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Abstract

Research on electricity price and volatility has previously been conducted, but few

studies include effects that are probable to affect electricity prices and volatility. This

dissertation studies the system price at Nord Pool from week 1 2008, through week

52 2021. Autoregressive integrated moving average (ARIMA) and general autoregres-

sive conditional heteroskedasticity (GARCH) models are used separately, and jointly as

ARIMA-GARCH models to predict the system price and volatility. Seasonally adjusted

and population weighted temperature and rainfall for 6 Norwegian cities is included.

Rainfall captures additional expectations and supply effects alongside rainfall, whereas

temperature captures additional consumption and demand effects alongside tempera-

ture. Water magazine deviation, wind power production, and the sum of snow, surface

and ground water in Norway is included. The effects consumption, demand and tem-

perature have in contribution to explaining the system price and volatility are found

to be small. The effects expectations, supply and rainfall have on the system price

are found to be ambiguous, but the effects do somewhat contribute to explaining the

system price and volatility. The dissertation finds evidence of quarterly and half-year

seasonal effects within the modeling process. Results for the system price indicate

exponential volatility persistence. An unrestricted model including both temperature

and rainfall is the most persistent, and excluding rainfall is less persistent than exclud-

ing temperature. A model without rainfall reacts less to shocks in volatility than a

model without temperature, however the correlation in variance over 2 periods is lower.

Wind power production, sum of snow, ground, and surface water, including magazine

deviation have a statistically significant and negative effect on the system price. A

highly autoregressive system price of order 1 is found.
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Sammendrag

Studier av elektrisitetspriser og volatilitet har tidligere blitt gjennomført, men f̊a stu-

dier inkluderer effekter som potensielt p̊avirker elektrisitetspriser og volatilitet. Mas-

teravhandlingen studerer nordisk systempris fra Nord Pool fra uke 1 2008, ut uke 52

2021. Autoregressive integrated moving average (ARIMA) og general autoregressive

conditional heteroskedasticity (GARCH) modeller benyttes separat og sammensl̊att

som ARIMA-GARCH modeller for å predikere systempris og volatilitet. Sesongjustert

og befolkningsvektet temperatur og nedbør for 6 byer i Norge benyttes. Nedbør fan-

ger opp forventnings- og tilbudseffekter i tillegg til nedbør. Temperatur fanger opp

konsum- og etterspørselseffekter i tillegg til temperatur. Magasinavvik, vindenergipro-

duksjon og summen av snø-, mark-, og grunnvann inkluderes som kontrollvariabler.

Avhandlingen finner at effektene av konsum, etterspørsel, og temperatur p̊a system-

prisen og volatilitet er sm̊a. Videre er effektene av forventning, tilbud og nedbør p̊a

systempris tvetydige, men bidrar til å forklare systempris og volatilitet. Avhandlingen

finner bevis for kvartals- og halv̊arseffekter. Estimeringsresultater indikerer en ekspo-

nentiell volatilitetspersistens hvor en fullspesifisert modell med temperatur og nedbør

har høyest persistens. Restriksjoner p̊a nedbør gir lavere volatilitetspersistens enn re-

striksjoner p̊a temperatur. Estimering uten nedbør gir lavere volatilitetsrespons fra

sjokk enn estimering uten temperatur, med lavere korrelasjon i varians over 2 perioder.

Vindenergiproduksjon, magasinavvik og sum av snø-, mark-, og grunnvann har en sta-

tistisk signifikant og negativ effekt p̊a systemprisen. Avhandlingen finner i tillegg bevis

for en svært autoregressiv prosess av 1 orden.
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1 Introduction

Electricity prices are subject to high volatility. Between 2008 and 2021 weekly system prices

for electricity at Nord Pool varied between 1.6600e/MWh1 and 201e/MWh. Electricity

prices are affected by multiple effects which contribute to volatility. For instance, Nor-

way is a hydropower dependent nation with 347 hydropower production plants producing

around 90% of Norwegian power production, and around 1/6 of global hydropower pro-

duction (Statkraft, 2022). Hydropower is affected and determined by climate, resulting in

dependence on rainfall, snowfall, temperature, seasonality, and seasonal consumption pat-

terns, which in turn affects water magazine levels and electricity prices. National water

magazine levels are determined directly by rainfall and indirectly by other effects that affect

influx to water magazines. Electricity prices surge when water magazine levels are low, for

instance in 2021, and vice versa, contributing to electricity prices subject to periods of both

highly positive and negative volatility. Furthermore, electricity prices are affected by addi-

tional effects like seasonality, production of other energy sources and imports and exports.

A range of studies have been conducted of electricity prices and electricity price volatility

across several countries. Different methods have been applied, including artificial intelligence

(AI) neural networks, fundamental models, and statistical time series models. Within the sta-

tistical time series framework, numerous studies on electricity prices and volatility have been

conducted using generalized autoregressive conditional heteroskedasticity models (GARCH)

and autoregressive moving average processes (ARMA), often combined into ARMA-GARCH

models. For instance, Frömmel et al. (2014) apply a realized GARCH model, Liu and Shi

(2013) apply different ARMA-GARCH-M models, while Koopman et al. (2007) apply a

REG-ARFIMA-GARCH model to study electricity prices and volatility. While these papers

contribute to explaining electricity price and volatility, few studies found by the author ex-

plicitly model additional effects which contribute to explain electricity prices and electricity

price volatility.

This dissertation studies effects that affect electricity prices and volatility at Nord Pool

1MWh = Megawatt hour
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from week 1 2008, through week 52 2021, extending available research on electricity price

and volatility. An unconstrained, theoretical electricity price, the system price for the Nordic

region is used, however the dissertation concentrates on the Norwegian market for simplic-

ity and parsimony when fitting ARIMA and ARIMA-GARCH models. Effects known to

affect electricity price and volatility are included, pooled into national effects. These include

Norwegian water magazine deviation, influx to water magazines through the sum of snow,

ground, and surface water, and Norwegian wind power production. Furthermore, the dis-

sertation examines other effects with regional rainfall and temperature as the prime focus.

Rainfall and temperature from 6 Norwegian cities on a weekly frequency are utilized and sea-

sonally adjusted. The cities included are Bergen, Kristiansand, Oslo, Stavanger, Trondheim

and Tromsø studied from week 1 2008, through week 52, 2021. Temperature and rainfall

are assigned population weights to capture expectation, supply, consumption, and demand

effects, in addition to temperature and rainfall effects. To the authors knowledge there are

no studies of equal extension. These effects are, however, important both due to potential

changes in external effects such as climate both on a regional and national level, and to

explain changes in volatility as observed in 2020 and 2021, affecting the system price.

Initially, I use a class of autoregressive integrating moving average models (ARIMA) with

emphasis on determining a preferred model specification and population weights through

the Box-Jenkins 3-step approach alongside an in-sample system price fit. Subsequently the

ARCH and GARCH framework is appended onto the ARIMA framework to study volatility

and system price through a restriction-based approach. This includes models with all effects

included, and imposed restrictions on rainfall and temperature to better understand how

seasonally adjusted and population weighted temperature and rainfall affect volatility and

system price. The dissertation has the following thesis statements:

1. To what extent does population weighted and seasonally adjusted temperature and rain-

fall affect system price and volatility?

2. Which other effects affect system price and volatility?

2



1.1 Contents

The rest of the dissertation is divided into 5 sections. In section 2, relevant literature is

reviewed. First, a broad overview of the most relevant and current literature relevant for

the dissertation is described before a more comprehensive revision of 3 papers relevant for

the analysis is presented. In section 3, the dataset utilized in the dissertation is presented

alongside an introduction to the dataset. Variables in the dataset are stated, including rele-

vant descriptive statistics and a review of data preparation through unit-root tests. Section

4 presents the theoretical framework used in the dissertation. A simplified mathematical as-

sessment of ARMA, ARIMA, ARCH and GARCH models is provided. Furthermore, model

selection and information criteria are presented, including a simplified summary of maximum

likelihood estimation and model-fit evaluation. Results are presented in section 5. This in-

cludes fitting the preferred ARIMA model through the 3-step Box-Jenkins approach, deter-

mination of population weights and in-sample fit. Afterwards, a range of ARIMA-GARCH

models are estimated with restrictions to seasonally adjusted temperature and rainfall. Ro-

bustness is examined, before results are evaluated and discussed. Lastly, a conclusion is

given in section 6.

2 Theory and Literature Review

This section presents a broad overview of relevant literature before reviewing the 3 most

relevant research papers for the dissertation. Electricity prices are complex, and reviewing

a selection of articles is therefore suitable for the subject. This approach has been chosen to

deepen understanding and insight of the thesis statement.

2.1 Broad Overview

There exist various relevant research papers on price and volatility for the electricity market

in different countries. In general, there are 3 main classes of study. Artificial intelligence

(AI) neural networks, fundamental models, and statistical time series models. Within time

series modeling of electricity price and volatility, electricity prices are often log-transformed

beforehand to simplify interpretation and obtain stationarity (Schlueter, 2010). The most

3



widespread models for volatility are the (general) autoregressive conditional heteroskedastic-

ity (GARCH and ARCH) models. Furthermore, autoregressive integrated moving average

(ARIMA) models are also widely used, often together with GARCH models. For instance,

Cifter (2013) log-transforms electricity price returns before estimating different GARCH vari-

ants, including a Markov-switching GARCH. Koopman et al. (2007) apply log-differenced

daily spot electricity prices with explanatory variables in a REG-ARFIMA-GARCH model

on the Nord Pool spot market and several other European power markets. Efimova and

Serletis (2014) investigate crude oil, natural gas, electricity price and volatility using both

univariate and multivariate GARCH models, while Liu and Shi (2013) estimate 10 different

ARMA-GARCH(-M) models. Furthermore, Bowden and Payne (2008) estimate an ARIMA,

ARIMA-EGARCH and an ARIMA-EGARCH-M model on 5 MISO hubs with both an in-

sample fit and an out-of-sample forecast, while Frömmel et al. (2014) forecast daily electricity

price volatility by applying a realized GARCH model.

2.2 Detailed Literature Review

2.2.1 Liu and Shi (2013): Applying ARMA–GARCH Approaches to Forecast-

ing Short-Term Electricity Prices

Liu and Shi (2013) forecast hourly day-ahead electricity prices by estimating a range of

ARMA-GARCH models. The research paper falls into the category of statistical time series

and applies hourly real time location based marginal prices (LMP) from the ISO New Eng-

land Market from 1.1.2008 to 28.2.2010 and includes 18.960 observations. Within the time

period, the LMP exhibits extreme price spikes and visual evidence of volatility clustering,

further emphasized by reported descriptive statistics. Minimum LMP equal 0 and maximum

LMP equal 403.23 with an average LMP of 61.09 and a standard deviation of 33.4735, re-

ported in $/MWh. Similar behaviour has also been observed Schlueter (2010) for the EEX

Phelix Peak Load Index, the Nord Pool Spot Index, the APX Power UK Industrial Peak

Load Index and the APX Dutch Power Peak Load index between 2005 and 2009.

Moreover, electricity prices within the dataset are positively skewed and leptopkurtic. Liu

and Shi (2013) highlight that non-normally distributed electricity prices are common in elec-
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tricity prices. Since the aforementioned non-normal behaviour is similar to other electricity

markets, it is argued that results can possibly be applied as general guidance for other elec-

tricity markets. For instance, Nord Pool day-ahead daily system prices from 1.1.2017 until

31.12.2021 exhibit similar behaviour2.

Liu and Shi (2013) apply the first 2 years of data to fit different ARMA-GARCH(-M) mod-

els, while remaining observations are used out-of-sample to test the prediction accuracy of

the fitted models. The estimated GARCH models are SGARCH, QGARCH, GJRGARCH,

EGARCH and NGARCH. ARMA-GARCH models are fitted for the first 5 models with AR

lags 1, 11, 24, 48, 72, 96, 120, 144, 168, 216, 264, 336, 504, 672 and 840, and MA lags 1 to

10, revealing a complex lag-structure. Reported results are all statistically significant at a

0.1% level, which implies daily, weekly, and monthly periodicities or seasonality in electricity

prices. Furthermore, results from ARCH(1) and GARCH(1) reports statistically signifi-

cant time varying volatility. The sum of SGARCH, QGARCH and EGARCH parameters

are > 1, indicating exponential volatility persistence. Results from NGARCH, QGARCH,

EGARCH and GJR-GARCH indicate nonlinear and asymmetric volatility, previously found

for instance by Bowden and Payne (2008) who estimate an ARIMA-EGARCH(1,1) and an

ARIMA-EGARCH-M for the Midwest Independent System Operator (MISO) in the United

States.

Adjusted R2, F-tests, AIC, and BIC are used to evaluate the fitted models, including partial

autocorrelation function (PACF) plots of residuals from model estimation. Results from

PACF are found to be consistent. The fitted ARMA-GARCH models are found highly sta-

tistically significant with p-values smaller than 0.0001. Results from AIC and BIC indicates

that ARMA models with nonlinear and asymmetric GARCH processes have a better poten-

tial to model electricity prices. For instance, AIC and BIC values from ARMA-QGARCH

are the highest, whereas values from ARMA-NGARCH are the lowest.

All respective p-values are statistically significant with significance levels below 0.1%, with

2Author has analyzed data from https://www.nordpoolgroup.com/Market-data1/data-downloads/

historical-market-data2/ in STATA. Skewness: 3.257. Kurtosis: 24.685.
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similar results as the 5 previously estimated ARMA-GARCH models. Estimated parameters

are highly statistically significant, and electricity prices exhibit daily, weekly, and monthly

periodicities or seasonality, including nonlinear and asymmetrical time-varying volatility.

These results are similar to Bowden and Payne (2008) who also discover seasonality and

time-varying volatility. Furthermore, Liu and Shi (2013) find that volatility of electricity

prices can negatively influence mean electricity prices through a statistically significant and

negative mean-term which enters through the GARCH-M specification. Adjusted R2 indi-

cates that the 5 ARMA-GARCH-Mmodels outperform the 5 former ARMA-GARCHmodels.

P-values from F-tests report highly statistically significant results, all below 0.0001. AIC and

BIC values are very similar, except from ARMA-SGARCH-M which report the lowest values.

Model performance is compared by utilizing RMSE, MAE, MAPE and TIC. The ARMA-

SGARCH and ARMA-GJRGARCH have the best forecasting performance out of the 5

ARMA-GARCH variants. Among the five ARMA-GARCH-Mmodels, the ARMA-SGARCH-

M and ARMA-GJRGARCH-M models provides a superiour model fit. When comparing all

10 models against each other, a clearly dominant model cannot be argumented for. How-

ever, the ARMA-SGARCH-M may be preferred due to simplicity and robustness, while

maintaining satisfactory prediction accuracy. Nevertheless, all estimated models can accu-

rately forecast the electricity prices in-sample. Liu and Shi (2013) mention that further

research might include weather as an exogenous variable to capture electricity demand.

