
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Rokas Bliudzius
Martin Slind Hagen
Diderik Kramer

Decentralized Identity - a mobile
wallet and verification platform

Bachelor’s thesis in Bachelor of Engineering in Computer Science
Supervisor: Surya Kathayat
May 2022Ba

ch
el

or
’s

th
es

is

Rokas Bliudzius
Martin Slind Hagen
Diderik Kramer

Decentralized Identity - a mobile wallet
and verification platform

Bachelor’s thesis in Bachelor of Engineering in Computer Science
Supervisor: Surya Kathayat
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

v

Abstract
This bachelor thesis consists of developing a minimum viable product (MVP) of a digital

ID wallet, an application for storing and verifying IDs. The MVP is an interpreted

implementation of a recent concept developed by the European Commission (European

Commission, 2021) and Thales (Thales, n.d.). The thesis aims to contribute towards

research and development of the digital ID field. Currently, ID issuers provide services

for a more secure authentication process online compared to username and password

authentication, via digital IDs. However, it can provide a bad user experience as they

may have contrasting interfaces to their systems. Also, standards for digital claims about

entities, and online identifiers respectively called Verifiable Credentials and Decentralized

Identifiers, have been defined in recent years. A digital ID wallet would aim to provide an

easier way for users to manage their digital identities compared to the existing digital

IDs. The resulting MVP uses Verifiable Credentials, Decentralized identifiers and

blockchain technology that respectively provide a cryptographical way to prove attributes

related to an individual, decentralized and globally unique identifiers, and tamper proof

decentralized storage. However, as blockchains can be quite complex the solution also

includes a centralized backend serving as a man in the middle between the blockchain

and external entities. In total the components used in the ecosystem are a mobile

application, blockchain, centralized backend and a mock issuer responsible for simulating

the behavior necessary from an issuer to function with the rest of the ecosystem.

The team used Kanban during development, allowing them to work efficiently. The work

resulted in the creation of the four aforementioned components that form the ecosystem.

The system allows users to fetch and store their digital IDs, as well as using them for

identification purposes by creating Verifiable Presentation from an ID and transforming

the data to a QR code. To prevent falsification of digital IDs, a blockchain is used to store

agreements as proof of existing IDs. The agreements do not store personal information

to hinder sensitive data leakages. The system also enables users to verify other users’

identity credentials by scanning a QR code and checking if the agreement related to the

ID is registered in the blockchain and still valid.

Different technologies have been used when developing the components, to test what

would work in such ecosystems. An emphasis was also put on learning new technologies

that the team found interesting and wanted to try. The components have been

thoroughly developed to meet certain requirements of security, confidentiality,

ownership, and control.

Overall, the report provides necessary background theory to understand the problem

domain and the solution. It also describes the MVP, discussing the results and examining

potential for future work.

vi

Sammendrag
Denne bachelor oppgaven omhandler utviklingen av en digital ID lommebok, som et

minste brukbare produkt (MVP). Applikasjon kan lagre og verifisere ID-er, og er en tolket

implementasjon av et nytt konsept som er utviklet av European Commission (European

Commission, 2021) og Thales (Thales, n.d.). Oppgavens mål er å bidra med forskning og

utvikling av en digital ID feltet. I feltet finnes det ID utsteder som tilbyr digitale ID-er, en

sikrere autentiseringsmetode sammenlignet med brukernavn og passord. Derimot, kan

digitale ID-er gi dårlig brukeropplevelse da forskjellige ID utstedere kan ha forskjellige

grensesnitt mot systemene sine. Standarder for digitale påstander angående entiteter,

og nettbaserte identifikatorer har i tillegg blitt definert de siste årene. Standardene heter

respektivt Verifiable Credentials og Decentralized Identifiers. En digital ID lommebok ville

siktet på å tilby en enklere måte for brukere å håndtere sine digitale identiteter

sammenlignet med den eksisterende digital ID teknologien. MVP som lagdes bruker

Verifiable Credentials, Decentralized Identifier og blokkjede teknologi som respektivt

bidrar med en kryptografisk måte å bevise attributter tilknyttet et individ, desentralisert

og globalt unike identifikatorer, og sabotasjesikker desentralisert lagring. Samtidig kan

blokkjeder være komplekse, derfor har løsningen en sentralisert tjener som

kommuniserer mellom blokkjede og eksterne entiteter. Totalt sett består økosystemet av

en mobil applikasjon, en blokkjede, sentralisert tjener og en spotteutsteder som

simulerer den nødvendige oppførselen til en utsteder for å fungere med økosystemet.

Gruppen brukte Kanban under utvikling for å kunne jobbe effektivt. Arbeidet endte med

et økosystem bestående av de fire tidligere nevnte komponentene. Systemet tillater

brukere å hente og lagre deres digitale ID-er, i tillegg til å kunne bruke dem for

identifiseringsformål ved å lage en Verifiable Presentation fra en ID og transformere

dataen til en QR kode. For å forhindre forfalskning av digitale ID-er brukes en blokkjede

som lagrer avtaler som bevis på eksisterende ID-er. Disse lagres uten personlig data for

å forhindre sensitive datalekkasjer. System gir brukere mulighet til å verifisere andre

brukeres ID-er, ved å ha skanne en QR-kode og sjekke om den tilhørende avtalen ligger i

blokkjeden samt fortsatt er gyldig.

Forskjellige teknologier har blitt brukt under utvikling av komponentene, for å teste hva

som ville ha fungert i et slikt økosystem. Det har også blitt satt fokus på å lære de nye

teknologiene som gruppen synes var interessante og ville teste. Komponentene har blitt

grundig utviklet med hensyn på visse krav til sikkerhet, konfidensialitet, eierskap og

kontroll.

Total sett gir rapport nødvendig bakgrunns teori for å kunne forstå problemdomene og

løsningen. Den forklarer også MVP-en og diskuterer resultatene samt ser på potensielt

fremtidig arbeid.

vii

Preface
As we all have expressed interest in cyber security, cryptography, privacy preserving

technology and network programming throughout the course of our degrees, it was

natural to select a task involving those aspects of computer science. Before looking

through the proposed tasks we knew that we wanted to work together as we had

previously done with success. We also decided to send a thesis proposal for creating a

password manager, while also staying open minded about other tasks. When looking

through the different options, we saw one about researching blockchain technologies

which spiked our interest. However, we wanted to create an application, and found the

concept of a digital ID wallet enticing, because of its connections to the aforementioned

computer science aspects. It also sounded like there was a possibility to apply blockchain

technologies to the assignment, which peaked out interest in choosing this task.

The team and the supervisor agreed to identify this thesis as a hybrid of system

development and scientific research. Even though the thesis was about developing an

MVP, the team found that different scientific questions needed to be answered, along

with exploring new technology. Therefore, the report pushes the set limit of 50 pages for

a system development task.

We have constantly worked throughout the semester during regular working hours, while

sitting together digitally or physically in hopes of achieving great results. The team

members have continuously supported and helped each other to streamline the work.

The problem domain was new to us, meaning that we gained a lot of useful knowledge

and experience in recently growing technological fields. We see this thesis as a great

milestone, where the new learnings will hopefully be useful for our future careers.

We would like to thank our supervisor and client Surya Kathayat for providing us with

knowledge, wisdom, guidance, and encouragement during our many meetings. He helped

us discuss ideas, leading us to make important choices and completing the thesis. We

would also thank him for taking the initiative to proofread documents and funding.

We would like to dedicate this thesis to our families for their continuous support and

encouragement.

Trondheim May 18, 2022

Rokas Bliudzius

Martin Slind Hagen

Diderik Kramer

viii

Task description
The original task description is still in use (Appendix C). The requirements for the system

can be found in the vision document (Appendix F) and the requirement document

(Appendix G).

ix

Table of contents
Figures ... xii

Abbreviations/symbols .. xii

1 Introduction ... 13

1.1 Thesis/Problem statement ... 13

1.2 Structure .. 13

2 Theory .. 14

2.1 Attack vector ... 14

2.2 Threat actor .. 14

2.3 DLT .. 14

2.4 Blockchain ... 14

2.4.1 Cryptographic Hashes ... 14

2.4.2 Decentralized .. 15

2.4.3 Tamper-proof .. 15

2.4.4 Consensus mechanism .. 15

2.4.5 Smart contract ... 16

2.4.6 Parachains .. 16

2.5 Dapp .. 16

2.6 QR ... 16

2.7 DIDs .. 16

2.8 Zero-knowledge proof ... 17

2.9 VCs .. 17

2.10 VPs .. 17

2.11 Verifying VC/VP ... 17

3 Method .. 19

3.1 Research method ... 19

3.2 Choice of technology... 20

3.2.1 Solana and Anchor ... 20

3.2.2 Polkadot and Substrate ... 21

3.2.3 React Native .. 21

3.2.4 Next JS ... 21

3.2.5 UI libraries .. 21

3.2.5.1 React Native Paper ... 21

3.2.5.2 MUI .. 22

3.2.6 Jest .. 22

3.2.7 Veramo .. 22

x

3.2.8 Prisma and PostgreSQL ... 22

3.2.9 Redis .. 22

3.2.10 WebSocket .. 23

3.2.11 Git ... 23

3.2.12 TS .. 23

3.2.13 React Native Encrypted Storage ... 23

3.2.14 Supabase .. 24

3.3 Development method .. 24

3.3.1 Kanban ... 24

3.3.2 Experimenting through “Hello world” repositories 24

3.3.3 Wireframing in Figma .. 24

3.3.4 Work and role management ... 25

4 Result ... 26

4.1 Scientific Results .. 26

4.1.1 Ecosystem architecture ... 26

4.1.1.1 Aphrodite .. 26

4.1.1.2 Athena ... 26

4.1.1.3 Iris ... 26

4.1.1.4 Kratos .. 27

4.1.2 Handling ID ... 27

4.2 Engineering results ... 27

4.2.1 ID storage ... 27

4.2.1.1 Add ID .. 27

4.2.1.2 Remove ID .. 28

4.2.1.3 Refresh ID .. 29

4.2.1.4 Encryption of ID ... 30

4.2.2 ID viewing .. 31

4.2.2.1 Card display .. 31

4.2.2.2 Search and filter IDs ... 31

4.2.2.3 Scroll through the IDs ... 32

4.2.3 Verification .. 32

4.2.3.1 Generate QR-code to prove one’s identity 32

4.2.3.2 Verify other identities by scanning other QR-codes 32

4.2.3.3 Selection of ID data to be used .. 33

4.2.4 Authentication ... 34

4.2.4.1 Unlock wallet with password .. 34

4.2.5 Provider registration ... 35

xi

4.2.5.1 Register as ID provider with public key and DID 35

4.3 Administrative results ... 36

4.3.1 Project schedule ... 36

4.3.2 Time management and activity distribution .. 36

4.3.3 Agile development .. 36

5 Discussion ... 37

5.1 Scientific ... 37

5.1.1 Ecosystem architecture ... 37

5.1.1.1 Centralized backend vs fully decentralized ecosystem 37

5.1.1.2 Mock issuer ... 37

5.1.2 Handling ID ... 37

5.1.2.1 Blockchain agreement model ... 37

5.2 Engineering ... 38

5.2.1 ID storage ... 38

5.2.2 ID viewing .. 39

5.2.3 Verification .. 40

5.2.4 Authentication ... 41

5.2.5 Provider registration ... 41

5.3 Administrative ... 42

5.4 Group reflection ... 42

5.5 Veramo .. 43

6 Conclusion and future work .. 44

6.1 Conclusion .. 44

6.2 Future work ... 44

Sustainability .. 46

References .. 48

Appendix .. 53

xii

Figures
Figure 4.1: Adding an ID ... 28
Figure 4.2: Deleting an ID ... 29
Figure 4.3: Editing an ID card .. 30
Figure 4.4: ID data with sharing options .. 31
Figure 4.5: Searching in app .. 32
Figure 4.6: Sharing data through a QR-code .. 32
Figure 4.7: Verifying a user's Passport .. 33
Figure 4.8: Share data screen, for combining IDs.. 34
Figure 4.9: Wrong PIN code ... 35
Figure 4.10: Issuers register page .. 35

Abbreviations/symbols
API Application programming interface

CD Continuous Development

CI Continuous Integration

CRUD Create, Read, Update, Delete

DAPP Decentralized application

DID Decentralized Identifier

DLT Distributed ledger technology

GDPR General data protection regulation

JS JavaScript

JSON JavaScript Object Notation

JWT JSON Web Token

MUI Material UI

MVP Minimal Viable Product

PoH Proof of History

PoW Proof of Work

QR Quick Response

REST Representational state transfer

SDG Sustainable Development Goal

TS TypeScript

VC Verifiable Credential

VP Verifiable Presentation

13

Services today are dependent on different authentication methods, such as usernames or

passwords, or the more secure option digital or physical IDs. Many different ID providers

are available for use, making it hard for users to keep track of all their ID data. However,

new technologies such as blockchain and VC, in theory, enable a new concept worked on

by the European Commission (European Commission, 2021) and Thales (Thales, n.d.).

The concept is a digital ID wallet application, which would create a system for holders to

safely store all IDs. The system would ensure that the holders have full ownership of

their personal data, and that no central entity will be able to “collect” ID user data. It

would act like a physical wallet with multiple holder’s IDs stored in one place. The digital

ID wallet, just like a physical wallet, will only belong to the user, giving them full control

and freedom to share chosen data with whomever and whenever.

This thesis aims to provide the necessary foundation towards realization of the concept

by creating a minimum viable digital ID wallet application. Therefore, some questions

need to be answered. Firstly, how the IDs are handled, e.g., where and how to store the

IDs? Secondly, how the ecosystem is designed, e.g., what components are needed, what

data should they store, would an issuer need to make changes to adapt to the

ecosystem?

The thesis also aims to test viable technologies to implement an ecosystem in which a

digital ID wallet application can be trustworthy with handling and sharing of identity

credentials. It also showcases a solution, discussing issues and potential solutions.

1.1 Thesis/Problem statement

Create a minimum viable digital ID wallet application.

1.2 Structure

The report explains the theory and the relevant literature in chapter 2. The research

method, development method and choices of technologies are described in chapter 3.

The scientific-, engineering- and administrative results can be found in chapter 4. The

discussion of the results is found in chapter 5, with the conclusion and recommendations

for future work in chapter 6. Lastly, the “Social impact” chapter discusses the thesis from

a holistic system perspective.

1 Introduction

14

2.1 Attack vector

An attack vector is a “specific point of attack (e.g., user input field)” (Morrison).

2.2 Threat actor

A threat actor is an entity that performs cyber-attacks on other entities (Nätt, 2022).

2.3 DLT

DLT is described as technological infrastructure which allows operations and

synchronizations of a distributed, immutable, append-only, digital ledger (Sunyaev,

2020). DLTs often use cryptography to justify authenticity of data, creating trust in the

underlying technology and removing the need of trusted third parties. Moreover, a

distributed ledger consists of a peer-to-peer network of nodes across various locations,

creating a decentralized system where decisions are made by all the nodes using an

agreed consensus mechanism, meaning that a single node cannot solely control the

system, preventing malicious intents towards the system (Moubarak, Chamoun, & Filiol,

2020). A decentralized network of nodes also prevents system downtime since a failure

in a single node will not prevent the entire system from working, in the same way that

one malicious node will not corrupt the network.

2.4 Blockchain

Blockchain is a type of DLT, providing a digital and decentralized form of data storage. As

the name implies, a blockchain is a “chain of blocks” where each block usually contains a

hashed batch of data, and a cryptographic hash of the prior block on the chain. One can

think of it as a linked list, but instead of pointers pointing to the next block, a blockchain

is backlinked using the cryptographic hash of the previous block to reference it. An

example of data inside a block can be cryptocurrency transaction information from one

decentralized wallet to another. The verification of authenticity, maliciousness, and

validity of the data in a block is done by validators or nodes using a specific consensus

mechanism (Lie & Øverby, 2022).

2.4.1 Cryptographic Hashes

“A hash function is used to construct a short “fingerprint” of some data; if the data is

altered, then the fingerprint will (with high probability) no longer be valid.” (Stinson &

Paterson, 2018). A cryptographic hash function is deterministic, using the same input,

always results in the same output, and different inputs should give different outputs.

