the same vessel
as the research object but with a shorter length. The strong resemblance in geometry
and configuration manifested by the two vessels leads to no doubt about the feasibility
of the preliminary acquisitions. Nonetheless, there is not always such a proper reference
model readily accessible since physical conversions are not as usual on the other ships.

To generalize the grey-box modeling methodology to a more realistic context, we
propose a framework by transferring and adapting the ship domain knowledge leveraged
by the existing benchmark ship to enhance the prediction of the target research vessel.
The benchmark ship, which preserves and reveals preliminary knowledge on operation,
is also called the source ship.

5.2.1 Methodology

Enabling the knowledge transfer process, the source ship S is required to bear a certain
resemblance in the feature space with the target ship T , that is,

S ∩ T ̸= ∅ (5.4)

Yet due to the physical constraints and other mismatched factors, the states x will
distribute differently P (xs) ̸= P (xt). The domain adaptation has to be executed. As
shown in Fig. 5.4, the knowledge flows between the source and target ship space. The
upper layer is the source domain, where the source ship dynamics are constructed and
numerically solved. The lower layer reflects the target space where the ship data is
sampled and the nonlinear transfer functions.
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Figure 5.4: The structure overview of knowledge transfer across ships.

Knowledge transfer flow

Consider a target ship whose nonlinear representation ẋt = ft(xt,ut) is explicitly absent.
u is the control input which is assumed to be constant over the sampling interval, and x
is the ship state vector containing position and velocity variables. An operational data
set D = {(xit,yit)}

N
i=1 of target ship is sampled. There is also a source ship with a high-

fidelity representative model ẋs = fs(xs,us). Assume that the target ship forecasting
is triggered at time t0, the ship status and control signals are recorded as xt0 and ut0 ,
respectively. To ensuring the initiation state and control signal are within the source
ship physical range, a linear transfer function l(·) is introduced as Eq. (5.5).

xs0 = lx(xt0) =
xt0
Γt

Γs

us0 = lu(ut0) =
ut0

utmax

usmax

(5.5)

where Γt = [Lt, Lt, 1, Ut, Ut, Ut/Lt], Γs = [Ls, Ls, 1, Us, Us, Us/Ls]. U and L are the ship
design speed and ship length. The subscripts s and t indicate source ship and target
ship. In order to ensure the domain knowledge to be readily transferable, the source
ship is required to meet the prerequisites that it functions analogously to the target
ship, and meanwhile, the model plant fs and hydrodynamic parameters θs are known
beforehand. The source model is generally estimated and validated through model tests
or sea trial experiments. Once the source model is properly prepared, the transmitted
variables xs0,us0 are fed into it. By numerically iterating the source model Eq. (5.6)
forward, the ship response x̂s over the prediction horizon tp is foreseed.

x̂s = fs(xs0,us0, θs) (5.6)

Then the source model predictions over prediction intervals are transversed back to the
target ship domain by:

x̂tm = l−1
x (x̂s) (5.7)

With the linear transformations across the source and target domain successfully per-
formed, the instructive trends x̂tm are leveraged by the source ship. Nonetheless, con-
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siderable discrepancies between the predictions and their true state still exist since the
nonlinear hydrodynamic effects, which are not to be ignored in the ship maneuver model,
have not been accounted for in this process. Upon the reflective ship states x̂tm, the
nonlinear knowledge transfer function g acts to adapt the bias by the neural network, as
shown in Eq. (5.8). In this way, the knowledge leveraged by the source ship is aggregated
and adapted to the target ship domain with the model-based linear transfer function
and data-driven nonlinear calibration function. Consequently, the motion prediction of
the target ship is enhanced with the accompany of referenced ship dynamics.

x̂t =g(x̂tm,ut0, ti)
=g(l−1

x (fs(lx(xt0), lu(ut0), θs)))
(5.8)

Feature resemblance

When concretizing the knowledge transfer concept, the target ship and the source ship
are assigned by two actual vessels in practice. The main geometric and propulsive
characteristics of the two vessels are listed in Section 2.4.1 and Section 2.4.3. The
maneuverability of a ship is usually impacted by several key parameters, such as the
length-beam ratio, beam-draft ratio, block coefficient, etc. Therefore, in order to use
the leveraged information with reasonable confidence, the source ship is required to, as
a minimum, have similar characteristic vectors with the target ship. The characteristic
vector is introduced as Eq. (5.9) to evaluate the similarity among ships. ∆ in the vector
is the ship’s volume.

ℓ = [Cb, L/B,B/T, L/∆
1/3, Ar/LppT,Dp/T ]

′ (5.9)

To measure the correlation between ships’ characteristic vectors, the similarity co-
efficient κ is employed.

κ(X, Y ) =
N

∑
xiyi −

∑
xi

∑
yi√

N
∑
x2i − (

∑
xi)2

√
N

∑
y2i − (

∑
yi)2

(5.10)

where xi ∈ X and yi ∈ Y are the elements in each vector, and N refers to the sample
size. The κ value ranges between -1 and 1, and the larger κ is, the stronger association
between the two vectors will be. κ(ℓt, ℓs) is calculated to be 0.95, indicating that the
two vessels’ characteristics are pretty similar. ℓt and ℓs are the characteristic vectors of
target and source ships, respectively.

Aside from the feature consistency, the control modes of the two vessels are also
required to be as close as possible. The thruster configurations of the source ship and
target ship are clarified in the two subsections mentioned above. The target ship is
controlled by the propellers (6,7) and rudders (8,9) in parallel mode. The revolution
speed and blade pitch angles of propellers are controllable. Two sets of individually
operated tunnel thrusters at the bow and stern of the vessel (1,2,4,5) are operated
by RPM commands and produce the lateral force. On the source ship, the two main
propellers and rudders controlled by RPM and turning angles serve the propulsion, and
the single tunnel thruster works in the same way as the target ship. If the tunnel
thrusters and the forward thruster are excluded from the control mode of the target
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case1 case2 case3 case4 case5

(a) (b) (c)

Figure 5.5: Target ship predictions: (a) Average distance error, (b) Relative surge velocity, and
(c) Relative sway velocity.

ship, the two vessels are manipulated in a similar way. In the following experiments,
they both are operated by the RPM and rudder angle commands, and the blade angle
on the target ship is kept constant at the maximum value. From the analysis of physical
principles and control model, it is suggested that the source ship and target ship have a
specific knowledge shared in common. Meanwhile, dissimilarities in features exist.

5.2.2 Experimental results

(a) Predictive trajectories when rudders turn to starboard side.

(b) Predictive trajectories when rudders turn to portside.

Figure 5.6: The predictive trajectories of target ship and the trends leveraged by source ship
at test scenarios.

Five zigzag scenarios are tested under different speeds and execution angles, and the
average distance error is presented as Fig. 5.5a, where slow, medium, and fast correspond
to the three different revolutions percentages. The predictive performance of 15◦/15◦
slow scenario is observed to be the best. Comparing the mean errors of cases 1,2,4, and
5, although these four scenarios all have at least one execution variable covered by the
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training data, the divergence of cases 1 and 5 is much lower than that of cases 2 and 4. It
leads to the conviction that the ship’s approach speed contributes more when predicting.
Fig. 5.5b and Fig. 5.5c exhibit the predicted relative surge and sway velocities against
the target true states. The velocities shown in the figure are the relative values with
respect to the initiation states. From the two figures, it is evident that, in general, the
sway velocities are forecasted with higher accuracy.

An illustration of the target ship’s predictive performance is presented in Fig. 5.6.
The red dot indicates the initiation position where the prediction is triggered, and the
blue lines refer to the trends 30 seconds ahead leveraged by the source ship model. The
target ship’s true states are reflected by the red line, and the green line presents the
target ship’s predictions. The ultimate positions of each projection are marked with
star signs. Comparing the test cases when the rudder is positioned at different sides,
generally, the discrepancies from the portside are not as visible as those of the starboard
side. These satisfactory test results demonstrate the effectiveness of the knowledge
transfer framework.

5.3 Physics and data competition

The above two sections aim to investigate the representative modeling of a new vessel
benefiting from a best available/benchmark ship. Results have shown that the physics-
data cooperative approach enhances the model quality and suits well to the target do-
main. These two cases originate from realistic challenges and basis, attempting to work
out a solution to deal with the limited physical and data information. While if the three
models (physics-based, data-driven, and physics-data hybrid) are all accessible at the
same time, they will work in a competitive way. In such a context, this section aims to
construct three models simultaneously and assess the model performance in ship docking
prediction.

5.3.1 Methodology

The methodology of integrating the prior dynamic knowledge and neural network-based
black-box model is proposed to improve the ship’s predictive performance. As shown in
Fig. 5.7, there are three ways to establish ship models—physics-based model, physics-
data hybrid model, and purely data-driven model.

The singly physics-based model is developed on the marine structure properties and
the parameters specified through model tests. Without the prior model information, a
data-driven model is derived depending on the ship docking operation data set D. At
last, a physics-data cooperative model is constructed relying on both knowledge and
data. The prior information is given by a simplified numerical model of the target ship
without considering the waves and current effects. A comparison of the hybrid model
and the data-based model on the accuracy and efficiency is performed to validate the
cooperative methodology’s benefit.

5.3.2 Experimental results

The research vessel Gunnerus serves as the testbed in this work. The experimental data
were sampled from the history data acquired through log files created by a data acqui-
sition system onboard the R/V Gunnerus. A docking operation dataset of a one-year
time period starting from August 2016 to June 2017 was selected. Information regarding
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Figure 5.7: Overview of the three model constructions.
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Figure 5.8: Predicted trajectories of three models.

the procedures of isolating dockings from daily cruise data and the measurement range
of each sensor channel can be found in [36]. In this dataset, the sampling rate of all
variables is 1Hz, and 70 complete docking operations, which were each 1000 seconds
in length, were recorded. For the solely data-driven model without the assistance of
a priori model, a recursive neural network structure LSTM was trained on 50 docking
operations to learn the ship states one step ahead. The purely physics-based model, the
hybrid model, as well as the purely data-driven model are verified on the same test data
set.

In the test docking scenario, the predictions made by three different models are per-
formed. The predicted trajectories of three models are visualized in Fig. 5.8. According
to the surge speed and thruster orientation distribution, the docking process has two
stages: before and after the portside thruster turns around 320s. Thus two detailed pre-
dictions are exhibited in Fig. 5.8b-5.8c. From these figures, the red circle represents the
ship’s position where the forecasting is initiated. The star signs mark the final predic-
tive position at 30 seconds ahead. Three colors display the foreseen trajectories made by
different models—red: hybrid, green: physics model, and blue: data-driven model. And
the black line is the ship’s real trajectory. It is observed that the hybrid model predicts
the most accurately in both command profiles. When the ship speed is relatively higher,
the hydrodynamic model performs slightly better than the data-driven model, but in
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Figure 5.9: The predictive average distance errors of three various models.

the low-speed maneuver, the LSTM model generates more visible errors.
A detailed prediction error comparison is shown in Fig. 5.9. At the higher speed

before decreasing, the hybrid model considerably reduces the dispersion. When the ship
is decelerating, the hydrodynamic model matches more suitably with the actual system,
so as well the hybrid model. The data-driven model also exhibits a remarkable decrease
in average distance error but is still slightly more extensive than the physical and hybrid
models. It reveals that the domain knowledge-based model represents the system better
at low-speed maneuvers. In this operation phase, either the physics or hybrid models
are qualified to offer credible predictions. However, when the ship is cruising at high
speed, the hybrid model would be the best choice among these three candidates. The
data-driven model performance is believed to be improved if more operation data is
supplied. However, the data poverty limits the further optimization of the network, even
though almost ten times the operations of the hybrid model used have been utilized for
training the LSTM. On the contrary, the hybrid model can achieve excellent accuracy
with limited data and a more straightforward network structure, which spares more
effort and computational consumption than building everything from scratch.

5.4 Chapter summary

This chapter exploits physics-data cooperative modeling approaches to improve the
model quality and supply high-fidelity short-term ship motion predictions. Applying
a purely dynamic-based predictor calls for accurate model parameters, requiring exten-
sive procedures and efforts. In the cases presented in this chapter, the model is enhanced
from three levels, depending on how much information could be learned and adapted
from the physical understanding:

• The ship dynamic model is mostly established. Still, some impacting factors are
missing, such as the measurements and models of the ocean waves and currents.
Upon that, only limited data is utilized to calibrate the model and get predictions.