2.2.2 Koopman et al. (2007): Periodic Seasonal Reg-ARFIMA–GARCH Mod-

els for Daily Electricity Spot Prices

Koopman et al. (2007) focus on daily spot-prices from Nord Pool (Norway) using a REG-

ARFIMA-GARCH model framework. In addition, daily spot-prices from EEX (Germany),

Powernext (France) and APX (Netherlands) are also analyzed to check the validity of the

model in various markets that are less hydropower dependent than Nord Pool. More specifi-

cally, dynamic long memory regression models with autoregressive conditional heteroskedas-

tic errors are considered and estimated with log-likelihood maximization.

6



First and foremost, Koopman et al. (2007) argument for a random walk process within

daily spot prices due to 4 effects who follow:

1. Seasonal dependent electricity prices;

2. Mean reversion due to weather dominant effects which affect the spot prices;

3. Jumps and spikes in electricity prices due to storage capacities; and

4. Volatility clustering.

Therefore, electricity prices are transformed into logarithmic first differences.

Koopman et al. (2007) include 2 explanatory variables relevant for the electricity price;

daily Norwegian power consumption, dominated by yearly cycles and a weekly consumption

pattern, and weekly water magazine filling levels, dominated by yearly cycles. The seasonal

length in the paper is determined to be 7, equal to 1 week.

Initially, descriptive statistics reveal different dynamic properties within the EEX, Pow-

ernext and APX as opposed to Nord Pool. Koopman et al. (2007) argue that this is due to

the dependence on hydropower generation, which depends on long-run weather conditions

at Nord Pool, whereas APX, EEX and Powernext relies on different power mixes.

The results from the REG-ARFIMA-GARCH estimation concludes with significant holi-

day effects in demand with low return to electricity prices on holidays, and high returns

thereafter. Interestingly, the periodic AR-polynomial is stable, and the largest inverse root

of the characteristic polynomial equal 0.95, indicating a high level of autoregression within

electricity prices. Furthermore, holiday effects are statistically significant, including yearly

and half-yearly volatility effects. GARCH parameters are on the boundary of the admissible

parameter space, exhibiting high persistence within the conditional variance.

In terms of explanatory variables, water magazine filling levels are used as a proxy for

supply side effects with both demeaned levels and demeaned weekly differences. Koopman

et al. (2007) find that increase in filling levels has a statistically significant, negative effect

7



on electricity prices without affecting other parameter estimates in any noteworthy fashion.

Furthermore, yearly cycles of electricity prices through the conditional mean are replaced

by yearly cycles in water magazine filling levels. Interestingly, long-run effects of magazine

filling levels and consumption are statistically insignificant and implies no feedback from

electricity prices to consumption. However, a significant part of the short-term price move-

ment can be explained by weekly magazine filling levels and daily electricity consumption

within the ranges of the Nord Pool market. Finally, there is a strong relationship between

electricity prices and consumption in the short-run.

Koopman et al. (2007) do not find evidence of residual serial correlation through a Ljung-

Box Q statistic, with limited erratic behaviour and no evidence of non-normal behaviour.

Residual diagnostics therefore show a good model fit. When applied to the APX and EEX,

model fit is decent, however Koopman et al. (2007) highlight that market specifics should

be taken into account to control for different power mixes.

2.2.3 Bowden and Payne (2008): Short Term Forecasting of Electricity Prices

for MISO Hubs: Evidence From ARIMA-EGARCH Models

Bowden and Payne (2008) study the Midwest Independent System Operator (MISO) electric-

ity market with 3 time series models, ARIMA, ARIMA-EGARCH and ARIMA-EGARCH-M.

5 MISO-hubs are analyzed in the paper, the Cinergy Hub, First Energy Hub, Illinois hub,

Minnesota hub, and the Michigan hub. The paper assesses model fit through in-sample per-

formance, serial correlation, autoregressive conditional heteroskedasticity, and out-of-sample

performance. Hourly real time electricity prices are applied, and real time location-based

marginal priced are used in the paper between 9.7.2007 to 6.8.2007.

Unlike the system price, the real time market considers physical limitations. Physical sched-

ules and real time offers are therefore included, updated up to 30 minutes prior to the hour.

The market clearing price is calculated as in Equation (BP.1). Observe that without conges-

tion costs and transmission losses, the market clearing price equals energy costs and therefore

represents the system price which gives an identical price across all MISO hubs. With these
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costs considered, the market clearing price might differ between the MISO hubs. LMP for

the period shows evidence of volatility clustering.

LMPjt = EnergyCt +MCCjt −MLCjt

LMPjt = Market clearing price

EnergyCt = Energy cost at time t

MCCjt = Marginal congestion costs at time t

MLCjt = Marginal cost of transmission losses at time t

(BP.1)

To capture ARCH-effects, including possible leverage, or inverse leverage effects, an EGARCH

model is appended onto an ARIMA model. The invertibility conditions for seasonal and non-

seasonal moving average terms are statistically significant at a 1% level. Furthermore, shocks

to electricity prices are statistically significant at a 1% level with coefficients ranging from

0.4148 to 0.5787 across the MISO hubs. The sign effect is also positive and statistically

significant at a 1% level with coefficients from 0.0712 to 0.1901 across the MISO hubs, indi-

cating presence of leverage effects, except for the Illinois hub with statistical significance at

a 10% level.

Importantly, volatility persistence is statistically significant at a 1% significance level with a

coefficient ranging from 0.7718 to 0.7830 indicating a high volatility persistence. The esti-

mated ARIMA-EGARCH model is free of both serial correlation and further autoregressive

conditional heteroskedasticity, except for the Minnesota hub. Here, the Ljung-Box-Q statis-

tic for serial correlation is marginally significant at a 10% level.

The third model estimated is an ARIMA-EGARCH-M model, to capture the impact of

the conditional volatility of electricity prices on the mean of the respective hourly electricity

prices. This is captured through the M-term. Invertibility conditions are satisfied for all

hubs, statistically significant at a 1% level. Shocks to electricity prices through the size

effect are statistically significant at a 1% significance level, with the coefficient ranging from

0.4145 to 0.5545. Sign effects are positive and statistically significant at a 1% significance

level, except for Illinois which is significant at a 10% significance level. The coefficient varies
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from 0.0693 to 0.1914, which indicate evidence of an inverse leverage effect.

Furthermore, volatility persistence is statistically significant at a 1% level, with a coeffi-

cient from 0.7685 to 0.7835 across the MISO hubs, indicating high volatility persistence.

The residuals are free of both serial correlation and autoregressive conditional heteroskedas-

ticity, except for the Minnesota hub where the Ljung-Box-Q statistic is marginally significant

at the 10% level.

Bowden and Payne (2008) also assess forecasting performance and model fit. Firstly, an

in-sample forecast is completed, generated from the model over the estimation period to

assess model behaviour compared to real time electricity prices for each hub. RMSE, MAE,

MAPE and Theil’s inequality coefficient are used as criteria. MAE and MAPE are lower for

certain ARIMA-EGARCH and ARIMA-EGARCH-M models. However, RMSE and Theils

inequality coefficient favour the ARIMA model for each hub. Secondly, an out-of-sample dy-

namic 24 hour forecast on the 6.8.2008 is examined. The ARIMA-EGARCH-M outperforms

ARIMA and the ARIMA-EGARCH for Cinergy, First Energy, and the Illinois hub, whereas

the ARIMA model dominates in the Michigan hub.

In summary, Bowden and Payne (2008) conclude that electricity prices exhibit time-varying

volatility across each of the MISO hubs. Furthermore, electricity prices exhibit seasonal and

time varying volatility due to the non-storability of electricity, inelastic demand and supply,

convex marginal costs and potential for market power exerted by generators. Past shocks to

the variance are asymmetric and exhibit inverse leverage effects with respect to time-varying

volatility. Positive shocks to electricity price increase volatility more than negative shocks of

equal magnitude. Lastly, incorporating GARCH models in the ARIMA-framework improves

forecasting performance out-of-sample, except for the Michigan hub.

3 Data

This section presents the dataset used in the dissertation, descriptive statistics for the system

price, other variables including results from the data preparation procedure.
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3.1 The Dataset

The dataset consists of data described in Table 17, collected from NVE3, The Norwegian

Meteorological Institute, and Nord Pool. Data is collected from week 1, 2008 through week

52, 2021, either reported in, or aggregated to weekly frequency. System price is reported in

e/MWh, rainfall is collected in millimeters and temperature in Celsius. Rainfall has been

aggregated from daily sums to a weekly sum, while temperature has been aggregated from

daily averages to a weekly average. Rainfall and temperature observations are from Bergen,

Kristiansand, Oslo, Stavanger, Tromsø and Trondheim. Wind power production is reported

on a national level and are aggregated to weekly levels from daily data, recorded in MWh.

Magazine deviation is the deviation from a 20-year magazine filling level average, and the

sum of snow, ground and surface water is an accumulated sum which determines influx to

water magazines.

3.2 Variables in Dataset

price and lnprice
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Figure 1: Weekly system price from 01.01.2008

- 31.12.2021.
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Figure 2: Weekly system price, logarithmic,

from 01.01.2008 - 31.12.2021.

The system price for the Nordic market is the theoretical, unconstrained market clearing

price for the Nordic region in which most standard contracts considering electricity are

3Norwegian Water Resources and Energy Directorate
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traded. Calculations are based on aggregated and anonymized orderbooks (OBK) for the

Nordic bidding zones, including hourly values of import and export flows of electricity to and

from areas neighboring the Nordic bidding zones. Internal transmission capacities between

Nordic bidding zones are set to infinity, simulating a theoretical situation with unlimited

transmission capacity within the Nordic grid system. Considering data demanded by ARCH

and GARCH models, the system price is used for simplicity and additional historical data

availability (NordPool, 2022, 2020).

The system price is taken from Nord Pool with a weekly frequency. Descriptive statistics for

price and a logarithmic transformation of the system price, lnprice, can be observed in

Table 1. System prices are reported from 01.01.2008 to 31.01.2021 in e/MWh and includes

728 observations. Over the period, the lowest recorded system price was 1.6600 e/MWh,

while the highest system price recorded was 201.1900 e/MWh. Mean system price across the

period was 36.6318 e/MWh, while the standard deviation was 17.7646 e/MWh. Extreme

price spikes are present, which can be observed in Figure 1, and the standard deviation equal

to 48.17% of the mean indicate a highly volatile system price. Price spikes have previously

been discussed in the literature review, for instance by Liu and Shi (2013), and is a common

trait for electricity prices even with a weekly frequency. To account for the surge in system

price in 2021, a logarithmic transformation is applied which ensures stationarity and con-

tributes to a simplified interpretation, observe Figure 2 compared to Figure 1.

Variable Sum Mean SD Min Max N Skewness

price 26667.9500 36.6318 17.7646 1.6600 201.1900 728 2.4776

lnprice 1098.45 1.50886 0.2474 0.2201 2.3036 728 -1.8290

Table 1: Descriptive statistics for variables price and lnprice.

Figure 3 illustrates the system price, including a normal frequency curve, whereas Figure 4

displays the logarithmic transformation of the system price including a normal frequency

curve. From Figure 3, distribution plots indicate a right-skewed distribution and Table 1

reveals a right-skewed distribution with a skewness of 2.4776 for the system price. This is

consistent with other research by Liu and Shi (2013) and Cifter (2013). The logarithmic
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transformation leads to less density around the mean, observed from Figure 4. Furthermore,

the distribution appears slightly left-skewed. Skewness equal -1.82900 from Table 1, closer

to a normal distribution. Nevertheless, the system price is determined to have a fat tail and

excess peakedness at the mean exhibiting leptokurtic behaviour (Brooks, 2019).
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Figure 3: Weekly system price distribution

w/ normal frequency curve.
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Figure 4: Weekly logarithmic system price

distribution w/ normal frequency curve.

S Adj. Rain and S. Adj. Temp. - Weather Variables

Seasonally adjusted and population weighted temperatures and rainfall for 6 Norwegian cities

are included. These cities include Oslo, Bergen, Trondheim, Stavanger, Kristiansand and

Tromsø. Variable description can be found in Table 17, and relevant descriptive statistics

can be found in Tables 18 and 20 reported in millimeter or degree Celsius, millimeter or

degree Celsius deviation from equal week last year depending on the seasonal adjustment,

and millimeters or degree Celsius, weighted by population.

Weather variables exhibit strong seasonal patterns, and several methods have been pro-

posed to adjust for this seasonality. This include seasonal dummies, filters or differencing

with varying success (Bordignon et al., 2007). Both temperature and rain have been sea-

sonally differenced against equal week the prior year to ensure stationarity4. The finalized

model framework utilizes population weights based on cities in the dataset, and an extensive

reasoning and population weight determination can be found in Section 5.1.2 with popula-

tion weight formulas in Appendix B.1. Observe Figures 5 and 6 for temperature without

seasonal adjustment and seasonally adjusted temperature.

452nd difference taken. ∆yit = yit − yit−52
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Figure 5: Temperature without seasonal

adjustment.
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Figure 6: Seasonally adjusted tempera-

ture.

Sum Sno., Gro., Sur. wtr. and Sum Magazine Deviation

Sum of snow, ground and surface water, and sum magazine deviation from NVE are included

in the dataset with 728 observations from week 1, 2008 through week 52, 2021, based on data

used in calculation of the HBV-model from NVE (Holmqvist, 2013). The data are national

sums and can be observed in Table 18. Sum of snow, ground and surface water are utilized

in the dissertation to capture inflow to water magazines, regardless of season. Sum of water

magazine deviation is taken from a 20-year average and is utilized to capture national direct

magazine influx effects and magazine filling level deviation effects.

Logarithmic Wind Prod.

Weekly logarithmic and seasonally adjusted wind power production in MWh for Norway is

included with summary statistics in appendix, Table 18. Inclusion allows for analyzing the

effect wind has on the system price, and therefore encapsulate additional weather effects.

3.3 Data Preparation

Before the analysis, the data has been prepared for time series estimation. Most importantly,

unit root process tests have been performed with a DF-GLS unit root process test with 3

lags, and a Philips-Perron unit root process test. The Philips-Perron test has the following

specification:
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H0: Unit root process.

HA: Stationary process.

The Philips-Perron test performs a similar test as the augmented Dickey-Fuller test, but

allows for autocorrelated residuals.

The DF-GLS test test for a unit root process through a GLS regression, which has shown

greater performance than the ADF test. The DF-GLS test has the following specification:

H0: Random walk, possibly with drift.

HA: Stationary process around a linear trend.

We reject a unit root process in all variables in contradiction to Koopman et al. (2007).

Philips-Perron and DF-GLS test results can be observed in Tables 21 and 22 (Brooks, 2019;

Elliott et al., 1996).

4 Empirical Methodology

This section presents the empirical methodology used in the dissertation. ARMA and

ARIMA models are presented, including ARCH and GARCH models. Model selection cri-

teria, maximum likelihood estimation and forecasting evalaution measures are explained.

