
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Henrik Granlund
Herman Torland
Sondre Gunneng
Øyvind Wold

RFC: A user-friendly system for
managing and automating network
changes in a secure zone model

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Jia-Chun Lin
May 2022

Ba
ch

el
or

’s
th

es
is

Henrik Granlund
Herman Torland
Sondre Gunneng
Øyvind Wold

RFC: A user-friendly system for
managing and automating network
changes in a secure zone model

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Jia-Chun Lin
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Acknowledgements

We would like to thank Intility for providing us with this assignment and arran-
ging assistance and guidance throughout the project. A special thanks go to Tobias
Bryhn-Bjølgerud, Marius Engan, and the rest of the Network Services Automation
department for the continuous support and sharing of knowledge. We would also
like to thank our supervisor at NTNU, Jia-Chun Lin, who has been incredibly
helpful and enthusiastic in guiding us through the project phase.

i

Abstract

Intility is a fully managed platform service used by more than 600 companies.
The exponential growth of this platform makes scalability a necessity to keep up
with the increasing customer base. Intility strives to automate and streamline as
many processes as possible to achieve seamless scalability. Due to their multi-
domain secure zone model, this requires special considerations for data flow. This
thesis will showcase the development of a web application that allows Intility’s
customers to submit requests to make changes to their networks. These requests
contain sufficient information in a standardized format that allows for automating
the network changes across the secure zones. The system will release capacity
from technicians and customer support, allowing them to focus on more resource-
intensive tasks. The thesis will cover both technical details about the developed
system and outline the development process throughout the project.

i

Sammendrag

Intility er en ende-til-ende plattformtjeneste som benyttes av mer enn 600 sel-
skaper. Den eksponentielle veksten til denne plattformen nødvendiggjør skalerbar-
het for å kunne holde tritt med den økende kundebasen. For å oppn̊a sømløs
skalerbarhet, streber Intility etter å automatisere og effektivisere s̊a mange prosesser
som mulig. P̊a grunn av deres sikker-sone modell med flere domener, kreves det
spesielle tiltak med tanke p̊a dataflyt. Denne rapporten vil vise utviklingen av en
applikasjon som lar Intilitys kunder opprette forespørsler om nettverksendringer.
Disse forespørslene inneholder tilstrekkelig informasjon i et standardisert format,
noe som gjør det mulig å automatisere nettverksendringen p̊a tvers av de sikre
sonene. Systemet vil frigjøre kapasitet fra teknikere og kundestøtte, og la de fok-
usere p̊a mer ressurskrevende oppgaver. Rapporten vil b̊ade dekke tekniske detaljer
om det utviklede systemet, samt vise utviklingsprosessen gjennom hele prosjektet.

ii

Table of Contents

List of Figures vi

List of Tables vii

List of Code Snippets viii

1 Introduction 1

1.1 Background about Intility . 1

1.2 High-level problem description . 1

1.3 Target Audience . 2

1.4 Project organization . 3

1.5 Thesis structure . 5

2 Background 6

2.1 Detailed problem description . 6

2.2 Purpose . 7

2.3 Tool survey . 8

2.3.1 Bifrost . 8

2.3.2 Database . 8

2.3.3 Docker . 9

2.3.4 FastAPI . 10

2.3.5 Gitlab and git . 10

2.3.6 JavaScript . 11

2.3.7 Kong . 12

2.3.8 Lucidchart . 12

2.3.9 Microsoft 365 . 13

2.3.10 OPA . 13

2.3.11 PyCharm . 13

2.3.12 React . 13

iii

3 Requirements specification 14

3.1 Functional requirements . 14

3.2 Non-functional requirements . 15

4 System design 16

4.1 Architecture of RFC . 16

4.2 Features . 19

4.2.1 WLAN changes . 19

4.2.2 Add a new device to MAC Authentication Bypass (MAB) . 21

4.3 User interface design . 22

5 Implementation 26

5.1 Backend architecture . 26

5.2 API . 28

5.3 Frontend . 33

6 Development process 36

6.1 Process framework . 36

6.2 Documentation . 37

7 Evaluation 39

7.1 Evaluation of functional requirements 39

7.2 Evaluation of non-functional requirements 42

7.3 Implemented changes . 52

8 Closing remarks 54

8.1 Future work . 54

8.2 Learning outcome . 55

8.3 Evaluation of the project . 56

8.4 Conclusion . 57

iv

Bibliography 58

A Vocabulary 62

B Log 63

B.1 Week log . 63

B.2 Timesheet . 65

B.3 Minutes of meetings . 68

C Assignment description from Intility 71

D Project plan 73

E Project agreement 86

v

List of Figures

1 The current request for change flow at Intility 6

2 The desired request for change flow 7

3 Virtual machines vs containers . 9

4 Pre-commit results with failed test. 11

5 Metro vs Kong . 12

6 System architecture of RFC . 17

7 Technician interface for approving requests 18

8 Conceptual database model . 19

9 WLAN modal window with collapsed change SSID/Password forms. 20

10 WLAN modal window with opened change SSID/Password forms. 20

11 MAB and ISE . 22

12 Theme toggle . 23

13 Customer landing page with different themes 23

14 Animated skeleton while retrieving WLAN information from the
backend . 24

15 Tooltip explaining SSID requirements 24

16 User feedback for use of invalid SSID format 24

17 User feedback for too short password 25

18 Form for adding a new device with forced order of input and MAC
address sanitization . 25

19 Flow of data through Kong with plugins 27

20 The chosen process framework throughout the project 37

21 Thesis workbook in Excel. 37

22 Utilization of docstring for PyCharm tooltip. 38

23 Auto-documented endpoints in Swagger 40

24 Pre-commit checking backend code. 41

25 OWASP guidelines for access control. 42

26 Authentication and authorization flow. 43

27 Guest WiFi settings interface on different device types. 50

28 Redesigned technician interface containing company name 53

29 Interface for making a request on behalf of a customer 53

vi

List of Tables

1 Elapsed time for each technician task in whole seconds 45

2 Number of button clicks for each technician task 45

3 Elapsed time for each customer task in whole seconds 45

4 Number of button clicks for each customer task 46

5 Loading time in seconds to submit and approve a request. 51

vii

List of Code Snippets

1 OPA configuration for access to different endpoints based on roles 27

2 Endpoint that returns all requests from the database 28

3 Class with netmiko config . 29

4 Method for changing WLAN password 30

5 Method for changing WLAN SSID 32

6 React component for the feature card in the menu 33

7 Costumer landing page with usage of the FeatureCard component. 34

8 Hook for fetching all requests from the backend 35

viii

1 Introduction

This chapter will introduce the assignment from Intility and their problem area on
a high level. In addition, the target audience, project organization, and structure
of the thesis will also be presented.

1.1 Background about Intility

Intility [1] is a Norwegian company that offers an end-to-end IT platform for their
customers, which are companies of various sizes. The company was founded in
the year 2000 and has about 500 full-time employees spread across four offices.
Intility’s business model is managing their customers’ IT stack, taking full re-
sponsibility for their network infrastructure, client devices, monitoring, security,
error handling, and support. As of May 2022, Intility manages over 600 customers
at over 2000 locations, which demands that they have an organized and secure
architecture. This project was conducted for the Network Services Automation
department at Intility, which is a team of DevOps engineers that works with auto-
mating network-related tasks.

1.2 High-level problem description

Intility divides all their customers into isolated secure zones. Each zone consists of
its own physical network that contains the customer’s equipment at their locations,
as well as virtual networks to run their services in data centers. By doing this,
Intility ensures that an issue in one zone does not affect the other zones. Addi-
tionally, for Intility to make changes to services on behalf of their customers, they
need to use a virtual machine running on a secured workstation that is configured
to follow their internal guidelines.

Today, whenever customers want to change their network settings, they need to
contact Intility to create a support ticket. This ticket will be forwarded to a
technician, who in many cases will need to log onto the networking equipment and
perform the changes manually through the command line. This time-consuming
and repetitive workflow can occupy the technicians for extended periods, which
becomes an issue when many customers ask for minor changes at the same time
since each request must be handled by the technician individually. This led to the
following problem statement:

”How can Intility streamline, automate and propagate requests for
network changes in their secure zone model?”

1

Intility requested us to make a proof-of-concept web application that offers their
customers an easy and intuitive way of requesting minor changes to their own net-
works. The developed system is internally named Request For Change (RFC)
which should not be confused with the existing abbreviation for Request for com-
ment. A change request can, for example, include changing the guest WiFi pass-
word and Service Set Identifier (SSID), which is the name of the network. Each
request must be approved by one or more technicians at Intility, which further trig-
gers automated services in the background that perform the changes. To enable
this service to work between a customer’s secure zone and Intility’s secure zone,
the application uses the Kong API Gateway (Kong) [2]. Kong acts as a cent-
ral hub that forwards different Application Programming Interface (API) calls to
various services. Furthermore, Kong is configured with plugins to implement extra
security features. The specific application requirements from Intility were:

• The frontend should be built using React [3], a JavaScript library for building
user interfaces, in conjunction with components from Intility’s design system.

• The backend should preferably be written in the programming language Py-
thon.

• RFC should use Cisco DNA Center [4], a network management platform, and
Cisco Identity Service Engine [5], a security administration tool to change
the network configurations.

• RFC should communicate between secure zones using Metro, which is Intil-
ity’s messaging system.

Further requirements specifications are described in Chapter 3.

The main focus of the project was implementing the fundamental structure of
sending change requests and establishing data flow between the different secure
zones. There was also a focus on implementing three core features: changing guest
network SSID, changing guest network password, as well as adding new devices to
the network identity group. Since the assignment was to make a proof-of-concept
solution, deploying it for production has been out of scope.

1.3 Target Audience

This report is targeted toward people in the educational sector, mainly the ex-
aminer of this project. It is also written for students who might be interested in
software engineering, including process frameworks, continual improvement, auto-
mation, and web development. The product itself is targeted toward two different
user groups. Internally at Intility, their technicians will use it to approve or decline
requests. Externally, Intility’s customers will access a customer interface in the
same system and use this to create new change requests. These two groups have
different requirements for functionality and usability.

2

1.4 Project organization

The group consists of four members studying Digital Infrastructure and Cyber Se-
curity at The Norwegian University of Science and Technology (NTNU) in Gjøvik.
The members of the group are:

• Sondre Gunneng
s.gunneng@gmail.com

• Herman Torland
hermantorland@gmail.com

• Øyvind Wold
oyvindw@gmail.com

• Henrik Granlund
henrik.granlund@icloud.com

The group has knowledge of a broad spectrum of topics within information tech-
nology, such as networking, programming, operating systems, infrastructure, and
cyber security. However, API development, Python and React are all new topics
that the group lacked previous knowledge of. The group members have been collab-
orating as a team on various projects since 2019. While large parts of the project
were done conjointly, there was still beneficial to delegate roles of responsibilities
within the group. In addition, the project had several external stakeholders, both
from Intility and from NTNU. The project included the following roles:

Internal roles:

• Project lead: Herman Torland

• Project manager: Øyvind Wold

• Backend lead: Sondre Gunneng

• Frontend lead: Henrik Granlund

External roles

• Product owner: Marius Engan, Head of Edge Infrastructure at Intility.
marius.engan@intility.no

• Supervisor at Intility: Tobias Bryhn-Bjølgerud, DevOps Trainee at Intility.
tobias.bryhn-bjolgerud@intility.no

• Supervisor at NTNU: Jia-Chun Lin, Assistant Professor at NTNU.
jia-chun.lin@ntnu.no

3

Role descriptions:

• Project lead: Made sure all the deadlines were met and conflicts were solved.
The project lead was also the primary communicator with the stakeholders
of the project.

• Project manager: Took the lead role in the absence of the project lead and
made sure the group met the deadlines. The project manager was also re-
sponsible for facilitating Scrum and organizing the documents.

• Backend lead: Had the overall responsibility for the backend code, including
making sure it was of good standard and structure.

• Frontend lead: Had the overall frontend responsibility, ensuring the user
interface was of a good standard and followed Intility’s guidelines.

• Secretary: Wrote minutes of meetings. This role was rotated between all
internal group members every week.

• Product owner: Had a supervisory role with suggestions, feature requests,
and executive decisions.

• Supervisor at Intility: The main point of contact at Intility, who was involved
in day-to-day decisions and organization of the system’s production.

• Supervisor at NTNU: Attended weekly meetings to provide feedback and
assistance on both the system features and the project thesis.

The project had a duration from January 10th to May 20th, 2022. Before starting
the main project, a project plan had to be approved. This plan contained our
proposed schedule in the form of a Gantt chart (See appendix D), as well as the
initial requirements. During the project phase, the group has followed a digital-
physical hybrid workflow, combining online and physical meetings at Intility’s
headquarters in Oslo. The group has strived to treat the project as a regular
job by working every day during core business hours. To work within Intility’s
environment, we received equipment from them to use. For documentation during
the project, we have mainly used the Microsoft 365 suite [6], as well as keeping
track of tasks using Trello [7], which is an online issue tracking tool. The final
report is written in LaTeX using Overleaf [8]. More information about the project
process and documentation is outlined in Chapter 6.

4

1.5 Thesis structure

1. Introduction: This chapter will introduce the assignment from Intility and
the high-level problem description. In addition, the target audience, project
organization, and structure of the report will also be presented.

2. Background: This chapter will introduce the problem in greater detail and
outline the chosen tools for the project. In addition, some technical details
and explanations of the different tools and technologies are also included.

3. Requirements specification: This chapter will present the requirements for
the system, which includes requirements from Intility and our contributions
to the project. There are both functional and non-functional requirements.
The functional requirements are the concrete specifications and features the
system must include, whereas the non-functional requirements are more ab-
stract requirements on how the system should perform.

4. System design: The group has developed RFC according to Intility’s problem
and requirements. This chapter describes the architecture of RFC and the
different features that are implemented on top of it. The chapter also covers
some design decisions that were taken.

5. Implementation: This chapter will go into greater technical details on the
implementation of the system, including some code snippets with explana-
tions of how they work. The chapter will also cover some of our decisions
during the programming phase.

6. Development process: This chapter will describe the process during the dif-
ferent phases of the project. In addition, it will outline the chosen process
frameworks and how the various elements of the project are documented.

7. Evaluation: This chapter contains an evaluation of how the developed system
performs according to the requirements specified in Chapter 3.

8. Closing remarks: This chapter will outline future work that could be done
in the project. The learning outcome and conclusion of the project are also
included.

5

2 Background

This chapter will introduce the problem in greater detail and outline the chosen
tools for the project. In addition, some technical details and explanations of the
different tools and technologies are also included.

2.1 Detailed problem description

As described in Chapter 1, Intility currently has a labor-intensive and manual
process for handling minor change requests. For example, if a customer wants to
change the SSID of their guest WiFi, they will need to contact Intility support
and request this change. The support department will thus create a support ticket
with the required information and forward it to a technician at Intility’s Network
Services department. This technician will manually log into the relevant wireless
LAN controller (WLC) using Secure Shell (SSH). Furthermore, the technician will
need to type a total of 13 commands into the terminal in order to perform the SSID
change. The technician will then provide a response to the support department,
which ultimately delivers confirmation to the customer. A similar flow applies to
other changes like modifying the guest WiFi password or adding a new device to the
customer’s network identity group. The design and functionality of the different
features are further described in Chapter 4. The current request for change flow
is visualized in Figure 1.

Figure 1: The current request for change flow at Intility

The manual and repetitive process described in Figure 1 could be automated and
streamlined. Intility wanted this process to bypass their support department to
release capacity for tasks requiring more human input. The proposed solution
was to create a dedicated web portal where Intility’s customers could make new
change requests using an intuitive graphical user interface. These requests are
sent directly to a service technician who can quickly glance over the request and

6

approve it with a simple click of a button. This triggers services in the background
that automatically log into the customer equipment and perform the change. This
desired flow is visualized in Figure 2.

Figure 2: The desired request for change flow

2.2 Purpose

This thesis aims to outline our thoughts and process throughout the project. The
report describes our research, preparation, and implementation of a web applica-
tion and is meant to document each phase of the project. The report also describes
our design decisions, problems, and workflow using project process frameworks.
The purpose of the project itself was to utilize and build upon everything we have
learned throughout the different courses of our degree and use this knowledge to
develop a new system while also documenting the entire process. By following a
process framework like Scrum and working closely with an IT business, we have
gained insight into how software engineering is done in the real world.

7

2.3 Tool survey

In order to familiarize ourselves with the different tools and technologies available
for our use case, we decided to perform a tool survey in the introductory phase of
the project. The following section outlines our chosen tools and technologies for
the project, as well as some alternatives that we considered.

2.3.1 Bifrost

Bifrost [9] is Intility’s design system developed by their user interface department.
This system outlines different design guidelines and provides pre-made React com-
ponents such as buttons, loading bars, and input fields. This made it easy to im-
port components from Bifrost into the code base and make it look professional and
fit into Intility’s aesthetic. There are many different design systems available for
React. However, Bifrost was used in this project due to the specific requirement
from Intility, as stated in Chapter 3. Using such a design system is beneficial for
reducing development time while keeping the design visually coherent.

2.3.2 Database

The system needed a database solution to store all customer requests. After look-
ing at the different available options, the following database stack was chosen for
the project. The database is running PostgreSQL [10], which was selected because
it is a robust open-source relational database with a wider variety of data types
than MySQL [11]. In addition, the development database is hosted in Microsoft
Azure [12] because Intility already uses Azure as their cloud provider. This also
has the added benefit of sharing test data between the group members, as everyone
uses the same database instance.

