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Abstract

When COVID-19 was declared a pandemic in early 2020, strict rules and regulations were
quickly put into play to help mitigate and reduce transmission of the disease. Amongst
those heavily affected by these measures were children and adolescents, having digi-
tal at-home schooling and being isolated from their peers during the first months of the
pandemic. Furthermore, many close contacts between individuals belonging to different
households occur in primary schools and may help amplify the overall transmission of the
disease. Therefore, this Master’s thesis aims to produce a novel framework for detailed
agent-based modelling of social interactions in primary schools. In addition, the model
should allow for simulation of COVID-19 transmission, specifically in primary school
environments.

Through investigation of an empirical network with high-resolution interactions between
peers in a primary school, collected and published by Barrat et al. [1], the main features
and characteristics of the interactions were extracted and used to extrapolate a general
model. The model produces a network representation of all occurring interactions and
allows for tuning input variables, such as the size of a given school, the number of grades
and classes, and the number of hours the students attend school.

The final interaction model closely resembles the interactions found in the empirical net-
work, with the exception of the model having lower modularity and more interactions
between individuals that were not in the same grades and classes compared to the empir-
ical network. Disease transmission was run on the model to investigate the effect of the
Norwegian government’s traffic light levels and different testing strategies on disease mit-
igation in primary schools. Weekly testing of students with green traffic light levels was
identified as the most efficient strategy, followed by yellow traffic light level in situations
where there are not enough resources for weekly testing.

The novel framework allows for the generation of detailed interaction networks in pri-
mary schools and may be incorporated into the NTNU COVID-19 Taskforce’s agent-based
model. This framework thus creates a model that can be helpful for future exploration of
different COVID-19 mitigation strategies in primary schools. However, the model was
based on interaction data collected over two consecutive days at the same school. There-
fore, to improve the quality of the model, more high-resolution data needs to be gathered
from different primary school settings to help generalise the model.



Sammendrag

Da COVID-19 ble erklært en pandemi våren 2020, ble ulike regler og restriksjoner raskt
implementert for å redusere spredning av sykdommen. Blant de som ble hardest rammet av
disse tiltakene, finner man barn og ungdom, som ble isolert fra sine jevnaldrende gjennom
digital hjemmeskole i løpet de første månedene av pandemien. Videre, har barn og unge
på barneskolen ofte flere, mer langvarige og tette interaksjoner med sine skolekamerater,
noe som gir mange potensielle smittebærende interaksjoner. Målet med denne master-
avhandlingen er å produsere et nytt rammeverk for en detaljert agentbasert modellering
av sosiale interaksjoner i barneskolen. Videre skal modellen kunne brukes for å simulere
smittsomhet av COVID-19 på barneskolen.

Gjennom undersøkelser av et empirisk nettverk som inneholder detaljerte 20-sekunders
interaksjoner mellom jevnaldrende på barneskolen, ble grunntrekkene i interaksjonenes
varighet og karakteristikk identifisert og brukt til å ekstrapolere en generell modell for
nettopp disse interaksjonene. Modellen produserer et nettverk av interaksjoner mellom
individene på en skole og gir muligheter for å justere input-variabler som for eksem-
pel størrelsen på en bestemt skole, antall trinn og klasser, og antall timer elevene er på
skolen.

Det foreslåtte rammeverket produserte en interaksjonsmodell som genererer svært like in-
teraksjoner sammenliknet med interaksjonene mellom elevene i det empiriske nettverket.
Likevel produserer modellen flere interaksjoner på tvers av trinn og klasser sammenliknet
med det empiriske nettverket. Videre ble sykdomsspredning simulert på modellen for å
undersøke effekten av norske myndigheters strategi for å hindre sykdomsspredning på bar-
neskoler. Strategier som ble sett på i denne oppgaven er trafikklysmodellen og ulike test-
strategier. Ukentlig testing av elevene med grønt trafikklysnivå virker til å være den mest
effektive strategien, etterfulgt av gult trafikklysnivå i situasjoner der det ikke er tilstrekke-
lig ressurser eller mulighet for å gjennomføre ukentlig testing.

Det nye rammeverket gjør det derfor mulig å generere detaljerte interaksjonsnettverk for
barneskoler, og kan bli innarbeidet i NTNU COVID-19 Taskforce sin agentbaserte modell.
Rammeverket gir dermed en unik mulighet til å undersøke ulike strategier for å hindre
spredning av COVID-19 i barneskoler. Siden modellen kun er basert på interaksjonsdata
fra to dager på en bestemt skole, vil forbedring av kvaliteten til modellen inkludere å
samle inn mer interaksjonsdata fra forskjellige skoler med ulik struktur. Dette vil også
hjelpe gjøre modellen mer generell.
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Chapter 1
Introduction

During the second wave of the Bubonic plague that ravaged Europe in the 15th and 16th

century, the seaport of Alghero in Sardinia suffered a large epidemic outbreak. The dis-
ease, caused by the bacterium Yersinia pestis, was at the time believed to be caused by a
pathogenic agent called miasma that polluted the surrounding air and could infect healthy
individuals through their airways or the pores of the skin [2]. However, compared to
other outbreaks during the second wave, the outbreak in Alghero was localised and did
not spread to surrounding districts. This was primarily due to the effort of the elected
Protomedicus of Sardinia, Quinto Tiberio Angelerio. The Protomedicus, which can be
compared to a chief municipal physician, quickly implemented prophylactic measures to
prevent further transmission of the disease in the seaport city.

In 1588 Angelerio published the booklet Ectypa Pestilentis Status Algheriae Sardiniae (In-
structions on the Alghero, Sardinia, Plague Epidemic), where he wrote extensively on both
the history of the 1582-1583 outbreak as well as measurements he had implemented to de-
crease the spread of the disease [2]. He detailed the comprehensive policies and measures
put into play, such as isolating plague patients, quarantining individuals or goods that had
been in contact with contamination, and disinfecting and burning items that were in direct
contact with sick individuals. The city was also put into a lockdown, where arriving ships
and crew were quarantined for 30 days before entering the seaport. Angelerio quickly
became loathed among the population of Alghero due to his strict measures. However,
the second wave of the Bubonic plague passed Alghero within eight months of arriving.
Similar examples of systematically implementing regimes to hinder disease transmission
can also be seen throughout history; see the historical overview Infectious Disease epi-
demiology: Theory and Practice by Nelson and Williams [3].

When declared a pandemic by the World Health Organisation (WHO) in March of 2020
[4], Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused similar
Non-Pharmaceutical Interventions (NPI)’s to be implemented worldwide. To halt trans-
mission of the highly contagious virus, strict infection control routines were implemented,
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Chapter 1. Introduction

of which many impacted everyday life. City-wide lockdowns were implemented in loca-
tions with high incidents of Coronavirus Disease of 2019 (COVID-19) cases; quarantines
were set in place for travellers, and mandatory use of masks in situations where one could
not keep one meter apart was recommended. In Norway, Folkehelseinstituttet or The Nor-
wegian Institute of Public Health (FHI) also implemented a resource-demanding disease
tracking system to trace the source of outbreaks and quarantine individuals that may have
been exposed to the virus.

Though this traditional handling of pathogens has been proven effective, the increased
globalisation of the economy, culture, and populations during the 21th century has led to
increased interactions across land borders [5]. In turn, halting inter-country travel and
trading when implementing similar measures like the ones proposed by Angelerio has
caused a significant financial and economic impact on businesses and individuals during
the COVID-19 pandemic [6]. Furthermore, in 2020, WHO predicted that self-isolation
and social distancing would increase loneliness, anxiety, and depression. This trend has
also been shown by Kumar and Nayar, who surveyed the population during the lockdown
in India, where they recorded a 20% increase in mental illness during the first months of
the pandemic [7]. Similarly, De Figueiredo et al. highlighted that children and adolescents
are more exposed to increased distress, feeling of hopelessness, domestic violence, and
sensorial deprivation and neglect during the pandemic [8]. In the long term, this exposure
can have grave consequences on the individuals leading to underdeveloped brain circuitry,
obesity, psychiatric disorders, and more [8]. Although Angelerio’s prophylactic measures
were sufficient in the 16th century, implementation in a highly globalised world may give
rise to more ethical dilemmas. It is therefore vital to not only take the direct consequences
of COVID-19 transmission into account but also the impact of NPIs that followed the
pandemic when considering the best strategy when facing transmissible pathogens.

As of April 2022, SARS-CoV-2 is still declared a pandemic and COVID-19 has claimed
6.2 million lives worldwide [9]. The strict restrictions and policies previously implemented
have been discontinued by many countries due to the protection provided by vaccines.
Since SARS-CoV-2 has the potential to become a seasonally re-emerging virus similar
to influenza [10], it is still, however, important to continue investigating the mechanisms
behind its transmission as well as other options to help mitigate disease transmission in the
future. In order to simulate the spread of COVID-19 many models are proposed, ranging
from simple compartmental models, see Ndaı̈rou et al. [11], to more complex Agent-Based
Modelling (ABM), see the agent-based community spread model by the NTNU COVID-
19 Taskforce [12] and the ABM by Cuevas [13] aimed at evaluating the risk of COVID-19
transmission in facilities. The value of such models is that different NPIs can be easily
implemented and their effect quantified through running simulations.

Since the lockdown heavily impacted children and adolescents, it is also interesting to
look into this group further. Barrat et al. highlights the role school children play as hubs
in the community spread of respiratory diseases such as influenza [1]. This is due to their
susceptibility to infection combined with sustained close contact in communities such as
schools, playgrounds, and similar venues. Viboud et al. quantifies this risk and concludes
that vaccination of children would prevent 32-38% of influenza cases caused by contact
with a sick child’s household [14]. Therefore, it is essential to investigate and overview
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how children interact and spread disease in primary school environments to quantify the
community spread through households.

Currently, most of the investigation of the role children in primary schools play in com-
munity transmission of COVID-19 is limited to retrospective studies using the frequency
of COVID-19 cases recorded. For instance, Brandal et al. describes the approach of quan-
tifying the transmission of SARS-CoV-2 by tracing and testing contacts of confirmed
COVID-19 positive individuals [15]. Similarly, Xu et al. [16] conducted a systematic re-
view and meta-analysis of articles and their associated studies discussing the transmission
of SARS-CoV-2 in schools to try and quantify the role children play in disease transmis-
sion. Although there have been studies linking transmission in children with COVID-19
transmission in communities, see Goldstein et al. [17], few models attempt to create a
simulated model for interactions in primary schools and investigate the impact of different
regulations and NPIs may have on disease transmission.

Since primary schools may play a prominent role in the community transmission of SARS-
CoV-2, this thesis aims to create a novel framework for a model of interactions in
primary schools and use this to investigate the effect of different NPIs have on the
transmission of COVID-19. By using high-resolution experimental data on interactions
in primary schools, provided by Barrat et al.[1], this thesis will attempt to produce a frame-
work for simulating interactions between primary school pupils on a day-to-day basis in
a network. This network of interactions further allows for the simulation of disease trans-
mission. Furthermore, implementing different policies such as routine testing and the
Norwegian government’s traffic light model on the simulated network can be done to as-
sert their effect on mitigating disease transmission. Finally, the framework should produce
general networks of interactions in primary schools so that it, at a later stage, may be
implemented into the ABM by NTNU COVID-19 Taskforce [12].
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Chapter 2
Theory

This chapter will provide a thorough overview of the underlying theory relevant to this
thesis. Since the field of COVID-19 is rapidly expanding, it is worth mentioning that this
section was written in March 2022 and that new findings may have been made afterwards.
Firstly, section 2.1 will describe the structure and transmission of SARS-CoV-2 alongside
measures and regulations that were put into place to hinder said transmission in Norway.
Then, section 2.2 will detail fundamental disease spread models, ranging from differen-
tial equation Susceptible, Infectious, Recovered cohort models to complex Agent-Based
Modelling. Finally, the paper and study by Barrat et al. [1], containing the empirical inter-
action data used in this thesis to characterise features of primary school interactions, will
be described in detail in section 2.3.

2.1 SARS-CoV-2 and viruses of coronaviridae
Although SARS-CoV-2 is the first virus of the viral coronaviridae family to be declared
a pandemic by the WHO, it is not the only known virus of the family to infect humans
[18]. Table 2.1 describes the genus, name, lineage, and symptoms of the seven currently
known viruses of the family to infect humans. The family is divided into two genera;
The Alphacoronavirus (alphaCoV) and Betacoronavirus (betaCoV). Viruses of alphaCoV
alongside betaCoV viruses of lineage A usually cause a common cold when they infect hu-
mans, while the remaining viruses of betaCoV cause some form of a respiratory syndrome
[18].

Even though no diseases caused by this family have been declared a pandemic previously
to SARS-CoV-2, emerging behaviour has been observed in both the Severe Acute Respi-
ratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) viruses. Both
underwent zoonosis, a term that describes any pathogen crossing a species barrier hosts
[19], and were just recently identified in human hosts. From November 2002 to August
2003, there were 8422 confirmed cases of SARS across 32 countries [20], and the virus is
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2.1 SARS-CoV-2 and viruses of coronaviridae

Table 2.1: Description of viruses of Coronaviridae family that infect humans, alongside their lineage
and associated symptoms. A line marks viruses that have multiple lineages [18]

Genus Name lineage Symptoms
alphaCoV HCoV-229E — Common cold

HKU-NL63 — Common cold
betaCoV HCoV-OC43 A Common cold

HCoV-HKU1 A Common cold
SARS-CoV B Severe acute respiratory syndrome
SARS-CoV-2 — Severe acute respiratory syndrome
MERS-CoV C Severe acute respiratory syndrome

believed to be of masked palm civet and bat origin [21]. Meanwhile, viral spillover from
camels is what caused the MERS outbreak in April 2012, which led to 2496 documented
cases from April 2012 to December 2019 [20]. Cases are still occurring in areas where
human-camel interactions are high. It is important to keep these two viruses in mind, as
they share characteristics and DNA with the virus that caused the COVID-19 pandemic.
SARS-CoV-2 shares about 80% of its genome sequence with SARS and 50% with MERS
[19]. This chapter will now go into more detail on the disease transmission characteristics
of SARS-CoV-2.

2.1.1 The viral structure of SARS-CoV-2 determines tissue tropism
and transmission rate

The viral structure of SARS-CoV-2 can be seen in Figure 2.1 and is a part of deciding
the tissue tropism of the disease. The tissue tropism of any given disease denotes the
types of tissues in which a virus can infect and replicate. The virus consists of a bilipid
membrane, spike (S), membrane (M), and envelope (E) proteins and a nucleocapsid (NC)
surrounding positive-stranded RNA (+ssRNA). The spike proteins determine which cells
the virus will interact with and mediates viral entry into host cells. Several mechanisms
help drive this viral entry. First, the spike protein must be primed by being proteolytically
cleaved by the cellular Transmembrane protease Serine 2 (TMPRSS2). After this cleavage,
the Receptor-binding domain (RBD), which is found towards the tip of the spike protein,
is primed and able to interact with another cellular receptor, the Angiotensin-converting
enzyme 2 (ACE2). The binding of the two facilitates viral envelope fusion of the virus,
where cellular cathepsin L assists in entry into the cells. The genome of SARS-CoV-2 is
then released and initiates the production of new viruses that can be further transmitted
[19]. For more detail on SARS-CoV-2 transmission and pathogenesis, see Harrison et al.
[19].

The main consequence of the viral entry of SARS-CoV-2 into cells is that it requires the
presence of ACE2 and a protease, such as TMPRSS2. Harrison et al. determines that the
tissue tropism of SARS-CoV-2 is the upper respiratory tract and airways (epithelial and
endothelial cells). Furthermore, Xiao et al. identified a possible fecal-oral-transmission
route through the gastrointestinal tracts [23]. This gives the following possible transmis-
sion pathways: respiratory droplets, aerosol, direct contact with contaminated surfaces or
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Chapter 2. Theory

Figure 2.1: Viral structure of SARS-CoV-2 with its Spike protein (S), Membrane protein (M),
Envelope protein (E), Nucleocapsid (NC), positive strand RNA (+ssRNA) and bilipid membrane.
Modified from [22].

infected individuals, and the fecal-oral route [19].

During the first few months of the pandemic, many argued that SARS-CoV-2 might mu-
tate more slowly compared to other RNA viruses such as influenza [24]. Epidemiologist
William Hanage argued that in a susceptible population, the virus had low evolutionary
pressure to adopt new and more competitive behaviour [24]. However, it was later dis-
covered that SARS-CoV-2 could, in fact, generate and accumulate new mutations quickly
[18]. Firstly, this is due to SARS-CoV-2 being an RNA virus and using an RNA-dependent
polymerase without proofreading ability [18], causing the rapid emergence of new geno-
types and mutations of the virus. Secondly, the virus can infect other species, further
increasing the possibility of mutation and sharing of genes between viruses that affect dif-
ferent species. Finally, the accumulation of mutations can be sped up by the recombination
of different variants. All these characteristics allow for rapid mutation of the virus, which
can give diverse transmission and disease courses, making it likely to reemerge [18]. Mul-
tiple variants of the virus have already emerged, for instance, the newly discovered delta
and omicron variants [25].

2.1.2 National measures against SARS-CoV-2 in primary schools in
Norway

After SARS-CoV-2 was declared a pandemic in March 2020, the WHO called for all
countries to implement regulations and measures to limit the transmission of COVID-
19. Measures implemented include social distancing, limiting travel within and between
countries, public information campaigns, closing or partially shutting down workplaces
and schools, and finally imposing quarantines and isolation on individuals exposed to the

6



2.1 SARS-CoV-2 and viruses of coronaviridae

virus. On Thursday, the 12th of March 2020, the Norwegian government imposed multiple
strict and comprehensive measures nationally [26]. To read more about the history and
the Norwegian governments handling of the COVID-19 pandemic, see the 2021 report by
Koronakommisjonen, the Norwegian Coronavirus Commission [26].

Of importance in this master, however, is the different governmental measures aimed to
halt or reduce COVID-19 transmission, specifically in primary schools. Initially, the NPI
introduced on 13th of March included no physical attendance at primary schools and a
shift to digital teaching. On the 11th of May, the Norwegian government introduced a
traffic light model to allow students to begin returning to their schools [27]. The traffic
light model describes which infection control measures a given school should implement
at different times. The model includes three levels of increasing disease spread in society,
from green to yellow to red, like a traffic light. Figure 2.2 shows the measures implemented
at primary schools at each step, as presented by Utdanningsdirektoratet or Norwegian
Directorate for Education and Training (UDIR) [28].

Figure 2.2: Traffic light model used in Norwegian primary schools to determine which infection
control measures are implemented at different times. Ranges from green (low disease spread) to
yellow (intermediate disease spread) to red (high disease spread) where each step increasing from
green is a part of the next step. Modified from [28]

All levels of the traffic light model used for Norwegian schools are specific to the re-
cent COVID-19 pandemic. The green level describes the laws and regulations schools
should abide by in a situation with low levels of uncontrolled disease transmission. In
such cases, the individuals with symptoms of COVID-19 are advised to stay at home, and
good hygiene and increased cleaning are practised in the schools. Furthermore, there is a
recommendation to avoid physical contact between individuals.

The yellow level describes the additional precautions a school is advised to implement
when there is an intermediate spread of the disease. In addition to the measures imple-
mented in the green model, the yellow model should also include dividing classes into
cohorts and setting a maximum of two cohorts interacting outdoors simultaneously. The
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employees at the school should also keep at least one meter distance from one another,
and the school should avoid arranging events with large gatherings. Finally, all activities
except interacting outdoors should be conducted in cohorts. The yellow level also includes
after-school activities such as Skolefritidsordning, or After school program (SFO).

The red level describes how schools should be managed in situations with high disease
spread. Smaller cohorts are advised, halving the class size. One teacher should stay per-
manently with one cohort if possible. Alternating attendance times for students should also
be considered to decrease the number of students present at school at a given time. Fur-
thermore, the school should strive to keep distance between students of different cohorts.
Implementing these rules should help reduce the disease spread.

Table 2.2: Overview of the sensitivity of rapid antigen tests for COVID-19 when performed by
different operators. The 95% confidence interval (CI) is also given [29]

Operator Sensitivity 95% CI
Laboratory scientist 78.8% 72.4-84.3%

Trained health care worker 70.0% 63.5-75.0%
Self-trained individual 57.5% 52.3-62.6%

Later on, the strategy to keep COVID-19 transmission low also included having pupils
perform rapid antigen tests at home. This could either be done weekly in areas with a lot
of disease transmission or periodically, for instance, after a holiday [26]. Table 2.2 shows
an overview of the sensitivity of using rapid antigen tests with different operators ranging
from trained laboratory scientists to self-trained individuals [29]. Since the children either
perform the tests themselves or have parents help them, the sensitivity of rapid antigen
tests for COVID-19 in schools was calculated by Peto et al. to 57.5%.

2.2 Disease spread models
When creating epidemic models to predict or investigate disease transmission, there are
several options. This section will detail multiple epidemic concepts and models widely
used and is largely based on a comprehensive review by Duan et al. [30] on mathematical
and computational approaches to epidemic modelling. Duan et al. describes the advantages
and disadvantages of three different models that will be described in further detail in the
following section. These include differential equation models (subsection 2.2.1), complex
network models (subsection 2.2.2) and Agent-Based Modelling (subsection 2.2.3). The
complexity and detail of each type of model increase as one moves from one subsection to
the next.

2.2.1 Differential equation models - Reed-Frost and SIR
Differential equation models are the most straightforward and least computationally de-
manding epidemic models to formulate. One of the earliest examples of using epidemic
models is from 1766 when Daniel Bernoulli developed a model to assess the effective-
ness of the recent vaccination against smallpox [30]. The differential equation models
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primarily focus on macroscopic regularities of epidemic spread, using assumptions and
simplifications to calculate epidemic diffusion, threshold, and size. However, the assump-
tion of a homogeneous, well-mixed population with simplified disease transmission limits
the model’s ability to accurately represent disease spreading in close detail [30].