4.1 ARMA and ARIMA Models

Autoregressive Moving Average (ARMA) models are combinations of autoregressive (AR)

processes of order p, and moving average processes of order q, resulting in an ARMA(p,q)

model. An ARMA(p,q) model describes that some series depends linearly on its own previ-

ous values, plus a combination of current and previous values of a white noise error term.
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Formally, an ARMA(p,q) model could be written as in Equation (4.1) (Brooks, 2019).

ϕ(L)yt = µ+ θ(L)ut

ϕ(L) = 1− ϕ1L− ϕ2L
2 − ...− ϕpL

p

θ(L) = 1 + θ1L+ θ2L
2 + ...+ θqL

q

Another way to specify an ARMA(p,q) follows below:

yt = α0 +

p∑
i=1

ρiyt−i +

q∑
i=0

θaiut−i

E(ut) = 0;E(u2
t ) = σ2;E(utus) = 0, t ̸= s

(4.1)

The ARMA(p,q) model has a geometrically decaying autocorrelation function (ACF) and

partial autocorrelation function (PACF). The autocorrelation function describes combina-

tions of behaviour from the AR and MA processes, with AR dominating in the long run,

for lags beyond q. The extension from an ARMA(p,q) to an ARIMA(p,d,q) model relies on

the characteristic roots in Equation (4.1). If 1 or more characteristic roots of Equation (4.1)

is greater than, or equal to 1, the yt process is integrated of order d, and thus an ARIMA

model. The I -term in the ARIMA model therefore indicates the number of differences taken

(Enders, 2014).

4.2 ARCH(p) and GARCH (p,q) Models

When analyzing electricity prices, volatility clustering including high, and low-volatility peri-

ods are often observed, for example in Figure 1. Therefore, the CLRM assumption of constant

error variance5, homoskedasticity, falls short. Furthermore, electricity prices exhibit volatil-

ity clustering where volatility occurs in bursts which can be observed in Figure 7. ARCH

and GARCH can be used to model this behaviour, and an ARCH(1) model is described in

Equation (4.2).

yt = β1 + β2x2t + β3x3t + β4x4t + ut

σ2
t = α0 + α1u

2
t−1

ut ∼ N(0, σ2
t )

(4.2)

5CLRM = classical normal linear regression model. ut ∼ N(0, σ2) (Brooks, 2019).
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Figure 7: First differenced logarithmic system price from week 1, 2008 through week 52, 2021.

σ2
t is the conditional variance and must be strictly positive. However, the ARCH model in

Equation (4.2), and other ARCH variants contain limitations which results in less practi-

cality. Therefore, generalized ARCH models (GARCH) are more widely used. Originally

developed by Bollerslev in 1986, the GARCH model allows for the conditional variance to

be dependent upon previous own lags, is more parsimonious, avoids overfitting, and is less

likely to violate non-negativity constraints. A general GARCH(p,q) model is described in

Equation (4.3) (Bollerslev, 1986; Brooks, 2019).

σ2
t = α0 +

q∑
i=1

αiu
2
t−i +

p∑
j=1

γjσ
2
t−j (4.3)

In Equation (4.3), the conditional variance depends on q lags of the squared error, and p

lags of the conditional variance. It can also be shown that the conditional variance of the

error is an ARMA process given by the expression in Equation (4.3) since the conditional

variance of ut is given by Et−1u
2
t = σ2

t . The disturbances of the dependent yt variable acts
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like an ARMA process, which allows for detecting the order for a possible GARCH process

in the squared residuals. Furthermore, the GARCH model allows for both autoregressive-

and moving average components in the heteroskedastic variance (Enders, 2014).

4.3 Model Selection and Information Criteria

Apart from comparing LLF values, 2 main model selection criteria are used in this paper. 2

of the most popular selection criteria are Akaikes Information Criterion (AIC) and Schwartz

Bayesion Criterion (SBC, SBIC or BIC). Inherently, both criteria are a function of the

residual sum of squares (RSS) and a penalty for the loss of degrees of freedom from adding

extra parameters to the model, see Equation (4.4). Befittingly for model comparison and

selection, the value of the information criteria will only be reduced if the RSS outweighs the

increased value of the penalty applied. Consequently, AIC and BIC are therefore more widely

applied in time series modeling as opposed to R-squared or adjusted R-squared. The penalty

term within the AIC is less strict than the penalty term in BIC and it is therefore useful

to report both information criteria. In larger sample sizes, BIC has shown to be superior

and asymptotically consistent, while AIC will be more biased towards an overparametrized

model. On the other hand, AIC may be superior in smaller samples (Enders, 2014). This

entails that BIC is strongly consistent, but inefficient, while AIC is inconsistent, but generally

more efficient (Brooks, 2019). This emphasizes the aforementioned argument that both

criteria, including LLF values should be reported when comparing and selecting models.

Consequentially, both AIC and BIC can be negative and lower values are preferred. Since

Stata 17 has been used as the main statistical software, Stata 17’s formulas are reported in

Equation (4.4) (Stata, 2022).

AIC = −2lnL+ 2k

BIC = −2lnL+ klnN

L = Maximized log-likelihood of the model

k = Parameters estimated

N = Sample size

(4.4)
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4.4 Maximum Likelihood Estimation

Maximum Likelihood Estimation (ML) is a common estimation method in econometrics,

ensuring both consistency and asymptotically normal distributions. Formally, a set of pa-

rameters that are most likely to have produced the observed data values are chosen through

construction of a log-likelihood function (LLF) (Brooks, 2019; Pan and Fang, 2002). The

LLF is then maximized to find the values of the parameters that maximize the LLF. This

method can be used for both linear and non-linear models. For simplicity, calculations are

here limited. The general method described is taken from Brooks (2019) and Enders (2014).

Derivations can be found in Brooks (2019), appendix 9.1 page 565 and Enders (2014) page

152-154.

In Equation (4.5), β1, β2, σ
2 are to be estimated, such that an f-function f(·) can be written

as the likelihood function LF (β1, β2, σ
2).

LF (β1, β2, σ
2) =

1

σT (
√
2π)

T
exp{−1

2

T∑
t=1

(yt − β1 − β2xt)
2

σ2
} (4.5)

The parameter values, β1, β2, σ
2, that maximizes the function in Equation (4.5) are chosen.

Since this equation is difficult to differentiate due to the T-term, logarithms of the probability

density function, Equation (4.6), is taken and then differentiated, assuming the y ’s are i.i.d.6.

f(y1, y2, ..., yT |β1 + β2x1, β1 + β2x2, ..., β1 + β2xT , σ
2)

=
T∏
t=1

f(yt|β1 + β2xt, σ
2) for t = 1, ..., T

(4.6)

Through transformation this results in the log-likelihood function (LLF), Equation (4.7).

LLF = −T

2
lnσ2 − T

2
ln(2π)− 1

2

T∑
t=1

(yt − β1 − β2xt)
2

σ2
(4.7)

6i.i.d. = independent and identically distributed random variables.
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By differentiating Equation (4.7) w.r.t β1, β2, σ
2, and then minimizing by equaling to zero,

the maximum likelihood estimators (denoted by hats) are obtained in Equation (4.8).∑
(yt − β̂1 − β̂2xt) = 0∑

yt −
∑

β̂1 −
∑

β̂2xt = 0∑
yt − T β̂1 − β̂2

∑
xt = 0

1

T

∑
yt − β̂1 − β̂2

1

T

∑
xt = 0

β̂1 = ȳ − β̂2x̄

(4.8)

We can also utilize first derivatives to obtain estimators for β̂2 in Equation (4.9).

β̂2 =

∑
ytxt − T x̄y

(
∑

x2
t − T x̄2)

(4.9)

Observe that Equations (4.8) and (4.9) are equal to OLS estimates of the intercept and

slope coefficients. However, an estimate of σ̂2 can be obtained which equals the result in

Equation (4.10).

σ̂2 =
1

T

∑
û2
t (4.10)

The estimator in Equation (4.10) for the error variance is biased, albeit consistent7.

4.5 Volatility and Model Evaluation

4.5.1 Volatility Measures

The dissertation employs a realized volatility measure with inspiration from Day and Lewis

(1992) and Simonsen (2005). Formulae are set out in Equation (4.11). Observe that his-

torical volatility mainly used by Day and Lewis (1992), σ(t, T ) is approximately equal to

squared returns for the dataset, similar to results from Simonsen (2005). Realized variance

- rvar as calculated in Equation (4.11) is applied (Brooks, 2019).

lnreturn(t) = ln(
price+∆price

price
) — Logarithmic return

σ(t, T ) = rvar = (lnreturn(t)− µ)2 ≈ lnreturn(t)2 — Realized variance

(4.11)

7As T → ∞, T − k ≈ T
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4.5.2 Model Evaluation

When comparing time series models, several methods can be applied. The methods de-

scribed here are from Brooks (2019) and Enders (2014) and include RMSE, MAE, MAPE

and Theil’s U.

RMSE =

√√√√ 1

T − (T1 − 1)

T∑
t=T1

(yt+s − ft,s)2 (4.12)

Where T = total sample size, T1 = first out of sample forecast observation. RMSE is the root

mean square error and defines the standard deviation of the residuals and can be interpreted

in terms of measurement units.

MAE =
1

T − (T1 − 1)

T∑
t=T1

|yt+s − ft,s| (4.13)

MAE is the mean absolute error and the average absolute forecast error.

MAPE =
100

T − (T1 − 1)

T∑
t=T1

|yt+s − ft,s
yt+s

| (4.14)

MAPE is the mean absolute percentage error, and thus the MAE in percentages.

U =

√∑T
t=T1

(yt+s−ft,s
yt+s

)2√∑T
t=T1

(yt+s−fbt,s
yt+s

)2
(4.15)

Where fbt,s is a forecast from a benchmark model. Theil’s U-statistic is useful for comparing

models where a U-statistic equal to 1 implies equal model accuracy to a näıve forecast. U-

statistics below 1 implies a superior forecast model, and vice versa for U-statistics larger

than 1.

5 Results

The section presents results from ARIMA and ARIMA-GARCH estimation. ARIMA spec-

ification and population weight determination are first presented before assessing model fit

and in-sample properties. Additionally, a variety of ARIMA-GARCH models are estimated

to study system price, volatility and in-sample fit before results are discussed.
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5.1 ARIMA Specification and Population Weight Determination

In this section an ARIMA(p,d,q) model is specified through the 3-step Box-Jenkins approach.

Next, population weights for seasonally adjusted temperature and rainfall are determined

through an ARIMA specification. Finally, the analysis is extended by analyzing autocorre-

lation functions for the residuals and testing for ARCH and GARCH effects with Engle and

Lagrange’s multiplier test.

5.1.1 ARIMA Specification

The autoregressive integrated moving average, ARIMA(p,d,q) specification has been cho-

sen due to flexibility. Inclusion of both autoregressive processes of order p, moving average

processes of order d, and integrated processes of order d allows for a flexible estimation

procedure and is therefore a desirable initial model framework.

Initially, an ARIMA(0,0,0) model with population weights based on cities in the dataset

is estimated through log-likelihood maximization in STATA. The reasoning for choosing ap-

propriate population weights are further elaborated on in Section 5.1.2. ACF and PACF

plots of residuals can be observed in Figures 8 and 9 where the series displays an AR1 signa-

ture with a gradually decaying ACF and a PACF with a sharp cutoff at lag 1 (Nau, 2020).

An AR(1) term is therefore included, and an ARIMA(1,0,0) model8 is further estimated with

ACF and PACF plots in Figures 10 and 11 and model in Equation (A.0).

lnpricet = α0 + β′Xt + ρlnpricet−1 + errort

X is a vector of the regressors in Table 17, except lnprice and rvar.
(A.0)

8This is equivalent to an AR(1) model.
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Figure 8: ACF for ARIMA(0,0,0) Figure 9: PACF for ARIMA(0,0,0)

Figure 10: ACF for ARIMA(1,0,0) Figure 11: PACF for ARIMA(1,0,0)

Analyzing ACF and PACF plots for the ARIMA(1,0,0) model in Figures 10 and 11, both

the ACF and PACF are switching signs throughout the lags. However, the standard de-

viation of the residuals has decreased from the ARIMA(0,0,0), observe Table 3, and the

ACF and PACF are converging towards 0. The ARIMA(1,0,0) is therefore preferred over

the ARIMA(0,0,0). ACF and PACF plots from in Figures 10 and 11 does however indicate

a possibility for improvement. The dissertation proceeds with the Box-Jenkins 3-step ap-

proach as described in Brooks (2019):

1. Identification. ACF and PACF plots are used to determine the model order.

2. Estimation. Log-likelihood maximization in Stata 17 is applied.

3. Diagnostics checking. Residual diagnostics and Ljung-Box Q tests is applied.

Inspecting the PACF plot for the ARIMA(1,0,0) model, evidence of slight underdifferencing
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is present with 2/20 first lags outside of the 95% confidence band. Several other lags are

outside of the 95% confidence bands for longer lag-lengths. Due to parsimony, only PACF

values above 0.1 are included, AR lags 8 and 26. A similar procedure is adopted when in-

specting ACF, including MA lags 8, 11, 15 and 26 in the ARIMA model.

Therefore, an ARIMA model containing AR lags 1, 8 and 26 and MA lags 8, 11, 15 and 26 is

estimated with log-likelihood maximization in Stata. Afterwards, statistically insignificant

AR and MA-terms are removed and a Ljung-Box-Q statistic for autocorrelated residuals is

calculated for all models. The appropriate model is selected based on the criteria, including

AIC, BIC and further residual analysis. Model results can be observed in Table 12 as model

1, estimated ARIMA model in Equation (A.1), and information criteria in Table 4.

lnpricet = α0 + β′Xt + ρ1lnpricet−1 + ρ2lnpricet−8 + ρ3lnpricet−26

+θ1ut−8 + θ2ut−11 + θ3ut−15 + θ4ut−26 + errort

X is a vector of the regressors in Table 17, except lnprice and rvar.

(A.1)

Figure 12: PACF AR(1,8,26) MA(8,11,15,26)
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Figure 13: ACF AR(1,8,26) MA(8,11,15,26)

The estimated ARIMA model results in a statistically significant AR-1 lag on all relevant

significance levels and a highly autoregressive process of order 1 equal to 0.8795, including

statistically significant moving average lags. AR-lags 8 and 26 are statistically insignificant

on all relevant significance levels with coefficients equal to -0.0095 and 0.0003. A Ljung-Box-

Q statistic results in a p-value equal to 0.552, an no rejection of the null hypothesis of a
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white noise process within the residuals at a 52.2% significance level. Ljung-Box-Q statistics

can be found in Table 2. From Table 4, AIC and BIC are -1659.4367 and -1546.5319, an

improvement from the less complex ARIMA models. The model is marked as number 1 in

Table 12.