The database migrations are done through a tool called Alembic [13], which stems
from a project called SQLAlchemy [14]. Migrations can be thought of as version
files describing all the details of the database and information about the changes
that are made. When working with databases, it is beneficial to describe the struc-
ture separately from the database software, since this makes changing database
software in the future more manageable. SQLAlchemy has Object-relational map-
ping (ORM) [15], which is utilized with SQLModel [16]. An ORM is often used
with relational databases to create a mapping between the database and objects
in a programming language like Python. Because the group has limited experience
with migration tools and ORMs, DBeaver [17] was used to visualize, troubleshoot,
and manually add data to the database.

When it came to choosing a database solution, many different factors came into
play. Even though the selected solution ended up being a SQL database, the
NoSQL alternatives also had to be considered. One of the differences between a
SQL and NoSQL database is how the data is structured and queried. Another

8

thing to consider is the support for the ACID properties [18], which are the fol-
lowing: Atomicity meaning that either all or none of the actions are performed.
Consistency makes sure no data is lost in a transaction. Isolation is making
sure the same data do not exist in more than one place at a time. Lastly, durab-
ility will make certain fulfilled transactions are not undone upon system failure.
The fact that SQL databases have good support for the ACID properties is the
most important reason that SQL was chosen over NoSQL for this project. This is
because of what the application will be used for, which is making system changes
on behalf of customers and the changes can be approved by multiple technicians,
creating a scenario where two people accepting the change at the same time is
possible. To avoid the change being run twice, the isolation property of ACID is
important.

2.3.3 Docker

Docker [19] is a virtualization tool that allows the creation of isolated environments
called containers. These containers are based on images built using a recipe called
a Dockerfile. Using containers leads to more efficient use of the host machine
hardware and improves security both locally and in production. An alternative
to containers is running a virtual machine (VM) for each application. However,
this is considered less efficient due to the need for an operating system (OS) for
each VM. A visual representation can be seen in Figure 3, where each of the
color-coded columns represents the requirements for running an instance of an
application. This figure is based on an illustration in the docker documentation
[20] For this project, Docker is used to simulate the production environment by
running all the different services locally during development. This also makes it
easier to share the environment between the group members and simplifies the
process of deploying the system to production.

Figure 3: Virtual machines vs containers

9

2.3.4 FastAPI

FastAPI is a web framework written in Python and is built upon another frame-
work called Starlette [21], which is built with asynchronous (async) support. Async
means that the CPU can divert its resources while the async function is running.
This can, for example, be that the function needs to fetch something from an
external source, such as over a network connection or an IO operation. FastAPI
implements pydantic [22] to facilitate the creation of web APIs. Another signi-
ficant point is that FastAPI is built using Python 3.6, and that type hinting was
introduced in Python 3.5 [23]. The use of type hints in the source code of FastAPI
integrates well with Integrated Development Environments (IDE). This improves
the developer experience by providing a more detailed description of data, func-
tions, and objects. As stated in the official documentation for pydantic “pydantic
enforces type hints at runtime, and provides user-friendly errors when data is in-
valid” [22]. This leads to more stable code because type checking will be done by
python when the application starts but can also be done when data is passed to
each endpoint. This makes it possible to use type checking for data validation.
Lastly, a feature worth noting is support for the OpenAPI standard, enabling
automatic generation of documentation with Swagger [24].

Django [25] was an alternative to FastAPI that was considered to create the
backend but was ultimately discarded. Django enforces the Model-View-Controller
(MVC) pattern, which is a way to structure the code snippets based on their pur-
pose. Django is considered to have all batteries included, which means it chooses
all tools, such as the ORM, for the developer. Furthermore, Django does not pri-
oritize APIs, which means it is recommended to use a third-party package called
djangorestframework (DRF) [26] to facilitate API development. Another note-
worthy thing is that the same team develops Starlette and DRF, and according to
their Encode project page on GitHub [27] Starlette has more activity than DRF,
which means it is more frequently maintained. Using FastAPI makes it faster and
easier to get started because it lets developers quickly write endpoints without pre-
vious knowledge. It also enables the developer to organize the structure based on
project-specific needs. FastAPI also makes the learning process more straightfor-
ward because the developer can implement features piece by piece without having
any framework-specific knowledge.

2.3.5 Gitlab and git

Git [28] is a version control system that keeps track of changes made to the code,
as well as provides tools for creating branches and merging conflicts. Gitlab [29]
is an online platform that incorporates git for collaborating on coding projects. In
addition, Gitlab provides a comprehensive suite of project management tools like
issue tracking, assigning tasks, and tools for continuous integration and delivery
(CI/CD). This is a methodology based around automating the process of deploying
new code to a project, such as running pipelines that, for example, perform tests

10

on the code. The challenge with multiple developers working on the same project
is that everyone has different preferences for structuring their code. One way to
avoid this becoming a problem is by following a coding standard like PEP-8 [30].
However, learning everything about a coding standard can steal time away from
development. To alleviate this, pre-commit [31] was used, which is a tool that run
scripts to verify that the code is structured correctly every time someone tries to
create a commit. Pre-commit can be configured to automatically fix minor issues
like line breaks and blank line removal and highlight more severe problems for
the developer to fix manually. Figure 4 shows the pre-commit failing due to an
unremoved print statement on line 63 of the cisco wlc.py file, which should be
removed before pushing the code to Gitlab.

Figure 4: Pre-commit results with failed test.

2.3.6 JavaScript

Following Intility’s requirements, the application is written using the React library.
This is a library that uses JavaScript. JavaScript is a programming language
with a large web-development community, making it easy to find documentation
online. There was also an option to use TypeScript [32], which Intility mainly
uses. TypeScript adds type annotations to JavaScript, as well as enhances browser
compatibility. However, since none of the group members had earlier experience
with TypeScript and the project did not demand the extra functionality, the group
chose to write the application in JavaScript. Should the need arise in the future,
it is relatively straightforward to convert the codebase to TypeScript, making this
decision less impactful.

11

2.3.7 Kong

As stated in the assignment description, the original plan was to use Metro to
deliver the requests across the secure zones. Metro is a messaging system developed
by Intility that is built on Azure Service Bus [33]. Metro can be simplified as a
radio station that broadcasts messages across different frequencies. Any service on
the network can tune into a given frequency to receive the messages broadcasted on
it. Instead of going between the secure zones, Metro goes around them. Internally
at Intility, this was in many ways considered a temporary solution that solved
the problem in a sub-optimal way. There was a wish from Intility to find a more
permanent and more secure solution to this problem.

After researching different options, the decision was made to implement the Kong
API Gateway [2]. This acts as a centralized hub for multiple APIs, which means
that rather than needing separate routes to each API, the applications can access
a single IP address for all API endpoints. Furthermore, Kong handles each API
request individually and forwards it to the correct service. One of the main benefits
of Kong is the built-in security functionalities. There are, among others, plugins
for authentication, traffic control, and logging, which can easily be installed.

Figure 5: Metro vs Kong

2.3.8 Lucidchart

In order to create figures, diagrams, and tables, we chose to use Lucidchart [34] due
to its low latency and live collaboration. Lucidchart offers a free university license
which gives us access to more features and allows us to create charts without any
limitations. An alternative would be to use Draw.io, which offers many of the same
features, but is slower and lacks the same ability for live collaboration. Lucidchart
also has a broad spectrum of pre-made templates and icons.

12

2.3.9 Microsoft 365

Microsoft 365 [6] is a suite of productivity tools for creating documents, sharing
content, and collaboration. For this project, the group has mainly used Word for
text-based documents, Excel for spreadsheets, OneDrive for shared backup and
storage, and Teams for collaboration. We have mainly worked within Intility’s
Microsoft environment to simplify collaboration with their employees and make
use of the end-to-end encrypted video calls and screen sharing.

2.3.10 OPA

Open Policy Agent (OPA) [35] is an open-source policy engine that enforces policies
specified with code. OPA works by offloading policy decision-making from other
systems, which makes it suitable for microservices. For this project, OPA is used
to enforce policies whenever a request is sent to the API gateway. In order to
personalize the user interface, as well as ensure system integrity, token management
was implemented. The requesting entity is identified as either a technician or a
customer by the unique user ID and role sent together with the request.

2.3.11 PyCharm

For the IDE, PyCharm [36] was used by all group members. PyCharm supports
all the technologies and languages used in the project and provides useful features
like ”Code-with-me”, which allows multiple developers to connect to one editor
remotely. In addition to this, our supervisor at Intility already used PyCharm,
and had a lot of valuable tips for configurations and extensions.

2.3.12 React

Intility required us to use React [3] for the frontend. React is a JavaScript library
developed by Meta, which makes it easy and fast to create user interfaces for web
applications. React is based on components that contain all their functionality and
styling. These components can be imported within each other to create interfaces
in a modular way. This makes it easy to use third-party design libraries with
React, such as Intility’s design system; Bifrost.

13

3 Requirements specification

This chapter will present the requirements for the system, which includes require-
ments from Intility and our contributions to the project. There are both functional
and non-functional requirements. The functional requirements are the concrete
specifications and features the system must include, while the non-functional re-
quirements are more abstract requirements on how the system should perform.

3.1 Functional requirements

Programming languages
RFC should be a web application with a frontend developed in React in conjunc-
tion with JavaScript and a backend made in Python. The main reason for these
requirements is to ensure that the system can be easily developed further by Intility
at a later stage.

API
RFC should be an API-driven application, where the frontend communicates with
a REST-API backend using fetch requests. This API should be created using the
FastAPI framework and provide several valuable endpoints.

Kong
The Kong API gateway should be implemented to allow communication between
the frontend and backend.

UI design
Intility requires that their general developers’ guidelines regarding UI design should
be followed. This should be ensured by using the Bifrost design system.

Policies
RFC should use OPA to enhance security and enforce policies. This will, for
instance, be responsible for checking that only authorized technicians can approve
a given request.

Features
RFC should be able to trigger several different features once a request is approved.
The scope of this project includes implementing a feature for changing network
SSID and password using Cisco DNA Center, as well as adding a new device to
the network identity group using Cisco Identity Service Engine.

14

3.2 Non-functional requirements

Security
RFC should follow good security practices. For instance, the authentication should
be done server-side.

User experience
The interface of RFC should be intuitive and natural to use in order to allow users
to move around without feeling confused or lost.

Adaptive to different screen sizes
A technician might work on a desktop, tablet, or mobile. Therefore, the interface of
RFC should be adaptive to different screen sizes in order to facilitate the different
work environments of the end-users.

Responsiveness
The interface should be responsive and perceived as fast. This should be solved
by implementing performance techniques like caching and loading animations to
visualize necessary background activity.

Reusability
The code should be easily reusable for future development. This should be achieved
by using the same languages, frameworks, and code structures that the developers
at Intility are familiar with. There should also be a modular approach for each
service, and the different components of the code should be written with reusability
in mind where possible.

15

4 System design

The group has developed RFC according to the above-mentioned requirements.
This chapter describes the architecture of RFC and the different features that are
implemented on top of it. The chapter also covers some design decisions that were
taken. More technical details, including code snippets, are covered in Chapter 5.

4.1 Architecture of RFC

The planned architecture of RFC was agreed upon with Intility at an early stage
of the project. Figure 6 shows the overall architecture of RFC, including multiple
customers, in order to illustrate how the same method is used for each secure
zone. RFC is centered around the Kong API Gateway, which acts as a commu-
nication hub between the different services and secure zones. This is necessary
because of the isolated nature of each zone, which significantly limits the ability
to communicate between them.

By implementing Kong, each secure zone can send API calls to a centralized hub,
which will forward the request to the correct service. In a simplified way, Kong
punches a hole through the firewall of each zone and further governs what traffic
that passes through this hole. The rules for what type of traffic Kong allows are
defined using another service called OPA, which is used to verify each API call and
validate it accordingly. The backend is designed to be flexible towards what kinds
of features and services it triggers, thus making the system easily scalable for new
features. The designs behind the currently implemented features are described in
Section 4.2.

16

Figure 6: System architecture of RFC

The project’s minimum viable product (MVP) was a solution that allows a cus-
tomer to create a new change request through a web interface. This request is
sent directly to a technician rather than through Intility’s customer support, thus
increasing customer support’s capacity to handle more complicated cases. RFC
is implemented as a frontend written in React, communicating with an API de-
veloped with FastAPI. This communication goes through Kong and is authorized
by OPA. The API provides several endpoints that the frontend interface commu-
nicates with.

The frontend contains separate views for customers and technicians, containing
different features based on their needs. The alternative was to create two sep-
arate frontend projects for the two different user groups. The main reason this
was considered was to make the separation of concerns clearer. It could also be
argued that this would have given more granular control over authorization on an
infrastructural level because the two frontends would run in separate containers.

17

However, in order to avoid maintaining two different projects, it was ultimately
decided to develop both views in the same project and provide the correct interface
based on which authorizations the user has. These authorizations are based on
which roles the users are assigned in Azure Active Directory (Azure AD), which
is a cloud-based identity and access management service [37]. This information is
decoded from the JSON Web Token that is attached with each API call. Figure 7
shows the landing page when a user with the ”technician” role logs in.

Figure 7: Technician interface for approving requests

In order to support this architecture, a database was needed to store the requests,
customer sites, and endpoint identity group tags. The requests relation contains
information about who made the request, who approved the request, when it
was created, when it was updated, the type of change, a comment, the action
that will be taken, and the current state of the request. There is also a field for
the number of approvals since some changes might need multiple approvals by
different technicians. The user information is retrieved from Intility’s Azure AD,
specifically tenant id which will be mapped to customer id, and oid (unique object
id) which will be mapped to technician id. There is also a relation containing all
the customers with their affiliated sites (office locations). In addition to this,
there is a relation that contains each customer’s Endpoint identity group, with a
corresponding friendly name (tag). Figure 8 shows the conceptual model of the
database.

18

Figure 8: Conceptual database model

4.2 Features

In addition to developing the core RFC functionality, the assignment from Intility
also involved creating one or more features that utilize the fundamental system
described in Section 4.1. This was a more flexible phase of the project where the
group could provide input and ideas for what type of features could be imple-
mented. The decided and currently implemented features in RFC are described
below.

4.2.1 WLAN changes

The purpose of Wireless LAN (WLAN) related changes is to give Intility’s cus-
tomers the ability to make changes to their networks through a user-friendly web
interface. Since most customer networks follow Intility’s naming conventions, the
scope of this feature only includes changes made to the guest network at each
customer location. The supported WLAN changes in RFC are SSID change,
password change, and a toggle to turn on or off the WLAN itself.

Currently, the supported WLAN changes are few and simple from the end-user’s
perspective. This helps to make the interface clutter-free and user-friendly. How-
ever, more WLAN features could be added with minimal effort. All the WLAN
settings are combined into a modal window called Guest WiFi Settings (See Figure
9). This modal contains information about the current SSID, as well as how many
client devices that are connected to it.

To reduce the number of elements on the screen, the functionality for requesting
an SSID or password change is contained behind two different buttons with slide-

19

down content. Clicking one of these buttons exposes two input fields for the user
to enter the new SSID/Password as well as an optional comment if they wish to
provide some extra information to the technician. Figure 10 shows the Guest WiFi
Settings modal window in different states.

Figure 9: WLAN modal window with collapsed change SSID/Password forms.

(a) Form for requesting an SSID
change.

(b) Form for requesting a password
change.

Figure 10: WLAN modal window with opened change SSID/Password forms.

The planned solution for implementing the different WLAN features was to use
Cisco DNA Center (DNAC), which is a management platform for Cisco networking
equipment. It is used for planning, configuring, monitoring, and updating networks
built using Cisco products. In addition to providing a graphical user interface,

20

DNAC also has an API that can be used to integrate its functionality into other
systems [4].

Because Intility mainly uses Cisco products in their networks and already has
DNAC configured, RFC was initially planned to use the DNAC API. However,
this solution turned out to have some undesirable side effects. For example, when
DNAC pushes a change to the WLC, a provisioning process will get started. This
provisioning process has a high processing overhead and may cause disruptions
across the network. In practice, this means that a simple change to a WLAN
could cause a loss of network access for many devices over a short period.

After discussions with Intility’s lead WiFi engineer, it was agreed that this over-
head was unacceptable. The alternative solution implemented in RFC was using
SSH to connect directly to the WLC and modify the configuration file for the
network. This process is automated using a python package called Netmiko [38].
The technical details of this solution are described in Chapter 5.

4.2.2 Add a new device to MAC Authentication Bypass (MAB)

This feature allows a customer to add new devices to their networks, such as a
security camera or a smart light bulb. This feature is necessary because of the
MAB mechanism that is configured on Intility’s networks. This is a security feature
that allows a device to authenticate on the network based on its MAC address.
This is a layer two address in the Open Systems Interconnection (OSI) model [39]
that uniquely identifies a network-connected device. The MAC address comprises
six pairs of hexadecimal characters, separated by colons.

In order to allow a device to communicate on the network, it needs to be added
to the list of approved devices in MAB. The current scope of this feature only
involves adding a single device in each request. However, this could be extended
in the future by making it possible to upload a spreadsheet file with multiple
devices or allow the user to choose the number of input fields dynamically.

Because Intility uses Cisco as their network equipment provider, they also use the
Identity Service Engine (ISE) [5], which is a service that simplifies access control
and policy enforcement. ISE allows the creation of Endpoint Identity Groups
(EIG), which are a collection of devices that utilizes the same policy set. The
policy set is a set of rules for what type of traffic is allowed on a particular EIG.
The need for separate EIGs arises when different types of devices should follow
different rules on the network. For instance, a security camera might need different
rights on a network than a light bulb. After grouping devices in an EIG, the EIG is
assigned to a Virtual LAN (VLAN). This grants network access to all the devices
in the EIG on that particular VLAN. Figure 11 shows how a security camera gets
authenticated on the network using MAB and ISE.

21

Figure 11: MAB and ISE

In order to add a new device, the user needs to select which site (location) and
Tag (EIG) the device should get added to. Furthermore, the user must enter the
MAC address, as well as an optional description for the device.