During the 1920s, Lowell Reed and Wade Hampton Frost presented what is now known as
the Reed-Frost model, which described how diseases spread across a population. It uses
a binomial stochastic epidemic model to determine whether infection occurs after contact
between two individuals. The most significant outtake from the model is that it laid the
groundwork for assumptions and rules for numerous other epidemic models that are still in
use nowadays. The assumptions described by the model are quoted verbatim from Abbey
and are as follows [31]:

1. ”The infection is spread directly from infected individuals to others by a certain kind
of contact (adequate contact) and in no other way”

2. ”Any non-immune individual in the group, after such contact with an infectious
person in a given period, will develop the infection and will be infectious to others
only within the following time period, after which he is wholly immune”

3. ”Each individual has a fixed probability of coming into adequate contact with any
other specified individual in the group within one time interval, and this probability
is the same for every member of the group”

4. ”The individuals are wholly segregated from others outside the group”

5. ”These conditions remain constant during the epidemic”

Furthermore, a second cornerstone, of which many epidemic models are derivatives, is the
Susceptible, Infectious, Recovered (SIR) model presented by Kermack and McKendrick
in 1927. Based on the assumptions of the Reed-Frost model, it is a deterministic com-
partmental model where individuals progress from one compartment to another when the
state of an individual changes. Creating compartments for each possible state an individ-
ual can be in helps form a dynamic model to assess the transmission of infectious diseases
[30].

Figure 2.3: Dynamics of transition between compartments in the SIR model, where S details sus-
ceptible, I, infectious, and R, recovered. β describes the transition from S to I, whilst γ describes
transition from I to R.

The population is assumed to be homogeneous and well-dispersed, and individuals are
divided into compartments based on their health status (whether or not they are susceptible,
infectious, or recovered). An individual will move from one compartment to another if
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their health status changes, with differential equations describing the rate of this transition.
Figure 2.3 explains the rates of transition between the compartments as one moves from
susceptible to infected to recovered.

Equation 2.1, 2.2 and 2.3 for β, γ > 0 describes the transition of individuals to and from the
three compartments. For instance, will Equation 2.2 describe the rate at which individuals
transition into or from the infected compartment [30].

dS(t)

dt
= −βS(t)I(t) (2.1)

dI(t)

dt
= βS(t)I(t)− γI(t) (2.2)

dR(t)

dt
= γI(t) (2.3)

To further calculate R0, the basic reproduction number, one must divide the number of
individuals transitioning from susceptible to infected by the number of individuals moving
from infected to recovered. The equation can be seen in Equation 2.4, and the range of
R0 is a part of determining the course of a disease. R0, therefore, indicates how many
individuals, on average, each infected individual infects before recovering. For instance, a
R0 below one details that more individuals recover from a disease without infecting other
individuals, indicating a halt in the spread of the disease. On the contrary, R0 > 1 suggests
that the disease spreads faster than people are recovering, allowing it to spread across a
susceptible population [30].

R0 =
β

γ
(2.4)

Although mathematical models allow for less complex computation and faster simulations,
there are multiple drawbacks and limitations to using this method to predict the spread of
disease. The assumption of homogeneous and well-mixed populations has gotten more ac-
curate due to the recent globalisation; however, it is still limited with regard to representing
different individuals in situations where they have microscopic behaviours and attributes
that are a part of determining their interactions. In addition, a drawback to the simple
models is their low number of variables which further limits the possibilities of simulat-
ing transmission for different scenarios with changed human behaviour. Furthermore, the
models discussed in this section assume that all individuals are connected and can infect
each other in a single step. Although this assumption is becoming more accurate in current
the globalisation, geographical and social still exist. Finally, the parameterised variables
primarily rely on averages that completely rule out the heterogeneous contagiousness and
the time scale of epidemic progress [30].

2.2.2 Network models - Graph theory
Network models are introduced to study disease transmission while addressing the ho-
mogeneous population’s assumption [30]. This section will detail graph theory and its
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application when investigating epidemiology.

Definition of a graph

Graph, or network, theory is a term describing the study of graphs, which are mathematical
structures consisting of two finite sets of nodes or vertices, V, and edges, E. The set V con-
sists of multiple nodes that are entities that have a given relationship with one another. The
relationship between two nodes is presented in the E set [32]. One example is a node-set
consisting of the five following nodes, V = (0, 1, 2, 3, 4) where the relationship between
the nodes is described by edges E = ((0, 1), (0, 2), (1, 3), (3, 2), (3, 4), (4, 2)). In general,
any tuple (a, b) describes that node a interacts with node b in some way [32].

Figure 2.4: Illustration of a) unweighted and undirected network, b) weighted undirected network
and b) directed unweighted network with five nodes and six edges.

Another way to represent the relationship between the nodes and edges is to visualise
the network. Figure 2.4a) illustrates the same set of nodes, V, and edges, E. A node
is represented as a circle where its respective number or ID is displayed. The different
nodes are linked by an edge, passing from one node to the next for the nodes that have
a relationship. This visual representation of a graph can provide insights by showing
an overview of the interactions present and, for instance, by investigating the network’s
topology. The topology describes how the nodes and edges are spread and quantify the
overall relationship [32].

As Figure 2.4 illustrates, there are multiple ways to both illustrate and denote the relation-
ship between different nodes. For example, in Figure 2.4b) the edges between each node
have a weight attribute associated with them. Adding weight to an edge could have a prac-
tical meaning, for instance, describing the capacity of a road between locations a and b or
the number of times individuals a and b have interacted with one another in a day [30].
Furthermore, Figure 2.4c describes a directed network, where the edges between nodes
are drawn with an arrow representing a directionality of the interaction [33]. This direc-
tionality could, for instance, represent how a protein a binds and causes conformational
changes of a protein b. Since protein b does not cause changes in protein a, the interaction
is directional.

A more abstract way of representing a graph is through an adjacency matrix. For a network
with N nodes, the adjacency matrix is a square matrix with a shape of NxN [32]. An
adjacency matrix representation, Aij of Figure 2.4b can be seen in Equation 2.5.
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Aij =


0 2 3 0 0
2 0 0 5 0
3 0 0 4 1
0 5 4 0 3
0 0 1 3 0

 (2.5)

Each element in the matrix describes whether or not there is an edge between two nodes
i and j. On the diagonal i = j and as there are no self-loops in the graph, the entry is
0 along it. As shown in Equation 2.5, the first row would describe node 0 in Figure 2.4b
and its relationship between the other nodes in the graph. As it has no connections to
itself, the first entry is 0. Meanwhile, it has an edge to node 1 with the weight of two
and another edge to node 2 with the weight of three. Since the network depicted in the
adjacency matrix is undirected, the matrix is symmetrical along the diagonal marked by
zeros. Similarly, the first column shows how node 0 interacts with the other nodes in the
graph [33].

Graphs with their respective visualisations are highly versatile. Still, they are used to de-
note the different components of networks, such as interactions between genes and their
proteins, social interactions in high schools, the transmission of sexually transmitted dis-
eases (STD), and other disease transmissions [30].

Graph analysis

Many analyses can be run on graphs to get more information on their characteristics. This
subsection will detail a few measures used in this thesis: network degree, diameter, average
shortest distance, clustering coefficient, average clustering coefficient, network density,
and two different network centralisation measures.

The degree of a node represents how many edges that specific node has connected to other
nodes in the network [33]. For instance, would the degree of node 1 in Figure 2.4a be
two, while the degree of node 2 would be three. For a weighted network, the measurement
weighted degree can also be helpful. The weighted degree also considers the weight of
each edge a node has to other nodes in the network. For Figure 2.4b, this means that node
1 would have a degree of seven, while node 2 would have a degree of eight.

The diameter of a network is a measure of the maximum shortest path present in a network.
In essence, for the shortest path between all pairs of nodes in a network measured, the
network diameter is the largest value between any of the two nodes in the network. In
Figure 2.4a, the network diameter would be 2, as there are two edges (0 → 2 → 4)
separating node 0 from node 4. Similar to the network diameter, the average shortest
path identifies all shortest paths between any two pairs of nodes and takes the average
length of all the distances [33]. If a network has a low network diameter in relation to the
size of a network, the network is said to display a small-world property. More detail on
algorithms and ways to identify both network diameter and average shortest paths in any
given network can be found in Barabási and Pósfai’s Network science [33]; however, this
is beyond the scope of this thesis.
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The local clustering coefficient is a measure that is specific to each node in the graph. It
measures to which extent a specific node’s neighbours are linked to each other. For a node
i with degree ki the local clustering coefficient is calculated as follows [33].

Ci =
2Li

ki(ki − 1)
(2.6)

Li represents the number of links found between the ki nearest neighbours of node i.
Therefore, if Ci = 1, all the neighbours of node i are all linked to each other, forming a
cluster. If Ci = 0, none of the neighbours of node i are linked to each other. Consequently,
Ci is a measure of the probability that the neighbours of a node i are linked to each other.
For Ci = 0.5, there is a 50% chance of any two neighbours of node i being linked together.
Meanwhile, for a network of N nodes, the global clustering coefficient, also called the
average clustering coefficient ⟨C⟩, takes the average of Ci of all nodes i = 1, ..., N in a
network. Similarly to Ci, the global clustering coefficient denotes the probability that any
two neighbours of any node in the network have an edge between them [33].

Network density describes how connected a network is compared to its full connection
potential. It can be identified for any network by dividing the number of links found in
a network by the maximum number of links possible. The maximum number of links a
network can have is one where all nodes are linked pairwise. The network density then
describes how dense a network is with its given set of nodes, compared to the potential den-
sity [33]. In real-life social networks, the density is generally on the lower spectrum. For
example, Auber et al. describes a social network of actresses generated by using IMBD,
where they collected a network of 419 actors and 5651 edges representing social contact
resulting in a network density of 0.1794 [34].

Network heterogeneity measures the diversity of node degrees in a network. A hetero-
geneous network is a network where nodes are connected with other dissimilar nodes by
having different degrees. Consequently, a homogeneous network is one where nodes with
a similar degree are connected. Heterogeneity is often used to measure how robust a
network can be to different perturbations, for instance, when introduced to transmissible
diseases. The higher heterogeneity, the more robust a network is to random perturbations.
Furthermore, a highly heterogeneous network will also be more vulnerable to targeted per-
turbations. For example, when introducing a disease into an interaction network, if a node
with a high degree is chosen, it has a higher probability of transmitting the disease more
quickly to the rest of the network than when choosing a low degree node. For a network
of size N , with the average degree of the network ⟨k⟩ where node i has a degree of ki, the
heterogeneity VAR can be calculated as follows [35]:

VAR =
1

N

N∑
i

(ki − ⟨k⟩)2 (2.7)

Another way to measure if nodes are connected to similar nodes is to investigate assorta-
tivity. It is a measurement of the preference of a network’s nodes to attach to other nodes
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that are similar to themselves. The most frequent assortativity measurement used on net-
works is to see to which extent nodes connect to nodes that have a similar degree, meaning
that, for instance, high degree nodes connect to other high degree nodes. This can be vi-
sualised by plotting the degree of node i as a function of node j for all interacting nodes
(i, j) [36].

Multiple network centrality measures within graph theory can help quantify the nodes of
heterogeneous networks. Since heterogeneous networks often have a significant difference
in which nodes are connected to others, it is essential to have measures of the centrality of
nodes so that the impact of specific nodes can be quantified [37]. Take, for instance, an
interaction network of an office, where each node represents colleagues and edges between
their interactions. Transmission of disease would transpire faster through the network if the
human resource (HR) employee, who had frequent encounters with all the office workers,
were patient zero instead of the company director, who was isolated in their own office.
Therefore, it is a fundamental characteristic to investigate in networks where simulations
are to be run. There are multiple different centrality measures, and Rodrigues provides
an extensive overview of them [37]. However, for this thesis, the centrality measures
described in detail are closeness centrality and betweenness centrality.

Closeness centrality is a local measure of each node’s average distance to all other nodes
in the network. The closer a given node has to all other nodes in the network, the higher
their closeness centrality. For a network with N nodes, the closeness centrality (CCi) of
node i with neighbouring nodes j is [37]:

CCi =
N∑N

j=1,j ̸=i dij
(2.8)

Where dij is the shortest path between node i and node j. The closeness centrality is a
simple measure that highlights the nodes with the shortest paths to the other nodes in the
network and helps identify the most isolated nodes. The drawback of using closeness to
measure centrality is that most complex networks have a small network diameter. Thus, it
is more likely that several nodes may have the same closeness centrality making it difficult
to separate them [37].

Therefore, it is also essential to explore other centrality measures, such as betweenness
centrality. Instead of measuring the average distance to other nodes from a given node,
betweenness centrality focus on locating ”bridges” or nodes in the network where most
traffic or load is passed through. To continue the office example, the HR employee may
interact with many of the other employees in the office and have a high centrality measure.
However, the company director may work with people in both the office and at a corporate
level, thus functioning as a bridge between the office workers and the corporate workers.
The company director would then have a higher betweenness centrality.

The load of a node, i, is defined as the number of shortest paths that pass through the node.
Since multiple shortest paths often exist between any two given nodes, the load is often
defined as the fraction of shortest paths connecting each pair of nodes (a, b) for which
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a and b could be the nodes 1, . . . , N that have a shortest path that pass through node i
[37].

BCi =
∑
a,b

η(a, i, b)

η(a, b)
(2.9)

Equation 2.9 shows the calculation of the betweeness centrality. η(a, i, b) denotes the
number of shortest paths that are connecting the edge a and b through edge i, whilst η(a, b)
is the total number of shortest paths that exists between a and b. Network centrality is
an important measurement, and both betweenness and closeness centrality can provide
insights into the nodes of networks. Whereas closeness centrality would highlight the HR
employee, which could be interesting to investigate how the disease may be transmitted
in an office setting, betweenness centrality would highlight the company director who
could describe how the disease could transmit from the office to the corporate workers.
The value of looking into the betweenness centrality of a network is that it may highlight
vulnerable nodes that, when compromised, may cause a connected network to be divided
into components with no communication between the different components [37].

In nature, whether that be social interactions or regulatory proteins and genes interacting,
networks tend to have a community of nodes that interact more with one another. This
community is often called a module or cluster in network theory, where the individuals
within one cluster tend to interact with other individuals of the same cluster more than
nodes outside of it. Modularity is a way to measure the prominence of such clusters or
modules in a network. For example, a network with N nodes and L links that is divided
into nc communities, with Lc number of links within the community c and kc total degree
of the nodes in the community c, modularity can be calculated as shown in Equation 2.10
[33].

M =

nc∑
c=1

(
Lc

L
− (

kc
2L

)2
)

(2.10)

The higher the modularity, the more prominent and connected the different nodes are to
other nodes within their communities. In addition, this also means that there are sparse
connections between nodes of different communities. For more information on calculation
of modularity, see Newman [38].

Degree distribution

The degree distribution of a network, pk denotes the probability that a randomly chosen
node has a degree of k. pk is normally plotted as a function of the degrees k present in
the network [33]. The distribution can either be drawn as a Probability density function
(PDF) or a Cumulative density function (CDF). In degree distributions, PDF denotes the
probability that a random node in the network has a given degree k. Meanwhile, a CDF
accumulates the probability that a random node in the network has a value of less than
or equal to degree k. There are multiple degree distributions one can expect to encounter
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when investigating networks. Figure 2.5 provides an overview of the PDF of the dis-
tributions that will be detailed in this subsection. This section will only address degree
distributions used in this thesis.

Figure 2.5: Density plot of the result of 1000 generated values between 0-100 for different distri-
butions, where a) Uniform distribution, b) Normal distribution, c) Poisson distribution and c) Power
law distribution.

The simplest form of degree distribution is the Uniform distribution. It can be seen in
Figure 2.5a, and an example of its usage is in random variable generators. For a variable x
in the interval [A,B] the PDF of a uniform function is given in Equation 2.11 [39].

f(x;A,B) =

{
1

B−A , if A ≤ x ≤ B

0, elsewhere
(2.11)

A normal distribution is a distribution has the symmetric bell-shape that is visible in Fig-
ure 2.5b. The parameters mean (µ) and standard deviation (σ) are used to determine the
value of x in Equation 2.12 [39].

f(x) =
1

σ
√
2π

e
−(x−µ)2

2σ2 (2.12)
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Power law distribution is a continuous probability distribution often seen for social inter-
actions, especially in scale free networks [40]. The density plot of the Power law can be
seen in Figure 2.5d. Equation 2.13 describes the PDF of a Power law where α is a constant
whilst k is the order of scaling [33].

f(x) = αxk (2.13)

The density of the Poisson distribution is shown in Figure 2.5c, and it is a discrete prob-
ability distribution. It is often used to identify the probability of certain events occurring
within a given interval of time. The equation for the Poisson distribution can be seen in
Equation 2.14 [39].

f(x) =
λxe−λ

x!
(2.14)

Random networks and topology

Since being introduced into the field of graph theory by Paul Erdős and Alfréd Rényi in
the 1950s and 60s, random graphs have completely revolutionised graph theory; see Albert
and Barabási for more detailed information on random networks [41]. Random networks
aim to reproduce some characteristics found in real-life empirical networks, such as Power
law degree distribution, high clustering, and small-world property by having a low network
diameter [41]. In random networks, the number of nodes is often set, and various probabil-
ities are used to determine the nodes and edges formed between them. This section will go
into detail the generation, usefulness, and characteristics of the random networks Erdős-
Rényi model (ER),Watts-Strogatz model (WS) and Barabási–Albert model (BA).

The ER model was the first random network model to be described. It takes in the param-
eters N , the number of nodes in the network, and V , the number of edges in the network.
The edges are chosen randomly from the N/(N − 1)/2 possible edges in a network with
N nodes using p as the probability for edge formation between each pair of nodes. Thus
the ER model starts with N nodes and then uses the probability p to determine whether or
not an edge is drawn between any two pairs of nodes. For more details on how the graph
is generated, see Albert and Barabási [41]. Properties of ER is the appearance of sub-
graphs (such as cycles or clusters), however, with an overall lower clustering coefficient
than whats seen for empirical interaction networks. The degree distribution for a ER model
is a binomial degree distribution that is approximated by Poisson for N << ⟨k⟩ [41]. In
addition, ER networks tend to have a small network diameter, as long as Np < 1.

Furthermore, the WS model proposed in 1998 only uses the parameters N , the number of
nodes, and p, the likelihood of rearranging the edges in the network. In order to keep the
low network diameter and at the same time have a high clustering coefficient similar to that
seen for empirical networks, Watts and Strogatz created a model that was an interpolation
between a regular lattice and random graphs. First, all nodes were connected to their k
closest neighbours in a ring lattice. Furthermore, each edge has a p likelihood of rewiring
the edge to another node. This is similar to how individuals are more social with their
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neighbours or the people they are closest to in school or at work. Likewise, people mostly
socialise with individuals they are in close contact with but may also have some other
acquaintances with other individuals with whom they have a more considerable distance.
The rewiring of the edges in the ring lattice helps capture both the close contact interactions
and the more rare acquaintance interactions. The degree distribution is similar to and
approaching a Poisson distribution, like the ER model. In addition, rewiring also provides
a small-world property, where the average path length between the nodes in the system is
low and overall high clustering coefficient for the network [41].

The BA network is a scale-free network, meaning that the degree distribution follows a
Power law. In contrast to ER, the model is not built by first displaying all nodes and
then creating edges between them according to established rules. Instead, the idea for
BA networks is that nodes are added through growth and preferential attachment. The
World Wide Web network consisting of webpages as nodes and hyperlinks between them
as edges is an example of how preferential attachment works. Each new webpage and
its hyperlinks have a higher probability of linking to a more well-known webpage (with
more hyperlinks) than an unknown one. BA generates networks by growing the network
one node at a time, with the likelihood of a given node creating an edge to any other node
being proportional to the degree of that given node. The concept of nodes having a bias
for interacting with other nodes with a higher degree is called preferential attachment. As
a result, the average path length of a BA model is smaller than for the other mentioned
random graphs, and the model generates networks with Power law degree distribution
[41]. BA models do not, however, have a high clustering coefficient as compared to real-
life empirical networks.

Disease modelling using networks

Duan et al. divides complex network models into the following two categories: spreading
dynamics in complex networks and numerical simulations of epidemics in complex net-
works. The first category allows for the simulation of spread on a created network. It uses
differential equations, similarly to compartmental models, which determine which nodes
move from one state to another (for instance, from susceptible to infected). The use of
networks alongside the compartmental model provides more realistic than heterogeneous
networks. Meanwhile, numerical simulation in complex networks integrates the Reed-
Frost model to generate a network where a link between two nodes denotes the probability
of infection being spread between them.

Complex network models also allow for interpretation of the network topology of a given
situation and how this can impact epidemic spread. This has allowed several conclusions
regarding epidemic spread on the system solely based on its network typology. A node
with a higher degree in a social network will, for instance, have a higher probability of
being infected compared to a node with a low degree. Furthermore, epidemics will spread
faster in a scale-free network compared to small-world networks as the disease is in its
early state [30]. Whether or not a network is weighted also plays a role in how the interac-
tions between individuals are modelled and disease is spread. Finally, temporal networks,
where interactions are accumulated over a specific time, may also give a new time dimen-
sion to disease modelling.
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2.2.3 Agent based modelling
Agent-Based Modelling is a way to model more complex systems where each component,
or agent, has a set of characteristics or behaviours taken into account. Each entity in a
model is called an agent, and they act and behave according to a set of rules. Compared
to the previously mentioned methods, it is the most complex, detailed, and computation-
ally demanding way to model disease spread. However, it is valuable as it gives a deeper
understanding of how each agent behaves in a particular situation and more accurately
represents the heterogeneity in individual attributes and behaviours, which can further be
used in disease modelling. Furthermore, it is a bottom-up approach, where each indi-
vidual’s small behavioural changes and attributes are used to predict and investigate the
epidemic spread of a whole set of individuals. The recent advancements in increased com-
putational power, data availability, and development of new algorithms have allowed the
usage of ABM [30].

Macal and North describes steps and guidelines for creating an ABM in detail. Their steps
will be used in the formulation of a model for this thesis and will be described in further
detail in section 3.3 model. They describe the three following characteristics to implement
into a typical ABM, quoted verbatim from Macal and North [42]:

1. ”A set of agents, their attributes and behaviours”

2. ”A set of agent relationships and methods of interaction: An underlying topology of
connectedness defines how and with whom agents interact.”