Based on results above, the 26th AR-lag is removed from the model. The model equa-

tion can be found in Equation (A.2), an ARIMA model with AR-lags 1 and 8, and MA-lags

8, 11, 15, and 26. AR-lag 1 is statistically significant on all relevant significance levels with

coefficient equal to model 1, 0.8795. All MA-terms are still statistically significant on a 5%

level. AR-lag 8 is still statistically insignificant on a 60.8% significance level. Ljung-Box-Q

statistic results in a Q-stat equal 38.8209 and a p-value equal 0.5233, rejection of the null

hypothesis on a 52.33% significance level, and therefore similar results to model 1. From

Table 12, AIC and BIC are more negative, implying an improved model specification. The

model is marked as 2 in Table 12 and Ljung-Box-Q statistics can be found in Table 2.

lnpricet = α0 + β′Xt + ρ1lnpricet−1 + ρ2lnpricet−8

+θ1ut−8 + θ2ut−11 + θ3ut−15 + θ4ut−26 + errort

X is a vector of the regressors in Table 17, except lnprice and rvar.

(A.2)

Figure 14: PACF AR(1,8) MA(8,11,15,26)
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Figure 15: ACF AR(1,8) MA(8,11,15,26)

Next, the 8th AR-lag is removed from the model due to statistical insignificance and an

ARIMA model with AR-lag 1 and MA-lags 8, 11, 15, and 26 is estimated, marked as model
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3 in Table 12 is estimated, with model in Equation (A.3). The AR-1 lag and the 4 MA-lags

8, 11, 15, 26 are statistically significant on a 5% significance level. Completed Ljung-Box

Q-statistic results in a Q-statistic equal to 38.263 and a p-value equal to 0.5276 and contin-

ued rejection of the null hypothesis, now on a 52.75% significance level. From Table 12, AIC

and BIC are also more negative, indicating an improved model specification over previously

estimated models. Ljung-Box-Q statistics can be found in Table 2.

lnpricet = α0 + β′Xt + ρ1lnpricet−1

+θ1ut−8 + θ2ut−11 + θ3ut−15 + θ4ut−26 + errort

X is a vector of the regressors in Table 17, except lnprice and rvar.

(A.3)

Figure 16: PACF AR(1) MA(8,11,15,26)
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Figure 17: ACF AR(1) MA(8,11,15,26)

Furthermore, ACF and PACF plots from model 1-3 in Figures 12, 14 and 16 are inspected.

A generally tighter ACF and PACF plot can be observed, indicating a notable improvement

from the ARIMA(1,0,0). No ACF or PACF values surpasses 0.10, with fewer values exceeding

the 95% confidence band for the more complex ARIMA variants. General convergence

within ACF and PACF towards 0 is observed. Residual mean and standard deviation for

several ARIMA-models can be observed in Table 3, where the more complex ARIMA variants

results in lower residual standard deviation which further emphasizes that a more complex

ARIMA model is appropriate for the data. Observe from Table 12 that several coefficients

are statistically insignificant, where some variables produce awkward and debatable results.
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Model DF P-value Q-stat

AR(1,8,26)MA(8,11,15,26)) 40 0.5228 38.8300

AR(1,8)MA(8,11,15,26) 40 0.5233 38.8209

AR(1)MA(8,11,15,26) 40 0.5276 38.7263

Table 2: Portmanteu (Ljung-Box)-Q test.

All 3 models report the effect of temperature deviation in Trondheim and rainfall deviation

in Bergen, Kr. Sand and Tromsø on the system price as statistically significant on a 10%

significance level. However, 1 mm. additional rainfall against equal week last year in Kr.

Sand, Stavanger or Trondheim is expected to reduce the system price by ≈ 252%, ≈ 46.71%

or ≈ 44.20% respectively, debatable results. Rainfall deviation in Bergen has an estimated

negative effect of ≈ -22% on the system price by 1 mm. more rainfall deviation. Estimated

temperature effects on system price are generally small, with the largest effect in Oslo and

Kr. Sand with 2.06% and 1.77%, both positive. All other temperature estimates are below

1%, regardless of sign. Therefore, conclusions regarding expectation, supply, consumption

and demand based effects alongside temperature and rainfall cannot be drawn. The AR-1

coefficient is still statistically significant on all relevant significance levels and reveals a highly

autoregressive process of order one, ≈ 0.88. The ARIMA model with AR-lag 1 and MA-lags

8, 11, 15 and 26 is deemed superior against the other ARIMA alternatives based on residual

statistics and ACF and PACF.

5.1.2 Population Weight Determination

As previously described, a population weight determination process has been applied to se-

lect appropriate population weights for temperature and rainfall. The process is a 3-step

procedure described below.

1. Appropriate population weight is chosen.

2. Each city is assigned a population weight on rainfall and temperature based on population

in the city.

3. The result is population weighted rainfall and population weighted temperature.
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Variable Mean Std. Dev

ARIMA(0,0,0) Residual 2.16e-10 0.1358477

ARIMA(1,0,0) Residual -0.0001488 0.0714143

ARIMA(2,0,0) Residual -0.0001303 0.0713314

ARIMA(3,0,0) Residual -0.0001238 0.0713241

ARIMA(0,1,0) Residual 1.42e-10 0.0733939

ARIMA(0,2,0) Residual 3.16e-10 0.1032708

ARIMA(0,3,0) Residual 1.08e-10 0.1751914

ARIMA(0,0,1) Residual 1.23e-06 0.0952594

ARIMA(0,0,2) Residual 9.14e-06 0.08298262

ARIMA(0,0,3) Residual 9.69e-07 0.0768985

AR(1,8,26)MA(8,11,15,26) Residual -0.0000983 0.0683259

AR(1,8)MA(8,11,15,26) Residual -0.0000974 0.0683259

AR(1)MA(8,11,15,26) Residual -0.0000105 0.0683325

Table 3: Residual sum and standard deviation for ARIMA variants.

• Changes in rainfall deviation are expected to affect the system price.

Population weighted rainfall capture the effect of rainfall weighted by population in

each city. In periods with heavy rainfall, the market may expect a lower system price

due to higher expected supply. This effect may vary in size, depending on regional

population. When seasonally adjusted, this is therefore both an expectations and a

supply effect with deviations from the same week last year.

• Changes in temperature deviation are expected to change the system price.

Population weighted temperature captures the effect of temperature weighted by pop-

ulation in each city. In periods with high temperatures power consumption is lower

than average, contributing to less demand for power. This effect may vary in size,

depending on regional population. When seasonally adjusted, this is therefore both a

consumption and a demand effect with deviations from the same week last

year.
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The appropriate model has been chosen based on statistical significance, omitted variables,

information criteria and relevance for the thesis statement.

Model LL AIC BIC

ARIMA(0,0,0) 390.74325 -745.4865 -664.195

ARIMA(1,0,0) 825.6698 -1613.34 -1527.532

ARIMA(2,0,0) 826.4965 -1612.993 -1522.669

ARIMA(3,0,0) 826.5677 -1611.135 -1516.295

ARIMA(0,1,0) 805.759 -1575.518 -1494.253

ARIMA(0,2,0) 574.3857 -1112.771 -1031.533

ARIMA(0,3,0) 2217.8375 -399.6751 -318.4637

ARIMA(0,0,1) 630.6604 -1223.321 -1137.513

ARIMA(0,0,2) 723.9774 -1407.955 -1317.631

ARIMA(0,0,3) 775.5875 -1509.175 -1414.335

AR(1,8,26)MA(8,11,15,26) 854.7183 -1659.4367 -1546.5319

AR(1,8)MA(8,11,15,26) 854.7182 -1661.4365 -1553.0479

AR(1)MA(8,11,15,26) 854.6489 -1663.2977 -1559.4253

Table 4: Information criteria for ARIMA variants.

The ARIMA model with AR-lag 1 and MA-lags 8, 11, 15 and 26 from the previous section

is estimated with different weights on rainfall and temperature. 1 model has been estimated

without population weights, 1 with the city’s population as a proportion of total national

population, and 1 model with the city’s population as a proportion of total population within

the dataset. Formulae can be observed in Equation (B.1) with population weights in Ta-

bles 15 and 16. Estimation results are reported in Table 11, the model in Equation (A.3)

for varying temperature and rainfall population weights, and a statistical significance table

in Table 5. Observe statistically insignificant and omitted variables due to multicollinearity

suggesting in general high correlation between variables.
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Variable Model Model Model

No Weights Nat. Weights City Weights

S.Adj Temp. Bergen 1% 1% Insignificant

S.Adj Temp. Kristiansand Insignificant Insignificant Insignificant

S.Adj Temp. Oslo 10% 10% Insignificant

S.Adj Temp. Tromsø Insignificant Omitted Insignificant

S.Adj Temp. Trondheim Insignificant Insignificant 10%

S.Adj Temp. Stavanger 5% 0% Insignificant

S.Adj Rain Bergen Omitted Omitted 10%

S.Adj Rain Kristiansand Omitted Omitted 10%

S.Adj Rain Oslo Omitted Insignificant Insignificant

S.Adj Rain Stavanger Omitted Omitted Insignificant

S.Adj Rain Tromsø Insignificant Insignificant 10%

S.Adj Rain Trondheim Insignificant Insignificant Insignificant

Log. Wind Production 5% 5% 5%

Sum Magazine Deviation 0% 0% 0%

Sum Sno., Gro., and Sur. wtr 0% 0% 1%

Dummy = 1 for 2020 0% 0% 0%

AR(1) 0% 0% 0%

MA(8) 0% 0% 0%

MA(11) 0% 0% 1%

MA(15) 1% 5% 5%

MA(26) 0% 0% 0%

Table 5: Statistical significance table in % from estimates reported in Table 11.

Estimation results along with AIC, BIC and LL are reported in Table 11. Aforementioned

and future ARIMA models are estimated with log-likelihood maximization and population

weighted and seasonally adjusted temperature and rain, logarithmic wind power production,

magazine deviation, a dummy for 2020, and the sum of snow, ground, and surface water. All

3 models report statistically significant results at a 5% significance level for logarithmic wind
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power production, magazine deviation, the dummy variable, and the sum of snow, ground,

and surface water. The effects are of similar magnitude in all models. AR and MA-terms

are statistically significant in all models.

AIC and BIC favours the estimated ARIMA model without weights, while the log-likelihood

(LL) functions favour the model with city weights. Although AIC and BIC favour the model

without population weights, 4 variables for rainfall are omitted due to collinearity. Con-

sidering the thesis statement, the model without population weights is discarded. When

comparing national weights and city weights, AIC favours the former, while BIC favours

the latter. Applying equal reasoning as before, and since BIC can be argumented for as

superiour in larger samples, see section 4.3, the model with national weights is discarded due

to relevance, and the model with city weights is preferred.

5.1.3 Model Fit and In-Sample Properties

Model fit and in-sample properties are considered through a static 1-step forecast and ac-

curacy statistics. The static forecast relies on lagged values of the data from week 1, 2009

until the end of the sample and are reported in Figure 18 for the ARIMA model with AR-lag

1, MA-lags 8, 11, 15 and 26, and population weighted rainfall and temperature by cities.

Forecast accuracy statistics, are reported in Table 6. These statistics are more relevant when

comparing models against each other, but observe that Theil’s U has a value below 1, indi-

cating a better forecast than a näıve forecast. Visually from Figure 18 the model follows the

trend of the system price including periods of high volatility during 2020 and 2021.

Measure N Value

RMSE 676 0.06828198

MAE 676 0.04310136

MAPE 676 3.608341%

Theil’s U 676 0.69897952

Table 6: Forecasting criteria to assess model fit for the preferred ARIMA model.
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5.2 Heteroskedasticity

Leptokurtic behaviour, volatility clustering, and leverage effects have previously been found

present within electricity price by for instance Liu and Shi (2013); Bowden and Payne (2008)

and Koopman et al. (2007). Therefore, ARCH and GARCHmodels are reasonable candidates

to expend the analysis and explicitly model volatility. Several tests can be performed to

identify non-linear time series structure including the Ramsey RESET test and the BDS

test. However, the most specific method for ARCH and GARCH models are perhaps to

study ACF and PACF, including Engle’s Lagrange multiplier test for ARCH effects (Brooks,

2019; Enders, 2014).
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Figure 18: Static in-sample system price forecast for the preferred ARIMA model. Start from week

1, 2009.

Firstly, squared residual ACF and PACF are visually analyzed with additional residual

diagnostics in Figure 19. Autocorrelations outside of the 95% confidence bands indicate

ARCH effects, which can be observed present in lags 1, 2, 3, 4, 5, 6, 11, 12, 14, 15, 21
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and 26. Furthermore, Engle’s Lagrange multiplier test for ARCH effects is computed with

the process described in Brooks (2019). A linear regression is estimated, squared residuals

are saved, and a test statistic TR2 ∼ χ2 is calculated, where T = number of observations.

Results can be observed in Table 7 with evidence of ARCH effects on 26 lags. It is therefore

evident the continuation of the dissertation should adopt models that capture ARCH and

GARCH effects.
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Figure 19: ARCH diagnostics for squared residuals from preferred ARIMA model.

N χ2 DF P Lags

650 297.944 26 0.0000 26

Table 7: LM test for ARCH effects.
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5.3 ARIMA-GARCH Variants

In this section several ARIMA-GARCH models are estimated with different restrictions to

mainly study the effect temperature and rainfall has on the system price and volatility,

including expectation and supply effects from rainfall, and consumption and demand effects

from temperature. Results are comprehensively discussed in Section 5.5. Extensive work to

determine an appropriate GARCH specification has previously been done. A particularly

thorough article compares 330 ARCH-type models and determines the GARCH(1,1) superior,

which is similar to other GARCH-specifications previously discussed by Hansen and Lunde

(2005). The GARCH(1,1) model has also been widely applied in financial time series and is

therefore chosen as the dissertations initial volatility framework (Brooks, 2019; Enders, 2014).

The ARIMA-GARCH models are estimated in Stata 17 with log-likelihood maximization.

5.3.1 ARIMA-GARCH Specification

The previously developed ARIMA model with AR-lag 1 and MA-lags 8, 11, 15 and 26 is

declared as the starting point. Initially, a GARCH(1,1) is added to the ARIMA, creating

an ARIMA-GARCH model specification estimated with log-likelihood maximization simul-

taneously. Subsequently, a residual diagnosis check to analyze whether the residuals satisfy

the requirements for a Gaussian white noise process is executed, including an assessment of

model fit for the system price and volatility. This procedure is similar to Liu and Shi (2013).

Estimation results from the ARIMA-GARCH can be observed in Table 13, model 0 with the

model in Equation (G.0).

lnpricet = α0 + β′Xt + ρ1lnpricet−1

+θ1ut−8 + θ2ut−11 + θ3ut−15 + θ4ut−26 + εt

εt = σ2
t = α0 + α1u

2
t−1 + γ1σ

2
t−1

X is a vector of the regressors in Table 17, except lnprice and rvar.

εt defines the GARCH(1,1) specification of the ARIMA-GARCH.

