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Abstract 

Autonomous Underwater Vehicles (AUVs), which can be customized with environmental 
sensors, have proven useful for plankton ecology studies by providing continuous spatial and 
temporal observations over the mesoscale. Another novel tool is the SilCam imaging system, 
which captures images of objects suspended in the water column in situ and classifies the 
findings. When mounted on an AUV, in situ plankton images and key environmental variables 
(KEVs) can be captured simultaneously, allowing for an increased understanding of the marine 
ecosystem. 
 
This study aimed to assess how this novel method, combining an AUV and a SilCam system, 
performed in a study of zooplankton community composition and KEVs, for providing insights 
on spatiotemporal variations and plankton dynamics. The usability of the SilCam method was 
also assessed separately, addressing the performance of two artificial intelligence (AI) 
algorithms in plankton classification. The findings suggested that the SilCam method best 
serves as an addition to net samples, as it for now does not allow for the high taxonomic 
resolution enabled by net samples, due to the low optical resolution of the SilCam. The low 
optical resolution, combined with a limited training data set, also contributed to a limited 
plankton classification accuracy obtained by the AI algorithms. The AUV acquired an extensive 
data set of chlorophyll a (as a proxy for phytoplankton biomass), seawater temperature, 
salinity, and dissolved oxygen. Still, the sensors had different properties, such as response 
time, sampling intervals, and calibration, resulting in challenges with combining and 
comparing the data.  

Data from the AUV sensors, SilCam system, and ground-truthing were combined to assess 
the state of the phytoplankton spring bloom conditions in Mausund and Hopavågen in coastal 
Trøndelag, Norway, as also was one of the aims of the study. Through this coupling of 
information, it was concluded that a phytoplankton pre-bloom and an ongoing bloom occurred 
on the first and second visit to Mausund, respectively, and that there was a post-bloom in 
Hopavågen. Overall, this study elucidated the areas of improvement related to sampling of 
plankton data using an AUV mounted with a SilCam imaging system, but also the method’s 
potential to be a very valuable tool in future plankton studies, and thereby the monitoring of 
climate change in the ocean.   
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Sammendrag 

Autonome undervannsfarkoster (AUV), som kan tilpasses med en montert sensorpakke, har 
vist seg å være nyttige for økologistudier av plankton ved å gi kontinuerlige romlige og 
tidsmessige observasjoner over mesoskalaen. En annen ny metode er SilCam-bildesystemet, 
som tar bilder av objekter fordelt i vannsøylen in situ og deretter klassifiserer funnene. Når 
SilCam-systemet er montert på en AUV, kan in situ planktonbilder og nøkkelmiljøvariabler 
(KEV) samles inn samtidig, hvilket kan bidra til en økt forståelse av de marine økosystemet. 
 
Denne studien hadde som mål å vurdere hvordan denne nye metoden, som kombinerer en 
AUV og et SilCam, presterte i en studie av dyreplanktonsamfunnets sammensetning og 
tilhørende nøkkelmiljøvariabler, for å gi innsikt i variasjoner i tid og rom og planktondynamikk. 
Nyttigheten til SilCam-metoden ble også vurdert separat, og tok for seg ytelsen til to 
algoritmer som brukte kunstig intelligens (AI) i planktonklassifisering. Funnene tydet på at 
SilCam-metoden best fungerer som et tillegg til nettprøver, ettersom den foreløpig ikke tillater 
den høye taksonomiske oppløsningen som er muliggjort av nettprøver, på grunn av den lave 
optiske oppløsningen til SilCam. Den lave optiske oppløsningen, kombinert med et begrenset 
treningsdatasett, bidro også til en begrenset klassifiseringsnøyaktighet oppnådd av AI-
algoritmene. AUV-en anskaffet et omfattende datasett av klorofyll a (som et mål for 
planktonalgebiomasse), havtemperatur, saltholdighet og oppløst oksygen. Likevel hadde 
sensorene forskjellige egenskaper, som responstid, prøvetakingsintervaller og kalibrering, noe 
som resulterte i utfordringer med å kombinere og sammenligne dataene.  
 
Data fra AUV-sensorene, SilCam-systemet, vannprøver og verifisering med nettprøver ble 
kombinert for å vurdere tilstanden til våroppblomstring av planktonalger på Mausund og i 
Hopavågen i kystnære Trøndelag, Norge, som også var et av målene med studien. Gjennom 
denne kombinasjonen av informasjon ble det konkludert med at de to besøkene til Mausund 
ble gjort henholdsvis før og i løpet av en planktonalgeoppblomstring, og at Hopavågen ble 
besøkt etter en planktonalgeoppblomstring. Samlet sett belyste denne studien 
forbedringsområdene knyttet til denne metoden, men også dens potensiale til å være et svært 
verdifullt verktøy i fremtidige planktonstudier og dermed overvåking av klimaendringer i 
havet. 
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1 Introduction 
 

1.1 Why plankton? 

Plankton can function as an indicator for change in the marine ecosystem, as a range of studies 
have highlighted (e.g. Druon et al., 2019; Estes Jr. et al., 2022; Hays et al., 2005). They 
comprises small, drifting microalgae (phytoplankton) and animals (zooplankton) that based 
on general description are unable to move against the ocean currents (Kaiser et al., 2011). 
Some zooplankton have both a planktonic and a benthic life stage (meroplankton), while 
others are planktonic throughout their entire life cycle (holoplankton, Brander et al., 2016; 
Kaiser et al., 2011). Both phytoplankton and zooplankton have essential roles in the marine 
ecosystem, as they dominate in terms of abundance and biomass (Bar-On & Milo, 2019) and 
transfer energy to higher trophic levels in the marine food web (Barange et al., 2010). Due to 
their short lifespan, plankton organisms can rapidly respond to changes in the marine 
environment, and as they are free-floating, their distribution can change dramatically with 
changes in ocean current systems and abiotic conditions (e.g. temperature, light). They are 
also not yet intensively commercially exploited, such as commercial fish species, which allows 
future predictions of long-term changes of plankton standing stocks in relation to changes in 
biotic and abiotic conditions. Additionally, as a natural community, their response can amplify 
even subtle environmental perturbations (Taylor et al. 2002). In this way, plankton organisms 
can serve as biological indicators of water quality and ecosystem health (Estes Jr. et al., 2022). 
The regional conventions OSPAR and HELCOM are already utilizing plankton information for 
this purpose (HELCOM, 2009, 2010, 2014; OSPAR, 2003, 2008). 
 
The size of plankton varies greatly, ranging from micrometer (µm) to several meters (Hays et 
al., 2005). Zooplankton in the size range 0.2-2 mm are called mesozooplankton, and together 
with microzooplankton (20-200 μm), they make up an important trophic component at lower 
levels of the marine food web (Hays et al., 2005). They consume phytoplankton and other 
microplankton, and then in turn serve as a food source for predators higher up in the food 
web (Barange et al., 2010; Hablützel et al., 2021; Hays et al., 2005). This is how they mainly 
contribute to energy transfer up the food web. Among the zooplankton, a group of small 
crustaceans, called copepods, dominate (Barange et al., 2010; Kiørboe, 2010). When 
abundant, these copepods serve as food for fish and birds (Fragoso et al., 2019a), but they 
also have another important role in the ecosystem. Through the production of relative fast-
sinking faecal pellets, shedding of exoskeletons, diel vertical migration (DVM), and seasonal 
migrations, they contribute to the carbon capture and sink-out process via the biological 
carbon pump. DVM is a light-mediated behaviour that enables the zooplankton to benefit from 
the higher food availability at the ocean surface while avoiding visual predators (Barange et 
al., 2010; Berge et al., 2020; Gliwicz, 1986; Hays, 2003). By seeking refuge at depth during 
the day, the carbon consumed in the surface layer at night is defecated and respired at depth 
(Barange et al., 2010; Brun et al., 2019).  
 
In 2015, Ernesto found that climate change is expected to affect the copepod community 
substantially (Villarino et al., 2015). A poleward shift in distribution, shifts in phenology 
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resulting in an earlier seasonal peak, as well as changes in biodiversity, are expected for the 
copepods in the North Atlantic (Barange et al., 2010; Villarino et al., 2015), and all these 
changes may propagate higher up in the food web. It is thus crucial to take efforts to predict 
the impacts of climate change on planktivorous fish and predators further up in the food web 
and to understand how zooplankton communities are affected by climate change (Ljungström 
et al., 2020). In August 2021, the Intergovernmental Panel on Climate Change (IPCC) report 
called for a Code red and stated that climate change is rapid, intensifying, and widespread 
(Masson-Delmotte et al., 2021). Every region on Earth is already affected by it, and the ocean 
is no exception. Climate change affects the distribution, occurrence, and abundance of species 
in the marine environment, as well as the ecosystem function (Barange et al., 2010; Overland 
et al., 2010; Philippart et al., 2011). As the oceans cover 71% of the Earth’s surface and 
contribute to oxygen production, climate regulation, and contain enormous biodiversity and 
essential resources (Kaiser et al., 2011; Visbeck, 2018), understanding how climate change 
affects the ocean is a key issue.  
 

 

1.2 Traditional and new sampling methods 

Plankton abundance and diversity are patchily distributed across the ocean (Kaiser et al., 
2011). To increase the understanding of the planktonic community structure, and their spatial 
and temporal variability, systematic and persistent observations of the upper water column 
are essential (Saad et al., 2020). Traditional methods, such as seawater samples, net samples, 
and manual inspection, are useful techniques and have enabled valuable knowledge of 
plankton composition and dynamics to be obtained (Wiebe & Benfield, 2003). However, 
traditional techniques are often time-consuming, expensive, and have limited time and space 
coverage (Saad et al., 2020). Data collection has often been restricted to ship- or station-
based measurements and static sensors placed on buoys providing time-series measurements 
at a given point (Fossum et al., 2018). These methods lack the spatial and temporal coverage 
and the consistency that is needed to understand the changes that are occurring (Estes Jr. et 
al., 2022), leading to a low spatiotemporal resolution (Saad et al., 2020) and undersampling 
(Fossum et al., 2018).   
 
Recently, new tools for ocean sampling and observation have been developed (Barange et al., 
2010; Davies & Nepstad, 2017). These include mobile robotic platforms and sensors that 
facilitate a better ocean data acquisition with a high spatiotemporal resolution. The platforms 
have become more affordable and robust in recent years and have proven useful for scientific 
exploration (Fossum et al., 2018). Sensors mounted on satellites, aircrafts and marine robots 
expand the scope of traditional sampling (Estes et al., 2021), and advances in artificial 
intelligence (AI) and machine learning (ML) allow for more autonomy (Saad et al., 2020). 
Additionally, computational science has enabled high-resolution imaging, image analysis, and 
interpretation in real-time (Saad et al., 2020).  
 
Among the new marine robots, autonomous underwater vehicles (AUVs, Bellingham & Rajan, 
2007; Sørensen et al., 2020), have proven especially useful for plankton ecology studies, as 
they can provide continuous spatial and temporal observations over the mesoscale (Johnsen 
et al., 2018; Moline et al., 2005; Saad et al., 2020). With its torpedo shape (Fig. 1), high 
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scientific payload capacity, and 8-24 hour in-water duration (Sørensen et al., 2020), AUVs are 
efficient platforms for collection of oceanographic data in situ, while being affordable and 
robust (Fossum et al., 2018). They have a set of orientation sensors and can be customized 
with different sensors measuring environmental variables as well. They are available in 
different sizes, for example, the Light AUV (LAUV, Fig. 1, Berge et al., 2020; Fragoso et al., 
2019a; Sousa, 2012; Sørensen et al., 2020). Dependent on the power supply, the range of 
an AUV can vary between 1-100 km and it can cover an area of 0,1-10 km2 (Sørensen et al., 
2020). It has the unique ability to map the ocean in 3D (longitude, latitude, and depth) and 
operates either supervised or autonomously. The autonomous nature of the AUV, as well as it 
being untethered, makes it suitable for operations in unstructured environments with limited 
accessibility, like under the ice (Berge et al., 2020).  
 
As different platforms, suited with a variety of sensors, capture different information at 
different scales in time and space, a combination of approaches and a coupling of the 
information can increase our understanding at multiple levels. It also enables adjustment of 
model parameters, analysis of performance, cross-verification, and assimilation of data 
(Fossum et al., 2018). Remote sensing satellite data, near real-time data from buoys or 
Unmanned Surface Vehicles (USVs), or arial surveys from Unmanned Aerial Vehicles (UAVs; 
e.g. drones), are some examples (Sørensen et al., 2020).  

  Figure 1: LAUV (Light Autonomous Underwater Vehicle) Roald carried by Maren Thu and 
Andreas Våge at Mausund Field Station prior to deployment. Photo: Annecken Nøland. 
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Ship-based surveys combined with traditional sampling approaches are suited for in situ 
ground-truthing of robotic data (e.g. Fossum et al., 2018). Creating such an observational 
pyramid is a prerequisite for a holistic understanding of the marine environment over large 
temporal and spatial scales (Sørensen et al., 2020). 

 

 

1.3 Environmental data 

The ocean is responding to natural variations in biotic and abiotic parameters. To understand 
how these variations are affected by climate change and how it affects the plankton community 
structure, sampling of physical and biological data is needed (Barange et al., 2010). Key 
environmental variables (KEVs), such as light, salinity and temperature gives valuable 
information about the physical ocean processes (Johnsen et al., 2020) and can affect biological 
processes directly or indirectly. For example, temperature impacts zooplankton distributions 
directly, as well as their growth (Richardson, 2008).  
 
Biological variables, such as chlorophyll a (Chl a, a proxy for phytoplankton biomass), 
zooplankton density, fish abundance, and plankton diversity provide important insights into 
how the biological environment is responding (Berge et al., 2020; Fossum et al., 2018; 
Fragoso et al., 2019a; Johnsen et al., 2020). A high concentration of Chl a relative to the 
average concentration indicates a phytoplankton bloom, and in temperate regions, a bloom 
often occurs in the spring because of calming weather conditions, stratification of the water 
column, high nutrient availability and longer photoperiods. The high abundance of 
phytoplankton serves as food for the zooplankton (Assmy & Smetacek, 2009), and a higher 
abundance of zooplankton results in greater nutrient recycling (Richon & Tagliabue, 2021) and 
a stronger grazing pressure. This can again affect the phytoplankton community in many ways 
(Attayde & Hansson, 1999). In this way, the phytoplankton and zooplankton communities are 
linked and affect each other through top-down and bottom-up controls (Assmy & Smetacek, 
2009). 
 