Another feature of hash functions is that they are supposed to be one-way, meaning that

given a hash, one should not be able to calculate the input. This is dependent on the

hash function used. Cryptographic hashes are used in blockchains to generate the

cryptographic hash of a block’s data, which will be used in the next block to create a

back-link (Stinson & Paterson, 2018).

2 Theory

15

2.4.2 Decentralized

Blockchain is a decentralized technology, meaning control of decisions is transferred from

a centralized entity (individual, groups, or organizations) to a distributed network. This

network consists of nodes or “miners” which are computers located anywhere, each

having a copy of the blockchain and trying to calculate the next block. For open

blockchains, anyone can become a node. Each node is connected to one or more nodes

using a peer-to-peer connection. This connection is a simple communication protocol that

allows transfer of data between two peers (Amazon Web Services, n.d.).

2.4.3 Tamper-proof

A feature of a distributed network is that it prohibits tampering, as every node in the

network has a copy of the blockchain. If a malicious node tries to change or append a

malicious block to the blockchain, other non-malicious nodes will not validate or accept

the change rendering the attempt useless (IBM, n.d.).

2.4.4 Consensus mechanism

In a peer-to-peer network of nodes, there are no guarantees that a neighboring node is

not malicious, creating distrust and insecurity between every node. A preset consensus

algorithm (also called protocol or mechanism) creates trust between nodes by providing

common “rules” to keep data consistent across the network (Zhao, 2018). An example of

its use case is when a node wants to append a new block to the blockchain. The initial

node will send the block to other nodes in the network using peer-to-peer connection.

The nodes will use an agreed-upon consensus protocol to check the validity and security

of the block data, and if the majority of the nodes in the network accept it, the block has

been agreed to be a part of the blockchain (IBM, n.d.).

Proof of Work is a consensus mechanism introduced in Bitcoin. The idea is that the nodes

are in a “race” to solve a difficult mathematical “puzzle”. The first node that calculates

the correct “answer” gets rewarded with cryptocurrency native to the blockchain. This

means that PoW uses raw computing power to prevent maliciousness. An attacker would

need to control over 50% of the whole network’s computing power to ensure addition of

a malicious block to the blockchain (Mingxiao, Xiaofeng, Zhe, Xiangwei, & Qijun, 2017).

It is almost impossible to achieve that much computing power, especially for large

networks such as Bitcoin (Frankenfield, 2022). Nonetheless, PoW’s reliance on computing

power makes the network slow and energy consuming, and therefore expensive, creating

a need for more modern consensus solutions (Zhang & Kin, 2020).

Proof of History, the consensus mechanism used by Solana, calculates repeated

cryptographic hashes to verify the passage of time between two events. As cryptographic

hashes do not have predictable outputs, the hashes need to be calculated to know the

output. Proof of History is implemented on this basis. PoH sequence starts with a function

cryptographically hashing a random input value. The output hash is then used as input to

hash the next value. PoH does this recursively multiple times, hashing the output of

previous hash, whilst recording the outputs and the number of iterations the hash

function was called. This is all done using a single core, since the sequence is recursive

and cryptographic hashes are unpredictable. This ensures that an amount of real time

has passed between iterations, while also ensuring that the order of each “record” in the

sequence is correct. After the sequence calculation is finished, the sequence data is

stored in a block and sent to other nodes in the network. The nodes receiving the block

can verify the sequence in parallel by using multiple cores to “cut” the sequence in

16

multiple parts, each calculating and proving that the hash values are correct. By proving

that the hashes are correct, the node also proves that some real time has passed

between recorded events creating a cryptographic timestamp. This helps the whole

network of nodes with time synchronization and ordering of events, making transaction

speed much faster compared to networks with different consensus mechanisms, such as

Bitcoin with PoW (Yakovenko, n.d.).

2.4.5 Smart contract

In the context of blockchains, a smart contract can be described as a predefined and

automatically executable script stored on a blockchain. When a smart contract has been

deployed on a blockchain, it can be triggered by sending a transaction to the contract’s

on-chain address. A triggered contract will execute likewise on every node in the

network, the difference being the output which may vary depending on the data that was

sent with the transaction (Christidis & Devetsikiotis, 2016). A byproduct of being stored

on a blockchain, is that smart contracts can never be removed, likewise for their content.

This means that any actions towards an on-chain smart contract cannot be reverted.

Therefore, sending sensitive data to the smart contract’s storage might be dangerous if

there is no “delete” function predefined in the contract (Ethereum, n.d.-b).

2.4.6 Parachains

Parachains, or “parallelized” chains, is a data-structure introduced in the Polkadot

blockchain. A parachain can be seen as an independent chain connected to a “relay

chain” that provides it with a common security layer. This differs from other blockchain

technologies which have only one coherent blockchain and only allow development of

smart contracts and decentralized apps. Parachain development gives the developers full

control over the structure and functionality of the chain itself, providing a wider range of

optimization (Dr. Wood, n.d.) (Polkadot, n.d.).

2.5 Dapp

Dapps differ from typical apps by not having a centralized backend server. Instead,

dapps utilize decentralized peer-to-peer networks e.g., blockchains, to execute backend

code. Ethereum, a popular blockchain, defines a dapp as “an application built on a

decentralized network that combines a smart contract and a frontend user interface”

(Ethereum, n.d.-a).

2.6 QR

QR is a standard for displaying data converted to a series of pixels in a square-shaped

grid. Contrary to a barcode, it is two-dimensional allowing for more data to be stored. By

scanning the QR-code the stored data can be read. QR-codes usually contain URLs or

phone numbers (Hayes, 2021).

2.7 DIDs

DIDs are used to identify subjects. By being globally unique it can be used as an

identifier in decentralized networks. Since the controller of a DID can prove their

ownership, no trusted entity is needed, which enables decentralized usage. The subject

can also be the controller. Each DID has a DID document that describes it, e.g., how to

verify the controller and the necessary data to complete the verification process. The

format of the document can be anything that may represent the data, such as XML or

17

JSON. A DID is identified with the format “did:method:method-id", e.g.,

“did:example:987654321”. The different methods specify how the DID is handled for

different phases of its lifecycle, such as creation and DID resolution (the process of

converting a DID to a DID document). The DID identifier can be extended to a URL with

a path (using “/”), query (using “?”), fragment (using “#”) or any combination of these.

The URL enables retrieving sections of a DID document and other related resources.

DIDs are stored on verifiable data registries, such as databases or blockchains. These

systems need to be able to transmit the required data for generating a DID document

and be able to store the DID (Sporny, et al., 2021).

2.8 Zero-knowledge proof

“A zero-knowledge proof is a cryptographic method where an entity can prove to another

entity that they know a certain value without disclosing the actual value” (Sporny,

Longley, & Chadwick, 2022d).

2.9 VCs

VCs are a collection of claims regarding one or multiple credential subjects, which can be

verified through cryptographic means. This does not mean that the claims are true, but

that they have not been tampered with. Such claims are given inside the credential

subject property of the VC, and can be made regarding anything, e.g., a university

degree. Claims have the model: subject-property-value. E.g., alice-age-35. To identify a

subject or value the id property can be used, but it can also be omitted for more privacy

in regard(s) to the subject(s). For its value a DID is sufficient, as the id property is meant

to be globally unique and requires a URI format. Proving the claims is done via the

required proof property, which can be a JWT along with other types of proofs. This

requires information about the issuer such as its public key. Therefore, the issuer

property must contain a URI and globally unique identifier that can be dereferenced to

the required information for verification, such as a DID. By using the expiration date

property issuers can issue credentials that are only valid until the expiration date arrives.

Verifiable credentials can use any format that is able to represent the data structure,

such as XML or JSON as format (Sporny, Longley, & Chadwick, 2022c).

2.10 VPs

VPs can be created and combined from different sources. Firstly, it can be a verifiable

subset of data from a VC. E.g., only using the birth date from a VC representing a

passport. Secondly, it can be a verifiable combination of multiple VCs or VPs. E.g.,

combining VCs representing job status and financial status when applying for a bank

loan. Lastly, it can be verifiable data derived from a VC. E.g., create a zero-knowledge

proof from the subject’s birth date in another VC or VP proving that the credential subject

is of legal voting age. For proving to the verifier that all VCs used in the VP were issued

to the same holder the proof property is recommended. This property also ensures that

no unused information from the VCs is exposed to the verifier (Sporny, Longley, &

Chadwick, 2022a).

2.11 Verifying VC/VP

VCs and VPs must contain the proof property containing a method for verifying the data.

For instance, by using RSA signing, an issuer can send a VC to a wallet with a proof

property containing the signed value of the entire VC, the proof method (RSA signing)

18

and the public key used for decrypting the signed value. The wallet can then generate

VPs that consists of one or more VCs, that can be presented to a verifier. The verifier

should be able to use the public keys of the issuers contained in the proof property to

validate each VC by decrypting the signatures and checking that they equal the content

of the VCs (Sporny, Longley, & Chadwick, 2022b).

19

3.1 Research method

The research method or scientific method is a way to systematically uncover knowledge

about the world, while also assuring the quality of the discovered knowledge. The reason

the scientific method is important is the discovery of quality knowledge, which can be

built upon to gain new knowledge or used in inventions that can improve the standard of

life for humans (Kjelsberg, 2019).

The team applied the deductive method for developing the conceptual idea of the project.

Firstly, a problem was formed from the conceptual thesis task to develop a Digital ID

Wallet, to research and discover if it is possible to store digital IDs in a decentralized

manner and use them for verification and identification. This idea was motivated by

similar concepts from organizations such as the European Commission (European

Commission, 2021). Secondly, the team created a conjecture or a confirmable hypothesis

for the problem, consisting of an MVP implementation of the ecosystem and a list of

result goals and use cases that the project was aiming for (Appendix D). These goals

were measurable, and therefore testable, allowing the team to test the end results. In

addition to the result goals, manual tests (Appendix I) were formed from the use cases

to test the components together and that combinations of the result goals worked as

intended. These represented a type of manual integration test for testing that the

conceptual idea of developing a digital ID wallet had achieved parts of its functionalities.

Along with each use case are steps to reproduce the results, and screenshots acting as

the observation for each test. Depending on the results of the goals and tests, they

either support or falsify the hypothesis.

The deductive method described above was also used iteratively by forming sub-

problems from the main problem of developing a digital ID wallet. A sub-problem could

for instance be the communication between two entities in the ecosystem, like the

backend (Iris) and mobile application (Aphrodite). The team would test different

approaches for solving the sub-problem, and after discovering a functional solution, they

would continue the work on another sub-problem. This was done iteratively, until the

solutions to the sub-problems could be combined to solve the main problems. When

solving sub-problems, new sub-problems could also be discovered and added to the

queue of sub-problems needed to be solved in the current or future iterations

(Understanding Science, n.d.).

Another scientific method applied is the Design Science Research method. Its purpose is

“achieving knowledge and understanding of a problem domain by building an application

of a designed artifact.” (Hevner, March, Park, & Ram, 2004). As mentioned in the

deductive method description, the main goal of the project was to use conceptual ideas

to develop an MVP application. By building a working application, the team achieved a

deeper understanding and knowledge of the problem within the task. For example, the

concept of VC was used to create verifiable proof of a document. By adapting the concept

to the Digital ID Wallet ecosystem, the team gained knowledge about the cryptographic

methods that can secure digital IDs, and how digital IDs could function in a system

without centralized authorities.

3 Method

20

One scientific strategy used was research on the conceptual idea, before designing an

implementation and developing it. Research consisted of reading documentation on the

necessary practical and theoretical functionalities in the ecosystem. Examples of these

would be DIDs, VC, blockchain and smart contracts using standards, documentation, and

articles. Many technological concepts were new to the team and essential to understand

before being implemented. For example, understanding the connection between VC and

VP and how each part (issuer, holder, verifier etc.) of the ecosystem utilizes them. These

concepts are relatively new, released in 2019, and not finalized as they have been

continuously updated (World Wide Web Consortium, 2022). Although prior research was

important to learn about the new technologies, practical building of the application itself

also proved to be important for the team’s understanding of them. Additionally, there

was no finalized standard for implementing a digital ID wallet, therefore parts of the

ecosystem were built using the team's prior data science knowledge.

After the research, the team began designing an implementation. It involved writing

diagrams on how the components (e.g., blockchain) in the ecosystem would interact with

each other, what the interactions do, and in what order they execute. The diagrams were

to be displayed to the supervisor to be able to gain feedback and discuss further

improvements. Thereafter, development of the implementations began.

A weakness of the team's scientific method choices was the lack of empirical user data.

Design Science Research method, as mentioned above, does not require any tests, since

the understanding of the problem domain is achieved through the app development. The

deductive method does require testing to confirm the hypothesis, but the tests are not

necessarily empirical user tests. The decision to exclude user testing was made by the

team as it was not necessary for completing the main use cases. For instance, improved

UI would not help in reaching the main goals of an MVP, however, if the application was

to be deployed publicly and used by user, the team would have put more emphasis on

user testing.

3.2 Choice of technology

3.2.1 Solana and Anchor

From chapter 3.4 “Summary of user needs” in the vision document (Appendix F), the

Digital ID Wallet should provide users the ability to “always be able to verify

themselves”, by “Using decentralized blockchain technology”. “Solana is a decentralized

blockchain built to enable scalable, user-friendly apps for the world.” (Solana, n.d.-b). No

members had any prior knowledge of using a blockchain, therefore the selection was

based on the blockchains’ development popularity and the member’s interests. The smart

contract library for Solana is complex, leaving most options and implementations to the

developers. As the needed functionalities for the project are adding and updating data,

the team decided to use the Anchor library, which simplifies the syntax and

implementation for creating a smart contract (Anchor, n.d.). Even with less

documentation, it had descriptive examples, and with the simple structure it allowed for

expanding the examples to integrate the necessary functionality. Additionally, Solana is

described as having high transaction speed and low transaction costs compared to other

blockchains (Solana, n.d.-b), which was also one of the factors in the decision-making

process. Solana uses accounts to store data between transactions (Solana, n.d-a).

21

3.2.2 Polkadot and Substrate

The Polkadot blockchain using Substrate development environment (Wood, n.d.) was

considered along with other options, before choosing Anchor and Solana. Polkadot has

parachains, which allow developers to customize the underlying blockchain to fit their

needs, for instance, edit block generation speed, select what data types that can be

stored directly on the chain and select the consensus protocol. Additionally, the

documentation is well written, and has simple tutorials with good examples for creating a

Polkadot parachain (Substrate, n.d.). The reasons for not choosing Polkadot was issues

with using the JavaScript library Polkadot provides, issues deploying a parachain to a test

network, and because deploying a parachain to the Polkadot main network would require

either financing or community support (Parachains.info, n.d.).

3.2.3 React Native

React Native is a JavaScript library for creating native apps for Android and iOS using

React (React Native, n.d.). None of the members had any previous experience with

creating a mobile application, therefore never used, or experimented with any of the

frameworks. Selecting the framework consisted of choosing a popular one, that had a

familiar syntax. The options boiled down to Flutter and React Native, and as most

members have had previous experience with React, the team decided to use React

Native because of their similar syntax.

3.2.4 Next JS

Next JS is a React framework for creating REST APIs and React frontend applications. It

has a simple structure and supports Typescript (Next.js, n.d.). During the planning

phase, the team knew the backend and mock issuer would require both a simple UI and

a non-complex API. The backend’s main feature would be to communicate with the smart

contract, and the mock issuer would only need CRUD-operations for handling users. For

simplicity and API support, the team decided to use Next JS for the backend and the

mock issuer. Moreover, the team wanted to experiment with new technologies, and this

was the main reason for not choosing Spring Boot, a framework all members have had

experience with.

3.2.5 UI libraries

From chapter 3.4 “Summary of user needs” in the vision document (Appendix F), it is

mentioned that the Digital ID Wallet application should be “universally accessible”. The

project has three different “applications” which a user can interact with, a frontend

application, a backend application, and another backend application for mocking an

issuer. Since the main part of the project was the frontend mobile application, the team

put more focus towards its accessibility development, therefore doing more manual

styling in addition to using a UI library designed for mobile applications. For the backend

applications, the team decided to choose a UI library for web applications, which was

efficient for development purposes, but also provided good accessibility.