3. ”The agents’ environment: Agents interact with their environment in addition to
other agents”

It is vital that the model is based on actual human contact patterns since these interactions
will influence how diseases are transmitted. Different methods can obtain information
on human contact behaviour through social questionnaires, diaries, and wearable sensors.
From this, it is possible to observe patterns that can be used to determine the distribution
of contacts, as seen in Figure 2.6. Edmunds et al. used an agent-based approach to model
interactions between adults in the UK to identify contact patterns with epidemiological
significance [43]. After analysing an experimental network collected by the participants,
Edmunds et al. [43] found that the number of contacts per individual per day was approxi-
mately normally distributed with a mean of 16.8 and a standard deviation of 8.5. This was
further used to generate a network [43].

Figure 2.6: Thought process of moving from experimental data to simulation of an Agent-based
model through a feature and extraction analysis step.
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Another way to model the interactions, if they do not follow any known continuous dis-
tribution, is to determine interaction based on each agent’s different attributes. Moon
and Carley [44] wanted to generate a social network between terrorists and used multiple
probabilities to generate interactions between individuals: relative similarity (RS), relative
expertise (RE), social distance (SD), and spatial proximity (SP) [44]. Equation 2.15 de-
scribes the probability of two terrorists, i and j, interacting based on the four parameters.
ω1, ω2, ω3, and ω4 describe weights of other factors.

P Interaction
ij = ω1RSij + ω2REij + ω3SDij + ω4SPij (2.15)

Multiple simulation systems that allow for ABM simulation are also available online.
Duan et al. mentions MASON, GeoGraph, EpiSims, BioWar, and FluTe. The mentioned
large-scale systems rely on demographic data, and some also utilise Geographic Informa-
tion System (GIS) techniques to visualise outbreaks in maps.

The fire model, described by Wilensky and Rand [45], details how interactions between
agents can be modelled according to both their surroundings and behaviour in a spatial
manner [45]. For this model, a spatial network of different agents is required. The model’s
objective is to simulate how a fire would spread through an area with varying densities
of trees distributed heterogeneously. The chance that a particular tree will catch on fire is
based on variables such as the type of wood, wind, and how close a tree’s branches are
together. The agent-based fire model approach can then help predict what would happen
if a specific tree catches on fire and how it will spread to surrounding trees based on the
characteristics and behaviour associated with the burning tree and its neighbours.

The advantage of using ABM is that they provide complex networks that can take into
account mobility and contact patterns. This helps a model formulate a more detailed and
realistic network where stochastic processes and probabilities can be used to simulate epi-
demic spread. The disadvantage of ABM is, however, that the more detailed an ABM is,
the computational power that is required. Furthermore, even though the field is rapidly
evolving, another setback is that it relays heavily on high-resolution collected data on hu-
man behaviour, psychology, and movements. Lastly, some of the models might end up
being too complex to generalise and formalise [30].

2.3 SocioPatterns: Face-to-face contact patterns in a pri-
mary school

The data set used to describe interactions within primary schools in this thesis was col-
lected by Barrat et al. [1] and made available through the interdisciplinary research col-
laboration Sociopatterns [46]. Sociopatterns utilise data and emerging technology to study
human behaviour and activity. After the swine flu outbreak during the spring of 2009,
the main motivation of the study by Barrat et al. [1] was to collect information on how
children mix and interact in a primary school environment and use this information on
an epidemiological scale. During the 1st and 2th of October 2009, Barrat et al. collected
77,602 contacts between 242 individuals in a French primary school in Lyon. The subjects
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in the study consisted of 232 children between the ages of 6 to 12 and 10 teachers. All sub-
jects wore Radio Frequency Identification Device (RFID) badges to detect close proximity
face-to-face interaction within 1-1.5 meter distance, lasting longer than 20 seconds.

2.3.1 Collection of data
The data was collected using RFID badges that were placed on the chest of the pupils.
RFID devices allow for specific identification of individuals with their own IDs, collection
of data, and entering of the mentioned data into computer systems. In the study by Barrat
et al. [1], the RFID badges detected other RFID ID’s and reported to RFID readers placed
in the environment of the primary school, which further connected to a central computer
system that saved the interactions. The RF readers were placed to cover the entire school
with receivers in all classrooms, the cafeteria, stairways, and playground. Even though
Barrat et al. collected the location in which each interaction found place, this data was not
made publicly available.

For Barrat et al.’s study, the exchange of radio packets between badges worn by individuals
was only possible for individuals facing each other at the close proximity of about 1-1.5
meters [1]. This is mainly due to the human body working as a Radio Frequency (RF)
shield for the carrier frequencies used in the study. Thus, the interactions that are detected
by Barrat et al. are close proximity and face-to-face, mimicking how respiratory diseases
might spread through, for instance, coughing, sneezing, or direct contact [1]. The parame-
ters used in the RFID badges were tuned so that the proximity of two individuals wearing
the badge can be assessed with a probability above 99% for 20 seconds. Conversely, the
interval for detection of interactions is set to 20 seconds.

2.3.2 Features and metadata
All data on interactions and RFID badges were fully encrypted to ensure no personal
information of the participants was shared. The interaction data set published and avail-
able through SocioPatterns, contained six columns; source ID, source ID’s class target ID,
target ID’s class, and time interacted. All IDs were anonymous, and a complementary
metadata file was also available, containing metadata on the gender associated with each
ID. The columns of data available are represented in Table 2.3, and the high-resolution
data captures the ID, class, gender, and time each interaction occurs.

The school in which the data was collected consisted of five grades (1st to 5th) with two
classes (A and B) per grade. Of the 251 individuals attending the school, 232 children
participated (96% coverage) and ten teachers (100% coverage). The size of each class
varied from 22 to 26 students, with an average of 24 students per class.

On the 1st of October 2009, the trackers collected data from 8.45am to 5.20pm, whereas on
the 2nd of October 2009, data was collected from 8.30am to 5.05pm. The schedule of the
primary school is presented in Figure 2.7 including the time school starts, breaks, lunch
break, and ends. In addition, the capacity of the playground and cafeteria did not hold the
entire school, so the lunch break was broken into two consecutive turns where two or three
grades had a break at the same time while the others ate in the cafeteria. This was usually
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Table 2.3: Overview of the data available from Barrat et al.’s experiment in Primary schools. An
interaction occurs between SourceID and a TargetID.

Data Description Example Type of data
Timestamp Seconds since midnight

on the first test day
31220 Integer

SourceID ID of interacting
individual

1558 Integer

TargetID ID of interacting
individual

1567 Integer

SourceClass Class of SourceID 3B String
TargetClass Class of TargetID 3B String

SourceGender Gender of SourceID M String
TargetGender Gender of TargetID F String

divided so that grades one to three ate lunch together while grades four and five were in
the playground. Afterwards, grades four and five entered the cafeteria, while grades one
to three went into the playground. It is also important to keep in mind that some school
children eat their lunch at home during the two-hour lunch break. Therefore, there is a
drop in the number of individuals present during the lunch break.

Figure 2.7: Schedule of an eight-hour school day in a primary school in Lyon that starts at 08.30
and ends at 16.30. The schedule includes two half an hour breaks at 10.30 and 15.30 as well as a
two-hour lunch break at 12:00.

2.3.3 Main findings reported by Barrat et al.
The average time spent between two persons in face-to-face proximity during day one was
3 minutes and 27 seconds, while it was 3 minutes and 56 seconds on day two. Barrat et al.
highlights that there is a limited degree of heterogeneity across classes as well as across
days. Meanwhile, there is a clear separation between individuals of different classes, and
individuals of the same class are more likely to interact with one another. In addition,
another separation that is apparent is the one between the lower grades (1-3) and upper
grades (4-5), likely due to the grades having a shared lunch break. Figure 2.8 describes the
degree of each individual at different time points. The spikes visible are during lunch and
breaks that were described in Figure 2.7. In addition, the number of individuals present
drops during the two-hour lunch break as individuals go home to eat lunch. Finally, Barrat
et al. found that each child had, on average, 26 repeated contacts on the second day with
children they interacted with on the first day and 20 new connections. Of 26 repeated
interactions, 19 were in the same class as the individual, and seven were outside the class
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[1].

average cosine similarity between his/her neighborhoods across
the two days is 0.67 (0.74 for the neighborhood restricted to his/
her own class, 0.2 for the neighborhood restricted to children in a
different class). This indicates a repetitive pattern inside each class
but a non negligible renewal of the contacts between classes across
consecutive days.

Trajectories in space
Figure 10 displays the trajectories followed by children as they

move across the classes and public spaces of the school. It shows
how each class moves from its classroom to the courtyard and then
comes back at various times. During the lunch break, some
children go first to the cafeteria and then to the courtyard,
encountering children who are moving in the opposite direction. It
is apparent how these trajectories, dictated by the school schedule,
strongly contribute to shaping the mixing patterns between classes
and grades.

Discussion

To our knowledge, this is the first study presenting detailed
measures of close (face-to-face) proximity interactions between
children in a primary school (see however [3] for the case of a high
school). These descriptive results on contact patterns are of interest
for modeling the spread of various infectious diseases, and possibly

for investigating the role of specific control measures, such as
closure of classes, immunization strategies, and so on. Time-
resolved contact data were collected over two school days by
deploying a wireless sensor network of RFID badges that record
close-range (1 to 1.5 m) face-to-face proximity between individ-
uals. The present study had a very high participation rate (.95%).
Relying on unobtrusive wearable devices allows the unsupervised
detection of contacts during which a communicable disease, in
particular a respiratory disease, may be transmitted. This is an
important advantage compared to approaches based on question-
naires, especially among the youngest.

Comparison with previous studies
A number of other studies describe or estimate social contact

numbers and durations [3–10]. Comparison with previous results
is clearly important but is made difficult by differences in the
definitions of interaction/contact as well as by differences in the
measurement techniques. As the present study considers the
unsupervised detection of face-to-face proximity, it does not rely
on surveys nor on the memories of participants. It is thus expected
that larger total number and durations of contacts will be
obtained, in comparison with survey-based methods.

Table S1 reports the comparison of the number and duration of
contacts between previous studies and the present one. As

Table 4. Exposure matrix between grades.

1st grade 2d grade 3d grade 4th grade 5th grade Teachers

1st grade 322.6 (177.7) 24.8 (13.3) 13.9 (6.2) 10.0 (4.7) 10.4 (4.4) 13.0 (5.5)

2d grade 24.6 (13.2) 274.8 (162.7) 21.7 (11.4) 3.0 (1.2) 2.1 (0.7) 11.4 (6.0)

3d grade 15.0 (6.7) 23.9 (12.5) 307.7 (167.8) 7.7 (3.5) 6.4 (2.4) 7.9 (4.0)

4th grade 11.1 (5.2) 3.3 (1.4) 7.9 (3.6) 189.9 (103.7) 18.2 (9.2) 6.4 (2.9)

5th grade 11.3 (4.8) 2.3 (0.8) 6.3 (2.4) 17.5 (8.9) 269.3 (148.6) 7.3 (3.6)

Teachers 61.7 (26.1) 54.8 (29.0) 34.8 (17.5) 27.5 (12.4) 32.4 (16.2) 10.5 (6.8)

The cell of row A and column B of the matrix gives the average number (and the duration in minutes, between parenthesis) of contacts involving an individual of grade
A with any individual of grade B, per day.
doi:10.1371/journal.pone.0023176.t004

Figure 6. Degree of individuals in the contact networks aggregated over sliding time windows of 20 minutes during the first day
(left) and the second day (right) of data collection. The median value is represented with a black line, the 95% confidence interval is shown in
gray and the number of individuals over which the statistics are calculated is shown in red dashes. Breaks and beginning and end of lunch are
characterized by a sudden increase of the degree, showing the occurrence of large numbers of contact events.
doi:10.1371/journal.pone.0023176.g006

Face-to-Face Contact Patterns in a Primary School
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Figure 2.8: Degree of individuals in empiric network for 20 minute intervals for day one (left)
and day two (right). The black line shows the mean for each time point whilst the 95% confidence
interval is drawn in grey and the number of individuals at each time point is marked in red. From
Barrat et al. [1]
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Chapter 3
Methods and software

The objective of this thesis is to extract information and trends from the experimental
interaction data collected by Barrat et al. [1] and use this to estimate parameters that can
be used in an ABM of the same environment. Furthermore, disease transmission should be
run on the model. Figure 3.1 describes the overall process of moving from experimental
data to running disease transmission on a model.

Figure 3.1: The approach of this thesis is to use experimental data to characterise features and
metadata and use these to create new interactions that can be used in a disease transmission model.
The size of the nodes represents their degree.

Figure 3.1 also describes the four parts this chapter is divided into. Firstly, the software
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used to analyse and program the model is described in detail in section 3.1. Secondly, the
approach for feature characterisation and analysis of the experimental data is described
in section 3.2. Thirdly, said features and characteristics are used to create an ABM as
described in section 3.3. Finally, disease transmission and preventative strategies were
implemented into the model and are described in section 3.4.

3.1 Software
This section will go into further detail on the different software and programs used through-
out this thesis. Some of the data generated for this thesis was, in addition, processed in
the high-performance computing cluster Idun at the Norwegian University of Science and
Technology, Trondheim, Norway.

The ABM, alongside most of the analysis for both the experimental and simulated net-
works, was created using the programming language Python, version 3.9.7 [47]. Python
was chosen as it both allows for object-oriented programming and will make the remaining
model compatible with the NTNU Taskforce model [12]. Python can be downloaded from
www.python.org. In addition to the Python Standard Library, additional modules were
imported and used to analyse and construct the networks. Table A.1, Appendix A, shows
an overview of the installed modules.

Furthermore, Cytoscape version 3.9.0 [48] allowed for network analysis and visualisation
of both the simulated and experimental networks. It is an open-source software environ-
ment originally produced to analyse and integrate biomolecular interaction networks with,
for instance, expression data [48]. However, it is also a valuable tool for working inter-
actively with networks and analysing them through installed modules. Cytoscape can be
downloaded from www.cytoscape.org.

3.2 Analysis of Sociopattern’s Primary school network
The initial analysis of the empirical network largely focused on recreating Barrat et al.’s
[1] findings, which are summed up in section 2.3. First, the data was pre-processed as
described in subsection 3.2.1. Secondly, subsection 3.2.2 describes the topological param-
eters investigated in a general network analysis. Then, random networks with similar fea-
tures to the experimental networks were generated as described in subsection 3.2.4. Next,
the dynamic of interactions between individuals in the data set was investigated, as shown
in subsection 3.2.3. Finally, the degree and interaction distributions were investigated as
described in subsection 3.2.6 and subsection 3.2.7. All analysis and pre-processing of
data was done using python, and the code for the initial analysis can be accessed through
section C.1, Appendix C.

3.2.1 Data preparation
As described in subsection 2.3.2, each interaction was recorded on a 20-second interval.
In order to decrease computational time, it was decided that the framework of this thesis
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should create a model for daily interactions. This would also make the model compati-
ble with the ABM of the NTNU COVID-19 Taskforce. Since the model should describe
the interaction dynamics on a day-to-day basis, the interactions had to be accumulated for
each of the two days the study by Barrat et al. was conducted [1]. This was done by loop-
ing through all interactions registered for a single day and creating an edge attribute, the
weight. The weight variable describes the number of 20-seconds-interactions registered
between two individuals on a given day. To illustrate this, if, for instance, individuals
0 and 1 were to interact with each other one time on a given day for three consecutive
20-second intervals, their accumulated time spent together would be one minute, and the
weight would be set to three.

Table 3.1: Overview of class as well as new and old IDs associated with the source and target
individuals. The weight describes how many 20-seconds intervals the two individuals have been in
close contact.

SourceID Old sourceID SourceClass TargetID Old targetID TargetClass Weight
0 1711 1A 1 1752 1A 16
0 1711 1A 41 1697 1B 2
0 1711 1A 179 1866 4B 2
0 1711 1A 221 1471 5B 2

The IDs generated and presented in the Sociopattern’s data were randomly assigned to
individuals regardless of their grades. They spanned a large scale (1426 to 1922) and were
similar between individuals of the same classes, with the exception that some numbers
were continually skipped. Therefore, it was decided that new IDs should be generated and
that they would increase from 0 to the size of the school. 1st grade, class A, should have
the lowest IDs beginning with 0. The IDs should then increase until the highest grade at a
given school is reached. This sorting and creation of new IDs was done by sorting a pandas
data frame containing all IDs for the school by their class and grade. For more information
on the pandas module see section A.1, Appendix A. In addition, the students were sorted
by their given IDs within each class. The final IDs were then mapped onto the interaction
data set. Table 3.1 shows how the ID from the first individual, 0, in class ”1A” had an old
ID of 1771, while individual 221 of class ”5B” had an old ID of 1471. This configuration
allows for more intuitive IDs and the ability to sort by classes more easily.

The accumulated data set with new IDs for both source and target IDs was then used to
generate a NetworkX Graph object. For more information on the NetworkX module, see
section A.1 in Appendix A. The network was loaded as an undirected weighted network,
where the accumulated interactions were used as weights. In addition, node attributes such
as gender, grade, and class were added to the graph object, making an empirical network
out of the interaction data.

3.2.2 General network analysis
First, an undirected, unweighted network analysis was done using Cytoscape’s Analyzer
tool and python’s Networkx module. The description of each of the topological network
parameters investigated in this general analysis is provided in section 2.2.2. Network
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heterogeneity was calculated by Cytoscape’s Analyzer tool, while the network’s diam-
eter, characteristic path length, clustering coefficient, network density, modularity, and
network centralisation were calculated using Networkx’s inbuilt analysis functions. See
section A.1, Appendix A, for more information on the NetworkX module.

3.2.3 Investigating adjacency matrix and creating heatmaps
As described in section 2.2.2, an adjacency matrix is a way to represent all interactions
between the nodes in a graph. By investigating the strength of each interaction between
the individuals, it is possible to identify the underlying rules that govern how individuals
interact. The NetworkX module was used to create an adjacency matrix based on a given
graph when weight is a specified input argument.

Figure 3.2: Example of the adjacency matrix and heatmap for an undirected weighted graph. The
scale for the weighted interactions viewed in the heatmap can be seen on the left, with weights
ranging from 0 to 5.

A heatmap was generated to visualize each interaction’s strength as presented by the ad-
jacency matrix. A heatmap takes in a value between two interacting nodes and visualises
the interaction’s strength using a colour scheme. For example, Figure 3.2 shows how an
undirected weighted graph can be illustrated through an adjacency matrix in a heatmap.
The strength of the colours represents how strong one interaction within the heatmap is.
Seaborn, see section A.1, Appendix A, was used to generate all heatmaps presented in this
thesis. Heatmaps of primary school interactions could then help define specific interaction
patterns between individuals based on their similarities. For instance, they could high-
light the difference in how individuals interact with their peers across different grades and
classes.

3.2.4 Generating random networks with similar features
Furthermore, random networks, such as the Erdős-Rényi model, Watts-Strogatz model
and the Barabási–Albert model were created. The mechanisms behind these models are
described in section 2.2.2 and the networks were generated using the NetworkX functions
and the parameters that are presented in Table 3.2. The values for the parameters used
in each function were chosen by educated trial and error until a network with the same
amount of nodes and edges as the experimental network was achieved.

Three random networks were generated using the values from Table 3.2. A general net-
work analysis alongside degree distributions analysis was conducted to compare the ran-
dom networks to the empirical ones. Comparing the analysis of well-documented random
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Table 3.2: Overview of the functions, parameters, and values chosen for random generation of
Erdős-Rényi, Watts-Strogatz, and Barabási-Albert models with similar traits to the empirical net-
work on day one.

Function Parameters Values
Erdős-Rényi erdos renyi graph(n, p) n - #nodes

p - % of edge creation
n = 237
p = 0.21

Watts-Strogatz watts strogatz graph(n, k, p) n - #nodes
k - each node is joined
with its k nearest neigh-
bours in a ring topology.
p - % of rewiring each
edge

n = 237
k = 50
p = 0.4

Barabási-Albert barabasi albert graph(n,m) n - #nodes
m - #edges each node
has

n = 237
m = 28

network models with similar nodes and edges to the empirical network can help identify
the patterns and characteristics of the environment investigated.

3.2.5 Investigating assortativity
Then, the assortativity was assessed for the preference of students to connect to other
students with a similar degree. In order to investigate the degree-related assortativity of
the networks, for all the interactions in the network between node i and j, the degree of i
was plotted as a function of j. Furthermore, the weight of the edge between the two nodes
denotes the intensity of the point plotted. In addition, a Pearson correlation coefficient
was generated to describe the relationship between the nodes linking to other nodes with
a similar degree.

3.2.6 Degree distribution analysis
As described in section 2.2.2, the degree distribution is a representation of how connected
nodes are in a graph. Essentially, it details the frequency of a node in the network having a
given degree. Since the empirical network generated is weighted, the degrees used in the
distributions will be weighted. The representation of degree distribution used throughout
this thesis is a cumulative weighted degree distribution, P (X ≥ x), where P is the proba-
bility that a given node has a weighted degree, X , greater than or equal to a specific degree,
x. The cumulative distribution is calculated by counting the number of times a given de-
gree for a node has appeared in a graph and then dividing each of the different node’s
values by the total number of nodes. This gives a cumulative normalised distribution. The
cumulative weighted degree distribution will be referenced as the degree distribution for
the rest of the thesis. The degree distribution was plotted for each of the two days recorded
by Barabási and Pósfai.
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Then, to investigate whether the same individuals had a similar degree on day one as on
day two, the degree of each node on day one was plotted as a function of day two. The
aim was to investigate whether the same individuals interacted a lot on both days or if it
was random.

3.2.7 Interaction distribution analysis
The distribution of the weight of each interaction between students can also provide addi-
tional information on network topology and be used in characterising the network’s fea-
tures. In this thesis, the term interaction distribution denotes the distribution of the cumula-
tive frequency of each weighted interaction. The interaction distribution is then calculated
by creating a list of all the weights present in the network and using this to calculate the
frequency of each weight, similarly to how degree distribution is calculated. Then, by
plotting a cumulative distribution, similar to the one described in subsection 3.2.6, the
distribution of interactions or weights can be generated.

3.2.8 Interaction distribution of single nodes
To further investigate the relationship of the interaction between students, the distribution
of all edges with weights for each node was investigated. This was done by plotting the
cumulative distribution of each node’s weighted edges on a log-log scale and collecting the
R2 for the linear regression of the distribution. The distribution was investigated for all the
layers identified in subsection 3.2.9. A high R2 would indicate a Power law distribution
for the edges of the single nodes, while a low R2 would indicate the distribution was not
Power law distributed.