(G.0)

Temperature coefficients for all cities are statistically insignificant. The effects are smaller

than the ARIMA-estimation, indicating that temperature deviation through consumption
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and demand effects have a smaller effect on system price when including time-varying con-

ditional volatility, with estimates below 1% except for Kr. Sand. Estimates for Tromsø have

changed signs, from 1.04% to -0.15%.

Rainfall deviation coefficients are smaller against the ARIMA-model for all cities except

Trondheim, where 1mm. more rainfall deviation increase the system price by ≈ 60.12%,

opposed to ≈ 44.20%. The large, positive effect indicates an imprecise estimate considering

previous evidence. Coefficient for Oslo have switched signs however the effect is small, equal

to -1.03%. Rainfall deviation in Bergen is statistically significant on a 1% significance level,

reducing system price by -16.6%, ceteris paribus. Empirically the effect is reasonable due to

Vestlands significance in hydropower production (Tvede, 2017). The effect is smaller than

estimates from ARIMA modeling.

However, several rainfall coefficients are statistically insignificant or produce results that

are difficult to interpret. The system price is expected to decrease over ≈ 103% per mil-

limeter increased rainfall deviation in Kristiansand, ≈ 43.8% in Stavanger and ≈ 60.12%

in Trondheim. Even though results, except for Trondheim, are smaller than results from

ARIMA modeling, the effects rainfall has through expectation, supply and population are

implausibly large, considering the complex structure which determines the system price.

Other variables such as wind power production, magazine deviation and snow, surface and

ground water are statistically significant on a 1% significance level, and reduce the system

price accordingly. The effects are empirically intuitive, considering their importance in calcu-

lating hydrological balance and magazine filling levels. In summary, there is little evidence

that rainfall and temperature in cities through expectation, supply, consumption and de-

mand effects affects system price (NVE, 2020, 2021).

Inclusion of ARCH and GARCH effects reveal a highly volatile system price with statis-

tically significant coefficients on all relevant significance levels. From the ARCH-term for

model 0 in Table 8 it can be observed that shocks to volatility today through the ARCH

term, α1, equal ≈ 0.7412. Correlation between the variance over two periods through the

GARCH term, γ1, equal ≈ 0.4043, and evidence of volatility clustering. Summarized, ARCH
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and GARCH-terms equal 1.1455 which implies exponential volatility persistence, and non-

stationary variance. The ARIMA-GARCH against realized variance can be observed in

Figure 20. Periods of high and low volatility are acknowledged, somewhat captured by the

model, confirming exponential volatility persistence. Results are similar to estimates from

the SGARCH, QGARCH, GJRGARCH and EGARCH models estimated by Liu and Shi

(2013). Lastly, AIC and BIC have both vastly improved against the ARIMA-specification,

indicating a better model fit.

Figure 20: Visual model fit for the AR(1)MA(8,11,15,26)-GARCH(1,1) for conditional volatility

against realized variance.

The AR(1) and MA(11,26) terms are statistically significant, whereas MA(8,15) are sta-

tistically insignificant. Therefore, MA terms (8,15) are dropped from the model and an

ARIMA-GARCH with AR-lag 1, MA-lags 11 and 26 and a GARCH(1,1) is estimated and

denoted model 1 in Table 13.

36



5.3.2 ARIMA-GARCH - Temperature and Rain Restrictions

2 restrictions are imposed on the ARIMA-GARCH model with AR-lag 1, MA-lags 11, 26

and a GARCH(1,1). Model 2 is estimated without temperature, and model 3 is estimated

without rainfall to capture possible effects on the system price and volatility. Results can be

observed in Table 13 as model 1, with the model in Equation (G.1).

lnpricet = α0 + β′Xt + ρ1lnpricet−1

+θ2ut−11 + θ4ut−26 + εt

εt = σ2
t = α0 + α1u

2
t−1 + γ1σ

2
t−1

X is a vector of the regressors in Table 17, except lnprice and rvar.

εt defines the GARCH(1,1) specification of the ARIMA-GARCH.

(G.1)

Removal of MA(8,15) does not result in any noteworthy findings in terms of regression

coefficients. However, AIC decreases from -2519.7211 to -2262.9085 and BIC decreased from

-2146.8162 to -2159.0360. Thus, a model without MA(8,15) indicates an improved model

specification. The model is denoted as 1 in Table 13. ARCH and GARCH effects are

similar with a highly volatile system price including overall volatility persistence and non-

stationary variance above 1, equal to 1.1496. Furthermore, statistically significant MA(11)

and MA(26)-terms at a 1% significance level indicate the presence of quarterly and half-year

seasonal effects.

5.3.3 ARIMA-GARCH - Without Temperature

Additionally, an ARIMA-GARCH model with AR-lag 1, MA-lags 11, 26 and a GARCH(1,1)

without temperature is estimated and denoted as model 2 in Table 13, with specification

in Equation (G.2). The main purpose is to determine if temperature in cities carry any
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significance for the system price and volatility.

lnpricet = α0 + β′Xt + ρ1lnpricet−1

+θ2ut−11 + θ4ut−26 + εt

εt = σ2
t = α0 + α1u

2
t−1 + γ1σ

2
t−1

X is a vector of the regressors in Table 17, except lnprice, rvar, and temperatures.

εt defines the GARCH(1,1) specification of the ARIMA-GARCH.

(G.2)

Estimated rainfall coefficients, except for Bergen, are smaller against the ARIMA and

ARIMA-GARCH models, implying that the effect of rainfall deviation on the system price

is smaller when temperature is excluded. However, some effects are abnormally large with

rainfall in Kr. Sand, Stavanger and Trondheim affecting the system price through 1 mm.

increased rainfall deviation by ≈ -79.99%, ≈ 37.45% and ≈ 38.86%, respectively. Rain-

fall in Bergen now has an estimated effect of -16.91%, which is larger than both ARIMA-

GARCH models (-16.61% G.0, -15.99% G.1) and smaller than the estimates from the pre-

ferred ARIMA model (-22.29% A.3). Rainfall estimates from Oslo have switched sign from

the ARIMA estimation, with a smaller effect than all previous models at -0.86%. Rainfall in

Bergen, Trondheim and Stavanger falls outside of a 5% significance level. From the model

estimation, rainfall deviation including expectation and supply effects therefore has a smaller

effect on the system price without temperature included.

The ARCH-term, α1, decreases from 0.7488 to 0.7081, implying a 0.0407 reduction in volatil-

ity response from shocks today. On the other hand, the GARCH term, σ1, has increased

from 0.4008 to 0.4239, indicating a 0.0231 increase in correlation between volatility over two

periods, and further evidence of volatility clustering. In summary, overall volatility persis-

tence has decreased from 1.1496 to 1.1320, implying slightly less exponential volatility when

excluding temperature, still non-stationary in variance. The model is still highly volatile.

Quarterly and half-year seasonal effects remain present and statistically significant on a 1%

significance level. Visual model fit based on a static in-sample forecast can be found in

Figure 21.
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AIC has decreased from -2262.9085 to -2270.1139 and BIC has decreased from -2159.0360

to -2193.3386. This is no surprise considering the previously statistically insignificant and

small temperature effects. In conclusion, the ARIMA-GARCH model without temperature

is proposed as superior to the ARIMA-GARCH with temperature included.
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Figure 21: Visual model fit for the AR(1)MA(11,26)-GARCH(1,1) without temperature.

5.3.4 ARIMA-GARCH - Without Rainfall

Furthermore, an ARIMA-GARCH model with AR-lag 1, MA-lags 11, 26 and a GARCH(1,1)

without rainfall is estimated to analyze effects on system price and volatility. Results can

be observed in model 3 in Table 13 with equation written in Equation (G.3). Visual model
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fit based on a static in-sample forecast can be found in Figure 22.

lnpricet = α0 + β′Xt + ρ1lnpricet−1

+θ2ut−11 + θ4ut−26 + εt

εt = σ2
t = α0 + α1u

2
t−1 + γ1σ

2
t−1

X is a vector of the regressors in Table 17, except lnprice, rvar and rainfall.

εt defines the GARCH(1,1) specification of the ARIMA-GARCH.

(G.3)

Temperature coefficients against model Equations (G.0) and (G.1) are generally larger, ex-

cept for Stavanger which now has an estimated -0.6% effect on the system price against model

(G.0) equal -0.2%, and model (G.1) equal -0.16%. Coefficients on Bergen and Tromsø have

switched signs. Estimated effect in Bergen equal 0.36% against -0.59% (G.0) and -0.64% in

(G.1). Estimated effect in Tromsø equals 2.85%, previously -0.15 % in (G.0) and -0.04% in

(G.1). Temperature in Trondheim is now statistically significant at a 1% significance level;

however, the coefficient equals a -0.12% reduction in system price, a marginal effect. Against

the ARIMA model, estimates for Tromsø and Bergen are larger, whereas the other estimates

are smaller.

However, the ARCH and GARCH-terms remain statistically significant. The ARCH-term

has decreased by 0.082 compared to model 1 and 0.0413 compared to model 2, which indi-

cates a less volatile system price from shocks today when excluding rainfall. Per contra, the

GARCH-term has increased by 0.05 from model 1 and 0.0269 from model 2, indicating a

higher correlation in variance over two periods, and additional volatility clustering. Overall

volatility persistence has decreased from model 1 and 2 and equal 1.1176. The volatility

persistence is therefore still exponential and non-stationary in variance, albeit to a slightly

smaller degree. Quarterly and half-year seasonal effects remain present. In summary, ex-

cluding rainfall in this analysis results in a slightly less volatile system price.

AIC equal -2246.7818 and is larger than both model 1 and model 2, indicating a worse

fit than prior. BIC however determines a better model fit than model 1, and a worse model

fit than model 2. In summary, a model specification without temperature is proposed as
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superior and further implies that temperature has little to no effect on the system price.
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Figure 22: Visual model fit for the AR(1)MA(11,26)-GARCH(1,1) without rainfall.

5.3.5 Model Fit and In-Sample Properties

In-sample statistics can be observed in Table 8. Visual model fit for the ARIMA-GARCH

variants can be observed in Figure 23, where all models follow the system price accu-

rately. For the system price, Theil’s U < 1 for all models. MAPE and RMSE favors

the AR(1)MA(8,11,15,26)-GARCH(1,1), whereas MAE is a tie between the aforementioned

ARIMA-GARCH and the AR(1)MA(11,26)-GARCH(1,1) without temperature. Against

the preferred ARIMA model, forecasting errors are similar. The ARIMA model has a lower

RMSE, MAPE and Theil’s U, whereas the ARIMA-GARCH models have a lower MAE.

Differences are, however, small. Nonetheless, when considering previous information criteria

such as AIC and BIC it is difficult to determine the superior model.
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Model Obs Theil MAPE MAE RMSE

AR(1)MA(8,11,15,26)-GARCH(1,1), Price 676 0.8437 3.61% 0.0411 0.0738

AR(1)MA(11,26)-GARCH(1,1), Price 676 0.8408 3.63% 0.0412 0.0739

AR(1)MA(11,26)-GARCH(1,1) No Temp., Price 676 0.8487 3.62% 0.0411 0.0742

AR(1)MA(11,26)-GARCH(1,1) No Rain, Price 676 0.8396 3.65% 0.0416 0.0746

AR(1)MA(8,11,15,26)-GARCH(1,1), Vol 676 3.2642 400.1061% 0.0088 0.0298

AR(1)MA(11,26)-GARCH(1,1), Vol 676 3.1691 399.2418% 0.0088 0.0297

AR(1)MA(11,26)-GARCH(1,1) No Rain, Vol 676 4.0304 437.2231% 0.0087 0.0294

AR(1)MA(11,26)-GARCH(1,1) No Temp., Vol 676 3.0760 404.0892% 0.0088 0.0297

Table 8: ARIMA-GARCH variants forecasting accuracy statistics.

For the volatility, conditional variance from the ARIMA-GARCH models are compared to

rvar, the realized variance as computed in Section 4.5.1. MAPE is above 400% for all models

except the AR(1)MA(8,11,15,26)-GARCH(1,1). This might be due to skewness, low values

of the variance or the over-influence of outliers. Additionally, Theil’s U is > 1 in all cases, in-

dicating a poor in-sample fit, worse than guessing. While this might be worrying, since both

the numerator and denominator are means of squared percentage errors, Theils’ U suffers

from the same shortcomings as MAPE. MAE and RMSE leans towards the model without

rain, however the differences between the ARIMA-GARCH models are diminutive, acting on

the 4th decimal. Similar to the results for the system price it is therefore accordingly difficult

to determine the superior model fit when assessing models through a statistical framework

(Davydenko and Fildes, 2013; Enders, 2014; Brooks, 2019).

5.4 ARIMA-GARCH Robustness

To test whether the ARIMA-GARCH models are properly fitted, a residual analysis on stan-

dardized residuals is performed. First, standardized residuals are illustrated in a histogram

with a normal frequency curve to visually inspect the distribution. Second, normality of

the standardized residuals are tested with a Shapiro-Wilk normality test. Lastly, Barlett’s

periodogram-based test for white noise is applied, with both values and a cumulative peri-

odogram for the standardized residuals.
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Figure 23: Visual model fit for the ARIMA-GARCH variants.

First and foremost, a standardized residual is calculated as in Equation (SR).

v̂t =
ût

σ̂t

(SR)

Histograms with normal frequency curves can be observed in Figures 24 to 27 and summary

statistics can be observed in Table 9. Histograms report a normal distribution with density

around 0 for all 4 models and a slightly leptokurtic distribution for the AR(1)MA(11,26)-

GARCH(1,1) variants. Observe from the summary statistics that all standardized residuals

have a N ∼ (0, 1) distribution with outliers ranging from ≈ −6 to ≈ 8.

Shapiro-Wilk results can be found in Table 23, and test statistic can be observed in Equa-

tion (S-W TS) where xi are ordered sample values, and ai are a set of constants (Shapiro and

Wilk, 1965). The formulated null and alternative hypothesis follow.
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W H0 : Normally distributed standardized residuals, follows N ∼ (µ, σ2).

W HA : Non-normally distributed standardized residuals.

W =
(
∑n

i=1 aixi)
2∑n

i=1(xi − x̄)2
(S-W TS)
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Figure 24: Standardized residual his-

togram with normal frequency for

AR(1)MA(11,26)-GARCH(1,1). Without

temperature.
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Figure 25: Standardized residual his-

togram with normal frequency for

AR(1)MA(11,26)-GARCH(1,1). Without

rainfall.
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Figure 26: Standardized residual his-

togram with normal frequency for

AR(1)MA(11,26)-GARCH(1,1).
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Figure 27: Standardized residual his-

togram with normal frequency for

AR(1)MA(8,11,15,26)-GARCH(1,1).

Observing results from Table 23, the null hypothesis of normally distributed random residu-
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als is rejected in all of the ARIMA-GARCH models. However, the parameter estimates will

still be consistent, given a correct ARIMA-GARCH specification for the mean and variance

(Brooks, 2019).