3.2.5.1 React Native Paper

Paper is a React Native library that follows Google’s guidelines of Material Design. The

library was chosen for the frontend application for its rich collection of customizable

components, which are well documented and support accessibility standards.

Additionally, the library is free, open source and compatible with both Android and iOS

(React Native Paper, n.d.).

22

3.2.5.2 MUI

MUI or Material UI is CSS library that exports styled React components and UI tools

(MUI, n.d.). It allows developers to focus less on styling and more on logic. As the main

goal of the project was to create the Digital ID Wallet ecosystem, removing the necessity

of styling, thereby saving time which could be spent elsewhere. The team had previous

experience using MUI, which removed the need for learning it. These arguments describe

why the team decided to use MUI in the UI for both the backend and mock issuer.

3.2.6 Jest

Jest is a testing framework for JS and TS that focuses on simplicity (Jest, n.d.). It is a

widely used and popular testing framework, and it is already imported when generating a

Next JS project. Furthermore, it provides most of the necessary functionality like

mocking and assertions for writing tests. However, it had not implemented dependency

injection, allowing developers to, for instance, replace database or blockchain

connections when running integration tests, which meant the team could not create

certain unit tests.

3.2.7 Veramo

The Veramo website describes Veramo as follows:

Veramo is a JavaScript framework that makes it easy for anyone to use cryptographically
verifiable data in their applications. It was designed to make it easy for developers who

want to use DIDs, verifiable credentials, and data-centric protocols to bring next-

generation features to their users (Veramo, n.d.-a).

An essential part of the project was creating and handling DIDs, VCs and VPs. Veramo

was recommended by the team's supervisor, and after experimentation and

documentation reading, the team understood that the library had flaws. However, the

other options were creating a library, this would probably require a lot of time, or using

Affinidi (Affinidi, n.d.) that was less developer friendly as it required the application to

connect to their ecosystem. This would also defeat the purpose of the assignment, as the

digital ID wallet ecosystem would have already been created. As Veramo has

implemented solutions for the project’s necessary use cases, the team decided to use it.

3.2.8 Prisma and PostgreSQL

Prisma is an open-source and free ORM library for Node and TS (Prisma, n.d.). The

library was chosen to integrate with a PostgreSQL database (PostgreSQL, n.d.-b) for

saving Solana account keys. The keys had to be stored in large quantities and for long

periods of time, which the database is great for since it can handle data of various sizes

and quantities (PostgreSQL, n.d.-a). Prisma also integrates well into the backend since it

creates types and interfaces when using TS. Additionally, the team had previous

knowledge using PostgreSQL.

3.2.9 Redis

Redis is an in-memory data store, which has a lot of use cases, but mainly used as a

database or a cache (Redis, n.d.). It was chosen for the project to store blacklisted JWT

tokens. The team decided to use Redis instead of the already implemented Prisma library

because they wanted to experiment with new technologies. Another reason was that

Redis is supposed to store smaller amounts of data, and as a result has optimized speed

for completing CRUD operations (Redis, n.d.). Additionally, it has simple and well

documented libraries for implementation on both the server-side and the client-side. For

23

the reasons above, the team decided it was a good fit for storing the JWT tokens that are

blacklisted after being used.

3.2.10 WebSocket

Current implementations use a WebSocket connection to send the VC from the issuer to

the mobile application of the subject. The team therefore had to select a WebSocket

library. Both Socket.io and ws was experimented with for the server side. Socket.io is a

communication library using a protocol built on top of the WebSocket protocol with HTTP

polling (Singh, n.d.) and reconnecting features (Socket.IO, n.d.). However, some of the

functionality was not necessary for the application’s purpose, like creating socket rooms

and parts of handling client sockets. Socket.io also had issues when closing the server as

all clients needed to disconnect before it could close. It did not disconnect client sockets

itself. Meanwhile, ws had a simple interface for initializing the server and handling

sockets, and closing the server was a simple function call. On the client-side browser

WebSocket client was selected even though Socket.io-client has more features for

connecting and reconnecting to a server, removing the necessity for a timer in the React

component for trying to connect to the server every two seconds.

3.2.11 Git

The team decided to use Git for version control because every member has had

substantial experience with the system. For hosting the remote repository Gitlab (GitLab,

n.d.) was chosen by the supervisor, and because all members have had previous practice

with the platform in previous projects.

3.2.12 TS

TS is an extension of JS which adds typing to the language. It is therefore able to detect

logical errors in the code and handle them by throwing explicit errors, which in turn

hinder unexpected bugs (TypeScript, n.d.). The addition of typing makes TS easier to

structure than JS. Throwing explicit errors eases the developer experience and makes the

code more secure as many potential bugs are erased before the code is ever run. This in

turn makes development more efficient. An additional benefit is when external libraries

implement TS, due to the API being typed which leads to simplifying the process of

understanding the API.

3.2.13 React Native Encrypted Storage

From chapter 2.2 “Summary of product” in the vision document (Appendix F), the Digital

ID wallet should be able to “safely store different identity documents in one place”. The

team and supervisor decided on storing the IDs on the mobile device, as that means only

the user has access to the issued ID, instead of some entity located somewhere else.

Encryption was also needed in case someone got hold of the device. To be able to store

the IDs encrypted on device React Native Encrypted Storage was selected. Also, as it is a

module that enables encrypted storing of entities and supports TS (GitHub, 2021).

Three other libraries were considered, but they had issues. The library react-native-

keychain did not work as expected as can be seen by the 145 issues it has (Oblador,

n.d.). Another library react-native-secure-info had documentation that differed from the

code and some flaws, such as inability to reset the secure store (Andrade, 2021). Using

Expo Secure storage required redoing the React Native projects infrastructure as it ran

natively and not through Expo (Expo, n.d.). However, React Native Encrypted Storage

simply worked as expected, and was therefore chosen.

24

3.2.14 Supabase

Since the team decided to create a mock issuer, a solution for storing data was needed.

The mock issuer is not the main product of the thesis. Therefore, it needed to be as

simple as possible, making Supabase a natural choice. Supabase provides multiple

services like file storage and authentication (Supabase, n.d.-c). Nevertheless, only the

database (Supabase, n.d.-b) configured to minimum security and the automatically

generated API (Supabase, n.d.-a) was used. This enabled easy viewing and altering of

the data and schemas in the database through the web editor, and easily perform CRUD

operations on it through their API.

3.3 Development method

3.3.1 Kanban

Since there were many components involved in the project and uncertainty regarding

what needed to be implemented, the team wanted an agile development method, to gain

enough flexibility to iteratively adapt to changes. Scrum was discussed but scrapped due

to its team size of 7-8 members, as well as having to create extra documentation such as

sprint reviews and backlogs. Instead, Kanban was chosen due to it being lighter than

Scrum, meaning no restrictions on team sizes, and no required documentation other than

the Kanban board. To facilitate the development, a document called “Kanban board

description” (Appendix J) was created, which contained descriptions about each column

in the board, and the limit for number of items at the column simultaneously. The limit

helped make sure that tasks were completed by forcing focus on bottlenecks instead of

adding more tasks. Therefore, the max limit to a column (excluding open, done, and

closed with no limit) was twice the number of team members. Since the team consists of

three members the max limit was six. As the project was hosted in a group in Gitlab, the

integrated issue board was used for all the repositories inside the group. It also provided

a functioning solution on the same platform as the repositories were hosted on and

therefore lowered the complexity in managing the project.

As the team’s supervisor and client were the same person, both the supervisor and client

could be addressed during the same meeting. It was therefore decided to aim for weekly

meetings to replace the sprint reviews, where both guidance about the thesis could be

gained, while also updating the client about the product, as well as gaining feedback

about it through demos. The team members aimed to sit together at most work hours

either via online video conferences or physically, and could therefore always

communicate with each other, which neglected the need for scrum’s daily 15 minutes

stand up meeting.

3.3.2 Experimenting through “Hello world” repositories

As some of the technologies used were new to the team, the supervisor recommended

the creation of “Hello world” repositories for those technologies. There were four of them

made, one for React Native, one for NextJS, one for Solana and one for Substrate.

Thereby, the team could get familiar with the technologies, experiment and make crucial

decisions at the start of the project instead of waiting until it is too late. E.g., testing the

repositories helped the team to choose Solana over Polkadot (Substrate).

3.3.3 Wireframing in Figma

For the development of the frontend application, the team decided to create a wireframe

and showcase the wireframe to the client before developing it. This way, there was room

25

for experimentation and visualization with a lower time cost than actual development

would have created. A wireframe is also useful for the team to be able to refer to as a

consensus during development. Every time a new feature was to be added to the mobile

application it was to be wireframed first and showcased to the client, as well as

discussed, before being implemented.

Figma was chosen as the wireframing tools for multiple reasons. One is its realistic

design, meaning that Figma wireframes can look like a finished product. Another is the

ability to create interactive demos through connecting screens, meaning that a press of a

button on one screen can lead to another screen. Figma can also run the demos on

different devices, this makes the demo more realistic, which provides more learning

about the design. Lastly, Figma allows sharing of prototypes which enables a team to

work on it simultaneously (Figma, n.d.).

3.3.4 Work and role management

It was decided early on that Martin had the responsibility of leading the team and

conducting meetings, Rokas being responsible for writing meeting summaries and

checking the quality of all documents, and Diderik being responsible for taking backups

of all documents. The reasoning behind the role distribution was the team's previous

experience working together, which has proved that this role dynamic has worked well.

Regarding the repositories, the team decided to distribute the team members to different

repositories, due to it being regarded as more efficient, since a member would become

an expert on its assigned repositories. Rokas would mainly work on Iris and Kratos,

Diderik would focus on Aphrodite and Iris, and Martin would develop on Aphrodite and

Athena. Additionally, Rokas would be responsible for deployment, Diderik would be

writing automated testing and Martin would complete manual testing. All the

responsibilities had wiggle room, as the team thought that may hinder bottlenecks

originating from the responsible team member being preoccupied with other tasks.

26

4.1 Scientific Results

4.1.1 Ecosystem architecture

As the wallet alone would have minimal functionality, it was necessary to construct the

entire ecosystem that consists of 4 components, the mock issuer (Athena), the wallet

(Aphrodite), the backend server (Iris) and the smart contract (Kratos). All components in

the ecosystem communicate with each other, as described in chapter 2 “Architecture” in

the system documentation (Appendix H). This section describes the resulting

functionalities of each component in the ecosystem.

4.1.1.1 Aphrodite

The wallet communicates with two entities, the issuer(s) (Athena) from where it will fetch

its VC and a centralized backend (Iris) used to communicate with the smart contract

(Kratos). After receiving a VC from an issuer, the wallet can create and display a VP,

which a verifier should be able to verify. The VCs are stored in an encrypted storage.

Additionally, the hash and salt for verifying the wallet owner locally, and the holder DID,

used for identifying the wallet owner globally and sign VPs, are stored in the encrypted

storage. The wallet is also able to serve as a verifier through the means of scanning QR-

codes.

4.1.1.2 Athena

The mock issuer (Athena) is used to demonstrate what is required of an issuer to be able

to integrate with the ecosystem. Firstly, it needs to be able to generate its own DID used

for signing VCs. Secondly, it needs to be able to create VCs. Thirdly, it needs to send a

REST call to the backend (Iris) for creating agreements. Fourthly, it needs to be able to

collect the DID from a wallet during the issuing of a VC, e.g., through a query param.

Lastly, it needs to keep track of the document DIDs of all issued VCs so it can revoke the

VCs belonging to a user. Other attributes needed that are expected to already be

implemented in an issuers business logic, are for example user logic and a login web UI

able to be used in an embedded web view. Athena stores personal data about all its

users to be used in VCs issued to them, such as forename. This data can vary with

different issuers. Also, Athena stores data needed for authentication such as hash and

salt. Additionally, Athena stores its DID used for signing VCs and registering as an issuer

to the blockchain.

4.1.1.3 Iris

The centralized backend (Iris) is used as a communicator with the smart contract

(Kratos). It utilizes a PostgreSQL database to store pairs, where each contain a public

key and a DID. The public keys belong to the Solana accounts. The accounts are created

whenever a new issuer or a new ID agreement is added to the blockchain. Each account

creation requires the creation of a new keypair. The public key of the account is then

stored in the backend server together with the corresponding DID. Later, public keys can

be used in RPC calls to the smart contract (Kratos) to execute functions defined in the

4 Result

27

contract regarding the account. Furthermore, Iris allows issuers to register themselves by

adding them to the blockchain and storing previously named pairs to the database.

4.1.1.4 Kratos

The smart contract (Kratos) has been programmed to execute predefined functions. It is

deployed on the blockchain, meaning that when a function is called, it will be executed

automatically. The current smart contract MVP implementation has simple functions of

creating an ID agreement, creating an issuer agreement, and invalidating an ID

agreement, in addition to fetching the agreements. An ID agreement stores the holder

DID, the issuer DID, the document DID, the expiration date and a valid binary. Issuer

agreements contain the issuer DID, the URL to the issuer's web page for retrieving a VC

(used by Aphrodite through embedded web view when adding an ID), name and a valid

binary. All information stored on the blockchain is non-sensitive data.

4.1.2 Handling ID

Agreements stored on the blockchain, VCs and VPs are used for handling the IDs. The

issuers in the ecosystem issue an ID as a VC to a wallet and create an agreement on the

blockchain using the backend. Both the issued VC and the agreement contain the issuer

DID, the wallet/subject DID and the unique DID for the ID (created when the VC is

created). In addition to the DIDs, the agreement contains an expiration date and a valid

argument. The valid argument can be set to false by the issuer or the user, to mark the

ID as invalid. The wallet can at any time create a VPs using one or more VCs. The

presentation is used to verify the VCs by first using the proof method which ensures the

verifier that both the VP and embedded VCs has not been tampered with. The second

part of the verification is validating all the VCs used in the VPs with the corresponding

agreements stored on the blockchain. For the VP to be valid, all agreements need to be

valid, not expired and the DIDs need to correspond.

4.2 Engineering results

This section describes the goals of the functional properties for the MVP, which can be

found in the vision document (Appendix F) chapter 5 “Functional properties of the

product”. The goals were defined in the beginning of the project in consensus with the

team members and the client. A few of the goals were not implemented in the MVP and

will not be mentioned in this section, but some of them are discussed in the “Discussion”

chapter and “Future work” subchapter. The source code for the MVP is attached to the

report (Appendix K).

4.2.1 ID storage

4.2.1.1 Add ID

The goal was to create a system for adding a digital ID to the wallet. This can be linked

to the security goals from vision document’s (Appendix F) chapter 6 “Non-functional

properties and other needs”. They declare that all personal data should be stored on-

device, all personal data should be encrypted, and that transactions from providers to

users should forever be stored on blockchain. The technical goal of adding an ID was

fulfilled, including the security goals. The digital ID is stored on-device using encrypted

local storage within a VC. On the Solana blockchain, the smart contract Kratos, creates a

new account for storing the agreement between the issuer and the holder. Additionally,

the Solana account public key of the newly created ID is stored in a PostgreSQL database

28

in the backend (Iris) together with the corresponding document DID. The public key can

later be used by anyone to view and verify the document, or to revoke an ID.

Figure 4.1: Three screenshots displaying the process of adding an ID as seen by the user

4.2.1.2 Remove ID

The goal for removing an ID was completed after the “add ID” function was

implemented. The remove ID function, also called “revoke ID”, can be invoked by the ID

holder or the issuer. To initiate the “revoke ID” action, the issuer or the holder must call

to the backend (Iris) with a REST API call containing a document DID of the ID that is

being revoked. The backend server (Iris) then uses the document DID to fetch the

corresponding public key of the document’s Solana account from the PostgreSQL

database. The backend server (Iris) then initiates revocation through the smart contract

(Kratos) using an RPC call. The smart contract’s “revoke ID” function is automatically

run, which sets the agreement’s “valid” binary to “false”. The ID card will also be

removed from the encrypted local storage in the application (Aphrodite).