3.2.9 Identifying and extracting three layers of interaction
The heatmap analysis, as described in subsection 3.2.3, revealed four layers of interaction
that accumulate to form the interactions seen in a primary school. The reasoning behind the
choice of the layers will be reserved for subsection 4.1.3; however, a simple illustration
of the three layers can be seen in Figure 3.3. As illustrated, the underlying interactions
are off-diagonal. Furthermore, grade interactions consists of both off-diagonal and grade
interactions before grade interaction are defined by interactions in all the layers.

Figure 3.3: The identified layers of interaction in the data collected by Barret et al; whole school,
off-diagonal, grade and class interactions.
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The exact way that each layer was generated and divided from one another can be seen in
section C.1, Appendix C. In short, all interactions were filtered according to the similarity
between the two individuals interacting. For instance, a class interaction would occur
between two individuals that interacted and were placed in the same class. Similarly, an
off-diagonal interaction is an interaction between two individuals who do not belong to
the same grade or class. Grade interactions contain all interactions between individuals in
the same grade, excluding those in the same class. Thus, analysis of for instance degree
and interaction distributions was run on subgraphs of the empirical network for each of the
described layers.

An additional division within the layers, is that the off-diagonal layer is influenced by
when the different groups have lunch. Therefore, the off-diagonal layer is divided into
interactions happening regardless of similarities between individuals as well as interactions
happening between individuals in the same lunch groups.

3.2.10 Hourly investigation of the network
Since the time stamps were provided in the empirical data, it allowed for a more detailed
and high resolution look into interactions on an hour-by-hour time-scale. Figure 2.7 shows
the hour-by-hour schedule of the school. A detailed hour-by-hour plot was generated
where the number of interactions each hour was plotted separately for each grades. This
was done to see how the grades’ activity changed throughout the day.

Even though an hour-by-hour analysis was conducted, it was decided that too much detail
may contribute to overfitting the model making it less applicable for integration into the
COVID-19 Taskforce model. Therefore, homogeneous hour-by-hour interactions are used
when generating daily interactions in the model presented in this thesis.

Furthermore, Barrat et al. [1] described that the two-hour lunch break was divided into two
locations; the cafeteria and the playground. This was investigated to quantify off-diagonal
interactions further. As a result, the lunch division was added as an additional possible
interaction layer. The three following steps were done to examine the effect of the lunch
break division:

1. Extract all interactions that occur during the two hour lunch break

2. Investigate heatmap of the interaction

3. Investigate degree distribution of the lunch break

3.3 The primary school model
This section will go into detail on the framework for a model of interaction between pupils
in primary schools. The framework was created using the traits discovered by the analysis
presented in section 3.2. First, by answering Macal and North’s [42] method to produce
an ABM, as described in subsection 2.2.3, and then by describing the overall logic of
the model. Following Macal and North rules for creating an ABM, the set of agents,
relationships, and environment of the model are:
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3.3 The primary school model

1. A set of agents: students with attributes ID, gender, age, grade, class, and lunch
group

2. A set of agent relationships and methods of interaction: Community driven hi-
erarchic structure where similar individuals have a higher probability of interacting
with each other.

3. The agents environment: students interact with their peers

To satisfy the requirements by Macal and North the model needs first to contain a set
of agents [42]. The model’s agents described in this thesis are the pupils that attend a
given school. Each agent has different attributes associated with themselves, such as their
ID, age, gender, grade, class, and which lunch group they belong to. Furthermore, strict
rules should govern the relationships and interactions between the agents based on their
attributes. Depending on the similarity between the attributes of the agents or students, an
interaction between two agents may occur. As previously mentioned, this depends mainly
on the layer in which the interaction between the two individuals is placed in. Furthermore,
to address the environment of the individuals, the higher the similarity, the more alike the
environment of the two students is. Thus the more likely they are to interact. Therefore, the
agents’ environment denotes all the peers with which a given agent may interact.

Figure 3.4: Overview of the three steps needed to generate the agent-based model; Generate stu-
dents, interactions, and a network.

Figure 3.4 shows an overview of the three steps needed to create the model. Firstly, stu-
dents are generated according to the number of students at a given school, X , before being
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divided into grades and classes. The number of grades and classes at a given school are
denoted by G and C, respectively. For the primary school in Lyon that was investigated
by Barrat et al. [1], G = 5 and C = 2, as there are two classes, A and B, per five grades.
Furthermore, for each student generated, an additional set of attributes, A, should also be
associated with the student. The attributes include static and demographic data such as
age and gender in addition to data to keep track of students’ behaviour, as it may affect
how they interact with their peers. Such behavioural attributes are dynamic and include
information on when the students have lunch and their disease state. See section subsec-
tion 3.4.1 for more information on the different disease states. With this in mind, each
agent is distinct and has specific characteristics involved in deciding the agent’s behaviour
and interactions.

The next step in Figure 3.4 is generating interactions. As described in subsection 3.2.9,
different rules govern how the pupils at a school interact with each other, depending on
the similarity between each pair of students. Each layer represents a different interaction
mechanisms and must be modelled differently to accurately replicate the structures identi-
fied in the experimental data. Because of this, the types of interactions are divided into four
different layers, as shown in Figure 3.4. The parameters used to define when interactions
occurs, will be further described in subsection 3.3.2.

Lastly, the different students’ interactions with each other need to be accumulated into a
network. Each student should be added to the network as a distinct node with their re-
spective attributes. By looping through each possible pair of students, the network should
add hourly weighted links between the students according to the similarity between the
students and following a given set of interaction rules. Furthermore, the hour-by-hour in-
teractions should be compiled into a day-by-day network with weighted links denoting the
number of times two individuals have interacted. The precise mechanism of creating the
different weights will be described in further detail in subsection 3.3.2.

3.3.1 The build of the model
The model comprises three classes; Person, Interaction, and Network. In addition, an
Analysis class is also incorporated to run analysis and compare the simulated to the em-
pirical network. Finally, an Age group file was also added to keep track of the age group
of the Person objects. This file was not used specifically in this framework, but was im-
plemented to ensure compatibility with the NTNU COVID-19 Taskforce model. The fol-
lowing section will detail the different classes and how they interact with each other. An
overview of the classes that form the interaction model can be seen in Table 3.3.

The Person class stores all information of a single student in a Person object and contains
the attributes associated with that person, such as ID, age, grade, and class. A detailed
description of all attributes associated with each object can be viewed in Table A.2, in
Appendix A. These attributes are used to model how that specific individual will interact
with their peers in a primary school environment. In addition, each Person objects are
initialised and divided into grades, classes, and age depending on how many grades and
classes are at a particular school. Since the data collected by Barrat et al. [1] only contained
ten teachers that were assigned one class each, it was decided that the framework presented
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in this thesis should only model interactions between students. The Person class also
provides methods for getting and setting said attributes and other formatting functions.
The full documentation of the class can be seen in the GitHub of the model, described in
section C.2, Appendix C.

Table 3.3: Description of all object-oriented classes involved in generating the primary school
model; Person, Age-group, Interaction, Network, and analysis.

Class Description
Person Represents the agents (individuals) of the model and could in theory be

either teachers or students. This model only contains students.
Contains the attributes such as ID, age, grade, class, etc.

Age group Enum that keeps track of the age group of the different ages. Not
specifically used in this model, however it is implemented to ensure
compatibility with the NTNU COVID-19 Taskforce model

Interaction Keeps track of interaction between two Person objects. Stores the two interacting
Person objects as well as the attribute count, which keeps track of how
many times the two individuals have interacted

Network Generates a nx.Graph object from the Interaction objects. Also stores
attributes such as students, which is a list of all Person object attending
a certain school

Analysis Contains multiple functions that can be used to run analysis on Network
objects. Functions includes generating heatmaps, degree distribution,
interaction distribution and other measurements that can be helpful when
comparing the model to the experimental data

Of most importance are the biases generated and associated with each Person object. The
bias quantifies how likely a person is to interact with other individuals; in other words,
their bias for interacting with any given person. Once each individual is generated, their
bias will be set, and each individual will have a unique bias for interacting with any other
individuals. Table 3.4 shows an overview of the three biases included in this model: base
(bbi ), grade (bgi ), and class (bci ) bias. Each Person object will have their own bbi , bgi , and
bci generated upon initialisation. Similar to the layers described in subsection 3.2.9, the
base bias describes the bias an individual has for interacting with individuals that are off-
diagonal contacts, meaning they are not in the same grade nor class. Likewise, grade
bias is an individual’s bias for interacting with individuals in their grade, while class bias
describes their bias for interacting with peers in the same class. The bias, alongside the
Pij , which will be described in the next section, is what helps decide which interaction
occurs. The exact calculation of the different parameters of the biases will be provided in
subsection 3.3.2.

Table 3.4: Overview over base, grade and class bias with their respective descriptions.

Bias Description
Base (bbi ) Base bias for all individuals to interact with each other
Grade (bbi ) Additional bias for interaction between individuals of the same class
Class (bbi ) Additional bias for interaction between individuals of the same class
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The Person class also includes the functions for generating the Pij-value, which utilises
the bias (bi and bj) and similarity (pij) between two individuals, i and j, to decide how
likely they are to interact with each other. The Pij-value is higher for individuals with
more in common, for instance, those in the same grade or class. Figure 3.5 shows how
the Pij-value is calculated for three different interactions between students i and j by
the addition of different pij . Similarly to the biases, the pij are specific for each layer,
divided into off-diagonal (pbij), off-diagonal lunch (plij), grade (pgij) and class (pcij). The
same bias is assumed for creating both lunch and off-diagonal interactions. The more two
individuals have in common, the more Pij increases due to more pij multiplied by their
respective biases being added.

Figure 3.5: Pij-value calculated for three different interactions; individuals of the same class, indi-
viduals of the same grade and individuals that only share off-diagonal interactions.

The first interaction, between Person 1 and Person 2 in Figure 3.5, is between two individu-
als of the same class. Therefore, the P12-value includes the interaction types off-diagonal,
off-diagonal lunch, grade, and class. The Pij-value increases the more interaction types
two individuals share. Similarly, P14-value for the third interaction between Person 1 and
Person 4, where the students are in different grades, classes, and lunch groups, will most
likely be lower. For each characteristic two individuals have in common, the Pij-value
increases. The reasoning behind, and functions for the parameters seen in Figure 3.5, will
be described in further detail in subsection 3.3.2.

Furthermore, the Interaction class stores interactions between two Person objects. It also
keeps track of how many times (i.e., the weight) two individuals have interacted and has
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accessible functions to extract the two interacting people. After each interaction is gener-
ated, weight is added hourly, and daily edges between individuals are added to the Network
class.

The Network class allows for the collection of all Interaction objects to generate and add
nodes and edges to an nx.Graph object. Each node is a Person object, and a weighted edge
between two nodes indicates how much those two Person objects have interacted with each
other. Upon initialisation, the Network class utilises calls to functions within the Person
and Interaction classes. See Figure 3.6 for a complete run of a Network object where two
consecutive days are generated. When a Network object is initialised, it calls for generat-
ing a list of Person objects in generate students, where the Pij-value is generated between
all pairs of individuals at the school. Based on the Pij-values, a Poisson distribution is
used to generate the hourly weight of each interaction. If the weight is higher than a set
threshold, the weight is added to an edge between the two Person objects. Then, accumu-
lating all hourly interactions of a day, a final daily network is produced. More detail on
the exact functions for the bias and Pij-values as well as calculation of weight is given in
subsection 3.3.2 in addition to documentation of the different threshold being presented in
the GitHub described in section C.2, Appendix C.

In Figure 3.6, a Network object is first created for a school containing 236 students divided
over five grades with two classes per grade. The first part of the initialisation of a Network
object is to create students with their respective biases. Furthermore, Pij are generated
between all students in the generate a p vector(). The interactions are created based on
the Pij values and are stored in Interaction objects, before the interactions are added to the
network. Similarly, when running multiple days of interaction on the same network, the
same biases and daily generated Pij values are used to simulate interactions.
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Figure 3.6: Simplified sequence diagram of an initialisation of a Network object in addition to
the call of the Network’s function generate iterations(2). Dashed lines represents returned values,
whilst boxes indicates loops. The function generate p vector() returns Pij between all students,
while generate bias() creates the bias associated with each Person object

3.3.2 Model parameterisation
The aim of the model was for it to be general enough to be incorporated into the NTNU
COVID-19 Taskforce model [12], for multiple schools of different sizes. Therefore, the ap-
proach for extracting model parameters was heavily influenced by a need for reproducible
functions, for instance, to model interactions for different sized schools. The approach
used to estimate all biases and Pij values can be generalised by the following three itera-
tive steps:

1. Extract bias from degree distribution

2. Investigate degree distribution

3. Investigate interaction distribution

4. Investigate network properties

5. Adjust parameters until satisfactory

6. Satisfactory parameters
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Each iteration was conducted to fit degree and interaction distributions for all the identi-
fied interaction layers of the model. Since the outermost layer, the off-diagonal, is also
included in grade and class interactions, a change in the parameters for the off-diagonal
would also yield changes in grade and class interactions. Therefore, it was decided that the
estimation of parameters should be done layer by layer, starting with the outermost layer.
By following the steps and investigating one layer at a time, one degree of freedom was
addressed at a time. If the degree distribution did not fit with the given parameters and
functions, new values for the parameters were chosen. Meanwhile, if the degree and inter-
action distribution fit nicely for a set of parameters, it indicated that the selected bias and
Pij value captured the variation within the students’ behaviour and interactions.

Table 3.5: Function and parameters estimated for the interactions between nodes i and j. The biases
for node i are base bias (bbi ), grade bias (bgi ) and class bias (bci ). Likewise, biases for j is calculated.
The bias is then used to generate the Pij value between the two individuals i and j. Finally weight
is calculated using the value Pij .

Function Parameter
Base bias (bbi ) α log10(

1
x ) α = 20

Grade bias (bgi ) α log10(
1
x ) α = 17

Class bias (bci ) 1
σ
√
2π

exp
(
− 1

2

(
x−µ
σ

)2 )
µ = 100, σ = 5

Base (pbij) αxβ ∗ bbi ∗ bbj α = 2, β = 0.04

Lunch (plij) αxβ ∗ bbi ∗ bbj α = 0.01, β = 0.01

Grade (pgi ) αxβ ∗ bgi ∗ b
g
j α = 2, β = 0.04

Class (pci ) 1
Γ(k)θk x

k−1e− x
θ min(bci , b

c
j) k = 2, θ = 0.04

Pij pbij + plij + pgij + pcij —
Weight P (x) = e−λλx

x! λ = 0.01 ∗ Pij

The parameters and functions presented in Table 3.5 were then decided for the primary
school interaction model. The x for each function was generated by random.random(),
which draws values from 0 to 1 using a uniform distribution. As seen from the table,
the interaction patterns seen in Primary schools can be modelled using a combination of
Power law, Gamma, Normal, Log-normal, and Poisson distributions. The exact choice for
these distributions will be described in further detail in section 4.1 and section 4.2.

Each individual i has a bias for interacting with all other individuals (Base bias (bbi )),
individuals of the same grade (Grade bias (bgi )) and individuals of the same class (Class
bias (bci )). The likelihood, Pij , of two individuals i and j interacting is calculated by
multiplying their appropriate biases with a pij value. The biases and pij values chosen
are a result of how similar two individuals are, and multiplications of them are added to
the final Pij value. Section 4.1, will describe the analysis of the empirical network, and
explain the premises for the parameters.
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3.4 Simulating disease spread
As described in Figure 3.1 in chapter 3, the model should then be used to simulate how
a disease will spread across a primary school network. Following the interaction network
generated by the Primary school model, the aim is first to see how disease spreads un-
hinged in the environment and then test how different measures and policies can help mit-
igate disease transmission. First, subsection 3.4.1 will describe in detail how the different
compartments, or disease states, of the model are defined. Secondly, subsection 3.4.2 will
describe the parameters that govern how individuals move between the different parame-
ters. Combined, the states and disease parameters will help create a view of how disease
can be transmitted in a primary school environment. Then, disease transmission is run on
the experimental data in subsection 3.4.4, which can be used to compare and validate the
model according to the experimental data. Finally, policies and measures are implemented
into the model, as described in subsection 3.4.5 to see how they affect the overall disease
transmission. The code for the disease transmission is described and can be accessed on
GitHub as detailed in Appendix C, section C.2.

3.4.1 Disease states
The disease transmission model of this thesis uses an extension of Susceptible, Exposed,
Infected, Recovered (SEIR), which is a version of the SIR models described in subsec-
tion 2.2.1. The extended SEIR of this thesis also includes the disease states infected
asymptomatic (Ia), infected pre-symptomatic (Ip), and infected symptomatic (Is). Fig-
ure 3.7 shows the different states and how individuals move between them. As the model
only focuses on Primary schools and their role in disease transmission, a closed system is
modelled, meaning only one person is set as patient zero, and no outside contamination is
introduced into the model.

Figure 3.7: Overview of the disease states and movement between them. Where susceptible (S),
exposed (E), infected asymptomatic (Ia), infected presymptomatic (Ip), infected symptomatic (Is)
and recovered (R) are the disease states.

In the default disease transmission model, all Person objects are initiated in the suscep-
tible state, where they have not yet contracted the disease and are susceptible to getting
it. If a susceptible individual comes into contact with an infected (either asymptomatic,
presymptomatic, or symptomatic) individual, they have a set probability of becoming ex-
posed. Individuals in the exposed state have an incubation time before moving on to either
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an asymptomatic or a presymptomatic disease course. However, this does not necessarily
mean that every person an infected individual interacts with gets exposed. Section 3.4.2
will go into more detail about the parameters that determine whether or not an infected
individual exposes a susceptible individual. The infectious states asymptomatic, presymp-
tomatic and symptomatic are all capable of changing the states of the susceptible people
they have interacted with to exposed. Table 3.6 provides a detailed overview of the dura-
tion of the different disease states in addition to their relative likelihood of infecting other
individuals relative to symptomatic transmission. These values are gathered from Ferretti
et al. [49], and are the same values the FHI uses in their models.

Table 3.6: Overview of the disease states exposed, presymptomatic, symptomatic, and asymp-
tomatic with duration and infection relative to symptomatic [49].

State Duration (days) Infection (relative to symptomatic)
Exposed 3 —–

Presymptomatic 3 1.3
Symptomatic 4 1.0

Asymptomatic 6 0.1

3.4.2 Disease transmission parameterisation
The modelling of disease transmission used in this thesis is similar to Wilensky and Rand’s
[45] fire model that was described in subsection 2.2.3. Similarly to how neighbours of a
burning tree can catch on fire based on the density of their leaves or how close they are to
each other, disease may be transmitted from infected individuals to their neighbours based
on how many times they have interacted and the infectiousness of the sick individual. This
subsection will detail how a threshold was set to regulate transmission and the mechanisms
of transitioning from one disease state to another.

Algorithm 1: Disease transmission on a network

P0 ← generate patient zero()
for neighbour N of P0 do

pinf ← 1− (1− p0)
w0,i∗IP0

r ← random.random()
if r < pinf then

N.state←Disease state.Exposed
end

end
Update day and state for all students

The simplified algorithm presented in Algorithm 1 helps illustrate how transmission of
disease spreads from an infected patient zero to susceptible individuals. The scaling vari-
able, p0, shown in Algorithm 1, helps set the overall transmission of the disease. It was set
to 0.001 as running simulations with this value gave an overall R0 of 2-3, making it pos-
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sible to test the effect of different disease mitigation strategies. Meanwhile, w0,i denotes
the weight between patient zero, P0, and their neighbour, i, while IP0 is the infection rate
of P0. Both the weight of interactions and the infectiousness of the infected individuals
determine how high the possibility of infection, pinf is. Then, by comparing the pinf to a
random variable r between 0 and 1, the neighbour is either moved into an exposed state or
kept in the susceptible state.

Thus, the multiplication of weight with the infectiousness associated with the disease state
of the infected individual helps sway the pinf . Algorithm 1 only describes how transmis-
sion is modelled from patient zero to their neighbours on the first day; however, the same
mechanisms are used to simulate transmission from any infected individual to their neigh-
bours. The code for disease transmission can be found in section C.2, Appendix C, where
the function infection spread() is responsible for checking the neighbours of infected in-
dividuals and determining if the disease spreads. Meanwhile, run transmission() models
transmission for the number of days specified as an argument. A new network is generated
and used to predict how the disease is spread each day.

3.4.3 Calculating r0 and generating epidemic plots for analysis
In order to assess disease transmission on both the model and the empirical networks, both
epidemic plots and estimated R0 were calculated. The basic reproduction number R0, is,
as described in subsection 2.2.1, a measurement of disease transmission across a suscepti-
ble population. Therefore, an estimated value for R0 is introduced in this thesis to describe
transmission on a smaller sample of a population. Similarly to the basic reproductive num-
ber, r0 describes how many individuals an infected individual may infect. In this thesis,
two different measures of r0 are used, with their own notation so as not to be confused
with R0.

The first measurement is the r00, which describes how many individuals patient zero in-
fects before recovering. It is a useful measurement, as it describes how disease transmits
in the early stages of the transmission without being affected by the population becom-
ing immune. By running multiple iterations of disease transmission with the same set of
parameters, the number of individuals infected by patient zero can be saved for each it-
eration and be used to calculate an expected value, R00. Figure 3.8 shows how the r00
is calculated from the number of people infected by patient zero. subsection A.3.3 and
subsection A.3.1 in Appendix A shows the approach and calculation of R00 for different
disease mitigation strategies.

The second measurement is r0N , and it describes how many individuals each infected
person has infected before recovering. In contrast to r00, it takes in all the recovered indi-
viduals at the end of the simulation and returns a list of how many each one infected before
they recovered. Therefore, it yields more values and combined with multiple iterations,
an expected R0N can be calculated. Similarly, Figure 3.8 describes how the r0N captures
each individual each infected person has transmitted the disease to and stores the values in
a list. Appendix A.3.2 in Appendix A shows the approach for the calculating R0N .

Epidemic plots are also used to display how disease transmission develops over time. In
this thesis, they are plotted by the number of recovered as a function of days since the
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Figure 3.8: Description of r00 and r0N in a network with seven individuals. For r00, the number of
people patient zero, (p0), infects is r00. Whilst for r0N , a list of how many individuals each infected
person has infected before recovery is given.

disease was introduced. When individuals recover, they become immune to the disease;
thus, the number of recovered individuals will accumulate over time. When either all
individuals in the model are infected or the disease has stopped being transmitted (R0 =
0), the curve will flatten out.