The site names are retrieved from a database and are named according to Intility’s
conventions. For instance, the site ZZ-0D-Oslo is composed of the customer code
(ZZ) and the location (0D-Oslo). The available tags are based on which site the
customer chooses and are retrieved from the ISE API. The API returns a Universal
Unique Identifier (UUID) for the EIG, which is a long and complex string (for
instance 87840c90-5749-11ec-b9a5-4e04ca7e7bcf) that is hard to conceptualize for
the end-user. In order to keep the system user-friendly, this UUID is replaced in
the frontend by a friendly tag name that is stored in the RFC database. This tag
name could, for instance, be Security Cameras.

4.3 User interface design

The user interface of RFC is built using Bifrost, which was one of the requirements
from Intility. Bifrost is Intility’s design system, which is a React component library
developed in-house by their engineers and UI designers. Using a component library
like Bifrost makes it fast and easy to create professional-looking user interfaces that
are coherent and matches Intility’s company aesthetic. By using Bifrost, the code
for components like buttons and input fields could be copied directly into the RFC
code. This vastly decreased the development time of the system.

22

Figure 12: Theme toggle

Bifrost also makes it easy to implement features like a toggle between dark and
light themes and make the website adaptive to different screen sizes. RFC utilizes
both of these advantages, and Figure 12 shows the theme selector of RFC, and
Figure 13 shows the effect of this toggle on the customer landing page.

(a) Light theme (b) Dark theme

Figure 13: Customer landing page with different themes

An essential aspect of user-centered design is providing feedback and guidance to
the user. RFC is designed to be easy to use and always give the user a sense of what
is happening. This is done by implementing loading animations and tooltips and
providing live input sanitization. Figure 14 shows how RFC presents an animated
loading skeleton for the WLAN information that is yet to be retrieved by the
backend. This provides the user with a sense of progress rather than showing a
static interface that might give the perception of the website hanging.

23

Figure 14: Animated skeleton while retrieving WLAN information from the
backend

Figure 15 shows how the user can hover their mouse above an information icon in
order to see more detailed information about what type of input is allowed. This
will guide the user toward inputting a correctly formatted SSID name. By the
zero-trust principles, there are also input validation rules on each field in case a
user still tries to submit an invalid request. Figure 16 shows how RFC responds
to a user submitting an invalid SSID change request, and Figure 17 shows the
response to a password change request that does not contain enough characters.

Figure 15: Tooltip explaining SSID requirements

Figure 16: User feedback for use of invalid SSID format

24

Figure 17: User feedback for too short password

The form for adding a new device to the network is another feature that required
some particular UI considerations. Since the list of tags is dependent on which
site the customer chooses, this form requires the user to enter the information in
chronological order. To achieve this, each field of the form is disabled and greyed
out until the preceding field is filled out. In addition to this, the form will perform
sanitization of the MAC address field to ensure the address is in the correct format.
The user will only be able to enter hexadecimal characters, and the colons between
each pair of hexadecimals are injected automatically. Once a valid MAC address
is entered, the user will be provided with a green checkmark and the ability to
submit the request. By implementing these measures, we can ensure that the users
can only submit requests in the right format while also guiding the users through
the form. Figure 18 shows the user interface for adding a new device.

(a) Empty Add device form (b) Filled Add device form

Figure 18: Form for adding a new device with forced order of input and MAC
address sanitization

25

5 Implementation

This chapter will go into greater technical details on the implementation of the
system, including some code snippets with explanations of how they work. The
chapter will also cover some of our decisions during the programming phase.

5.1 Backend architecture

As described in Section 4.1 the core architecture of RFC is built using Kong
and OPA. Kong is used as a gateway between the frontend and backend, and
its functionality can be extended with plugins for authentication, security, and
logging, among others. On a technical level, Kong intercepts the API calls, which
means it can read and manipulate the requests. The difference between how Kong
and a traditional firewall operates is that Kong can read the request body. This is
possible because the frontend (localhost:3000) sends the request directly to Kong
(localhost:8000), which further checks the configured routes to forward it to the
backend (localhost:3010). In the case of a firewall, it sits in the middle and can not
read the body because it is encrypted. By utilizing Kong with plugins, the system
can perform different actions on the content of the requests. Currently, there are
implemented plugins for Cross-Origin Resource Sharing (CORS) [40], OPA [35]
and OpenID Connect [41].

The CORS plugin is used to configure which domains other than the backend
the browser should allow resource loading from. For the current development
environment, CORS is configured to only allow resources from the backend running
at localhost:3010 and is enforced by the web browser. After the plugin has attached
the CORS header to the request, Kong moves on and forwards the request to
the OPA plugin. The OPA plugin provides authorization in the application by
checking each request against a list (see Code snippet 1) of allowed endpoints
based on different roles. For instance, a customer needs to make a POST (write)
to the /requests endpoint to create a new change request.

The MVP implementation of RFC utilizes three different roles: customer, techni-
cian level 1, and technician level 2. The different technician levels define whether
a technician can immediately approve a request or just increment the number of
approvals needed to trigger the change. Each user’s role is provided in the JSON
web token that is passed with each request. These tokens are decoded and valid-
ated by the OpenID Connect plugin, which verifies the token’s signature to ensure
integrity. Figure 19 visualizes the flow of a packet through Kong and its plugins,
while Code snippet 1 shows the configuration file in OPA for what endpoints a
user may access. The asterix represents a wildcard which means it can take any
value at that location in the string.

26

Figure 19: Flow of data through Kong with plugins

nsa_rfc:

role_access:

customer:

read:

- /requests

- /wlc/*

- /ise/*

- /customer-sites

write:

- /requests

- /wlc/*

- /ise/*

technician1:

read:

- /requests/*

write:

- /requests/*/accept

- /requests/*/decline

Code snippet 1: OPA configuration for access to different endpoints based on roles

27

5.2 API

RFC is an API-driven application, which means that the API was created first,
followed by the frontend that utilizes it. The API for RFC is developed using the
FastAPI python framework, which makes writing endpoints a relatively fast and
easy process. Code Snippet 2 shows the implementation of the GET /requests
endpoint and how it returns all the requests in the database.

@router.get('/requests', response_model=list[RequestRead])

async def get_requests(

session: AsyncSession = Depends(get_session)

) -> list[RequestRead]:

"""List all requests in the database"""

result = await session.exec(select(Request))

return [

RequestRead(**request.dict()) for request in result.all()

]

Code snippet 2: Endpoint that returns all requests from the database

The first argument in the @router.get decorator is the path for where the endpoint
listens for requests. The response model describes how the response from the
endpoint will be represented, in this case a list with RequestRead models. These
models act as a filter that defines what type of data will be returned and does
some validation to make sure the expected data is returned. It is not always the
case that a function wants to return all the data from a source. An example would
be retrieving a user from a database, where the user’s password should not be
included in the response. In the main body of the function, all the requests from
the database are fetched through the async database session. Since this function is
async, the response from the database needs to be awaited to make sure a response
has been returned. If it is not awaited the application will in the best case crash,
or in the worst case use the wrong data in the next step. Finally, all the requests
returned in the response get iterated through and constructed into a list returned
from the endpoint.

The different features of RFC are implemented as services in python that the
endpoints can run. The current implementation includes two services, WLC and
ISE, that the various features utilize. Code snippet 3 shows an example of how
the configuration for the WLC service is written in the backend.

28

@dataclass

class CiscoWLC:

"""

Modify network settings through Wireless Lan Controller

using SSH

"""

config = {

'device_type': 'cisco_ios',

'host': settings.WLC_HOST,

'username': settings.WLC_USERNAME,

'password': settings.WLC_PASSWORD,

}

Code snippet 3: Class with netmiko config

The CiscoWLC service is written as a class with a dataclass decorator. The data-
class decorator removes a lot of boilerplate code and helps with following the ”don’t
repeat yourself” principle, as it generates the constructor automatically with the
properties. The different attributes are imported from the settings file, retrieving
and validating constants provided in a .env file. In addition, the .env file contains
environment variables, which are dependent on where the backend is running and
makes it easy to switch between production and development environments. It is
important to remember when working with .env files that it is not included in git
when commits are made, as these files tend to include secrets like passwords.

The different features of each service are written as methods of the class. For the
CiscoWLC service, methods for changing SSID, password, seeing WLAN status,
and turning it on or off are implemented. Code snippet 4 shows the method for
changing passwords on a given WLAN.

29

@classmethod

def change_password(

cls, wlan_name: str, password: str

) -> None:

"""

Changes the password on the guest network of a given WLAN

Parameters:

wlan_name: The name of the WLAN to change

password: The new password for the guest WiFi

"""

config_commands = [

f'wlan {wlan_name}',

'shutdown',

f'security wpa psk set-key ascii 0 {password}',

'no shutdown',

]

with ConnectHandler(**CiscoWLC.config) as net_connect:

net_connect.send_config_set(config_commands)

net_connect.save_config()

Code snippet 4: Method for changing WLAN password

The list config commands contains the necessary SSH commands to change the
WLAN password on a Cisco WLC. Two of these commands include variables that
are passed to the method as parameters. These variables are injected into the
command string to make the feature dynamic.

The SSH connection is managed using the with statement as a convenient way to
handle data streams. The statement is a context manager in python, and it deals
with raised exceptions and errors. In essence, the with statement is just a wrapper
for the try/finally block, which opens a connection and, if it gets interrupted by a
raised exception, makes sure to close the connection properly. By using the with
statement, better readability and less code repetition are achieved.

ConnectHandler is a class from the SSH configuration package Netmiko, which
supports many different vendors such as Cisco. To configure the connection, the
ConnectHandler takes some options in its constructor, which configures it to com-
municate with a specific device. As seen in Code snippet 3, Netmiko is set to use
cisco ios in this case, as well as using the WLC IP, username, and password from
the settings file. The SSH session is named net connect during its lifetime and
is used to send commands to the WLC. Finally, a save config() gets sent, which

30

tells the WLC that the running configuration file should also be written to the
startup configuration file. This is a Cisco-specific way of ensuring configuration
persistence by saving it to non-volatile storage on the device.

Another feature of the CiscoWLC service is changing the SSID of a WLAN. There
is currently no way of renaming an existing SSID on a Cisco WLC. Thus, the
solution is to delete the WLAN and create a new one with the new name. However,
since the WLAN might contain important configurations that should be kept, the
backend first needs to retrieve the running configuration of the WLAN before
deleting it. A new WLAN with the passed name can then be created by modifying
and using the retrieved config. Code snippet 5 shows the implementation of this
solution.

The running configuration is retrieved using Netmiko and saved in the output
variable. The data is received as a long string with line breaks indicated by \n.
Since netmiko expects a list, this data needs to be split on the \n characters. The
SSID name is declared as the fourth word on the first line of the configuration
file. Thus the first element of the list gets split on spaces and rebuilt using the
new SSID name. Once the configuration file is finished, the existing WLAN gets
deleted before a new one gets built using the altered configuration file.

31

@classmethod

def change_ssid(

cls, wlan_name: str, new_ssid: str

) -> None:

"""

Changes the SSID of a given WLAN

Parameters:

wlan_name: The WLAN that should be renamed

new_ssid: The new SSID name of the WLAN

"""

with ConnectHandler(**CiscoWLC.config) as net_connect:

output = net_connect.send_command(

f'show run wlan {wlan_name} '

)

running_config: list = output.split('\n')

running_config[0] = (

running_config[0].split(' ')[0]

+ ' '

+ running_config[0].split(' ')[1]

+ ' '

+ running_config[0].split(' ')[2]

+ ' "'

+ new_ssid

+ '"'

)

running_config.append('no shutdown')

output = net_connect.send_config_set(

[f'no wlan {running_config[0].split(" ")[1]}']

)

output += net_connect.send_config_set(running_config)

output += net_connect.save_config()

Code snippet 5: Method for changing WLAN SSID

32

5.3 Frontend

The frontend of RFC is built using React, which utilizes custom and pre-defined
components to build user interfaces. As described in Section 4.3, RFC utilizes the
Bifrost design system, which is a set of React components that conform to Intility’s
design guidelines. This subsection will show some of the components that RFC is
built with and how the frontend communicates with the backend.

import { Card } from "@intility/bifrost-react";

const FeatureCard = (props) => (

<div className={"bfc-base-3-bg"}>

<Card

align={"center"}

onClick={props.open}

className={"card-hover bfl-padding"}

>

<Card.Logo icon={props.icon} />

<Card.Title>{props.feature}</Card.Title>

<Card.Content>{props.description}</Card.Content>

</Card>

</div>

);

export default FeatureCard;

Code snippet 6: React component for the feature card in the menu

Code snippet 6 shows the implementation of a custom component called Feature-
Card. This component is used to display the clickable cards in the menu of RFC.
An example of these cards can be seen in Figure 13a. This component contains the
structure of an icon, title, and description and is a wrapper for the Card compon-
ent imported from Bifrost. The main reason for creating this component was to
achieve reusability and flexibility to add new features, which was also a part of the
project requirements. This reusability is achieved by utilizing the props argument,
which becomes an object that can be assigned different properties. These prop-
erties can be data like text, images, and functions. The FeatureCard component
takes properties for the icon, title, and description, as well as a function for the
onClick action. In this case, the passed-in function is props.open which will be an
event that is responsible for showing the correct modal window once the card is
clicked. An event is in simple terms a way to call a function when some action
occurs, in this case, when a user clicks the button. By creating this component,
new features can be added to the menu on the customer landing page simply by

33

importing the FeatureCard component and defining its properties. This usage is
illustrated in Code snippet 7.

const Home = () => {

const [

openGuestNetwork, setOpenGuestNetwork

] = useState(false);

const [openAddDevice, setOpenAddDevice] = useState(false);

return (

<div className="App bfl-page-padding" id="home-root">

<h3>Change network settings</h3>

<Grid cols={2}>

<FeatureCard

feature="Guest WiFi Settings"

icon={faWifi}

description="Change settings for your guest network"

open={() => setOpenGuestNetwork(true)}

/>

...

</Grid>

<ChangeGuestNetwork

open={openGuestNetwork}

setOpen={setOpenGuestNetwork}

/>

...

</div>

);

};

Code snippet 7: Costumer landing page with usage of the FeatureCard component.

Code snippet 7 shows the layout of the customer landing page. Screen respons-
iveness is achieved by using the Grid component from Bifrost, as well as a Bifrost
class for dynamic page padding. This page also makes use of the FeatureCard
component created in Code snippet 6, and the custom properties for each feature
are passed in respectively. The icons come from a large icon library called Fort
Awesome [42], which Intility has a license to use. An important part of this snippet
is opening and closing the modal window using React hooks [43]. React hooks is
a way to share state between components. When a hook is created, it will return
two values, the first is the current state of the hook, and the second is a function
for changing this state. Using the open property on the feature card, which is an

34

alias for the onClick event, it is possible to change the state of openGuestNetwork
through the function setOpenGuestNetwork. The addition of set in front of the
state name is a naming convention for React state hooks.

import { useQuery } from "react-query";

import { authorizedFetch } from "@intility/react-msal-browser";

export default function useRequests() {

return useQuery("requests", () =>

authorizedFetch(

"http://localhost:8000/rfc-dev/api/v1/requests", {

method: "GET",

}).then((res) => res.json())

);

}

Code snippet 8: Hook for fetching all requests from the backend

Code snippet 8 shows how the data is being fetched from the backend through
the use of a custom hook. The naming convention for custom hooks in React is
to put use in front of the function name. This hook makes use of another hook
called useQuery which is imported from React Query, which is a library used for
caching and background fetching. The first argument is a name for the cache key,
which makes it possible to use the data in other components by referencing it with
said key. When it comes to the second argument useQuery expects a function
to be passed, which is going to handle the actual data fetching. In this case, a
helper function called authorizedFetch has been used. This was used instead of the
default fetch function to add an authentication token to the request. This request
then gets sent to Kong before the data from the response is returned and added
to the cache.

35

6 Development process

This chapter will describe the process during the different phases of the project.
In addition, it will outline the chosen process frameworks and how the various
elements of the project are documented.

6.1 Process framework

The project was divided into four phases, which was beneficial because the indi-
vidual phases of the project had different goals and purposes. The group decided
to use different process methodologies for each phase to achieve more structure
and increased efficiency.

The beginning phase of the project featured quite a few introductory meetings
and onboarding courses with Intility, where we got to know their team, tools,
and processes. Therefore, it made sense to complete these activities as a team in
chronological order, which led to choosing the waterfall model for this phase.

The waterfall model is a traditional linear model that requires clearly defined
requirements and goals before proceeding to the next step. When working with
waterfall, all planning is done in advance, followed by actually doing the planned
activities. When one stage is completed, the next stage can be started. As this
is a linear method, all activities are only carried out once, and significant changes
cannot be made during the process.

For the development phase, the group chose the Scrum framework. Scrum is a
flexible and agile process framework for conducting projects, allowing for changes
to be made underway. Scrum divides the projects into fixed periods called sprints,
which are typically two weeks. Each sprint starts with a sprint planning, where
the tasks, goals, and requirements for that sprint are decided. This is followed
by the sprint itself, where the team works towards the determined goals. During
the sprint, there are typically daily stand-ups which are short meetings where the
members share their progress and potential difficulties. A sprint is concluded with
a sprint review, where the team showcases and evaluates their results. This iter-
ative workflow makes it possible to introduce changes to the project requirements
and goals during the implementation itself to accommodate feedback or new needs.
[44]

For this project, we became a part of Intility’s Scrum process, where we planned
sprints every other Monday, conducted daily stand-ups, and attended a show and
tell with the department every Friday. There was also a Scrum evaluation called
”Retro” every other Friday, where the team could evaluate the Scrum process itself.
Scrum was also chosen for the report phase since writing the report is an activity
that needs continual improvement in the form of refinements and implementation
of feedback from our supervisor. Finally, for the end phase, the waterfall method
was again chosen to accommodate sequential steps that were only going to be done

36

once. Figure 20 illustrates our chosen process framework throughout the project.