29

Figure 4.2: Two screenshots displaying the process of deleting an ID as seen by the user

4.2.1.3 Refresh ID

This functionality has been partially implemented. The initial idea was to let users or

issuers renew or “refresh” an ID. For example, a user might have changed their name

leading to them needing to renew the passport. This application feature would let users

refresh their documents in their wallets by fetching renewed data from the issuer without

them needing to create a new document entirely. Additionally, users could also edit their

ID cards within the application, such as giving them new colors or renaming them. Only

the latter functionality of this goal has been achieved, leaving the former functionality for

future work. The user logic in Athena also allows editing user data.

30

Figure 4.3: Five screenshots displaying the process of editing an ID card from a user's
perspective

4.2.1.4 Encryption of ID

The goal of encrypting ID data is important for security. This is linked together with the

security goal from vision document’s (Appendix F) chapter 6 “Non-functional properties

and other needs”, which says that all personal data should be encrypted. This was

achieved by using an encrypted local storage in the Digital ID Wallet frontend application

(Aphrodite), since the IDs are only saved there. There is more information about the

library in chapter “Choice of Technology”, subchapter “React Native Encrypted Storage”.

31

4.2.2 ID viewing

4.2.2.1 Card display

This goal consisted of creating a view for an ID that is stored in the wallet. It was

completed early in the project and can be accessed by pressing an ID in the wallet

window in the mobile application. It should be displayed as the example below.

Figure 4.4: The screen displaying the ID information along with sharing options

4.2.2.2 Search and filter IDs

The application allows users to filter and search IDs based on the card name, by using

the search bar. This process is depicted in the figure below.

32

Figure 4.5: Searching with the term "dr" filters the Passport away

4.2.2.3 Scroll through the IDs

This was implemented using a Scroll View component that enables vertical scrolling if the

number of IDs exceed the mobile frame.

4.2.3 Verification

4.2.3.1 Generate QR-code to prove one’s identity

The feature allows users to provide a non-tampered ID to the verifier using a QR-code.

This can be linked to the availability goal from vision document’s (Appendix F)

subchapter 3.4 “Summary of user needs”. It mentions that a user should always be able

to verify themself even if the issuer provider is experiencing downtime. This goal was

completed using VCs and VPs. As VCs are stored on-device, VPs can be created at any

time using one or more of them. The Veramo library uses a JWT proof method that

creates a signed JWT token containing the information of all VCs in the presentation.

Afterwards, a user can generate a QR-code from the JWT proof token, which will be

presented to a verifier.

Figure 4.6: Sharing the data of a Passport through a QR-code

4.2.3.2 Verify other identities by scanning other QR-codes

This feature allows verifiers to scan other users’ generated QR-codes. This can be linked

to the availability goal from vision document’s (Appendix F) subchapter 3.4 “Summary of

user needs”. It mentions that a user should always be able to verify themself even if the

issuer provider is experiencing downtime. This goal was achieved using VP and

blockchain technology. After a user has generated a QR-code containing a JWT proof

token, a verifier is able to scan it using the QR-scanner in the Verify window. After the

verifier scans and receives the token, it begins the validation explained in the Handling

ID subchapter. For the proof method, Veramo uses a signed JWT token, as explained in

the previous subchapter, and validates it by verifying that the signature has not been

33

tampered with. Afterwards, it decodes the proof token, generating an object containing

the VCs, VP and DIDs.

Figure 4.7: The screenshots demonstrate the process of verifying a user's Passport

4.2.3.3 Selection of ID data to be used

The idea of this goal was selecting specific data of an ID which the user wants to be

shared. This goal was partially completed. When viewing an ID card, all the data

belonging to the ID is shown. There are switches next to each of the data fields, which

can be selected or deselected. In the current MVP, they do not have any functionality; all

ID data will be used to create a VP when sharing an ID with QR code (see previous

subchapters).

34

Figure 4.8: The share data screen, for combining data from different IDs

4.2.4 Authentication

4.2.4.1 Unlock wallet with password

To ensure security in the application (Aphrodite), it was planned to protect the

application with a password lock. This was changed to a PIN code lock during the

development, since similar applications (e.g., Vipps) use PIN codes. When a user creates

a new wallet and a new PIN code, the code is hashed with salt and stored in the

encrypted storage (see Appendix H). For more information about the encrypted storage

see chapter “Choice of Technology”, subchapter “React Native Encrypted Storage”. When

the Digital ID Wallet application is locked, the user must type the PIN code that was

created at the start. The application is locked every time it is restarted, or when the user

is inactive for a certain period (5 minutes in the current MVP).

35

Figure 4.9: The process of entering a wrong PIN code

4.2.5 Provider registration

4.2.5.1 Register as ID provider with public key and DID

This feature allows issuers to register themself to the ecosystem. This feature was

completed by creating both a UI and an endpoint for issuers that is protected by

requiring an API token. More details can be read in chapter 5 “Server services” and

chapter 6 “Security” in the system documentation (Appendix H).

Figure 4.10: The page where issuers can register themselves to the ecosystem

36

4.3 Administrative results

4.3.1 Project schedule

The project tasks and use cases were scheduled using Gantt diagrams that are displayed

in the project handbook (Appendix E). They were formed early in the project and

continuously updated when finishing and progressing tasks. As displayed in the

diagrams, a few use cases and tasks were never completed or started. Additionally, in

most cases the scheduled timelines did not match the actual timelines, because they

were either started too early/late, or finished too early/late.

4.3.2 Time management and activity distribution

Time management and activity distribution were documented daily and summarized

weekly in the status reports that can be viewed in the project handbook (the project

handbook (Appendix E). The status reports explain what each member worked on and

completed that week, together with a time sheet of the activity distribution. Two pie

charts were generated from the final time sheet to display the total activity distribution,

and total work hours distribution of each member (Appendix A). As seen in the work

distribution chart, most of the time was used on development, report writing and

research. Furthermore, displayed in the work distribution per team member chart, all

members worked approximately the equivalent number of hours.

4.3.3 Agile development

As the team used Kanban during the development, it was created an issue board on

Gitlab (Appendix B). After the MVP was complete, it contained a total of 85 issues where

7 are still open, 70 completed and implemented, and 8 closed.

37

5.1 Scientific

5.1.1 Ecosystem architecture

5.1.1.1 Centralized backend vs fully decentralized ecosystem

Regarding the system being sustainable against security breaches the centralized

backend may serve as a weak link, which can be utilized as an attack vector for potential

threat actors, since hijacking the backend would mean having full control over the

agreements being created. Being able to make the system fully decentralized would

mitigate this issue, by changing the most valuable asset for a threat actor from the

centralized backend to an issuer, meaning that only the agreements of the hijacked

issuer could be manipulated instead of all agreements. However, the backend does

provide value regarding the ability to offload the overhead from managing keypairs when

communicating with the blockchain. Nevertheless, security should always be a priority

therefore a decentralized ecosystem should probably be pursued, making the result of

the project discouraged from being deployed in its current state.

5.1.1.2 Mock issuer

In the result section it is described how the mock issuer Athena has been implemented

for the ecosystem to function. As the issuers in this potential ecosystem already exist,

and may have varying systems, the implementation poses a potential source of error

regarding the result. To clarify, the result is based under the assumption that different

issuers can adapt their systems to the ecosystem, and that it is worth it for them. These

changes are showcased in the chapter Result, subchapter Athena. If either of those

predicates fail the result is invalid, as there will be no available issuers in the system.

5.1.2 Handling ID

5.1.2.1 Blockchain agreement model

The agreements stored on the blockchain were used to prove that an issuer has agreed

and given a VC to a user. The agreement therefore contains both the issuer’s DID and

the user’s DID. To specify the agreement terms, the VC’s DID is added to confirm what is

agreed upon, which is the issued credential. When a verifier fetches the agreement, it

checks that the received VC has an agreement stored on blockchain and verifies it. An

existing security vulnerability in the ecosystem allows everyone to add an agreement to

the blockchain. This allows counterfeit agreements, where users can issue their own VC

containing false information and add an agreement on the blockchain with the

corresponding DIDs. The verifier would not know if the agreement was added by a

malicious issuer or not. A solution to this vulnerability would be to add authorization,

which would remove the possibility of users adding malicious agreements, because only

registered issuers are able to authorize. Another solution could be to register an issuer

with a public key, and store agreements, signed by the issuer's private key, on the

blockchain. On verification, the verifier would fetch the public key from the registered

issuer and decrypt the agreement. This would remove the vulnerability by confirming

5 Discussion

38

both the issuer has been registered, and that the agreement was signed and created by

the issuer.

5.2 Engineering

5.2.1 ID storage

One of the most important features of a digital ID wallet is the ability to store IDs in a

secure and trusted yet easily accessible way. As mentioned in the “Result” chapter, the

resulting product stores IDs in an on-device encrypted local storage, while the

agreements between issuers and holders are stored on the Solana blockchain. By storing

a digital ID on the holder’s device, the system gives the holder full ownership and control

over the ID. However, malicious holders could tamper with the ID data without the

issuer’s approval. VC technology was used to prevent tampering. This technological

choice resulted in creating trust in the holders without any other party controlling the

holder’s data. Issuers can only control the agreements’ validities between themselves

and the holders, which are stored on the blockchain. By not storing IDs on the

blockchain, the system does not expose personal data, ensuring confidentiality, as all

data on the blockchain is public. The agreements are only used as “proof” that a holder’s

VC is valid.

By utilizing DLT, the Digital ID Wallet would ideally provide a constant service with no

downtime. Meaning that an ID holder can use an ID for verification even if the issuer’s

services are unavailable. Since all the agreements are stored on the blockchain, a verifier

can find the “proof” by fetching data from the blockchain. Nonetheless, the current

product has a centralized backend server (Iris) which is used to connect holders, issuers,

verifiers and the blockchain. Ideally, the system could be a fully decentralized ecosystem

(with no centralized backend server). However, there will currently be downtime if the

backend server experiences issues.

The DLT also ensures that the data stored on it is tamper proof. This can be viewed as a

necessity for the system to function properly, since this hinders forging of agreements,

e.g., extending the expiration date of an agreement, or making it valid again after it has

been revoked. One could also change the holder DID thereby changing who owns the

agreement. Regarding the issuers stored on the blockchain tampering could change the

public keys for a known issuer. These public keys are used for verifying a VC, meaning

that a threat actor could change it to its own keypair and therefore sign VCs, while

proving they are issued from a known and trusted issuer. The URL for the issuer could

also be changed, prompting the users to a malicious web site when adding a new ID,

with the purpose of stealing the user’s authentication data, e.g., username and

password. All these potential pitfalls demonstrate the importance of the tamper proof

ability of the blockchain.

The centralized backend server has several important use cases. Firstly, it offers an

interface and API endpoints for ID issuers to register themselves on the ecosystem. This

creates a common pattern in which the issuers can “sign up” to the ecosystem. Secondly,

the Solana account public keys are stored in a centralized PostgreSQL database. The

keys can then be used by anyone in the ecosystem to fetch agreements from the

blockchain. However, the public keys can also be used to invalidate or “revoke” an ID.

This is done by calling the smart contract with a Solana account’s public key, which in

turn will set an agreement’s “valid” binary to “false”, making the agreement invalid. This

means that anyone can invalidate anyone’s ID agreements on the blockchain by calling

39

the correct API endpoint with a correct document DID. This is not an intended feature,

which can be exploited by malicious attackers.

Another problem with the result was that the refresh ID feature was not fully

implemented. The user can update the appearance of the ID card. The ID data can,

however, not be refreshed. During the development process, this feature was less

prioritized because of time constraints and prioritization of more important features.

Transferring a VC from the issuer was done using a WebSocket connection. The

WebSocket server opens after the issuer has created a VC and added an agreement to

the blockchain. The receiving wallet will then connect to the server, collect the VC, and

emit a “received” message. After the server receives the message, it closes. This should

also happen on subsequent requests, however, after closing the server on the first

request it cannot reopen. This means the entire Next JS server must restart for another

wallet to receive their VC. The server closes because the function for initializing the

server uses the VC as an argument, since it is to be transferred to the first client socket

that connects to the server. This feature has security vulnerabilities, by allowing the first

client socket to get the VC, anyone trying to connect to the WebSocket endpoint can

receive it. However, an improvement would be an endpoint known only by the server and

the user, for instance using the holder’s DID in the URL path or authorization header.

Malicious sockets would then not know the WebSocket address and therefore not be able

to steal VC. A second option would be to change the protocol, as WebSocket is mainly

used for multiclient-server communication and not peer-to-peer. A peer-to-peer

connection would also remove the security vulnerability explained above, by creating a

secure connection only between the server and client. Regardless, WebSocket had

multiple JavaScript libraries for implementing the functionality and as the team had

previous experience using the protocol it was selected contrary to another protocol.

5.2.2 ID viewing

To make the application accessible, the user interface had to be easy and convenient to

use. Simplistic ID card displays represent a physical wallet with physical cards. This

provides the user with a sense of familiarity, making the transition from a physical wallet

to a digital ID wallet easier. Scrolling and filtering of ID cards are also simple

mechanisms that ease user experience and are familiar concepts from other applications.

There is a subgoal from the vision document (Appendix F) section 5 “create access

history for each ID” which was not implemented. During the planning process, this

subgoal seemed achievable and useful, but while developing and researching, it was not

prioritized. Firstly, it could be space consuming to save the access history of an ID. There

would be necessary to use a separate database or another storage space for saving

timestamps and other metadata for an ID’s usage. In fact, since the IDs are only stored

in the holder’s on-device storage, and since mobile devices often have a very limited

storage space, the access history could relatively use up a lot of storage space if saved

locally. Secondly, saving access history would defeat the purpose of confidentiality. The

solution is built on the concept of a decentralized system, where there is no centralized

entity controlling the system and collecting user data. By implementing a feature to save

access history, the verifiers could potentially exploit it by requesting ID holders to share

ID access history, thus creating a way of collecting confidential user data. Lastly, the

feature would not provide much information to the user as they already are responsible

for initiating the verification process, and therefore already know the data, time and

40

verifier involved in the process. These arguments show why the subgoal has not been

prioritized in the MVP development.

5.2.3 Verification

QR-codes were simple to implement because the team decided to use a React library for

generating and displaying them. However, a few of the libraries were unoptimized and

used extensive time to generate the codes. This was also caused by the large proof token

generated by the VP. By the end the team found an effective and working library, that

generated the QR-code in a user-friendly time.

The VC standard was utilized for displaying the IDs in a verifiable manner. The Veramo

library used for this purpose might, however, have contained a security breach. It uses a

JWT method in the proof property, which should be signed and verified by a secret,

however, Veramo never documents what secret it uses to sign and verify the JWT token.

If it uses a public secret (likely), anyone can tamper with the proof property by decoding

it, adjusting the data, and signing it again. However, by using the DID resolver, Veramo

could be recreating the DID’s public key. This would allow the verification of the JWT

token if it is signed by the DID’s private key. Moreover, the proof property provided by

Veramo does not contain a public key, meaning if a different private key than the DID’s

private key was used to sign the JWT token, there would be no way of decrypting the

signature. The team decided not to extend the asymmetric signing functionality of

Veramo to ensure that the proof property works as there are only a few encryption

libraries implemented for React Native and it would probably have wasted resources and

time. A proposed solution would be to sign a JWT token with the DID’s private key that

Veramo generates when the DID is created. In the proof of the VC/VP add the JWT token

with the DID’s public key. This would allow the verifier to verify the signature and decode

the token to check that no tampering has happened with the credentials.

An error occurs when trying to display a JWT proof token that is larger than the allowed

limit for QR-codes. Hence, the Share Data window in the application is useless until a

better transfer method is implemented. Therefore, a transfer protocol that allows for

larger amount of data is needed to allow users to combine VCs in a VP. Additionally, QR

has multiple JS libraries for implementing it, which reduced the time spent developing

the physical verification. The selection was also based on not knowing what the QR-code

would contain as the VC ecosystem has multiple proof methods, for instance, RSA

signature, which perhaps would require less data to be transferred from the user to the

verifier. Therefore, solutions would either be attempting a different proof method when

generating a VP, choosing a different transfer protocol or compressing the proof token.