Biogeochemical variables, such as nutrients (Richon & Tagliabue, 2021), oxygen (Estes Jr. et 
al., 2022), total suspended material (TSM), and dissolved organic material (DOM) also have 
a strong impact on the ecosystem (Ramírez-Pérez et al., 2017). Especially carbon (C), 
inorganic nitrogen (N), silicate (Si), and phosphorus (P) are important for plankton, as these 
nutrients play essential roles in terms of phytoplankton and zooplankton physiology and food 
quality (Morel et al., 2014). Zooplankton obtain these nutrients by grazing on phytoplankton, 
and in this way, zooplankton is affected by nutrient availability in the surface ocean (Richon 
& Tagliabue, 2021). Hence, measurements of KEVs and estimates of biological components 
and community compositions are important to understand the ocean processes and dynamics, 
as they can be indicators of productivity, distribution, diversity, and ecosystem health in the 
ocean (Estes Jr. et al., 2022). Additionally, anthropogenic stressors, like chemical, sound, and 
light pollution can have additional impacts on the plankton community and the ocean health 
(Barange et al., 2010; Beaugrand, 2014).  
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1.4 Plankton analyses with silhouette camera (SilCam) 

When seeking to obtain information on plankton abundance and biodiversity, plankton net 
sampling is the traditional, and well-established method (Wiebe & Benfield, 2003). A new era 
of advanced bio-optical techniques has emerged in recent years. It has brought along methods 
such as satellite imaging of phytoplankton blooms and ship-towed equipment that enables 
high-speed imaging of plankton, such as the Video Plankton Recorder (VPR, Hablützel et al., 
2021). 
 
In the period from 2015 to 2017 (Davies & Nepstad, 2017), the silhouette camera (SilCam) 
for in situ imaging of plankton, was developed by SINTEF. This camera system can be mounted 
on platforms such as ROVs (Remotely Operated Vehicles, Brandvik et al., 2021), AUVs (Saad 
et al., 2020), or profiling frames (Davies & Nepstad, 2017). It was originally meant to measure 
gas bubbles and oil droplets, but today it is used to monitor a variety of objects, among them 
phytoplankton, holo- and meroplankton (Fossum et al., 2018; Fossum et al., 2019; Fragoso 
et al., 2019a). Fragoso et al. (2019a) showed that SilCam images can reveal faecal pellets, 
diatom chains, and marine snow, and Saad et al. (2020) presented images of copepods, 
bubbles, and fish eggs. The images resemble microscope images, albeit with lower 
magnification (Fragoso et al., 2019a).  
 
The SilCam imaging system serves as an effective and promising technique for in situ particle 
recording that, unlike plankton net sampling, is non-destructive (Davies & Nepstad, 2017; 
Fragoso et al., 2019a; Fragoso et al., 2019b; Sosik & Olson, 2007). It provides information 
on particle size distribution and concentration (Fragoso et al., 2019a) and can give valuable 
information about plankton diversity, biomass, and 3D distribution in real-time (Saad et al., 
2020). Additionally, when mounted on an AUV together with a variety of sensors, plankton 
data and other environmental data can be captured simultaneously.  
 
 

1.5 The AILARON project and plankton classification 

The integrated effort of the RCN-funded AILARON (Autonomous Imaging and Learning Ai 
RObot identifying plaNkton taxa in situ, The Research Council of Norway Project #262741) 
project has shown how a SilCam mounted on an AUV can not only capture images of plankton 
but also classify targeted plankton in situ (Saad et al., 2020). The goal of the AILARON project 
is to characterize targeted plankton in situ (Saad et al., 2020) by combining a LAUV with a 
SilCam and using robotic vision and ML to detect and classify microorganisms in the photic 
zone (Borgersen et al., 2022; Haug et al., 2021a, 2021b; Salvesen et al., 2022; Teigen et al., 
2021), creating a probability density map, and thereby autonomously targeting areas in the 
survey volume with species of interest (Oftedahl & Sørensen, 2022). More testing and 
assessment of the method are necessary to reach this goal, which this study will contribute 
to.  
 
Adaptive sampling is the process where the AUV autonomously follows a target of interest by 
continuously analysing the captured data online and thereby updating its trajectory 
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accordingly (Sørensen et al., 2020; Saad et al., 2020). In this adaptive strategy, the images 
from the SilCam are transferred to an online algorithm onboard the AUV, for plankton 
classification. This onboard processing is based on ML methods (Saad et al., 2020), where the 
algorithm is trained to detect certain plankton groups in the images. This allows for monitoring 
of plankton distribution and community composition, and potentially species-specific 
biodiversity assessments at high spatiotemporal resolution (Saad et al., 2020). 
 
Besides the adaptive sampling strategy, the AUV can also be programmed to follow a 
predefined trajectory, or it can be controlled remotely during the mission. It can then be 
programmed to follow different types of transects, such as a “yoyo” transect (up and down 
the water column) or an elevator transect (spiralling up and down the water column). It can 
also do a horizontal transect at a given depth, visit predefined geolocalization points or follow 
gradients (Fossum et al., 2018; Fossum et al., 2019; Sørensen et al., 2020). 
 

 

1.6 Overview and aim of study 

Through identification, mapping, and monitoring, appropriate knowledge about plankton 
communities can be obtained. This is crucial to understanding the varying marine ecosystem, 
especially in the context of global change research, which is constantly pushed further into 
the field of big data science through the automatic collection of large data sets (Hablützel et 
al., 2021). This ability to obtain an increased amount of data in both time and space has great 
importance for ecosystem surveillance, nature management, and monitoring of global change 
effects (Saad et al., 2020). An understanding of the biological responses also enables the 
prediction of the global change effects and hopefully mitigation of adverse effects (Hablützel 
et al., 2021). To be able to do this, utilization of new technologies is a prerequisite to providing 
information at the time and space scales needed. This study is a part of the bigger 
Interdisciplinary Algal Bloom Observation Field Experiment at Mausund Field Station 2021, 
using platforms at different levels in the observational pyramid (ground-truthing, AUV, USV, 
drone, small plane, and satellite). More specifically, this study is a part of the AILARON project, 
which is connected to AMOS (Centre for Autonomous Marine Operations and Systems, The 
Research Council of Norway Project #223254). 
 
This study aims to test the usability of a new method combining an AUV and a SilCam to 
assess zooplankton community composition in combination with KEVs, providing insights on 
spatiotemporal variations and plankton dynamics. It also aims to assess the usability of the 
SilCam system for plankton studies, as well as the performance of two chosen AI algorithms 
in plankton classification. Zooplankton net samples were obtained to provide data about the 
actual plankton community composition (ground-truthing), to align this with the SilCam 
findings of the detectability of different zooplankton groups. The gathering of KEVs by an AUV 
with a fitted sensor suite was also assessed. This data was combined with nutrient 
concentration data of nitrate (NO3

-) and phosphate (PO4
3-) obtained from seawater samples. 

Altogether, the information from the AUV sensors, the SilCam system and the ground-truthing 
was combined to give a holistic understanding of the plankton dynamics and community 
composition at Mausund and in Hopavågen during the spring of 2021. 
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2 Materials and methods 
 

2.1 Study area 

In this section, the two areas of interest, Mausund and Hopavågen, are described (Fig. 2). 
Both were visited during the spring 2021 and sampling was conducted at Mausund in April 
(13th and 14th, 20th and 21st) and in Hopavågen in May (4th and 5th). The two locations were 
chosen based on their accessibility, the productivity of the ecosystems, and their different 
degrees of exposure.  
 

2.1.1  Mausund 

The first study area was located in the Mausund bank (63.8° – 64.2°N, 8.2° − 9.0° E), which 
is an exposed area located in Froan Archipelago (Fig. 2, Fragoso et al., 2019a; Fragoso et al., 
2021). The area lies within Frøya municipality in Trøndelag county, mid-Norway (Fragoso et 
al., 2019a). The Froan archipelago is a shallow bank that consists of over 3000 islands (Fig. 
3). Because of its irregular bathymetry, primary production is facilitated through internal 
waves, wind, and tidal mixing which in turn stimulates secondary production by zooplankton. 
This also facilitates biological diversity, which is why the Froan archipelago is considered a 
biological hotspot (Saetre, 2007). It is a valuable area for the fishing and seafood industry 
(Fragoso et al., 2019a) through the catch of large scallop (Pecten maximus), edible crab 
(Cancer pagurus), Atlantic cod (Gadus morhua), and saithe (Pollachius virens). The Froan 
region also serves as a breeding ground for several organisms high up in the food web, such 
as the grey seal (Halichoerus grypus) (Jenssen et al., 2010) and the great cormorant 
(Phalacrocorax carbo) (Lorentsen et al., 2010). Knowledge about the plankton dynamics and 
distribution in this area is nevertheless limited (Fragoso et al., 2019a).  
 
The Norwegian Coastal Current (NCC) flows through the Froan Archipelago and the Mausund 
Bank. It consists of brackish water from the Baltic Sea and transports surface water 
northwards along the coast of Norway, mixing with freshwater runoff from the Norwegian 
fjords on its way (Skagseth et al., 2011). The North Atlantic Current (NAC) also flows through 
the Mausund Bank, through side branches reaching the shelf and flowing underneath the NCC 
surface water. This brings nutrient-rich, saline, and warm water to the Mausund Bank, that 
can reach the surface through coastal upwelling or internal waves (Barange et al., 2010; 
Fragoso et al., 2019a).  
 
Mausund was chosen based on its high productivity, biodiversity, and economic value due to 
commercial fisheries, as well as its dynamic KEV conditions. The 1 km2 square with sample 
points (Fig. 2) was intentionally placed in a relatively exposed area, where it did not interfere 
with the ferry or boat traffic. The size of the area allowed for use of multiple platforms with 
different ranges. Additionally, it was not far away from the Mausund Field Station, which made 
the travel time and expenses low. This allowed for multiple visits to the area of interest in one 
day.  
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Figure 2: The two sampling locations, Mausund and Hopavågen, including field stations, 
sampling stations and LAUV trajectory. The sampling station in Hopavågen is station 11. The 
map is made using ArcGis Pro. 
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2.1.2  Hopavågen 

The second area of interest was the Hopavågen lagoon, located in Agdenes, Trøndelag (Fig. 
2, 63°35'37.8"N 9°32'44.5"E). The lagoon resembles a landlocked bay with a narrow channel 
that transports seawater in and out of the bay with the tidal currents (Fig. 4). It is sheltered 
and covers an area of approximately 370.000 m2 (van Marion, 1996) with a maximum depth 
of 32 m (Moriceau et al., 2018) and 1/3 of the basin has a depth exceeding 25 m (van Marion, 
1996). Hopavågen is connected to Kråkvågfjorden through a shallow sill called Straumen. At 
low tide, the depth of the “sill” at the outlet (under the bridge) is 1.0 m and at maximum high 
tide, it is 1.7 m. Due to the shallow nature of the sill, it partly or completely prevents the 
renewal of deep water in the basin (van Marion, 1996). Previous studies of zooplankton in 
Hopavågen suggested that Straumen has a “sorting-effect”, based on the discovery that the 
diversity of plankton taxa in surface layers is lower in the bay than outside the bay. This 
indicates that most of the zooplankton in Hopavågen originates from outside the bay (van 
Marion, 1996). Straumen also allows for the daily resupply of nutrients (Sommer et al., 2004). 
A few small streams bring freshwater into the bay, but relative to the daily inflow from 
Straumen (14%), their contribution is insignificant (van Marion, 1996).  
 

Figure 3: Mausund field station and several small islands located in the Mausund Bank. Photo: 
Pål Kvaløy. 
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Stagnant deep water characterizes the hydrography in Hopavågen, separating the upper water 
column from the deep, and van Marion (1996) found that stratification of the upper layers, 
having a relatively low salinity and high temperature, takes place in May. This limited mixing 
of the deep-water can result in oxygen depletion near the bottom, resulting in the production 
of hydrogen sulphide (H2S) (van Marion, 1996). Unlike the Mausund Bank, Hopavågen only 
consists of seawater from the NCC, not the NAC.   

 

    
 
 
 

2.2 Weather conditions 

In the weeks prior to the first visit to Mausund, there had been a storm in the area, leading 
to the postponement of the trip. The first sampling of data was conducted on the 13th of April 
2021, referred to as day M1 from now on. An overview of the name and dates of the six 
sampling days, including the location and the weather conditions, is shown in Table 1. During 
sampling on day M1, highly variable weather occurred, consisting of occasionally sunny and 
cloudy weather conditions, with moments of strong winds, rain, and snowfall. Day M2 had 
calm conditions with cloudy cover and some sunny moments. In the weekend between the 
first and the second visit to Mausund, the weather was warm and sunny, with little wind. The 
nice weather continued to last until day M3 of sampling, but on day M4 it shifted to more 
windy weather, rain, and a cloud-covered sky. On days H1 and H2, the weather in Hopavågen 
was sunny with some clouds, and a relatively strong wind was experienced during sampling 
on day H2. 
 
 
 

Figure 4: Drone photography of Hopavågen, Agdenes. The boat used for sampling is visible on the 
left-hand side, and the sill is located further to the left. Photo: Annecken Nøland. 
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*Only daily average is available, potentially resulting in a conflict between observed and measured 
wind. The area of sampling is more sheltered than the location of the weather station. 
**The tide is measured from Ørland metrological station, Trøndelag. There is a delay between the time 
of high tide in the main fjord compared to when the water enters Hopavågen (van Marion, 1996).  

 

2.3 Materials 

In this section, relevant information about the AUV, SilCam, and the algorithms used for 
plankton classification is presented.  