• The exact simulation model of the researched vessel is absent. Still, there is one
best available ship that is highly similar to the objective (the shorter ship in the
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case study). The representative model of the elongated vessel is constructed on
this approximate model and a certain amount of real operation data.

• Neither the numerical model nor a best approximate model are accessible. The
target ship migrates and adapts the domain knowledge from a benchmark ship
that shares certain common properties to develop itself.

The physics-data cooperation proposed in this chapter works well not only in pro-
moting predictive accuracy but also in releasing data requirements.
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6
Conclusion and further work

This thesis revolves around ship motion predictions by exploiting the physics-data coop-
erative modeling approaches. The majority of the research work is allocated to exploring
the disciplines and relationships between the physics-based and data-driven models and
how they can be integrated to benefit each other. Current ship motion predictions are
mainly made by either the kinetic/model-based approach or direct data-based approach.
Driven by the desire to bridge the gap and leverage the cooperative features of the two
participants, this thesis has proposed a physics-data cooperation mechanism aiming to
promote the ship’s predictive models and offer perceptive insights into the essential
modeling activities.

6.1 Summary of contributions

Exploring the physics-data cooperation modeling technology and providing predictive
insights into the facilities, enabling solid decision-support onboard, as stated in RO1, is
the primary goal of this dissertation. In seeking to obtain it, the pure kinetic derived
model-based research is first conducted to leverage the cooperation features as clarified
in RO2. Case studies on thruster failure and conversions in Chapter 3 reveal that the
simulation model, even not so accurate, is capable of offering instructive solutions to
assist operational and maintenance decisions. The finding supports the argument that
the model derived on the basis of a deep understanding of the underlying process is
rational and consists of the physical properties, despite some unavoidable errors such
as simplifications. Two other pieces of research are implemented based on this conclu-
sion. One is to optimize the physics-based simulation model on the parameter level by
employing process data. The other is to develop a surrogate model upon the available
numerical model assisted by limited operation data, calibrating and adapting the model
in principle. As claimed by the physics-data hybrid model proposed in Chapter 2, the
two case studies each focus on one category. One presents an analysis on identifying the
hydrodynamic parameters in the ship maneuvering model in line with RO4. One pro-
poses a knowledge transfer concept between the target ship and a relevant similar ship
to achieve RO5. Results confirm the increased model fidelity and prediction accuracy
observed for the hybrid approach relative to either participant.

The main contributions of this dissertation are as follows:

• Propose a physics-data cooperation concept for complex system modeling from
both functionality and implementation architecture aspects.

• Present model optimizations by estimating uncertain parameters in ship maneu-
vering model subjected to environmental disturbances.
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• Propose a hybrid predictor that can merge knowledge from a pre-determined,
physics-based ship motion model and data sampled from the ship. Predictions
are considered for zigzag maneuvering and docking scenarios.

• Propose a knowledge transfer approach to construct the representative model for
the target ship benefiting from the well-established domain knowledge of a bench-
mark vessel.

• Offer three models, including pure kinetics, pure data-based, and physics-data
unified, for ship motion prediction.

6.2 Summary of publications

The summary of publications is as follow:
Paper I presents a simulation model-based thruster failure detection and isolation

method for dynamically positioned offshore surface vessels. Based on the prior knowledge
of the mathematical model of a DP ship subjected to wind disturbances, estimated ship
states can be obtained as a reference. The thruster failures are detected if the residual
exceeds the safety threshold. A sliding window together with a probability analysis is
applied to locate the failed thruster. The method is validated in a simulated environment
and can effectively detect and isolate the failure.

Paper II presents a data-driven approach for identifying the uncertain hydrody-
namic coefficients under environmental disturbance for a 3 degree of freedom nonlinear
maneuvering model. The identification is performed on multiple maneuvers datasets.
The model fidelity is found to be affected by the sea states, while predictions of different
maneuvers convince the generalization capability of the estimated model.

Paper III proposes a hybrid modeling methodology in which prior knowledge de-
scribing the ship’s dynamic effects is incorporated into a data-driven calibrator, yielding
a representative model with high predictive capability. Enabled by integrating model
estimated ship states into the calibrator, the informative information could be inter-
preted and carried forward. Simulation and full-scale experiments are conducted on the
research vessel Gunnerus to exemplify the concept. A best available numerical model
and a neural network are prepared to be the foundation and calibrator, respectively. Ex-
periment results show that the cooperative model dramatically improves the predictive
capability of the research vessel.

Paper IV presents research related to the ship propulsion retrofit process based on
the co-simulation technique. The ship maneuverability before and after refitting propul-
sion units is simulated and analyzed. Through the experiments, propulsion performance
improvements are observed. Technically, the study supports that co-simulation as an
enabling tool in the maritime field appears promising, benefiting from its modularity
and re-usability, which lays a solid foundation for later work.

Paper V builds on the approach presented in paper III. A knowledge transfer strat-
egy is proposed to migrate and adapt the domain knowledge from the existing benchmark
ship to the target ship. The benchmark, or source ship, is explicitly different from the
target ship but carries somewhat resemblance in the feature space. Therefore it is em-
ployed to leverage domain knowledge to enhance the target model. While in paper III,
the prior domain knowledge is supplied by a shorter version research ship, which main-
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tains most properties unchanged. To clarify the resemblance between source and target
ships, a characteristic vector is introduced to evaluate the geometric and configuration
similarities. The derived target model is verified to be capable of accurately predicting
maneuver trajectories in various scenarios.

Paper VI is a continuation of the works presented in paper III and V. The predictors
of paper III and V output the trajectory of the vessel on the entire prediction interval at
once, while this predictor output single-step prediction and is re-iterated to provide the
complete trajectory prediction. This way, the performance of hydrodynamic-based, data-
driven without physics informed, and hybrid predictors are comparable. The proposed
approach is validated in the real docking operation of a research vessel. The results
convinced that the physics-data hybrid way yields a more accurate model with relaxed
data requirements and less learning consumption.

6.3 Future work

This thesis has focused on ship motion prediction by exploiting physics-data cooperation
approaches. A recurring theme has been the synthesis of ship dynamic model and
machine learning methods to model the functional relationship presented in each research
item. The below bullet points provide suggestions for how the presented research may
be extended.

• Model optimization with tunable parameters using machine learning approaches is
found to be affected by the training data distribution. For a cruise ship in service,
it experiences departure, acceleration, autopilot, and deceleration until it docks in
the harbor. Different sailing stages should render different features, which inspires
us to optimize the vessel model locally after recognizing the operation pattern and
ocean situations.

• Currently, the predictors, either hybrid or data-driven, are trained offline with
sufficient data supplied. It is not always the case in reality that the training
data are all experienced and well prepared. Unseen scenarios and anomalies are
not rare during a ship’s commissioning. In seeking to continuously offer high-
fidelity forecasts to support crew onboard or autonomous control systems, online or
incremental learning plays an essential role. Considering the stochastic disturbance
the ship exposed to, predictions with uncertainty analysis will be preferred in future
work.

• Aside from the research items investigated in the thesis, there should be other
means of physics-data cooperation to be exploited. Actually, the terminology
"physics-data cooperation" used in this dissertation is loosely defined, and it could
be achieved in various manners. There is yet no widely accepted definition given
regarding the synthesis of knowledge and data. Distributed work is found con-
ducted for a specific problem in the literature. A comprehensive survey of the
hybrid modeling philosophy, including implementation approaches, model assess-
ment, challenges in the marine domain, etc., is in demand.
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Parameter identification of ship manoeuvring model under disturbance using support
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ABSTRACT
Demanding marine operations increase the complexity of manoeuvring. A highly accurate ship model
promotes predicting ship motions and advancing control safety. It is crucial to identify the unknown
hydrodynamic coefficients under environmental disturbance to establish accurate mathematical models.
In this paper, the identification procedure for a 3 degree of freedom hydrodynamic model under
disturbance is completed based on the support vector machine with multiple manoeuvres datasets. The
algorithm is validated on the clean ship model and the results present good fitness with the reference.
Experiments in different sea states are conducted to investigate the effects of the turbulence on the
identification performance. Generalisation results show that the models identified in the gentle and
moderate environments have less than 10% deviations and are considered allowable. The higher
perturbations, the lower fidelity the identified model has. Models identified under disturbance could
provide different levels of reliable support for the operation decision system.
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1. Introduction

Obtaining a model that can accurately describe the ship dynamics
and its interaction with the environment has always been of con-
siderable interest to academic researchers and marine industries.
The model is expected to be high fidelity so that can be used for
designing high-performance model-based control strategies
(Zheng et al. 2018), as well as developing computer-based simu-
lators for virtual testing (Li et al. 2016).

However, themodelling process is found complex due to the non-
linear properties of ship dynamics. Themodels obtained from exper-
iments are thought to be the most accurate and reliable, yet they can
also be themost economically costly to develop. Only a limited num-
ber of hull ships have had any parameters determined experimen-
tally. Although lots of empirical methods associated with various
model series have been developed, they canonly provide reliable esti-
mates when the hull form fits some tested series well enough, so that
they are suggested to be usedwith great care. An alternative of theor-
etical calculations appears to recourse to computer fluid dynamics
(CFD). The CFD techniques are already matured enough to provide
estimates that, in general, can be viewed even more credible than
empirical methods (Martelli et al. 2021). However, building proper
finite element models necessitates expert experience, and in
addition, it often is computationally intensive for on-line use. System
identification theory comes up for its efficiency and economy.When
addressing the ship manoeuvring model configuration issue, in gen-
eral, it has to deal with complicated hydrodynamic effects associated
with nonlinear and coupled coefficients, which challenge the
researchers a lot (Åström and Källström 1976; Skjetne et al. 2004).

To address the challenges in ship dynamics identification,
researchers offer various methods, for example, least-square method
(Ding 2014), Bayesian approach (Xue et al. 2020), the maximum like-
lihood method (Chen et al. 2018, july), extended Kalman filter

method (Perera et al. 2015), and so on. These methods are demon-
strated valid for a more or less wide range of hull forms and environ-
ment configurations. However, the conventional approaches are
found sensitive to noise and initial estimations would influence the
converging performance. Regarding the circumstances outlined it
would be practically difficult to identify the model plant in a realistic
environment. Given the technological and computational advances
in instrumenting process, a branch of identification method by
machine learning has been established.

The techniques in the form of neural networks (NNs) have been
applied as a regression process to model the nonlinear ship
dynamics and predict future trajectories. In the work of Rajesh
and Bhattacharyya (2008), NN was employed to estimate the
unknown time equation clubbed by all nonlinear hydrodynamic
derivatives of large tankers. This experience shows that NNs work
well on approaching nonlinearities, yet meanwhile, the exploration
to parameters associated with the ship is kept out of reach. Simi-
larly, in the work of Cheng et al. (2019), the NN was used to gen-
erate a surrogate model based on the ship motion data. Again, it
is a black-box model, and the parameters are not correlated to
specific physical properties of the ship.

In the cases where the hydrodynamic derivatives are preferred to
be presented in detail, another machine learning technique – sup-
port vector machine (SVM) can help. This approach proposed by
Vapnik (1999) features a kernel-based learning process and facili-
tates the possibility of acquiring regression coefficients. It is increas-
ingly applied to estimate ship dynamics, for instance, in the work of
Luo and Zou (2009), as well as Zhang and Zou (2011), the authors
implemented the Abkowitz model identification of a benchmark
ship. It is shown that the SVM approach works well when there
is no disturbance accounted for in the system.
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However, the ship dynamics have always changing due to the
interaction with environmental disturbance and load conditions.
Developing a reliable model to a considerable extent under such
interference to provide onboard decision support for autonomous
vessels where no human expertise could dominate, is practically
pivotal. Inspired by the pragmatic challenge, increasing attention
has been drawn to the system identification problem in random
environments. The SVM-based identification is found to be insen-
sitive to instrumental noise and capable of achieving high general-
isation performance (Sutulo and Soares 2014; Wang et al. 2019).
Examples of identifying ship model in waves are reported in the
work by Hou and Zou (2016) and Selvam and Bhattacharyya
(2010). In their work, the excitation forces and moments of
waves are estimated first by numerical calculation or experiment
measurements. Whereas the instant signals of waves or ocean cur-
rents are always not available onboard, which consequently limits
the assessment of environmental loads. An alternative solution is
modelling the slow-varying environmental forces as a stochastic
process to compensate for the lack of realistic ship manoeuvring
data. Achieving reliable estimation under such disturbance is the
target of this study. The extent of perturbations varies to simulate
different sea states. Within this context, the authors intend to
address the impact of external disturbance on the parameter
identification performance and seek estimations to a considerable
accuracy by using the SVM-based identification approach so that
they can be used in different operating scenarios according to
their fidelities.