The selection of ID data to be used in a VP, was, as mentioned in the result chapter, not

fully implemented. Veramo had implemented Selective Disclosure Request, however,

researching and reading source code uncovered that it did not use any cryptographic

operations or zero-knowledge proof to generate the VP. Instead, it only linked to the VC,

removing the purpose of Selective Disclosure, which is combining data from different

credentials without exposing the entire credential. Therefore, to implement it into the

ecosystem would require extending the Veramo library. This would require adding

cryptographic operations for zero knowledge proof which manually would have required

time and resources, or use a cryptographic library, however in React Native none of them

had the necessary functionality. Therefore, the team decided to use the time and

resources on other implementations.

41

The feature “Websites and apps can request identification from the wallet” defined in the

vision document (Appendix F), would allow other mobile applications or websites to use

the Digital ID Wallet for identification. The feature would resemble using for instance

Vipps as a payment method when shopping online, however instead of payment, the

Digital ID Wallet would be presented as an identification option. This feature had a low

priority, resulting in it not being implemented in the MVP.

The last subgoal “Users must authenticate themselves before they can share their IDs” in

the vision document (Appendix F), was a feature that was supposed to be added to

increase the security of the mobile application and decrease possibilities for identity theft.

For instance, if a user leaves their device logged into the application, the thief should not

be able to share the application’s IDs without passing the PIN code. The feature would

resemble how Vipps secures transactions using biometrics or PIN code. Even though the

PIN code was created as a React component with the necessary functionality, it was

never implemented to function before each time the user tries to share ID data.

5.2.4 Authentication

An open source React library was first used to create the PIN code authentication scene

for the Digital ID Wallet. The library turned out to be very slow and unresponsive,

pushing the team to create their own implementation of the PIN code authentication

system. As mentioned in the “Result” chapter, the system stores the hashed PIN code

safely and securely in the encrypted local storage. Moreover, the PIN code interface itself

is responsive and user friendly. The typical PIN code systems in other applications have

4-digit PIN codes, whereas the team chose to create 8-digit PIN code. This allows for

10000 times as many PIN combinations. Since the Digital ID Wallet application operates

with digital IDs containing personal user data, it is important that the system is highly

secure. It is also important that the security measurements do not negatively affect the

user experience. An 8-digit PIN code increases security against e.g., brute force attacks

by increasing possible combination amount, while retaining a relatively quick

authentication process, contributing to a positive user experience.

To increase security even further, the Digital ID Wallet application has a time limit for

inactivity. If a user is inactive for 5 minutes, the application will be “locked”, prompting

the user to the authentication scene. The idea behind this mechanism is to possibly

prevent malicious users from accessing the wallet in case the holder of the wallet leaves

the application unlocked. Additionally, if a potential attacker tries to access the wallet,

but types the incorrect PIN code multiple times, the application will be inaccessible for a

period. This mechanism was also implemented to reduce chances of brute force attacks.

It was planned for the Digital ID Wallet to be password and biometric data protected

instead of PIN code. The initial goal was to create a password system, since passwords

are most often more secure than PIN codes (because of length variety and character

quantity). Additionally, a biometric authentication mechanism was also thought to be an

alternative to password authentication. During the development process, the team

decided to switch to PIN code authentication, since similar applications such as Vipps

already use a PIN code system and they are simpler to use and remember. However,

biometric data would probably be the most secure and user-friendly option.

5.2.5 Provider registration

The API key was implemented to ensure only valid and not malicious issuer could be

registered to the system. Therefore, administrators are the only ones authorized to fetch

42

and distribute an API key for an issuer that has requested to be a part of the ecosystem.

To access the API key generation endpoint, the requester must use the administrator

username and password in the authorization header using Basic Authentication. The

reason for only allowing valid issuers is removing the opportunity for users to register

their own issuer and issuing counterfeit VCs that could contain false information.

However, as discussed under the chapter “Discussion”, subchapter “Verification”,

everyone can add agreements on the blockchain and therefore one can still counterfeit

VC.

5.3 Administrative

In retrospect Kanban was a good choice for development method as it allowed the team

to focus mostly on programming the ecosystem. This focus was needed as the team

barely managed to get a functioning MVP together before their set deadline. Having other

development methods that required more documentation would have likely meant that

the team would not have been able to complete an MVP. By having weekly meetings, the

team was able to iteratively adapt to new wishes from the client and guidance from the

supervisor. These meetings were also a valuable tool regarding understanding the

system, as the team had to explain the current implementation to the client and thereby

reflect on what has been created, and if it can be improved.

By experimenting with Hello World repositories for the new technologies the team was

able to uncover fundamental errors in the technology to be used, early in the

development process. E.g., Polkadot and Substrate not working as mentioned in the

method chapter. After the switch to Solana and Anchor, the team was also able to

confirm that the different repositories would be able to communicate with each other

through the Hello World repositories, this along with gaining some experience with the

new technologies, probably brought needed stability and familiarity when the team

started implementing the product, which may have increased the productivity.

By Wireframing in Figma the team was able to easily explore different designs without

development overhead and were also able to create demonstrations of the application’s

proposed flows to the client, thereby gaining feedback before starting the heavier process

of implementing the proposed features into the application. This certainly spared the

team time that would have been wasted on implementing features or flows in the

application that would have been scrapped.

The decision to use diagrams helped the team and supervisor reach consensus regarding

the ecosystem’s different processes. Often there would be confusion during the meetings,

but the diagrams would help clear the confusion. When developing, the diagrams were

utilized for giving the team an overview of the ecosystem, which probably sped up the

process as one could easily see the connection between the general overview and the

detailed implementations.

5.4 Group reflection

As mentioned in the development method subchapter the team aimed to sit together

most of the time, and this was accomplished. Having other team members available to

help during most work hours probably raised effectiveness as one could get an answer

without having to do research. This also allowed the team to plan and discuss solutions

together, in turn creating better solutions or improving existing ones. Along with the

Kanban board this gave everyone a better overview of what every team member was

43

working on at a given time. One issue was that the team neglected to plan code structure

too much, which caused some confusion due to the assigned repositories having different

coding styles. Another contributor to this may have been the time pressure felt by the

team due to MVP being huge, meaning that the team were not too thorough with the

code in merge requests if it worked. The team having fixed work hours probably helped

the team with working the necessary amount required by the project, while also giving all

team members a feeling of a fair work distribution, thereby increasing team morale.

5.5 Veramo

To manage VCs, VPs and DIDs, the team decided to use the Veramo library as mentioned

in the “Theory” chapter. Even though it was selected above implementing a library and

using Affinidi, the team still experienced problems. Firstly, Veramo is a library in public

beta, resulting in some of the functionality being absent or containing errors. The first

problem that occurred was understanding and using the documentation that Veramo

provides developers. They divide the library in multiple plugins that add functionality to

the implementation. As a result, finding documentation for the desired functionality was

cumbersome. An example was setting up the Veramo Agent, which they explain in a

subchapter on their website, however it never mentions how to create it

programmatically (Veramo, n.d.-c). Additionally, after finding a tutorial on how to set it

up, it never showcases how to extend its features or how to add plugins to it, for

instance, how to add VCs functionality. On the other hand, the documentation explains

the expected arguments and their types, which simplifies the use of the functions. On the

contrary, the documentation fails again to explain what it returns and what happens,

which resulted in the team having to read the source code. Secondly, the library has a

confusing API for verifying VCs and VPs. It uses messages and message handlers, for

validating and decoding proof tokens (Veramo, n.d.-b) instead of providing developers

simple functions for validation and decoding of JWT proof tokens and validation of

VCs/VPs. Furthermore, it returns an object that resembles a message which provides

unnecessary information. Regardless, the handlers do provide the necessary functionality

and work as expected. Lastly, the community is small because VC is a new concept,

therefore, the library was not developed enough for its size. Consequently, the library

contains errors and does not provide developers with the ability to adjust functionality by

providing them with options. An example was Veramo not providing the opportunity to

use the already implemented storage functionality in the mobile application for storing

DIDs and keys. The team had to implement the storage, as the provided storage classes

only used memory or database storage. Moreover, this problem could also have been

solved, had Veramo given options for returning the DID’s private key, which was never

provided to the developer. Additionally, because of the small community, the problems

the team confronted had never been seen before and therefore, to solve them, the team

had to debug the library’s source code to find alternatives. To summarize, Veramo

wasted time that could have been spent on resolving bugs and implementing other

functionality.

44

6.1 Conclusion

The problem statement from chapter 1 was to create an MVP for a digital ID wallet

application. It was an open task, meaning that the team was free to choose the

technology themselves to develop the application. Based on the conceptual ideas

described by the European Union, the team decided to create a decentralized solution

using blockchain. The team was driven by the thought of creating something new, while

also learning about new technologies and concepts. Since the team did not have prior

experience with blockchains, it was also decided to create a centralized backend server to

help with the development.

Scientifically, the MVP was developed as an ecosystem that consists of issuers, mobile

application, a backend server, and a smart contract (blockchain) that each store different

data and work together to provide users the ability to fetch, use and display their IDs,

and verify other’s IDs. To ensure that the IDs are not tampered with between entities,

the VC standard and blockchain technology were used. When implemented, issuers will

transfer VCs to holders which present them to verifiers by generating VPs. In addition, an

agreement is stored on the blockchain containing the DIDs from the issuer, holder, and

VC, which removes the vulnerability of counterfeiting IDs. The standard prohibits

tampering by using signatures, while the blockchain is inherently immutable.

Implementing and developing the MVP consisted of fulfilling the functional properties

described in the vision document and adding the functionality for the use cases defined in

the requirement document. Some examples of functionality consist of adding an ID to the

wallet, sharing an ID, or invalidating it. These functions had many underlying

technicalities that also had to be implemented e.g., creating VCs, generating QR codes

consisting of VPs, or fetching blockchain accounts by contacting the smart contract. For

users, the implementations are visualized by a mobile application that communicates

with the blockchain through the backend, and stores the IDs encrypted on device. In the

report, it was discussed how the MVP can be updated in the future by removing the

backend, since ideal solution would be to create a fully decentralized ecosystem.

Administratively, the team used Kanban for agile development. A less agile development

method would have slowed down the development process, contributing to a less

functional MVP. Weekly meetings with the supervisor, wireframing and diagrams helped

the team shape a viable product and adapt the process to changes and difficulties.

6.2 Future work

To allow users to create VPs by selecting claims from different VCs without referencing

them, Selective Disclosure must be implemented. This can be done by building a library

with the necessary functionality or finding an alternative library to Veramo. This will

consist of implementing zero knowledge proof. Otherwise, waiting for Veramo to further

develop their library and Selective Disclosure plugin is necessary.

The current implementation only allows one VC to be sent before restarting the Next JS

server and it contains security flaws as explained in the discussion. Therefore, changing

6 Conclusion and future work

45

the protocol for transferring the VC from the issuer to a wallet should be done. The

proposed solutions are either improving the WebSocket implementation by allowing

multiple VCs to be sent without restarting the Next JS server and ensuring that the

credential is sent to the requester. Another option is using a separate protocol that is

intended for peer-to-peer connections.

Combining two VCs creates a VP with a proof token larger than the maximum limit of a

QR-code. This prohibits users from combining VCs. A proposed solution could be selecting

a different communication protocol like Bluetooth or Apple’s Airdrop for transferring the

proof token. Also, it could be possible to compress the proof token or use a different

proof method that allows for less data being sent.

The current application only allows for physical identification, and therefore there is no

integration with websites and other mobile applications. Implementing an integration

would allow external companies to use the Digital ID Wallet’s functionality for

identification in their applications.

The current MVP of the Digital ID Wallet is dependent on the backend, which handles

connections and communications between holders, verifiers, issuers, and the smart

contract. A feature goal could be to fully decentralize the system by removing the

backend. To achieve this, the issuer and the wallet applications can be made into dapps.

This would most likely also require a new smart contract or upgrades to the current one,

which would run the backend code. Then the user’s Digital ID Wallet dapp could

communicate directly with the smart contract, eliminating the need for a centralized

backend. Issuers would need a dapp for registering themselves to the blockchain, and to

integrate their services with the blockchain. The Digital ID Wallet system itself would not

have a centralized backend, creating a fully decentralized ecosystem.

It was described in the chapter “Discussion”, subchapter “ID storage” that Solana

account public keys are stored in a database in the backend, and that they can be used

to “fetch” and “revoke” agreements from the blockchain accounts. It was also mentioned

that the feature of revoking an agreement with a public key should not be possible.

Regarding the security risks linked to this bug, fixing it should be a priority in the future.

This can be solved in several ways. The first solution could be to add roles based on

DIDs, which then could be used as an authentication method on the smart contract

before revoking an agreement. The second solution could be to privately distribute the

account keypairs to both the issuers and the ID holders after agreement creation. This

means that only the issuer and the holder of a specific document would hold the private

key to the specific account, giving them full access to revoke an agreement. Both

solutions require that the smart contract is updated to perform checks and verifications

of the party that is trying to revoke an agreement. Only the issuers and the holders of an

ID should be able to revoke (or perform any other changes to) the agreement of the ID.

Biometric authentication could be implemented into the application in addition to the PIN

code. Biometrics are safer than PIN codes since biometric data is unique for each person.

Moreover, authentication should happen when accessing or sharing ID data, and not only

when opening the application. Since the Digital ID Wallet works with sensitive user data,

the application must identify if the user accessing or sharing the data is a non-malicious

user. This can be achieved by making the user authenticate with PIN code or biometrics

before each access or share of the ID data.

46

Social impact

The IEEE Computer Society code of ethics principle 1.03 states that one should only

approve software if one has a “well-founded belief that it is safe, meets specifications,

passes appropriate tests, and does not diminish quality of life, diminish privacy or harm

the environment” (IEEE, 1999). There are some aspects to be discussed regarding the

application and privacy. Since the new components of the ecosystem only store personal

data on the owner's device it should be compliant with ethics regarding privacy.

However, as the ecosystem has not been thoroughly tested for security holes, personal

data could potentially be leaked which would violate principle 1.03.

The result of this thesis is an MVP for a digital ID wallet application. The scientific process

creating the MVP did not include user testing. Therefore, one needs to be cautious when

drawing conclusions from the results. The results suggest that a similar ecosystem can

be created and that it works, however, it does not imply anything regarding the usability

or demand for such a system, and therefore nothing about whether the system should be

implemented.

To ensure that the results are scientifically correct, the results should be falsifiable. The

manual tests (Appendix I) contribute towards proving that the results are scientific, by

providing step-by-step manuals for reproducing results and falsifying them. Such proof

mechanism is a strength regarding the scientific process of this thesis.

Another strength of the scientific process is passing the results on to others. Since the

result is an MVP, someone will have to pick up the knowledge that was gained

throughout the thesis to create a finished product. The different system-, requirement-

and project documents aim to communicate the information to the readers necessary to

understand the entire ecosystem that has been created. Additionally, “readme”

documents, installation manuals and manual tests document aim to describe closely what

each part of the system does, and how they can be set up and tested. Lastly, this report

also contributes to communication, providing the necessary theory, results, discussion,

and suggestions for future work.

Sustainability

The United Nations’ SDG 9 is about industry, innovation, and infrastructure. One need it

specifies is improving information technology (United Nations, n.d.-c). By outsourcing

identity management to designated ID providers, services can reallocate resources used

for authentication. Meanwhile, designated ID providers create more secure authentication

than service providers due to it being their source of income. Digital IDs also have the

benefit of allowing holders to prove their identity digitally, enabling distance verification,

thereby adding functionality to the digital infrastructure, and streamlining the overall

infrastructure of a society. E.g., verifying age when online shopping. A service needing to

integrate with multiple ID providers having different systems, however, can negate the

benefits of digital IDs. Nevertheless, a digital ID wallet ecosystem might solve this

problem, by providing a common interface for services to integrate with all available ID

providers. Additionally, it will hopefully create a better user experience which encourages

users to adopt the more secure system. The potential of the ecosystem to create a more

secure and functional digital infrastructure as mentioned above, might be able to

contribute to the United Nation’s SDG 9.

47

During the COVID-19 pandemic, health has promoted the use of COVID-19 certificates,

demonstrating that the holder has been vaccinated, and thereby allowing access to

services. By being able to digitally distribute the certificates, governments have been

able to hinder mass gathering of people collecting physical certificates. This has displayed

the potential of digital IDs in the health sector, where they can be used for future

pandemics or health related claims about individuals. As mentioned in the paragraph

above, the Digital ID Wallet ecosystem might help popularize digital IDs by easing the

use for users and service providers. The United Nation’s SDG 3 mentions a need for

improved health services, both nationally and globally (FN, 2022). Since the ecosystem

might popularize digital IDs which can be utilized to streamline health services, the

ecosystem may benefit the SDG 3.