 

2.3.1  The Light autonomous underwater vehicle (LAUV) 

The platform used to obtain data in situ was a LAUV called Roald (Fig. 5, manufactured by 
OceanScan – Marine Systems & Technology L.da, AUR-lab; Sousa, 2012). It is 226 cm long, 
weighs 35 kg and can operate down to 100 m depth while moving with a speed of 0,5-2,0 
m/s. With a full payload, it has an endurance of 9 hours, and it has a data storage of 3TB. The 
onboard software (Unified Navigational Environment, DUNE), the message based 
communication protocol (inter-module communication, IMC) and the command and control 
software (Neptus) all make up its control architecture (Pinto et al., 2012). LAUV Roald was 
mounted with a sensor suite consisting of a CTD (Conductivity, Temperature, and Depth) 
sensor (AML Oceanographic, n.d.), a DVL (Doppler Velocity Log, Nortek, n.d. ), and an oxygen 
optode (Inc., n.d.). It also had a fluorometer to measure chlorophyll a (Chl a, Turner Designs, 
2007). The sensors are presented in Table 2. A SilCam was also mounted on the LAUV (Fig. 
5), for imaging of objects present in the water column. 

Name 
of 

day 

 
Date 

(DDMMYY) 

 
Time 

(UTC/GMT+2h) 

 
Location 

 
Cloud 
cover 

Mean 
temperature 

in air (ºC) 

Mean 
wind 

(m/s) 

 
Tide (cm) 

 
M1 13.04.21 09:42-13.13 Mausund 

 

2.7 8.4* 118-215 
(rising-top) 

M2 14.04.21 08:55-09:17 Mausund 

 

5.1 8.0* 69 
(rising) 

M3 20.04.21 08:46-10:31 Mausund 

 

7.3 6.8 128-100 
(falling) 

M4 21.04.21 08:42-09:08 Mausund 

 

4.0 7.5 154 
(falling) 

H1 04.05.21 12:21-14:51 Hopavågen 

 

6.1 4.5 77-96 
(bottom-rising)** 

H2 05.05.21 10:11-11:35 Hopavågen 

 

6.8 9.2 173-116 
(falling)** 

Table 1: The six sampling days presented with date, time of sampling, location, cloud cover, mean air temperature 
(ºC), mean wind (m/s) and tide (cm). Weather data was obtained from yr.no. 
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Sensor Producer name 
and model 

Parameter measured Unit 

CTD 
(Conductivity, 
Temperature, 

Depth) 

AML 
Oceanographic: 

X2change sensors  
 

Salinity* Dimensionless 

Temperature ºC 

Depth** m 
DVL 

(Doppler 
Velocity Log) 

Nortek:  
DVL1000 

Water current velocities Hz 

Oxygen 
optode 

Xylem:  
Aanderaa Oxygen 

Optode 4831F 

[O2] µM 

Fluorometer 
 

Turner Designs: 
Cyclops-7 

[Chl a] µg/L 

Silhouette 
camera 

SINTEF: 
SilCam 

Images of plankton 
and particles 

fps 
 

 

* Measured from conductivity  
** Measured from pressure (Bar) 

 

Table 2: The sensors on the LAUV relevant for this study, including the name of the producer and 
model, the parameter they measure and the unit of the parameter. 

Figure 5: The diagram shows the LAUV mounted with a sensor suite consisting of a 
CTD, DVL and a SilCam. Its total length is presented, including a picture of the 
LAUV in situ. The figure is modified from Saad et al. (2020). 
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2.3.2  The SilCam system 

A SilCam was mounted on the LAUV during the missions, creating quasi-silhouettes of objects 
in the water column (Davies et al., 2017). The SilCam system consists of three parts: a light 
source, a water chamber, and a camera unit (Fig. 6). The background illumination consists of 
a white LED array, and a holographic diffuser helps create a diffuse and clean background. As 
the water flows through the water chamber, the objects are suspended between the light and 
the high-resolution colour camera. The camera unit then captures four frames per second (4 
fps). Although the objects are suspended at different distances (here: planes) to the camera 
unit, the telecentric receiving optics create an image where all planes in the image have a 
constant pixel size and are in focus (Fig. 6, Davies et al., 2017). The SilCam captures a volume 
of 75.6 cm3 (45 mm × 56 mm × 30 mm) in an image with a circular diameter of >108 mm. 
The optical resolution used in this project is 27.5 µm (Saad et al., 2020). 
 
 

 

 
 
 
 

 

2.3.3  Artificial intelligence (AI) algorithms  

The post-processing of the SilCam images and the classification of the captured objects were 
initially based on the PySilCam software made by Emlyn John Davies. PySilCam is a Python 
interface to the SilCam that acquires SilCam images and processes them in real-time or from 
disk (https://github.com/emlynjdavies/PySilCam). The objects (e.g. copepods, faecal pellets, 
diatom chains) were classified using a subset of ML called Deep Convolutional Neural Network 
(DCNN, Fragoso et al., 2019a). DCNN identifies patterns in the images. Using a supervised ML 
method, the deep learning algorithm is trained on a labelled data set created by a human 
domain expert, to detect objects in the SilCam images and assign these objects into predefined 
groups (Fig. 7). 

Figure 6: Schematic illustration of the optical configuration of the silhouette camera (SilCam) system, and 
visualization of how the telecentric receiving optics creates an image of the suspended objects where the 
pixel size is constant for all planes and all objects are in focus. The figure is modified from Davies & Nepstad 
(2017), Fragoso et al. (2019a) and Saad et al. (2020).  
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The second algorithm used has a new model architecture based on YOLOv5 (You Only Look 
Once version 5, https://github.com/ultralytics/yolov5). YOLO is a novel, fast approach that 
detects objects in real-time with high accuracy. It trains on full images and directly optimizes 
detection performance (Redmon et al. 2016). YOLOv5 is the latest version, making it the most 
advanced object identification algorithm available. PySilCam is based on a shallow network 
with fewer layers than the new YOLO-based model.   

 

 

2.4 Fieldwork 

2.4.1  LAUV with SilCam 

The mission plan, defining the depth, path, operational area, and type of transect, was pre-
programmed in Neptus for all sampling days. At Mausund, the LAUV was programmed to move 
up and down the water column, in a yoyo transect pattern, from 0 to 40 m depth (Fig. 8). It 
visited 10 evenly distributed stations in the 1 km2 area of interest. In Hopavågen, the LAUV 
was programmed to encircle a buoy located near the middle of the bay. It did an elevator 
transect covering the water column from 0 to 20 m depth. Both locations and the LAUV 
trajectory are presented in Figure 2. The LAUV was deployed and operated by Applied 
Underwater Robotics Laboratory (AUR-lab) personnel. The SilCam images were uploaded, 
post-processed on land and then the objects were classified using PySilCam and the new 
YOLO-based model. 

 

Figure 7. Block diagram of the classification process, obtained from Saad et al. (2020). The model 
is built offline and through machine learning the model is trained with the help of a domain expert. 
In the online prediction the onboard in situ processing of detected objects is performed. The offline 
and online process is visualized in orange and blue, respectively. The dotted arrows represent the 
predicted objects in situ, where the seen classes represent the groups the algorithm was trained 
on. The unseen classes represent the groups the algorithm was not trained on. Hence, a domain 
expert is needed to update the data set.  
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2.4.2  Ground-truthing with net hauls and seawater samples  

Zooplankton net samples and seawater samples for nutrient analysis were collected at 
Mausund on days M1 to M4, and in Hopavågen on days H1 and H2, together with Thu (2022). 
The ground-truthing was done at the same time as the LAUV followed its pre-programmed 
transect. At Mausund, the 10 stations in the 1 km2 area of interest were visited by a motorboat, 
while in Hopavågen, the single station near the middle of the bay was visited by a rowboat. 
All sample containers were marked before sampling.  
 
Zooplankton net samples were captured from station 3 (sample M1A and M3A) and station 6 
(sample M1A and M3B) at Mausund, and the station in Hopavågen (Fig. 2). They were captured 
at 30 m at Mausund, using a 200 µm WP2 zooplankton net (Fig. 9, b, 30 cm/s), and at 10-, 
15- and 20-meters depth in Hopavågen (Tab. 3) using a smaller 200 µm zooplankton net (Fig. 
9, c). The material was collected in marked plastic bottles (250 ml) prefilled with fixatives. 
Ethanol (97%) was used to preserve the zooplankton net samples, using a concentration of 
10%. When returning to the field stations, the samples were kept dark and cold.   
 

Figure 8: Launching of the LAUV by the AILARON team from motorboat at Mausund, 
and visualization of the yoyo transect (orange). Photo: Annecken Nøland 
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Figure 9: Pictures from fieldwork. a) Emptying the NTNU-made seawater sampler. Photo: 
Maren Thu. b) WP2 plankton net (200 µm) towed from a winch on the motorboat at Mausund. 
Photo: Annecken Nøland. c) A smaller zooplankton net (200 µm) used from a rowboat in 
Hopavågen. Photo: Annecken Nøland. d) Seawater sampler in situ. Photo. Geir Johnsen. e) 
Seawater sample filtrated through a 200 µm sieve into a brown bottle. Photo: Maren Thu.  
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Name of Date Location Net samples Name of 

day (DDMMYY) 
 

Sample Time 
(UTC/GMT+2h) 

Depth 
(m) 

net sample 

M1 13.04.21 Mausund A 09:08 30** M1A 
   

B 11:55 30** M1B 

M2 14.04.21 Mausund - - - - 

M3 20.04.21 Mausund A 09:15 30 M3A 
   

B 10:09 30 M3B 

M4 21.04.21 Mausund - - - - 

H1 04.05.21 Hopavågen A 12:37 10 H1A 
   

B 12:49 15 H1B 
   

C 12:56 20 H1C    
D 14:31 10 H1D 

   
E 14:34 15 H1E    
F 14:39 20 H1F 

H2 05.05.21 Hopavågen A 10:41 10 H2A 
   

B 10:46 15 H2B    
C 10:52 20 H2C    
D 11:22 10 H2D    
E 11:25 15 H2E    
F 11:30 20 H2F 

* Because of strong winds, the boat was drifting away from the sample point and the zooplankton net 
achieved an oblique angle in the water column. To reach 30 m depth, the rope was dragged out to 60 
m (marked on the rope), resulting in an increased filtration period.  
 
Seawater samples for nutrient analysis were captured at all stations and multiple depths (0, 
5, 15, and 20 m, Appendix A) using a bucket (for surface samples) and a seawater sampler 
made by NTNU (Fig. 9, a, d). The water was filtrated through a 200 µm sieve while transferred 
to a brown bottle (Fig. 9, e). When returning to Mausund and Sletvik Field Stations, the 
seawater samples were filtrated through Whatman GF/F glass-fibre filters (25 mm in diameter, 
pore size 0.4 µm) using a vacuum pump with gentle pressure (Fig. 10, left), excluding any 
organic material. Approximately 40 ml of the filtered seawater was then transferred to a test 
tube (Fig. 10, right) and placed in the freezer. Three replicates (n=3) were taken for each 
seawater sample, corresponding to a specific station and depth. 
 

Table 3: Date and location for the six sampling days, including net sample names, time of sampling 
and depth. Samples M1A and M3A were taken at station 3. Samples M1B and M3B were taken at 
station 6. Net samples from Hopavågen were taken from station 11. See Figure 2 for stations, and 
Table 8 and 9 in Appendix A for seawater samples. 
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2.5 Laboratory work 

The fixated net samples were analysed at the zooplankton lab at TBS (Trondhjem Biological 
Station). Approximately five subsamples were taken from each sample. They were poured 
through a 200 µm sieve onto a counting tray or Petri’s dish, and the sieve was then rinsed 
with filtered seawater to collect all the material. The material was investigated with a 
stereomicroscope with an Axiocam ERc 5s camera (ZEISS, n.d.) allowing live images to be 
sent and observed on a computer (Fig. 11). Pictures of the individuals were obtained to do a 
qualitative analysis of the zooplankton community composition. Where there was a significant 
increase in the abundance of a certain plankton group relative to other groups or samples, it 
was noted.   

The seawater samples for nutrient analyses were thawed and transferred to smaller test tubes 
prior to the analysis of phosphate (PO4

3-, µg/L) and inorganic nitrate (NO3
-, µg/L) present in 

the samples, using the autoanalyzer (Flow Solution IV from O.I.Analytical). The nutrient 
analysis was conducted according to the Norwegian Standards; NS-EN-ISO6878 for PO4-P, 
and NS4745 for NO3-N (NS4745, 1991; NS-EN ISO 6878, 2004). 

 

Figure 10: Left: The seawater filtration process showing the funnel (250 ml) for the seawater sample 
(n=3) mounted on a filtering unit containing a plastic grid (filter holder) with a GF/F filter. The 
filtering unit was placed in a silicon stopper on top of a conical flask containing the filtrated water. 
The filtration was assisted by the vacuum pump, connected with a rubber hose. Right: A marked test 
tube used as a container for one (n=1) filtrated seawater sample, later analyzed for nutrient 
concentration. Photo: Annecken Nøland. 
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2.6 Data analyses 

2.6.1  Net sample zooplankton community analysis 

The individuals in the pictures were identified according to Coastal Zooplankton (Larink & 
Westheide, 2011) and WoRMS (World Register of Marine Species (Horton et al., 2022)), with 
help from more experienced taxonomists at NTNU. They were then placed into folders 
corresponding to their respective plankton groups. Figure 12 gives an overview of the 
morphological features of the taxonomic groups most relevant for this study (see Appendix B 
for more groups). The images that best visualized the characteristic features of each plankton 
group were collected in folders. These folders were shared with AILARON to function as a 
labelled data set in future ML of another AI algorithm.  

Figure 11: Net sample analysis. Left: Sample M1A and a subsample, including the sieve (200 µm) and 
seawater used to obtain it. Photo: Annecken Nøland. Right: The stereomicroscope with camera system 
(Axiocam ERc 5s) attached at the top, enabling images of separate individuals to be obtained (see inset 
photo). Photo: Annecken Nøland. 
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Figure 12: Relevant taxonomic groups of zooplankton. Arrows show morphological characteristics. Figure 
modified from Conway (2012). For more groups see Appendix B.  