The structure of this paper is organised as follows. Section 2 for-
mulates the parameter identification problem and procedure. This
is followed by a review of the ship manoeuvring model and the con-
cept of SVM algorithms. In Section 3, the identification algorithm is
implemented for a clean system, aiming to verify the fidelity of the
numerical model. Section 4 focuses on the disturbance experiment
design and results discussion. The marine ship is assumed to expose
to different levels of environmental perturbations, and the fidelity of
the identified model is of particular concern. Conclusions and
future work are presented in the final section.

2. Parameter identification

The parameter identification of the ship manoeuvring model is
complex due to the respective hydrodynamic effects. Normally,
the ship dynamics are described by a group of derivative equations,
associated with linear and nonlinear terms. Specifically, the identifi-
cation process is described in Figure 1. The regression model,
derived from the ship manoeuvring model, determines the input
and output features of the SVM. After preparing the data contain-
ing ship motion and propulsion commands, the SVM is extensively
trained and optimal coefficients are then generated. By substituting
the identified results back into the ship manoeuvring model, the
estimated model is obtained and could be further examined. Par-
ticularly, the generalisation capability of the identified model
should be stressed properly.

The training datasets include the vessel’s multiple different
manoeuvres. Note that the ship motion data should be taken
extra cleaning treatment to eliminate the measurement noise if it
is collected from the onboard sensors.

Models to describe ship dynamics can take many forms. To
highlight the ship hydrodynamic properties, the Abkowitz model
expressed in form of Taylor series is selected. A benchmark ship
– a Mariner class vessel acts as research platform. The major
steps concerning identification as shown in the dash box are
expanded in the following subsections.

2.1. Ship manoeuvring model

For an offshore surface vessel performing manoeuvring tasks, its
horizontal 3 degree of freedom (DOF) behaviour in non-dimen-
sional form can be expressed as
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′ 0 0

0
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where the superscript represents dimensionless variables. m′ is the
ship mass, x′g is the position of gravity centre in the longitudinal
direction of the body-fixed coordinate system. u̇′, v̇′, ṙ′ are the
accelerations in surge, sway, and yaw directions. X′, Y ′ and N′ rep-
resent forces along the ship longitudinal and lateral directions, as
well as the moments about the vertical axis, respectively.
X′
u̇, Y

′
v̇, Y

′
ṙ , N

′
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′
ṙ are non-dimensional added mass coefficients.

Izz′ is the inertia moment about the vertical axis.
The non-dimensional variables are defined as
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where r is the density of water, L is the ship length, U is registered
as the instantaneous ship speed, u refers to perturbed surge velocity
about nominal speed U0.

The non-dimensional forms of hydrodynamic forces/moments
in the Abkowitz model are represented as Equation (2).

X′ =X′
uu

′ + X′
uuu

′2 + X′
uuuu

′3 + X′
vvv

′2 + X′
rrr

′2 + X′
rvr

′v′

+ X′
ddd

′2 + X′
uddu

′d′2 + X′
vdv

′d′ + X′
uvdu

′v′d′ + X′
uvvu

′v′2

+ X′
urru

′r′2 + X′
uvru

′v′r′ + X′
rdr

′d′ + X′
urdu

′r′d′ + X′
0

(2− a)

Y ′ = Y
′
vv

′ + Y
′
rr

′ + Y
′
vvvv

′3 + Y
′
vvrv

′2r′ + Y
′
rrrr

′3

+ Y
′
vrrv

′r
′2 + Y

′
vuuv

′u
′2 + Y

′
ruur

′u
′2

+ Y
′
vuv

′u′+Y
′
rur

′u′ + Y
′
dd

′ + Y
′
dddd

′3 + Y
′
udu

′d′

+ Y
′
uudu

′2d′ + Y
′
vddv

′d
′2 + Y

′
vvdv

′2d′ + Y
′
rddr

′d
′2

+ Y
′
rrdr

′2d′ + Y
′
rvdr

′v′d′ + (Y
′
0 + Y

′
0uu

′ + Y
′
0uuu

′2) (2− b)

N ′ = N
′
vv

′ + N
′
rr

′ + N
′
vvvv

′3 + N
′
vvrv

′2r′ + N
′
rrrr

′3

+ N
′
vrrv

′r
′2 + N

′
vuuv

′u
′2 + N

′
ruur

′u
′2 + N

′
vuv

′u′

+ N
′
rur

′u′ + N
′
dd

′ + N
′
dddd

′3 + N
′
udu

′d′ + N
′
uudu

′2d′

+ N
′
rrdr

′2d′ + N
′
rvdr

′v′d′ + N
′
vddv

′d
′2 + N

′
rddr

′d
′2

+ N
′
vvdv

′2d′ + (N0 + N
′
0uu

′ + N
′
0uuu

′2) (2− c)

The hydrodynamic derivatives {X′(·), Y′(·), N′((·))} are the par-
ameters that need to be identified.

2.2. Regression model

The Abkowitz model is generally considered as a nonlinear hydro-
dynamic model, whereas it can be viewed as a linear model with
respect to the hydrodynamic parameters. The motion equations
are discretised by using Euler’s stepping method and the derived
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regression model is

u′(n+ 1)− u′(n) = AX(n)
v′(n+ 1)− v′(n) = BY(n)
r′(n+ 1)− r′(n) = CN(n)

(3)

where A, B, C are parameter vectors formed by hydrodynamic
derivatives to be identified, given as

A = [a1, a2, · · · a16]1×16

B = [b1, b2, · · · b22]1×22

C = [c1, c2, · · · c22]1×22

where X(n), Y(n), N(n) are the variables vectors, n and n+ 1 are
the adjacent sampling time steps. By solving the governing model
Equation (1), one can get the variable vectors given as Equation
(4), compounding by ship velocities and rudder angle.

X(n) =[u′, u
′2, u

′3, v
′2, r

′2, r′v′, d
′2, u′d

′2, v′d′, u′v′d′, u′v
′2, u′r

′2,

u′v′r′, r′d′, u′r′d′, 1]T ×U2

L
× Dt

m′ − X′
u̇

(4–a)

Y(n) = [v
′
, r′, v

′3, v
′2r′, r

′3, v′r
′2, v′u

′2, r′u
′2, v

′
u′, r′u′, d′, d

′3, u′d′,

u
′2d′, v′d

′2, v
′2d′, r′d

′2, r
′
2d′, r′v′d′, 1, u′, u

′2]T

× U2

L
× Dt

S

(4–b)

N(n) = [v
′
, r′, v

′3, v
′2r′, r

′3, v′r
′2, v′u

′2, r′u
′2, v

′
u′, r′u′, d′, d

′3, u′d′,

u
′2d′, v′d

′2, v
′2d′, r′d

′2, r
′
2d′, r′v′d′, 1, u′, u

′2]T

× U2

L2
× Dt

S

(4–c) where S = (m′ − Y ′
v̇)(I

′
zz − N′

ṙ)− (m′x′g − Y ′
ṙ)(m

′x′g − N′
v̇).

The rudder angle is represented by d and d′ = d. It should be men-
tioned that the five zeros frequency added mass derivatives X′

u̇, Y
′
v̇,

Y ′
ṙ , N

′
v̇ and N′

ṙ usually have enough preciseness, which can be found
in semi-empirical formulas or calculated through strip theory. They
can always be estimated beforehand. Only the parameter sets
A, B, and C are unknown and they will be identified by the SVM
algorithm. Mention that the hydrodynamic derivatives X′

(·) in
surge equation are simply obtained by Equation (5) once the vector
A is determined. While bi and ci (i = 1, 2, . . . , 22) are not direct
hydrodynamic coefficients in sway and yaw motion equation, they

need further treatment by Equation (6).

X′
(·) =

L(m′ − X′
u̇)

Dt
A (5)

Y ′
(·)

N′
(·)

[ ]
=

(I′zz − N′
ṙ)Dt

SL
− (m′x′g − Y ′

ṙ)Dt

SL

− (m′x′g − N′
v̇)Dt

SL2
(m′ − Y ′

v̇)Dt
SL2

⎡
⎢⎢⎣

⎤
⎥⎥⎦

−1

B
C

[ ]
(6)

2.3. Support vector machine algorithm

Support vector machine (SVM) learning strategy was formally pro-
posed in the 1900s by Vapnik (1999). As mentioned before, this
approach is widely used in system engineering and is considered
to be a powerful tool in system identification. As a batch technique,
it does not require any initial estimation values and avoids lengthy
iterations. It also has a better global optimal extremum, compared
with traditional neural networks.

Generally, SVM used for regression is also called SVR. Given the
training dataset {(xi, yi), xi [ Rn, yi [ R}, xi is the input vector and
yi is the output. For regression purposes, the general approximation
function of SVM is shown as

f (x) = WTF(x)+ b (7)

where W is the weight matrix and b is the bias term. F( · ) is the
nonlinear function, which is mapping the input data to a high
dimensional feature space. The goal is to find the optimal weights
and threshold that best fit the data. It is proposed to do so by
defining the criteria Equation (8) that simultaneously measures
structure risk and empirical risk. It differs from conventional neural
networks, which rely on only the empirical risk minimisation so
that the SVM features a sparse solution.

min
w,b,e

1
2
W2 + g

∑l

i=1

(ji + ĵi

( )
(8)

Subject to:

f (xi)− yi ≤ e+ ji,
yi − f (xi) ≤ e+ ĵi,

ji ≥ 0, ĵi ≥ 0

where i = 1 · · · l, l is the number of samples, and g is the penalty
factor with positive values. ji and ĵi are non-negative slack vari-
ables. e is the tube size referring to the precision by which the func-
tion is to be approximated. Errors are to be accepted when the
samples are located in the tube. The introduction of tube and
slack variables in the SVM algorithm promotes its robustness to
noise and generalisation performance. Solving for the optimal
weights and bias is a process of convex optimisation, which is

Figure 1. Scheme of parameter identification for ship manoeuvring model.
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made simpler by using Lagrange multipliers and formulating the
dual optimisation problem given as

max
a, a∗

∑l
i=1

yi(a− a∗)−∑l
i=1

e(a− a∗)− 1
2

∑l

i,j=1

(ai − a∗
i )(aj − a∗

j )xi, xj

(9)

Subject to:

∑l

i=1

(ai − a∗
i ) = 0, a, a∗ [ [0, g]

where a, a∗ are the Lagrangian multipliers. xi, xj refers to the ker-
nel function. The solution for the weights is based on the Karsh-
Kuhn-Tucker conditions. Finally, the approximation of the func-
tion f (x) is given as

f (x) = ∑l
i=1

(ai − a∗
i )x, xi + b (10)

The support vectors are those data on or outside the tube with non-
zero Lagrange multipliers. To carry out parameter identification
using SVM, the linear kernel function is then adopted, representing
an inner product between its operands. So, the identified parameter u
can be regressed as

u = ∑l
i=1

(ai − a∗
i )xi (11)

In general, the identification process is conducted as the following
steps:

1. Collect the sample experiment data {(ti, ui, vi, ri,di), i =
1, . . . .l} based on full-scale sea trials or simulation.

2. Construct the input and output vectors for each SVM regressor
according to Equations (3) and (4).

3. Train the SVM regressor and optimise the hydrodynamic
coefficients.

4. Substitute the identified results back into model Equation (2) to
get identified ship model.

5. Verify the generalisation performance of the obtained model.

3. Model validation

In this section, the effectiveness of the SVM-based identification
algorithm will be investigated in a clean vessel model without
disturbance.