Figure 20: The chosen process framework throughout the project

6.2 Documentation

A vital part of large projects is the documentation of the different elements. Having
good documentation makes it easier to describe the system to stakeholders, debug
potential problems, and simplify further development.

The beginning phase of the project included making a thorough project plan with
a schedule for the project. This schedule was visualized in the form of a Gantt
chart, which was created in Microsoft Excel. In addition, we have documented all
meetings, status reports, design decisions, and hour logs throughout the project.
All of this information is stored in a shared Excel spreadsheet.

Figure 21: Thesis workbook in Excel.

37

For the individual text-based documents, we have mainly used Microsoft Word.
For the main report, we have used Overleaf [8], which is an online LaTeX editor.
The main reason why we chose to use Overleaf was because of the powerful and
easy-to-use live collaboration tools, as well as the built-in version control. In
addition to this, NTNU provides a template for LaTeX that makes writing a thesis
more convenient and gives the report a professional look. The template contains
several configuration settings and packages that are helpful for writing a report.
To simplify and explain concepts, we have created illustrations, which are made
and stored in Lucidchart.

The code is stored in Gitlab, where all code versions are documented with a com-
mit message. This makes it easy to look up any changes and see precisely what
changes were made, when they were made, and who made them. The code is
documented using python docstrings for all functions and comments to explain
important or complex code snippets further. Figure 22 shows how PyCharm uses
the docstring of the change password method to present a tooltip with its descrip-
tion and expected parameters when hovered.

Figure 22: Utilization of docstring for PyCharm tooltip.

38

7 Evaluation

This chapter contains an evaluation of how RFC performs according to the re-
quirements specified in Chapter 3, as well as some changes that were made to
RFC as a result of the evaluation.

7.1 Evaluation of functional requirements

In this section, we restate each functional requirement and provide the correspond-
ing evaluation result.

7.1.1 Programming languages

Requirement description: RFC should be a web application with a frontend
developed in React in conjunction with JavaScript and a backend made in Python.
The main reason for these requirements is to ensure that the system can be easily
developed further by Intility at a later stage.

Evaluation result: The requirement has been followed in the development of
RFC. As discussed and shown in Chapter 4, RFC was implemented as a web
application in the browser. The frontend is implemented in React in conjunction
with JavaScript, and the backend is implemented in Python.

7.1.2 API

Requirement description: RFC should be an API-driven application, where
the frontend communicates with a REST-API backend using fetch requests. This
API should be created using the FastAPI framework and provide several valuable
endpoints.

Evaluation result: RFC was built as an API-driven application, with a frontend
that fetches information from the backend through a REST-API written with the
FastAPI framework. Figure 23 shows the automatically documented endpoints in
Swagger.

39

Figure 23: Auto-documented endpoints in Swagger

7.1.3 Kong

Requirement description: The Kong API gateway should be implemented to
allow communication between the frontend and backend.

Evaluation result: To allow communication between the secure zones, RFC
communicates through the Kong API-Gateway. Currently, an instance of Kong
runs locally in a Docker container. However, in the future, RFC will communicate
through a common Kong instance for all APIs at Intility.

7.1.4 UI design

Requirement description: Intility requires that their general developers’ guidelines
regarding UI design should be followed. This should be ensured by using the Bi-
frost design system.

Evaluation result: As requested, the user interface was built using Intility’s
design system, i.e., Bifrost. Please see Section 4.3 for more details. In order to
follow the guidelines for code structuring, a plugin called Prettier [45] was used for
formatting the frontend code, while changes to the backend code were run through

40

the pre-commit tool before pushing to git. Figure 24 shows the pre-commit tool
checking the finished backend code with every test passing.

Figure 24: Pre-commit checking backend code.

7.1.5 Policies

Requirement description: RFC should use OPA to enhance security and en-
force policies. This will, for instance, be responsible for checking that only author-
ized technicians can approve a given request.

Evaluation result: In order to ensure that only authorized technicians can ap-
prove a request, OPA was implemented for the authorization of API calls. Fur-
thermore, since Kong already handles each API call, OPA was configured as a
plugin for Kong. This way, for each API call Kong receives, it will check with
OPA that it is allowed before forwarding the API call.

7.1.6 Features

Requirement description: RFC should be able to trigger several different fea-
tures once a request is approved. The scope of this project includes implementing
a feature for changing network SSID and password using Cisco DNA Center, as
well as adding a new device to the network identity group using Cisco Identity
Service Engine.

Evaluation result: According to the requirement, we have implemented RFC
so that it is able to trigger several different features once a change is approved in
the core request system. The core RFC system was developed with flexibility in
mind and can be extended with new features in the future. Following this project’s
scope, the currently implemented features are changing network SSID, changing
network, toggling WLAN state, and adding a new device to the network identity
group through ISE. They are shown in Section 4.2. The WLAN features were
built using SSH rather than DNAC, which was the original requirement. This is
explained in Section 4.2.1

41

7.2 Evaluation of non-functional requirements

In this section, we restate each non-functional requirement and provide the cor-
responding evaluation result.

7.2.1 Security

Requirement description: RFC should follow good security practices. For
instance, the authentication should be done server-side.

Evaluation result
In order to fulfill the requirement for good security practices, RFC was designed
according to the Secure Coding Practices Quick Reference Guide [46], published by
the Open Web Application Security Project (OWASP)[47]. OWASP is a nonprofit
foundation that works to improve software security, and their guide has been a
valuable resource to confirm that all fundamental security practices are followed in
RFC. The guide covers essential actions to consider when processing, transferring,
and storing data. Even though the guidelines were written in 2010, they are still
relevant today. Figure 25 shows an example of the OWASP guidelines and how
we can use them to verify that our system is secured to basic standards.

Figure 25: OWASP guidelines for access control.

As seen in Figure 25 the first two points state the importance of having author-
ization done exclusively on systems running in trusted environments. Because of
this, the RFC frontend can not be used to deal with authorization on its own, since
the end-users can manipulate the source code. Therefore the frontend needs to
get permissions from somewhere else. Thus, the authentication in RFC is handled
by the Microsoft Authentication Library (MSAL) [48] in conjunction with Azure
AD, while Kong and OPA do the authorization.

By doing this, the authorization process is performed externally from the applica-
tion itself and can be abstracted away from the application logic as illustrated in
Figure 26. Additionally, by sending all communication through Kong, the requests
can be authorized by the OPA plugin. The current development environment util-
izes a local Kong instance. However, in the future, it will utilize a centralized
Kong instance that will handle authorization for all applications at Intility.

42

Figure 26: Authentication and authorization flow.

With the OPA solution, the authorization meets the OWASP guidelines by doing it
server-side and using a single site-wide system to do the authorization. According
to the third and fourth points in Figure 25 this is handled by the way the OPA
plugin is configured as a requirement in Kong, which means if Kong can not
communicate with OPA, it will stop all communication to any services which
requires it. Another way is how the permission logic is set up. OPA will check
the token and its roles against a list that describes which endpoints each role has
access to and the HTTP method they can use on it, see Figure 26. If OPA can
not find the endpoint which is being accessed under the role the user has in the
token, the request gets denied. An alternative to using Kong and OPA would
be implementing authorization directly in the backend. This would be a possible
solution and is a common way of doing it since the backend runs in a safe and
controlled environment, such as Azure.

With the increasing focus on privacy for consumers, we wanted to research how
general GDPR policies would apply to our system. RFC neither grants access to
new data for Intility employees nor for additional people to see this customer data.
There is also no personal data stored in the database of RFC. Hence, this system
is already compliant with the current regulations that the customer and Intility
have agreed on. Therefore, both the group and the supervisors at Intility regard
this project as GDPR compliant.

The group had discussions regarding encrypting the WLAN passwords in the data-
base, which are being stored as long as the technician has not approved or denied
a request. Currently, the passwords are handled in cleartext both when submitted
to Intility and when a technician updates the password on the relevant WLAN.
It is important to note that once the application is deployed to production, com-
munication will be done through HTTPS, which means it will be encrypted when
traveling over the network. The database is also running in Azure, where all the

43

data stored will be encrypted, so doing it in RFC is unnecessary. Implementing en-
cryption of the WLAN password in RFC would also be unnecessary since the clear
text version of the password is handled in other parts of Intility’s value streams.
As a result of this, we did not see the value of implementing encryption, which
was thus given a low priority.

7.2.2 User experience

Requirement description: The interface should be intuitive and natural to use
in order to allow the user to move around without feeling confused or lost.

Evaluation result
Throughout the design process, careful choices around the user interface were made
to optimize the user experience. This was important to let the users navigate the
system without feeling cluttered or getting lost.

In order to verify that RFC fulfills this requirement, a user testing was conducted
with employees at Intility that will use the system daily, as well as with less tech-
nical employees in order to simulate user testing with the customers. According
to the principle of ethnography, the user testing was conducted in the form of an
in-person session at their workstations in order to see how the system performs
under its natural circumstances.

The user testing consisted of two parts and was recorded but anonymized due to
subject privacy. The first part consisted of a user observation using the think-
aloud protocol, which involves asking the subject to verbalize their thoughts while
performing predefined tasks. In order to quantify the test results, the elapsed
time and number of button clicks the subject needed to perform each task was
logged. The second part of the user testing consisted of a structured interview and
an unstructured part where the user was asked questions about their experience
of using the product and its current features. This way, both quantitative and
qualitative feedback was received.

The optimal scenario would have been to get all the technicians at Intility to
attend user testing. However, due to limited resources and a tight schedule, this
was not feasible. Therefore, the test was conducted on a pseudo-random group of
five technicians, covering a range of ages and competencies. This reduced the scope
of their feedback but at the same time, allowing for a deeper and more qualitative
understanding of what a technician thinks about the system.

Quantitative results
The quantitative feedback was logged as the number of button clicks and elapsed
time to complete each task. Based on the average values, RFC performs reasonably
well, with the most time-consuming tasks being the feature for creating a new SSID
request and adding a new device to the network. However, these are reasonable
values due to the amount of information that needs to be provided by the users.
The results from the user observation are presented in Tables 1, 2, 3, and 4.

44

Task
User

1
User

2
User

3
User

4
User

5
Average

Log in 4 5 3 4 3 3

Find all pending requests 5 3 3 4 3 3

Which customer created a
password change request to
"Admin123"

6 5 3 4 3 4

Accept SSID change for
"Office_Guest"

4 5 4 6 4 5

Change to dark theme 3 2 4 2 3 3

Table 1: Elapsed time for each technician task in whole seconds

Task
User

1
User

2
User

3
User

4
User

5
Average

Log in 2 2 2 2 2 2

Find all pending requests 0 1 1 0 1 1

Which customer created a
password change request to
"Admin123"

1 0 2 2 0 1

Accept SSID change for
"Office_Guest"

2 2 2 1 1 2

Change to dark theme 3 2 2 2 3 2

Table 2: Number of button clicks for each technician task

Task
User

1
User

2
User

3
User

4
User

5
Average

Log in 4 6 4 11 3 6

Create new SSID request 37 41 52 48 57 47

Find the number of connected
clients

21 7 11 8 17 13

Turn off guest WiFi 3 5 3 6 3 4

Add new device to network 45 43 57 52 43 48

Change to dark theme 3 13 7 3 6 6

Table 3: Elapsed time for each customer task in whole seconds

45

Task
User

1
User

2
User

3
User

4
User

5
Average

Log in 2 2 2 2 2 2

Create new SSID request 9 7 12 11 8 9

Find the number of connected
clients

3 3 5 2 4 3

Turn off guest WiFi 3 2 4 3 3 3

Add new device to network 14 11 13 11 15 13

Change to dark theme 3 3 2 4 3 3

Table 4: Number of button clicks for each customer task

Qualitative results
Based on the results of the user interviews, all the qualitative feedback has been
combined into an aggregated list of bullet points. This includes both the positive
feedback as well as suggestions for improvement.

Positive feedback:

• Both the customers and the technicians emphasized that the interface looks
neat and is simple to use. In addition, the design is similar to the rest of
Intility’s websites and portals, which makes it familiar and natural for them
to maneuver.

• All the users reported the need for such a system, and they all saw the
potential it has to improve and streamline the process of making simple
changes to the networks. In addition, many of the users reported that the
system could provide value to them even in its current state.

• Many of the users enjoyed the opportunity to choose between light and dark
mode to suit their preferences. Especially the technicians enjoyed the dark
mode, which makes it possible to adapt the system to fit their work envir-
onments.

• The adaptive screen size and support for different devices was a feature
that the technicians particularly welcomed. The technicians are currently
dependent on their computers to perform an SSID or password change on
a customer’s network. RFC will enable the technicians to approve a net-
work change from almost anywhere, which could significantly decrease the
processing time of such a request.

46

Improvement suggestions:

• Two of the technicians pointed out a wish to see the name and company of
the user that has created a request. This information would be beneficial in
special cases where the technicians must contact the customer for additional
details. Currently, the system stores and displays customer information in
the form of a user-id that is somewhat meaningless for humans and could be
replaced by the name and company of the user to improve readability. One
of the technicians also mentioned that it would be nice to see information
about what company a request belongs to without expanding the row.

• One of the technicians had concerns about how the system works when a
customer has more than one guest WLAN. For this edge case, it would have
been nice to have the opportunity to choose a specific WLAN from a list of
all the available ones.

• Some of Intility’s customers have offices at several locations worldwide. In
many cases, these offices use the same WLAN and WLC. Thus a change
at one location will affect all the other ones. The customer interface should
display a warning about this once a customer tries to submit a change request
to avoid confusion across different locations.

• During testing of the customer interface, we noticed that a user had diffi-
culties creating a new SSID change request. After further discussion, it came
to our attention that they were not familiar with the term ”SSID”.

• A technician mentioned that it would be beneficial to have filtering and
search functionality in the list of handled requests. As time goes on, the
log of handled requests may become quite long. Thus, pagination, search,
and filtering should be implemented to simplify the process of finding a
previously handled change request. A customer also requested access to a
similar interface, making it possible to see a log of their previous requests.

• Intility mainly strives to perform all changes during a specific maintenance
window and document all planned maintenance in a dedicated portal. One
of the technicians voiced concerns about how the system currently executes
a change immediately after the technician approves it. Instead, we were
advised to put the approved request in a queue that gets applied to the
WLC during the maintenance window. It would also have been beneficial
if this queue of planned WLC changes were automatically documented in
the existing maintenance portal. A similar feature request was made during
user testing with a customer. They wanted a feature for scheduling when a
change where to be performed in order to get a more predictable behavior
of their network. This could be implemented by adding a timestamp field to
the ”create request” form.

47

• One of the customers raised concerns about the impact of accidentally sub-
mitting a change request or a request containing wrong information. The
customer thus wished for an opportunity to cancel or change a submitted
request. This could be implemented in conjunction with the previously men-
tioned schedule feature and allow a customer to undo the submitted request
at any time before the maintenance window.

• When a customer opens a request, it should preferably be logged as a case
linked to Intility’s existing service ticket system, which houses all cases re-
lated to a customer. A technician mentioned that it would be nice if the ID
of a request in RFC were synced with the ticket ID, making it possible to
click on the ID and be redirected to the corresponding case in the service
system.

• In some cases, it could be helpful for an Intility employee to have the op-
portunity to create a change request on behalf of a customer. These could,
for instance, be cases where the customer contacts support for another issue
and mention the wish for a network change as well.

• One of the technicians mentioned that the current solution for changing the
SSID of a WLAN would not work on guest networks that use a captive
portal. A captive portal is an alternative authentication method where the
WLAN itself does not have a password but instead utilizes a popup win-
dow that displays information on how to connect. Such solutions are often
present on public guest networks like hotels and restaurants. The current
solution changes the WLAN password directly on the WLC. However, re-
naming a captive network would need to be done using ISE. Although most
guest networks on Intility’s platform use a traditional WPA2 password, the
RFC backend would need to be extended to support captive networks before
potentially getting deployed to the customers.

• In some cases, the technicians have been asked to turn off the guest network
for various reasons. As a result, a dedicated button has been implemen-
ted, but this feature currently allows a customer to turn off the guest WiFi
without any involvement from Intility. Three of the technicians had concerns
about giving this power to the customer. They suggested implementing the
feature as a request requiring approval, similar to the SSID and Password
changes.

48

7.2.3 Adaptive to different screen sizes

Requirement description: The interface should be adaptive to different screen
sizes to facilitate the different work environments of the end-users. A technician
might work on a desktop, tablet, or mobile. Thus, the application should support
all of these form factors.

Evalutation result
In order to make the experience as user-friendly as possible regardless of work style
and environment, there are implemented breakpoints for different screen sizes.
Depending on how large the screen is, different elements like the sidebar are either
shown or hidden. The breakpoints are designed to accommodate three different
types of devices; Desktop, tablet, and mobile. However, each of these size levels is
entirely flexible and dynamically scales and positions the elements on the screen
according to the current resolution. Figure 27 shows the function for changing
guest WiFi settings on the three different device types.

49

(a) Full screen / PC

(b) Medium sized screen / Tablet (c) Small screen / Mobile

Figure 27: Guest WiFi settings interface on different device types.

50

7.2.4 Responsiveness

Requirement description: The interface should be responsive and perceived as
fast. This should be solved by implementing performance techniques like caching
and loading animations to visualize necessary background activity.