3.4.4 Disease transmission on the empirical network
Another measurement that can help validate the primary school model described by this
thesis in section 3.3 is to compare the transmission of disease on the model with the trans-
mission on the empirical network. The same rules and parameters govern the transmission
on the empirical network as for the model.

Since Barrat et al. [1] provided interaction data for two days, transmission of the disease
was first run separately on the two days. Then, the transmission was run on a network that
alternated between the two networks each day, called the switch. The reasoning behind this
was to investigate whether the model accurately could predict disease transmission and see
how the changing of the two empirical networks every other day affected transmission. By
alternating transmission on the two empirical networks, one can also get a more realistic
view of how interactions may change from one day to the next and how it impacts disease
transmission. In addition, transmission of the disease was run on both a static and a dy-
namic version of the simulated model. For the static model, the same interaction network
was used for each day of disease transmission. This was done to see if the static model
showed similar disease transmission as the empiric networks. Furthermore, the dynamic
model changed the interaction network daily, making it more realistic to run disease trans-
mission on it for multiple consecutive days. The code for transmission on empirical and
model networks can be viewed is provided in the file empiric to person object.py in the
GitHub described in section C.2, Appendix C.
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3.4.5 Incorporation of policies and measures
This section will detail how different policies and measures were incorporated into the
disease transmission model. The policies addressed by this thesis are the effect of the
different levels of the traffic light model and the incorporation of weekly testing.

Traffic light

As described in subsection 2.1.2, the Norwegian government incorporated a traffic light
model in primary schools to try and mitigate disease transmission. The three levels of the
traffic light model, green, yellow, and red, were described in Figure 2.2, and a goal of this
thesis was to investigate the effect that implementing them would have on the simulated
model. Each step of the traffic light model, increasing from green to red, includes imple-
menting its previous actions. Therefore, all measures initiated for the yellow and green
levels are also implemented at the red level. Since the detail level of the model is restricted
to interactions between people with attributes such as grade, class, age, and sex, only some
of the measures could be implemented. This section will describe how each level was im-
plemented, their effect on interactions within the model, and detail which measures were
not applicable. The exact implementation of the different traffic light levels can be seen in
the GitHub described in section C.2, Appendix C.

For the green level, three control measures were described by UDIR and are shown in Fig-
ure 2.2. The first one was that ”Individuals with symptoms should stay at home”, meaning
that individuals with respiratory symptoms should be isolated from the rest of the pupils.
This could easily be implemented by isolating symptomatic individuals from the model,
discarding the current interactions they have with other individuals, and preventing new
interactions with them from being formed. Furthermore, the second step of maintaining
”Good hygiene and increase cleaning” includes both the students, with increased hand-
washing, and the environment by disinfecting. This could be implemented by decreasing
the scaling variable p0, causing the overall transmission to lower due to the cleaner envi-
ronment. Finally, the third level in the green level was to ”avoid physical contact between
individuals”. Since the model only measures face-to-face interactions that are of 1-1.5
meter distance, it is not possible to directly implement this control measure. Therefore,
the following two implementations of the green level are plausible to implement for the
scope of this thesis:

1. Isolate symptomatic individuals

2. Decrease transmission

Furthermore, the yellow level includes the implementation of an additional five policies.
The fourth policy is that each ”class is divided into one cohort”, where interactions outside
the cohort are limited. The model implemented this by adding a new attribute to the Person
object that stores which cohort the object belongs in. Interactions between Person objects
that are not in the same cohort are limited in the model by decreasing the duration and
likelihood of those interactions occurring. More specifically, this is implemented into the
model by having a higher threshold for interactions occurring outside cohorts within the
generate interactions for network() function in the Network class. Furthermore, as ”only
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two cohorts can interact outdoors”, the cohorts were paired according to grade to allow
for an average level of interactions between the two cohorts. The pairing of classes with
similar grades was assumed, as those are the cohorts most likely to be interacting.

The sixth policy within the yellow level was that there should be ”at least one-meter dis-
tance between employees”. Since the model does not include employees or teachers, this
policy was not implemented. Furthermore, the seventh policy to ”avoid large gatherings”
has already been addressed as interactions between individuals that are not in the same
cohorts nor paired cohorts are decreased. In addition, the policy of having ”SFO, breaks,
and teaching activities divided into cohorts” has already been addressed by the implemen-
tation of paired cohorts. With this in mind, the yellow level incorporates the following
policies:

4. Each class is divided into a cohort and interactions outside cohorts are decreased

5. Cohorts were paired according to class and grade, and interactions within paired
cohorts were lower than for cohorts but higher than for the rest of the pupils in the
school

The red level has increased strictness, and in addition to implementing the measures in-
troduced by the yellow level, it also implements an additional three policies. The first
one is to further ”divide classes into smaller cohorts, halving class size”, which is easily
implemented into the model by assigning individuals in a class to two different cohorts
and storing their respective cohorts as an attribute on the Person objects. Furthermore,
implementing a ”permanent teacher if possible” is discarded as this model does not in-
clude teachers. Similarly, to ”consider alternating attendance times for students” is not
possible to implement into the model as the disease transmission is predicted on a daily
basis. Finally, the policy to ”strive to keep distance between students of different cohorts”
is implemented by further decreasing the duration and likelihood of interactions occurring.
This allows for the implementation of the two following policies for the red level:

6. One class is divided into two cohorts

7. Further decreased interaction between individuals of different cohorts

Weekly testing

Weekly testing was implemented as it was one of the policies the Norwegian government
used to mitigate disease transmission during the later stages of the pandemic (i.e., when
rapid-antigen tests became readily available). Therefore, it was also decided to imple-
ment the possibility of weekly and biweekly testing in the model to allow for the isolation
of individuals who were either presymptomatic or asymptomatic. Since the sensitivity
of rapid-antigen tests differs depending on the operator, as described in Table 2.2, the
likelihood of each infected individual in state presymptomatic and asymptomatic testing
positive was set to 60%. This is due to self-trained individuals having a 57.5% sensitivity
as described by Peto et al. [29]. Implementing testing into the disease transmission func-
tionality was done by having a function weekly testing() run every N number of days.
The function was run every seven days for weekly testing, while it was run every 14 days
for biweekly testing. Each individual in the presymptomatic or asymptomatic state would
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then have a 60% chance of testing positive and be isolated from the interaction network.
The individuals that tested positive then updated their is tested attribute, associated with
each Person object, to True. Individuals with is tested set to True are not included in the
interaction network until they have recovered. However, it is important to note that weekly
testing in this model does not register the individuals in the exposed state, as it is assumed
that the viral load is not high enough to be detected.

3.4.6 Investigation the effect of different initial disease states on trans-
mission

Since the initial disease state could transition from exposed to a presymptomatic or asymp-
tomatic disease course, it was decided to further investigate the effect the two initial disease
states has on R00. This was done by running 100 iterations where patient zero was set as
either asymptomatic or presymptomatic and recording the frequency of r00. In practice,
the code easily allows for setting the different disease states for patient zero, by changing
an input argument, sympt, in the run transmission() model that denoted whether or not pa-
tient zero should have an asymptomatic or a presymptomatic course of the disease. When
sympt = True, patient zero is symptomatic; otherwise, they are asymptomatic. This simu-
lation with choosing different initial states of patient zero was only done for this specific
analysis and is not relevant for the overall disease transmission run on the model or for the
different disease mitigation policies.
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Results and Analysis

Similarly to chapter 3, this chapter will be divided into three sections regarding analysis
of the experimental data in section 4.1, the creation and analysis of the interaction model
in section 4.2 and finally the results of running disease transmission on the model in sec-
tion 4.3. An overview is provided in Figure 4.1.

Figure 4.1: Overview of the results and analysis chapter divided into Analysis of empirical network,
Evaluation of model, and Disease transmission and mitigation.
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4.1 Analysis of the primary school interaction data set
This section will detail an extensive analysis of Barrat et al.’s interaction network [1]. First,
subsection 4.1.1 will describe a general analysis of the network on both days, while sub-
section 4.1.2 will compare how similar the networks are to three chosen random network
models. Then, a closer look at the heatmap for the network on both days subsection 4.1.3
will reveal the layers mentioned in subsection 3.2.9. Network assortativity is then ex-
plored in subsection 4.1.4 before characterisation of degree and interaction distribution
will be described in subsection 4.1.5 and subsection 4.1.6, respectively.

Figure 4.2: Spring-layout of the network on day one with node coloured by their grouping; either
teacher or the grades (1-5) they attend. The weight of interactions are proportional to the strength of
the edges drawn.

Figure 4.2 shows the overall network on day one. It is apparent that individuals interact
most with other individuals in the same grade, and a clear distinction can be seen between
the five grades. Meanwhile, the teachers, coloured in grey, seem to be associated with one
class, having two teachers assigned per grade. In addition, it seems that grades one to three
interact more with each other than with grades five and four. This pattern will be examined
more closely in subsection 4.1.3.

4.1.1 General network analysis
After the interaction data was accumulated into a network with weight denoting how many
20-second intervals two individuals have interacted, as described in subsection 3.2.1, an
analysis of a handful of general network features was performed. As described in sub-
section 3.2.2, different network features were measured, and the results for the two days
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recorded are presented in Table 4.1.

Table 4.1: Network analysis of topological parameters of a network conducted for day one and day
two using Networkx and Cytoscape’s Analyzer.

Parameters Day one Day two
#nodes 236 238
#edges 5901 5541
Average degree 513.8 547.5
Network diameter 3 3
Average shortest path length 2.2 2.4
Clustering coefficient 0.502 0.560
Weighted clustering coefficient 0.0079 0.011
Network density 0.213 0.196
Network heterogeneity 0.378 0.426
Average betweenness centrality 0.00367 0.00398
Modularity 0.62 0.62

Across the two days, the number of nodes and edges stays relatively similar. The number
of nodes can be attributed to the different pupils who participated on the two days, whereas
228 pupils attended the second day and only 226 the first. All ten teachers attended both
days. Meanwhile, the number of edges is higher on the first day compared to the second.
This could be due to higher activity on the first day as the badges were introduced and may
have encouraged the students to interact more with new individuals. The average weighted
degree of the networks was 513.8 on day one and 547.5 on day two. This means that each
pupil spends, on average, about 2 hours and 51 minutes on day one interacting and about
3 hours on day two. Furthermore, indicating that individuals interacted on average with
more new people for shorter periods and created more edges on day one. In contrast,
individuals on day two interacted on average longer with fewer individuals.

The low network diameter and average shortest path indicate that the network displays a
small-world property on both days. A diameter of three means that each individual is only
three connections away from any other peer or teacher in the school on any given day.
Furthermore, the average shortest path between any two individuals on both days is 2.2 on
day one and 2.4 on day two. Similarly to the empirical networks described in section 2.2.2,
this indicates that the networks have a small-world property with an overall low distance
between all nodes in the network.

Moreover, the high average clustering coefficient, ⟨C⟩, of 0.502 on day one and 0.560
on day two indicates that the individuals tend to form clusters within the network. As
described in section 2.2.2, in a complete cluster, all nodes are connected to one another
through edges. The global clustering coefficient describes the probability that any neigh-
bours of a given node are connected. A ⟨C⟩ of 0.5 thus indicates that there is a 50%
chance of any two neighbours of a given node in the network being liked together. As seen
in Figure 4.2, there is a tendency for individuals in the same class to interact more with
one another, thus increasing the likelihood that neighbours in the same grade interact with
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one another. Furthermore, the high clustering could also be attributed to social cliques or
friend groups interacting. However, since the network was only recorded for two days, it
is challenging to further identify and quantify said cliques.

The network density, or average closeness centrality, further indicates a highly connected
network on the two days. The network density measures the proportion of potential con-
nections possible in a network in relation to the actual connections. It is relatively high
on both days, with 0.213 on day one and 0.196 on day two. This indicates that about
20% of all possible connections are made in the network, making it similar to the den-
sity of actors’ social interaction network described in section 2.2.2. Day one seems to be
more connected than day two, further emphasising that there may have been some bias to
interact with more individuals on day one than on day two.

Furthermore, the heterogeneity reveals students’ interaction bias. Heterogeneity measures
to which extent nodes are connected with other nodes that have different degrees. The
higher the heterogeneity, the more prominent the appearance of hubs is in the network. A
network heterogeneity of around 0.4 indicates some diversity or unevenness in the distri-
bution of node degrees in the network, with pupils not exclusively interacting with other
nodes that have a similar degree or, in terms of primary schools, popularity. Thus, it may
seem like some individuals act as hubs and are interacting with other nodes with a lower
degree. Therefore, the heterogeneity indicates a bias for some individuals to interact more
with their peers.

Average betweenness centrality further describes the mechanisms that drive the connected
network. As mentioned in section 2.2.2 betweenness centrality focus on locating the
nodes of the network where many interactions are passed through. An average of the
betweenness centrality for all nodes can indicate how dependent a network is on inter-
actions through bridge nodes, for instance connecting individuals from different grades.
The betweenness centrality is low at around 0.004 for both days. This indicates that the
presence of central hubs connects and decreases the network diameter and that the flow
of interactions is not evenly spread throughout the network. As seen in Figure 4.2 there
are clear divisions between the grades. Therefore, the highly connected network can be
attributed to the presence of hubs or nodes connecting the grades.

The modularity further highlights the divisions between each grade. The higher the mod-
ularity, the more prominent and connected the different nodes are to other nodes within
their communities. By choosing the five different grades as modules, modularity was cal-
culated to 0.62 on both days. This relatively high value indicates that there is a preference
for individuals to interact with individuals in the same grade or module, further confirming
the groupings seen in Figure 4.2.

To get an overview of how individuals interacted across the two days, the degree of each
node on the two days studied was plotted against one another as shown in Figure 4.3. The
relationship between the degree a node has for two days seems to be increasing, indicating
that the same nodes have the same amount of activity on day one and day two. A Pearson
correlation coefficient was computed to assess the linear relationship between the degree
of each individual across the two days and was found to be positively correlated, r(230)
= 0.54, P < 10−3. Therefore, individuals that interact a lot on day one are more likely to
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Figure 4.3: The degree of specific nodes on day one and against day two. The line represents a
linear regression of the values.

have increased interactions on day two. Due to the pattern of some individuals being more
social across multiple days than others, the bias that was detailed in subsection 3.3.1 was
implemented into the interaction model.

4.1.2 Comparing the empirical networks with random models
As described in subsection 3.2.4, three random networks were generated and compared
with the average of the two days investigated. The reasoning behind this comparison is
to check whether there were any prominent shared features between the random networks
and the empirical ones and to see whether or not a random network would be satisfactory
when modelling primary school interactions.

Table 4.2 shows an overview of the topological network parameters investigated for the
random networks and a mean of the parameters from the empirical data set on day one
and day two. The random networks were generated using the parameters described in Ta-
ble 3.2, and thus all networks have the same number of nodes, N = 237. The numbers of
edges present in the networks are also relatively similar across all compared networks with
a slight variation. Additionally, the network diameter and network density are the same for
all networks, as they all share a small-world property. Finally, the average betweenness
centrality is also similar across all investigated networks.

In contrast, the average degree for the randomly generated networks is slightly higher than
for the mean of the two days. This indicates that, on average, the nodes in the random
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Table 4.2: Comparison of analysis of topological parameters of the mean of day 1 and day 2 (1&2)
and the random networks Erdős-Rényi (ER), Watts-Strogatz (WS) and Barbasi-Albert (BA).

Parameters 1&2 ER WS BA
#nodes 237 237 237 237
#edges 5721 5895 5925 5852
Average degree 48.3 49.7 50 49.4
Network diameter 3 3 3 3
Average shortest path length 2.3 1.79 1.79 1.79
Average clustering coefficient 0.531 0.211 0.285 0.311
Network density 0.205 0.211 0.212 0.210
Network heterogeneity 0.402 0.122 0.078 0.478
Average betweenness centrality 0.00383 0.0034 0.0034 0.0034

networks either have a higher maximum degree of nodes or fewer low degree nodes. The
distribution of degrees will be described in more detail later in this section. Furthermore,
the average shortest path is shorter for the random networks, which may indicate the pres-
ence of more high degree hubs that decrease the distance across the network since the
network diameter is the same for all investigated networks.

The average clustering coefficient for the random network is lower than the mean of the
two days. Since WS and BA both are known for having a clustering coefficient similar
to that of real-world social interactions, this indicates that the empirical networks have
higher clustering than what is typically seen for social interaction networks. The higher
clustering coefficient could be explained due to the social interactions in a school envi-
ronment being more controlled by the physical separation of individuals into classrooms.
Therefore, one would expect higher clustering in classes compared to an undisturbed so-
cial interaction network. Thus, none of the random networks tested in this thesis captures
the high clustering characteristic of the empirical model.

Meanwhile, the heterogeneity of the BA network is similar to that of the mean of the
experimental ones; both ER and WS have a lower heterogeneity. This difference is due
to mechanisms that drive the generation of the network for the different models. As both
ER and WS have a given percentage of either drawing or rewiring an edge between two
nodes, the connections are drawn regardless of the degree of each node. However, BA
uses preferential attachment when adding new edges and nodes, causing new additional
nodes to form edges with nodes that have a higher degree. Thus, BA networks will have a
higher heterogeneity. This could indicate that the empirical networks also have a form of
preferential attachment with regard to node degree.

Furthermore, none of the investigated random networks described have a similar enough
degree distribution to the empirical network. As seen in Figure 4.4 both ER and WS have
a Poisson degree distribution that deviates strongly from the degree distribution of the
empirical network, and most nodes in these networks have the same degree with few highly
connected nodes. However, for the degree distribution of both empirical networks and BA
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Figure 4.4: Cumulative degree distribution P(X < x) on day one and day two and the random
networks Erdős-Rényi (ER), Watts-Strogatz (WS) and Barbasi-Albert (BA).

many nodes have a low degree while a few hubs have a high degree. Even though BA
network, with a Power law distribution, has the closest degree distribution to the empirical
networks, it still deviates. This is because the empirical network has a more curved shape
and has hubs of smaller size than for BA.

Overall, the two empirical networks were the most similar to the BA network. How-
ever, the major drawback to modelling primary school interactions using BA is the low
clustering as well as the deviations seen for the degree distributions. Hence, none of the
investigated models were satisfactory for the simulation of primary school interactions.
However, they highlighted that the empirical network has a higher clustering coefficient
than what is expected for social interactions and has a degree distribution that is the most
similar to Power law.

4.1.3 Identifying interaction types through heatmaps
To further look into how individuals interact with each other in a primary school environ-
ment, a heatmap of the adjacency matrix of the empirical network was created as described
in subsection 3.2.3. Figure 4.5 shows the heatmap for all interactions on the first and sec-
ond day. Each pixel in the map increase in colour intensity according to how many times
two individuals have interacted, and the heatmap is sorted according to grade. As shown in
the figure, individuals tend to interact with other individuals in the same class. In addition,
many interactions occur between individuals in the same grade. The remaining interac-
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tions are between individuals less similar to one another, meaning between individuals
who are not in the same class or grade.

Figure 4.5: Heatmap representation of the adjacency matrix on day one and day two of the survey.
Helplines describe the start and end of IDs for individuals of the same class.

Therefore, from the figure, it is possible to identify three different types of interactions;
grade, class, and off-diagonal interactions. The off-diagonal interactions describe inter-
actions that are not along the diagonal, where class and grade interactions are localised,
meaning that they are between individuals less similar to one another. They occur more
rarely and with lower duration than grade and class interactions and are observed between
less similar individuals. Furthermore, the off-diagonal interactions capture interactions
between individuals that have no scheduled classes or activities together and therefore
represents how individuals interact with others during breaks. Since there is a significant
difference between the interaction length and intensity during regular breaks and the lunch
break as described in subsection 2.3.3, the effect of the lunch break division is further
investigated.

Firstly, a hour-by-hour plot of the number of interactions per grades, as seen in Figure B.2
in Appendix B, revealed that most interactions occurred during breaks. Figure 4.5 shows
that there are more interactions on the off-diagonal between the grades that have lunch
at the same time, as seen by the division between interactions in grades one to three and
grades four and five. Furthermore, extracting and creating a heatmap of all interactions
during the two-hour lunch break further highlighted the division. See the heatmap in
Figure B.3 Appendix B. Therefore, an additional sublayer was added to describe lunch
break interactions, primarily to help increase the off-diagonal interactions between grades
one to three and four and five.

Figure 4.6 shows heatmaps of the four layers into which the school is divided. Dividing
the layers into different heatmaps allows the investigation of the less extreme interactions
without them being skewed by the high-intensity class interactions. This next section will
focus on quantifying the degree distribution for each layer. The grade interaction layer
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Figure 4.6: Dynamics of interaction between individuals for the whole network, exclusively grade
interactions, off diagonal (all interactions except those of the same grade) and finally interactions
between individuals in the same class. Helplines describe the start and end of IDs for individuals of
the same class.

shows that the number of individuals interacting in each grade changes per grade; there-
fore, the number of pixels described for grade interactions varies. This gives the network
a hierarchic structure, where both the chance and strength interactions differ depending on
the similarity between the two interacting nodes.

4.1.4 Investigating network assortativity

Assortativity in a network denotes the preference of a network’s nodes to interact with
other similar nodes. Figure 4.7 describes the amount of times edges have occurred be-
tween nodes of different degrees. The figure is a mirror image along the diagonal. A small
but visible trend is that the edges connect to similar degree nodes, with a Pearson corre-
lation coefficient of 0.19 and 0.20 on days one and two, respectively. This is especially
apparent for the lower degree nodes. This means that there is a slight tendency for nodes
to connect to other nodes with similar degrees, or in the sense of school children, the same
popularity.
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Figure 4.7: The node degree of both nodes i and j present in every edges (i,j) in the graph are
plotted against each other, and the colour scheme represents how many times nodes of a certain
degree interacts with another node and their respective degree.

4.1.5 Determining degree distribution

The distribution of degrees among the nodes in the network can reveal how different stu-
dents interact with other students, and is an important characteristic of a model to help
determine the distribution of the empirical network. As described in subsection 3.2.6 a
cumulative distribution was plotted and can be seen in Figure 4.8.