The experiments are performed in the Marine Systems Simu-
lator (MSS) (Perez et al. 2006) developed by the Norwegian Univer-
sity of Science and Technology and cooperating groups. It handles
different simulation scenarios and provides enough resources for
the implementation of mathematical models of marine systems.
The Mariner class vessel (Chislett and Strom-Tejsen 1965) is
selected as a benchmark for verification in this study. It should be
noted that in the hydrodynamic model of the Mariner class vessel,
only 10 hydrodynamic coefficients in surge motion equation, 15 in
sway equation, and 15 in yaw equation are considered, and the
others are zeros. The SVM regressor is implemented by using Sci-
kit-learn in Python. Following the procedure as shown in Figure 1,
the parameters are identified and verified against the experimental
values.

3.1. Training data preparation

To cover as much as dynamic features, multiple manoeuvres are
conducted in the simulator at 15 knots (7.717 m/s). The multiple
manoeuvring datasets, including 20°/20°, 15°/15°, and 10°/10° zig-
zag tests, are sequentially generated, and equally sampled at 2 Hz
in 900 s. 1800 samples are collected in total as the training data.

3.2. Identification results

Once the samples are extracted, the SVM is trained to fit the
approximation function. The hyperparameters g and e in the
SVM regression model with linear kernel are determined by grid
search and cross validation. In this regression model, the regularis-
ation factor g is obtained as 104, and e is 0. The unknown non-
dimensional hydrodynamic coefficients in Equation (2) are ident-
ified and the results are listed in Table 1, in comparison with the
planar motion mechanism (PMM) experimental values. It can be
seen that most of the numerical coefficients agree well with the
real experimental values. Although some of them, for instance the
coefficients N0, N′

0u, N
′
ouu in yaw direction, have relatively obvious

discrepancies, they have a limited effect on the accuracy of the
numerical model as their values are quite small.

3.3. Identified model validation

To verify the obtained hydrodynamic models, the prediction of the
same multiple zigzag maneuver tests – 20°/20°, 15°/15°, and 10°/
10°, is performed by the numerical model. Figure 2 shows that
the model predicted velocities in three directions, as well as the
angular displacement, achieve a satisfactory agreement with the
references. The consistency in parameter value and prediction

Table 1. Identified non-dimensional hydrodynamic coefficients (×10−5).

X-Coef SVM PMM Y-Coef SVM PMM N-Coef SVM PMM
X ′u −185.2 −184.0 Y ′v −1158.2 −1159.9 N′

v −262.4 −264.0
X ′uu −116.6 −110.0 Y ′r −498.1 −498.9 N′

r −165.4 −166.0
X ′uuu −220.0 −215.0 Y ′vvv −8150.4 −8078.5 N′

vvv 1667.5 1636.0
X ′vv −923.0 −899.0 Y ′vvr 15312.0 15358.0 N′

vvr −5484.0 −5483.0
X ′rr 13.8 18.0 Y ′vu −1156.2 −1160.0 N′

vu −250.6 −264.0
X ′rv 779.3 798.0 Y ′ru −497.3 −498.9 N′

ru −162.2 −166.0
X ′dd −94.6 −95.0 Y ′d 277.6 278.0 N′

d −139.0 −139.0
X ′udd −190.2 −190.0 Y ′ddd −89.6 −90.0 N′

ddd 42.3 45.0
X ′vd 92.3 93.0 Y ′ud 554.3 556.1 N′

ud −270.0 −278.0
X ′uvd 86.1 93.0 Y ′uud 271.7 278.0 N′

uud −87.8 −139.0
Y ′vdd −3.6 −4.0 N′

vdd 17.5 13.0
Y ′vvd 1213.1 1190.1 N′

vvd −476.2 −489.0
Y0 −3.6 −4.0 N0 1.6 3.0
Y ′0u −8.6 −8.0 N′

0u 8.0 6.0
Y ′ouu −2.7 −4.0 N′

ouu −0.4 3.0
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performance demonstrates the effectiveness and reproducibility of
the SVM-based identification method.

4. Disturbance experiment

To estimate the hydrodynamic parameters under environmental
disturbance, and investigate the influence on the model fidelity, dis-
turbance experiments are conducted, and identification results are
discussed in this section.

4.1. Disturbed manoeuvring models

The ship motion is always influenced by variations of wind, waves,
and ocean currents in real world. These forces are not accounted for
in the Abkowitz model presented in Section 2. A reasonable way to
describe the environmental effects is modelling them as a stochastic
process (Fossen 2011). Such a process can represent the slow-vary-
ing environmental forces and moments due to wind loads, second-
order wave drift forces, and current forces. These effects are lumped

Figure 2. The validation between the SVM predictions and the model reference zigzag tests. (This figure is available in colour online.)
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into a bias term b [ R3 acting on the ship. The disturbed model is
given as

m′ −X′
u̇ 0 0

0
0

m′ −Y ′
v̇ m′x′g −Y ′

ṙ

m′x′g −N′
v̇ I′zz−N′

ṙ

⎡
⎢⎣

⎤
⎥⎦ u̇′

v̇′

ṙ′

⎡
⎣

⎤
⎦=

X′

Y ′

N′

⎡
⎣

⎤
⎦+RT(c)b+w2

(12)

where ḃ=w1 represents the stochastic disturbances, and it is
usually modelled as a Wiener process. The variables wi(i= 1, 2)
are zero-mean Gaussian noise vectors, referring to bias, and process
noise respectively. R is the rotation matrix shown as follows, trans-
forming the ship motion from the body-fixed frame to the earth-
fixed frame. c is to the ship heading.

R=
cosc −sinc 0
sinc cosc 0
0 0 1

⎡
⎣

⎤
⎦

Note the measurement noise is not accounted for in this model, for
the reason that we mainly focus on the effects of environmental
effects and progress noise on the performance, which are practically
meaningful and have not been closely studied. From Equation (12),
the regression function is derived in a form as

v̇
ḃ

[ ]
= M−1t

0

[ ]
+ 0 M−1RT(c)

0 0

[ ]
v
b

[ ]
+ M−1w2

w1

[ ]
(13)

where M[R3×3 is the vessel mass matrix including added mass.
n= [u, v, r]T is the ship velocity vector, and t= [X, Y, N]T rep-
resents hydrodynamic forces and moment, as described in Equation
(2). The parameters inside the expression are the ones that need to
be identified.

By applying the SVM method validated in Section 3, hydrodyn-
amic coefficients in three directions are estimated, and the corre-
sponding model fidelity is examined in detail.

4.2. Disturbance set up

When preparing the training data, more rudder commands are
added to cover ship dynamic characteristics. Figure 3 shows the
excitation signal distribution in the simulation period.

The bias w1 [ R3×1 and process noise w2 [ R3×1 are defined
according to the rule proposed by Sutulo and Soares (2014):

wi = max (wi)k0ikiz (14)

where z is the discrete zero-mean Gaussian white noise process.
w is the primary clean reference response. max (wi) refers to the
maximum absolute value of the clean response and it scales the
noise signal to the origin response. k is a response specific
reduction factor, which is set to be 0.05 for rudder angle
response, 0.2 for the surge velocity, and 1.0 for other remaining
responses. k0 is the general reduction factor used to label the
noisy extent, which is assumed to be 5%, 10%, and 20% as listed
in Table 2.

4.3. Identification results under disturbance

To investigate the effect of disturbance level on the identification
results, a group of experiments is designed as listed in Table 3.
The disturbance bias level is set varying from NL1 to NL3, while
the process noise level is set constant at NL1. To eliminate the out-
liers in the random process, each experiment case is executed one
hundred trials. The Savitzky–Golay filter is applied to preprocess
and smooth the training data.

One trial of the disturbed accelerations in surge, sway, and yaw
directions are presented in Figure 4. This example shows that the
disturbance level in general has a more obvious consequence on
the surge acceleration than on the sway and yaw directions. It is
not unreasonable that the coupling between sway and yaw direction
decreases the perturbation effects to some extent.

After the training datasets are prepared after hundreds of trials,
the SVM algorithm is applied to train the regressor for the 3-DOF
dynamic model. The identified parameters are found normally dis-
tributed and thus the average is chosen as the general solution. By

Figure 3. The excitation signal of multiple zigzag tests. (This figure is available in colour online.)

Table 2. Disturbance/noise level set up.

Noise level (NL) k0
NL0 0%
NL1 5%
NL2 10%
NL3 20%

Table 3. Experiment case set up.

Case Disturbance bias Process noise
1 NL1 NL1
2 NL2 NL1
3 NL3 NL1
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substituting those results into Equation (2), the identified models at
different disturbance levels are then obtained.

Normally, the extensively trained SVM results are able to repro-
bude the training trajectory, therefore, a more critical evaluation of
the model fidelity is that it should be capble of predicting other
manoeuvres that the SVM has not been trained on. An 18° turning
circle operation is then undertaken to examine its generalisation
performance. The comparison between the SVM predictions and
origin model reference in 3-DOF velocities, heading angle,
and ship trajectory are shown in Figure 5. It can be seen that the
model identified under disturbance and process noise could
basically capture the ship’s dynamic properties and generate a rela-
tive accurate response. The prediction errors at NL1 and NL2 are
considered allowable. Generally, the deviation gets larger when
the disturbance level is higher. Note that at the same disturbance
level NL1, the deviation of surge speed is more obvious than
that of sway and yaw speed, which is implied by the results from
Figure 4.

To quantitatively measure the prediction errors, the manoeuvr-
ing characteristics for turning circles are calculated and listed in
Table 4. The table shows that the predicted maneuver properties
at different disturbance levels have various deviations from the
model reference. More concretely, at NL1 and NL2, the discrepan-
cies are almost lower than 10%, while at NL3, the errors are around
20%. It reveals that when the ship is exposed to gentle and moderate
environments, the identified model is able to keep its key character-
istics and its predictive capability could be considered acceptable.
Although relatively obvious dispersions at NL3 scenario is
observed, it could still indicate a potential path in the short future.
These results reveal that the SVM-based approach could realise par-
ameter identification in disturbed environment to a certain accu-
racy, which practically extends the applicable scope in kinds of
scenarios.

Due to the correlation between the SVM input features, the par-
ameter estimations may show a large dispersion from their exper-
imental values. However, the model, as a whole, can still be able

Figure 4. The disturbed accelerations in surge, sway, and yaw directions at different disturbance levels. (This figure is available in colour online.)
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Figure 5. The SVM predictions at different disturbance levels compared with model reference of 18° turning circle. (This figure is available in colour online.)

Table 4. Manoeuvring characteristics comparison between SVM predictions and model reference.

Manoeuvring characteristics Model reference SVM_NL1 SVM_NL2 SVM_NL3

Value (m) Value (m) Deviation (%) Value (m) Deviation (%) Value (m) Deviation (%)
Steady turning radius 667 644 3.5 595 10.8 707 6.0
Maximum transfer 1279 1306 2.1 1242 2.9 1594 24.6
Maximum advance 746 801 7.4 796 6.7 905 21.3
Transfer at 90 (deg) heading 546 578 5.9 557 2.0 694 27.1
Advance at 90 (deg) heading 742 796 7.3 791 6.6 895 20.6
Tactical diameter at 180 (deg) heading 1275 1302 2.1 1237 3.0 1586 24.4
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to predict new maneuver behaviour with different fidelities, even if
the parameters cannot be assigned a physical interpretation. The
generalisation capability of the identified model presented above
is found evidence for this argument.

5. Conclusions

In this paper, an SVM-based parameter identification procedure
is presented, which is applied to the scenario where ship
manoeuvres in stochastic environments. The work focuses on
the investigation of identification performance, as well as the
model fidelity under different levels of perturbations. By taking
multiple zigzag manoeuvres data in the MSS simulator, the SVM
is well trained to get all hydrodynamic coefficients, linear and
nonlinear, in a 3-DOF Abkowitz model. Satisfactory estimation
results are achieved in the clean system, showing its approach-
ability in marine domain. The method is then extended to
incorporate stochastic process to the model plant to simulate
real environment effects. Estimation results show that the
fidelity is decreasing with respect to the interference levels.
Models with prediction errors of the magnitude could be con-
sidered usable in 5% and 10% disturbance. Although the
model dispersion is obvious under 20% perturbation, the intui-
tive predictions is still encouraging in which we could bring
support to the operation decision system.