Evaluation result
In order to enhance the user experience, RFC was designed to be responsive and
perceived by the users as fast. According to the Nielsen Norman Group [49],
there are three important time limits to consider when optimizing application
performance. Firstly, the limit for having the user feel that the system is reacting
instantaneously is about 0.1 seconds. Furthermore, the limit for users’ flow of
thought to stay uninterrupted is about 1 second. The absolute limit for keeping
a user’s attention is 10 seconds, and if an action takes more than this, they will
want to perform other tasks while waiting. In these cases, a percent-done indicator
would be beneficial. At the same time, actions that take between 2 and 10 seconds
should rather use a simple ”busy” indicator to avoid violating the principle of
display inertia, which says that having many changing and flashing elements on
the screen makes the user stressed and unable to keep up with the system. The
Nielsen Norman Group also clarifies that a system might react too quickly, making
the user unable to keep up with the system. In these cases, a fake loading animation
might be beneficial [49].

RFC has been designed with these time limits in mind. In order to create the feel-
ing of instantaneous response, loading animations are triggered within 0.1 seconds
of clicking a button. For actions that lead to a context switch to another window,
an artificial delay of 1 second is added to allow the users to keep up with the
system’s actions. Furthermore, each action was designed with the goal of at least
taking less than 10 seconds in order to keep the users’ attention. To verify that
the system performs to our expectations, a test was conducted on the two core
features of RFC: creating a change request and approving such a request. Each
of the actions was done ten times to ensure realistic results. The results were as
follows:

Task 1 2 3 4 5 6 7 8 9 10 Average

Submit
request

3.7 1.2 1.4 2.1 0.9 2.2 1.2 2 1 1.4 1.71

Approve
request

5.7 6 5.5 4.9 6.1 5.8 5.2 6.2 4.9 5.5 5.58

Table 5: Loading time in seconds to submit and approve a request.

The test uncovered a pleasing result for submitting a request but a somewhat
high average loading time for approving a request. Techniques like caching of data
and background loading have been implemented to mitigate the loading time.
There are also implemented loading animations to give the perception of progress

51

happening. Since the average time for approving a request is between 2 and 10
seconds, this loading animation is simply a ”spinning wheel” rather than a progress
bar.

However, the system is still perceived as somewhat slow from the technician’s point
of view. This is because the frontend waits for the backend to confirm that it has
received a given request before changing the elements on the screen. Since the
latency for communicating with the back-end and the WLC is somewhat high,
this has a negative impact on the user experience. A possible solution would be
to immediately display a change as ”performed” in the interface, even though the
change is not entirely done in the backend. By implementing this, the users will
rarely experience any loading screens, as long as their network connection is stable.
If the backend and frontend communication fails, the transaction can be reverted.

7.2.5 Reusability

Requirement description: The code should be easily reusable for future devel-
opment. This should be achieved by using the same languages, frameworks, and
code structures that the developers at Intility are familiar with. There should also
be a modular approach for each service, and the different components of the code
should be written with reusability in mind where possible.

Evaluation result: One of the requirements was to make sure the system and
its codebase could be re-used or further developed by Intility in the future. By
using the same languages, frameworks, and tools that their developers prefer, the
project structure and code should be relatively easy to understand for a developer
at Intility. This was verified by asking a DevOps engineer at Intility to make minor
changes to the system, which they were able to do effortlessly.

7.3 Implemented changes

Based on the feedback received during the user testing, a few enhancements were
made to the system. These changes were mostly affecting how information is
presented to the user, such as showing the name of the company on the requests
overview page as well as the name of the customer and technician involved with the
request. The original implementation displayed information about the user in the
form of a user-id number, but this was changed to improve human readability. The
updated solution added information about the user as extra fields in the database
schema, which are automatically filled out based on the token from the logged-in
user. Additionally, the company information was previously only available when
the row was expanded but is now moved to the top level so that the technician can
get the information without extra navigation, speeding up the decision process.
Figure 28 shows the updated technician interface.

52

Figure 28: Redesigned technician interface containing company name

The user testing also revealed that not everyone knew the term ”SSID”, which
led to some confusion for certain users. As a result of this, the terminology in
the customer interface was changed from ”SSID” to ”WiFi name” to facilitate the
system for users with less technical knowledge. Additionally, the feature making
it possible to toggle the guest WiFi on or off was disabled to avoid customers
accidentally turning it off at an inappropriate time.

Another feature that was added after getting feedback from the technicians was the
ability for an Intility employee to make change requests on behalf of a customer.
This was implemented as an input field with live search functionality. Figure 29
shows the interface of the ”Guest WiFi settings” for an Intility employee.

Figure 29: Interface for making a request on behalf of a customer

53

8 Closing remarks

This chapter will outline the future work that could be done in the project. The
learning outcome and conclusion of the project are also included.

8.1 Future work

Due to the limited time constraint of the project, there are several features, im-
provements, and technicalities that were not prioritized. Nevertheless, these are
changes that we have deemed beneficiary in the future development of this project.

More flexible backend architecture
During user testing, concerns were raised about how dynamic and flexible the sys-
tem will be for edge case scenarios and highly customized network architectures.
Currently, there is no logic to accommodate requests for customers that have mul-
tiple guest-WLANs, customers with captive networks, or customers with several
locations. Considering the current trajectory of increasingly complicated network
architectures at Intility, there is necessary to implement support for this before
deploying RFC to production and making it available for Intility’s customers.

Connect to existing service system
Furthermore, the system does not currently offer any communication with the
existing ticket and service system that Intility uses. Although RFC is supposed
to alleviate some workload of the customer support team, it is still suggested
that an automated support ticket appears in the service system such that these
changes are documented in case the customer contacts Intility’s support regarding
the modifications performed on the network. These tickets should have the same
id and hyperlink to the request in RFC.

Search functionality
Another important feature that was requested is support for search and filtering
functionality in the log of handled requests. Currently, all handled requests remain
as a list on the same page which can grow to become quite long over time. By
implementing a powerful search field and pagination for the results, the technicians
can quickly find details about a previously handled request should the need arise.

Scheduled changes
In the current solution, the approved change requests get applied instantly. Unfor-
tunately, this leads to a somewhat unpredictable behavior for the customers since
they do not know when a technician might approve their request. To alleviate
this, a suggestion was to implement a maintenance window where all approved
changes get performed. In addition, the form for creating a new change request
could contain a field for when the change should be performed, where the options
are either to select a timestamp for the change or to choose the nearest scheduled
maintenance window. The approved and planned changes should also be logged in
Intility’s maintenance portal, which could be beneficial for the support department

54

in cases where a customer might call because of network issues due to the changes.
Another concern from a customer was that there was no option for them to can-
cel a request. This could be implemented with the schedule feature mentioned
above, allowing a customer to cancel their request at any time until the registered
timestamp for the change.

8.2 Learning outcome

The project has been a valuable learning experience for the group members. Ac-
cording to the course description of the subject [50], the bachelor thesis should
conclude the study and combine important parts of the scientific content of the
study program. The project fits well with this since it contained relevant topics
such as network infrastructure, software development, and security. The course
page also outlines what the learning outcome of the subject should be in regards
to gained knowledge, skills, and competence.

During the course of this project, we have acquired substantial experience in soft-
ware development within authentication, authorization, and cloud services, we
have also learned entirely new concepts like React, API development, and Software-
defined Networking which has been both challenging and rewarding. Furthermore,
we have been exposed to working in a larger team environment where we have ex-
perienced the importance of working systematically to achieve a satisfying solution
to a complex problem statement. Throughout the project, we have been in con-
tinuous contact with numerous external stakeholders to create the specification and
requirements for the system. By doing this, we have learned to have a systematic
approach to the continuous evaluation of the project’s progress.

We have also gained skills in systematically documenting and presenting the pro-
ject results and using relevant literature and documentation. In addition, we have
gained experience in solving a delimited problem by developing a customized solu-
tion for a general problem statement.

55

8.3 Evaluation of the project

Conducting a project as a form of work has been educational and provided valuable
insights into how larger projects are done in the industry.

The schedule and organization of the project have worked well. By comparing
the conducted work against the proposed GANTT chart in the project plan, we
can see that most project tasks have been done in the allocated time frame. The
GANTT chart, supplemented by displaying issues in Trello and working in Scrum
sprints, turned out to be a good form of workflow management for this project. It
has been an enjoyable experience working with Scrum in practice, especially since
Scrum, in many ways, is considered the industry standard framework for software
projects. The likelihood of encountering Scrum in the industry at a later stage in
life is high, which makes the experience from this project even more beneficial.

When it comes to the assigned roles, they turned out to have less impact on the
work distribution than initially thought, as the distribution of work happened
evenly and naturally. The group has also utilized a lot of live collaboration during
the different work to share knowledge and ensure that each member gained a good
understanding of the various elements of the project. As a result, the total amount
of hours allotted for the project was distributed evenly among the members, which
is reflected in the hour log journaled at the end of each workday.

Although the assignment has been both exciting and relevant for our studies, it
did turn out to contain a bit more programming than initially assumed, which
led to some challenges due to our limited experience with software engineering.
However, in hindsight, this challenge contributed to a greater learning outcome
overall. Overall, the project has provided great insight into how a larger company
works and has contributed to building a social and professional network. Overall
the group is pleased with the project and how it contained a practical approach
to a real-world and complex problem, allowing us to apply both old and new
theoretical knowledge.

56

8.4 Conclusion

Today, when a customer wants to make changes to their networks, the request must
go through customer support, which can be time-consuming due to the manual
work and communication between the customers, support, and technicians at In-
tility. This led to the following problem statement:

”How can Intility streamline, automate and propagate requests for
network changes in their secure zone model?”

By developing a system that provides a graphical user interface with clear and
simple terminology, the customers themselves can describe a wanted change with
sufficient details so the request can be directly passed to a technician for review.
This removes the need for customer support to be involved and saves time by redu-
cing the need for communication between the customers and technicians. By stand-
ardizing the format of these requests, the possibility of automating the changes is
also achieved, which reduces the chance of human errors. To allow this automation
to happen across different secure zones, Kong was implemented as a central hub
between the zones and utilizes various plugins for added security. This provided a
better data flow than Metro would because the RFC frontend can use the backend
API directly instead of listening to changes and interpreting them from a message
queue.

In general, automating simple tasks entails increased efficiency, in addition to
allowing Intility to focus on more challenging tasks that require human interven-
tions. After discussions with the product owner, he could clearly see the developed
system as a good foundation for a future self-service portal for Intility’s customers.

57

Bibliography

[1] Intility, “An industrialized it platform, delivered as a service.” [Accessed
March 3rd, 2022] Available https://intility.no/en/the-solution/.

[2] Kong Inc., “Kong gateway.” [Accessed February 2nd, 2022] Available https:
//docs.konghq.com/gateway/.

[3] Meta Inc., “React - a javascript library for building user interfaces.” [Accessed
February 7th, 2022] Available https://reactjs.org/.

[4] Cisco Systems, “Cisco dna center at-a-glance.” [Accessed February
3rd , 2022] Available https://www.cisco.com/c/en/us/products/collateral/
cloud-systems-management/dna-center/nb-06-cisco-dna-center-aag-cte-en.
html.

[5] Cisco Systems, “Cisco identity services engine.” [Accessed March
14th , 2022] Available https://www.cisco.com/c/en/us/products/security/
identity-services-engine/index.html.

[6] Microsoft, “Microsoft 365.” [Accessed March 29th, 2022] Available https:
//www.microsoft.com/nb-no/microsoft-365/products-apps-services.

[7] Atlassian, “Trello.” [Accessed March 9th, 2022] Available https://trello.com/
tour/.

[8] Overleaf, “Overleaf, online latex editor.” [Accessed May 2nd, 2022] Available
https://www.overleaf.com/.

[9] Intility, “Bifrost design system.” [Accessed February 2nd, 2022] Available
https://bifrost.intility.no.

[10] The PostgreSQL Global Development Group, “Postgresql: The world’s most
advanced open source relational database.” [Accessed March 31st, 2022] Avail-
able https://www.postgresql.org/.

[11] IBM, “Similarities and differences in the uses, benefits, features and char-
acteristics of postgresql and mysql.” [Accessed April 29th, 2022] Available
https://www.ibm.com/cloud/blog/postgresql-vs-mysql-whats-the-difference.

[12] Microsoft, “What is azure.” [Accessed April 29th, 2022] Available https:
//azure.microsoft.com/nb-no/overview/what-is-azure/.

[13] M. Bayer, “A database migration tool for sqlalchemy..” [Accessed April 29th,
2022] Available https://pypi.org/project/alembic/.

[14] M. Bayer, “The python sql toolkit and object relational mapper.” [Accessed
April 28th, 2022] Available https://www.sqlalchemy.org/.

58

https://intility.no/en/the-solution/
https://docs.konghq.com/gateway/
https://docs.konghq.com/gateway/
https://reactjs.org/
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-center/nb-06-cisco-dna-center-aag-cte-en.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-center/nb-06-cisco-dna-center-aag-cte-en.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/dna-center/nb-06-cisco-dna-center-aag-cte-en.html
https://www.cisco.com/c/en/us/products/security/identity-services-engine/index.html
https://www.cisco.com/c/en/us/products/security/identity-services-engine/index.html
https://www.microsoft.com/nb-no/microsoft-365/products-apps-services
https://www.microsoft.com/nb-no/microsoft-365/products-apps-services
https://trello.com/tour/
https://trello.com/tour/
https://www.overleaf.com/
https://bifrost.intility.no
https://www.postgresql.org/
https://www.ibm.com/cloud/blog/postgresql-vs-mysql-whats-the-difference
https://azure.microsoft.com/nb-no/overview/what-is-azure/
https://azure.microsoft.com/nb-no/overview/what-is-azure/
https://pypi.org/project/alembic/
https://www.sqlalchemy.org/

[15] “Object–relational mapping.” [Accessed March 24th, 2022] Avail-
able https://en.wikipedia.org/w/index.php?title=Object%E2%80%93relational
mapping&oldid=1072364996.

[16] S. Ramı́rez, “Sqlmodel.” [Accessed March 24th, 2022] Available https:
//sqlmodel.tiangolo.com/.

[17] DBeaver community, “Dbeaver.” [Accessed March 15th, 2022] Available https:
//dbeaver.io/about/.

[18] IBM Corporation, “Acid properties of transactions.” [Accessed
April 28th, 2022] Available https://www.ibm.com/docs/en/cics-ts/4.2?topic=
processing-acid-properties-transactions.

[19] Docker Inc., “Developers love docker. businesses trust it.” [Accessed February
7th, 2022] Available https://www.docker.com/.

[20] Docker Inc., “Use containers to build, share and run your applications.”
[Accessed April 29th, 2022] Available https://www.docker.com/resources/
what-container/.

[21] Starlette, “The little asgi framework that shines.” [Accessed March 28th,
2022] Available https://www.starlette.io/.

[22] S. Colvin, “Pydantic.” [Accessed February 3rd, 2022] Available https://
pydantic-docs.helpmanual.io/.

[23] G. van Rossum, J. Lehtosalo, and Lukasz Langa, “Pep 484 – type hints.”
[Accessed March 28th, 2022] Available https://peps.python.org/pep-0484/.

[24] S. Ramı́rez, “Fastapi.” [Accessed February 2nd, 2022] Available https:
//fastapi.tiangolo.com/.

[25] Django Software Foundation, “Django makes it easier to build better web
apps more quickly and with less code..” [Accessed May 15th, 2022] Available
https://www.djangoproject.com/.

[26] Encode OSS Ltd, “Django rest framework is a powerful and flexible toolkit
for building web apis..” [Accessed May 12th, 2022] Available https://www.
django-rest-framework.org/.

[27] Encode OSS Ltd., “Collaboratively funded software development..” [Accessed
May 12th, 2022] Available https://github.com/encode/.

[28] “Git.” [Accessed February 15th, 2022] Available https://git-scm.com.

[29] “Simplify your workflow with gitlab.” [Accessed March 23rd, 2022] Available
https://about.gitlab.com/stages-devops-lifecycle/.

[30] B. Warsaw, N. Coghlan, and G. V. Rossum, “Pep-8.” [Accessed February
7th, 2022] Available https://www.python.org/dev/peps/pep-0008/.

59

https://en.wikipedia.org/w/index.php?title=Object%E2%80%93relational_mapping&oldid=1072364996
https://en.wikipedia.org/w/index.php?title=Object%E2%80%93relational_mapping&oldid=1072364996
https://sqlmodel.tiangolo.com/
https://sqlmodel.tiangolo.com/
https://dbeaver.io/about/
https://dbeaver.io/about/
https://www.ibm.com/docs/en/cics-ts/4.2?topic=processing-acid-properties-transactions
https://www.ibm.com/docs/en/cics-ts/4.2?topic=processing-acid-properties-transactions
https://www.docker.com/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.starlette.io/
https://pydantic-docs.helpmanual.io/
https://pydantic-docs.helpmanual.io/
https://peps.python.org/pep-0484/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/
https://github.com/encode/
https://git-scm.com
https://about.gitlab.com/stages-devops-lifecycle/
https://www.python.org/dev/peps/pep-0008/

[31] A. Sottile, “Pre-commit.” [Accessed March 15th, 2022] Available https://
pre-commit.com/.

[32] Microsoft, “Typescript.” [Accessed March 15th, 2022] Available https://www.
typescriptlang.org/.

[33] Microsoft, “Azure service bus.” [Accessed March 15th, 2022] Avail-
able https://docs.microsoft.com/en-us/azure/service-bus-messaging/
service-bus-messaging-overview.

[34] Lucid Software Inc., “Lucidchart - intelligent diagramming.” [Accessed March
15th , 2022] Available https://www.lucidchart.com/pages/.

[35] Cloud Native Computing Foundation, “Open policy agent.” [Accessed March
15th, 2022] Available https://www.openpolicyagent.org/.

[36] JetBrains, “Pycharm.” [Accessed March 29th, 2022] Available https://www.
jetbrains.com/pycharm/.

[37] Microsoft, “What is azure active directory.” [Accessed March 22th,
2022] Available https://docs.microsoft.com/en-us/azure/active-directory/
fundamentals/active-directory-whatis.