21 
 

2.6.2  SilCam classification and the labelling process 

The PySilCam (see 2.3.3) was trained on 7738 images, where 657 of them were copepods, 
514 were faecal pellets and 850 were diatom chains. The rest of the images were used for 
bubbles, oil, oily gas, and the group "other". The reported training accuracy was 95%, but in 
the analysis, objects with the highest probability of being classified to a given class 
compared to the other classes were classified, even if the probability did not exceed 95% 
(because it rarely did).  
 
The new YOLO-based model (see 2.3.3) needed to be trained on a labelled data set, so raw 
SilCam images from the fieldwork, including some images from fieldwork in Hopavågen in 
September 2021, were labelled manually. Of the 213 065 images captured, slightly over half 
of the images were checked by Annette Stahl, whereas only ~5% of them contained biological 
material of interest. 3619 (~60%) of these images were labelled in the software Roboflow 
(Dwyer & Nelson, 2019) with help from Maren Thu (Fig.13). Roboflow is a computer vision 
platform here used for annotation of images for ML. The objects were labelled into groups of 
e.g. Copepoda, Cnidaria, Echinodermata, faecal pellets, and bubbles. Several objects could 
not be identified and were therefore separated into groups with similar features, such as 
objects with round or linear morphology, creating the group “Other”. The idea of also labelling 
these objects was to see which and how many of the objects were unidentified during 
classification. The algorithm was then trained on the labelled data set and used to classify the 
objects in the SilCam images into the different groups. Montages showing detected objects 
identified as copepods, at different depth intervals, were created by Annette Stahl (from the 
AILARON team). This was also done for the group “Other”. It is worth mentioning that this 
thesis presents the very first version of the entire pipeline of the YOLO-based model. 

In the post-processing of the SilCam images using the YOLO-based algorithm, the images 
were normalized and scaled. Considering scaling, the images are resized so that they all have 
the same size, thus not necessarily containing their original size. A more detailed description 
of the post-processing is described below, from background correction (1 to 3), cropping (4) 
and then normalization (5 and 6): 

1) A median image, M, is created from five images (I). 
2) A background-corrected image, C, is computed (C= |I-M|), creating an absolute value 

of the difference in I and M, so that all values are positive. This gives an image with a 
black background. 

3) The image is inverted and reflectance, R, is obtained through R = 255-C, for all three 
colour channels. 

4) The regions of interest (ROI) containing the detected object is then cropped (the sub-
image is extracted). 

5) The minimum and maximum values of the grey values are computed and linear 
mapped to the new range with MIN=0 to MAX=255. This increases the contrast of the 
image. 

6) By thresholding (and hole-closing) a mask is computed; a binary image indicating the 
location of an object in the image. The parts in the mask image where no object is found 
have a pixel value of 0, while the parts where an object is present have a pixel value of 1. 
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Knowing in which pixels the object is found, the rest of the image can be neglected, and 
the object can be visualized without the noisy background. The non-object pixels are all 

set to 255 (white). 

The PySilCam algorithm was assessed based on its identification accuracy and ability to detect 
different taxonomic groups that were discovered in the net samples. For the YOLO-based 
model, the labelling process was assessed, as well as the results from the classification of 
copepods. The same principle as for copepods applies to the other groups labelled in Roboflow. 
An overall assessment of the functionality of the SilCam system in plankton studies was then 
done, dealing with the optical resolution of the SilCam and its subsequent taxonomic resolution 
and its effectiveness. 

 

 

 

 

 

 

Figure 13: Raw images from the SilCam system imported in Roboflow and manually labelled by drawing 
a polygon and assigning the objects to different groups. Shown here (from bottom left) is an 
echinoderm, a copepod, a hydromedusa (grouped as Cnidaria), detritus (grouped as “Other”) and two 
overlapping cnidarians.  
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2.6.3  Data analysis of Key Environmental Variables (KEVs) 

KEV data collected by the sensors on the LAUV (Tab.2) was analysed using RStudio, an 
integrated development environment for the statistical software R. Merged data of the salinity, 
temperature (ºC), and depth (m) measurements from each mission were obtained as CSV 
files from the CTD through Neptus. Dissolved oxygen [µM] and chlorophyll a (µg/L) 
measurements were obtained in the same way from the oxygen optode and the fluorometer, 
respectively. The CSV files, including the navigation data, were exported to RStudio and plots 
were generated mainly using the packages ggplot2, dplyr and cowplot. See Thu (2022) for a 
principal component analysis (PCA) of the effects of the KEVs on the phytoplankton biomass 
and community structure.  
 
The nutrient data obtained from seawater samples were analysed using Excel and RStudio. 
The mean of the three replicates (n=3) for each seawater sample was calculated in RStudio 
using the group_by() and the summarise() function. The packages ggplot2, dplyr, and 
RColorBrewer were used to plot the measurements for each day, separating the different days 
and depth by colour and point shapes. A boxplot of the measurements was also created using 
the function geom_boxplot(), showing the distribution of the data. 
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3 Results  

3.1 SilCam montages from PySilCam  

Presented here are montages from day M1 (Fig. 14) created by the PySilCam. The identified 
objects are those with the highest probability of being classified to a given group. This is a 
collection of various objects, some relatively easy to identify (marked with a green circle) and  

Figure 14: Montages of post-processed SilCam sub-images of detected objects from day 
M1 from 0 to 41 m depth, obtained with PySilCam. Green circles mark examples of 
identifiable objects; bubble (A), copepod (B, C), detritus (D), faecal pellet (E). Yellow 
circles mark examples of unidentifiable objects.  
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some unidentifiable (marked in yellow). Copepods, bubbles, detritus, and faecal pellets are 
detectable, but smaller objects with less distinct characteristic features cannot be identified to 
any of the given classes with certainty.  

 

3.2 SilCam montages of classification results from the 
YOLO-based model   

The objects in the SilCam images classified as copepods by the YOLO-based model were 
gathered in montages. Figure 15 gives an example of the montages of objects classified as 
copepods before post-processing of the images, showing the depth interval 20-30 m on day 
M1. These images are sub-images from the SilCam images, thus retaining the same optical 
settings, background, and original size relative to each other. They are the basis for the further 
post-processing. The montages for the different depth intervals from day M1 (Tab. 4) and M3 
(Tab. 5) contain the post-processed images where the objects are normalized and scaled (see 
2.6.2). Montages of objects classified as belonging to the group “Other” are presented in 
Appendix C.  

The montages of the post-processed images classified as copepods (Tab. 4 and 5) showed 
mostly copepods. Still, in a lot of the images only the internal parts of the copepods were 
visible, thereby losing characteristic morphological features. Some of the objects were also 
too blurry to identify. The montages contained images of detritus, faecal pellets, and bubbles, 
but no other taxonomic groups were present in the copepod montages, nor in the montages 
of the group “Other” (Appendix C).  

A collage of the best images of copepods found in the SilCam montages from day M1 and M3 
is presented in Figure 16, and a collage of other objects misclassified as copepods found in 
the copepod montages is presented in Figure 17. The latter shows detritus, bubbles, faecal 
pellets, and unidentifiable objects and indicates which forms and features the classifier fails to 
separate from the copepods. Not included in the collages are the sub-images where no object 
is visible, leaving only a blank image, but this is also an important finding. 
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Figure 15: Montage of objects of interest in the SilCam images 
classified by the YOLO-based model as copepods. The images are from 
day M1, and from the depth interval 20-30 m. They are not post-
processed and are in their original size relative to each other.  
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COPEPOD MONTAGES 
Normalized objects – scaled 

Depth (m)                                          DAY M1 
 
 
 
 
 
 
 
 
 
 

0-10 

 

Table 4: Montages of objects in the SilCam images from day M1 classified by the YOLO-based as copepods, 
presented for the depth intervals 0-10, 10-20, 20-30, and 30-40 m. The objects are normalized, and the 
images are scaled.  

(Table 4 proceeds on the next page) 
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(Table 4 proceeds on the next page) 
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COPEPOD MONTAGES  
Normalized objects - scaled 

Depth (m)                                          DAY M3 
 
 
 
 
 
 
 
 
 

 
 

0-10  

 

Table 5: Montages of objects in the SilCam images from day M3 classified by the YOLO-based model as 
copepods, presented for the depth intervals 0-10, 10-20, 20-30, and 30-40 m. The objects are normalized, 
and the images are scaled. 

(Table 5 proceeds on the next page) 
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(Table 5 proceeds on the next page) 
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Figure 16: A selection of classified copepods from the SilCam 
montages using the YOLO-based model classification (Tab. 4 and 
5). The copepods are visualized in their in situ orientation to the 
camera.  
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3.3 Detection of zooplankton groups in SilCam images  

For assessment of the detection of the chosen plankton groups in the SilCam images, the 
raw images labelled in Roboflow were used. This was done due to complications with data 
retrieval of classified SilCam images (see 4.1.6). Table 6 shows the groups detected in the 
raw SilCam images. Copepods and cnidarians were most detectable, including faecal 
pellets. Some round objects considered as the phytoplankton diatom Coscinodiscus sp. 
were observed and labelled, as well as one Decapoda, one Polychaeta larvae, and one 
more developed echinoderm.  

 

 

 

 

 

 

 

Figure 17: A selection of other objects misclassified as copepods from the 
SilCam montages created from the YOLO-based model classification (Tab. 4 
and 5). The images show detritus, bubbles, faecal pellets, and objects out of 
focus and with low optical resolution. Some of the images are also 
overexposed, making only a part of the object visible.   
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*Some of the objects could belong to this group, but a higher optical resolution would be needed to 
confirm this.  

 

3.4 In vivo analysis of zooplankton community composition 
in net samples  

This section presents the taxonomic zooplankton groups detected in the net samples 
through stereomicroscopy and imaging, including some other selected groups. The groups 
are presented through stereomicroscope images and then the manual inspection of the 
community composition in the separate net samples is presented in tables.  

 

3.4.1  Net sample groups 

The net samples (Tab. 3 and 7) analysed in vivo contained several zooplankton groups, some 
of which are presented in Figure 15 to 22. The figures show species lying in different directions 
related to the lens, as to give a perspective of how the SilCam might capture them floating in 
the water masses. This is to visualize how the AI algorithm must be trained on several floating 
individuals to be able to identify a species from several directions and angles. Figure 12 shows 
characteristic morphological features that are used to identify the plankton groups. The 
species presented in the collages were identified to the highest taxonomic level possible from 
the stereomicroscope images. Some selected groups of other marine objects drifting in the 
water column together with the zooplankton are also included (Fig. 27 and 28). The groups 
(eggs, phytoplankton, and faecal pellets) were chosen based on their abundance, size (they 
are visible in the stereomicroscope), and their importance in the zooplankton community.  

Detection of SilCam Detection of SilCam 
Crustacea 
Copepods 
Copepod nauplii  
Cirripedia  
Decapoda 

 
Yes 
No 
No 
Yes 

Mollusca 
Bivalvia 
Gastropoda 

 
No 
No 

Bryozoa larva No Radiolaria No 
Echinodermata 
larva 

Yes Eggs  No* 

Cnidaria Yes Phytoplankton 
Dinoflagellata 
Diatoms 
Coscinodiscus sp. 

 
No 
Yes 
Yes 

Annelida 
Polychaeta larva 

 
Yes* 

Miscellaneous  
Faecal pellets 

 
Yes 

Table 6: Detection of zooplankton groups present in the net samples (see 
section 3.4) in the raw SilCam images during the labeling process, including 
eggs, phytoplankton, and faecal pellets.   



35 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 18: Selected stereomicroscope images of copepods from the net samples, lying in different orientations 
relative to the lens. From top left: a-h) Calanoid copepods.  

 

Figure 19: Selected stereomicroscope images of other crustaceans from the 
zooplankton net samples. a-b) Ventral and lateral view of Cirripedia nauplius 
(Barnacle larva), Balanus sp., c) Copepoda nauplii, d) Decapoda, e) Decapoda, 
Carcinus maenas, f) Decapoda, Pagurus bernhardus (hermit crab). 

CRUSTACEA: OTHER 

CRUSTACEA: COPEPODA 
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Figure 21: a-d) Radiolaria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

BRYOZOA LARVA 

Figure 20: a-d) Bryozoa larva. 

 

RADIOLARIA 

NON-CRUSTACEAN ZOOPLANKTON 

CNIDARIA POLYCHAETA LARVA 

Figure 22: a-b, d) Spionidae larvae, c) Nereididae larvae.  Figure 23: a) Hydrozoa indet, b) Rathkea octopunctata, 
c) Hydromedusae, d) Obelia sp.  
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ECHINODERMATA  MOLLUCA 

Figure 24: a, e, f) Echinodermata larva, b) Ophiuroidea 
larva, c) Ophiothrix sp. (Common brittle star). 

Figure 25: a-c) Bivalvia, d-f) Gastropoda.  

 

EGGS PHYTOPLANKTON  

Figure 26: a-d) Gastropod Littorina littorea (different 
developmental stages), e) Fish egg, f) egg (unknown). 

 

Figure 27: a-c) Dinoflagellata (Dinophyceae), Tripos 
longipes (a), Tripos macroceros (b), Tripos fusus (c), d-f) 
Diatoms (Bacillariophycea), Coscinodiscus sp. (d, e), and 
Chaetoceros sp. (f). 

OTHER ORGANISMS AMONG THE ZOOPLANKTON 
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3.4.2  Zooplankton community composition in net samples   

An overview of the zooplankton groups present in the net samples (Tab. 7) was created to 
show the actual zooplankton groups present in the water during sampling and investigate 
qualitative differences in the zooplankton community composition. Only the zooplankton 
groups that were most abundant and that could be identified to a certain taxonomic level were 
included. As also associated groups (eggs, certain phytoplankton groups, and faecal pellets) 
were detected in most samples, an overview of their presence or absence is shown in Table 
6. A high abundance of a given group relative to other groups or samples is noted with “xx” 
but note that this was not a proper quantitative analysis. See Thu (2022) for phytoplankton 
groups present in phytoplankton net samples gathered during the same fieldwork.  