Figure 4.8: Cumulative degree distribution on day one and day two of the empirical networks.
Different colours denote the two days and degree is plotted as a function of the cumulative frequency
P (X < x)
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No nodes in the network had a degree of zero; all nodes had a degree higher than about
100. The relationship between the frequency of the different degrees decreases linearly
until about degree 750, where the frequency is around 0.2. This happens towards the tail
of the graph, and the behaviour is visible for both day one and day two. The network
thus has many nodes with an intermediate degree and few nodes with a high degree. In
addition, the relationship between the nodes’ degree and frequency is close to linear for
degrees 100-750 and is then flattened out afterwards.

As concluded when comparing the network to other random models in subsection 4.1.2,
the distribution does not seem to follow a specific distribution function. Instead, it looks
like it is a combination of different distributions, much like the overall network consists of
different interaction types (i.e., the different interaction layers). Therefore, the following
sections will investigate the distribution of each of the interaction layers.

Section 4.1.3 describes the different layers the network is divided into. Investigating the
degree distribution amongst the different layers may help explain the combined behaviour
that was observed in Figure 4.8. Therefore, Figure 4.9 shows an overview of the degree
distributions seen for the off-diagonal, grade, class, and whole network interactions. At
first glance, it is possible to deduce that most interactions within the networks occur be-
tween individuals of the same class. They have a higher frequency of interacting with
each other for all the degrees and have a maximum degree of about 900. Grade and off-
diagonal interactions have a similar relationship between frequency and degree for the
first 100 degrees. Then the off-diagonal interactions tail off with one node with a degree
of about 500. Finally, the distribution of grade interactions stays steep, and the node with
the highest degree has a degree of about 300.

Figure 4.9: Cumulative degree distribution on day one for the three layers of the empirical network,
with the degree as a function of the log cumulative frequency (P (X < x)). Different colours denote
degree distribution for the layers off-diagonal, grade, whole and class.
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Degree distribution of off-diagonal and grade interactions

The degree distribution of the off-diagonal interactions contributes to the overall interac-
tions that are happening outside of those determined by grade and class. It is the outermost
layer that impacts almost all interactions in the network, and all other interactions contain
a level of off-diagonal interactions. Meanwhile, the grade degree distribution details in-
teractions between individuals in the same grade but not the same class. It seems that the
distribution for both off-diagonal and grade degrees is approximately linear on a semi-
log scale. In order to quantify the distribution, the distribution of off-diagonal and grade
interactions is denoted as shown in Equation 4.1, with different variables for c.

y = α ∗ log10(
1

x
) (4.1)

Since x = 300 corresponds to 10−1 for the off-diagonal layer, the degree distribution is
visible in Equation 4.2.

y = 300 ∗ log10(
1

x
) (4.2)

Furthermore, x = 200 corresponds to 10−1 for the grade layer, and the degree distribution
is visible in Equation 4.2.

y = 200 ∗ log10(
1

x
) (4.3)

Degree distribution of class interactions

Similarly to the whole class interactions, it is difficult to find a function for the degree as a
function of the cumulative frequency. Unlike the grade and off-diagonal layers, the class
layer does not form a single line and is therefore not easy to estimate. A trial-and-error
approach with different distributions and parameters was then used to match this degree
distribution. The final parameters used to generate interactions between individuals of the
same grade can be seen in Table 3.5.

4.1.6 Investigating interaction distribution
The interaction distribution can be investigated by plotting the distribution of the weight
of every interaction between individuals as described in subsection 3.2.7. In essence,
this means plotting the cumulative frequency of the intensity of each pixel shown in the
heatmap in Figure 4.5. The result can be seen in Figure 4.10, where the log of the fre-
quency is plotted as a function of the log of the weight for each interaction. The figure
thus contains the weighted interaction distribution for each layer.

Of notice is that the weight distribution for the whole network compared to that of the
class-class interactions is relatively similar. For the interactions with the highest weights,
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Figure 4.10: Cumulative log-log interaction distribution of all interactions for the three layers off-
diagonal, grade and class in addition to the whole network. The cumulative log frequency is plotted
as a function of the log weight.

the whole network interactions are all class interactions, which is seen by the class dis-
tribution overshadowing the whole network distribution for the high weights. This makes
sense, as students spend the most time with individuals in their class, and thus the highest
weights in the network should be of class-class interaction origin.

Meanwhile, just like the degree distribution, the grade and off-diagonal distribution of
weights are similar. The distribution appears to be bimodal, with two distinct peaks. Fur-
thermore, the lower weights registered in the network overlap entirely until about the
weight of ten is reached. This is where the two starts to deviate. The grade weights
maintain a higher frequency for higher weights than the distribution of the off-diagonal
weights.

Since the network in itself does not display any definitive interaction distribution similar
to the most common ones described in Figure 2.5, it was decided to also look into the
distribution of interactions per single node. Appendix B.1.1 in Appendix B describes the
approach of how the distributions of single nodes were plotted on a log-log scale and taken
a linear regression of. Since this was performed for all nodes, Figure B.1 in Appendix B
shows a excerpt of how each layers approaches linear on a log-log scale. Table 4.3 further
highlights that the R2 values are high for all interaction types. This is especially true
for off-diagonal and grade interactions. Class interaction has a lower R2 average. This
indicates that each person’s interactions with other individuals are distributed and closely
resemble a Power law, at least for off-diagonal and grade interactions.
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Table 4.3: The average and standard deviation of R2 for a linear regression of each node’s inter-
actions with other individuals in the whole network, off-diagonal, grade or class for day one and
two.

R2 day 1 R2 day 2
Whole network 0.934 ± 0.0480 0.912 ± 0.0559

Off-diagonal 0.944 ± 0.0480 0.943 ± 0.0559
Grade 0.927 ± 0.066 0.923 ± 0.0767
Class 0.906 ± 0.0574 0.885 ± 0.0690

4.1.7 Summary of characteristics of the empirical data
The characteristic to be implemented into the model is then a high clustering coefficient
compared to that of social interaction networks, small world property, slightly assortative
network, and a hierarchic structure. In order to create a framework for such a network,
there was an attempt to match degree and interaction distributions.

As mentioned in subsection 3.3.1 the likelihood of interactions happening is based on indi-
vidual biases as well as the similarity between the two individuals interacting. Therefore,
both bias for different layers as well as pij value, i.e., how likely individuals are to interact,
was calculated. First, Power law was assumed for base, lunch, and grade pij value due to
the distribution displayed by single node interactions. Then, the base and grade bias was
set to the function described by Equation 4.1 before changing the α until a similar distri-
bution was reached. Next, for generating class interactions, a combination of a normally
distributed bias with a gamma-distributed pij was used. Finally, a Poisson distribution of
the pij was used to simulate the weight of each interaction.

4.2 Evaluation of the simulated model
This section will detail the evaluation of the simulated interaction model. This will pri-
marily be done by comparing the simulated model with the empirical one, either through
general network analysis and heatmap as shown in subsection 4.2.1, comparing the degree
distributions, as seen in subsection 4.2.2 or by comparing the interaction distribution as
seen in subsection 4.2.3

4.2.1 General comparison between empirical and simulated network
Table 4.4 describes the overall differences between the simulated model and the mean of
the values for the two empirical networks, according to general network analysis. Since
the model was generated based on matching the degree and interaction distributions for
the different layers, a general network analysis can help shed light on how successfully it
replicated the other characteristics of the empirical model. Firstly, the number of edges,
average degree, average shortest path length, and network density are lower for the simu-
lated model than for the empirical one. This indicates that the simulated model overall has
fewer connections and that its links are more evenly spread out throughout the network,
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decreasing the average shortest path.

Table 4.4: Network analysis of topological parameters of a network conducted for day one and day
two using Networkx and Cytoscapes Analyzer.

Parameters 1&2 Model
#nodes 237 237
#edges 5721 5172
Average degree 48.3 43.8
Network diameter 3 3
Average shortest path length 2.3 1.8
Clustering coefficient 0.531 0.400
Network density 0.205 0.187
Average betweenness centrality 0.00383 0.00357
Modularity 0.62 0.31

The lower modularity for the simulated model further highlights that interactions of the
model are not as secluded and involved in forming modules within classes as what is seen
for the empiric network. This indicates that more interactions are, for instance, occurring
on the off-diagonal or outside of the class interactions in the model as compared to the
empiric network. Meanwhile, the model has a slightly lower clustering coefficient than
the empirical model. This shows that even though modularity has decreased, the model
still maintains higher clustering than what is seen for other real-life networks.

Figure 4.11: Heatmap representation of the adjacency matrix of a simulated network. The IDs
alongside which class each individual is in is shown, with helplines dividing each class from one
another.

Figure 4.11 describes the heatmap of the simulated model. Similar to the empirical net-
work and of most importance, is the fact that the class-class interactions are the most
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prominent. The strongest and highest frequency of interactions, with a maximum value
of 400, occur within classes, which was a part of the hierarchical structure the framework
aimed to replicate. Similarly, there are more interactions between individuals of the same
grades than how they interact with individuals outside of their grade. The most significant
difference between the empirical networks shown in Figure 4.5 and the simulated one, is
the off-diagonal interactions. They are more evenly dispersed throughout the heatmap, and
are not creating as strong of a preference between grades one to three and four and five as
they are in the empirical network on day one.

4.2.2 Comparing degree distribution for empirical and model net-
work

Figure 4.12 describes the degree distribution for all the layers as well as the whole graph.
As described in subsection 3.2.6, the distribution of degrees is plotted on a semi-log cu-
mulative scale.

Figure 4.12: Plot of degree distribution for grade, off diagonal and class interactions as well as
whole graph. The plot is semi-log where the log frequency is plotted as a function of degree.

The first distribution to be set was the off-diagonal, as it is the outermost layer of the
model. As seen, the off-diagonal differs between day one and day two quite significantly,
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especially towards the tail of the function. This is due to fewer data points, as the frequency
of individuals with such a high degree is rare both on days one and two. This indicates
that some deviance from day one and day two for degree distribution should be accepted
for the simulated model. The simulated model follows day one and day two for the first
few 100 degrees, with high frequency. Then, the simulated model has a consequently
higher frequency for the nodes with a degree of 100-350 before tailing off at around 500
degrees. The simulated model thus follows the empirical one but deviates more for the
larger degrees. This is similar to what is seen for the empirical networks and is likely
because it is highly stochastic.

The grade interactions were the next layer to be set. As seen in the grade function of
Figure 4.12, the simulated model has a lower frequency for all degrees below 300 than
compared to the two empirical networks. Day one and day two of the empirical networks
also deviate from each other for degrees higher than 150, where the degrees on day two
have a higher frequency than the same degrees for day one. Overall, the grade distribu-
tion for the simulated model seems to follow the empirical ones; however, it is slightly
more curved as opposed to the grade distribution that has an overall convex shape on both
days.

The distribution of degrees within the class layer is seen for Figure 4.12, class. It is the
innermost layer and is therefore affected by both off-diagonal and grade distributions. With
the given off-diagonal and grade degree distributions, the degree distribution of classes is
quite similar to its distribution on day one. The two functions follow each other through
the frequency for the first 1000 degrees, and then both tail off towards the end. For the
class interactions, day two deviates from day one and the empirical network.

Overall, the degree distributions for the entire network are seen in Figure 4.12, whole
graph. For the frequencies of degrees below 750, the three distributions follow each other
except that the simulated model has a higher frequency for the lower degrees than the
empirical networks.

4.2.3 Comparing interaction distribution for empirical and model net-
work

Figure 4.13, shows the cumulative distribution of weighted interactions as described in
subsection 3.2.7. For the off-diagonal interactions of the figure, the simulated and empiri-
cal networks have an overall similar interaction distribution. All three distributions have a
curved shape and end on the same maximum weighted interactions for the entire network.
However, some difference is visible. Day one and day two’s log frequency for the lower
interactions is higher than for the simulated model. While the distribution of day one and
day two follow each other for most interactions, the simulated network has a higher log
frequency for the intermediate interactions than the simulated ones.

The grade interactions seen in Figure 4.13 differ to some extent between the empirical
networks and the simulated ones. While the empirical networks only deviate from one
another for the highest numbers of interactions in the model, the simulated distribution is
more curved. Similarly to the off-diagonal distributions, the simulated starts at a lower nor-
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Figure 4.13: Log-log plot of cumulative distribution of weighted interactions for the simulated and
empirical networks for the whole network, off-diagonal, grade, and class interactions.

malised frequency. In addition, it has a smaller cut-off for maximum weighted interaction
in the network.

The class interactions in Figure 4.13 follow the same curved shape; however, it seems that
the simulated is shifted towards the right. While the distributions for days one and two
almost entirely overlap until the highest interactions are reached, the simulated curve first
has a lower frequency for the low weighted interactions and a higher frequency for the
higher weighted interactions.

Finally, the whole graph interaction distribution is similar for both the empirical and sim-
ulated networks. For the lowest weighted interactions, the distribution is spot on. Mean-
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while, the simulated model has a higher normalised log frequency for the high-weighted
interactions compared to the empirical networks. All in all, however, the interaction dis-
tributions are overlapping and end on similar maximum weighted interactions for the net-
work.

4.2.4 Model sensitivity
Since the aim of creating this framework is that the model should be general, the model’s
sensitivity was tested using different input parameters. First, a scenario similar to that of
many Norwegian primary schools was entered into the model, with seven grades and three
classes. Then, five grades with four classes each were entered into the model. The result
can be seen in Figure 4.14.

Figure 4.14: Heatmap of the interactions generated by the model when the input is a) seven grades
and three classes and b) five grades and four classes

As seen from Figure 4.14, both inputs retained the overall characteristics one would ex-
pect to find in primary schools. The seven grades are visible as seven large boxes along
the diagonal, with three smaller boxes within representing the three classes. Similarly,
the model with five grades and four classes input shows the same hierarchical structure.
Interestingly, the grades one to three and four and five separation is not visible.

4.3 Disease transmission and mitigation
The current section will go into detail on the disease transmission model that is imple-
mented as described in section 3.4. subsection B.3.1 in Appendix B shows how disease is
transmitted on a simulated model. First, subsection 4.3.1 will describe disease transmis-
sion runs on the empirical network compared to the simulated one. Then, subsection 4.3.2
will investigate the effect of implementing the different traffic light levels on the model.
Furthermore, subsection 4.3.3 will describe how weekly testing affects disease transmis-
sion on the model. Finally, the effect of asymptomatic versus symptomatic disease course
on r00 will be investigated in subsection 4.3.4.
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4.3.1 COVID-19 transmission in empirical and simulated model
To further test the validity of the simulated model, the transmission of disease on the
empirical networks was compared to transmission on the modelled network. The result is
seen in Figure 4.15, where an average of the number of recovered individuals are plotted
as a function of days since the disease was introduced into the system. The fewer infected
individuals and thus the fewer recovered, the less disease transmission occurs.

Figure 4.15: Disease transmission on the empirical network for two days in addition to the simulated
network. Switch indicates that the interaction pattern on the two empirical days were alternating.
Days since infection is plotted as a function of the number of recovered (#Recovered).

Transmission on alternating days between day one and day two networks has a higher
disease transmission than that of only day one and day two in the empirical network. For
the first 30 days, transmission on day one, day two, and the switch between the two days
increased simultaneously before the number of recovered increased more rapidly for the
switch. The average number of infected at the end of the epidemic is 160 for the switch
and about 150 for day one and day two, indicating that the transmission on the switch is
higher than running transmission solely on day one and day two empirical networks. This
could suggest that the difference in interaction patterns seen between the two days plays a
role in increasing transmission.

Meanwhile, transmission on the model caused more disease transmission in the network.
Disease transmission on the static model, where transmission is run on the same network
for all 100 days, is lower than in the dynamic model, where the network changes ev-
ery day. Ideally, one would expect the static model to have a similar level of disease
transmission as what was seen on day one and day two. However, the increased inter-
actions on the off-diagonal and the lower average shortest path length may have made
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the model more susceptible to disease transmission. Since off-diagonal interactions often
contribute to moving infection from one cluster or module to another, it makes sense that
increased off-diagonal interactions increase transmission. Similarly to what was seen for
the switch where transmission was run by alternating the two empirical networks, having
a dynamic model did increase transmission for the model. Therefore, disease transmis-
sion on the static model ends at 180 for static while the dynamic model ends with 190
recovered.

4.3.2 Effect of traffic light level on r00

Using the measures and regulations described in section 3.4.5, in primary schools, the
model predicted the transmission of disease in the different traffic light states as seen in
Figure 4.16. Once again, the average number of recovered is plotted as a function of days
since the disease was introduced into the system. Similarly to what one would expect,
green is the traffic light level where most transmission occurs, followed by yellow and then
the red level. Overall, the implemented traffic light measures effectively mitigate disease
transmission when a disease is introduced into the system. To see the margin of error
for each level, represented by plotting 10 randomly selected iterations, see Figure B.7,
Figure B.8 and Figure B.9 in Appendix B.

Figure 4.16: Days since infection as a function of recovered for the disease states green, yellow and
red. Each curve is an average of 100 iterations

Figure 4.15 showed that disease transmission on the dynamic model ended with 190 in-
fected and recovered individuals. In comparison, transmission on the network with the
green level implemented ended with 120 recovered individuals. Therefore, the decrease
from 190 to 120 recovered individuals when implementing green level measures indicates
that it decreases transmission. Furthermore, the transmission rate is lower, and the amount
of days it takes to reach a stable number of recovered with no new infections is around 100
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days for the green level as opposed to 90 for the dynamic model.

Furthermore, the yellow and red levels of the traffic light model also have a lower num-
ber of infected/recovered at the end of the epidemic, with red at about 70 cases in the
system and yellow at 85. The effect of the measures in both yellow and red levels of
the traffic light successfully reduced the number of infected individuals. Of notice, how-
ever, is that going from yellow to red traffic light level does not contribute equally as
much to decreasing transmission compared to moving from the green to yellow level. One
explanation for this behaviour, may be that the yellow level heavily affects off-diagonal
interactions by dividing classes into cohorts and limiting interactions outside the cohorts.
Therefore, implementing the yellow level effectively limits off-diagonal interactions and,
in turn, decreases transmission significantly. Meanwhile, the red level tries to limit con-
nections within classes, thus reducing disease transmission, but not to the same extent as
decreasing off-diagonal interactions.

Figure 4.17: R0 calculated for green, yellow and red traffic light level. The overall R0 as detailed at
the bottom of the figure describes its expected value. Frequency based on averages of 100 iterations.

Figure 4.17 describes the proportions of R00 for the 100 iterations run over 100 days
for different traffic light levels. The expected value, R00 based on the frequencies of
R00 calculated in subsection A.3.1, Appendix A, is also provided in the figure. The R00

of the green traffic light level is set to 2.36, while yellow has a R00 of 1.9 and red of
1.89. When compared to an R00 of 3.16 for a network where disease spreads unhinged,
which will be described in subsection 4.3.4, the R00 is lowered for all traffic light levels.
While the green level has a much higher R00, the values for the red and green levels
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are almost identical. This further highlights the difference in transmission between the
yellow and red traffic light levels and is possibly attributed to the yellow level’s significant
effect on decreasing off-diagonal interactions. Interestingly none of the states had an R00

value below 1, indicating that the implemented measures did not mitigate transmission but
merely slowed it down.

4.3.3 Weekly testing and effect on transmission
The next policy investigated was every week (weekly) and every other week (biweekly)
testing to see how it would affect disease transmission, and the method for simulating
testing is described in section 3.4.5. Figure 4.18 shows how the disease was spread across
primary schools with different levels of testing on a green traffic light level. During the first
20 days, transmission on not tested, weekly tested, and biweekly tested networks moves
slowly and at the same rate. Afterwards, the number of recovered cases for not tested and
biweekly tested increases rapidly before stabilising at 70 and 120, respectively. Mean-
while, weekly testing results in a halted increase before stabilising around 30 recovered
individuals. To see the margin of error, see Figure B.10, Figure B.11 and Figure B.12 in
Appendix B.

Figure 4.18: Recovered as a function of the day for not tested, weekly testing and biweekly testing
on a green traffic light level. Helplines show every seven days, and the data is the average of 100
iterations of each testing type

Both weekly and biweekly testing seems to reduce transmission. The amount of recov-
ered individuals seems to end at about 50 less recovered at the end of the epidemic when
moving from non-tested to biweekly testing and by 40 when moving to weekly testing.
This indicates there might be a proportional decrease in transmission when implementing
weekly and biweekly testing.

Figure B.13, in Appendix B, shows the frequency of R0N for each testing strategy. Since
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this measurement R0N denotes how many individuals each infected pupil infected be-
fore recovery, it is not comparable to the R00 of, for instance, the traffic light analysis.
Therefore, the number can only be used when comparing the different testing strategies.
See subsection 3.4.3 for the detailed explanation of the two. The R0N of not testing and
biweekly testing was 0.98, while weekly testing had a R0N of 0.97. Since disease trans-
mission is halted and individuals recover without infecting others, the overall R0N is lower
compared to R00.

As expected from Figure 4.18 the lowest R0N is for weekly testing, while biweekly and not
testing had slightly higher R0N . This shows that testing does affect disease transmission
by lowering R0N and that weekly testing has a higher effect on reducing transmission
than biweekly. In combination with the green traffic light, weekly testing successfully
decreases the time before the amount of recovered individuals is saturated. On average,
the transmission was saturated and mitigated at day 70, with about 30 infected individuals
per iteration.

4.3.4 The effect of initial disease state on r0

Furthermore, the effect of choosing different initial disease states was investigated by com-
paring which effect patient zero’s disease state had on overall disease transmission. The
R00 was calculated for multiple iterations of disease transmission where patient zero was
introduced as either symptomatic or asymptomatic. These calculations are shown in sub-
section A.3.3, in Appendix A. Figure 4.19 shows the proportion of r00 for the two initial
disease states. For individuals with the initial disease state of symptomatic, the expected
R00 was calculated to 3.16. In contrast, the expected R00 for asymptomatic patient zeros
was 1.01.

Figure 4.19: The frequency of r00 calculated for symptomatic and asymptomatic individuals. The
expected value, R00, is shown at the bottom of the pie charts. The frequencies are gathered from 100
iterations per initial disease state.