[38] K. Byers, “Netmiko.” [Accessed March 21st, 2022] Available https://github.
com/ktbyers/netmiko/.

[39] G. Harris, “Osi model.” [Accessed May 2nd, 2022] Available https://en.
wikipedia.org/w/index.php?title=OSI model&oldid=1085309819.

[40] Mozilla Foundation, “Cross-origin resource sharing.” [Accessed February 2nd ,
2022] Available https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS.

[41] OpenID, “Welcome to openid connect.” [Accessed March 25th, 2022] Avail-
able https://openid.net/connect/.

[42] Fortawesome, “Fort awesome.” [Accessed March 25th, 2022] Available https:
//fortawesome.com/.

[43] Meta Platforms, Inc, “Introducing hooks.” [Accessed May 18th, 2022] Avail-
able https://reactjs.org/docs/hooks-intro.html.

[44] I. Sommerville, Software Engineering Global Edition. Pearson Education Lim-
ited, tenth ed., 2016.

[45] “Prettier - opinionated code formatter.” [Accessed March 21st, 2022] Avail-
able https://prettier.io/.

[46] OWASP Foundation, “Owasp secure coding practices quick reference guide.”
[Accessed March 29th, 2022] Available https://owasp.org/www-pdf-archive/
OWASP SCP Quick Reference Guide v2.pdf.

60

https://pre-commit.com/
https://pre-commit.com/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://www.lucidchart.com/pages/
https://www.openpolicyagent.org/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://github.com/ktbyers/netmiko/
https://github.com/ktbyers/netmiko/
https://en.wikipedia.org/w/index.php?title=OSI_model&oldid=1085309819
https://en.wikipedia.org/w/index.php?title=OSI_model&oldid=1085309819
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://openid.net/connect/
https://fortawesome.com/
https://fortawesome.com/
https://reactjs.org/docs/hooks-intro.html
https://prettier.io/
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf

[47] OWASP foundation, “The open web application security project.” [Accessed
May 12th, 2022] Available https://owasp.org/.

[48] Microsoft, “Overview of the microsoft authentication library (msal).” [Ac-
cessed May 2nd, 2022] Available https://docs.microsoft.com/en-us/azure/
active-directory/develop/msal-overview.

[49] J. Nielsen, “Response times: The 3 important limits.” [Ac-
cessed May 2nd, 2022] Available https://www.nngroup.com/articles/
response-times-3-important-limits/.

[50] NTNU, “Dcsg2900 - bachelor thesis bachelor of science in digital infra-
structure and cyber security.” [Accessed May 4th, 2022] Available https:
//www.ntnu.edu/studies/courses/DCSG2900#tab=omEmnet.

61

https://owasp.org/
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.ntnu.edu/studies/courses/DCSG2900#tab=omEmnet
https://www.ntnu.edu/studies/courses/DCSG2900#tab=omEmnet

A Vocabulary

• API - Application programming interface.

• EIG - Endpoint Identity Group

• GUI - Graphical User Interface.

• IDE - Integrated development environment. Program with useful tools for
writing code.

• Kong - API gateway and microservice platform.

• MAC address - Media Access Control Address. A unique address for an
internet-connected device

• MVP - Minimum viable product.

• OPA - Open Policy Agent. An open-source policy engine that enforces
policies specified with code.

• RFC - Request For Change. The internal name of the developed system.

• SSH - Secure Shell. Encrypted communication protocol.

• SSID - Service Set Identifier. Generally known as WiFi name.

• UCD - User Centered Design.

• UI - User interface.

• UX - User experience.

• VLAN - Virtual Local Area Network.

• WLAN - Wireless Local Area Network.

• WLC - Wireless LAN Controller. A device to manage other wireless network
equipment

62

B Log

B.1 Week log

63

2 Introduction week.

This week was spent on getting to know Intility, as well as setting up our computers with the required software

and configure the environment. The week also contained a few meetings to agree on the project specifications

3 This week was dedicated to creating the project plan in coordination with our supervisor at NTNU.

In addition to this, the frontend project was setup and we started creating the backend API endpoints

4 This week we have configered the system to use Kong as a gateway for all API requests. We have also

implemented authentication through the Microsoft Authentication Library, which enables us to limit availability

of the system based on Azure tenants. In addition we have implemented som design changes to our frontend.

5 This week we have implemented policy checking using OPA. We had a few problems during the

configuration, but after doing some bug-hunting we found a solution. We have also started writing

the report structure, as well as starting writing our tool-survey. In addition we have done some minor

changes on the frontend.

6 The backend has been connected to DNAC and ISE, and we have started drafting the thesis. Redesign was done

of the "create request" forms. Changing password now works through SSH (netmiko)

7 Implementation of the SSID change feature and toggle WiFi state feature (Both uitilizing SSH with netmiko). Not

so many productive days this due to seminar in the IØ2000 course.

8 Created "add device to MAB" feature, with frontend, backend and database. Customers can now

register new devices to a given MAB by using a simple interface.

9 No work done on bachelor due to project and seminar in IØ2000, as well as sickness among the group members

10 Thesis writing, as well as course on thesis writing with Supervisor.

The week mainly consisted of structuring and drafting of each section of the final thesis

11 Thesis writing.

The structure was finalized, and we started filling out more on each section as well as refining drafts.

12 Thesis writing on the chapters about implementation and evaluation.

13 Refine and finalize the first thesis draft before delivery deadline to supervisor

14 The first half of the week was spent on thesis writing and user testing of the customer interface at Intilitys

headquartes. The rest of the week was spent on the IØ2000 project.

15 Easter break

16 User testing of the technician interface at Intilitys headquarters, as well as writing about these results in

the thesis.

17 This week was spent on programming the changes that were decided as a result of user testing, as well

as fixing minor bugs in the system. After this, the system was declared finalized.

18 This week was dedicated to continual improvement, i.e. refining and restructuring the sections in addition to a

thorough grammar review.

19 Revision thesis to comply with the final comments from supervisor. This included capture new screenshots and

figures due to bad resolution or errors. In addition we wrote the abstract.

20 Final fixes (chapter spacing, section references, font, margins), as well as generating the final PDF through

NTNU Graphics Center. Final read-through, supervisor meeting and delivery.

Week Log

B.2 Timesheet

65

Henrik Øyvind Sondre Herman
Total 370 Total 351 Total 369 Total 369

Date Task Hours Date Task Hours Date Task Hours Date Task Hours

10.jan Intro / set up environment 9 10.jan Intro / set up environment 9 10.jan Intro / set up environment 9 10.jan Intro / set up environment 9

11.jan Set up environment 1 11.jan Set up environment 1 11.jan Set up environment 1 11.jan Set up environment 1

11.jan Project plan 2 11.jan Project plan 2 11.jan Project plan 2 11.jan Project plan 2

11.jan Welcome bachelor meeting 1 11.jan Welcome bachelor meeting 1 11.jan Welcome bachelor meeting 1 11.jan Welcome bachelor meeting 1

11.jan NTNU lectures 3 11.jan NTNU lectures 3 11.jan NTNU lectures 3 11.jan NTNU lectures 3

12.jan Set up frontend project 1 12.jan Set up frontend project 1 12.jan Set up frontend project 1 12.jan Set up frontend project 1

12.jan Learning backend 3 12.jan Learning backend 3 12.jan Learning backend 3 12.jan Learning backend 3

12.jan Learning frontend 2 12.jan Learning frontend 2 12.jan Learning frontend 2 12.jan Learning frontend 2

13.jan Coding backend 1 13.jan Coding backend 1 13.jan Coding backend 1 13.jan Coding backend 1

13.jan User course w/Intility 1 13.jan User course w/Intility 1 13.jan User course w/Intility 1 13.jan User course w/Intility 1

13.jan Coding back- and frontend 4 13.jan Coding back- and frontend 4 13.jan Coding back- and frontend 4 13.jan Coding back- and frontend 4

14.jan Company meeting 2 14.jan Company meeting 2 14.jan Company meeting 2 14.jan Company meeting 2

14.jan Frontend and NSA meeting 4 14.jan NSA and frontend 4 14.jan Frontend and NSA meeting 4 14.jan Frontend and NSA meeting 4

17.jan Meeting worked project plan 2 17.jan Meeting worked project plan 2 17.jan Meeting worked project plan 2 17.jan Meeting worked on project plan 2

17.jan Backend and frontend 4 17.jan Backend and frontend 4 17.jan Backend and frontend 4 17.jan Backend and frontend 4

18.jan Project plan 5 18.jan Project plan 5 18.jan Project plan 5 18.jan Project plan 5

18.jan Frontend work 1 18.jan Frontend work 1 18.jan Frontend work 1 18.jan Frontend work 1

19.jan Meeting with supervisor 1 19.jan Meeting with supervisor 1 19.jan Meeting with supervisor 1 19.jan Meeting with supervisor 1

19.jan Worked on project plan 3 19.jan Worked on project plan 3 19.jan Worked on project plan 3 19.jan Worked on project plan 3

19.jan OpenShift intro 1 19.jan OpenShift intro 1 19.jan OpenShift intro 1 19.jan OpenShift intro 1

19.jan Worked on project plan 1 19.jan Worked on project plan 1 19.jan Worked on project plan 1 19.jan Worked on project plan 1

20.jan DNAC intro 1 20.jan DNAC intro 1 20.jan DNAC intro 1 20.jan DNAC intro 1

20.jan Bifrost intro 1 20.jan Bifrost intro 1 20.jan Bifrost intro 1 20.jan Bifrost intro 1

20.jan project plan 3 20.jan project plan 3 20.jan project plan 3 20.jan project plan 3

21.jan project plan 3 21.jan project plan 3 21.jan project plan 3 21.jan project plan 3

21.jan meetings with intility 2 21.jan meetings with intility 2 21.jan meetings with intility 2 21.jan meetings with intility 2

24.jan OPA, Kong intro Ingvald 5 24.jan OPA, Kong intro Ingvald 5 24.jan OPA, Kong intro Ingvald 5 24.jan OPA, Kong intro Ingvald 5

25.jan Meeting with supervisor 1 25.jan Meeting with supervisor 1 25.jan Meeting with supervisor 1 25.jan Meeting with supervisor 1

25.jan Kong, OPA and frontend auth 5 25.jan Kong, OPA and frontend auth 5 25.jan Kong, OPA and frontend auth 5 25.jan Kong, OPA and frontend auth 5

26.jan Kong and Frontend auth 5 26.jan Kong and Frontend auth 5 26.jan Kong and Frontend auth 5 26.jan Kong and Frontend auth 5

26.jan React App course 1 26.jan React App course 1 26.jan React App course 1 26.jan React App course 1

27.jan Project plan finalizing 4 27.jan Project plan finalizing 4 27.jan Project plan finalizing 4 27.jan Project plan finalizing 4

27.jan Frontend login 2 27.jan Frontend login 2 27.jan Frontend login 2 27.jan Frontend login 2

27.jan Template fix, Overleaf 1 27.jan Template fix, Overleaf 1 27.jan Template fix, Overleaf 1 27.jan Template fix, Overleaf 1

28.jan Show & tell, OPA, minor dev 5 28.jan Show & tell, OPA, minor dev 5 28.jan Show & tell, OPA, minor dev 5 28.jan Show & tell, OPA, minor dev 5

31.jan OPA and Azure 5 31.jan OPA and Azure 5 31.jan OPA and Azure 5 31.jan OPA and Azure 5

01.feb Project plan changes 2 01.feb Project plan changes 2 01.feb Project plan changes 2 01.feb Project plan changes 2

01.feb OPA policies 2 01.feb OPA policies 2 01.feb OPA policies 2 01.feb OPA policies 2

01.feb Overleaf Setup 2 01.feb Overleaf Setup 2 01.feb Overleaf Setup 2 01.feb Overleaf Setup 2

02.feb Meeting with supervisor 1 02.feb Meeting with supervisor 1 02.feb Meeting with supervisor 1 02.feb Meeting with supervisor 1

02.feb UserID in DB 2 02.feb UserID in DB 2 02.feb UserID in DB 2 02.feb UserID in DB 2

02.feb Report structuring 3 02.feb Report structuring 3 02.feb Report structuring 3 02.feb Report structuring 3

03.feb OPA 2 03.feb OPA 2 03.feb OPA 2 03.feb OPA 2

03.feb Report drafting 5 03.feb Report drafting 5 03.feb Report drafting 5 03.feb Report drafting 5

04.feb Show & tell 1 04.feb Show & tell 1 04.feb Show & tell 1 04.feb Show & tell 1

04.feb frontend changes 3 04.feb frontend changes 3 04.feb frontend changes 3 04.feb frontend changes 3

04.feb database schema update 2 04.feb database schema update 2 04.feb database schema update 2 04.feb database schema update 3

07.feb Limit approvals based on role 2 07.feb Limit approvals based on role 2 07.feb Limit approvals based on role 2 07.feb Limit approvals based on role 2

07.feb Report drafting 3 07.feb Report drafting 3 07.feb Report drafting 3 07.feb Report drafting 3

08.feb Connect backend to DNAC 4 08.feb Connect backend to DNAC 4 08.feb Connect backend to DNAC 4 08.feb Connect backend to DNAC 4

08.feb Report structuring/writing 4 08.feb Report structuring/writing 4 08.feb Report structuring/writing 4 08.feb Report structuring/writing 4

09.feb Change wifi password feature 6 09.feb Change wifi password feature 6 09.feb Change wifi password feature 6 09.feb Change wifi password feature 6

10.feb Report writing 3 10.feb Report writing 3 10.feb Report writing 3 10.feb Sick

10.feb Redesign request page 3 10.feb Redesign request page 3 10.feb Redesign request page 3 10.feb Sick

14.feb Implement SSID changing 6 14.feb Implement SSID changing 6 14.feb Implement SSID changing 6 14.feb Implement SSID changing 6

15.feb Implement WiFi toggle 5 15.feb Implement WiFi toggle 5 15.feb Implement WiFi toggle 5 15.feb Implement WiFi toggle 5

15.feb NTNU meeting 1 15.feb NTNU meeting 1 15.feb NTNU meeting 1 15.feb NTNU meeting 1

18.feb Redesign frontend + meeting 5 18.feb Sick 18.feb Redesign frontend + meeting 5 18.feb Redesign frontend + meeting 5

21.feb update DB schema + frontend 5 21.feb update DB schema + frontend 5 21.feb update DB schema + frontend 5 21.feb update DB schema + frontend 5

22.feb Visiting Intility 7 22.feb Visiting Intility 7 22.feb Visiting Intility 7 22.feb Visiting Intility 7

23.feb Spec meeting MAB feature 7 23.feb Spec meeting MAB feature 7 23.feb Spec meeting MAB feature 7 23.feb Spec meeting MAB feature 7

24.feb MAC address sanitation 7 24.feb MAC address sanitation 7 24.feb Database MAB backend 7 24.feb Database MAB backend 7

25.feb Show and tell, backend 5 25.feb Show and tell, backend 5 25.feb Show and tell, backend 5 25.feb Show and tell, backend 5

TIMESHEET

FEBRUARY

JANUARY

04.mar Sick 0 04.mar Report writing 5 04.mar Report writing 5 04.mar Report writing 5

07.mar Report writing 3 07.mar Report writing 3 07.mar Report writing 5 07.mar Report writing 5

08.mar Report writing 6 08.mar Report writing 6 08.mar Report writing 6 08.mar Report writing 6

09.mar Supervisor meeting 1 09.mar Supervisor meeting 1 09.mar Supervisor meeting 1 09.mar Supervisor meeting 1

09.mar Report writing 5 09.mar Report writing 5 09.mar Report writing 3 09.mar Report writing 5

10.mar Report writing 6 10.mar Report writing 5 10.mar Report writing 6 10.mar Report writing 5

11.mar Report writing 5 11.mar Report writing 5 11.mar Report writing 5 11.mar Report writing 5

13.mar Revision/refining 3 13.mar Revision/refining 3

14.mar Structure revision 6 14.mar Structure revision 6 14.mar Structure revision 6 14.mar Structure revision 6

15.mar Re-writing to be more formal 6 15.mar Re-writing to be more formal 6 15.mar Re-writing to be more formal 6 15.mar Re-writing to be more formal 6

18.mar Minor revisions and meeting 4 18.mar Minor revisions and meeting 4 18.mar Minor revisions and meeting 4 18.mar Minor revisions and meeting 5

21.mar Report: Evaluation 5 21.mar Report: Requirements 4 21.mar Report: Implementation 5 21.mar Report: Evaluation 5

22.mar Report: Database, User test 5 22.mar Report: Database, User test 5 22.mar Report: Database, User test 5 22.mar Report: Database, User test 5

23.mar User test 5 23.mar User test 5 23.mar User test 5 23.mar User test 5

24.mar Evaluation 4 24.mar Evaluation 4 24.mar Evaluation 4 24.mar Evaluation 4

25.mar Rewrite implementation 5 25.mar Rewrite introduction 4 25.mar Write Frontend 5 25.mar Rewrite implementation 5

28.mar Rewrite implementation 5 28.mar Rewrite introduction 4 28.mar Rewrite tool-survey 5 28.mar Rewrite process 5

29.mar User test - Technicians 5 29.mar User test - Technicians 5 29.mar User test - Technicians 5 29.mar User test - Technicians 5

22.apr User test preparation 6 22.apr User test preparation 6 22.apr User test preparation 6 22.apr User test preparation 6

25.apr User test - Customers 6 25.apr grammar review 6 25.apr User test - Customers 6 25.apr User test - Customers 6

26.apr Implement changes 6 26.apr User test / half day 3 26.apr User test / half day 3 26.apr User test review 6

27.apr Implement changes 6 27.apr Sick 27.apr Database changes, coding 6 27.apr User test review 6

28.apr User test review 6 28.apr Sick 28.apr Tool survey (database, docker) 6 28.apr User test review 6