Lastly, Barlett’s periodogram based test for white noise has been applied to the standardized

residuals. The test statistic, along with the cumulative periodogram formula can be observed

in Equation (B TS).

B = max1≤k≤q

√
n

2
|F̂k −

k

q
|

F̂k =

∑k
j=1 f̂(ωj)∑q
j=1 f̂(ωj)

F̂k = cumulative periodogram defined in terms of the sample spectral density.

(B TS)

Barlett’s periodogram based test for white noise has the following null and alternative hy-

pothesis:

B H0 : White-noise process of uncorrelated random variables having a constant mean and a

constant variance.

B HA : Not white noise.

Results from Barlett’s test conclude that the null hypothesis cannot be rejected in all

ARIMA-GARCH specifications, indicating that the standardized residuals are not signifi-

cantly different from a white noise process. Results can be found in Figures 37 to 40.

Variable Obs Mean StdDev Min Max

AR(1)MA(11,26)-GARCH(1,1) 676 -0.0000 1.0000 -6.0746 8.1094

AR(1)MA(11,26)-GARCH(1,1) No Temp 676 -0.0000 1.0000 -6.0205 8.2014

AR(1)MA(11,26)-GARCH(1,1) No Rain 676 -0.0000 1.0000 -5.9887 8.0561

Table 9: Standardized residuals summary statistics for ARIMA-GARCH variants.
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5.5 Discussion and Evaluation of Results

To further expand empirically and economically on relevant findings, this subsection exam-

ines results from the ARIMA and ARIMA-GARCH estimation procedure.

5.5.1 Seasonality

Within the ARIMA estimation, statistically significant MA parameters indicate 2-month,

quarterly, 15-week and half-year seasonal effects. This effect is reduced to a quarterly and

half-year effect when moving to the ARIMA-GARCH models. The finding is not very sur-

prising, considering seasonal patterns previously mentioned in other articles, for instance by

Koopman et al. (2007) and Bowden and Payne (2008). Inspecting ACF and PACF plots

from residuals, further possible seasonal effects can be observed revealing a complex lag-

structure beyond the scope of this dissertation, and the possibility of more complex seasonal

effects. This includes ACF lags 4, 6, 7, 8, 15, 16, 34 and PACF lags 4, 6, 7, 8, 33, 43, 44,

56, 58, and further lags above 60. Observe Figures 29 to 32 which include ACF and PACF

plots for the different ARIMA-GARCH models. The seasonality is empirically predictable.

Considering aforementioned effects affecting the system price, water can be interpreted as a

collection variable. Taking this into account, seasonally dependent effects such as temper-

ature, weather, seasons, holidays, and trading patterns contribute to seasonality within the

system price. For instance, electricity consumption during the winter in Nordic countries is

larger than during the summer, affecting the demand for electricity positively, which can be

captured through the half-year seasonal effect.

Furthermore, limited inflow to water magazines during the winter due to snowfall contributes

to higher system prices. Per contra, increased inflow to water magazines in the summer con-

tributes to lower system prices (NVE, 2020, 2021). The effects are captured in both the

quarterly and half-year seasonal effects when considering winter and summer lengths. Quar-

terly and half-year seasonal effects should therefore be considered as a minimum, and results

imply appreciable possibilities for a more complex seasonal lag-structure. For instance, by

studying winter lengths in southern parts of the Nordic countries versus northern parts of the

Nordic countries, more complex geographically dependent seasonal lag-lengths are probable,
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suggesting a highly complex region dependent lag-structure.

5.5.2 Temperature Effects

As previously discussed, temperature has a small effect on the system price when included

in the ARIMA or ARIMA-GARCH models. Weighted temperature is included to capture

consumption and demand effects of population density and therefore functions as a proxy

for regional consumer power demand. Higher temperature is expected to reduce electricity

consumption, and lower temperatures are expected to increase power consumption9. This

has high relevance in Norway, considering seasonal and regional differences in temperature.

Results are consistent throughout the estimation process, both for population weight deter-

mination, ARIMA selection, and ARIMA-GARCH selection. This indicate that seasonally

adjusted and population weighted temperatures have little to no effect on the system price

and contribute more to model noise than to increasing the explanatory power. Throughout

the ARIMA-GARCH modeling, the largest temperature effect is in Tromsø, equal to a 2.85%

increase in system price. The temperature effect in Bergen, Kristiansand and Oslo also affect

the system price positively. Effects in Trondheim and Stavanger are negative. Accordingly

there are no demographic and geographical underlying effects within the variables to explain

the system price. Therefore, the effects consumption, demand or temperature have on the

system price can be declared as small, and statistically insignificant within the estimated

models.

Furthermore, these small and statistically insignificant effects might be because the system

price captures the Nordic countries, and since the cities in the dataset are not necessarily sit-

uated in close proximity to hydropower plants, or since temperature acts as a moving average,

already included in ARIMA and ARIMA-GARCH models. Nonetheless, this is an interesting

discovery. Furthermore, a likelihood-ratio test on temperature effects is performed to test

whether temperature effects are nested within the fully specified ARIMA-GARCH. Results

can be found in Table 10 which determines that temperature restrictions are jointly insignif-

icant at a 57.04% significance level, which implies that seasonally adjusted and population

9For example at NVE (NVE, 2020, 2021).
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weighted temperature for all 6 cities does not jointly contribute to explain the system price

and volatility. In summary, temperature as included in this thesis does not affect the system

price and does not contribute to explaining the system price in any statistically, empirically

or economically meaningful way.

5.5.3 Rainfall Effects

Overall, a similar conclusion can be used to describe the results for weighted seasonally

adjusted rainfall. Weighted rainfall is included to capture both expectation effects of pop-

ulation density and supply effects. Increased rainfall deviation is expected to reduce the

system price. Furthermore, increased rainfall in a densely populated area such as Oslo,

might contribute to expectations of a reduced electricity price to a higher degree than in-

creased rainfall in a city with a lower population like Tromsø. However, throughout the

analysis this is not the result which indicates that proximity to hydropower plants is more

important than expectation and supply effects within the cities, in turn explaining statistical

insignificance in Oslo. Contrasting and switching signs on coefficients, including awkward

estimates produce an ambiguous effect on the system price, and applying regional electricity

prices alongside rainfall or including extreme weather frequency might yield more precise

estimates. Estimated effect for Oslo in the ARIMA-GARCH which excludes temperature

equals a 0.86% reduction in the system price from rainfall deviation, whereas the effect equals

a system price reduction of 0.05% by increased rainfall deviation in Tromsø. Isolated, these

effects imply a very slight population weighted expectation and supply effect, but similar

conclusions cannot be established for any other rainfall variables, invalidating the effect. In

summary, this entails that the system price and volatility is more dependent on physical

and fundamental effects, rather than population-bound effects. Considering these results,

using magazine filling levels, magazine deviation, or hydrological balance in a similar way as

Koopman et al. (2007) might give better results.

Nonetheless, the proposed model includes weighted and seasonally adjusted rainfall. Al-

though the direct effect of rainfall on magazine levels is small, rainfall deviation in Bergen

for instance provides somewhat meaningful results. Considering Bergen averages approxi-
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mately 200 days of rainfall in a year, the probability of rainfall in Bergen coinciding with

magazine levels is high (YR, 2019). However, since rainfall has been adjusted for population

and seasonality, the effect carries less concern than including rainfall alone. Information

criteria in terms of AIC and BIC favours the model with rainfall. Furthermore, a likelihood-

ratio test on rainfall effects is performed to test whether rainfall effects are nested within

the fully specified ARIMA-GARCH. Results can be found in Table 10 which determine that

rainfall is jointly significant at a 0.02% significance level. This implies that seasonally ad-

justed and population weighted rainfall for all 6 cities jointly contributes to explain system

price and volatility. In summary, rainfall does contribute statistically to explaining the sys-

tem price, and does somewhat contribute empirically to explain the volatility of the system

price. However, the effect is ambiguous (NVE, 2020, 2021).

Model χ2
0.05 LR test statistic Degrees of freedom P-value

Temperature 12.592 4.7946 6 57.04%

Rainfall 14.067 28.1620 7 0.02%

Table 10: LR-test for rain and temperature restrictions.

5.5.4 Wind Power Production, Snow, Ground and Surface Water, and Maga-

zine Deviation

Logarithmic wind power production, the sum of snow, ground and surface water and the

sum of magazine deviation are persistently statistically significant on a 5% significance level.

Magazine deviation capture deviations from the average influx to water magazines, aggre-

gated to a national deviation from average. Sum of snow, ground and surface water capture

indirect influx to water magazines. For instance, snow-melting due to higher temperatures

or large amounts of surface water due to heavy rainfall results in increased indirect influx to

water magazines.

An increase in the sum of snow, ground and surface water contributes to a lower system

price, and a positive increase in the sum of magazine deviation also contributes to a lower

system price, ceteris paribus. This is an expected finding since both variables contribute
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to a higher magazine filling level through direct or indirect influx. Magazine deviation con-

tributes to a reduced system price through increased rainfall at water magazines, whereas the

sum of snow, ground and surface water contributes to a reduced system price through either

increased rainfall in close proximity to water magazines or due to increased snow-melting,

for instance through higher temperatures. The effect of magazine deviation is larger than

the sum of snow, ground and surface water, which implies that the direct effect of rainfall is

larger than the indirect effect of rainfall and temperature. Increased wind power production

is also expected to reduce the system price through a higher level of electricity supplied to

the market. The effect of wind power production on the system price will likely increase

in the following years, considering both trends, forecasts, signals from Nordic government,

and discussions with power market traders10 (Regjeringen, 2019). In summary, the sum of

magazine deviation, the sum of snow, ground and surface water, and logarithmic wind power

production does contribute to explain both the system price and its volatility. Results are

comparable to Koopman et al. (2007), who apply magazine filling levels, but are taken a

step further by including wind power production and sum of snow, ground and surface water

(NVE, 2020, 2021)

5.5.5 Autoregressive System Price

Throughout the estimation procedure, the AR(1) coefficient has been consistently above 0.9

for the ARIMA-GARCH models and statistically significant on all relevant significance levels,

which are similar to results obtained by Koopman et al. (2007). The results are close to a

unit root process, which implies that the system price is highly dependent on the system price

in the previous week. Contemplating previous rejection of a unit root, this is an interesting

finding, which should be discussed further. A feature of the Norwegian power system is

that a substantial proportion of the power production comes from hydropower production.

Considering underlying features of the hydropower system, the price is highly dependent

upon weekly reported magazine filling levels in the short run, together with expected water

inflow and electricity demand. These variables therefore determine the alternative costs for

water, and express levels retained over a shorter period when observing the system price at

10Discussion with power market traders at Tussa Energi in February.
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a higher frequency such as weekly. It is therefore expected that the system price on a weekly

basis is highly autoregressive despite rejection of a unit root (Statnett, 2022).

5.5.6 ARCH and GARCH Terms

ARCH and GARCH-terms are persistently statistically significant on all relevant signifi-

cance levels and encapsulates the highly volatile nature of the system price. In all ARIMA-

GARCH models the sum of ARCH and GARCH coefficients are above 1, indicating expo-

nential volatility persistence in all cases and non-stationarity in variance. The volatility

persistence is slightly lower for the ARIMA-GARCH without temperature, and the lowest

for the ARIMA-GARCH without rainfall compared to the ARIMA-GARCH without any re-

strictions, indicating that rainfall contributes more to explaining volatility persistence than

temperature.

Furthermore, the ARIMA-GARCH model without rainfall reacts less to shocks in volatility

than the other ARIMA-GARCH models, but with a higher correlation in variance over two

periods. The ARIMA-GARCH without temperature has a greater response to shocks in

volatility than the ARIMA-GARCH without rainfall, but with a lower correlation in vari-

ance over two periods. This is unsurprising, since rainfall can occur in bursts, for instance

during extreme weather conditions, while temperature follow averages more closely. How-

ever, temperature deviations do occur. High temperatures can contribute to increased snow

melting and evaporation, whereas cold temperatures can contribute to increased power de-

mand and consumption, affecting the volatility of the system price. These effects contribute

to more volatility clustering than rainfall, implying that rainfall has a slightly larger effect

on contemporaneous and short-run volatility, whereas temperatures have a slightly larger

effect on long-run volatility. In summary, excluding temperature or rainfall does not hold

any major effect on the volatility, but the ARIMA-GARCH without rainfall captures less

volatility persistence than the model without temperature, probably due to aforementioned

effects. The unrestricted model is the most volatile.

Figure 28 illustrates the realized variance against the AR(1)MA(11,26)-GARCH(1,1) vari-
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ants for the conditional variance. The 3 different ARIMA-GARCH models capture the trend

of the realized variance well, but fail to fully capture large spikes in volatility, for example

around week 1, 2021. However, the fully specified ARIMA-GARCH visually conveys the

impression of advantageous volatility capture. Visual results imply that there might be

other effects apart from rainfall, temperature, and other explanatory variables included in

the dissertation which affect the volatility of the system price. This likely reflects the fact

that the system price captures all bids and offers within the Nordic market. Future research

on the topic should therefore consider including the power mix in additional countries. Fur-

thermore, realized variance may be subject to noise and including other volatility measures

such as implied variance might yield other results.

5.5.7 Structural Breaks and Asymmetry

It should be mentioned that the system price exhibits evidence of structural breaks. A pa-

rameter stability test through a cumulative sum of recursive residuals was performed with

evidence of parameter instability between 2016 to early 2018, and in 2020. Empirically, this

instability was most likely due to temporary limited exporting capacities, low costs, and

domestic effects, suggesting a regime shift, rather than a structural break (Farmer, 2022).

Therefore, use of regime switching models such as the Markov-Switching class may be ap-

propriate for future extensions (NVE, 2020).

Another class of GARCH models that could have been adopted is GARCH models that

allow for asymmetric volatility responses, such as the EGARCH. An Engle-NG test for

asymmetry was performed, which confirmed the presence of leverage effects. Future exten-

sions on the topic should therefore consider appending the analysis with models that allows

for asymmetric responses, such as Liu and Shi (2013); Bowden and Payne (2008) or Cifter

(2013). Neither regime-switching nor asymmetries have been explicitly modeled in the dis-

sertation, due to the scope of the thesis statement, time, and space restrictions. However,

the performed tests deliver intriguing results for further research.
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Figure 28: Visual model fit for the ARIMA-GARCH Variants for conditional volatility against

realized variance.

6 Conclusion

Electricity prices are subject to high volatility. The dissertation has studied the system

price at Nord Pool between week 1, 2008 through week 52, 2021 which has revealed a highly

volatile system price. The main focus of the dissertation was to study:

1. To what extent does population weighted and seasonally adjusted temperature and rain-

fall affect system price and volatility?