The main advantages of using the SVM identification method
are the possible robustness to noise by tuning the penalty factor
and width of the insensitive tube, so that being able to achieve better
generalisation compared to traditional neural networks. Mean-
while, it offers an inspection of specific parameters associated
with the vessel other than a grouped black-box model. Even if its
strengths are obvious, its performance on a heavily polluted system
is still limited. In addition, this approach is now validated on con-
stant parameters, and it cannot be applied to time-varying coeffi-
cients. This drawback limits the on-line identifications that are
always encountered in real life. For instance, for the operations
that cause a large angular displacement of a vessel, such as takeoff
and landing of autonomous aerial vehicles and helicopters, crane
operations, and so on, the ship responses are changing associated
with the operation status. Such cases push further research on
time-varying parameter identification, which will be included in
the future study. Furthermore, the presented identification pro-
cedure will be implemented in real-life sea trials to verify its adap-
tability in realistic scenarios. Efforts will also be paid to refine the
SVM approach to improve the identification accuracy in strong
environments.
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Abstract. Shipping has been dominating the transportation industry
in worldwide trade. During the service life of a vessel, conversions in
mid-life often occur for economic or technical purposes. By replacing
expired components or updating the outdated technology to the latest
operational standards, the service life could be greatly prolonged, and
meanwhile the capability will be enhanced. Bringing ships-in-service to
the latest technology creates the need for advanced methods and tools to
simulate the ship main and auxiliary systems. Co-simulation is emerging
as a promising technique in complex marine system modeling. The Func-
tional Mock-up Interface (FMI) standard enables sub-models represent-
ing part of the vessel to be be executed individually or as an integrated
part of the overall system. The modularity and re-usability of the sub-
models speed up the simulation cycle and ensure time-cost effectiveness,
which benefits the ship conversion. This paper presents a research related
to the ship propulsion retrofit process based on the co-simulation tech-
nique. The ship maneuverability before and after refitting propulsion
units is simulated and analyzed. Through the experiments, propulsion
performance improvements are observed. Eventually, the study supports
that the co-simulation technique to be applied in the maritime field has
an encouraging future.
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1 Introduction

Shipping, as a relatively energy-efficient, environmental-friendly, and sustainable
model of mass transport, is the dominant transportation method for world-wide
trade. Normally, the life cycle of a ship is estimated to be around 25 years, but
the actual age of the short sea fleet, for example, is higher, reaching more than
30 - 35 years of age for perhaps as much as 40% of the fleet [9]. However, the
life cycle of ship systems and major components is much shorter because of the
ever faster technological developments. In general, 10-15 years after launching a
ship, its main systems are outdated. Upgrading outdated technology in ships to
the latest operational standards enhances the capability and prolongs the ser-
vice life [13]. Furthermore, the international policies fostering the reduction of
energy consumption and emissions are always issuing new regulations on energy
efficiency and emission reduction [3]. For example, the International Maritime
Organization (IMO) has implemented a stricter sulfur content limit–called the
IMO 2020 sulfur cap–aiming at improve air quality and protect the environment.
Further, IMO has initiated an extensive strategy of the energy efficiency existing
ship index for existing ships, which indicate that the energy efficiency of ships
should be satisfied during the operation phase. To comply with the new regula-
tions, green technologies are implemented on-board ships [10]. Retrofitting the
ships during the operation phase has become a popular choice for the trans-
portation industry [15]. It is possible to upgrade the installed technology with
new high-performance machines and significantly improve the system’s handling,
economic efficiency, as well as emission reduction [8].

Given that modern ships are becoming more complex and integrated, retrofitting
them is a complex and intricate engineering task. Optimal performance is relying
on all subsystems to work optimally, both individually and aggregated [11][14].
Each subsystem is dedicated to a specific object of the vessel or equipment.
Between distributed components, they exchange all relevant ship information,
data, or analysis and make coordinated operational decisions. Considering the
mutual and multi-disciplinary interaction between subsystems, co-simulation is
emerging as a promising technique. Often, it is difficult to describe a truly com-
plex system in a single tool. Instead, people are encouraged to develop models at
the partial solution level, such as the dynamic properties check, control strategy
design, or energy consumption optimization. It not only dramatically lessens
the modeling pressure and promotes efficiency but enables the re-usability of
different elements. Furthermore, a branch of components may be generated by
different teams or suppliers, each in its own domain and each with its own tools.
Using co-simulation, these models can be integrated as black-boxes without re-
vealing the intellectual property of the owner [2]. In addition, considering now
the demanding operation of an autonomous vessel, it is better to test ahead in a
virtual environment for safety reasons. Co-simulation reduces efforts to conduct
pre-training or perform tests by redirecting design attention and reusing the
sub-system models. From an efficiency point of view, co-simulation greatly facil-
itates the ship retrofitting process. In a co-simulation, different subsystems are
modeled separately and composed into a global simulation, where each model is
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Fig. 1. Side view of the research vessel Gunnerus.

executed independently, sharing information at discrete time points. The Func-
tional Mock-up Interface (FMI) standard is a commonly used standard for co-
simulation, and model implementing the FMI is known as a Functional Mock-up
Unit (FMU). The FMI enables an FMU exported by one tool to interoperate
with a variety of host tools and for host tools to orchestrate interactions between
FMUs exported by a variety of other tools [1]. A system can then be modelled
as a collection of interconnected FMUs. Co-simulation thus enables retrofit de-
cisions to be simulated ahead-of-time, cheaply and early in the process.

This study presents the propulsion retrofit process using the co-simulation
technique, and the dynamic properties of the retrofitted devices are analyzed and
discussed. The research vessel Gunnerus (see Fig. 1), owned and operated by the
Norwegian University of Science and Technology (NTNU) serves as the test ship.
The simulation fidelity was verified against real ship maneuver in [7] in terms
of ship speed, course, and power consumption. Convinced by the high-fidelity
resolution of the simulation, further research is conducted with more confidence.
As reported in [16], The R/V Gunnrus went through a thruster refit in 2015. The
original twin fixed-pitch ducted propellers and rudders were replaced with the
Permanent Magnet (PM) rim-drive azimuthing thrusters. The original propellers
were 5-bladed, high skew type with a diameter of 2.0 meters that rotated in a 19A
type duct profile, and the new azimuthing thrusters incorporates a ring propeller
in a tailor-made duct with a diameter of 1.9 meter with four blades having a
forward skewed shape. Fig. 2 shows the propulsion configuration on Gunnerus
before and after retrofit, where the left is the origin pitch propeller with ice-fins,
and the right is the refitted azimuth thruster provided by Rolls-Royce. The same
diesel-electric system supplied the propulsion and maneuvering power before
and after the conversion. To document the effect of the change of propulsion
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Fig. 2. The propulsion arrangement before and after retrofit.

system, a simulation test is carried out both before and after retrofitting the
PM azimuthing thruster in this work. The ship maneuvering capabilities are
then verified.

2 Problem Formulation

Thanks to the modularity and flexibility of co-simulation, the effort required to
simulate the dynamic properties of the propulsion unit is greatly decreased. In
this section, the ship maneuverability and the co-simulation diagram, as well as
the FMUs used in this research will be explained.

2.1 Ship Maneuverability

Ship maneuverability is defined as the capability of the craft to carry out spe-
cific maneuvers. A maneuvering characteristic can be obtained by changing or
keeping a predefined course and speed of the ship in a systematic manner by
means of active controls. For most of the surface vessels, these controls are im-
plemented by rudders, propellers and thrusters. The IMO approved standards
for ship maneuverability, and the standards specify the type of standard ma-
neuvers and associated criteria. It is always necessary for the vessels to apply
these standards, and even some port and flag states adopted some of the IMO
standards as their national requirements. To help the vessel prepare for imple-
mentation of the standards, prediction of the maneuverability performance in
the design stage enables a designer to take appropriate measures in good time to
achieve requirements. The prediction could be carried out by using existing data,
scaled model test, or numerical simulation [12]. From the practical view, numer-
ical simulation appears an effort-efficient way. Therefore, the ship maneuvering
capabilities will be the main concern during simulation experiments.
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To examine the course keeping capability of the ship, usually, the turning
circle and Kempf’s zigzag maneuver are selected. The maneuvers and their char-
acteristic are described as Fig. 3 and Table. 1-2:

𝑡

𝑡

𝑡

𝑡 overshoot

Fig. 3. Schematic of zigzag maneuver and its main characteristics.

Table 1. Zigzag maneuver characteristics.

Characteristic Reference

Initial turning time ta The time from the rudder execution until the heading changes a desired
degrees, 10◦ off the initial course in 10◦/10◦ example.

Time to check yaw ts The time from the rudder execution until the maximum heading
changes.

Reach time tA The time between the first rudder execution and the instance when the
ship’s heading is zero.

Complete time tT The time between the first rudder execution and the instance when the
ship’s heading is zero after third execution.

Overshoot angle The angle through which the ship continues to turn in the original
direction after execution of counter rudder.

2.2 Co-simulation Setup

The ship maneuvering simulation is set up as Fig. 4 shows. Each block represents
an FMU of which the input and output variables are declared. The experiment
is performed in Vico, a generic co-simulation framework based on the Entity-
Component-System software architecture that supports the FMI as well as the
System Structure and Parameterization (SSP) standards [5]. The user may ma-
nipulate the wind, waves, and ocean currents to mimic environmental conditions.
An overview of FMUs applied in the maneuvering simulation is presented. All the
FMUs, except the VesselModel and PMAzimuth, are developed by the authors
using PythonFMU [6].

1. VesselModel
The vessel model reflects the vessel’s hydrodynamic properties, such as the
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Table 2. Turning circle maneuver and
its main characteristics.

Characteristic Unit

Steady turning radius m
Transfer at 90 deg heading m
Advance at 90 deg heading m

Maximum Transfer m
Maximum Advance m

Tactical diameter at 180 deg heading m

advance

maximum 
advance

transfer

tactical diameter

maximum transfer

mass, resistance, and cross-flow drag, as well as restoring forces. It is a 6 de-
gree of freedom (DOF) time-domain simulation model developed by MAR-
INTEK’s vessel simulator (VeSim) [4]. Summing all the external forces acting
on the ship, the dynamic equations of vessel motions are then solved. It can
be implemented in sea-keeping and maneuvering problems for marine vessels
subjected to waves, wind, and currents based on a unified nonlinear model
Eq. 1.

(MRB +MA)ν̇ + C(ν)ν +D(ν) + g(η) +

∫ t

0

h(t− τ)ν(τ) dτ = q (1)

where the 6DOF ship velocity state is expressed as the vector ν = [u, v, w, p, q, r]′

referred to the coordinate shown in Fig. 5. The [u, v, w] are the linear ve-
locity along xb, yb, zb directions, and [p, q, r] are the angular velocities ro-
tating around three directions. MRB ∈ R6×6 is the rigid body mass, and
MA ∈ R6×6 is the added mass. C(ν) = CRB(ν) + CA(ν) ∈ R6×6 × R6 is
describing the generalized coriolis-centripetal forces. D(ν) ∈ R6×6 × R6 is
a vector of damping forces and moments. g(η) ∈ R6 is a vector of gravita-
tional/buoyancy forces and moments. And h(τ) refers to impulse response
functions calculated by SINTEF OCEAN’s potential theory. q ∈ R6 is the
external forces and moments acting on the ship. The model itself is fully
coupled and it can be used for simulation and prediction of coupled vehicle
motion.

2. PID controller
The PID controller is created to generate shaft speed and rudder angle com-
mands according to Eq. 2. In the control law, the k{·} is the parameter
enabling tuning, and the predefined approach speed ud as well as the ship
heading ψd are issued by the ZigzagController.
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Fig. 4. Diagram showing the relationship of the engaged ship components.

RPM = kpu(u− ud) + kiu

∫ t

0

(u− ud)dt+ kdu
d

dt
(u− ud)

δ = kppsi(ψ − ψd) + kipsi

∫ t

0

(ψ − ψd)dt+ kdpsi
d

dt
(ψ − ψd)

(2)

3. Zigzag controller
It is a logistic solver without numerical computation. Given the current ship
speed and heading, it can tell to which side the rudder should turn and
deliver the command saturation to the connected PID controller.