The Digital ID Wallet solution utilizes blockchain technologies to make the ecosystem

decentralized. As mentioned in the theory chapter, a blockchain uses a consensus

mechanism. Depending on which blockchain and consensus mechanism is utilized to

implement a digital ID wallet solution, it could have negative environmental

consequences. For example, Bitcoin with PoW. This is mentioned as energy consuming in

the theory chapter which with the domination of non-renewable energy in the world can

contribute to environmental catastrophes. An article from “Nature Climate Change” from

2019 mentions that “the computer processing power needed for the Bitcoin network

alone could result in a global temperature rise of 2 °C by 2050” (Howson, 2019). This

counteracts the United Nations’ SDG 13 of hindering climate change (United Nations,

n.d.-a). On the other hand, there are other blockchain technologies with more economic

and environmentally friendly features. For example, the “proof of stake” consensus

mechanism uses less than 1% of the total energy used by PoW (Howson, 2019). Another

example is PoH, which as described in the theory chapter is much faster than PoW, thus

also being more energy efficient.

“Conflict, insecurity, weak institutions and limited access to justice remain a great threat

to sustainable development” is used to describe the United Nations’ SDG 16 (United

Nations, n.d.-d). One kind of injustice humans face is identity theft. By collecting all

identities in one place, the mobile application helps its users keep track of their identities,

thereby minimizing the risk of losing one. Also, the application protects identities with a

PIN code, which lowers the risk of an identity thief exploiting the ids from a stolen

device. Additionally, a user can always call an issuer which can digitally revoke stolen IDs

on behalf of the user, making them worthless. All these features of the ecosystem help

prevent identity theft, which contributes to SDG 16.

The United Nations’ SDG 17 states that “A successful development agenda requires

inclusive partnerships – at the global, regional, national and local levels” (United Nations,

n.d.-b). Digital IDs can potentially benefit international collaboration, since an

international digital ID could be created, allowing for more fluid transfer between

countries, and thereby streamlining communication and exchange of goods and services.

As mentioned regarding SDG 9, the Digital ID Wallet ecosystem might help ease the use

of digital IDs for both ID holders and service providers, and thereby help promote the

use of digital IDs, in turn allowing a potential increase in global partnerships, thus

helping realize the SDG 17.

48

Affinidi. (n.d.). Welcome to Affinidi. Retrieved May 2, 2022, from Affinidi:

https://www.affinidi.com/

Amazon Web Services. (n.d.). What is Decentralization in Blockchain? Retrieved April 29,

2022, from Amazon Web Services:

https://aws.amazon.com/blockchain/decentralization-in-blockchain/

Anchor. (n.d.). Introduction - The Anchor Book v0.24.0. Retrieved May 18, 2022, from

Anchor: https://book.anchor-lang.com/

Andrade, M. (2021, June 28). Overview. Retrieved May 4, 2022, from React-Native-

Sensitive-Info: https://mcodex.dev/react-native-sensitive-info/docs/

Christidis, K., & Devetsikiotis, M. (2016). Blockchains and Smart Contracts for the

Internet of Things. IEEE Access, IV, 2292-2303.

doi:10.1109/ACCESS.2016.2566339

Dr. Wood, G. (n.d.). Polkadot Whitepaper. Retrieved May 2, 2022, from

https://polkadot.network/PolkaDotPaper.pdf

Ethereum. (n.d.-a). Introduction to dapps. Retrieved May 13, 2022, from Ethereum:

https://ethereum.org/en/developers/docs/dapps/

Ethereum. (n.d.-b). Introduction to smart contracts. Retrieved May 2, 2022, from

Ethereum: https://ethereum.org/en/developers/docs/smart-contracts/

European Commission. (2021, June 3). Commission proposes a trusted and secure Digital

Identity for all Europeans. Retrieved May 17, 2022, from European Commission:

https://ec.europa.eu/commission/presscorner/detail/en/ip_21_2663

Expo. (n.d.). Expo secure store. Retrieved May 4, 2022, from GitHub:

https://github.com/expo/expo/tree/main/packages/expo-secure-store

Figma. (n.d.). Free Prototyping Tool to Create Clickable Prototypes. Retrieved May 4,

2022, from Figma: https://www.figma.com/prototyping/

FN. (2022). God helse og livskvalitet. Retrieved May 16, 2022, from FNs bærekraftsmål:

https://www.fn.no/om-fn/fns-baerekraftsmaal/god-helse-og-livskvalitet

Frankenfield, J. (2022, April 27). 51% Attack Definition. Retrieved May 15, 2022, from

Investopedia: https://www.investopedia.com/terms/1/51-attack.asp#toc-how-

likely-is-a-51-attack-against-bitcoin

GitHub. (2021). React Native Encrypted Storage. Retrieved May 4, 2022, from GitHub:

https://github.com/emeraldsanto/react-native-encrypted-storage#readme

GitLab. (n.d.). The One DevOps Platform. Retrieved May 18, 2022, from GitLab:

https://about.gitlab.com/

References

49

Hayes, A. (2021, March 29). Quick Response (QR) Code Definition. Retrieved May 2,

2022, from Investopedia: https://www.investopedia.com/terms/q/quick-

response-qr-code.asp

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004, March). Design Science in

Information Systems Research. MIS Quarterly, XXVIII(1), 75-105.

doi:10.2307/25148625

Howson, P. (2019, September). Tackling climate change with blockchain. Nature Climate

Change, IX, 644-645. doi:10.1038/s41558-019-0567-9

IBM. (n.d.). What is blockchain security? Retrieved May 16, 2022, from IBM:

https://www.ibm.com/topics/blockchain-security

IEEE. (1999). Code of Ethics. Retrieved May 19, 2022, from IEEE Computer Society:

https://www.computer.org/education/code-of-ethics

Jest. (n.d.). Jest. Retrieved May 4, 2022, from https://jestjs.io/

Kjelsberg, R. (2019). Teknologi og vitenskap (2nd ed.). Universitetsforlaget AS.

Retrieved May 18, 2022

Lie, K. S., & Øverby, H. (2022, February 3). blokkjede. Retrieved April 29, 2022, from

Store Norske Leksikon: https://snl.no/blokkjede

Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., & Qijun, C. (2017). A Review on

Consensus Algorithm of Blockchain. IEEE. doi:10.1109/SMC.2017.8123011

Morrison, D. (n.d.). Common software vulnerabilities (1/2). IDATT2503 Sikkerhet i

programvare og kryptografi. Trondheim, Trondelag, Norway. Retrieved May 12,

2022, from https://ntnu.blackboard.com/ultra/courses/_27108_1/cl/outline

Moubarak, J., Chamoun, M., & Filiol, E. (2020, July 1). On distributed ledgers security

and illegal uses. Future Generation Computer Systems, 183-195.

doi:https://doi.org/10.1016/j.future.2020.06.044

MUI. (n.d.). Material UI. Retrieved May 3, 2022, from https://mui.com/

Nätt, T. H. (2022, February 21). trusselaktør. Retrieved from Store Norske Leksikon:

https://snl.no/trusselakt%C3%B8r

Next.js. (n.d.). Next.js by Vercel - The React Framework. Retrieved May 3, 2022, from

Next.js: https://nextjs.org/

Oblador. (n.d.). Keychain/Keystore Access for React Native. Retrieved May 3, 2022, from

GitHub: https://github.com/oblador/react-native-keychain

Parachains.info. (n.d.). Auctions and crowdloans on Polkadot & Kusama networks.

Retrieved May 4, 2022, from Parachains.info: https://parachains.info/auctions

Polkadot. (n.d.). Advanced, Next-Generation Blockchain | Polkadot. Retrieved May 2,

2022, from Polkadot: https://polkadot.network/parachains/

PostgreSQL. (n.d.-a). About. Retrieved May 18, 2022, from PostgreSQL:

https://www.postgresql.org/about/

50

PostgreSQL. (n.d.-b). PostgreSQL: The World's Most Advanced Open Source Relational

Database. Retrieved May 18, 2022, from PostgreSQL:

https://www.postgresql.org/

Prisma. (n.d.). What is Prisma? Retrieved May 4, 2022, from Prisma:

https://www.prisma.io/docs/concepts/overview/what-is-prisma

React Native Paper. (n.d.). React Native Paper. Retrieved May 5, 2022, from

https://reactnativepaper.com/

React Native. (n.d.). React Native - Learn once, write anywhere. Retrieved May 3, 2022,

from React Native: https://reactnative.dev/

Redis. (n.d.). Redis. Retrieved May 3, 2022, from https://redis.io/

Singh, S. (n.d.). What is HTTP Long Polling? Retrieved May 4, 2022, from Educative:

https://www.educative.io/edpresso/what-is-http-long-polling

Socket.IO. (n.d.). Introduction. Retrieved May 4, 2022, from Socket.IO:

https://socket.io/docs/v4/

Solana. (n.d.-b). Solana. Retrieved May 3, 2022, from Solana: https://solana.com/

Solana. (n.d-a). Accounts. Retrieved May 18, 2022, from Solana Documentation:

https://docs.solana.com/developing/programming-model/accounts

Sporny, M., Longley, D., & Chadwick, D. (2022a). Presentations. Retrieved May 3, 2022,

from Verifiable Credentials Data Model v1.1: https://www.w3.org/TR/vc-data-

model/#presentations

Sporny, M., Longley, D., & Chadwick, D. (2022b). Proofs (Signatures). Retrieved May 11,

2022, from Verifiable Credentials Data Model v1.1: https://www.w3.org/TR/vc-

data-model/#proofs-signatures

Sporny, M., Longley, D., & Chadwick, D. (2022c). Verifiable Credentials Data Model v1.1.

World Wide Web Consortium. Retrieved May 2, 2022, from

https://www.w3.org/TR/vc-data-model/

Sporny, M., Longley, D., & Chadwick, D. (2022d). Zero-Knowledge Proofs. Retrieved May

3, 2022, from Verifiable Credentials Data Model v1.1: https://www.w3.org/TR/vc-

data-model/#zero-knowledge-proofs

Sporny, M., Longley, D., Sabadello, M., Reed, D., Steele, O., & Allen, C. (2021).

Decentralized Identifiers (DIDs) v1.0. World Wide Web Consortium. Retrieved May

2, 2022, from https://www.w3.org/TR/did-core/

Stinson, D. R., & Paterson, M. (2018). Cryptography: Theory and Practice (4th ed.).

Taylor & Francis Group. Retrieved May 18, 2022

Substrate. (n.d.). Substrate How-to Guides. Retrieved May 4, 2022, from Substrate:

https://docs.substrate.io/how-to-guides/v3/

Sunyaev, A. (2020). Distributed Ledger Technology. In A. Sunyaev, Internet Computing

(pp. 265-299). Cham: Springer. doi:10.1007/978-3-030-34957-8_9

Supabase. (n.d.-a). APIs. Retrieved May 4, 2022, from Supabase:

https://supabase.com/docs/guides/api

51

Supabase. (n.d.-b). Database. Retrieved May 4, 2022, from Supabase:

https://supabase.com/docs/guides/database

Supabase. (n.d.-c). Introduction. Retrieved May 4, 2022, from Supabase:

https://supabase.com/docs

Thales. (n.d.). Digital ID Wallet - Your credentials at hand (Mobile ID Services). Retrieved

May 18, 2022, from Thales: https://www.thalesgroup.com/en/markets/digital-

identity-and-security/government/identity/digital-identity-services/digital-id-

wallet

TypeScript. (n.d.). TypeScript for JavaScript Programmers. Retrieved May 3, 2022, from

TypeScript: https://www.typescriptlang.org/docs/handbook/typescript-in-5-

minutes.html

Understanding Science. (n.d.). The real process of science. Retrieved May 16, 2022, from

Understanding Science:

https://undsci.berkeley.edu/article/0_0_0/howscienceworks_02

United Nations. (n.d.-a). Climate Change. Retrieved May 15, 2022, from United Nations

Sustainable Development: https://www.un.org/sustainabledevelopment/climate-

change/

United Nations. (n.d.-b). Global Partnerships. Retrieved May 14, 2022, from United

Nations Sustainable Development:

https://www.un.org/sustainabledevelopment/globalpartnerships/

United Nations. (n.d.-c). Infrastructure and Industrialization. Retrieved May 15, 2022,

from United Nations Sustainable Development:

https://www.un.org/sustainabledevelopment/infrastructure-industrialization/

United Nations. (n.d.-d). Peace, justice and strong institutions. Retrieved May 14, 2022,

from United Nations Sustainable Development:

https://www.un.org/sustainabledevelopment/peace-justice/

Veramo. (n.d.-a). Introduction. Retrieved May 4, 2022, from Veramo:

https://veramo.io/docs/basics/introduction/

Veramo. (n.d.-b). Message Handlers. Retrieved May 11, 2022, from Veramo:

https://veramo.io/docs/veramo_agent/message_handlers/

Veramo. (n.d.-c). Veramo Agent. Retrieved May 11, 2022, from Veramo:

https://veramo.io/docs/veramo_agent/introduction/

Wood, G. (n.d.). Substrate and Polkadot. Retrieved May 4, 2022, from Substrate:

https://substrate.io/vision/substrate-and-polkadot/

World Wide Web Consortium. (2022). Verifiable Credentials Data Model v1.1 Publication

History. Retrieved May 6, 2022, from W3C:

https://www.w3.org/standards/history/vc-data-model

Yakovenko, A. (n.d.). Solana: A new architecture for a high performance blockchain

v0.8.13. Retrieved May 4, 2022, from https://solana.com/solana-whitepaper.pdf

52

Zhang, R., & Kin, W. (2020). Evaluation of Energy Consumption in Block-Chains with

Proof of Work and Proof of Stake. Journal of Physics: Conference Series, 1584.

doi:10.1088/1742-6596/1584/1/012023

Zhao, Y. (2018). Research on the Consensus Mechanisms of Blockchain Technology.

doi:10.25236/icefbd.18.063

53

Appendix A: Work distribution charts

Appendix B: Issue board

Appendix C: Task description

Appendix D: Pre-project plan

Appendix E: Project handbook

Appendix F: Vision document

Appendix G: Requirement document

Appendix H: System documentation

Appendix I: Manual testing

Appendix J: Kanban board description

Appendix K: Source code

Appendix

Appendix A: Work distribution charts

Appendix B: Issue board

Appendix C: Task description

Arbeidstittel: Digital ID Wallet App (+ backend)

Hensikten med oppgaven:
These days, every private and public service is either digitalized, or in digitalization phase. That is good. However,
there are underlying fundamental problems to be solved. Variety of services depend on array of physical and/or digital
identities of end-users, and task of end-users to prove their identity with secure trusted credentials is getting
cumbersome. With the aim of simplifying user journey of proofing their identity, the European Union has been working
on the concept of Digital ID wallet. It is conceptually like a physical wallet which holds user´s multiple identities at one
place and let the users (the wallet holders) control over their data, with the freedom to decide exactly what
information to share, with whom, and when. This project is about building minimum viable "Digital Identity Wallet" App
- Android or iOS or Web.

Kort beskrivelse av oppgaveforslag:
There will be two main parts:
- A wallet like Mobile (and/or web App). This app can either be used to initiate verification process (for verifier role) or
let end-users to verify their identities from various identity sources depending on the use-case.
- An orchestration platform at the backend. This will coordinate the integration with identity sources (identity
providers like BankID++) and offer APIs for the front-end mobile or web app.

Some potential scenarios that can be implemented for the MVP are the following.
- Mobile wallet app to be used for age verification purposes at bar entrance or for shopping alcohol at shops.
- Mobile wallet app to be used for driver´s license verification by police or by vehicle leasing companies
- Web/Mobile app to be used for creating bank accounts online or shopping prescribed drugs at pharmacy that has
requirement for ID with photo
- Mobile app to be used for passport, visa or residence permit verification purposes at airports or police offices

The project can also potentially be carried out by two smaller groups either independently or via collaboration. One
can focus on the front-end side and while the other on the backend side. To have smoother progress, either group can
simplify the other group's part by mocking their corresponding interfaces. For example, front-end group can use
simplified backend by mocking third-party integration part or the backend group can use simplified front-end in the
form of raw API calls. Towards the end of the project, the two groups can potentially (if feasible) integrate towards
each other's work.