On day M1, two net samples were taken: sample M1A (from station 3) and sample M1B (from 
station 6) (Tab. 3, Fig. 2). In sample M1A a relatively high abundance of copepods of different 
sizes was observed. Among the zooplankton groups, the copepods dominated, but there were 
also a lot of copepod nauplii and Cirripedia (Fig. 19). Some Decapoda, Bryozoa larvae, and 
Gastropoda were also found in the net sample (Tab. 7). In M1B, a few Echinodermata larvae 
were also detected. More eggs and diatom chains (more specifically Coscinodiscus sp.) were 
detected in both samples, but no dinoflagellates (Tab. 8). Some faecal pellets were present. 
Overall, compared to the net samples from later samplings, samples M1A and M1B contained 
a lot of material, had a high dominance of copepods, but had a somewhat lower biodiversity. 

On day M3, net samples M3A and M3B were collected from 30 m depth at stations 3 and 6, 
respectively (Tab. 3, Fig. 2). In sample M3A, it was still a high abundance of copepods, but 
not as high as on the first visit to Mausund. Sample M3A also contained a lot of Cirripedia and 
Echinodermata larva, including some copepod nauplii, a few Decapoda, and Bryozoa (Tab. 7). 
Sample M3B had significantly fewer copepods, Cirripedia and Echinodermata larva, but more 
Bryozoa larva. It also had one Bivalvia and one Polychaeta larvae. Considering non-
zooplankton groups, both net samples consisted of eggs, faecal pellets, phytoplankton (very 
little), and detritus (Tab. 8). More faecal pellets were present in this sampling compared to 
the first. 

In Hopavågen, the net samples (H1A to H2F) consisted of significantly less material than at 
Mausund. The samples contained more detritus and some of it stuck to gelatinous secretes 
creating aggregates together with plankton. There were relatively few copepods and copepod 
nauplii present at all depths, and Decapoda was only observed in net samples from day H1 
(Tab. 7). Some Cirripedia, Bryozoa larvae, and Polychaeta larva were present, and more 
Mollusca was present than at Mausund. Also, net samples from Hopavågen included Cnidaria 
and Radiolaria, which were not present at Mausund. Various gastropod eggs from Littorina 
littorea and fish eggs (Fig. 26) were present on all days, including faecal pellets and 
phytoplankton (Tab. 8). The faecal pellets had a lower optical density than those at Mausund 
and were less abundant. There were also significantly more diatom chains and dinoflagellates 
in Hopavågen, especially on day H2.  
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Table 7: Presence (x) or absence (-) of selected groups of holo- and meroplankton in the net samples from Mausund (M1A to M3B) and Hopavågen (H1A to H2F, 
Tab. 3) detected and photographed in the stereomicroscope. A high abundance relative to other groups or samples is marked with xx. The subphylum Crustacea 
is divided into subclass Copepoda, Copepoda nauplii, infraclass Cirripedia, and the order Decapoda. The phyla Bryozoa, Echinodermata, and Cnidaria are presented. 
The organisms from phylum Annelida are all Polychaeta larvae and the phylum Mollusca is divided into class Bivalvia and class Gastropoda (snails). The subphylum 
Radiolaria are protozoans. Images of each group are presented in Figures 18 to 25.   

  CRUSTACEA BRYOZOA 
LARVAE 

ECHINODERMATA 
LARVAE 

CNIDARIA  ANNELIDA MOLLUSCA RADIOLARIA  
Copepoda Copepoda 

nauplii 
Cirripedia Decapoda Polychaeta 

larvae 
Bivalvia Gastropoda 

M1A xx xx xx x x - - - - x - 

M1B xx xx xx x x x - - - x - 

M3A xx x xx x x xx - - - x - 

M3B xx x x x x x - x x - - 

H1A x x x - x x - - x x x 

H1B x x x - x x x x x x - 

H1C x x x x x x x xx x xx x 

H1D x x x - x xx - x x x x 

H1E x x x x x x x x x x - 

H1F x x x - x x x x - x x 

H2A x x x - x x - x x x x 

H2B x x x - x x x x x x - 

H2C x x x - x x x x - x x 

H2D x x x - x x - x - x x 

H2E x x x - x x xx x x x x 

H2F x x x - x x x x - x x 
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EGGS PHYTOPLANKTON MISCELLANEOUS  

Dinoflagellata Diatom chains Coscinodiscus sp. Faecal pellets 
M1A xx - x xx x 
M1B xx - x xx x 
M3A x - x x xx 
M3B x x x x xx 

H1A x xx xx x x 
H1B x x xx x x 
H1C x x xx x x 
H1D xx xx x x x 
H1E x x x x x 
H1F x x xx x x 
H2A x x x x x 
H2B x x x x x 
H2C x x xx x x 
H2D x x xx x x 
H2E x x xx x x 
H2F x x x x x 

Table 8: Presence (x) or absence (-) of eggs, phytoplankton, and faecal pellets in the net samples from 
Mausund (M1A to M3B) and Hopavågen (H1A to H2F, Tab. 3). A high abundance relative to other samples 
or other groups or samples is marked with xx. Phytoplankton is divided into the phylum Dinoflagellata 
(Dinophyceae) and the class/phylum Diatom. The diatoms are divided into chain-forming ones and the 
diatom genus Coscinodiscus. Images of the groups are presented in Figures 26 and 27.  
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3.5 Key Environmental Variables (KEV) data from the LAUV  

In this section, the data gathered from the environmental sensors onboard the LAUV is 
presented for each sampling day and for the depth range pre-programmed in the mission plan.   

 

3.5.1  Seawater temperature  

For days M1 and M2, on the first visit to Mausund, the seawater temperature was relatively 
homogenous throughout the water column down to 40 m depth. Figure 28 shows how the 
temperature was approximately 6 ºC on both days. On the second visit to Mausund (days M3 
and M4), the temperature was slightly higher overall and increased towards the surface. A 
weak stratification could be observed at approximately 20 m on day M3 and M4, with warmer 
water in the upper layer, although a more scattered distribution of measurements was 
observed for day M3. In Hopavågen (days H1 and H2), an increase in temperature was 
observed from 20 m towards the surface (Fig. 28). On day H1, the increase was relatively 
constant, but with a weak stratification layer at about 5 and 15 m. On day H2, three 
stratification layers were observed. In the upper 7 meters, the temperature was relatively 
constant at around 7 ºC, but below 7 m it decreased to 6 ºC at 15 m, before further decreasing 
to approximately 5 ºC at 20 m.  

 

 

 

 

Figure 28: Temperature (ºC) measured by the CTD sensor onboard the LAUV. Measurements 
were taken from 0 to 40 m at Mausund (days M1 to M4) and from 0 to 20 m in Hopavågen (days 
H1 and H2).  
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3.5.2 Salinity 

As for temperature, the salinity was relatively homogenous on the first visit to Mausund (days 
M1 and M2, Fig. 29). Except for scattering measurements in the surface layer, the salinity had 
a constant value at around 33.5 on day M1, with a slight overall increase on day M2. On day 
M3, the measurements were more scattered and a slight increase in salinity was detected 
below 20 m. The salinity varied little on day M4. In Hopavågen, the salinity was overall lower. 
On day H1, it was relatively homogenous around 32.5, but with scattered measurements of 
lower values. On day H2 the salinity was homogenous down to approximately 7 m before it 
increased towards 15 m depth. From 15 to 20 m depth the salinity varied from 32.5 to 32.8.  

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Salinity measured by the CTD sensor onboard the LAUV. Measurements were taken 
from 0 to 40 m at Mausund (days M1 to M4) and from 0 to 20 m in Hopavågen (days H1 and H2).  
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3.5.3 Dissolved Oxygen  

The concentration of dissolved oxygen, [O2], was also relatively homogenous throughout the 
water column on days M1 and M2 (Fig. 30). A concentration between 285 and 288 µM was 
observed for day M1, while it for day M2 was between 284 and 289 µM. An increase in [O2] 
towards the surface was observed for days M3 and M4, from approximately 285 to 300 µM 
and 289 to 350 µM, respectively. A stratification layer may have been present at 20 m on day 
M3. On day H1, in Hopavågen, the measurements showed a very different pattern, with a very 
low [O2] in the surface layer and then highly increased and scattered measurements from 5 
m and down. It also has a pronounced outlier at around 400 µM. Day H2, on the other hand, 
showed a homogenous value at about 325 µM down to 10 m, then a relatively sharp decrease 
down towards 250 µM at 20 m depth. A stratification layer was, therefore, present at 10 m 
depth. 

 

 

 

 

 

 

 

 

 

Figure 30: Concentration of dissolved oxygen (µM) measured by the oxygen optode onboard the 
LAUV. Measurements were taken from 0 to 40 m at Mausund (days M1 to M4) and from 0 to 20 m in 
Hopavågen (days H1 and H2). 
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3.5.4 Chlorophyll a concentration 

The concentration of chlorophyll a, [Chl a], was measured as a proxy for phytoplankton 
biomass. Noise in the surface, due to scattering from bubbles influencing the fluorometer, was 
removed. On days M1 and M2, the concentration kept a constant value of 0.75 µg/L (Fig. 31) 
from approximately 15 m and down. On days M3 and M4, the [Chl a] were overall higher 
(mostly >1.00), showing an increased concentration from the surface down to 5 and 10 m, 
respectively, before decreasing towards 40 m depth. In Hopavågen, the [Chl a] varied greatly 
between day H1 and day H2, so mark that the scales in Figure 31, therefore, are different. A 
distinct layer was present at around 15 m depth on both days. On day H1 the [Chl a] increased 
from almost 0 µg/L in the surface layers, to 18 µg/L at 15 m, and then decreased to 2.5 µg/L 
at 20 m depth. On day H2, the [Chl a] was also close to 0 µg/L in the surface layer, and it 
increased towards 7 µg/L at 15 m before it decreased again. 

 

 

 

 

3.6 Nutrient availability   

The concentration of nitrate, [NO3
-], and phosphate, [PO4

3-], in the seawater was analysed 
from the seawater samples (Appendix A) collected from the 11 sampling stations (Fig. 2). Due 
to the highly dynamic exchange of water masses at Mausund, the separate stations were not 
accounted for, but rather the whole 1 km2 area of interest. Here, the concentration of nitrate 
(Fig. 32) and phosphate (Fig. 34) is presented, including boxplots for visualization of the 
distribution of the data, the outliers, and the median (Fig. 33 and 35). 

Figure 31: Phytoplankton biomass, measured as chlorophyll a concentration (µg Chl a/L) by the 
fluorometer onboard the LAUV. Measurements were taken from 0 to 40 m at Mausund (days M1 to 
M4) and from 0 to 20 m in Hopavågen (days H1 and H2). Mark that the scale is different in H1 and 
H2 due to high values in H1. See Thu (2022) for ground-truthing values from filtrated seawater 
samples.  
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3.6.1 Nitrate 

During the first visit to Mausund (days M1 and M2), the [NO3
-] were between 75 and 90 µg/L, 

with a higher nutrient availability at 15 m depth than at the surface on day M1 (Fig. 32). On 
day M2 the [NO3

-] at the surface had increased to the same value as that on 15 m depth on 
day M1 (Fig. 33). The results from days M3 and M4 showed a reduced nitrate availability on 
the second visit to Mausund. There was no distinct difference between the [NO3

-] at the surface 
and 15 m depth on day M3, but a reduced concentration was observed in the surface layer on 
day M4 compared to day M3. In Hopavågen, measurements from four different depths were 
taken and all of them had a much lower [NO3

-] than at Mausund. Measurements from day H1 
were around 5 µg/L. No distinct difference in [NO3

-] was observed between the different depths 
on day H1, but on day H2, a higher concentration was observed at 20 m depth (Fig. 33).  

 

 

 

 

Figure 32: Concentration of nitrate (NO3
-) (µg/L) measured from seawater samples collected 

at 0-, 5-, 15- and 20-meters depth on days M1 to M4, H1 and H2.   
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Figure 33: Boxplot of the concentration of nitrate (NO3
-) (µg/L) measured from seawater 

samples collected at 0-, 5-, 15- and 20-meters depth on days M1 to M4, H1 and H2. The 
boxplot shows the median (horizontal line) the lower and upper quartile (box) and the 
maximum and minimum values (whiskers). Outliers are visualized as a red circle.  
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3.6.2  Phosphate 

As for nitrate, the concentration of phosphate, [PO4
3-], was highest on the first visit to Mausund 

(over 15 µg/L) and then reduced on the second visit (around 12 µg/L, Fig. 34 and 35). The 
[PO4

3-] was higher at 15 m than at the surface on day M1, but on day M2, the [PO4
3-] in the 

surface had increased to that of 15 m the previous day. No distinct difference was observed 
for the [PO4

3-] of different depths on day M3. A reduction in [PO4
3-] was observed in the surface 

layer on day M4 compared to day M3. Hopavågen had a much lower [PO4
3-] on both days, but 

with a higher [PO4
3-] at 20 m on day H1. On day H2 the surface concentration was similar to 

that on day H1, but the [PO4
3-] at 5, 15 and 20 m on H2 was as high as that on 20 m on day 

H1. The [PO4
3-] on these depths were also more distributed.  

 

 

 

 

 

Figure 34: Concentration of phosphate (PO4
3-) (µg/L) measured from seawater samples collected 

at 0-, 5-, 15- and 20-meters depth on days M1 to M4, H1 and H2.   
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Figure 35: Boxplot of the concentration of phosphate (PO4
3-) (µg/L) measured from 

seawater samples collected at 0-, 5-, 15- and 20-meters depth on days M1 to M4, H1 and 
H2. The boxplot shows the median (horizontal line) the lower and upper quartile (box) and 
the maximum and minimum values (whiskers). Outliers are visualized as a red circle. 
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4 Discussion 
This study aimed to assess how an AUV with a fitted sensor suite and a SilCam can be used 
to analyse KEVs and zooplankton community composition data. Although being a part of 
projects focusing on several layers in the observational pyramid, this study presents the 
combined use of an LAUV and a SilCam system, as well as seawater and net samples, to meet 
the aims of this specific study. See Thu (2022) for ground-truthing of phytoplankton combined 
with the LAUV data. Only major findings will be discussed, including challenges and future 
perspectives.  