At first, the goal of investigating the effect each initial disease state had on R00 was to
compare it to an expected ratio of R0 for asymptomatic and symptomatic based on the
disease parameters used for infectiousness and duration. However, this investigation led to
a deeper understanding of the mechanisms of how disease transmission in primary school
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networks. Algorithm 1 describes the mechanisms behind how transmission is modelled
for this framework. A first-order approximation of the probability of transmission for low
values of wij ∗ Ip can be seen in Equation 4.4.

pinf = 1− (1− 0.001)wij∗Ip ≈ 0.001 ∗ wij ∗ Ip (4.4)

Following this approximation, subsection A.3.3 describes that the calculation of RA
0 and

RP
0 should be as described in Equation 4.5, where an increase in R0 is proportional to an

increases in Ip and daysp.

RA
0

RPS
0

=
Ia ∗ daysA
Ip ∗ daysP

(4.5)

The predicted ratio of RA
0 /R

PS
0 was then calculated to 0.154, as described in subsec-

tion A.3.3. This indicates that each symptomatic individual is expected to infect 0.154
times more individuals than an asymptomatic individual. However, the ratio between the
R00 of asymptomatic and symptomatic seen for the simulated model was calculated to
0.320.

This indicates that the assumption that the values of wij ∗ Ip are low is not valid and
that the strength of the interactions between individuals is high. Therefore, Equation 4.4
is not fulfilled, and the ratio of RA

0 /R
PS
0 can not be compared to the ratio generated by

simulation.
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This thesis aimed to create a model for primary school interactions and use it to investi-
gate the transmission of SARS-CoV-2 in such an environment. By identifying key features
and characteristics of Barrat et al.’s [1] interaction data set, a framework to produce net-
works of the same environment has been proposed. Section 5.1 will go into detail on the
evaluation of the model in relation to the empirical data before section 5.2 addresses the
assumptions of both the model and disease transmission simulated. Finally, section 5.3
aims to discuss and provide some advice for future pandemics based on the results of the
disease transmission.

5.1 Evaluation of the model
The analysis of the empirical network revealed a heterogeneous small-world network with
a high clustering coefficient and hierarchic structure, see section 4.1. Through match-
ing interaction and degree distributions, the proposed novel framework for interactions in
primary schools aims to reproduce these characteristics.

Since the approach for creating the model depended on matching degree distributions for
the interaction layers of the primary school, the degree distribution is similar for the model
and the empirical networks. Of notice, however, is that nodes with intermediate degrees
have a higher frequency in the simulated model than in the empirical network. This trend
was further highlighted by the increased intensity of off-diagonal interactions revealed by
the heatmap of the simulated model. Furthermore, as discussed in subsection 4.2.2 the
degree distribution is highly variable both between the two empirical days and for each
day generated by the model, especially for the frequency of the high degree nodes. Since
the frequency of these degrees is low, stochastic changes are more apparent. Overall, the
degree distribution of the model closely resembles that of the degree distribution for the
empirical networks.

70



5.1 Evaluation of the model

Similarly, the interaction distribution of the model matches the interaction distribution of
the empirical network. Few interactions are long-lasting, while most interactions are brief.
This division makes sense in a school environment where individuals may have many
brief encounters in the schoolyard while having more prolonged interactions with other
individuals in the classroom.

Although some of the topological parameters calculated for the random network models
ER, WS and BA matched the empirical interactions better than the parameters for the
simulated model, the simulated model better represents a network for disease transmission
in a primary school environment. The average degree and network density were more
accurately predicted for the random networks. This is most likely due to the mechanisms
of how they are generated. Since the parameter of the random networks were tweaked so
that the network had the same number of degrees and nodes as the empirical network, the
average degree and network density were easily replicated.

Meanwhile, both ER and WS failed to capture the high heterogeneity of the empirical net-
work, while all the generated random networks were unable to replicate the high clustering
coefficient and correct degree distribution. Since these exact parameters are the topolog-
ical network parameters that affect transmission the most, the simulated model gives a
more accurate network for disease transmission. High heterogeneity allows the disease
to disperse throughout the network and amplifies the transmission as soon as hubs are in-
fected. Dezső and Barabási also describes that scale-free networks such as the BA model
do not have an epidemic thresholds due to the influence of large hubs that can help drive
transmission [50]. Therefore, having a similar heterogeneity and degree distribution as
the empirical network is essential for accurate disease transmission. Furthermore, clus-
tering can help amplify transmission in a group of individuals. Therefore, the proposed
framework captures the essential network topological parameter relevant for disease trans-
mission.

Furthermore, the simulated network’s lower average degree and average shortest path
compared to the empirical network may be due to the presence of more off-diagonal in-
teractions. Since the framework focused on creating a hierarchical structure with high
clustering, primarily through matching degree and interaction distributions, one side ef-
fect was that other measurements did not completely match the model. Furthermore, the
higher off-diagonal interactions in the model compared to the empirical network may have
contributed to a decreased average path length. In turn, this could cause higher disease
transmission on the model compared to on the empirical network.

The difference in the model’s modularity compared to the empirical network’s modularity
is of more significant concern. Since one of the key characteristics of the empirical data
is the hierarchical division of classes and grades, the model aimed to reproduce the high
modularity of the empirical data. However, the modularity in the simulated model was
halved compared to the empiric network. Romano et al. highlights that most interactions
and thus transmission in social networks occurs for intermediate modularity [51]. In net-
works with high modularity, repeated interactions occur within each module and increase
the probability of infections within the module. Furthermore, since contact between two
infected individuals does not cause further transmission, the number of infectious contacts
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is reduced in highly modular networks. Therefore, the lower modularity of the simulated
model might contribute to an increase in disease transmission compared to transmission
on the empirical networks. This is also a result of increased off-diagonal interactions, and
helps disease spread faster on the model created by the framework in this thesis compared
to the empirical network.

Furthermore, the framework aims to be general so that it can easily implement models
of new schools of different sizes by having the possibility to input the number of grades,
classes, and individuals to be simulated for a model. The investigation of model sensitivity
to different input arguments, as described in subsection 4.2.4, is an attempt to see whether
or not this generalisation is accomplished. With the same functions for creating biases
and pij-values as extracted from the five-grade, two-class school system investigated by
Barrat et al. [1], a hierarchic structure was visible for the different inputs shown in Fig-
ure 4.14. Since no high-resolution RFID data of primary school interactions in different
sized schools with other grade and class divisions was available when writing this thesis,
the model sensitivity results cannot be verified against real-life interaction data. However,
the hierarchic structure follows the trend one would expect given the strict schedules of
primary schools, making individuals more likely to interact with other individuals in the
same class and grades during teaching activities.

The disease transmission simulated on the model and empirical networks as described in
subsection 4.3.1 confirmed that disease transmission occurs faster and reaches a higher
amount of infected individuals in the model compared to transmission run on the empiric
network. This further confirms the effect of increased off-diagonal interactions and lower
modularity in the simulated model. Thus, the lower the modularity of the model signifi-
cantly affected and increased disease transmission.

The comparison also revealed higher transmission for models where the new interactions
are generated each day. Since disease transmission on the empirical network alternating
between day one and day two increased compared to running transmission on one of the
days, the new contact generation each day helps amplify transmission. Like real-life inter-
actions, the interactions of the model are updated every day, and thus the dynamic model
with a network changing every day has the highest transmission. This further illustrates
the importance of predicting disease transmission on dynamic networks and justifies the
daily interaction generation of the model.

Furthermore, disease transmission on the model using the traffic light levels and weekly
testing behave as expected for the model created in this thesis. The higher disease trans-
mission of, for instance, the green level, compared to the red level, shows that the models’
interactions are vulnerable to different parameter changes in a predictable way. However,
one should keep in mind that this model only introduces one patient zero; thus, the system
may behave entirely different for continued outside interaction with community spread.
Therefore, it is important to keep the model’s assumptions in mind when trying to extrap-
olate meaningful results from the different disease mitigation strategies.

Finally, the investigation of the expected ratio of R0 between asymptomatic and symp-
tomatic initial disease states revealed that the percent increase in R0 is not proportional to
the increase in Ip and Iinf for strong interactions in the model. High weighted interac-
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tions can then give a different percent increase; for instance, Ip having an 80% increase
may only increase R0 by 30%. This highlights the importance of being specific when dis-
cussing increases in infectivity and separating between different disease parameters. Sim-
ilarly to the strong interactions seen for some individuals in primary schools, this tendency
may also be true for other highly weighted interactions, such as those between household
members.

5.2 Addressing the assumptions of the model and its lim-
itations

As with any model that is only an abstraction and aims to represent some features of the
real-life phenomenon, all results should be interpreted within the context in which a model
is built. A model seldom captures all the characteristics of a real-life phenomenon, and
assumptions help limit the model to specific situations. This section will now go into
further detail on how realistic the different key assumptions of the primary school model
are and address the model’s limitations.

Firstly, as the study by Barrat et al. [1] was conducted in a primary school in France, the
model’s applicability elsewhere may be restricted. The schedule at the primary school
seen in Figure 2.7 describes an eight-hour-long day, with a two-hour lunch break at 12 pm.
In contrast, Norwegian primary schools usually have five to six-hour days with around
45 minutes to one-hour lunch break [52]. Similarly, primary schools in Norway usually
consist of grades one to seven, in contrast to the five-grade system seen in French primary
schools. Since the model is based on interactions recorded for a typical primary school in
France with two classes per grade and longer days, any input outside of eight-hour days
and five grades with two classes each should be further investigated. The lunch breakdown
and additional sublayer are also specific to the lunch break at the Primary school in Lyon
and should be excluded when trying to model the interactions of other schools.

The model allows input of different length days and alternating the number of grades
and classes; however, this functionality has not been appropriately investigated due to a
lack of high-resolution interaction data for primary schools. Therefore, even though sub-
section 4.2.4 on sensitivity showed promising results regarding the use of different input
parameters, this needs to be further investigated and compared to additional experimental
data before the model is used for different school systems.

The lack of data also contributed to the model being based on data collected for two con-
secutive days at a small school with 242 individuals. This further contributes to limiting
the model to the specific school. Because of this, it is possible that overfitting of the de-
gree and interaction distributions occurred. Since there is no available data to compare the
results to, the possibility of overfitting can neither be definitively confirmed nor denied in
this thesis. However, the results interpreted from this model should keep this limitation
and small sample size in mind.

Furthermore, even though the interaction data showed high hourly variation due to lunch
breaks and class, the model was created by accumulating homogeneous hour-by-hour in-
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teractions for each day. Therefore, an assumption of the model is that even though hourly
differences exists, generating homogeneous hours into a daily network will sufficiently
capture the same characteristics. This was shown to be true for degree and interaction
distributions, however, implementations of more high detailed hour-by-hour contacts may
have helped replicate the modularity.

Despite the fact that implementing detailed hour-by-hour contacts might have improved
some of the general network topological parameters of the model for the specific empirical
network, it would sacrifice the usability of the model. The use of hour-by-hour generation
of a day was initially implemented so that the model could be used to simulate shorter
school days and tailor the model to the schedule of a given school. Furthermore, using the
same set of rules for each hour generated at a school should allow the model to be general
enough to be run at different schools regardless of their daily schedule. Therefore, even
though the data allowed for detailed hour-by-hour investigation, implementing it into a
framework like the one presented in this thesis would further limit its usage to the specific
primary school of Lyon.

Following the same logic, the model assumes that the interactions in primary schools are
divided into three different layers; off-diagonal (including lunch), grade, and class. Fur-
thermore, it was assumed that most interactions within each layer were of a distinct distri-
bution. This is, of course, an oversimplification, and it does not capture all the dynamics of
a real-life interaction network. If more data over many days was available, it could be in-
teresting to further investigate other possible layers. For instance, investigate interactions
in social cliques, or friend groups, and see how they impact disease transmission.

The model also assumes that each interaction between two individuals is motivated by
both the bias the two individuals have for interacting with any other person, as well as the
similarity (Pij) between the individuals. In practice, this means that each individual has
a set ”social” bias upon generation. The implementation of bias was inspired by the sig-
nificant positive relationship seen between the degrees of nodes on day one and day two.
The assumption of bias thus seems to hold, which makes sense considering individuals
generally have a different degree of sociability. Furthermore, the premise that pupils with
more in common interacted more with one another came from the hierarchical division of
the interactions into layers by investigating heatmaps. Similarly, this assumption is also
reasonable for real-life interactions since children in the same class are ”forced” to inter-
act and become familiar through teaching activities. Furthermore, having the probability
of two individuals interacting be determined by how social and similar they are, is also
reasonable to assume in normally sized schools. Limitations to these assumptions could,
for instance, be in schools in small villages where classes or even grades may have smaller
sizes, consisting of, for example, ten individuals. Then, it is more likely that individuals
interact more with other grades and classes. This should be kept in mind if the framework
of this model is considered for running simulations in schools with fewer pupils.

Following the assumption of interactions being created by a combination of bias and sim-
ilarity, it is also assumed that each individual has a different bias for interacting with indi-
viduals across the different layers. The reasoning behind this assumption is that there is a
significant difference in how individuals interact within the layers observed, and using the
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same bias for all interactions caused degree and interaction distributions to not accurately
match the empirical network. However, the idea that some individuals of the same class
are less ”shy” and approachable to one another than how they interact with individuals
outside of their class is not entirely unreasonable. Therefore, the model presented by this
framework is only valid for schools where there is a division between individuals of dif-
ferent grades interacting. As mentioned earlier, this could, for instance, occur in smaller
schools where individuals interact more with one another across grades.

The model also assumes that accumulating the 20-second interactions into weighted daily
interactions is a detailed enough approach to capture the high-resolution data set collected
by Barrat et al. [1]. By accumulating all interactions of one day, the model disregards
the possibility of increased transmission for continuous interactions compared to other
interactions that may be on and off during the day. One could, for instance, argue that
one long subsequent interaction has higher transmission than the accumulation of many
short interactions of the same length. Folkehelseinstituttet defined that a close contact
occurred between individuals that have either had direct physical contact with an infected
individual or their excretions or been within 2-meter proximity of the infected individual
for more than 15 minutes [53]. The accumulation of all interactions to daily weighted
contacts thus removes this temporal aspect. However, the data only measures face-to-face
contact within 1-1.5 meter distance. Therefore, more spatial data on when direct contact
occurs between two individuals need to be collected before separating between direct and
long-lasting close proximity interactions can be distinguished.

Since no spatial dimension is present in the model, the model also does not directly ad-
dress direct transmission that may occur due to, for instance, direct contact or the fecal-oral
route. Instead, the model assumes that the environment of students who interact a lot with
each other is similar, capturing some of the contact transmission that may occur. This
assumption may overshadow indirect transmission routes between individuals that do not
interact, for instance, when a susceptible individual touches a doorknob that an infected in-
dividual has previously contaminated. Incorporating the spatial position of each individual
at all times thus may help capture this indirect transmission. Meiksin incorporates this in-
direct transmission in a differential equation extended SIR model, and future expansion of
this framework may aim to include indirect contact similar to their approach [54].

The transmission of the disease is based on assumptions, with a set stochastic transmission
rate. Since the COVID-19 pandemic is still recent, exact disease transmission parameters
are yet to be determined. Therefore, the model called for an approximation of the infec-
tiousness of the different disease states. This led to the assumption that transmission in-
creases as a function of exposure. The infectiousness per contact was decided by changing
p0 while running disease transmission until a R0 of around 3 was reached. The reasoning
for choosing to model an R0 of this value was that disease transmission below one would
not yield enough transmission to observe the effect of implementing different disease mit-
igation strategies. Conversely, a R0 of higher than three would cause the transmission to
reach the saturation of recovered individuals too quickly, making it challenging to observe
the effect of the different strategies. In practice, the R0 in schools may be lower than
one, while community transmission is higher. Take, for instance, a child that infects 0.6
individuals at school, one at home, and 0.4 in other environments. The child would have
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a total R0 of 2. However, evaluating the model in an isolated situation like the framework
presented in this thesis does not allow for testing of scenarios like this, and thus a set R0

was introduced. These effects should be further investigated to increase the accuracy of
this model. They can, for instance, be incorporated into the agent-based community spread
model of the NTNU COVID-19 Taskforce.

Furthermore, the time spent in each disease state was deterministic. This approach was
chosen due to the stochastic nature of the probability of transmission and interactions,
making it easier to follow how the disease would spread in the network. However, this
approach is not realistic compared to real life, where there is individual variance in how
long individuals spend in different disease states. Using Weibull [49] to determine disease
generation time instead of having them predetermined might have increased the accuracy
of transmission on the model. Another option is to use Poisson distribution to determine
the length of each disease state, as Voigt et al. did for the NTNU COVID-19 Taskforce
model [12].

In addition, the environment of the individuals is assumed to be the same across all days
where disease transmission is simulated. However, the environment may also impact how
the disease is transmitted. Liu et al. emphasises that COVID-19 transmission changes
with seasons, with the colder winter season having increased transmission [10]. There-
fore further work on this model should aim to reproduce these seasonal changes in the
environment, especially if the model is simulated over multiple months.

All disease transmission was run on an isolated system with only one patient zero gen-
erated each time. This was mainly done to test transmission on the model alone before
implementing it into a community spread model such as the NTNU COVID-19 Taskforce
model. Therefore, the model assumes that no new cases are introduced after patient zero.
While this may be true for some isolated boarding schools, most primary schools do not
house their students, and thus the disease may be transmitted from the community. As
of now, the model only addresses transmission from one patient zero; however, functions
within the model do allow for multiple patients zero.

The final assumption is that the role of teachers in disease transmission is minimal. Since
only ten teachers were present in the network, and their interactions were limited to pupils
in their class, no additional teacher interaction layer was added to the model. First off, this
completely rules out any transmission between teachers during their breaks. Secondly,
in Norwegian primary schools, the role of the teacher seems to differ from one school
to another. One teacher may be teaching multiple classes in some schools, while other
schools have one specific teacher per class. A mobile teacher moving between classes
may have an essential role in disease transmission, as they may contribute to spreading
the disease across different modules. Therefore, the effect teachers have on transmission
should be addressed in future works, especially if the school allows for teachers to teach
various classes.
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5.3 The impacts of the result
Similarly to Angelerio, the Protomedicus of Sardinia, being tasked with implementing
NPIs to control disease transmission of the Bubonic plague in 1682, the WHO was re-
cently in charge of advising governments on which strategies and measures to implement
during the COVID-19 pandemic. This section will now try and provide some advice based
on the result of the investigation of the effect of some of the measures implemented in
across primary schools in Norway in order to mitigate COVID-19 transmission. Keeping
in mind the evaluation and assumptions of the model, the following advice may contribute
to the strategy of disease mitigation in primary schools when the next respiratory virus
emerges.

Winje et al. describes that implementing mitigation measures such as testing and the im-
plementation of the traffic light model in Norwegian schools limited overall transmission
related to primary schools. Similarly, all levels of the traffic light model successfully re-
duced the overall disease transmission compared to unhindered disease transmission for
the simulations run in this thesis. Therefore, implementing these seems to be beneficial
for reducing the transmission of respiratory viruses. Furthermore, the simulated transmis-
sion on the model seemed to indicate that moving from green to yellow traffic light levels
causes significantly less transmission than moving from yellow to red. Since the cost of
moving from yellow to red level includes halving class sizes [28], more resources such as
teachers and classrooms have to be made available. Therefore, high transmission in the
population should be present to justify the transition by weighing the cost versus the effect
of moving from yellow to red traffic lights. In turn, if the resources for testing are not
available, alternating between the green and yellow levels of the traffic light model may
help reduce transmission in primary schools.

Furthermore, weekly testing decreased transmission on the green traffic light level. There-
fore, if rapid antigen tests are readily available, testing and isolating positive cases while
in green traffic light levels were effective at disease mitigation in the model presented in
this thesis. Keep in mind that the predicted transmission decrease is dependent on con-
tinued testing even after transmission has ended. In areas with less community spread of
the disease, one can also consider implementing biweekly testing as it was also found to
reduce transmission. Further investigation of combinations of weekly and biweekly test-
ing with different traffic light levels may also provide further advice on combinations of
strategies.

However, since the data collected by Barrat et al. [1] and investigated in this was tailored to
a French primary school, more research on high-frequency interaction data in Norwegian
primary schools should be collected and compared to the model before the given advice
can be considered. Of most importance is the fact that all measures successfully mitigated
disease transmission. Thus, implementing the strategies presented in this thesis indicates
that there is a premise for keeping schools open during pandemics.
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Chapter 6
Conclusion/Outlook

This thesis provides a novel framework for generating interactions in primary schools as
well as running disease transmission on said interactions. First, an extensive analysis of
the empirical data collected by Barrat et al. [1] was conducted, laying the base for the
interaction dynamics of the framework. Then, using both disease state parameters from
Ferretti et al. [49] and estimates, the transmission of COVID-19 was simulated on the
model produced by the framework.

The extensive analysis included an investigation of selected topological parameters and the
relationship between degree distribution on two days, in addition to a comparison of the
accumulated network of the empirical data with the random network models ER, WS and
BA. These analyses revealed that the network has a high clustering coefficient and network
heterogeneity and displays a small-world property by having a low average shortest path
length. The interactions of the network were then divided into the layers off-diagonal,
grade, and class by investigating a heatmap representation of an adjacency matrix of the
empirical network.

The degree and interaction distribution of the network was then investigated, revealing a
highly complex distribution that was further divided into the layers previously identified.
Using a combination of the degree and interaction distribution allowed specific biases and
likelihoods of interaction to be generated for each interaction layer.

The evaluation of the simulated model in comparison to the empirical network revealed
that the generated model had lower modularity and average degree compared to the empir-
ical network. In addition, the heatmap of the simulated model showed more high-intensity
off-diagonal interactions than what was seen for the empirical network. Therefore, it is
believed that the increased off-diagonal interactions is a consequence of the lower mod-
ularity and lower average degrees. Furthermore, the degree and interaction distribution
were similar for the simulated and empirical networks, and an investigation of model sen-
sitivity revealed that the model displays a similar hierarchical structure for different inputs
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of the school structure.

Then, disease transmission of COVID-19 was run on both days of the empirical network,
including a version that alternated between the two days and compared to transmission on
dynamic and static models. The transmission was higher for both the static model, only
containing the same network across all 100 days, and the dynamic model compared to the
empirical network. This increased transmission was primarily attributed to the simulated
model’s higher number of off-diagonal interactions.

Then, the effect of imposing different traffic light levels as well as testing strategies were
investigated. The green level decreased transmission in comparison with the transmission
on a network with no measures implemented. Furthermore, implementing a yellow traffic
light level significantly decreased transmission, lowering the average number of infected
by 50 over 100 iterations. Finally, the red traffic light level further decreased transmission
compared to the yellow level. Weekly testing was the most efficient at reducing transmis-
sion; meanwhile, biweekly testing also reduced transmission compared to transmission on
an untested population.