4. PMAzimuth
It is a hydrodynamic model of the azimuth thruster without actuator, im-
plemented by the manufacturer Kongsberg Maritime using VeSim. Feeding a
specific RPM and angle command, vessel speed, as well as the loss factor into
the model, it produces a 3DOF force on heave, surge, and sway directions.

5. Propeller
Both the propeller and rudder are generic models parametrized to R/V Gun-
nerus. The surge force related to the propeller is calculated with:

τp = f(n, u) (3)

where n is the propeller shaft speed (r/min), and u is the vessel’s surge
velocity. Note that the sway force and yaw moment due to propeller are
neglected as they have smaller magnitudes compared to those of hull and
rudder components.



8 Tongtong et al.

𝑥𝑦

𝑧

yaw

heave

surge

sway

rollpitch

Fig. 5. The ship body coordinate and motion in 6DOF.

6. Rudder
The rudder is modelled according to [17]. It can be expressed as:

τr = g(u, v, r, n, δ, θ) (4)

where u, v, r are the velocities in surge, sway, and yaw directions respectively.
And δ is the rudder angle. θ refers to the hull-rudder interaction coefficients.

3 Experiment Results

Experiments are implemented with the designed co-simulation diagram in Vico.
The detailed experimental scenarios and the corresponding ship maneuverability,
with either pitch propeller or PMAzimuth thruster installed, are presented in
this section.

3.1 Simulation Scenarios

Ship maneuvering experiments with a different set of propulsion units are imple-
mented. It is also worth noticing that the ship maneuverability could be affected
by water depth, environmental forces, ship speed and hydrodynamic derivatives.
To ensure the results comparable, identical settings except only the propulsion
units are employed. The ship is assuming cruising on calm and deep water with-
out external environmental disturbances. Eight maneuver test scenarios are de-
fined as Table. 3 shows, aiming to investigate the propulsion performance under
different execution angles and speeds.

A 10◦ − 10◦ zigzag test means that the rudder and azimuth angles are given
a command of ±10◦, and when the ship heading change reaches 10◦ the rud-
der/azimuth reverse to the opposite side. The 10◦ in turning circle refers to
the constant rudder/azimuth angle. As a key parameter, the ship surge speed
is given as the steady velocity before the zig-zag/turning circle maneuvers are
initiated. During the process, 300 seconds are saved first to warm up and drive
the ship to the pre-defined speed, and 300 seconds are arranged for operations.
The simulation time step is set to 0.05s.
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3.2 Results Analysis

In this section, the main maneuver characteristics of the ship before and after
conversion will be observed and discussed.

Zigzag Maneuver Zigzag trajectories for the ship using both the pitch pro-
pellers and azimuth thrusters are simulated. Three selected test results are pre-
sented and compared in Fig. 6-8. Naturally, differences in turning velocities are
observed from these figures. A more noticeable yaw velocity distinction between
the pitch propeller and azimuth arises during 10◦ turn command. The statistic
results are summerized in Table. 4. It could be observed that the measured key
time parameters in the azimuth group are effectively decreased. This conclusion

Table 3. Maneuver experiment cases implemented in Vico.

Maneuver Execution Speed

Zig-zag
10◦ − 10◦ low

high

20◦ − 20◦ low
high

Turning circle
10◦ low

high

20◦ low
high
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(a) 10◦/10◦ zigzag ship heading and command angle at higher speed.
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(b) Ship turning velocities under propeller or azimuth actuation.

Fig. 6. 10◦/10◦ zigzag properties at higher speed.
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(a) 20◦/20◦ zigzag ship heading and command angle at higher speed.
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(b) Ship turning velocities under propeller or azimuth actuation.

Fig. 7. 20◦/20◦ zigzag properties at higher speed.
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(a) 20◦/20◦ zigzag ship heading and command angle at lower speed.

300 325 350 375 400 425 450 475
Time [s]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Tu
rn

in
g 

sp
ee

d 
[d

eg
/s

]

pitch propeller
azimuth thruster

(b) Ship turning velocities under propeller or azimuth actuation.

Fig. 8. 20◦/20◦ zigzag properties at lower speed.
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Table 4. The zigzag characteristics for the ship before and after propulsion unit
retrofit.

Characteristics
10◦/10◦ 10◦/10◦ 20◦/20◦ 20◦/20◦

pr azi gain[%] pr azi gain[%] pr azi gain[%] pr azi gain[%]

Approach speed [m/s] 4.7 4.78 - 2.4 2.5 - 4.7 4.73 - 2.45 2.47 -
ta [s] 13.7 8.9 35 24.25 15.6 35.7 8.95 6.45 27.9 14.9 10.4 30.2
ts [s] 3.6 2.9 19.4 5 3.6 28 10.8 8.25 23.6 16.3 12.2 25.2
tA [s] 31.9 21.3 33.2 54.4 35.25 35.2 34.5 26.25 23.9 55.6 40.7 26.8
tT [s] 60.3 40.75 32.4 103.2 67 35.1 64.15 50.3 21.6 103.8 78.75 24.1

First overshoot angle [◦] 2.17 2.37 -9.2 1.57 1.6 -1.9 6.64 6.7 -0.9 4.6 4.7 -2.1
Second overshoot angle [◦] 2.2 2.42 -10 1.58 1.61 -1.9 6.87 6.68 2.8 4.8 4.36 9.2
Average overshoot angle [◦] 2.2 2.42 -10 1.576 1.6 -1.5 7.01 6.7 4.4 4.92 4.35 11.6

reveals that the ship with azimuth installed reaches the desired course within a
shorter time, and it responds more quickly to the given command.

Meanwhile, it is observed in Fig. 6 that the rudder rate of both systems are
similar, as they reverse from port-side to starboard in a similar amount of time.
Although it takes longer time for the ship using conventional rudders to drive
itself to the target course, it does not necessarily generate a larger overshoot
angle. Instead, their average overshoot angles are related to the execution com-
mand and maneuver speed as indicated in Table. 4. If a smaller angle command
is given to the azimuth, it would even lead to a slightly larger average overshoot
angle compared to the conventional rudder, even with a lower or higher forward
speed. With an increasing angle command, the azimuth thrusters are observed
to perform outstandingly.

Turning Circle The turning circle maneuver experiments are conducted under
the resembling co-simulation structure (Fig. 4) but replacing the Zigzag con-
troller with Turning controller. The execution angle and speed are distinguished
into two categories: 10◦ and 20◦, higher and lower approach speed, respectively.

The statistical maneuver results are presented in Table. 5. Among the four
cases, two of them are selected to visualize the differences (See Fig. 9-10). The
ship equipped with either the conventional pitch propellers and rudders, or az-
imuths, are approaching at similar speeds before execution. From Fig. 9a, a drop
of surge speed is observed when the rudder is instantiated, and the drop of pitch

Table 5. The turning characteristics for the ship before and after propulsion unit
retrofit.

Characteristics
10◦ 10◦ 20◦ 20◦

pr azi gain [%] pr azi gain [%] pr azi gain [%] pr azi gain [%]

Approach speed [m/s] 4.7 4.8 - 2.4 2.5 - 4.7 4.7 - 2.4 2.5 -
Steady turning radius [m] 237.5 185.5 21.9 237.8 186.3 21.6 90.4 91.3 -1 93.2 92.9 0.32

Maximum transfer [m] 476.2 370.6 22.2 476.4 371.9 21.9 190.7 184.8 3.1 195.1 187.7 3.8
Maximum advance [m] 266.7 200.5 24.8 265.5 200.3 24.5 127.8 108.9 14.8 128.3 109.6 14.6

Transfer [m] 227.5 173.7 23.6 227.2 173.9 23.4 88.1 82.2 6.7 88.8 82.5 7.1
Advance [m] 266.4 200.1 24.9 265.2 199.9 24.6 127 108.1 14.9 127.4 108.7 14.7

Tactical diameter [m] 475.9 370.2 22.2 476.1 371.5 22.0 189.96 184.1 3.1 194.2 186.9 3.8
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(a) The ship’s surge and yaw speed when circling at 10◦ with a fast
speed.
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(b) Comparison of propeller and azimuth actuated ship trajectories.

Fig. 9. 10◦ turning circle properties at higher speed.

propeller is more obvious compared to that of the azimuth. Meanwhile, a larger
turning velocity is offered by the azimuth. The out-performance in response ve-
locities is expected to lead to a narrowed turning radius which is verified in
Fig. 9b.

Moreover, the statistical results show that the angle command affects the
propulsion performance more than the approach speed. Comparing Fig. 9 and
Fig. 10, the ship exhibits similar speeds before operation. However, the percent-
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(a) The ship’s surge and yaw speed when circling at 20◦ with a fast
speed.

0 50 100 150 200
East [m]

1225

1250

1275

1300

1325

1350

1375

1400

1425

No
rth

 [m
]

pitch propeller
azimuth thruster

(b) Comparison of propeller and azimuth actuated ship trajectories.

Fig. 10. 20◦ turning circle properties at higher speed.

age of decreased surge velocity with 20◦ rudder angle is higher than that with
10◦ counter angle. For the azimuth thruster, it drops about 6% in 10◦ and 19%
in 20◦. For the propeller, the values are 15% and 32%. When the rudder angle is
given 20◦, it not necessarily generates a large turning radius, as the propulsion
moments could produce a higher yaw rate compared to 10◦. This finding leads
to a compromise in overall turning performance. Therefore, it is understandable
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that the steady radius reduction at 20◦ command is smaller than that of the
lower command.

4 Conclusion

The continuously improving knowledge and availability of high-performance ma-
chines and drives have created the need for advanced methods and tools to facil-
itate retrofitting existing ships. Usually, the retrofit is driven by environmental
and/or technical reasons, such as to comply with new energy regulations or to
upgrade outdated technology. Either way, it is beneficial to ensure fast refitting
procedures by allowing easier integration of new components. Co-simulation re-
duces both the time and the costs of refitting procedures, extending the operative
life of a vessel in service. In this research, the authors utilized the co-simulation
techniques to model the ship maneuver process before and after propulsion con-
version and evaluate the impact of new devices on the ship maneuverability,
aiming to support decisions on measures to meet operational standards. By
comparing the zigzag and turning circle maneuver characteristics in the present
work, an improved course keeping capability is observed after refitting advanced
permanent magnet driven azimuth thrusters on the ship. This practice supports
that co-simulation enables time cost-effective redesign and fast virtual tests by
taking advantage of its modularity and flexibility, and emerges as a promising
technology in the maritime industry.

However, it should be clarified that the quality of the simulation model may
vary, and the tests conducted in order to compare the maneuvering performance
of the two systems, and are not necessarily a good measure of the daily maneu-
vering capabilities of the vessel. Agreeing with this situation, the experiments
performed through co-simulation will be qualitatively informative so that the
comparative conclusions drawn upon are credible.

In the present study, only the ship maneuvering performance investigation
is within scope, but in many cases, energy consumption is the major concern.
Therefore, further research on the energy cost of the ship with different propul-
sion sets installed will be implemented by taking advantage of co-simulation
technology in the future.