 

4.1 The SilCam System as a method for plankton studies  

The SilCam system has shown to have great potential for plankton studies (Davies et al., 
2017; Fragoso et al., 2019a; Fragoso et al., 2021), also in the framework of this study. Its 
ability to image objects distributed in the water column is valuable for the identification, 
mapping, and monitoring of the plankton community (Ludvigsen & Sørensen, 2016; Saad et 
al., 2020). It enables in situ imaging and unlimited storage of visual information that can be 
revised at a later date (Conradt et al., 2022), which was done in this project. Mounted on an 
AUV, the SilCam can capture images from large spatiotemporal scales (Berge et al., 2020; 
Saad et al., 2020), such as the 1 km2 survey area at Mausund, providing information about 
the plankton community, distribution, and abundance (Saad et al., 2020). During this master 
project, some challenges and constraints related to the method were experienced. These are 
reviewed to shed light on the areas of improvement.  

 

4.1.1  Optical resolution  

The spatial resolution of the SilCam sensor (27.5 µm per image pixel) is hereby referred to as 
optical resolution to distinguish it from the spatial coverage of the LAUV (Fig. 9.2 in Sørensen 
et al. 2020). It enabled the identification of copepods, cnidarians, and faecal pellets, but 
objects smaller than this were rarely identifiable. By increasing the optical resolution, the 
imaging area would be reduced, and a higher imaging frequency would be needed to cover 
the same volume of water (Kalmbach et al., 2017). The smaller imaging area could also have 
led to the loss of identification of bigger organisms, like cnidarians. In the labelling process in 
Roboflow, several objects with low optical resolution were detected, but could not be identified. 
They were labelled as “Other”. With a higher optical resolution, these objects could maybe be 
identified as objects with differences in morphology – thus making identification at a higher 
taxonomic level possible. The low optical resolution also made it hard to differentiate between 
sharp and diffuse morphological features, which is elucidated by comparison of the SilCam 
and net sample images of copepods (Fig. 16 and 18, respectively). Overall, the optical 
resolution used in this study was best suited for the detection of adult copepods (medium size 
is typically 1-2 mm, (Tseng et al., 2009) and possibly cnidarians small enough to fit the 
imaging area. A higher optical resolution is advised for the detection of smaller 
mesozooplankton and morphological traits needed for taxonomic identification, and a 
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significantly higher resolution is advised for the identification of phytoplankton. The optimal 
optical resolution is dependent on the group of interest, but ZooSCAN, which has an optical 
resolution of 10.6 µm has proved to capture mesozooplankton well (Gorsky et al., 2010). 

The imaging flow-cytobot (IFCB) presented in Kalmbach et al. (2017) had a considerably 
higher optical resolution (∼1 μm) than the SilCam, allowing for the detection of phytoplankton, 
but losing information about larger organisms. The high optical resolution only allowed for 
capturing of 5 mL of seawater, much less than the SilCam did (75.6 mL). Additionally, the 
higher sampling rate (4 fps) of the SilCam enables a more detailed plankton distribution data, 
compared to the IFCB, only sampling every 20 min (Kalmbach et al., 2017). Davies & Nepstad 
(2017) compared the SilCam to the LISST-100x (Laser In Situ Scattering and 
Transmissometer), concluding that LISST-100x was better at discriminating between small 
objects, but that the SilCam was better at capturing the larger objects and at higher 
concentrations. Despite the lower optical resolution, Davies & Nepstad (2017) detected diatom 
chains in the SilCam images, which Saad at al. (2020) also did, together with fish eggs. Before 
this, Davies et al. (2017) showed that in situ imaging can reveal details of the body and the 
internals of large copepods, although this was less visible in the images presented in this 
thesis. Eisenhauer et al. (2020) showed how the SilCam can be used in photography of salmon 
lice egg strings to assess how far released egg strings disperse from their release point, which 
is especially valuable in aquaculture. Lombard et al. (2019) present an overview of the size 
range of plankton captured by different optical and imaging methods available, showing that 
e.g. the In Situ Ichthyoplankton Imaging System (ISIIS) and VPR can be used for capturing 
mesozooplankton (Lombard et al., 2019). The ISIIS has an optical resolution of ~68 µm, 
capturing objects in the size range of 700 µm (small copepods and larvaceans) and bigger, 
while still detecting objects as small as 100 µm (e.g. diatoms, Cowen et al., 2013).  

 

4.1.2  Detection and identification of taxonomic groups  

Taxonomic groups smaller than copepods were rarely detectable in the SilCam images (Tab. 
6). The optical resolution was high enough to detect the longer antennae of some of the 
copepods (Fig. 17), possibly allowing for separation of the genera calanoid or harpacticoid 
copepods (Fig. 12), or even species within the genera. The SilCam method is a good method 
to detect cnidarians, considering that the shape and size of the organisms are preserved, 
unlike in net samples (Long et al., 2020, Luo et al. 2018, Lombard et al., 2019). Still, as 
observed in the labelling process, identification of them can be difficult due to their irregular 
shape in the images and their transparent bodies (Fig. 23), which is also supported by 
Salvesen (2021). Organisms with a higher optical density, creating a darker colour in the 
images is most likely easier to detect, including organisms with a defined edge. Mollusca fit 
this description (Fig. 25, Larink & Westheide, 2011), but no molluscs were detected in the 
SilCam images, probably due to their small size, as they were present in the net samples on 
all visits. Echinodermata larvae have long, but thin, arms (Fig. 12 and 24), and were therefore 
not detectable in the images, except one juvenile (Fig. 13). Bryozoa are small and they 
appeared almost transparent in the stereomicroscope, so as expected, they were also not 
detectable in the SilCam images. Faecal pellets with a high optical density were detectable, 
but those with a lower optical density, which were observed in the net samples, might have 
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been lost. Phytoplankton were rarely detectable, except from large diatoms, such as 
Coscinodiscus sp. A higher optical resolution is needed to achieve an identification on a higher 
taxonomic level. Thu (2022) stated that the SilCam method did not successfully detect or 
classify phytoplankton, but Salvesen (2021) stated that although single phytoplankton usually 
is too small for image sampling methods, chains, filaments, or colonies of phytoplankton can 
be detectable. Diatom chains might also be mistaken for faecal pellets, as they have similar 
features (Salvesen, 2021). The detection of bubbles in the surface layer (Appendix C, Tab. 11 
and 12, from 0-10 m) is most likely due to the production of bubbles when the AUV turns at 
the surface during the yoyo transect.  

 

4.1.3  Overlapping and incomplete organisms     

Various reasons could result in objects not being detected, or misread by the classifier, despite 
being large and having a high optical density. One reason could be overlapping objects, which 
could prevent the algorithm from detecting separate organisms. This was discovered with the 
YOLO-based model and in the labelling process (Fig. 13). Additionally, if a relatively large 
cnidarian overlapped with a copepod, the copepod, or features needed to identify it, might 
have been undetectable. When using the SilCam for oil and gas studies, objects with a solidity 
less than 0.95 are removed (Davies et al. 2018). This is to avoid miss-calculation of 
overlapping objects, but for plankton studies, the goal, and also the challenge, is to capture 
all the organisms having very different morphological traits (Fig. 12, Lombard et al., 2019). 
Overlapping may be a bigger problem with a higher density of plankton in the water, especially 
cnidarians or copepods. Another probable challenge for the algorithm was that some objects 
were not completely located inside the imaging area, which could have resulted in images of 
incomplete objects and loss of characteristic traits. An example is how several larger 
cnidarians, and some copepods, were only partly inside the image frame. Still, copepods with 
half their body outside the imaging frame were detected with the YOLO-based model, which 
is promising. In Hopavågen, aggregates of plankton were visible in the net samples, which 
also might have reduced the ability of the algorithm to detect the individual objects. 
Additionally, as experienced in this study, a scratch on the lens might be incorrectly detected 
as a diatom chain.  

 

4.1.4  AI algorithms in copepod classification 

Classification of the SilCam images was first done using PySilCam, and after a brief analysis 
of the results, it was concluded that the identification accuracy was not satisfactory. For 
example, montages classified as copepods were almost empty, while montages of diatom 
chains from the same area and time contained a lot of misclassified copepods. Also, as the 
yellow circles in Figure 14 elucidate, some objects were classified although they were 
unidentifiable. Nevertheless, the results indicated which plankton groups were detectable by 
the SilCam.  

The new YOLO-based model was created to enhance the identification accuracy and enable 
classification of the objects in the SilCam images into more groups. The montages of the 
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objects identified as copepods (Tab. 4 and 5) showed that the algorithm classified several 
copepods correctly, but that it also misclassified other objects as copepods. The 
misclassification of faecal pellets as copepods is most likely due to their similar shape, and 
this can also apply to detritus. Bubbles, on the other hand, have a very different shape, and 
the misclassification of bubbles as copepods is worth looking further into. A lot of the images 
also have a very poor optical resolution, resulting in a lot of unidentifiable objects classified 
as copepods, that most likely are detritus. None of the misclassified objects were from other 
taxonomic groups of zooplankton, not even in the montages of the group “Other”, although 
some copepods were placed into this group. The absence of other zooplankton in the montages 
is probably due to the low detectability of these groups in the SilCam, including their less 
similar shape to copepods.  

The light settings in the SilCam raw images showed two vertical lines of LED lights on each 
side of the image (Fig. 13). The middle part of the image was much darker than the sides, 
and manual detection and labelling of objects in this area were much harder than on the sides. 
Figure 15 also shows how the sub-images from this area were very dark. All the images were 
corrected to get a similar background in the post-processing with the YOLO-based model, but 
it appeared that the darker sub-images obtained a more grainy background in the post-
processing. The sub-images from the more illuminated areas of the SilCam images, on the 
other hand, appeared overexposed. In some images (Tab. 4 and 5), the images were so 
overexposed that the contour of the copepod body was completely lost, and only round or 
elongated parts of the internal body were visible, possibly being astaxanthin (Van 
Nieuwerburgh et al., 2005) oil droplets or ingested algae (Hansen et al., 2012). This made it 
hard to evaluate the accuracy of the classification based on these montages, making the 
montage that was not post-processed (Fig. 15) more reliable when looking at the well-lit areas. 
Still, some of these sub-images were too dark to view anything at all. The montages showing 
the objects in their original size can also be valuable for assessing the size distribution of 
objects in a given group, and for determination of what size is best captured by the SilCam 
method.  

For future analysis using these models, it is advised to train the algorithm on a larger data set 
with a higher taxonomic resolution to allow separation into distinct taxonomic groups. For 
species with a distinct morphology detectable by the SilCam, species-level would be beneficial. 
A higher taxonomic resolution would increase the possibility to use the SilCam method as an 
ideal tool e.g. for analyses of ecological status in marine ecosystems or biodiversity 
assessments (Saad et al., 2020). Saad et al. (2020) showed that a quantitative analysis of 
the zooplankton groups at different depths also can be done, a method that has a high 
potential to be used for biological monitoring and time-series analyses in the future. This could 
provide further insights into how marine ecosystems are affected by anthropogenic stressors 
e.g. global warming and pollution. 

With the rise of in situ plankton imaging systems, there is a need for fast and accurate 
image processing and classification tools (Luo et al., 2018). Previous automated 
classification methods have shown moderate results (Luo et al., 2018), but recent advances 
in ML have enabled robust and effective classification of plankton data at a low cost, making 
automated classification a popular tool in marine ecological science (Conradt et al., 2022; 
Luo et al., 2018; Pastore et al., 2020; Salvesen, 2021). Some ML algorithms have obtained 
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an accuracy of >95% (e.g. Al-Barazanchi et al., 2018), but these high values are often a 
result of running the algorithm on the same dataset as it was trained on (Conradt et al., 
2022). Because of irregularities in the number of images of different organisms in the 
labelling data set, models often classify dominating classes well and less abundant classes 
poorly (Conradt et al., 2022; Kerr et al., 2020). In this study, copepods were dominating, 
and the labelled dataset, therefore, contained mostly copepods. Luo et al. (2018) found that 
excluding the rarest taxa in the imaging processing, the classification accuracy increased 
from 84% to >90% for the remaining groups. Conradt et al. (2022) proposed a tool for 
adapting the model to different plankton communities, while Kerr et al. (2020) showed that 
collaborative DL models can significantly enhance the prediction quality in more rare classes.  
  
Considering the commonly high intra-class morphological variability (e.g. between sub-taxa 
or life stages) and inter-class similarity (e.g. many bivalve larvae are hard to separate), 
including small morphological differences separating species of the same class (e.g. 
differences in the fifth leg of a copepod, Ferrari & Ueda, 2005), ML still performs poorly on 
species level identification (Conradt et al., 2022; Salvesen, 2021). There is a continuously 
increasing amount of data captured, creating larger data sets of images with plankton 
largely differing in morphology. The manual labelling process needed for the supervised 
classification can then be a potential bottleneck for the use of ML algorithms in situ (Pastore 
et al., 2020). Unsupervised ML, on the other hand, does not require a labelled dataset, as it 
instead uses feature extraction and clustering of these features (Salvesen, 2021). Pastore et 
al. (2020) presented a novel set of algorithms requiring minimal supervision. He found that 
they approach the level of today’s existing supervised algorithms, but when Salvesen (2021) 
tested three unsupervised ML algorithms, he found that there is still a significant gap 
between the two approaches. Still, this field of research is relatively unexplored (Salvesen, 
2021) and has the potential to become very valuable in future ocean observation, 
surveillance and monitoring applications.  
 

4.1.5  Effectiveness of the SilCam method  

Considering the amount of data captured in time and space, the SilCam method was an 
effective way to obtain plankton data. Mounted on a LAUV, the SilCam covered a large area 
in the x, y, and z plane, compared to e.g. net samples, or mounted on a profiling frame (Davies 
& Nepstad, 2017) or ROV (Brandvik et al., 2021). Much less planning and packaging of 
materials were needed for the SilCam method compared to net sampling. Once programmed, 
the LAUV with the SilCam only had to be launched and retrieved once per transect, and the 
data could be transferred to a computer and processed right after sampling (Sousa, 2012). 
Net samples, on the other hand, required deployment and retrieval for each station, and 
onboard handling of the material, including manual identification in a stereomicroscope.  