NB: Industrial collaboration might be possible.

References:
- https://ec.europa.eu/commission/presscorner/detail/en/ip_21_2663
- https://www.finextra.com/blogposting/21140/cryptocurrency-wallet-development--a-quick-guide-for-crypto-wallet-
creation?utm_medium=weeklycommunity&utm_source=2021-11-1

Oppgaven passer for (kryss av de(t) som
passer og skriv evt. en kommentar til
oss):

- Bacheloroppgave
- Masteroppgave, Digital samhandling

Hvilket studieprogram og emne passer
oppgaven til? (spesifiseres ved
bacheloroppgaver)

IDATT2900 – Bacheloroppgave Dataingeniør

Oppgaven passer best for, antall
studenter:

- 2
- 3

Opplysninger om oppgavestiller

Er du fra en bedrift/virksomhet eller er du
student med en egendefinert/selvlaget

oppgave? - Bedrift/virksomhet

Navn på bedrift/organisasjon/student: NTNU

Addresse IDI/AIT

Postnummer 7491

Poststed Trondheim

Navn på kontaktperson/veileder: Surya Kathayat

Telefon: 46392873

Epost: surya.b.kathyat@ntnu.no

Appendix D: Pre-project plan

IDATT2900-077

Digital ID Wallet App
Preliminary project plan

Version <1.0>

IDATT2900-077

Revision history

Date Version Description Author

11.01.2022 0.1 Initial revision, translated into English Diderik, Martin, Rokas

19.01.2022 0.2 Wrote on chapters 1, 2, 3, 4, 6 Diderik, Martin, Rokas

20.01.2022 0.3 Wrote on chapters 1, 3, 4, 5, 6 Diderik, Martin, Rokas

27.01.2022 0.4 Changes after review Diderik, Martin, Rokas

28.01.2022 1.0 Final changes Diderik, Martin, Rokas

IDATT2900-077

Table of contents
1. Goals and conditions 4

1.1 Orientation 4

1.2 Thesis question, project description and performance targets 4

1.3 Effect goals 5

1.4 Conditions 5

2. Organizing 5

3. Implementation 6

3.1. Main activities 6

3.2. Milestones 10

4. Supervision and quality assurance 10

4.1 Quality assurance 10

4.2 Reporting 11

5. Risk assessment 11

6. Appendix 12

6.1 Schedule 12

6.2 Address list 12

6.3 Contractual documents 13

6.3.1 Labor agreement for bachelor-group 13

IDATT2900-077

4

1. Goals and conditions

1.1 Orientation
This was one of the predefined tasks available to select. The team wanted to create an application,

while being able to focus on security and privacy. Based on the interests of the team the task was

convenient. The goal was to create something new which potentially could contribute to identity

digitalization and web decentralization. This meant that the team would also learn something new in

addition to using knowledge the team has gathered throughout the studies.

1.2 Thesis question, project description and performance targets
The main goal of the project is to create a Digital ID Wallet application. The wallet can store various

IDs and be used to verify other IDs. The application will be an Android-, iOS- and/or web app, with a

partially decentralized backend storage system based on blockchain technology. An issuer/ID

provider will be able to register to a centralized part of the system, and then send identity

documents to users using peer-to-peer connections. The transactions will be safely stored on a

blockchain, which can then be used by different verifiers to check if the documents of different users

are valid.

There are many brilliant technologies in this field of digital identity and decentralization. Throughout

the project, the team will describe the different choices and approaches of technology use. What

technologies can be used? How will user identities be represented and stored? Will there be a need

to use a centralized database and/or a decentralized blockchain? How can digital identities be used

for verification using mobile devices? Can a user share certain data of the ID without exploiting

unnecessary information?

Various performance targets are set to help achieve the goal:

• Application follows OWASP top 10.

• Frontend can run on iOS and Android.

• Backend test coverage of at least 50%.

• Every API endpoint at backend is documented (Swagger).

• The application can be used to identify oneself.

• The application grants users control over their data.

• The application can be used for age verification.

• The application will be free.

• The application will store all identity documents encrypted.

• The application will offer protection of identity documents through pin code or biometrics,

that when successful will trigger the decryption of the identity documents.

• The application will be RESTful.

• The application can create a QR-code for an ID.

• The application can verify another user’s QR-code.

• The application can display all registered ID providers.

• The application can add, remove, and refresh an ID from a registered ID provider.

IDATT2900-077

5

• ID providers can register themselves to the application with DID and public key.

• The application will be based on decentralization, where all ID transactions between ID

providers and users will permanently be saved as blocks in a blockchain.

• Verifiers will be able to check validity of IDs by accessing the public blockchain and checking

if the provider and owner combinations exist. If it exists, then checking if the ID has been

revoked is also possible.

• The application will allow web services the opportunity to ask the app to verify a user

instead of having to create and maintain a user system.

• The theory section of the main report will contain descriptions of all technology used that

are more advanced than a sophomore Computer science student would know. The section

will refer to general technology and not implementations e.g., writing about a programming

language instead of Java.

1.3 Effect goals
Since society today is moving towards a digitalized world, identity digitalization has also become an

important topic. Therefore, the goal of this project is to simplify user identification procedures by

creating a minimum viable digital ID wallet application (product). The product would contribute

towards:

• Development of the European Digital Identity Wallet concept proposed by the European

Union.

• Replacement of society’s dependency of physical identification documents, contributing

towards a more efficient and secure society, where the users have full authority of their

data.

• Increased security. Physical identification documents are prone to falsification, theft, and

loss. A digital ID wallet can resolve these issues.

• Sustainability. Digital IDs would mean less use of plastic and paper for creation of ID cards.

1.4 Conditions
There is currently no need for money or equipment. If the application is to be deployed on a

blockchain in the future, money to invest in a valid cryptocurrency for paying fees may be needed.

However, the application will be using test blockchains during development to avoid transaction fees

and other expenses. The duration of the bachelor thesis is around 18 weeks (about 4 months). This

means that the conditions of the project will be set by the time available.

2. Organizing
NTNU/IDI is the sole stakeholder in the project.

IDATT2900-077

6

3. Implementation

3.1. Main activities
This subchapter describes the main activities that will be done by the team during this project. For

each activity, the subpoints describe what is done, why it is done, how it is done, when it should be

done, and if there are any prerequisites. All team members will contribute to every activity.

• Labor contract

o This consists of writing a document containing goals to be pursued and rules to be

followed during the project, resulting in a labor agreement.

o The contract is the first thing that is written in the project.

o The labor contract’s purpose is to serve as a guideline for the agreed upon goals and

rules.

o To complete the activity the team will sit together and draft the document.

o There are no prerequisites to completing the document other than having reached

consensus regarding the interpretation of the task.

o The result of the labor contract is a document containing agreed upon goals and

rules for the project.

• Gantt diagram

o The activity consists of scheduling all activities.

o This is created for the team to get an overview of the project schedule and set

deadlines for the various activities.

o To complete the activity, the team sits together and plans the schedule.

o This is done early in the project.

o There are no prerequisites for this activity.

o The activity results in a Gantt diagram displaying the start and duration of each

activity.

• Vision document

o This consists of writing a document explaining the vision for the product, by

describing what properties the product is envisioned to have.

o This is done to serve as a guideline for the vision for the product, its uses, and

features.

o Vision document is written using a template provided from the university.

o The document is written early in the project.

o There are no prerequisites for writing the document.

o The activity results in a vision document explaining the vision for the project.

• Pre-project plan

o Writing this document consists of describing the plan for the project. This means

description of topics such as conditions, implementation, milestones, supervision,

and risk assessment.

o This document is written to serve as a guideline for the project’s process and goals.

o Pre-project plan is carefully written together in the team so that all team members

are included in project planning, and that all come to a mutual understanding and

agreement of the project’s process.

o The plan is written early in the project, during weeks 2-4.

IDATT2900-077

7

o Before writing the plan, the labor contract must be signed by all parties included.

The Gantt diagram must also be completed.

o The activity will result in a plan that can be followed by all parties and referred to

during the project.

• Requirement documentation

o Writing the requirement document consists of writing a document containing

requirements for the final product.

o The activity is done to be able to easily check that all requirements have been

accomplished later, as well as quickly providing information about the product

capabilities to someone unfamiliar with it.

o To complete the activity, firstly, the team drafts the document together. Thereafter,

if needed, the document is updated throughout the project based on feedback from

the supervisor and the client.

o The first draft of the document should be done during weeks 3 and 4.

o Before starting the activity, a mutual understanding about the goals of the project

needs to be reached with the supervisor and client through completing the vision

document.

o The resulting documentation created from this activity will help guide the

development process by listing the requirements for the application, while also

serving as a summary of the applications capabilities.

• System documentation

o This activity consists of describing the system (product) that was created throughout

the project.

o The system documentation is necessary to understand the details of the system.

Such documentation is useful for everyone who wishes to utilize or understand the

system.

o This is achieved through describing the structure, security, installation, and other

necessary topics. Different models and diagrams are also utilized to better describe

the system that has been created.

o This document should be written towards the end of the project.

o The prerequisite is that the product (the system) has taken shape, which means that

some parts of the system are finished so that they can be described in the system

documentation.

o The result of this activity is a document describing the completed product.

• Oral presentation during project

o This activity consists of presenting the project and its progress to another team,

their supervisor, and this team’s supervisor.

o This activity gives the team an opportunity to display the progress made. Moreover,

the other team members can learn something from this project, or even give some

feedback. Likewise, this team can learn something from the other team’s

presentation. This is also an opportunity to discuss progress with both supervisors.

o This activity is done together with another team, where posters (described in the

next point in the activity list) are used to display the project’s progress.

o The presentation is being held in week 13.

IDATT2900-077

8

o The prerequisites are that the team worked with the project before week 13, such

that the team has some progress to present and share with the other team. A

presentation with a poster must also be created beforehand.

o The activity will result in knowledge gained about how other teams are working on

the thesis and being able to display the progressions made.

• Poster

o The activity consists of creating a poster containing information and images of the

product’s current state.

o The poster activity is an opportunity for the team to present the current

implementations of product for others and the supervisor. The team will have to

explain their concepts and theory to others and argue for their decisions.

o The team will design a poster containing product images and information.

o Making the poster will happen from week 12 to week 13.

o Before the poster can be created, the development of the product must be

underway.

o The activity will result in a poster about the project’s state.

• Oral presentation video of the bachelor thesis

o This consists of creating a video of the team's oral presentation.

o The oral presentation should contain simplifications of each topic from the report,

resulting in a summary of the project. This is to show others what the team has

created throughout the project, and how the team was working to achieve it

(process). The oral presentation also creates an opportunity for all team members to

show that they understand their work by being able to freely talk about the project.

o The team will create slides consisting of relevant topics from the project. The team

will then present the slides and record it.

o The video will be created at the end of the project, during weeks 20-21.

o The product and main report need to be finished before creating the video.

o The finished video will contain a presentation of the project.

• Theory of science and method

o The activity consists of both live and pre-recorded lectures, films and reading

material.

o The activity is necessary for the team members to gather necessary knowledge for

authoring a scientific main report.

o By attending the lectures and reading the assigned material the team will complete

this activity.

o The activity will be completed during the first two weeks of the project.

o There are no prerequisites for this activity.

o The results of the activity will be reflected in the scientific aspects of the report.

• Report writing

o The activity consists of creating a report fulfilling all the requirements given in the

main report template.

o This must be done because it will provide the necessary knowledge for others to

replicate the process along with learning from the results of the project.

IDATT2900-077

9

o To complete the activity the report will be continuously updated while developing

the application. The theory section, however, may be started on before

development. During the writing of the report feedback will be gathered from the

supervisor to continuously improve the report.

o Report writing will start in week 4 and last to 20.

o To begin with authoring the report the labor contract, requirement document, Gantt

diagram, theory of science and method, and the pre-project plan all must be

completed.

o This activity will result in a 30-50 page long main report containing theory, method,

result, observations, conclusions and more.

• Development

o This consists of developing the planned system.

o The purpose of this activity is to develop a product.

o Development will be done through the Kanban method.

o Development will start in week 4 and end week 18, since the last weeks will be spent

solely on the report.

o Before development can begin, the requirement document needs to be completed

along with potential research and planning.

o The development process will result in the completed product as well as knowledge

to be utilized in the main report.

• User testing

o This consists of collecting feedback from potential users about the product.

o The activity should be done at least twice, first with the wireframe and afterwards

with a usable version of the product.

o The user tests start at the earliest when the first draft of the wireframe is

completed. As a usable version of a product is created more rounds of user tests can

be completed.

o A round of user tests should always occur early enough to make potential changes

before the thesis deadline.

o An interview plan/schema needs to be created before testing can start.

o After a round of interviews have been completed and the schemas have been filled,

they will be stored in the “User testing” folder in Microsoft Teams.

o The feedback from the interviews will hopefully contribute to improving the

product.

• Research

o The research activity is the process of gathering necessary knowledge to complete

the project.

o Research is needed for developing the product and being able to make the best

decisions possible regarding the product by understanding it.

o To conduct the best research possible peer-reviewed articles will be used as sources

of knowledge, alongside interviews with professionals.

o The research process will span the entirety of the project except for the last weeks,

when the focus will be on finalizing the report.

IDATT2900-077

10

o To be able to conduct necessary research the team needs an understanding of what

knowledge is necessary, therefore an agreement on technology to be used and an

overall architecture of the product must be reached with the client and supervisor.

o The resulting knowledge gathered from the research will be distributed in the theory

section of the main report as well as reflected by the implementation of the final

product.

3.2. Milestones
• 28.01.2022: Preliminary project plan delivery deadline.

• 28.03.2022: Delivery deadline for poster.

• 28.03.2022 - 03.04.2022: English presentation of project.

• 20.05.2022: Delivery deadline for thesis and process documentation.

• 27.05.2022: Delivery deadline for digital presentation.

4. Supervision and quality assurance

4.1 Quality assurance
Document (including videos, posters, and more) quality assurance policy:

• All members must ensure the quality of all documents.

• All documents should be continuously reviewed.

• All documents must follow the templates provided.

• Ask supervisor for advice if something is uncertain.

Development quality assurance policy:

• Code should document itself if possible.

o All variables should have descriptive and self-explanatory names.

o Functional cohesion should be strived for, meaning each function only completes

one action.

• If possible, immutable objects should be used to hinder unexpected side effects.

• All complex code needs to be documented.

• Team members must give constructive feedback to each other's work.

• At least one team member needs to approve a pull/merge request.

• All backend code containing logic (e.g., no data classes) must have automated unit tests at

50% code coverage minimum.

• All API endpoints must be tested using integration testing.

• Continuous integration

o All tests should be run during a pull/merge request.

o A linter and formatter should run on all code possible.

IDATT2900-077

11

4.2 Reporting
The team reports to Surya Kathayat, who is both the client and the supervisor for this project, during

meetings every Friday after 13:00.

Other necessary documents and products will be submitted to NTNU (see “Milestones” subchapter

3.2).

5. Risk assessment
The risk assessment table below shows different risk actions that can occur during the project, and

their corresponding probabilities and impacts (measured on a scale from 1-10, 10 being the highest

probability or the biggest impact). The significance column corresponds to the product of the

action’s probability and impact.

Action Probability Impact Significance Measures

Obligatory
military service

2 9 18 If possible, the person in question
must work digitally. If this is not a
solution, then the person and the
team must discuss this with the
project supervisor or study advisor.

Illness 8 4 32 An ill person must either rest or
work from home through digital
tools until they are healthy,
depending on the level of illness.

Disagreement 8 2 16 The disagreement will be handled
like defined in the Labour
Agreement under Interaction,
subpoint D “Disagreements, breach
of contract.”

Conflict between
members

1 6 6 The conflict will be handled like
defined in the Labour Agreement
under Interaction, subpoint D
“Disagreements, breach of
contract”.