29.apr Thesis review 6 29.apr Thesis review 6 29.apr Thesis review 6 29.apr Thesis review 7

02.mai Grammar and revision 7 01.mai Grammar and revision 7 01.mai Grammar and revision 7 02.mai Grammar and revision 7

03.mai Implemented changes 7 02.mai Future work 7 02.mai Implemented changes 7 03.mai Future work 7

04.mai Revision/refining 5 04.mai Revision/refining 5 04.mai Revision/refining 5 04.mai Revision / Refining 5

05.mai Revision/refining 5 05.mai Revision/refining 5 05.mai Revision/refining 5 05.mai Revision / Refining 5

06.mai Revision/refining 5 06.mai Revision/refining 5 06.mai Revision/refining 5 06.mai Revision / Refining 5

09.mai Revision/refining 4 09.mai Revision/refining 4 09.mai Revision/refining 4 09.mai Revision / Refining 4

10.mai Revision/refining 5 10.mai Revision/refining 5 10.mai Revision/refining 5 10.mai Revision / Refining 5

11.mai Revision/refining 5 11.mai Revision/refining 5 11.mai Revision/refining 5 11.mai Revision / Refining 5

12.mai Revision/refining 6 12.mai Revision/refining 6 12.mai Revision/refining 6 12.mai Revision / Refining 5

13.mai Abstract 5 13.mai Abstract 5 13.mai Abstract 5 13.mai Abstract 5

16.mai Create PDF / Styling 4 16.mai Create PDF / Styling 4 16.mai Create PDF / Styling 4 16.mai Create PDF / Styling 4

18.mai Final read / deliver 3 18.mai Final read / deliver 3 18.mai Final read / deliver 3 18.mai Final read / deliver 3

MAY

MARCH

APRIL

B.3 Minutes of meetings

68

Date Attendees Conclusions

17.01.2022 All We are ahead of schedule, and will use the surplus time to create the deliverable for 31 january

19.01.2022 Group,

Supervisor

NTNU

- 31.march first draft of thesis

- Upload documents on teams with supervisor

- Final deadline 12pm 20.may

- Email weekly status report at least one day before supervisor meeting

(what have been done, any problems, want to discuss, what we will do the next week, are we on track)

- Literature survey, tool survey, software/system design/implementation/evalutation, thesis writing, project presentation

- Thesis is the most important, start early

- Use the supervisor to get feedback along the way

- Get details on how the zones are secured (how they work)

- What are the requirements (functional: what the client expects. non-functional: how fast is it, security)

- User testing of interface

20.01.2022 Group, Ali

Arfan,

Tobias

- DNAC (digital network...) cisco DNA center

- ISE.lab.int.intility.no (port 9060/ers/sdk)

- Use DNAC when changing password on guest network

- WLC wireless lan controller, controls all access points, can be used for configuration, pushes the configuration to devices

https://dnac.static.aa.cust.xcv.net/dna/platform/app/consumer-portal/developer-toolkit/apis

- Cisco ISE Identity service engine

- ISE controls identity to all devices

- MAC address spoofing

25.01.2022 Group,

Supervisor

NTNU

- How the approval process works for requests

- What does it mean that a zone is secure

- Use bullet points for requirements

- Policies should be functional

- Non functional security high

- More non functional

- Add one more zone to topology

- How is the frontend accessed? Do you need VPN or can they access it from anywhere.

- Describe briefly how the topology works

- RFC as title of topology is confusing

- Everything added to the report needs a reasoning for being there

- All the terminology needs to be cited

- Use a page to describe all the terminology

- Explain how to read risk matrix

- Simplify Gantt, weekly basis instead of daily
02.01.2022 Group,

Supervisor

NTNU

 - Project plan

 - Implemented Kong, OPA and authentication

 - Minor frontend and backend changes

 - Created Overleaf template for the final report

 - Feedback projectplan

 - Nice!

 - Plan to make several policies in OPA

09.02.2022 Group,

Supervisor

NTNU

 - Dynamic/static

 - UIX/UCD view

 - Personal privacy

 - Whats necessary for the user to see

 - Discuss what services Intlity actually wants

16.02.2022 Group,

Supervisor

NTNU

 - DEMO RFC

 - Live feedback

 - further improvements

 - presented the backend code and database

23.02.2022 Group,

Supervisor

NTNU

 - SSID and Passwrord change in GUI

 - Frontend redesigning

 - Starting up with MAB next week

 - On track with Gantt-chart
02.03.2022 Group,

Supervisor

NTNU

No meeting due to seminar in IØ2000

MINUTES OF MEETING

09.03.2022 Group,

Supervisor

NTNU

 - Our previously drafted structure fits quite well according to our supervisors tips.

 - need to add/change a few chapter titles, as well as changing reference style.

 - Finished core functionality of RFC

 - Major features implemented

 - Only minor revisions remain.

 - Started on report

 - structure and layout

 - on track with Gantt chart, and moving to report phase.

16.03.2022 Group,

Supervisor

NTNU

No meeting due to seminar in IØ2000 / Supervisor attends Department meeting

23.03.2022 Group,

Supervisor

NTNU

 - Demo RFC

 - frontend feedback

 - discuss potentional features

 - questions regarding the user test interview
30.03.2022 Group,

Supervisor

NTNU

Supervisor sickness, cancelled

06.04.2022 Group,

Supervisor

NTNU

 - User testing

 - feedback on usertests

 - Questions regarding report
20.04.2022 Group,

Supervisor

NTNU

No meeting due to seminar in IØ2000

04.05.2022 Group,

Supervisor

NTNU

Meeting cancelled due to report revisioning.

11.05.2022 Group,

Supervisor

NTNU

 - Revised report based on feedback from supervisor

 - Created new and updatet figures to the report

 - Low quality screenshots replaced with new screenshots in better resolution

 - Some questions regarding the feedback:

 - "a customer" - is it their/his/her? a customer is a company

 - "The three most requested WLAN changes" - Why underlined?

18.05.2022 Group,

Supervisor

NTNU

C Assignment description from Intility

71

 Side 1 av 1

BACHELORPROSJEKT INTILITY NETWORK SERVICES

Hensikten med oppgaven er å bygge grunnmuren til et system for endringsbestillinger og
tjenestebestillinger som skal gå til Intility. Dette skal realiseres ved å bygge en kundeportal og en
teknikerportal, begge front-end og back-end som benytter seg av et Intility sitt eget meldingssystem
(Metro) bygd på Azure Service Bus og Event Grid. Metro muliggjøre sikker utveksling av informasjon
med hjelp av meldinger på tvers av sikre soner / domener på Intility plattformen.

Hovedrammen av oppgaven handler om å bygge gjøre systemet kapabelt til å ta å sende og abonnere
på meldinger gjennom Metro. Som et proof of concept skal systemet sende melding fra kundeside til
teknikerside, tekniker godkjenner og kundeside mottar melding og visualiserer dette i portalen. På
toppen av fundamentet skal gruppen bygge en eller flere features for bestilling i kundeportal. Her står
gruppen mer fritt til å komme med innspill.

Gruppen skal fortrinnsvis programmere i python på Backend, hvor det prefereres at alt skrives async i
moderne rammeverk som FastAPI. Det er et krav at frontend programmeres i React og bruk av Intility
sitt desinsystem (bifrost.intility.no).

D Project plan

73

 1

DCSG2900: Bachelor Thesis Bachelor of Science in

Digital Infrastructure and Cyber Security

Project plan

Spring 2022

Herman Torland Øyvind Wold Sondre Gunneng Henrik Granlund

Supervisor: Jia-Chun Lin

Department of Information Security and Communication Technology

Faculty of Information Technology and Electrical Engineering

Gjøvik, NTNU

 2

Vocabulary

• API – Application programming interface

• CORS – Cross origin requests

• FastAPI – A framework written in the python language to facilitate the creation of APIs

• OpenAPI – An API standard

• Swagger – A tool for providing automated documentation of API endpoints.

• PEP-8 – Style guide for Python

• IDE – Integrated development environment

• JavaScript – Programming language

• TypeScript – Built on top of JavaScript to add features such as type checking

• Bifrost – Design system built by Intility

• Kong – API gateway. Used to forward requests

• OPA – Policy-based control for cloud environment

• OpenShift – Tool for container administration

• Git – System for version control and DevOps tool

• GitLab – platform for good version control and collaboration

• Overleaf – Online LaTeX editor

• Cisco DNA Center – Management platform for Cisco networking equipment

1. Goals

1.1 Background

Intility is a Norwegian company that offers an end-to-end IT platform for their customers. This

involves taking full responsibility for their customers' IT stack, including everything from the network

infrastructure to client devices and internal IT support. To allow for this model to be organized and

secure, Intility has chosen to create a “secure zone” for each customer. These zones are isolated

networks that contain all the customers' equipment and devices at their locations, as well as virtual

networks to run their services in datacenters. For Intility to make changes to services on behalf of

their customers they need to use a virtual machine running on a secured workstation. For a

workstation to be considered secure it needs to be configured after Intility's internal guidelines.

Intility has requested us to make a proof-of-concept web app that offers their customers an easy and

intuitive way of requesting simple changes to their networks. Such requests can for example include

network SSID and password changes. Each request must be approved by a technician at Intility. To

enable this service to work between the customers zone and Intility’s zone, we have decided to

implement the Kong API Gateway. This can act as a central hub that forwards different API requests

to different services. Furthermore, we will use Kong with plugins to implement authentication,

policies, and CORS, which are all security measures. Further requirements and guidelines from

Intility are outlined in Section 1.3.

 3

1.2 Project goal

Effect goals:

• Learn to collaborate on a bigger project with more complex requirements than earlier

assignments at NTNU.

• Get a deeper understanding of how an IT business works from the inside, including using

process frameworks like scrum in practice

• Learn to use modern technologies such as React and Python, that are popular in the IT

industry and will be beneficial to know in the future.

Outcome goals:

• Develop a system that fulfills Inutility's functional requirements and might potentially be

released as a feature to their customers.

• Write and deliver a thorough report that outlines our process from start to finish, as well as

describing how our solution will solve a current problem.

o The report should cover how we have worked together (process framework,

minutes of meetings, challenges etc.)

o The report should cover how the final product is built and what technologies it

consists of.

1.3 Requirements/constraints

Functional requirements

• Intility has requested that the system should be a web application with a frontend

developed in React, as well as recommending the use of Python for the backend.

• The frontend should talk to a REST-API backend using fetch requests. We are recommended

to make this API using the FastAPI framework.

• To allow for communication between the frontend and backend, we are advised to use an

API-gateway called Kong. This should be done to solve the “secure-zone” problem

mentioned in Section 1.1.

• Intility also has a requirement that we follow their general developers' guidelines regarding

UI design and code-structuring.

• The system should use Open Policy Agent (OPA) for enhancing security. This will be

responsible for checking that only authorized technicians can approve a request.

• The system should be able to trigger several different APIs once a request is approved, to

begin with we will implement a feature for changing network SSID and password using Cisco

DNA Center, which provides an API for such use cases.

Non-functional requirements

• The system should have good security.

• The interface should be intuitive and natural to use.

• The interface should be adaptive to different screen sizes

• The interface should be responsive and fast.

• The code should be easily reusable for future development.

 4

1.4 Planned Architecture

Considering the requirements mentioned in the previous section, we have initially decided on the

following architecture. Each customer will be able to access an interface from their own secure zone

and use it to request changes to their own already existing networks. These requests will be sent to

the Kong API gateway, which will check against policies in OPA. An example of a policy check could

be verifying that a customer has the correct rights to request a change. If OPA evaluates the request

to be valid, Kong will forward it to the backend and store it in a database. A technician at Intility will

be able to see all requests through their own interface where they may approve or decline them.

This will again lead to an API call to Kong and a policy check to OPA, before the request is forwarded

to the backend. At this point, the system should be able to trigger an API call to several different

services, in our case exemplified by, but not limited to Cisco DNA Center (DNAC). DNAC provides an

API that allows for the requested changes to be performed on the customers network by utilizing an

SSH tunnel. Below is a visual representation of our planned topology.

Figure 1. Planned architecture

2. Project organization

2.1 Roles

• Project lead: Herman Torland – herman.torland@intility.no

• Project manager: Øyvind Wold – oyvind.magnus.wold@intility.no

• Backend lead: Sondre Gunneng – sondre.gunneng@intility.no

• Frontend lead: Henrik Granlund – henrik.granlund@intility.no

 5

Project lead

Makes sure all the deadlines are met and conflicts are solved. Will also be the main communicator

with the project stakeholders.

Project manager

Will take the lead role in the absence of the project leader and make sure the deadlines are met.

Responsible for facilitating scrum.

Backend lead

Quality check of the backend, such as code quality and that it meets standards.

Frontend lead

Quality check of the frontend, make sure the UI/UX is of a good standard.

Secretary

Writes minutes of meetings. The role will be rotated between all group members on a weekly basis.

Table 1.0, Secretary role rotation

2.2 Group rules and routines

2.2.1 - Team meetings

We will conduct team meetings on a regular basis. All members are required to arrive on time and

meet prepared. Every team member should speak during the meetings, and at a minimum give a

general status report of how far they have gotten since last time. Each meeting should be

documented with minutes by the secretary.

2.2.2 - Absence

Although members should always strive to attend scheduled meetings, the group should have an

understanding that different issues may arise that can prevent a member from joining. If unable to

attend a meeting, the member should inform the rest of the group as soon as possible. Attendance

will be reported in the meeting minutes.

2.2.3 - Work effort

We have great ambitions for the project, and thus a high work effort is required by all team

members. Everyone should try their best to solve their assigned tasks, and the threshold for giving

up should be high. However, due to a lot of new concepts and varying degrees of difficulty in tasks,

members should not be afraid of asking for help if they are struggling with completing a task, as this

is a team effort.

Week nr. Responsible

2 Herman Torland

3 Øyvind Wold

4 Sondre Gunneng

5 Henrik Granlund

6 Herman Torland

... ...

 6

2.2.4 - Disagreements

The group should expect that certain disagreements will arise during the project period. Members

are expected to be patient and understanding when someone suggests an unfamiliar perspective or

solution to a problem. If any serious disagreements arise, we will try to solve them internally first

before potentially contacting our supervisor for an external perspective and guidance.

2.2.5 - Daily work routine

The group has decided to work on the project every day of the week during Intility’s core working

hours (09:00-15:00). Each day should start with a daily standup where today's tasks will be

discussed. Due to Covid-19 restrictions, all work will be conducted digitally to begin with. We will

work physically at Intility's headquarters if the possibility arises at a later stage.

2.2.6 - Weekly status report

We have agreed with our supervisor on meetings every Wednesday at 09:00. At least one day in

advance a status report should be sent to our supervisor containing the following bullet points:

• What we have done in the previous week.

• Any potential problems and how we solved them.

• What to discuss during the meeting.

• What to do this upcoming week.

• How our progress is going relative to the Gantt chart.

2.2.7 - Backup of documents

Backup of all work should be done regularly by the project manager. These backups should be stored

in a shared OneDrive folder that all group members have access to.

2.2.8 - Logging of hours

Every group member is responsible for logging their own working hours into our shared spreadsheet.

Each member should strive to log around 30 hours of work per week, including meetings and

sessions.

2.2.9 - Sanctions for violations

If a team member does not follow the rules outlined above, an extraordinary meeting will be held

where the team member is responsible for explaining themself. This could result in a warning. If a

group member receives two warnings, we will have a meeting with our supervisor to find a solution.

If we do not agree or find a solution to the issue, it could lead to eviction of this group member.

3. Planning, follow-up, and reporting

3.1 Main division of the project

In the beginning of the project, we will base our work around the waterfall method, but we want to

move closer to a scrum-based process framework. The main reason for this is that we want to gather

as much information as possible in the early phase, ensuring each member achieves a good

understanding of all the different elements of the project. With that in mind, we can move on to a

more complex and detailed scrum method before the end phase.

 7

3.2 Timeline with process framework choice

Figure 2. Work process during project

For this project we have considered using two development methods: Scrum and waterfall.

Scrum is a process framework where a team collaborates and break down tasks into several small

projects that must be completed within a given period also called “sprints.” Each sprint has its own

timeframe.

We have chosen to use Scrum as it is the most appropriate development method for our project. By

dividing the timeframe into several sprints, we have a better overview of how much time we have

on each task. As we are most familiar with this kind of framework, this has also been the reason that

we decided to use scrum.

The waterfall method is a sequential method where the project flows through all the phases of a

project as a waterfall. The main aspect of the waterfall method is that the project cannot continue

before the first phase is completely done, as each phase depends on the previous phase. In our case

this could be especially useful at the start of the project due to introductions to several systems that

it is necessary for us to learn. We also see that there is a need for the use of waterfall in the end

phase, as we must go through several steps before we can deliver the main project.

In addition to the four boxes in the figure above, we have added a timeline at the bottom of the

figure that represents the estimated time we will spend on the project. This is just a rough estimate,

as a more detailed timeline is described in the attached Gantt-chart.

3.3 Plan for status meetings and points of decision during the period

• Have a meeting with our supervisor (Jia-Chun Lin) once every Wednesday from 09:00-09:30.

• Monday meetings at 09:00 to agree on what needs to be done the following week.

• Attend “show and tell” with Network Services department at 09:00 am Fridays.

 8

4. Organization of quality control

4.1 Tools, standards, documentation

4.1.1 Backend

The backend is going to be an API the frontend will communicate with and will be developed using

the FastAPI framework, which is written in python. One of the benefits of using FastAPI is that it

follows the OpenAPI standards which enables auto generated documentation for the endpoints

using Swagger. Since we will be using python, we have chosen to stick to its official coding standard

PEP-8. To make sure that our code follows this standard, we will make use of a code formatter called

Black, which runs before every commit to git using pre-commit hooks.