Having the model detect, classify, post-process, and create montages of the findings at 
different depths, was done in only a few days using the PySilCam software, e.g. creating a 
background image and correcting the raw image (Davies et al., 2017). Creating the YOLO-
based model, on the other hand, turned out to be time-consuming. It took approximately 
three months to retrieve only a subset of the results created by the PySilCam software, and 
these results were not optimal. This emphasizes the time saved using a pre-made and trained 
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model compared to creating a new algorithm for classification. Still, both algorithms could 
benefit from better automatization of the classification process once the image recognition 
and the classification are aligned in a better way. For now, proper classification is a time-
consuming task, and improvements are needed to make it less labour-intensive and more 
effective. 

The labelling process for ML of the YOLO-based model was also time-consuming. Based on the 
experience, the time spent labelling is dependent on the number of objects present in each 
image, the taxonomic level of identification, the detectability of the objects, and the desired 
size of the data set. Still, training the algorithm only had to be done once, and could then be 
used to classify several SilCam images captured at any time during multiple future 
deployments (given that the setup is the same). Considering this, and that manual 
identification is time-consuming (here; 4 weeks for only 16 point samples identified to a low 
taxonomic level) and resource-intensive (Fragoso et al., 2021), the SilCam method was more 
effective in plankton classification, given that a pre-made algorithm is used. Still, a major 
shortcoming is the reduced taxonomic resolution obtained compared to when identifying net 
samples in a stereomicroscope, making biodiversity assessments almost impossible at this 
stage.   

To make the SilCam system more effective on a large scale, an establishment of an extensive 
global training data set is suggested, containing high-resolution taxonomic information about 
plankton communities in different regions. Collaborative work in maintaining and updating the 
data set could reduce the overall time spent on manual identification, and the training set 
could contribute to more accurate image classification and monitoring of plankton communities 
on a global scale. This is also supported by Luo et al. (2018).   

 

4.1.6  Challenges experienced with the SilCam method  

The results presented in this thesis were enough to visualize the benefits and constraints 
related to the SilCam system, and valuable findings were discovered. Still, there were some 
challenges related to the data. Because of an unforeseen challenge that cannot be addressed 
any further due to confidentiality reasons, most of the SilCam montages generated from the 
first algorithm, the PySilCam, became unavailable. The classification results were thereby lost. 
This emphasizes that the data is not necessarily stored permanently, as stated by Conradt et 
al. (2022). Learning from this, saving important material on at least two disks is advised, no 
matter how large the data set is. Nevertheless, the PySilCam montages with a mix of objects 
were rescued and used to give an understanding of which objects the SilCam detected and 
classified. 

One of the original ideas for this study was to compare the biodiversity in the net samples 
with that in the SilCam images. When examining the low taxonomic resolution obtained from 
the PySilCam, it was decided that a high taxonomic resolution was not needed for the net 
samples to enable comparison of the findings. Because of this, a low taxonomic level was 
used, which only considers the difference in zooplankton community rather than biodiversity. 
It was also intended that the net sample images were to be used as a labelled data set for ML 
of the PySilCam. Due to the different quality and optical magnification of the net sample 
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images compared to those the PySilCam was trained on, this was not possible. In the training 
of the YOLO-based model, labelled raw SilCam images were used instead. For future models, 
training on stereomicroscope images is advised, if possible, as these images have a higher 
optical resolution where characteristic features are more pronounced and more taxonomic 
groups are identifiable. Imaging in a stereomicroscope also allowed for imaging of the objects 
lying in different angles and directions, which is needed to enable the AI algorithm to account 
for the 3D nature of the imaged objects. Imaging using holography, allowing for a 3D 
reconstruction (see Sun et al., 2008) of the imaged plankton has emerged in recent years 
(Lombard et al., 2019), which might solve this problem in the future.  

The process of creating a new algorithm and training it on the labelled data set took longer 
than the team expected. For that reason, only a subset of the data is presented in this thesis, 
and the SilCam images from Hopavågen could not be included in the present thesis. As only 
the classification of copepods was obtained, a comparison of the plankton community was not 
possible with this model either. By using the plankton groups found in the labelling process, 
an assessment of the detectability of the groups was done instead. A comparison of the 
community present in the labelled SilCam images and the net samples was not performed, as 
the labelled data set contained images from a transect in Hopavågen in September, having a 
different community than in the spring.  

At the beginning of the manual labelling process in Roboflow, there was a lot of uncertainty 
related to which groups to include and to which taxonomic level. For future labelling, the 
groups should be at the highest possible taxonomic level, as it is easier to combine groups at 
a later stage, while achieving a finer taxonomic resolution in retrospect is not possible. Still, 
there is a payoff when it comes to time spent labelling, as labelling to a higher taxonomic level 
is more time-consuming and requires advanced taxonomic skills, but then the data can be 
used repeatedly. Saad et al. (2020) stated that a challenge with this method is obtaining and 
manually labelling a large imaging data set at a similar magnification, and because of this, a 
limited number of classes are available. Still, when the AUV performs more missions, Saad et 
al. (2020) stated that the number of classification groups can be increased and that advances 
in the optical resolution will allow for a higher taxonomic classification.    

More generally, the information content of plankton increases with increasing optical 
resolution, volume, and imaging frequency. Having the objects in focus and colours, and with 
enhanced contrast, is also desirable. There is a trade-off between volume captured and the 
optical resolution, which often results in capturing either small objects with a high resolution 
in a smaller sample, or bigger objects with a lower resolution in a larger sample (Lombard et 
al., 2019). 
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4.2 State of the spring bloom 2021  

The KEV data collected by the sensors on the AUV, the zooplankton detected by the SilCam 
and captured in the net samples, as well as the nutrient availability analysed from the seawater 
samples were combined to explain the state and succession patterns of the phytoplankton 
spring bloom 2021 and the zooplankton dynamics at Mausund and in Hopavågen, respectively.  

 

4.2.1  First visit to Mausund (Day M1 and M2) 

Before the first visit to Mausund on days M1 and M2, the 13th and 14th of April 2021, there 
had been a storm that resulted in a mixing of the water column. This was evident in the graphs 
showing the temperature, salinity, and [O2], which had little variation from the surface down 
to 40 m depth (Fig. 28, 29, and 30). A relative homogenous [Chl a] was observed below 15 
m (Fig. 31), but the [Chl a] was too low (0.50 to 0.75 µg/L) for it to be considered a full 
phytoplankton bloom (Sakshaug et al., 2009; Schalles, 2006), which often exceeds a [Chl a] 
of 5 µg/L (Jonsson et al., 2009). The [NO3

-] and [PO4
3-] were relatively consistent with the 

winter values measured in Trondheimsleja from 2018 to 2020, presented by NIVA 
(The Norwegian Institute for Water Research, winter values: [NO3

-]= 79.44 µg/L and [PO4
3-

]= 16.33 µg/L), which are high relative to the summer values (Fagerli et al., 2021). The high 
nutrient availability indicated low assimilation of nutrients by phytoplankton. Combined with 
the low [Chl a] detected, it is assumed that there were pre-spring-bloom conditions during 
the visit  (Dale et al., 1999). The higher nutrient concentration observed at 15 m on day M1 
(Fig. 33 and 35) could also indicate higher nutrient assimilation by phytoplankton above 15 
m. Still, Thu (2022) found that the in vitro [Chl a] was lower in the surface layers than below 
15 m.   

The net samples (M1A and M1B) had a high abundance of copepods, where the red colour 
from the astaxanthin in the copepods (Van Nieuwerburgh et al., 2005) was visible in the nets 
during sampling. Calanus finmarchicus is known for dominating the mesozooplankton biomass 
in the North Atlantic region (Barange et al., 2010), but the high abundance might also be due 
to the oblique angle and extended filtration period of the zooplankton net in the water column, 
as a result of strong winds and drifting. There is a delay in the seasonal peak of zooplankton 
abundance compared to the phytoplankton bloom, as the population growth rate of the 
zooplankton depends on the concentration of available food (phytoplankton) (Thackeray, 
2012). The presence of faecal pellets indicated zooplankton grazing on phytoplankton, a top-
down control (Butler & Dam, 1994; Verity & Smetacek, 1996; Kaiser et al., 2011) and 
considering the high abundance of copepods and the presence of faecal pellets, there might 
have been a phytoplankton bloom before the visit. This bloom may have been induced by the 
favourable light conditions in the previous months, as light is an essential resource for 
phytoplankton growth (Johnsen et al., 2020). Still, the high abundance of both copepod adults 
and copepod nauplii could indicate a period of copepod reproduction after winter hibernation 
(Kaiser et al., 2011), or they could have been transported to the surface layers during the 
mixing of the water masses. There was no distinct difference in the type of copepods or size 
from the different depth intervals in the montages from the YOLO-based model, suggesting a 
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relatively homogenous distribution, and the PySilCam also showed the presence of adult 
copepods on all depths.  

 

4.2.2  Second visit to Mausund (Day M3 and M4) 

The second visit to Mausund was on the 20th and 21st of April 2021, on days M3 and M4, 
respectively. After a period of storm conditions mixing the water column, and possibly a 
resupply of nutrients through coastal upwelling in the area (Assmy & Smetacek, 2009; Fragoso 
et al., 2019a), more calm and sunny conditions between the first and the second visit allowed 
for stratification of the water column and primary production (Kaiser et al., 2011; Sakshaug 
et al., 2009; Sundby et al., 2016). The graphs of temperature, salinity, and [O2] all had an 
incipient stratification at 20 m, with a higher temperature, lower salinity, and higher [O2] in 
the upper layer (Fig. 28, 29, and 30), which is consistent with bloom conditions (Assmy & 
Smetacek, 2009; Gökçe, 2021; Kaiser et al., 2011). The [Chl a] had also increased to 1-2.5 
µg/L and the stratification layer had moved from 15 to 10 m depth, which may indicate a 
migration  towards more favourable light conditions and adequate nutrient supply (Paerl, 
1988; Reynolds, 1984). The nutrient availability was reduced compared to the first visit (Fig. 
33 and 35), which indicated assimilation by phytoplankton (Sauterey & Ward, 2022). 

Less material was captured in the net samples compared to the first visit. A possible reason 
for this could be the more accurate sampling of the water column, due to the calmer 
conditions, as well as less mixing of material to the surface layers. It might also be that the 
zooplankton was located below the incipient stratification layer at 20 m, due to DVM (Hays, 
2003; Tarling, 2003), and that sampling at 30 m was not deep enough to capture the highest 
abundance. Although there were fewer copepods in the samples, an increased abundance of 
faecal pellets was observed, which may be due to a passing of the zooplankton peak biomass 
with a high grazing pressure (Kaiser et al., 2011). Butler & Dam (1994) found that more faecal 
pellets are produced early in the phytoplankton bloom, which also indicates a higher 
contribution to the vertical carbon flux (Steinberg, Goldthwait, & Hansell, 2002), as almost 
half of the carbon content may be lost as DOM during sinking (Urban-Rich, 1999).   

Considering the SilCam montages, no distinct difference was detected between the first and 
second visit or the different depths on day M3, still suggesting an even distribution. Overall, 
continued disturbance of mixing and grazing throughout the season has most likely led to the 
absence of a larger phytoplankton bloom in the spring of 2021 at Mausund, and rather several 
small ones (Fragoso et al., 2021). Considering the higher [Chl a] found in the water surface 
in May, found by remote sensing data presented in Thu (2022), it might also be that the bloom 
was delayed due to the storm.  

 

4.2.3  Hopavågen (Day H1 and H2) 

The sampling in Hopavågen was done on the 4th and 5th of May, referred to as day H1 and H2, 
respectively. Due to a traveling delay, the sampling on H1 was conducted slightly earlier than 
that on H2. This might have resulted in larger differences in the data retrieved than expected, 
due to different tide levels and directions of the tide.  
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A pycnocline detected at 5 to 7 m depth (Fig. 28 and 29) trapped the cold and dense water at 
depth while allowing the warm, less dense water to stay in the upper water column (Johnsen 
et al., 2018; Kaiser et al., 2011). A relative sudden change was also detected at 15 m for 
temperature and 10 m for [O2], but considering the long response time (8 seconds) of the 
oxygen optode, the position of the change in oxygen levels might have been closer to 15 m. 
The higher [O2] in the upper layer indicated a net production of dissolved oxygen following 
primary production (Kaiser et al., 2011). 

The less dynamic nature of the water masses in Hopavågen than at Mausund facilitated a 
higher [Chl a] (Kaiser et al., 2011), with a peak value of 5 to 8 µg/L at 15 m on day H2. The 
relatively deep position of the Chl a layer indicated post-spring-bloom conditions, as the 
nutrients in the surface layer become depleted during the bloom and the phytoplankton has 
to descend to a more nutrient-rich depth, while remaining in the euphotic zone (Dale et al., 
1999; Kaiser et al., 2011). This coincides with the observation of overall low nutrient 
availability in the water column, but a higher concentration at 20 m (Fig. 33 and 35). 

The net samples contained significantly less plankton in Hopavågen compared to Mausund. A 
contributing factor to this could be that the zooplankton net used in Hopavågen had a smaller 
opening (Fig. 9), volume and a lower sampling depth (Tab. 3) compared to that used in 
Mausund. Less dynamic mixing and input of new water masses in Hopavågen also support the 
observation of less material (van Marion, 1996). The biodiversity detected in the net samples 
was higher in Hopavågen than at Mausund, as both Cnidaria and Radiolaria were identified 
(Tab. 7). A more detailed list of organisms present in Hopavågen is presented in van Marion 
(1996), but in that study, Radiolaria was not observed. The difference in the zooplankton 
community might be because Hopavågen receives water from the NCC, while Mausund 
additionally receives water from NAC. The less exposed nature of the bay also results in a 
lower supply of new water masses (van Marion, 1996). More meroplankton such as 
Echinodermata and Mollusca were detected in Hopavågen than at Mausund, which can be due 
to the proximity to shore. This coincides with the high abundance of Echinodermata in the 
benthic fauna in Hopavågen (van Marion, 1996). It could also be due to different stages of the 
seasonal succession patterns, although Skjaeveland (1973) found that in a similar fjord 
located in the same region, there were no seasonal differences in Echinodermata biomass. 
Free-dwelling gastropods can also adjust their position to the shore, thereby being less 
affected by the changing tide levels (van Marion, 1996). Diatom chains dominated the samples 
on day H2, which was consistent with the high [Chl a] and [O2] but contradicts Volent et al. 
(2011), stating that a decline in the number of diatoms characterizes a post-bloom.  