6.1 Future work
First, as a stand-alone model, the primary school model runs quickly for transmission on
one school at a time. However, for it to be implemented into a broader model, such as
the ABM by NTNU COVID-19 Taskforce, further optimisation of the code is needed to
increase run-time. Potential routes for this optimisation include decreasing the time it
takes to generate interactions, as this was the code that took the longest to run.

Since the model was based on two days of interaction, to make the model more accu-
rate, the first order of business should be to conduct more RFID interaction measurements
studies for more extended periods of time and in differently structured primary schools.
For instance, one could follow the interactions at a given school for 100 days to extract
more detailed modules in class for more resolution and the addition of another layer. In
addition to recording the interactions, one could also aim to collect spatial data on where
individuals have interacted or moved throughout the day. This can help detect or predict
the possibility of indirect transmission.

In addition, since the framework of the model was created so that it could be implemented
into the NTNU COVID-19 Taskforce model, it could be interesting to see what effect
the detailed model can contribute with. Furthermore, comparing the impact the size of
a school has on disease transmission on a model generated by the detailed framework
of this thesis with the transmission in the abstract way primary schools are presented in
the agent-based NTNU COVID-19 Taskforce model may yield interesting results. For
instance, one could observe whether the model’s modularity created by the framework
presented in this thesis hindered or increased transmission in contrast to the modularity of
the primary schools simulated by the Taskforce model. This could further help adjust the
model of this framework to predict more accurate interactions.

This thesis only had the scope and time to investigate the effect of the traffic light model
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and biweekly and weekly testing. However, there are numerous other strategies and possi-
bilities that can be explored by using the framework presented in this thesis. For instance,
it could be possible to decrease the time individuals are in the school and see how this may
affect transmission. Furthermore, investigating the effect of shifting the schedule for when
different grades attend school on disease transmission could be interesting. Implementing
different traffic light levels and testing strategies also allows for more combinations to be
investigated. For instance, could the result of biweekly or even monthly testing in addition
to a yellow or red traffic light level help provide answers as to how testing affects trans-
mission. Finally, since vaccinations are now available for children aged 5-11, investigating
the effect of different percentages of individuals at the school being vaccinated may also
provide interesting results on herd immunity in primary schools.
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Appendix A
Methods supplement

This section will go into more detail on the methodology of this thesis. It contains an
overview of python modules used (section A.1), class descriptions (section A.2) and cal-
culating expected r00 and r0N (section A.3).

A.1 Python modules

An overview of the models used throughout this thesis is given in Table A.1.

Table A.1: Overview of Python modules used in this thesis. The modules are separated into built-in
modules and installed modules [47].

Module Brief description Version
Itertools Helps iterate over iterables –

Math Provides mathematical functions –
Pickle Allows for binary storage of objects –

Random Random generator –
Os Helps running operating system commands –

Enum Stores symbolic names to values –

MatPlotLib Data visualisation module for plotting 3.4.3
NetworkX Allows for creation and analysis of networks with nodes and edges 2.6.3

NumPy Useful for working with arrays 1.21.2
Pandas Dataframe library 1.3.3
Sklearn Contains supervised and unsupervised learning algorithms 1.0
SciPy Contains algorithms of scientific functions 1.7.1

Seaborn Data visualisation, based on matplotlib 0.11.2

86



A.2 Class description

A.2 Class description
The module contains the following classes: Person class (subsection A.2.1), Interaction
(subsection A.2.2), Network class (subsection A.2.3), Analysis class (subsection A.2.4)
and Disease transmission (subsection A.2.5).

A.2.1 The Person class
The Person class has all the attributes explained in Table A.2. In network terminology,
the Person object thus are the nodes, and any interactions between two Person objects
are registered as edges. The attributes associated with each Person object both assist in
network generation and disease transmission.
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Table A.2: Type, description and examples of the attributes associated with Person objects

Attribute Type Description Example
ID int A unique number attached to the person object

ranging from 0 to the max capacity at each school
0

Sex str Denotes the sex of the person object. ”F” for
female or ”M” for male

”F”

State str Disease state of individual. Possible states:
S, E, Ia, Ip, Is, R

”S”

Grade int Number denoting the grade of the person object.
Is limited by grades present at the school

1

Class group str Describes the exact class a Person object is
registered in. Could for instance be ”A” or ”B”

”A”

Age int The individual’s age 5
lunch group bool True if the person object is in a grade lower than 4.

Otherwise it is False. Can be changed based on schools
and which grades interact most with each other

True

interactions dict Keeps a dictionary of each Interaction object that
occur between this Person object and another.
The key is the ID of Person object interacted with
whilst the values are the Interaction object between
the two Person objects (here denoted as their weight)

{4 : 1,
6 : 9,
17 : 14}

const bias float Each Person object is initiated with a float value
that denotes their bias for interacting with any
other Person object

6.028

bias grade float The bias this Person object has for interacting
with other Person objects within the same grade

11.028

bias class float The bias this Person object has for interacting
with other Person objects within the same class

101.40

p-vector dict Dictionary that keeps track of the possibility that
one Person object has to interact with another
Person object. The key is the other Person object (here
described by their ID), whilst the value is the p

{1 : 83.29
2 : 5.00
3 : 1.80}

Status Disease State Denotes the disease state of an individual ranging
from susceptible to infected and recovered

Disease State.S

tested bool Returns true if an individual has tested
positive for COVID-19

True

states dict Dict where the keys are Disease States and values
are the number of days an individual is in that state

{Disease State.S : 1}

cohort str String that determines the cohort an individual belongs
in

”1A1”

infected on day int Integer that denotes the day an individual was
infected

3

recovered on day int Integer that denotes the day an individual was
recovered

10

infected by Person The Person object that infected this individual Person p1

A.2.2 The Interaction class
Table A.3 describes all attributes within the Interaction class. The interaction class keeps
track of interactions occurring between two Person objects and stores the number of inter-
actions they have had with one another as a weight attribute.
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Table A.3: Type, description and examples of the attributes associated with Interaction objects.

Attribute Type Description Example
p1 Person object Source Person object that

is a part of the interaction
Person 0

p2 Person object Target Person object that
is a part of the interaction

Person 1

count int Keeps track of how many times
two individuals have interacted

20

A.2.3 The Network class

Table A.4 describes all attributes within the Network class. The Network class is generated
by students, which is a list of Person objects that attend a certain school, as well as all
Interaction objects that exists between them.

Table A.4: Type, description and examples of the attributes associated with Network objects

Attribute Type Description Example
parameter list list List of parameters used in Person

class to set the p vector
[2, 0.04, 0.01, 0.01,
2, 0.4, 0.2, 11.5]

weights dict Dict with list of weights
for setting threshold during
interaction generation.

Is only used when traffic light
model is run

{’None’: [100, 80, 60],
’G’: [100, 80, 60],
’Y’: [40, 30, 60],
’YC’: [60, 40, 20],
’R’: [20, 15, 10],
’RC’: [50, 30,10]}

students list A list that contains all the Person
objects that attend a certain school

[0, 1, 2.., 335, 336]

d float A number that helps scale the weights 0.01
available grades list List of available grades in the school [1, 2, 3, 4, 5]
available classes list List of available classes in the school [A, B]
graph nx.Graph A nx.Graph object that describes

interactions in the network
nx.Graph with 336
nodes and 5500 edges

iteration list list A list of daily nx.Graph objects [graph day1,
graph day2..]

A.2.4 The Analysis class

The Analysis class only has one attribute; network. This is a Network object containing,
amongst other things, a nx.Graph representation of interactions. The analysis class consists
of multiple methods for the analysis of the simulated model, and this is the class in which
most results from section 4.2 and section 4.3 are generated.
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A.2.5 The Disease transmission class
In addition, the class Disease transmission helps simulate transmission of disease on a
Network object.

Table A.5: Type, description and examples of the attributes associated with Disease transmission
objects

Attribute Type Description Example
network Network Network object containing a nx.Graph

and students present in the network
Network(236,5,2)

stoplight Traffic light Contains a Traffic light entry from the
traffic light model (green (G),
yellow (Y), red(R)) or None

Traffic light.G

graph nx.Graph nx.Graph object containing
interactions between Person objects

nx.Graph with 236 nodes and
5500 edges

students list list of all person objects that are a
part of Network

[Person 0, Person 1..., Person 236]

patient zero Person The first person to introduce disease into
the Network

Person 0

day no int Keeps track of the current day
Disease transmission is run on

0

days list list of graphs generated for all days
Disease transmission is run on

[graph day1, graph day2]

p 0 float Estimated Disease transmission parameter 0.001
infectious rates dict Dict containing Disease states as keys

and their relative infectiousness
(in relation to the symptomaticstate)
as values

{Disease states.IAS: 0.1
, Disease states.IP: 1.3
, Disease states.IS: 1
}

Ias float Describes the percentage of individuals
having a asymptomatic disease course

0.4

Ip float Describes the percentage of individuals
having a presymptomatic/symptomatic
disease course

0.6

positions nx.spring layout A dictionary of positions keyed by node dict over positions of
nodes in graph according
to spring layout

A.3 Calculating expected R0

The expected value of R0 used throughout this thesis was calculated using Equation A.1,
where P (r0 = x) is the fraction of times r0 has been x.

N∑
x=0

(x ∗ P (r00 = x)) (A.1)

A.3.1 r00 of traffic light transmission
The r00 was measured for each traffic light level as shown in section 3.4.5. The following
subsection will describe the calculations and present the data from which the expected R00
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was calculated.

The expected value, R00, for green light is 2.36 and was calculated as follows after 1000
iterations as follows:
N∑

x=1

(P (r00 = x)∗x) = 0∗ 6

100
+1∗ 26

100
+2∗ 24

100
+3∗ 19

100
+4∗ 20

100
+5∗ 5

100
= 2.36

The expected value, R00, for yellow light is 1.9 and was calculated as follows after 1000
iterations as follows:

N∑
x=1

(P (r00 = x) ∗ x) = 0 ∗ 16

100
+ 1 ∗ 23

100
+ 2 ∗ 30

100
+ 3 ∗ 22

100
+ 4 ∗ 6

100

+5 ∗ 1

100
+ 6 ∗ 2

100
= 1.9

The expected value, R00, for red light is 1.89 and was calculated as follows after 1000
iterations as follows:

N∑
x=1

(P (r00 = x) ∗ x) = 0 ∗ 16

100
+ 1 ∗ 30

100
+ 2 ∗ 30

100
+ 3 ∗ 10

100
+ 4 ∗ 6

100

+ 5 ∗ 4

100
+ 6 ∗ 3

100
+ 7 ∗ 1

100
= 1.89

A.3.2 r0N of transmission with no testing, weekly testing, and biweekly
testing

This subsection will describe the calculations necessary to find the expected value of r0N
for not tested, weekly tested and biweekly tested transmission. The approach for generat-
ing the different testing scenarios is described in section 3.4.5.

The expected value of disease transmission, R0N , run on a not tested population is 0.99,
when taking into account the number of infected individual each 767 recovered transmitted
the disease to.

N∑
x=1

(P (r0N = x) ∗ x) = 0 ∗ 5793

11572
+ 1 ∗ 2769

11572
+ 2 ∗ 1520

11572
+ 3 ∗ 837

11572

+ 4 ∗ 398

11572
+ 5 ∗ 157

11572
+ 6 ∗ 65

11572
+ 7 ∗ 34

11572
= 0.9787
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The expected value of disease transmission, R0N , run on a biweekly tested population
is 0.97, when taking into account the number of infected individual each 279 recovered
transmitted the disease to.

N∑
x=1

(P (r0N = x) ∗ x) = 0 ∗ 5447

10911
+ 1 ∗ 2649

10911
+ 2 ∗ 1430

10911
+ 3 ∗ 796

10911

+ 4 ∗ 322

10911
+ 5 ∗ 151

10911
+ 6 ∗ 70

10911
+ 7 ∗ 47

10911
= 0.9796

The expected value of disease transmission, R0N , run on a weekly tested population is
0.95, when taking into account the number of infected individual each 364 recovered trans-
mitted the disease to.

N∑
x=1

(P (r0N = x) ∗ x) = 0 ∗ 4343
8465

+ 1 ∗ 1985
8465

+ 2 ∗ 1055
8465

+ 3 ∗ 568

8465

+ 4 ∗ 282

8465
+ 5 ∗ 136

8465
+ 6 ∗ 55

8465
+ 7 ∗ 42

8465
= 0.9723

A.3.3 r00 of asymptomatic and symptomatic transmission
This section will detail the calculation of the expected r00 value of both symptomatic and
asymptomatic disease transmission, which was run as described in subsection 3.4.6.

The expected R00 of symptomatic disease transmission was calculated to 3.16 with 100
iterations.

N∑
x=0

(x ∗ P (r00 = x)) = 0 ∗ 0.07 + 1 ∗ 0.16 + 2 ∗ 0.17 + 3 ∗ 0.21 + 4 ∗ 0.16

+ 5 ∗ 0.08 + 6 ∗ 0.08 + 7 ∗ 0.05 + 8 ∗ 0.02
= 3.16

The expected R00 of asymptomatic disease transmission was calculated to 1.01 with 100
iterations.
N∑

x=1

(P (r00 = x)∗x) = 0∗0.4+1∗0.38+2∗0.11+3∗0.06+4∗0.04+7∗0.01 = 1.01

Ratio between symptomatic and asymptomatic disease is then 1.01
3.16 = 0.320.

In order to compare this value with a predicted ratio, the following steps were calculated.
For low values of wij ∗ Ip, a first order approximation of the probability of transmission is
as follows:
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pinf = 1− (1− 0.001)wij∗Ip ≈ 0.001 ∗ wij ∗ Ip

Following this approximation, for each r00 calculated per patient zero i with N neighbours
j, the expected number of infected neighbours each day is

∑N
j (pinf ). days denotes the

number of days in a particular disease state. From there on, the predicted r00 for patient
zero i is:

r00 = days ∗
N∑
j

(pinf )

= days ∗
N∑
j

(0.001 ∗ wij ∗ Ip)

= 0.001 ∗ Ip ∗ days ∗
N∑
j

(wij)

Furthermore, the ratio between the R00
A and R00

P of the model is:

RA
0

RP
0

=
0.001 ∗ Ipa

∗ daysa ∗
∑N

j (wij)

0.001 ∗ Ipp ∗ daysp ∗
∑N

j (wij)

=
Ipa
∗ daysa

Ipp ∗ daysp

Thus, using the disease parameters from Ferretti et al. that are presented in Table 3.6,
the predicted ratio between the R0 of the two disease states can be calculated as fol-
lows:

RA
0

RPS
0

=
IA ∗ daysa
IP ∗ daysp

Where the RA
0 is the expected R0 of only asymptomatic infections while RPS

0 is the ex-
pected R0 of only presymptomatic infection. IA describes the infectiousness of asymp-
tomatic individuals in relation to symptomatic, while IP describes the infectiousness of
presymptomatic in relation to symptomatic. Furthermore, daysA denotes the days an
individual is in the state asymptomatic, while daysP is the days an individual is presymp-
tomatic.

0.1 ∗ 6
1.3 ∗ 3

=
0.6

3.9
= 0.154
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The expected ratio of r0 of asymptomatic and symptomatic infection for the generated
model to 0.320, whilst the expected ratio based on probability and transmission was cal-
culated to 0.154.
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Appendix B
Result and analysis supplement

This chapter will provide more details and additional figures for the result and analy-
sis chapter of this thesis. It will detail a further exploration of the empiric dataset in
section B.1 and more detailed information on disease transmission as provided in sec-
tion B.3.

B.1 Further exploration of empiric dataset

Analysis of the empiric dataset extended beyond the results presented in chapter 4, Results
and analysis. The following section will describe the investigation of the distribution of
weighted links for single nodes in subsection B.1.1 and address temporal aspects of the
model in Figure B.1.

B.1.1 Single nodes and Power law

As the combined degree distribution of all nodes in a network did not yield a definitive
distribution, it was decided to further investigate the distribution of each weighted edge
per node. Furthermore, the edges, or interactions, were divided according to which in-
teraction layer they belonged to. Each weighted edge was plotted for the whole network,
off-diagonal, grade, or class interactions. Figure B.1 shows an overview of the first nine
nodes to be investigated in the empiric network on day one. Of most interest is that each
layer seems to follow a linear function on a log-log scale. This indicates a Power law
distribution. Furthermore, the R2 values given for the linear regression are relatively high
for all layers investigated. Therefore, to some extent the single nodes have a Power law
distribution of their weighted interactions with other nodes.
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Figure B.1: The first nine nodes with log normalised frequency as a function of log degree, ⟨k⟩.
The different colours indicates the layer the interaction occurred in with whole network (blue), off-
diagonal (orange), grade (green) and class (orange). The R2 value is given for each linear regression.

B.1.2 Hour by hour and lunch analysis
Figure B.2 shows the number of interactions, where each interaction is a 20-second interval
between two individuals that are 1-1.5 meter from one another. Interactions are divided
into those occurring within each grade from one to five. There are three significant spikes
in the number of iterations throughout day one. Comparing the spikes with the schedule
for the school seen in Figure 2.7, one can see that they occur during breaks. The two-hour
lunch break in the middle of the day shows how much more grades one and two interact
than grades three to five. This is most likely due to the older students going home to eat
lunch during the longer break as opposed to the younger students. Most importantly, one
can note that the interaction patterns change throughout the day.

Furthermore, Figure B.3 shows the distribution of interactions during lunch hours on both
day one and day two. The division between grades one to three and four and five is evident
on the first day. However, for the second day, it seems that class 1A has had lunch and/or
break with grades two and three, while 1B has had lunch and/or break with grades four and
five. Class 1A has few class interactions with each other, while 1B has more interactions.
Similarly to day one, grades two and three interact the most with each other, while grades
four and five interact with each other. Perhaps there was a deviance in the normal one to
three and four and five division system on day two, where the first grade was split in two
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Figure B.2: Distribution of weighted interactions per grade occurring each minute on day one. A
grey area highlights the time interval of the two hour lunch break.

for lunch and break time.

Figure B.3: Heatmap of interactions occurring during the lunch break. Helplines are drawn to show
the class of each individual
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Figure B.4 shows the degree distribution during lunch for the two days tracked by Barrat
et al. [1]. The highest frequency of the degrees during lunch is around 100-300.

Figure B.4: Log cumulative frequency as a function of degree for day one and two during lunch
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B.2 Analysis of model supplementary
fig. B.5 shows a drawing of the simulated model with edges drawn between nodes meaning
an interaction occur between two individuals.

Figure B.5: Display of the simulated interaction model using the framework presented in this thesis.
The colours of the nodes represent the grades the individuals belong in, whilst the strength of the
colour on the edges increases with higher weight.

B.3 Disease transmission supplementary
More information and figures for disease transmission will be presented in this section.
subsection B.3.1 describes how disease transmission looks on the empiric network and
subsection B.3.4 gives more information on expected value of r0N for different testing
strategies.

B.3.1 Disease transmission
Figure B.6 describes a case where disease transmission has been run on the model. The
nodes are coloured according to the state each individual is in. As seen, infection has a ten-
dency to first spread within a grade, and from there on reach the rest of the school.
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Figure B.6: Illustration of disease transmission run on 21 days. The colour of each node represents
which state the individuals are in.
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B.3.2 Traffic light
The error margin of the green traffic light (Figure B.7), yellow traffic light (Figure B.8)
and red traffic light (Figure B.9) is illustrated by drawing 10 of the 100 iterations run
alongside the average. As seen in the figures, many transmissions ends with few recovered,
and the number increases for yellow and red traffic lights. The reasoning behind this, is
that the randomly chosen patient zero most likely does not have many contacts with other
individuals, and thus transmission is either greatly halted or completely stopped. Similarly,
if a hub is chosen as patient zero, it may cause a significantly faster increase in the number
of recovered and saturation is reached at a higher number of recovered. All data can be
found in the GitHub described in section C.2 in Appendix C.

Figure B.7: Error margin of the green traffic light model with 10 randomly chosen iterations of
transmission and the average value in bold
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Figure B.8: Error margin of the yellow traffic light model with 10 randomly chosen iterations of
transmission and the average value in bold

Figure B.9: Error margin of the red traffic light model with 10 randomly chosen iterations of trans-
mission and the average value in bold
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B.3.3 Recovered for different testing scenarios
The error margin of the no testing (Figure B.10), weekly tested (Figure B.11) and bi-
weekly tested (Figure B.12) is illustrated by drawing 10 of the 100 iterations run along-
side the average. Similarly to the traffic light error margin plots, there is great variation
based on which individual was chosen to be patient zero. The randomly selected iterations
of Figure B.12 shows this randomness, where the 10 selected iterations are higher than
the average. For the data for all iterations, see the GitHub described in section C.2, in
Appendix C.

Figure B.10: Error margin for not tested disease transmission with 10 randomly chosen iterations
of transmission and the average value in bold
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Chapter B. Result and analysis supplement

Figure B.11: Error margin for weekly tested disease transmission with 10 randomly chosen itera-
tions of transmission and the average value in bold

Figure B.12: Error margin for biweekly tested disease transmission with 10 randomly chosen itera-
tions of transmission and the average value in bold
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B.3 Disease transmission supplementary

B.3.4 r0N for different testing scenarios
Figure B.13 shows the frequency of different r0N values as well as its expected reproduc-
tive number.

Figure B.13: Frequency of r0N as well as expected value for three testing scenarios; no testing,
weekly testing and biweekly testing
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Appendix C
Github repositories

C.1 GitHub - Analysis of experimental data
The GitHub repository used to conduct all analysis described in section 4.1 can be found at
https://github.com/SaraAsche/PrimarySchool. Furthermore, the overall
description of the project can be read in the README.rmd file for the project. In addi-
tion, documentation for all functions and files are provided within their respective python
files.

C.2 GitHub - The model
The code to run the primary school model proposed in this thesis can be found at https:
//github.com/SaraAsche/PrimarySchoolSimulation. The model was de-
scribed in section 3.3, and disease transmission and different mitigation measures were
described in section 3.4. Similar to section C.1, the overall description of the project
can be read in the README.rmd file for the project. In addition, the documentation for
each class is provided within their respective python files and a thorough description of all
functions associated with the objects.
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