References

1. Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter,
M.: Determinate composition of fmus for co-simulation. In: 2013 Proceedings of
the International Conference on Embedded Software (EMSOFT). pp. 1–12. IEEE
(2013). https://doi.org/10.1109/EMSOFT.2013.6658580

2. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-
simulation: a survey. ACM Computing Surveys (CSUR) 51(3), 1–33 (2018).
https://doi.org/10.1145/3179993

3. Halff, A., Younes, L., Boersma, T.: The likely implications of the new
imo standards on the shipping industry. Energy policy 126, 277–286 (2019).
https://doi.org/10.1016/j.enpol.2018.11.033



Ship Propulsion Retrofit Research 15

4. Hassani, V., Ross, A., Selvik, Ø., Fathi, D., Sprenger, F., Berg, T.E.: Time domain
simulation model for research vessel gunnerus. In: International Conference on
Offshore Mechanics and Arctic Engineering. vol. 56550, p. V007T06A013. Ameri-
can Society of Mechanical Engineers (2015). https://doi.org/10.1115/OMAE2015-
41786

5. Hatledal, L.I., Chu, Y., Styve, A., Zhang, H.: Vico: An entity-component-system
based co-simulation framework. Simulation Modelling Practice and Theory 108,
102243 (2021). https://doi.org/10.1016/j.simpat.2020.102243

6. Hatledal, L.I., Collonval, F., Zhang, H.: Enabling python driven co-simulation mod-
els with pythonfmu. In: Proceedings of the 34th International ECMS-Conference
on Modelling and Simulation-ECMS 2020. ECMS European Council for Modelling
and Simulation (2020). https://doi.org/10.7148/2020-0235

7. Hatledal, L.I., Skulstad, R., Li, G., Styve, A., Zhang, H.: Co-simulation as a fun-
damental technology for twin ships (2020). https://doi.org/10.4173/mic.2020.4.2

8. Hou, H., Krajewski, M., Ilter, Y.K., Day, S., Atlar, M., Shi, W.: An ex-
perimental investigation of the impact of retrofitting an underwater stern
foil on the resistance and motion. Ocean Engineering 205, 107290 (2020).
https://doi.org/10.1016/j.oceaneng.2020.107290

9. Koenig, P., Nalchajian, D., Hootman, J.: Ship service life and naval force structure.
Naval Engineers Journal 121(1), 69–77 (2009). https://doi.org/10.1111/j.1559-
3584.2009.01141.x

10. Li, K., Wu, M., Gu, X., Yuen, K., Xiao, Y.: Determinants of ship operators’ options
for compliance with imo 2020. Transportation Research Part D: Transport and
Environment 86, 102459 (2020). https://doi.org/10.1016/j.trd.2020.102459

11. Ling-Chin, J., Roskilly, A.: Investigating a conventional and retrofit power plant
on-board a roll-on/roll-off cargo ship from a sustainability perspective–a life cycle
assessment case study. Energy Conversion and Management 117, 305–318 (2016).
https://doi.org/10.1016/j.enconman.2016.03.032

12. Liu, J., Hekkenberg, R., Rotteveel, E., Hopman, H.: Literature review on evaluation
and prediction methods of inland vessel manoeuvrability. Ocean Engineering 106,
458–471 (2015). https://doi.org/10.1016/j.oceaneng.2015.07.021

13. Liu, L., Yang, D.Y., Frangopol, D.M.: Ship service life extension considering
ship condition and remaining design life. Marine Structures 78, 102940 (2021).
https://doi.org/10.1016/j.marstruc.2021.102940

14. Mauro, F., La Monaca, U., la Monaca, S., Marinò, A., Bucci, V.:
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Abstract—Accurate ship motion predictions play a vital role
in supporting the decision-making process onboard. Generally,
the ship dynamics are described by either a deterministic model
derived from hydrodynamic principles or a black-box model
learned from the observations. However, there are always cases
in real life where the physics information is insufficient to develop
a complete model, and the data quantity is also limited so that
a data-driven model is away from expectation. For this obstacle,
we propose a physics-data cooperative modeling approach based
on a rough ship numerical model and a few operational data
to enhance the model quality. The prior knowledge leveraged
by the ship’s numerical model is integrated into the neural
network as informative inputs, and the informed neural network
calibrates the bias between model outcomes and actual states in
principle. The proposed approach is validated in the real docking
operation of a research vessel. Comparisons with both the purely
hydrodynamic model and the data-driven model without physics
informed are conducted. The results convinced that the physics-
data hybrid way yields a more accurate model with relaxed data
requirements and less learning consumption.

Index Terms—a priori knowledge, physics-informed, data-
driven, docking, prediction.

I. INTRODUCTION

The maritime industry is undergoing a process of digital
transformation with increasingly more data are collected from
ship fleets. The development of advanced technologies, such
as digital twins and cloud computing, greatly benefits shipping
transportation on smart management. Undoubtedly, the contin-
uous monitoring and assessment of ships and the construction
of remote control centers advance the autonomous vessels
towards a more flexible and intelligent manner of handling
demanding ocean operations. As a fundamental technology for
the digital twin of autonomous vessels, ship dynamic modeling
has always been extensively investigated. Ship modeling is
a broad concept that could be achieved by theory-induced
hydrodynamic disciplines, system identification techniques, or
data-driven algorithms such as machine learning, etc. Either
way can provide credible support to the decision-making
process onboard if it is capable of predicting ship motion with
reasonable errors. While in reality, there are always obstacles
to developing a comprehensive model of a ship because of

This work was supported by a grant from the Research Council of Norway
through the Knowledge-Building Project for industry ”Digital Twins for Vessel
Life Cycle Service” (Project no: 270803).

Fig. 1: R/V Gunnerus when docking in Aalesund harbour,
Norway.

the nonlinear time-varying dynamics properties of the system.
The ship dynamics can vary with the sailing status, such as
the trim or loading conditions. Moreover, the ship’s motion
is greatly impacted by the ocean environments, which are
difficult to accurately model. Therefore, the hydrodynamic-
based models are always far from expectations because of
their simplifications and deficiencies in precision. Contrary
to physics’s discipline-based models, the data-driven ones
rely only on observation data. They can reach state-of-the-art
accuracy performance if sufficient data is given. However, the
data-driven models are often argued for their non-transparency
of the underlying process. The model uncertainties or errors
are difficult to trace, and concerns may arise when applied
in security-related domains. Besides, as the machine learning
techniques evolve, the conventional neural networks are ex-
pected to go deeper to reach stringent requirements, putting
more pressure on the computational cost.

For the cases where too limited data is available to con-
struct a data-driven model, and certain prior knowledge is
known but still not enough to get a complete physics-based
model, we propose a model-data consolidation approach. The
rough ship numerical model preserves and delivers the prior
domain knowledge. When they are encoded to the data-
driven neural network, improvements in model fidelity and
learning efficiency are expected. The rough ship dynamic
model, which is constructed on profiles, is credible to a certain
extent. But because of the model simplifications and parameter



uncertainties, discrepancies between model estimations and
reality always exist. In other words, the rough model partially
reflects the existing system. By identifying and leveraging the
prior knowledge into a neural network model trained on the
ship maneuver data, a hybrid model is delivered. This way,
the ship’s dynamic quality is enhanced easily and quickly with
only limited data. The model-data cooperation approach will
be explained, and its effects on improving the ship motion
prediction will be investigated in real ship docking operations.
Fig. 1 shows the research vessel was approaching the dock in
Aalesund harbor, Norway. The major contributions of the work
are as follows:

• Proposing a model-data cooperation method based on a
rough ship dynamic model and a limited amount of data
to derive a representative model for the research vessel.

• The proposed hybrid approach is validated on the real
ship docking operations.

• Comparing with the regular data-driven methods, the
hybrid way requires fewer data and learning consumption.

The rest of the paper is organized as follows. Related
works on ship motion prediction are discussed in Section II.
The following Section III presents the proposed physics-data
cooperation modeling framework. Detailed explanations of
the modeling process are also presented here. The validation
experiments on the docking operations of a real ship are
conducted in Section IV to validate the efficiency of the
proposed method. Meanwhile, the results in comparison with
traditional approaches are shown. Conclusion and future work
are shown in Section V.

II. RELATED WORK

The booming of artificial intelligence technologies promotes
ship modeling into the digital era. Advanced data-driven algo-
rithms are increasingly being applied to simulate autonomous
vehicles. As a fundamental technology, the research on es-
timating ship states has lasted for decades, originating from
hydrodynamic properties, classic Kalman filters, or the data
analysis point of view. We reviewed recent works on ship
motion estimating and predicting using data-driven related
approaches.

Generally, the ship dynamic properties can be described in
two ways, by deriving deterministic equations or by learning
dependencies between input and output variables. The first
branch is usually related to data-driven system identification
paradigms. Examples where intelligent techniques are used to
estimate the ship dynamic system are widely reported. For
instance, the researchers employ the support vector machine
algorithms to highlight the measurement noise [1] or the
environmental disturbance [2] issues during the parameter
identification process. Moreover, in terms of uncertainty anal-
ysis, the Bayesian approach [3] and Gaussian process [4]
gain more popularity. It is natural to find that the data-
driven estimation approaches are widely applied to stress the
nonlinear phenomena of the dynamic system, and the results
have shown their advantages.

Unlike the identified ship model, which is physically in-
terpretable, the ship dynamics learned from the observations
are wrapped as a black box. Usually, they are approximated
by nonlinear regression functions with plenty of parameters
like weights and bias in a neural network to be optimized.
Li et al. [5] constructed a neural network (NN)-based model
to predict the ship time series benefiting from the sensitivity
analysis of the input space. Optimizing the network structure
and the parameters could be crucial for the ultimate model
fidelity. Numerous approaches are proposed to improve the
model learning performance, such as using the particle swarm
optimization (PSO) algorithm [6], [7] to tune the hyperparam-
eters, or compacting the input vector space [8] to a reasonable
dimension. Ideally, a nonlinear system can be reflected as
accurately as possible if the network is well trained. However,
in the real application, the results are not always going that
way. Because the ship’s motion is inevitably influenced by
environmental factors such as winds, waves, and currents,
its dynamics are even more complex by incorporating the
elements of the draft, trim, thrust, etc. Meanwhile, the real ship
operational data are measured with noise and uncertainties.
Even worse, some sensor channels may go wrong to lose some
data. There are more obstacles when applying the machine
learning models in real life. Researchers have devoted efforts
to fixing the practical issues. For instance, Hu et al. improved
the regular Long-Short Term Memory (LSTM) network to
deal with the random errors caused by the inertial naviga-
tion system [9]. In addition, some pre-processing techniques
are utilized to improve the network capability, for instance,
decomposing the original signals into sub-signals at different
scales by using the wavelet analysis [10], [11], or the empirical
mode decomposition techniques [12].

To achieve better performance, the network tends to go
deeper and more complex and has higher requirements on the
data quality and quantity. While in many scenarios where few
conditions are experienced or limited data is measured, the
purely data-driven methods are hard to meet the expectations.
With the integration of prior domain knowledge, it is promis-
ing to improve the learning efficiency as well as the model
performance.

III. METHODOLOGY

A. Overview of the method

The methodology of integrating the prior dynamic knowl-
edge and neural network-based black-box model is proposed to
improve the ship predictive performance. As shown in Fig. 2,
there are three ways to establish ship models—solely physics-
based model, physics-data hybrid model and a purely data-
driven model.

In the proposed hybrid way, an approximate ship model (1)
is developed to provide instructive information for the latent
predictive model.

ẋ = fa(x,u, θ) (1)
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Fig. 2: Overview of the model-data cooperative modeling methodology.

where x = [x, y, ψ, u, v, r]′ is the ship state vector, which
contains the positions in North-East-Down (NED) coordi-
nate, and velocities in the surge, sway, and yaw direc-
tion. For the research vessel we applied in this work,
two main azimuth thrusters are installed at the stern and
one tunnel thruster at the bow. Thus the control vector
u = [RPMp, δp, RPMs, δs, RPMt]

′ includes the shaft speeds
in revolution-per-minute and the orientations of both stern
thrusters, and the shaft speed of the tunnel thruster RPMt.
The subscripts p, and s refer to the portside and starboard side,
respectively. Note that the control inputs are assumed to be
constant over the sampling interval. Besides, there are plenty
of parameters specified for the research vessel, such as those
declaring the hydrodynamic effects, the thruster properties,
as well as the ship geometry principles, etc. The vector θ
consists of all these ship-related parameters. In this model,
the parameter θ has been well prepared beforehand, and the
values are either verified in model tests or supplied by the
component manufacturer.

An operational data set of the research vessel D ={
(xki , yki ), k = 1, 2, ..., n, i = 1, 2, ...,m

}
is sampled, where n

docking operations are recorded, and each operation contains
m samples. Suppose at time instance t − 1, the numerical
model fa receives the thruster commands, and will reveal the
ship positions ahead of current time. The model prediction se-
quences [x̃t, x̃t+1, ..., x̃t+∆] are induced from the approximate
model by (2).

x̃t = fa(xkt−1,ut−1, θ) (2)

∆ is the prediction horizon. Despite the much efforts went into
the development of the numerical model, not all phenomena
could be captured by one single model. Assumptions must be
taken to simplify the expressions and describe the dominate
properties. As a result, the leveraged model information x̃t
must have a certain discrepancies against the exact ship states
xt.