 

4.3 Assessment of the combination of LAUV and SilCam  

The combination of a LAUV and a SilCam system in this project resulted in valuable information 
about the plankton community and the KEVs affecting the ocean dynamics. The SilCam system 
contributed with a vast set of in situ plankton data, and by mounting it on a sensor fitted LAUV 
that simultaneously sampled KEVs, a high spatiotemporal resolution was obtained, compared 
to e.g. net sampling. The method thereby gave a more holistic understanding of the ecosystem 
dynamics.  
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Using a well-trained plankton classification algorithm can contribute to significantly faster 
identification than by using a human expert, but improvements to the SilCam system and the 
evaluated methods are needed to get to this level. The SilCam system captured plankton data 
at a given depth, which is valuable information for studies of plankton dynamics and DVM, as 
compared to plankton nets, losing information about the specific vertical distribution, unless 
using a net with a closing mechanism (Wiebe & Benfield, 2003). Still, physical net samples 
are necessary for the analysis of e.g. community structures and genetics, and for a higher 
taxonomic resolution (e.g. for biodiversity assessments), although large-scale imaging is 
important to investigate gelatinous organisms, predator-prey dynamics, and patchiness (Luo 
et al., 2018).  

The LAUV was prepared, operated, and the data was extracted by the AUV pilots, emphasizing 
their important role in the study. Sousa et al. (2012) stated that the LAUV is one-man portable 
and that it can be controlled by a single operator. It is also affordable, robust, reliable, effective 
and require low logistics (Sousa, 2012). In the field, the LAUV proved to be relatively easy to 
handle, but considering its weight, price, and high value, it is recommended that two people 
are carrying it (Fig. 1). It required low logistics, and the open system (Sousa, 2012), enabled 
customization with a fitting sensor suite. It is still important to be aware of how the sensors 
differ from each other when combining data from several sensors, as e.g. the sampling 
frequency, response time, or unit of measurement may differ. With proper preparation of the 
sensors, as well as information about their sampling frequency and response times, the 
differences in the data can be accounted for. The LAUV also had the necessary computing 
power needed for the SilCam to operate, as well as a long residence time in the water (Saad 
et al., 2020). Still, as the LAUV is best suited for surveys over the mesoscale (Berge et al., 
2020), the relatively shallow and small area of Hopavågen proposed a risk of collision. It also 
had a limited power supply and its possibility of being trapped between water layers of 
different densities posed a risk of losing the vehicle and the data (Sørensen et al., 2020). 

Due to the highly dynamic nature of the zooplankton community and their patchy distribution, 
rapidly responding to changes in KEVs, measurements with a high temporal resolution are 
needed to study their fluctuations (Martin-Platero et al., 2018). Combining the SilCam system 
and the LAUV allows for this. Albeit the potential value of this method in plankton studies and 
thereby climate change studies, it does not serve as a replacement for net sampling of 
plankton or seawater sampling for ground-truthing of Chl a (Thu, 2022). Hablützel et al. 
(2021) contradicts with this, stating that physical samples are no longer necessary in the new 
era of advanced optical techniques. Still, different sampling methods covering different spatial 
and temporal scales are highly valuable in creating a holistic understanding of the environment 
(Aguzzi et al., 2020; Sørensen et al., 2020). Data from ground-truthing and the LAUV are just 
two layers of the observational pyramid, and in combination with data from e.g. USVs, UAVs, 
small planes, and small satellites valuable insights not detectable in the ground-truthing and 
AUV data can be obtained (Ludvigsen et al., 2016; Ludvigsen & Sørensen, 2016; Sørensen et 
al., 2020). Additionally, plankton imaging systems such as the SilCam can provide validation 
data for ocean ecosystem models (Luo et al., 2018). This elucidates the importance of 
collaboration in multidisciplinary teams, to enable sharing of knowledge, ideas, competence, 
and experiences (Sørensen et al., 2020). AMOS is a great example of this, with a vision of 
providing cutting-edge multidisciplinary research on unmanned vehicles and autonomous 
marine operations and systems (Oftedahl & J. Sørensen). The AILARON project also shows 
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how each level has a complexity requiring experts in both the technological and biological 
fields of study, at least (Saad et al., 2020).  

 

4.4 Overall challenges  

The major challenge in this study was the loss of the SilCam data from the PySilCam model, 
and additional data needed to create the new algorithm more effectively. The low optical 
resolution in the SilCam images was also a challenge, especially in the labelling process, and 
challenges related to the KEVs were also experienced. The measurements of [O2] on day H1 
show a reversed pattern relative to that detected on day H2, which is probably due to a method 
or sensor error, and the high [Chl a] on day H1 might be due to over-calibration. Combined 
with the increased response time in the oxygen optode, resulting in the detection of 
stratification layers at a lower depth, this emphasizes the importance of evaluating and 
calibrating the sensors in advance.  

Turbidity measurements are relevant for zooplankton analysis as turbidity affects the waters 
transparency and thereby limit the euphotic zone (Goździejewska & Kruk, 2022). This can 
significantly affect zooplankton feeding efficiency, abundance, and development, and can also 
be related to the amount of detritus detected by the SilCam. Turbidity measurements were 
available from the Cyclops-7 sensor on the LAUV. Still, they were discarded in this thesis, as 
the sampling frequency, and thereby temporal resolution of the measurements was low 
compared to the variation in the data, resulting in very discrete values. For future projects, 
the sensor sampling intervals should be accounted for before sampling, making sure that they 
have the appropriate temporal resolution. Overall, different response times, calibration, and 
sampling intervals in the AUV sensors made comparison of the data more challenging. 
Scattering from bubbles created at the surface during the AUV’s yoyo transect (Appendix C) 
also influenced the Chl a measurements (Suggett et al., 2010), and surface values were 
therefore removed.   

One of the benefits with the SilCam system is its ability to create minimal disruption when 
measuring suspended material (Davies & Nepstad, 2017). Still, when mounted on an AUV, a 
flow pressure is established due to the speed and the shape of the AUV, resulting in water 
masses being pushed away. This might result in less material being detected by the SilCam 
system (Fossum et al., 2019; Sousa, 2012). 

A possible challenge during sampling on Mausund was that the boat was drifting away from 
the coordinates of the sampling stations, thereby not sampling the same point as the LAUV. 
Still, as the water masses are highly dynamic, sampling of the exact same water mass is not 
possible. Patchiness is also a key feature of pelagic ecosystems (Kaiser et al., 2011), which 
can result in substantially differing data. Still, sampling at 10 stations in a 1 km2 square 
hopefully reduced this error to some degree. 

During the period working on this project, there was a Covid-19 pandemic, which at times was 
challenging due to the ever-changing guidelines and the unpredictability. Luckily the fieldwork 
could be conducted safely following the guidelines given at the time.  
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5 Conclusion  
In this study, the usability of a novel method combining an AUV and a SilCam system for an 
assessment of the zooplankton community composition and its dynamics related to KEVs has 
been evaluated. Based on findings, the method has the potential to be a very useful tool in 
plankton studies in the future, if the challenges elucidated in the current study are improved. 
The SilCam system captured valuable in situ images of zooplankton, but due to a low optical 
resolution, the subsequent taxonomic resolution obtained was limited, and a higher optical 
resolution is advised to enable an assessment of biodiversity. As for now, net samples are 
needed for this. Although the PySilCam had a low identification accuracy, this thesis 
emphasizes the benefit of having a pre-made algorithm for classification, as the creation of a 
new algorithm and manually creating a labelled data set is time-consuming and resource-
intensive. The YOLO-based model created during this study is the very first version of the 
model, and the results showed misclassification of copepods in the SilCam images and 
challenges related to the post-processing. Areas of improvement were elucidated, and future 
adjustments are expected to increase the identification accuracy. 

The LAUV proved to be a valuable sensor-carrying platform for plankton studies as it captured 
KEV data from a large spatiotemporal scale, and even more valuable data can be obtained 
when aligning the temporal resolution and response time in the sensors. A holistic assessment 
of the state of the phytoplankton spring bloom in Mausund and Hopavågen 2021 was enabled 
though measurements of KEVs obtained by the LAUV sensors, combined with SilCam findings, 
zooplankton net samples, and nutrient analysis of seawater samples. It was concluded that 
there were pre-spring-bloom conditions during the first visit to Mausund, an ongoing bloom 
during the second visit, and a post-bloom during the visit to Hopavågen. Overall, the 
challenges related to this novel AUV and SilCam method have been elucidated, but even more 
so its potential value as an important tool for plankton studies on a larger spatiotemporal scale 
compared to net sampling, thereby enabling monitoring of climate change in the ocean.   

 

Future perspectives 

Due to the novel nature of the method assessed in this study, future improvements are 
expected to increase its value in plankton studies and contribute to even better data gathering.  
Considering the goal of the AILARON project (1.5), training the algorithm on a larger and more 
diverse data set is advised if the classification is to be trusted and so that the LAUV can revisit 
the hotspot consisting of the plankton groups at interest in the adaptive sampling process. 
The adaptive sampling process is also expected to streamline the classification process and 
enable data gathering of targeted zooplankton groups (Saad et al., 2020).  

As also stated in Saad et al. (2020), improvements in the optical resolution in the SilCam will 
enable the separation of different plankton groups, thereby potentially improving the 
identification accuracy and enabling more detailed plankton diversity analyses. A more 
comprehensive study of the YOLO-based model will be presented in a paper released later in 
2022, covering more of the technical aspects of the method. Presented here is just the very 
first version of the entire pipeline, and more work is planned to improve the training of the 
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model and improving the post-processing. For future development, Lou et al. (2018) suggests 
a master, global-level training data set that has filters for different regions, allowing for a 
faster image classification process of over 100 classes with high precision and little 
dependence on manual identification. That would enable quick and accurate classification of 
up to billions of in situ images (Luo et al., 2018).  

A coupling of the data gathered by the ground-truthing, LAUV, and SilCam system with data 
from platforms with a different spatiotemporal resolution will in future projects enable an even 
more holistic understanding of the ecosystem processes. The Interdisciplinary Algal Bloom 
Observation Field Experiment at Mausund Field Station again visited Mausund in the spring of 
2022, and collected more data from several platforms, utilizing the knowledge obtained from 
last year’s experiences. Findings from this visit will be valuable for comparison with data 
gathered in 2021.  

In future projects, it is advised to have close communication in the interdisciplinary team, as 
there is a lot to learn from each other’s field of study and a common language needs to be 
established for proper understanding of each other’s needs. As it is hard to know how much 
time is needed for the creation of a new algorithm or labelling, close communication is crucial.  

Hopefully, this thesis can bring important insights into how the LAUV and SilCam method 
performs in biological studies, elucidating areas of improvement for an added value in future 
plankton studies. 
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Table 10: Seawater sample depth (m) from station 
11 (Fig. 2) in Hopavågen (day H1 and H2). The 
samples were obtained by a bucket (0 m) and a 
NTNU-made seawater sampler (Fig. 9, a and d). 

APPENDIX A: Seawater samples for nutrient analysis 
 

Water sample depth (m) from Mausund 

Station Day M1 Day M2 Day M3 Day M4 
1 0 

15 
0 
- 

0 
- 

0 
- 

2 0 
15 

- 
- 

0 
- 

0 
- 

3 0 0 0 0 
4 0 

 
15 0 

5 0 
15 

- 
- 

0 
- 

0 
- 

6 0 15 15 0 
7 0 

15 
- 
- 

0* 
- 

0 
- 

8 0 - 0 - 
9 0 

15 
- 
- 

15 
- 

- 
- 

10 0 - 0 -  

 

 

 

 

 

 

 

 

 

Water sample depth (m) from Hopavågen 

Station Day H1 Day H2 
11 0 0  

5 5  
15 15  
20 20 

Table 9: Seawater sample depth (m) from the 10 stations (Fig. 2) 
at Mausund (day M1 to M4). The samples were obtained by a bucket 
(0 m) and a NTNU-made seawater sampler (Fig. 9, a and d). 
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APPENDIX B: Taxonomic groups of zooplankton  

Figure 36: Pictorial key to taxonomic groups of zooplankton, obtained from Conway (2012). 
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Figure 37: Pictorial key to non-crustacean zooplankton and larvae, obtained from Conway (2012).  
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Figure 38: Pictorial key to crustacean zooplankton, obtained from Conway (2012).  
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APPENDIX C: Additional classified SilCam images from the 
YOLO-based model 

Presented here are the montages of the objects in the SilCam images classified as belonging 
to the group “Other”, from different depths at day M1 and M3. The objects are normalized, 
and the images are scaled. The montages from the upper 10 m contain mostly bubbles, while 
copepods, detritus and fecal pellets are observed at lower depths.  

 

 OTHER 
Normalized objects – scaled images 

Depth (m) DAY M1 
 
 
 
 
 
 
 
 

0-10 

 

Table 11: Montages of objects in the SilCam images from day M1 classified by the YOLO-based 
model as “Other”, presented for the depth intervals 0-10, 10-20, 20-30, and 30-40 m. The 
objects are normalized and scaled. 

(Table 11 proceeds on the next page) 
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xviii 
 

 

 OTHER: Montage B: Normalized objects – scaled 
Depth 
(m) 

DAY M3 

 
 
 
 
 
 
 
 

0-10 

 

Table 12: Montages of objects in the SilCam images from day M3 classified by the YOLO-based 
as “Other”, presented for the depth intervals 0-10, 10-20, 20-30, and 30-40 m. The objects 
are normalized and scaled. 

(Table 12 proceeds on the next page) 
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