4.1.2 Frontend

The frontend is going to be the graphical user interface that the customers of Intility and their

technicians will use to interact with the backend. We are going to develop it using React (client-side

rendering) library. The languages we could choose from were JavaScript or Typescript. We have

selected JavaScript because nobody in our group has any experience with Typescript and since the

application is small, we do not see any benefit in the extra features Typescript provides. For the user

interface Intility have asked us to use their internal design system called Bifrost, which provides

components such as tables, notifications, modals, and color schemes.

4.1.3 Development environment and shared tools between the applications

The IDE we use is called PyCharm and is designed for python and has many useful features for

autocompletion, navigating the source code and starting the local environment. It also has the

benefits of working well with JavaScript which is the language we use in our frontend. Since Intility

also uses this IDE internally, it will be easier to get help if we have any issues. The frontend and

backend we are working on will be on separate networks and needs a way to communicate, for this

we will be using the API gateway part of Kong to forward requests between the secure zones. We

will also be using OPA for managing policies which will be our access control, for example to

separate customer view from the technician view in the frontend.

4.1.4 Deployment, backup, and test environment

We will be using git for version control in conjunction with GitLab for full integration with project

planning features like issues and milestones to help keep things organized and backed up. GitLab will

also help with automatic deployments, also called CD (continuous deployments) when we merge

branches for issues into the main branch a deployment pipeline will run tests and check the code

before deploying to the live environment. To get our application hosted we will be using OpenShift

which will pull our built images from GitLab and create pods to deploy in Kubernetes.

4.1.5 Documents and communication

To store and collaborate on documents such as project plans, reports, minutes of meetings, etc. we

will be using Teams and Office 365. When it comes to drafting the thesis, we will use Overleaf to live

collaborate on Latex documents. Both Office 365 and Overleaf will give us the benefit of automatic

backups. Office 365 makes it easy for us to have everything accessible in one place, such as email,

shared calendars, and easy meeting invites. In Teams we will have a team for the group which also

 9

the supervisors provided by Intility have access to. A separate team will be used to share documents

with NTNU supervisor, this is because we cannot give, due to restricted access from externals in

Intility's internal teams/systems. For daily voice communication within the group, we will be using

Discord where our supervisor from Intility also has access to the Discord server. The last

communication tool is Slack, the reason we have this is to get notifications from GitLab, for example

when a pipeline fails or someone merges.

4.2 Plan for inspection and testing

To inspect and test our solution, we will work closely with Intility as they have dedicated different

people to guide us with user testing, code review, and project processes.

4.3 Risk analysis at a project level

1. Value: Project

Description: Data loss

Consequence: High

Probability: Low

Action: We will be using online collaborative tools such as GitLab, Office 365 and Overleaf

which all provide automatic online backup.

2. Value: Project

Description: One or more group members become sick for a longer period and cannot do

their assigned tasks

Consequence: Medium

Probability: Low

Action: The most important thing is for whoever gets sick to let the group know as soon as

possible and then the rest of the group will have to divide workload among themselves.

3. Value: Project

Description: Missing the deadline of 20th of May

Consequence: High

Probability: Low

Action: Revise the plan each week to see if we are following the schedule and make any

adjustments if needed. The project lead has the ultimate responsibility of ensuring the

project is delivered.

4. Value: Project

Description: Any of the supervisors gets ill, either from NTNU or Intility

Consequence: Low

Probability: Low

Action: Even though we might not get the scheduled weekly meeting we can still contact our

supervisors through email.

 10

5. Value: Project

Description: If a group member must leave the project because of some unforeseen

incident.

Consequence: High

Probability: Low

Action: Depending on how far along the project we have gotten, the workload could be

increased for all the other group members. And we would have to talk to our supervisor on

how to solve it, scale down some parts of the project. Every part of the project should be

documented, to simplify the process of transferring a task.

6. Value: Project

Description: Loss of motivation during the project

Consequence: Medium

Probability: Medium

Action: As time goes by and different problems arise, one or more of the group members

may experience a loss of motivation. This might lead to varying quality of the work

conducted. To prevent this, we will make sure to rotate what types of tasks each member

does. We will also strive to take the weekend off to get a break each week. As motivation,

we will strive to take a spring break in April, if we are on track.

7. Value: One of the programs stops working/ is not supported.

Description: One of the programs that the project depends on does not work or support on

our respective systems.

Consequence: High

Probability: Low

Action: If one of the programs we depend on is no longer supported or stops working, we

must take a decision together with the supervisor and Intility to find an alternative solution.

This can be time-consuming as there are several factors that a new program must go

through, to be approved by Intility.

Table 2. Risk matrix

Consequence/Probability Low Medium High

Low 1,4,5 2

Medium 6

High 3,7

The numbers represent the risks, and they are placed according to consequence vertically and

probability horizontally

 11

5. Plan of implementation

Figure 3. Gantt Chart

 12

6. Confirmation

I hereby confirm that I have read and agreed on the content of this Project plan.

Gjøvik, 27.01.2022

Sondre Gunneng Henrik Granlund

Øyvind Wold Herman Torland

E Project agreement

86

1 NTNU 10.12.2020

Norges teknisk-naturvitenskapelige universitet

Fastsatt av prorektor for utdanning 10.12.2020

STANDARDAVTALE

om utføring av studentoppgave i samarbeid med ekstern virksomhet

Avtalen er ufravikelig for studentoppgaver (heretter oppgave) ved NTNU som utføres i
samarbeid med ekstern virksomhet.

Forklaring av begrep

Opphavsrett
Er den rett som den som skaper et åndsverk har til å fremstille eksemplar av åndsverket og
gjøre det tilgjengelig for allmennheten. Et åndsverk kan være et litterært, vitenskapelig eller
kunstnerisk verk. En studentoppgave vil være et åndsverk.

Eiendomsrett til resultater
Betyr at den som eier resultatene bestemmer over disse. Utgangspunktet er at studenten
eier resultatene fra sitt studentarbeid. Studenten kan også overføre eiendomsretten til den
eksterne virksomheten.

Bruksrett til resultater
Den som eier resultatene kan gi andre en rett til å bruke resultatene, f.eks. at studenten gir
NTNU og den eksterne virksomheten rett til å bruke resultatene fra studentoppgaven i deres
virksomhet.

Prosjektbakgrunn
Det partene i avtalen har med seg inn i prosjektet, dvs. som vedkommende eier eller har
rettigheter til fra før og som brukes i det videre arbeidet med studentoppgaven. Dette kan
også være materiale som tredjepersoner (som ikke er part i avtalen) har rettigheter til.

Utsatt offentliggjøring
Betyr at oppgaven ikke blir tilgjengelig for allmennheten før etter en viss tid, f.eks. før etter
tre år. Da vil det kun være veileder ved NTNU, sensorene og den eksterne virksomheten som
har tilgang til studentarbeidet de tre første årene etter at studentarbeidet er innlevert.

2 NTNU 10.12.2020

1. Avtaleparter

Norges teknisk-naturvitenskapelige universitet (NTNU)
Institutt: Institutt for informasjonssikkerhet og kommunikasjonsteknologi

Veileder ved NTNU: Jia-Chun Lin
e-post og tlf. jia-chun.lin@ntnu.no, +47 458 49 287
Ekstern virksomhet: Intility AS, Network Services
Ekstern virksomhet sin kontaktperson, e-post og tlf.: Marius Engan,
marius.engan@intility.no, +4798409649

Student: Herman Torland
Fødselsdato: 12.08.1996
Student: Henrik Granlund
Fødselsdato: 29.07.1998
Student: Sondre Gunneng
Fødselsdato: 30.04.1993
Student: Øyvind Wold
Fødselsdato: 06.11.1995

Partene har ansvar for å klarere eventuelle immaterielle rettigheter som studenten, NTNU,
den eksterne eller tredjeperson (som ikke er part i avtalen) har til prosjektbakgrunn før bruk
i forbindelse med utførelse av oppgaven. Eierskap til prosjektbakgrunn skal fremgå av eget
vedlegg til avtalen der dette kan ha betydning for utførelse av oppgaven.

2. Utførelse av oppgave
Studenten skal utføre: (sett kryss)

Masteroppgave
Bacheloroppgave X
Prosjektoppgave
Annen oppgave

Startdato: 10.01.2022
Sluttdato: 20.05.2022

Oppgavens arbeidstittel er:

Request for change

Ansvarlig veileder ved NTNU har det overordnede faglige ansvaret for utforming og
godkjenning av prosjektbeskrivelse og studentens læring.

3 NTNU 10.12.2020

3. Ekstern virksomhet sine plikter

Ekstern virksomhet skal stille med en kontaktperson som har nødvendig faglig kompetanse
til å gi studenten tilstrekkelig veiledning i samarbeid med veileder ved NTNU. Ekstern
kontaktperson fremgår i punkt 1.

Formålet med oppgaven er studentarbeid. Oppgaven utføres som ledd i studiet. Studenten
skal ikke motta lønn eller lignende godtgjørelse fra den eksterne for studentarbeidet.
Utgifter knyttet til gjennomføring av oppgaven skal dekkes av den eksterne. Aktuelle
utgifter kan for eksempel være reiser, materialer for bygging av prototyp, innkjøp av prøver,
tester på lab, kjemikalier. Studenten skal klarere dekning av utgifter med ekstern virksomhet
på forhånd.

Ekstern virksomhet skal dekke følgende utgifter til utførelse av oppgaven:

Dekning av utgifter til annet enn det som er oppført her avgjøres av den eksterne underveis
i arbeidet.

4. Studentens rettigheter
Studenten har opphavsrett til oppgaven1. Alle resultater av oppgaven, skapt av studenten
alene gjennom arbeidet med oppgaven, eies av studenten med de begrensninger som følger
av punkt 5, 6 og 7 nedenfor. Eiendomsretten til resultatene overføres til ekstern virksomhet
hvis punkt 5 b er avkrysset eller for tilfelle som i punkt 6 (overføring ved patenterbare
oppfinnelser).

I henhold til lov om opphavsrett til åndsverk beholder alltid studenten de ideelle rettigheter
til eget åndsverk, dvs. retten til navngivelse og vern mot krenkende bruk.

Studenten har rett til å inngå egen avtale med NTNU om publisering av sin oppgave i NTNUs
institusjonelle arkiv på Internett (NTNU Open). Studenten har også rett til å publisere
oppgaven eller deler av den i andre sammenhenger dersom det ikke i denne avtalen er
avtalt begrensninger i adgangen til å publisere, jf. punkt 8.

5. Den eksterne virksomheten sine rettigheter
Der oppgaven bygger på, eller videreutvikler materiale og/eller metoder (prosjektbakgrunn)
som eies av den eksterne, eies prosjektbakgrunnen fortsatt av den eksterne. Hvis studenten
skal utnytte resultater som inkluderer den eksterne sin prosjektbakgrunn, forutsetter dette
at det er inngått egen avtale om dette mellom studenten og den eksterne virksomheten.

Alternativ a) (sett kryss) Hovedregel

1 Jf. Lov om opphavsrett til åndsverk mv. av 15.06.2018 § 1

4 NTNU 10.12.2020

 Ekstern virksomhet skal ha bruksrett til resultatene av oppgaven

Dette innebærer at ekstern virksomhet skal ha rett til å benytte resultatene av oppgaven i
egen virksomhet. Retten er ikke-eksklusiv.

Alternativ b) (sett kryss) Unntak

X Ekstern virksomhet skal ha eiendomsretten til resultatene av oppgaven og
studentens bidrag i ekstern virksomhet sitt prosjekt

Begrunnelse for at ekstern virksomhet har behov for å få overført eiendomsrett til
resultatene: Prosjektet er en del av større pågående prosjekt for utvikling av eksterne
grensesnitt ut mot sluttbrukere av plattformen.

6. Godtgjøring ved patenterbare oppfinnelser
Dersom studenten i forbindelse med utførelsen av oppgaven har nådd frem til en
patenterbar oppfinnelse, enten alene eller sammen med andre, kan den eksterne kreve
retten til oppfinnelsen overført til seg. Dette forutsetter at utnyttelsen av oppfinnelsen
faller inn under den eksterne sitt virksomhetsområde. I så fall har studenten krav på rimelig
godtgjøring. Godtgjøringen skal fastsettes i samsvar med arbeidstakeroppfinnelsesloven § 7.
Fristbestemmelsene i § 7 gis tilsvarende anvendelse.

7. NTNU sine rettigheter
De innleverte filer av oppgaven med vedlegg, som er nødvendig for sensur og arkivering ved
NTNU, tilhører NTNU. NTNU får en vederlagsfri bruksrett til resultatene av oppgaven,
inkludert vedlegg til denne, og kan benytte dette til undervisnings- og forskningsformål med
de eventuelle begrensninger som fremgår i punkt 8.

8. Utsatt offentliggjøring
Hovedregelen er at studentoppgaver skal være offentlige.

Sett kryss

 Oppgaven skal være offentlig

I særlige tilfeller kan partene bli enige om at hele eller deler av oppgaven skal være
undergitt utsatt offentliggjøring i maksimalt tre år. Hvis oppgaven unntas fra
offentliggjøring, vil den kun være tilgjengelig for student, ekstern virksomhet og veileder i

5 NTNU 10.12.2020

denne perioden. Sensurkomiteen vil ha tilgang til oppgaven i forbindelse med sensur.
Student, veileder og sensorer har taushetsplikt om innhold som er unntatt offentliggjøring.

Oppgaven skal være underlagt utsatt offentliggjøring i (sett kryss hvis dette er aktuelt):

Sett kryss Sett dato
 ett år
 to år
X tre år

Behovet for utsatt offentliggjøring er begrunnet ut fra følgende:

Dersom partene, etter at oppgaven er ferdig, blir enig om at det ikke er behov for utsatt
offentliggjøring, kan dette endres. I så fall skal dette avtales skriftlig.

Vedlegg til oppgaven kan unntas ut over tre år etter forespørsel fra ekstern virksomhet.
NTNU (ved instituttet) og student skal godta dette hvis den eksterne har saklig grunn for å
be om at et eller flere vedlegg unntas. Ekstern virksomhet må sende forespørsel før
oppgaven leveres.

De delene av oppgaven som ikke er undergitt utsatt offentliggjøring, kan publiseres i NTNUs
institusjonelle arkiv, jf. punkt 4, siste avsnitt. Selv om oppgaven er undergitt utsatt
offentliggjøring, skal ekstern virksomhet legge til rette for at studenten kan benytte hele
eller deler av oppgaven i forbindelse med jobbsøknader samt videreføring i et master- eller
doktorgradsarbeid.

9. Generelt
Denne avtalen skal ha gyldighet foran andre avtaler som er eller blir opprettet mellom to av
partene som er nevnt ovenfor. Dersom student og ekstern virksomhet skal inngå avtale om
konfidensialitet om det som studenten får kjennskap til i eller gjennom den eksterne
virksomheten, kan NTNUs standardmal for konfidensialitetsavtale benyttes.

Den eksterne sin egen konfidensialitetsavtale, eventuell konfidensialitetsavtale den
eksterne har inngått i samarbeidprosjekter, kan også brukes forutsatt at den ikke inneholder
punkter i motstrid med denne avtalen (om rettigheter, offentliggjøring mm). Dersom det
likevel viser seg at det er motstrid, skal NTNUs standardavtale om utføring av
studentoppgave gå foran. Eventuell avtale om konfidensialitet skal vedlegges denne avtalen.

6 NTNU 10.12.2020

Eventuell uenighet som følge av denne avtalen skal søkes løst ved forhandlinger. Hvis dette
ikke fører frem, er partene enige om at tvisten avgjøres ved voldgift i henhold til norsk lov.
Tvisten avgjøres av sorenskriveren ved Sør-Trøndelag tingrett eller den han/hun oppnevner.

Denne avtale er signert i fire eksemplarer hvor partene skal ha hvert sitt eksemplar. Avtalen
er gyldig når den er underskrevet av NTNU v/instituttleder.

Signaturer:

Instituttleder:

Dato:
Veileder ved NTNU: Jia-Chun Lin

Dato:
Ekstern virksomhet:

Dato: 27.01.2022
Student: Sondre Gunneng

Dato: 27.01.2022
Student: Henrik Granlund

Dato: 27.01.2022
Student: Øyvind Wold

Dato: 27.01.2022
Student: Herman Torland

Dato: 27.01.2022

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Henrik Granlund
Herman Torland
Sondre Gunneng
Øyvind Wold

RFC: A user-friendly system for
managing and automating network
changes in a secure zone model

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Jia-Chun Lin
May 2022

Ba
ch

el
or

’s
th

es
is

	List of Figures
	List of Tables
	List of Code Snippets
	Introduction
	Background about Intility
	High-level problem description
	Target Audience
	Project organization
	Thesis structure

	Background
	Detailed problem description
	Purpose
	Tool survey
	Bifrost
	Database
	Docker
	FastAPI
	Gitlab and git
	JavaScript
	Kong
	Lucidchart
	Microsoft 365
	OPA
	PyCharm
	React

	Requirements specification
	Functional requirements
	Non-functional requirements

	System design
	Architecture of RFC
	Features
	WLAN changes
	Add a new device to MAC Authentication Bypass (MAB)

	User interface design

	Implementation
	Backend architecture
	API
	Frontend

	Development process
	Process framework
	Documentation

	Evaluation
	Evaluation of functional requirements
	Programming languages
	API
	Kong
	UI design
	Policies
	Features

	Evaluation of non-functional requirements
	Security
	User experience
	Adaptive to different screen sizes
	Responsiveness
	Reusability

	Implemented changes

	Closing remarks
	Future work
	Learning outcome
	Evaluation of the project
	Conclusion

	Bibliography
	Vocabulary
	Log
	Week log
	Timesheet
	Minutes of meetings

	Assignment description from Intility
	Project plan
	Project agreement