By integrating the prior model predictions as the informative
inputs into the neural network, the prior knowledge is carried
forward and calibrated by the real operation data. This way,
the prediction accuracy compared to the solely hydrodynamic
model-based will be improved, and the learning efficiency
compared to the purely data-driven model will also be pro-
moted.

x̂t =g(x̃t,ut−1, t)

=g(fa(xkt−1,ut−1, θ),ut−1, t)
(3)

Depending on the ship docking operation data set D, a
data-driven model without the prior model information is also
derived. A comparison of the hybrid model with the physics-
based and data-driven models on the accuracy and efficiency
will be performed to validate the cooperative methodology.

B. Approximate ship model

For the horizontal motion of a fully actuated offshore
surface vessel under the wind disturbance, considering the
surge, sway, and yaw motion components, the mathematical
motion model of a ship in docking operation is expressed as
[13]:

η̇ = R(ψ)ν

Mν̇ + CRB(ν)ν + CA(νr)νr +D(νr) = τc + τwi + τwa
(4)

where η = [x, y, ψ] contains the ship position and heading,
ν = [u, v, r] is the speed vector, u, v, r refer to surge, sway,
and yaw velocity, respectively. R(ψ) is the horizontal plane
rotation matrix due to the yaw angle. M ∈ R3×3 is the
vessel inertia matrix including added mass; CRB(ν) ∈ R3×3

and CA(νr) ∈ R3×3 are the skew-symmetric Coriolis and
centripetal matrices of the rigid body and the added mass;
D(νr) ∈ R3 is the damping vector, including linear and
nonlinear terms which are a function of the relative velocity
νr between the vessel and the current. τc ∈ R3 is the control



vector consisting of forces and moments produced by the
thruster system; τwi and τwa are the environmental load vec-
tors of wind and waves, respectively. Given the measurement
limitations of ocean currents and waves and the desire to
reduce modeling efforts, the wave, and current effects are
eliminated from the model. So the νr is reduced to ν instead.

The control force are contributed by the thruster units
installed on the vessel. And the propeller thrust T and torque
Q are generally formulated as a function of shaft speed n in
revolution-per-minute, the thruster orientation δ, time-varying
ship states xp in interaction with thruster, and specific thruster
parameters θp [14]. A numerical model of the forces produced
by the two main azimuth thrusters was supplied by the thruster
manufacturer. The actuator forces and moments are translated
to the control forces and moments in horizontal plane by

τc = T (δ)FT (5)

T(δ) =




0 cos(δp) cos(δs)
1 sin(δp) sin(δs)
Ltx Lpx sin(δp)− Lpy cos(δp) Lsx sin(δs)− Lsy cos(δs)




where δ is the thruster orientation, and T (δ) is the thrust con-
figuration matrix, which describes the geometrical locations
of the thrusters. τc = [τx, τy, τn]

T refers to the control force
vector acting on the vessel; FT = [Tt, Tp, Ts]

T represents
forces vector produced by tunnel thruster, port main thruster
and starboard main thruster, respectively.
The wind force is the only environmental disturbance that can
be estimated based on the wind speed and velocity measured
on board. The deterministic model to estimate wind forces is
given in (6).

τwi =
1

2
ρaV

2
rw




CX(γrw)AFW
CY (γrw)ALW

CN (γrw)ALWLoa


 (6)

The relative wind speed is defined as Vrw =
√
u2rw + v2rw

and attack angle γrw = −atan2(vrw, urw), where urw =
u − Vw cos (βw − ψ), and vrw = v − Vw sin (βw − ψ). Vw
and βw represent the wind speed and its direction, respectively.
CX ,CY , and CN are wind coefficients specific for the hull or
superstructure shape. AFW and ALW are frontal and lateral
projected areas and Loa is the overall length of the ship.

The research vessel is numerically simulated by solving the
dynamic model (4) with the Runge-Kutta fourth-order method.

C. Neural network calibrator

A feedforward neural network (FNN) structure is adopted
to calibrate the bias and map the model predictions to the real
ship states. Specifically, the input space was constructed by the
forecasting time step, the corresponding model predicted ship
velocities, and the wind measurement, as well as the thruster
feedback when prediction is triggered. The output variables
are the corresponding ship’s real velocities in the surge, sway,
and yaw direction.

One input layer, three hidden layers, and one output layer
are specified in the network. The weights and biases of the
FNN are updated by the Adam optimizer. The activation

TABLE I: Main dimensions of the research vessel.

Description Parameter Value
Length over all Loa(m) 31.25

Length between perpendiculars Lpp(m) 28.9
Mass of vessel M(t) 370
Dead weight DWT 107

Breadth middle Bm(m) 9.6
Draught dm(m) 2.6

Fig. 3: R/V Gunnerus docking operations in 2016-2017, Nor-
way.

function for the hidden layer is ReLu, and input measurements
in the training set are normalized with a standard scalar. The
training set evaluated the performance by minimizing the mean
square error (MSE) metric between desired and regressed
values. The proposed network is implemented by using Scikit-
learn in Python.

D. Data-driven model

There are several choices existing when selecting a method
for purely data-driven predictive modeling, such as the neu-
ral networks, either feedforward or recursive, the Gaussian
Process, the Support vector machines, etc. Given the error
accumulation effects when predicting multiple steps ahead, we
prefer the recursive neural network (RNN) to recap the past
states, as shown in (7).

x̂t = G(xt−1,ut−1) (7)

The Long-Short Term Memory (LSTM) networks, as a special
kind of RNN, are particularly good at learning long-term
dependencies and processing time-series forecasting because
they work to retain useful information about previous data in
the sequence instead of treating each data point independently.
Thus, we applied the LSTM for nonlinear ship motions single-
step prediction, and propagation will be performed to get 30
seconds predictions.
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The formulation of LSTM cells is as follows.

ft =σ(W
f,hht−1 +W f,xxt)

it =σ(W
i,hht−1 +W i,xxt)

ot =σ(W
o,hht−1 +W o,xxt)

ct =ft ⊙ ct−1 + it ⊙ tanh(W c,hht−1 +W c,xxt)

ht =ot ⊙ tanh(ct)

(8)

where the f, i, o and c represent the input gate, the forgetting
gate, the output gate and the cell state, respectively. xt is the
input vector, W is the weight matrix, ht−1 and ct−1 are cell
state and hidden state of the LSTM structure at the t − 1
time step. σ refers the activation function sigmoid, tanh is the
hyperbolic tangent function, and ⊙ is the Hadamard product.

When constructing the nonlinear ship model, the input space
contains the ship velocity states and controls at current time,
and output the velocities one step ahead, i.e.,

• I(t)=[ut, vt, rt, npt , δpt , nst , δst , ntt , Vwt
, βwt

]
• O(t)=[ut+1, vt+1, rt+1]

Under the machine learning framework of Google Tensor-
Flow, the LSTM was implemented in the Python language.
The learning network structure contains one input layer, one
hidden layer, one LSTM unit layer, and one output layer.
Standardization is performed before data are fed into each
layer network. The activation function of the output layer is
a linear function. Adam is selected as the optimizer with a
learning rate of 1× 10−3 to update weights.

IV. EXPERIMENT

A. Data sets preparation

The research vessel (R/V) Gunnerus, owned and operated by
the Norwegian University of Science and Technology, serves
as the testbed in this work. The R/V Gunnerus was equipped
with two permanent magnet-driven azimuth thrusters (PMAM)
at the stern and one tunnel thruster at the bow. Its main
dimensions are listed in Table. I.
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Fig. 5: The main thruster feedback during docking.

The experimental data were sampled from the history data
acquired through log files created by a data acquisition system
onboard the RV Gunnerus. The measurements contain the
ship’s GPS signal, six degrees of freedom (DoF) displacements
and velocities, wind direction and speed measurement, as well
as thruster feedbacks. A docking operation dataset of a one-
year time period starting from August 2016 to June 2017 was
selected, as shown in Fig. 3. A conversion from the position
given as latitude and longitude in the earth-centered, earth-
fixed (ECEF) frame to the local north–east–down (NED) frame
in meters was performed on the data set. Information regarding
the procedures of isolating dockings from daily cruise data and
the measurement range of each sensor channel can be found
in [15]. In this dataset, the sampling rate of all variables is
1Hz, and 70 complete docking operations, which were each
1000 seconds in length, were recorded.

For the model-data hybrid approach, six docking operations
data were utilized for training the feedforward neural network,
which maps the rough model predictions to the accurate ship
states. For the solely data-driven model without the assistance
of the prior model, a recursive neural network structure LSTM
was trained on 50 docking operations to learn the ship states
one step ahead.

The purely physics-based model, the hybrid model, as well
as the purely data-driven model are verified on the same test
data set.

B. Prediction performance

In the test docking scenario, as shown in Fig. 4, the
predictions made by three different models are performed. The
main thruster feedbacks and approach speed were recorded as
Fig. 5. It is observed that the ship’s forward speed decreases
from around 6 m/s to zero at 850s, and the two main thrusters
are controlled separately. The prediction accuracy is evaluated
by the mean squared error (MSE) (9).

e = 1/l

l∑

1

(ν − ν̂)2 (9)
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Fig. 6: Predicted trajectories of three models. (a) complete predictions during docking; (b) prediction details in the first period;
(c) prediction details in the second period.
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Fig. 7: The predictive average distance errors of three various
models.

Given the predicted speed vector, the ship positions are up-
dated by (10), where h is the time step.

η̇ = R(ψ)ν̂

ηt+1 = ηt + η̇h
(10)

Another metric is introduced to evaluate the average Euclidean
distance errors (11), where x̂i, ŷi represent the predicted NED
positions, and xi, yi are corresponding ship true states. And l
is the sample length.

de = 1/l

l∑

1

(
√
(xi − x̂i)2 + (yi − ŷi)2 (11)

The predicted trajectories of three models are visualized in
Fig. 6. According to the surge speed and thruster orientation
distribution, there are two stages in the docking process, before
and after the portside thruster turns around 320s. Thus two
detailed predictions are exhibited in Fig. 6b-6c. From these
figures, the red circle represents the ship’s position where the
forecasting is initiated. The star signs mark the final predictive
position at 30 seconds ahead. Three colors display the foreseen
trajectories made by different models—red: hybrid, green:
physics model, and blue: data-driven model. And the black line

is the ship’s real trajectory. It is observed that the hybrid model
predicts the most accurately in both command profiles. When
the ship speed is relatively higher at 190s, the hydrodynamic
model performs slightly better than the data-driven model.
Still, in the low-speed maneuver, the LSTM model generates
more visible errors.

A more detailed prediction error comparison is shown in
Fig. 7. It is more straightforward that the prediction errors
are related to the ship’s approach speed. At the higher speed
before decreasing, the hybrid model considerably reduces the
dispersion, and the hydrodynamic model and LSTM model
behave worse, but generally, the latter works better than the
former. When the ship is decelerating at a slow speed, the
hydrodynamic model matches more suitably with the actual
system, so well as the hybrid model. The data-driven model
also exhibits a remarkable decrease in average distance error
but is still slightly larger than the physical and hybrid models.
It reveals that the domain knowledge-based model constructed
on hydrodynamic properties captures the system better at low-
speed maneuvers. In this operation phase, either the physics
or hybrid models are qualified to offer credible predictions.
However, when the ship is cruising at service speed, the
hybrid model would be the best choice among these three
candidates. The data-driven model performance is believed to
be improved if more operation data is supplied. However, the
reality limits the further optimization of the network even
almost ten times operations of the hybrid model used are
utilized for training the LSTM. On the contrary, the hybrid
model can achieve excellent accuracy with limited data and
a simpler network structure, which spares more effort and
computational consumption than building everything from
scratch.

V. CONCLUSION

In this paper, for the cases where partial but not complete
information is known, the physics-based model is not qualified
to comprehensively represent the system. Meanwhile, limited
observation data is available. We propose a physics-data co-
operation modeling approach to enhance the model quality.
The prior knowledge leveraged by the rough ship numerical



model is carried forward into the neural network as informative
inputs, and the informed neural network calibrates the bias
between model outcomes and real states in principle. The
proposed approach is validated in the real docking operation
of a research vessel. Results have shown that compared to
the solely hydrodynamic model, the hybrid model outperforms
in accuracy. Compared to the purely data-driven model, the
hybrid one could be achieved with fewer data and faster
computation. Moreover, depending on the current operational
phase, flexible choices can be made among the three kinds of
model candidates, which brings vital support to the decision-
support process onboard ships.
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