2. Which other effects affect system price and volatility?

In summary, temperature has a minor effect on the system price. The effects consumption,

demand or temperature have on the system price can be declared as small, and statistically
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insignificant within the estimated models. Rainfall, expectation and supply effects does con-

tribute slightly to explain the system price and are statistically significant. Both temperature

and rainfall contribute slightly in explaining volatility. Other effects including magazine de-

viation, snow, surface, and groundwater, wind power production, seasonal effects and the

autoregressive effect of order 1 contribute to explain the system price and volatility.

Previous studies using ARIMA or ARIMA-GARCH models have been conducted, however,

few studies have explicitly modeled other effects affecting electricity prices, and the effect

they have on volatility. To expand research on electricity prices and volatility, the disser-

tation has therefore considered several effects which possibly affect the system price and

volatility. Temperature and rainfall from 6 cities in Norway were included, seasonally ad-

justed, and population weighted to capture expectation, supply, consumption and demand

effects including temperature and rainfall deviation. Additionally, wind power production,

magazine deviation and influx to water magazines through the sum of snow, ground and sur-

face water were included to investigate additional effects on the system price and volatility.

Throughout the dissertation various ARIMA and ARIMA-GARCH models have been fit-

ted and estimated. Firstly, a set of ARIMA models were estimated to determine optimal

lag-length while pursuing parsimony through the 3-step Box-Jenkins approach. Results con-

cluded with an ARIMA model with AR-lag 1, and MA-lags 8, 11, 15 and 26 as the preferred

model. ARIMA model fitting revealed a complex seasonal pattern and lag structure, where

some lags were excluded to persevere parsimony. Moreover, population weights for season-

ally adjusted temperature and rainfall were determined through the preferred ARIMA model.

Population weights determined through dataset population and therein population in the 6

cities was the preferred method due to collinearity. Next, a GARCH(1,1) was appended

on the ARIMA model, including a correction of lag-length. Due to insignificant MA-terms,

an ARIMA-GARCH with AR-lag 1 and MA-lags 11 and 26, including a GARCH(1,1) pro-

cess was chosen. The ARIMA-GARCH model was estimated with restrictions on seasonally

adjusted and population weighted rainfall and temperature. All ARIMA-GARCH models

followed the trend of the system price and volatility well.
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Somewhat surprisingly, seasonally adjusted and population weighted temperature and rain-

fall had little to no effect on the system price, and a marginal effect on volatility. Temperature

in the 6 cities over the 14-year estimation period resulted in no evidence of an consumption-

or demand effects of any relevance. Coefficient estimates were small, statistically insignificant

and difficult to interpret. Furthermore, there is little evidence of seasonally adjusted and

population weighted rainfall affecting the system price. Considering rainfall has a direct em-

pirical effect on magazine filling levels it was somewhat surprising that only estimates from

Bergen had statistical and empirical significance. The effect was therefore determined am-

biguous and imprecise. Accordingly, expectation, supply, consumption and demand effects

had impractical results and subsequent temperature and rainfall effects were not affecting

the system price in any noteworthy way. Results throughout the estimation procedure re-

vealed a highly autoregressive system price of order 1 despite rejection of a unit root process

in all variables. A reasoning considering underlying features of the Norwegian hydropower

system concluded with empirically predictable results. Quarterly, and half-year seasonal ef-

fects were found in the ARIMA-GARCH model. Considering the complex lag-structure by

studying ACF and PACF, more complex seasonal patterns are probable and consistent with

previously reviewed literature. Wind power production, snow, ground and surface water,

and magazine deviation were statistically significant throughout the estimation procedure.

Accordingly, increased wind power production, increased inflow to water magazines and in-

creased positive magazine deviation were all expected to reduced the system price.

ARCH and GARCH terms were consistently statistically significant throughout the ARIMA-

GARCH estimation procedure. Evidence of exponential volatility and non-stationary vari-

ance was found, regardless of model specification, with the sum of ARCH and GARCH

coefficients above 1 in all estimated models. This was consistent with literature previously

reviewed. Volatility persistence was the highest for the fully specified model, followed by

the model without temperature, and lastly the model without and rainfall. The unrestricted

model had the highest response to volatility shocks through the ARCH term, followed by the

model without temperature and the model without rainfall. The model without rainfall had

the highest correlation in variance over two periods, followed by the model without temper-

ature and lastly the unrestricted model. Results were likely due to temperature acting as a
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moving average and rainfall occurring in bursts. In summary, rainfall had a slightly larger ef-

fect on contemporaneous and short-run volatility, whereas temperatures had a slightly larger

effect on long-run volatility.

All estimated models followed the volatility measure as calculated through realized vari-

ance, rvar, but failed to fully capture spikes in volatility. This might be due to model

specification, or an imprecise measure of volatility. Lastly, evidence of structural breaks

and asymmetric volatility response was found. Future research should therefore consider

including Markow-switching (MS) and GARCH specifications that capture asymmetry.
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A Model Estimates

A.1 Table 11: ARIMA Population Weight Model Estimates

Variable (No Weights) (Nat. Weights) (City Weights)

S.Adj. Temp. Bergen 0.0066 0.1521 -0.0081

(0.0057) (0.0004) (0.5809)

S.Adj. Temp. Kr. Sand -0.0024 -0.0888 0.0177

(0.2430) (0.4138) (0.6171)

S.Adj. Temp. Oslo -0.0032 -0.0270 0.0206

(0.0665) (0.0543) (0.1516)

S.Adj. Temp. Tromsø 0.0002 Col. 0.0097

(0.8415) (0.9224)

S.Adj. Temp. Trd. -0.0003 -0.0066 -0.0017

(0.8191) (0.8705) (0.0608)

S.Adj. Temp. Stvg. -0.0047 -0.2828 -0.0031

(0.0447) (0.0000) (0.7365)

S.Adj. Rain Trd. 0.1799 0.2291 0.4420

(0.5152) (0.4138) (0.3775)

S.Adj. Rain Tromsø -0.0016 -0.0017 -0.0043

(0.3102) (0.2855) (0.0538)

Log. Wind Prod. -0.0194 -0.0195 -0.0214

(0.0214) (0.0231) (0.0172)

Sum Magazine Deviation -0.0197 -0.0198 -0.0204

(0.0000) (0.0000) (0.0000)

Sum Sno., Gro., Sur. Watr -0.0105 -0.0108 -0.0104

(0.0000) (0.0000) (0.0000)
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Dummy=1, 2020 -0.2524 -0.2549 -0.2436

(0.0000) (0.0000) (0.0000)

AR(1) 0.8864 0.8801 0.8769

(0.0000) (0.0000) (0.0000)

MA(8) 0.1652 0.1763 0.1578

(0.0000) (0.0000) (0.0000)

MA(11) -0.1507 -0.1320 -0.1202

(0.0000) (0.0000) (0.0001)

MA(15) 0.0942 0.1070 0.1085

(0.0099) (0.0101) (0.0106)

MA(26) -0.1476 -0.1648 -0.1756

(0.0000) (0.0000) (0.0000)

S.Adj. Rain Oslo Col. 0.0030 0.0060

(0.8747) (0.7642)

S.Adj. Rain Bergen Col. Col. -0.2229

(0.0865)

S.Adj. Rain Kr. Sand Col. Col. -2.5348

(0.0519)

S. Adj. Rain Stvg. Col. Col. 0.4671

(0.4282)

AIC -1686.9521 -1676.6916 -1663.2977

BIC -1601.3138 -1590.8839 -1559.4253

Log likelihood 862.4760 857.3458 854.6489

Table 11: AR(1) MA(8,11,15,26) Estimates with different population weights. P-values in paren-

thesis.
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A.2 Table 12: ARIMA Model Estimates

Variable (1) (2) (3)

S.Adj. Temp Bergen -0.0080 -0.0080 -0.0081

(0.5912) (0.5878) (0.5809)

S.Adj. Temp Kr.Sand 0.0177 0.0177 0.0177

(0.6163) (0.6163) (0.6171)

S.Adj. Temp Oslo 0.0204 0.0204 0.0206

(0.1531) (0.1527) (0.1516)

S.Adj. Temp Tromsø 0.0104 0.0104 0.0097

(0.9176) (0.9175) (0.9224)

S.Adj. Temp Trondheim -0.0016 -0.0016 -0.0017

(0.0680) (0.0678) (0.0608)

S.Adj. Temp Stvg. -0.0032 -0.0032 -0.0031

(0.7338) (0.7335) (0.7365)

S.Adj. Rain Bergen -0.2246 -0.2247 -0.2229

(0.0837) (0.0834) (0.0865)

S.Adj. Rain Kr.Sand -2.5265 -2.5271 -2.5348

(0.0531) (0.0527) (0.0519)

S.Adj. Rain Oslo 0.0060 0.0060 0.0060

(0.7661) (0.7637) (0.7642)

S. Adj. Rain Stvg. 0.4685 0.4691 0.4671

(0.4293) (0.4259) (0.4282)

S.Adj. Rain Tromsø -0.0043 -0.0043 -0.0043

(0.0539) (0.0535) (0.0538)

S.Adj. Rain Trondheim 0.4340 0.4340 0.4420

(0.3865) (0.3821) (0.3775)

Log. Wind Prod. -0.0213 -0.0213 -0.0214

(0.0178) (0.0177) (0.0172)
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Dummy=1, 2020 -0.2451 -0.2449 -0.2436

(0.0000) (0.0000) (0.0000)

Sum Sno., Gro., Sur. wtr. -0.0104 -0.0104 -0.0104

(0.0000) (0.0000) (0.0000)

Sum Magazine Deviation -0.0204 -0.0204 -0.0204

(0.0000) (0.0000) (0.0000)

AR(1) 0.8795 0.8795 0.8769

(0.0000) (0.0000) (0.0000)

AR(8) -0.0095 -0.0095

(0.6084) (0.6088)

AR(26) 0.0003

(0.9885)

MA(8) 0.1649 0.1649 0.1578

(0.0000) (0.0000) (0.0000)

MA(11) -0.1149 -0.1149 -0.1202

(0.0020) (0.0020) (0.0001)

MA(15) 0.1105 0.1105 0.1085

(0.0126) (0.0112) (0.0106)

MA(26) -0.1744 -0.1741 -0.1756

(0.0000) (0.0000) (0.0000)

AIC -1659.4367 -1661.4365 -1663.2977

BIC -1546.5319 -1553.0479 -1559.4253

Log likelihood 854.7183 854.7182 854.6489

Table 12: 1: AR(1,8,26)MA(8,11,15,26). 2: AR(1,8)MA(8,11,15,26). 3:AR(1)MA(8,11,15,26). P-

values in parenthesis.
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A.3 Table 13: ARIMA-GARCH Model Estimates

Variable (0) (1) (2) (3)

S.Adj. Temp Bergen -0.0059 -0.0064 0.0036

(0.2849) (0.2408) (0.2483)

S.Adj. Temp Kr.Sand 0.0100 0.0114 0.0137

(0.5297) (0.4740) (0.3606)

S.Adj. Temp Oslo 0.0067 0.0064 0.0038

(0.3151) (0.3238) (0.4926)

S.Adj. Temp Tromsø -0.0015 -0.0004 0.0285

(0.9723) (0.9930) (0.4414)

S.Adj. Temp Trondheim -0.0003 -0.0003 -0.0012

(0.6045) (0.5160) (0.0059)

S.Adj. Temp Stavanger -0.0020 -0.0016 -0.0006

(0.5836) (0.6445) (0.8652)

S.Adj. Rain Bergen -0.1661 -0.1599 -0.1691

(0.0009) (0.0014) (0.0002)

S.Adj. Rain Kr. Sand -1.0363 -0.9924 -0.7977

(0.1371) (0.1441) (0.2398)

S.Adj. Rain Oslo -0.0103 -0.0098 -0.0086

(0.1443) (0.1575) (0.2034)

S.Adj. Rain Stavanger 0.4380 0.4038 0.3745

(0.0299) (0.0415) (0.0607)

S.Adj. Rain Tromsø -0.0010 -0.0009 -0.0005

(0.2953) (0.3216) (0.4059)

S.Adj. Rain Trondheim 0.6012 0.5940 0.3886

(0.0038) (0.0033) (0.0014)

Log. Wind Prod. -0.0109 -0.0108 -0.0104 -0.0111

(0.0001) (0.0001) (0.0002) (0.0002)
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Sum Magazine Deviation -0.0193 -0.0194 -0.0184 -0.0167

(0.0000) (0.0000) (0.0000) (0.0000)

Sum Sno., Gro., Sur. wtr. -0.0073 -0.0073 -0.0074 -0.0071

(0.0000) (0.0000) (0.0000) (0.0000)

Dummy=1, 2020 -0.0477 -0.0468 -0.0538 -0.0365

(0.3486) (0.3582) (0.2559) (0.4406)

AR(1) 0.9387 0.9376 0.9421 0.9351

(0.0000) (0.0000) (0.0000) (0.0000)

MA(8) 0.0201

(0.4737)

MA(11) -0.0686 -0.0722 -0.0768 -0.0767

(0.0008) (0.0001) (0.0001) (0.0000)

MA(15) -0.0089

(0.6407)

MA(26) -0.0504 -0.0562 -0.0560 -0.0680

(0.0006) (0.0001) (0.0000) (0.0000)

ARCH(1) 0.7412 0.7488 0.7081 0.6668

(0.0000) (0.0000) (0.0000) (0.0000)

GARCH(1) 0.4043 0.4008 0.4239 0.4508

(0.0000) (0.0000) (0.0000) (0.0000)

AIC -2259.7211 -2262.9085 -2270.1139 -2246.7818

BIC -2146.8162 -2159.0360 -2193.3386 -2170.0065

Log likelihood 1154.8605 1154.4542 1152.0570 1140.3909

Table 13: 0. AR(1)MA(8,11,15,26)-GARCH(1,1). 1. AR(1)MA(11,26)-GARCH(1,1). 2.

AR(1)MA(11,26)-GARCH(1,1) No temp. 3. AR(1)MA(11,26)-GARCH(1,1) No rain. P-values

in parenthesis.
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B Population Weights

B.1 Population Weights

Year 2013 has been chosen, which is the middle of the data period. Data has been extracted

from SSB11.

B.1.1 Tables 14 to 16 and Equation B.1: Population Weights and Formula

Location Population

Total Population (2013) 5051275

Oslo 623966

Bergen 267950

Stavanger 129191

Trondheim 179692

Tromsø 70358

Kristiansand 84476

Sum 1355633

Table 14: Population statistics for 2013.

Formula

City Population

Total Population
= Population Weight (total)

Total City Population

City Population
= Population Weight (city in dataset)

(B.1)

11Data can be found at SSB (2013), see table 57 and table 60.
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Location Weight

National Population (2013) 1

Oslo 0,123526436

Bergen 0,053046013

Stavanger 0,025575919

Trondheim 0,035573593

Tromsø 0,013928761

Kristiansand 0,016723698

Sum 0,26837442

Table 15: Population weights based on total population.

Location Weight

Oslo 0,460276491

Bergen 0,19765674

Stavanger 0,095299392

Trondheim 0,132552099

Tromsø 0,051900477

Kristiansand 0,062314801

Sum 1

Table 16: Population weights based on dataset population.
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C Descriptive Statistic Tables

C.1 Table 17: Variable Description for Variables in Dataset

Variable Description

lnprice Day-ahead logarithmic system price Nord Pool

rvar Realized variance

lnwind no Logarithmic wind power production in Norway

magavvik sum Magazine Deviation from 20-year average

smg sum Sum snow, surface and groundwater

d2020 Dummy for 2020

swtp brgc Seasonally adj. and weighted temperature, Bergen

swtp krsc Seasonally adj. and weighted temperature, Kr.Sand

swtp oslc Seasonally adj. and weighted temperature, Oslo

swtp troc Seasonally adj. and weighted temperature, Tromsø

swtp trd Seasonally adj. and weighted temperature, Trondheim

swtp stvgc Seasonally adj. and weighted temperature, Stavanger

swrain brgc Seasonally adj. and weighted rainfall, Bergen

swrain krsc Seasonally adj. and weighted rainfall, Kr. Sand

swrain oslc Seasonally adj. and weighted rainfall, Oslo

swrain stvgc Seasonally adj. and weighted rainfall, Stavanger

swrain troc Seasonally adj. and weighted rainfall, Tromsø

swrain trdc Seasonally adj. and weighted rainfall, Trondheim

Table 17: Variables in dataset.
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C.2 Table 18: Descriptive Statistics for Variables

Variable Sum Mean SD Min Max N

Realized variance 5.1809 0.0071 0.0294 0.0000 0.4897 727

Log. sys. Price 1098.45 1.50886 0.2474 0.2201 2.3036 728

Weekly sys. Price 26667.9500 36.6318 17.7646 1.6600 201.1900 728

Log. Wind Prod. 7752.7969 10.6494 0.9211 8.1261 12.9957 728

Temp. Bergen 6265.8365 8.6069 5.5599 -8.2429 22.7286 728

Rain Bergen 34993.4000 48.0679 43.2944 0.0000 255.8000 728

Temp. Kr.Sand 5739.7264 7.8951 6.6852 -13.7143 22.1429 728

Rain Kr.Sand 19418.9000 26.6743 27.8376 0.0000 178.0000 728

Temp. Oslo 5298.6237 7.2783 7.7659 -14.6286 23.9000 728

Rain Oslo 12423.1000 17.0647 17.5219 0.0000 86.5000 728

Temp. Stavanger 6292.7761 8.6677 5.5222 -9.4571 22.3286 728

Rain Stavanger 17453.5000 23.9746 21.2982 0.0000 122.8000 728

Temp. Tromsø 2599.4603 3.5707 6.0314 -10.6571 17.6714 728

Rain Tromsø 14680.0000 20.1648 18.7730 0.0000 102.7000 728

Temp. Trondheim 4428.1657 6.0826 6.6737 -14.4143 21.8714 728

Rain Trondheim 12157.6000 16.7000 16.3719 0.0000 95.6000 728

Sum Magazine Deviation 405.8659 0.5575 6.7613 -20.3078 16.7198 728

Sum Sno., Gro., Sur., wtr. -23.7335 -0.0326 9.4112 -25.4913 41.2494 728

Dummy=1, 2020 52.0000 0.0713 0.2576 0.0000 1.0000 729

Table 18: Descriptive statistics for variables (no temperature and rain adjustment).
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C.3 Table 19: Descriptive Statistics for Variables in ARIMA-

GARCH

Variable Sum Mean SD Min Max N Skewness

Realized Variance 5.1809 0.0071 0.0294 0.0000 0.4897 727 9.7795

Logarithmic System Price 1098.4501 1.5089 0.2474 0.2201 2.3036 728 -1.8290

Sum Mag. Dev. 405.8659 0.5575 6.7613 -20.3078 16.7198 728 -0.5424

Sum Sno, Gro, Sur. wtr. -23.7335 -0.0326 9.4112 -25.4913 41.2494 728 0.8442

Dummy=1, 2020 52.0000 0.0713 0.2576 0.0000 1.0000 729 3.3311

S.Adj. Log Wind 134.1119 0.1984 0.4875 -1.2157 1.5599 676 -0.1317

S.Adj. Temp Bergen -124.6242 -0.1844 2.9770 -11.1817 12.0957 676 0.2100

S.Adj. Temp Kristiansand -1.0336 -0.0015 0.0800 -0.2681 0.2459 676 -0.0079

S.Adj. Temp Oslo -3.4285 -0.0051 0.2181 -0.8360 0.6820 676 -0.0993

S.Adj. Temp Tromsø 0.3926 0.0006 0.0313 -0.1147 0.1236 676 -0.0382

S.Adj. Temp Trondheim -28.2204 -0.0417 3.9174 -18.0612 18.1048 676 -0.1758

S.Adj. Temp Stavanger 3.5175 0.0052 0.3016 -1.2090 1.0183 676 0.0024

S.Adj. Rain Bergen -0.1813 -0.0003 0.0424 -0.1652 0.1601 676 -0.1754

S.Adj. Rain Kr. Sand -0.0488 -0.0001 0.0037 -0.0144 0.0133 676 -0.1750

S.Adj. Rain Oslo -0.1697 -0.0003 0.1998 -0.5812 0.6660 676 -0.0373

S.Adj. Rain Stavanger -0.1120 -0.0002 0.0108 -0.0378 0.0353 676 -0.0713

S.Adj. Rain Tromsø -16.9645 -0.0251 1.9779 -6.7389 5.8793 676 -0.0596

S.Adj. Rain Trondheim -4.8626 -0.0072 0.0906 -0.1960 0.2417 676 0.4459

Table 19: Descriptive statistics for variables used in ARIMA-GARCH estimation and postestima-

tion (temperature and rain adjustment).
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C.4 Table 20: Descriptive Statistics for Population Weights

Variables (No seasonal difference) Weight Mean SD Min Max N

Temperature Bergen City -0.0084 1.8539 -5.0385 8.1532 728

Rain Bergen City 0.0754 0.0819 -0.1534 0.2506 728

Temperature Kr. Sand City 0.0562 0.0579 0.0000 0.2859 728

Rain Kr.Sand City 0.0089 0.0058 -0.0099 0.0233 728

Temperature Oslo City 0.1833 0.1639 0.0000 0.9453 728

Rain Oslo City 0.2003 0.3433 -0.6059 1.0047 728

Temperature Stavanger City 0.2358 0.2208 0.0000 1.2090 728

Rain Stavanger City 0.0147 0.0163 -0.0351 0.0533 728

Temperature Tromsø City 0.0220 0.0217 0.0000 0.1269 728

Rain Tromsø City 1.9129 1.5105 -1.2434 7.9631 728

Temperature Trondheim City 4.8990 4.0933 0.0000 25.6549 728

Rain Trondheim City 0.0026 0.0585 -0.1381 0.1651 728

Temperature Bergen National 0.4528 0.2973 -0.4373 1.2057 728

Rain Bergen National 2.5348 2.2939 0.0000 13.5692 728

Temperature Kr.Sand National 0.1304 0.1130 -0.2294 0.3703 728

Rain Kr.Sand National 0.4445 0.4646 0.0000 2.9768 728

Temperature Oslo National 0.8877 0.9654 -1.8070 2.9523 728

Rain Oslo National 2.1013 2.1625 0.0000 10.6850 728

Temperature Stavanger National 0.2192 0.1429 -0.2419 0.5711 728

Rain Stavanger National 0.6090 0.5445 0.0000 3.1407 728

Temperature Tromsø National 0.0491 0.0841 -0.1484 0.2461 728

Rain Tromsø National 0.2790 0.2613 0.0000 1.4305 728

Temperature Trondheim National 0.2138 0.2384 -0.5128 0.7780 728

Rain Trondiem National 0.5896 0.5821 0.0000 3.4008 728

Table 20: Descriptive statistics for population weighted weather. City indicates adjustment for

dataset population and National indicates adjustment for national population.
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D Unit Root Tests

D.1 Table 21: Philips-Perron Unit Root Test Results

Variable P-value τ ρ C ρ C τ

(Log. sys. price) (0.0011) -4.0713 -34.0489 -14.1000 -2.8600

(S.Adj. Temp. Bergen) (0.0036) -3.7388 -27.8285 -14.1000 -2.8600

(S.Adj Temp. Kr. Sand) (0.0000) -23.7025 -618.0936 -14.1000 -2.8600

(S.Adj. Temp. Oslo) (0.0000) -22.0231 -603.6100 -14.1000 -2.8600

(S.Adj. Temp. Stavanger) (0.0000) -22.1202 -576.1667 -14.1000 -2.8600

(S.Adj. Temp. Trondheim) (0.0000) -14.5371 -325.8138 -14.1000 -2.8600

(S.Adj Temp. Tromsø) (0.0000) -22.7953 -620.7906 -14.1000 -2.8600

(S.Adj Rain Bergen) (0.0000) -5.3094 -54.5349 -14.1000 -2.8600

(S.Adj Rain Kr. Sand) (0.0000) -6.2579 -73.2116 -14.1000 -2.8600

(S.Adj Rain Oslo) (0.0000) -5.9628 -68.2447 -14.1000 -2.8600

(S.Adj Rain Stavanger) (0.0000) -6.6405 -82.5260 -14.1000 -2.8600

(S.Adj Rain Trondheim) (0.0433) -2.9179 -17.6915 -14.1000 -2.8600

(S.Adj Rain Tromsø) (0.0000) -19.5993 -564.2525 -14.1000 -2.8600

(Log. Wind. Prod) (0.0001) -4.8080 -43.5756 -14.1000 -2.8600

(Sum Sno,, Gro., Sur., wtr.) (0.0016) -3.9694 -31.4806 -14.1000 -2.8600

(Sum Magazine Deviation) (0.0026) -3.8282 -30.0552 -14.1000 -2.8600

Table 21: Philips-Perron unit root test results. 5% critical value.
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D.2 Table 22: DF-GLS Test Results

Variable N L1τ C L1 L2τ C L2 L3τ C L3

Log. System Price 724 -4.2501 -2.8641 -4.0983 -2.8623 -3.7354 -2.8604

S. Adj. Temp. Bergen 672 -4.0285 -2.8661 -4.1079 -2.8641 -4.3303 -2.8621

S. Adj. Temp. Kr. Sand 672 -14.0418 -2.8661 -10.7527 -2.8641 -8.9064 -2.8621

S. Adj. Temp. Oslo 672 -15.3764 -2.8661 -13.2395 -2.8641 -11.4268 -2.8621

S. Adj. Temp. Stavanger 672 -15.9740 -2.8661 -13.4188 -2.8641 -12.4325 -2.8621

S. Adj. Temp. Trondheim 672 -12.5682 -2.8661 -9.8432 -2.8641 -10.6233 -2.8621

S. Adj. Temp. Tromsø 672 -13.3058 -2.8661 -11.6167 -2.8641 -9.8538 -2.8621

S. Adj. Rain Bergen 672 -10.8274 -2.8661 -8.8329 -2.8641 -7.4633 -2.8621

S. Adj. Rain Kr. Sand 672 -11.8542 -2.8661 -9.4941 -2.8641 -7.7349 -2.8621

S. Adj. Rain Oslo 672 -10.1351 -2.8661 -7.4369 -2.8641 -5.7903 -2.8621

S. Adj. Rain Stavanger 672 -12.0951 -2.8661 -9.4228 -2.8641 -7.7888 -2.8621

S. Adj. Rain Trondheim 672 -2.8744 -2.8661 -2.9699 -2.8641 -3.1250 -2.8621

S. Adj. Rain Tromsø 672 -14.4443 -2.8661 -11.9911 -2.8641 -10.7778 -2.8621

Log. Wind. Prod 724 -5.1321 -2.8641 -4.0791 -2.8623 -3.1076 -2.8604

Sum Sno., Gro., and Sur., wtr. 724 -4.1877 -2.8641 -4.1751 -2.8623 -4.5311 -2.8604

Sum Magazine Deviation 724 -3.8592 -2.8641 -3.7787 -2.8623 -4.1459 -2.8604

Table 22: DF-GLS unit root test results. 5% critical value.
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E ACF and PACF Plots

E.1 Figures 29 and 30: AR(1)MA(8,11,15,26)-GARCH ACF/-

PACF
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Figure 29: PACF ARIMA-GARCH.
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Figure 30: ACF ARIMA-GARCH.

E.2 Figures 31 and 32: AR(1)MA(11,26)-GARCH ACF/PACF
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Figure 31: PACF ARIMA-GARCH.
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Figure 32: ACF ARIMA-GARCH.
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E.3 Figures 33 and 34: AR(1)MA(11,26)-GARCH ACF/PACF
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Figure 33: PACF ARIMA-GARCH No temp.
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Figure 34: ACF ARIMA-GARCH No temp.

E.4 Figures 35 and 36: AR(1)MA(11,26)-GARCH ACF/PACF
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Figure 35: PACF ARIMA-GARCH No rain.
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Figure 36: ACF ARIMA-GARCH No rain.
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F ARIMA-GARCH Robustness

F.1 Table 23: Shapiro-Wilk Test Results

Variable N V W P-value Z-stat

AR(1)MA(8,11,15,26)-GARCH(1,1) 676 102.0361 0.7691 0% 11.2674

AR(1)MA(11,26)-GARCH(1,1) 676 101.1419 0.7711 0% 11.2460

AR(1)MA(11,26)-GARCH(1,1) No T. 676 102.4251 0.7682 0% 11.2767

AR(1)MA(11,26)-GARCH(1,1) No R. 676 100.6095 0.7723 0% 11.2331

Table 23: Shapiro-Wilk test results.

F.2 Table 24 and Figures 37 to 40: Barlett’s Periodogram Based

Test

Variable P-value B-stat

AR(1)MA(8,11,15,26)-GARCH(1,1) 20.30% 1.0693

AR(1)MA(11,26)-GARCH(1,1) 17.76% 1.1001

AR(1)MA(11,26)-GARCH(1,1) No Temp 12.49% 1.1776

AR(1)MA(11,26)-GARCH(1,1) No Rain 11.31% 1.1984

Table 24: Barlett’s periodogram bases test results.
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Figure 37: Barlett Periodogram for

AR(1)MA(11,26)-GARCH(1,1) without

temperature.

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

C
um

ul
at

iv
e 

pe
rio

do
gr

am
 fo

r A
R

(1
)M

A(
11

,2
6)

-G
AR

C
H

(1
,1

) N
o 

R
ai

n

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Bartlett's (B) statistic =     1.20   Prob > B = 0.1131

Cumulative Periodogram White-Noise Test

Figure 38: Barlett Periodogram for

AR(1)MA(11,26)-GARCH(1,1) without

rainfall.
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Figure 39: Barlett Periodogram for

AR(1)MA(11,26)-GARCH(1,1).
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Figure 40: Barlett Periodogram for

AR(1)MA(8,11,15,26)-GARCH(1,1).
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