Loss of
documents,
code, or any
other necessary
data

1 10 10 To prevent this, everything must be
saved online. Additionally, the
team members are responsible for
making weekly back-ups on
hardware. If this action does
happen, the team must discuss
further actions with the supervisor.

Social restrictions 6 1 6 Work from home.

IDATT2900-077

12

6. Appendix

6.1 Schedule
The following Gantt diagram visualizes the timeline of all activities that are necessary for the

completion of this project. Each period represents a week-number, and the week columns marked

with red color represent the planned time needed to complete the corresponding activity.

6.2 Address list
Name Firm Telephone

number
Email address Address Postal

code

City

Bliudzius,
Rokas

None +47 967
24 930

rokasb@stud.
ntnu.no

Jakobslive
gen 49B

7059 Trondheim

Kathayat,
Surya

NTNU +47 463
92 873

surya.b.kathya
t@ntnu.no

IDI/AIT 7491 Trondheim

Hagen,
Martin Slind

None +47 462
12 453

martsha@stud
.ntnu.no

Odd
Brochman
ns veg 53

7051 Trondheim

Kramer,
Diderik

None +47 948
93 643

diderikk@stud
.ntnu.no

Vegamot 1 7049 Trondheim

IDATT2900-077

13

6.3 Contractual documents

6.3.1 Labor agreement for bachelor-group

Labor agreement for IDATT2900-077
Members: Bliudzius Rokas, Hagen Martin Slind, Kramer Diderik

Introduction

This labor agreement uses a set of typical goals, task distributions, procedures and guidelines for

student work interactions. The labor agreement is filled with perceptions of what is meant with

these and how to achieve them.

Items are added or removed depending on evaluation of adaptation to the task.

Goals

Effect goals

Since society today is moving towards a digitalized world, identity digitalization has also become an

important topic. Therefore, the goal of this project is to simplify user identification procedures by

creating a minimum viable digital ID wallet application (product). The product would contribute

towards:

• Development of the European Digital Identity Wallet concept proposed by the European

Union.

• Replacement of society’s dependency of physical identification documents, contributing

towards a more efficient and secure society, where the users have full authority of their

data.

• Increased security. Physical identification documents are prone to falsification, theft, and

loss. A digital ID wallet can resolve these issues.

• Sustainability. Digital IDs would mean less use of plastic and paper for creation of ID cards.

Performance targets

• Application follows OWASP top 10.

• Frontend can run on iOS and Android.

• Backend test coverage of at least 50%.

• Every API endpoint at backend is documented (Swagger).

• The application can be used to identify oneself.

• The application grants users control over their data.

• The application can be used for age verification.

• The application will be free.

• The application will store all identity documents encrypted.

• The application will offer protection of identity documents through pin code or biometrics,

that when successful will trigger the decryption of the identity documents.

• The application will be RESTful.

IDATT2900-077

14

• The application can create a QR-code for an ID.

• The application can verify another user’s QR-code.

• The application can display all registered ID providers.

• The application can add, remove, and refresh an ID from a registered ID provider.

• ID providers can register themselves to the application with DID and public key.

• The application will be based on decentralization, where all ID transactions between ID

providers and users will permanently be saved as blocks in a blockchain.

• Verifiers will be able to check validity of IDs by accessing the public blockchain and checking

if the provider and owner combinations exist. If it exists, then checking if the ID has been

revoked is also possible.

• The application will allow web services the opportunity to ask the app to verify a user

instead of having to create and maintain a user system.

• The theory section of the main report will contain descriptions of all technology used that

are more advanced than a sophomore Computer science student would know. The section

will refer to general technology and not implementations e.g., writing about a programming

language instead of Java.

Roles and task management

Not following the responsibilities for one's role results in one violation of the contract.

A. Team leader (Martin)

Responsible for leading the team. This includes looking after the team and resolving

disagreements if there are any.

B. Document manager (Diderik)

Responsible for handling all documents, document version control, needs to save a copy of

all documents every Friday.

C. Quality assurance manager (Rokas)

Responsible for reading through all documents and making sure that the quality is as

expected, and all conditions are met. Responsible for delivering all documents on time.

D. Meeting conductor (Martin)

Responsible for the meeting agenda, conducting the meetings and inviting all parties to

meetings via meeting requests.

E. Meeting summary writer (Rokas)

Responsible for taking notes during meetings and recording them.

IDATT2900-077

15

Procedures

A. Meeting invitation

Schedule meetings through Microsoft Teams. Store each meeting invitation, use the form

from the project handbook.

B. Meeting summary

Use the form from the project handbook.

C. Notification when absence or incidents

Applies only to mandatory attendance e.g., meetings or working sessions. Write a message

in the Microsoft Teams group chat.

D. Document management

Documents are saved and shared between everyone in Microsoft Teams. Additionally, the

Document Manager is responsible for back-up saving the documents on personal hardware

as an extra safety measure.

E. Submission of group work

Everyone in the group should proofread the final version of the document(s) in question at

least twice. Submission done by quality assurance manager.

F. Microsoft Teams

Strictly for professional use. Used to hold meetings as well as to store documents.

G. Time sheets

At the end of the day each team member records what they have done at each point in time

in the “Time sheet team_member_name”.docx file.

H. Kanban board

A number cap should be added to each column to hinder bottlenecks. Tasks should be pulled

from left to right when the number cap is not reached in the destination column. Tasks are

ranked by priority based on their vertical ordering in each column (highest ranking as most

important).

Interaction

A. Attendance and preparation

Expected workhours are 8 per weekday with a core time from 09:00-15:00 with room for

change and exceptions, such as lectures/work in other courses, training or matches. In the

case of training or matches it is expected that the work hours missed are later replaced by

working overtime. Always aim to be 5 minutes early to meetings. 30-minute lunches are

allowed. Breaks are allowed if the necessary work gets done in time. All relevant procedures

IDATT2900-077

16

for an event are expected to be completed before the event starts. When all work is done

the expected workhours are no longer mandatory and the team members can therefore

take time off.

B. Presence and commitment

Using a PC for entertainment is only allowed during breaks. When other team members

depend on communication to get work done, giving them the required attention is

mandatory. Meaning taking a break or listening to music instead of them is not permitted.

Members are expected to be committed to the project during workhours. When the

expected work is not completed due to a lack of commitment, then it is expected that the

team member uses their spare time to catch up.

C. How to support each other

Always show up to work with a positive attitude. Make sure feedback is constructive and not

negative. Make sure to complement team members on task related achievements. Always

be open and available to help others.

D. Disagreements, breach of contract

a. If a disagreement that is not listed in the contract occurs, then each team member

should make a case for their opinion and listen to all others’ opinion, thereafter,

voting shall precede. Everyone must vote for one option. If no option wins, then the

team leader makes the final decision by carefully considering all options. In cases

where the team leader is unable to decide, or if the team leader is one of the two

parties in the disagreement, then the supervisor is contacted for a final decision.

b. A breach of contract is registered in the violations document. Every 3 violations

result in buying the rest of the team at least 2 pizza slices each. After 10 violations

talk to the team member about contract breaches. After 15 violations talk to the

course coordinator about excluding the team-member from the project.

IDATT2900-077

17

Signatures

Bliudzius, Rokas

__

Hagen Martin, Slind

__

Kramer, Diderik

Appendix E: Project handbook

The project handbook is not attached to the main report but is delivered privately to the

supervisors as “Project handbook.pdf” file.

Appendix F: Vision document

IDATT2900-077

Digital ID Wallet App
Vision document

Version <1.1>

ii

Revision history
Dato Version Description Author

11.01.2022 0.1 Initial changes Diderik, Martin, Rokas

12.01.2022 0.2 Translated to English, started writing

chapter 1, 2, 3, 5, 7

Diderik, Martin, Rokas

13.01.2022 0.3 Finished writing chapters 1, 2, 3, 5, 7,

wrote chapters 4, 6.

Diderik, Martin, Rokas

18.01.2022 0.4 Added more information in chapters 1, 2, 3,

4, 5, 6

Diderik, Martin, Rokas

19.01.2022 0.5 Added some subpoints and figures in

chapter 4

Diderik, Martin, Rokas

27.01.2022 1.0 Small changes after review. Final draft. Rokas

20.05.2022 1.1 Needed to change picture DPI, added figure

table, changed reference style

Rokas, Martin

iii

Table of content

1. Introduction 5

2. Summary of problem and product 5

2.1 Summary of problem 5
2.2 Summary of product 5

3. Overall description of stakeholders and users 6

3.1 Summary of stakeholders 6
3.2 Summary of users 6
3.3 User environment 6
3.4 Summary of user needs 7
3.5 Alternatives to our product 10

4. Product synopsis 10

4.1 The product's role in the user environment 10
4.2 Prerequisites and dependencies 12

5. Functional properties of the product 12

6. Non-functional properties and other needs 13

7. References 13

iv

 Figures

Figure 4.1: Examples of user environments where the product can be used by a common application user 11

Figure 4.3: Examples of user environments for a verifier. .. 12

Figure 4.4: Examples of user environments for an identifier... 12

5

1. Introduction

This document explains the ideas behind a Digital ID Wallet application. The vision for this project is to create a

minimal viable product for such an application, which should be available on Android, iOS and/or web.

2. Summary of problem and product

2.1 Summary of problem

Problem with having to carry different physical IDs for different purposes or

relying too much on centralized digital ID providers and ID

issuers

concerns everyone with an ID

resulting in forgetting the required ID, identity theft through forgery and

stealing, unwanted ID-data being leaked, being tracked by ID

providers

a successful solution will store all different IDs well arranged in one place, be

unforgeable, give the user full control of their data, and

overview of the shared IDs.

2.2 Summary of product

For users

needing to keep track of their IDs, keep them theft proof, keep their

usage private from ID providers and access their IDs without

downtime

Digital ID wallet is a mobile application

able to safely store different identity documents in one place such that a

user may easily find and access an ID at any time even if the

provider is having downtime. Additionally, it should be able to

hinder identity theft through protecting the user’s identity

documents with passwords or biometrics, while being

cryptographically secure hindering data exposures that could

lead to forgery. As well as empowering user privacy through

giving the user full ownership of the registered IDs.

contrary to having one physical item for every ID that can be stolen or

falsified and easily distributed to unwanted parties, or being

tracked by a digital ID provider

our product offers on device safekeeping of digital IDs, the possibility to use the

app for verification even during ID provider downtime, and an

overview for the user to control ID access.

6

3. Overall description of stakeholders and users

3.1 Summary of stakeholders

Name Elaborate description Role during development

NTNU/IDI Supervisor and client Continuously provides and updates conditions

for the project such as time, money, and

features. Gives feedback on current

implementations.

3.2 Summary of users

Name Elaborate description Role during

development

Represented by

User/Owner

Issuer/ID provider

Verifier/Service

provider

Person with digital

identification

document(s) stored in

the application.

A provider of an ID a

user can add to their

wallet.

An entity that provides

a service given that it

can verify the

necessary data about

the user. E.g., verify

valid age.

Be a part of user testing.

None (will be mocked

during testing).

None (will be mocked

during testing).

Self

Self

Self

3.3 User environment

The project solution can solve problems in many different user environments for different types of users (see 3.2

Summary of users):

User/Owner:

• Circumstances where different identification documents are needed for different verification purposes. This

may be relevant in scenarios such as:

o Airport check-ins

o Police station visits

o Liquor and drug store checkouts

o Driving (driver's license)

7

o Bar entrances

• Online identification while logging in or other online activities such as shopping.

• Identity theft when carrying physical ID.

• Forgetting physical ID which can cause inconveniences.

• Unwanted sharing of physical IDs or digital copies of them.

• Accessing/using identification document while ID provider services are down.

• Using digital identities while not being tracked by ID provider.

Issuer/ID provider:

• Providing ID for online verification to improve on the current username and password system.

Verifier/Service provider:

• Verify another person’s ID, e.g.:

o Cashier selling alcohol

o Bouncer checking entree's age

o Employer checking employees’ IDs

3.4 Summary of user needs

Needs Priority Concerns Current

solutions

Proposed solutions

8

Free

Accessible

Secure and trusted

Confidentiality

Wide range of uses

Log

High

High

High

High

Medium

Low

Users should not

need to pay for

the services.

All users that are

willing to use the

service should be

able to do that

easily.

The user should

be the only party

that is able to

access and

manage its own

account.

The user should

be able to control

access to each ID

separately.

Users can store

various kinds of

IDs and

documents that

can be used in a

wide range of

scenarios.

Users can see a

log of all usage of

their IDs.

None

None

None

None

None

None

Government investments for paid

services, such that the application can be

free for a common user.

Available on all platforms and follow

WCAG guidelines to make it universally

accessible.

Follow OWASP top ten, implement

secure standards e.g., OAuth 2.0.

Store documents encrypted on device.

Decryption(access) should only occur

after biometrics or password has been

correctly given.

Create a general-purpose application that

can be applied to any form of

identification, thus storing a wide range of

different document types.

On the device, store all usage of IDs, and

display them.

9

Availability

Divisibility of data

Manage IDs

High

Medium

High

The user should

always be able to

verify themselves

even if the ID

provider has

experienced

downtime.

A user should be

able to decide

what part of an ID

should be shared.

A user should be

able to add,

refresh and

remove IDs.

None

None

None

Using decentralized blockchain

technology to store necessary information

about ID providers and storing necessary

ID documents on device.

None currently.

Store every ID from issuers on device,

users can add new IDs by connecting with

identity providers, refresh by connecting

again, and remove by removing them

from the device.

10

An issuer registering

availability

High An issuer should

be able to register

themself as an

available

provider.

None

Create an endpoint for issuers to register

themself with a DID and a public key and

store them using decentralized blockchain

technology.

In-app verification

Distance verification

High

High

A user should be

able to verify the

ID of other users

in physical

situations.

An online service

should be able to

request

verification

None

None

Application generates a QR code for a

verifier to scan resulting in them checking

if the signature of the ID is valid.

Frontend app offers a way or online

services to request proof of ID from it.

3.5 Alternatives to our product

• A mobile application called Digital iD (Post u.d.) that encrypts and stores personal information. It was

developed by Australia Post and can be used as a passport in Australia, driver license and more.

• Another mobile application called Yoti (Yoti u.d.), stores staff ID cards, student ID cards and professional

certifications. The application uses the picture of a user’s passport to determine their digital ID.

Additionally, Yoti has the option to store passwords. It uses QR code for validation.

• Another environment where a user stores its own digital identity is called Digidentity (Digidentity u.d.). It

makes it easy and safe to log in to governments and companies, with a possibility to also link various

products to the environment.

4. Product synopsis

4.1 The product's role in the user environment

User/Owner:

• Users can access their data through a mobile or web application.

• The product should be able to store and manage different identification documents for different purposes on

a single mobile application. The user can then use these identifications when needed.

• Identification documents stored on the application can be used for online and physical verification.

• Users can choose what ID data they want to share.

Issuer/ID provider:

• An issuer is always able to register themself as an ID provider.

• An issuer can experience downtime without affecting the application.

11

Verifier/Service provider:

• The application and its verification use case should always be available.

• The application can be used to verify other users’ IDs both digitally and physically.

Figure 4.1: Examples of user environments where the product can be used by a common application user

12

Figure 4.2: Examples of user environments for a verifier.

Figure 4.3: Examples of user environments for an identifier.

4.2 Prerequisites and dependencies

• None

5. Functional properties of the product

• ID storage

13

o Add ID

o Remove ID

o Refresh ID

o Encryption of ID

• ID viewing

o Card display

o Create access history for each ID

o Search and filter IDs

o Scroll through the IDs

• Verification

o Generate QR-code to prove one's identity

o Verify other identities by scanning other QR-codes

o Websites and apps can request identification from the wallet

o Selection of ID data to be used

o Users must authenticate themselves before they can share their IDs

• Authentication

o Unlock wallet with biometrics

o Unlock wallet with password

• Provider registration

o Register as ID provider with public key and DID.

6. Non-functional properties and other needs

• Secure

o All personal data is stored on-device.

o All personal data is encrypted.

o ID transactions from providers to users are forever stored in a blockchain.

• Reliable

o Users should always be able to fully utilize the application.

• Performance

o Users can access their data efficiently.

• Privacy

o Application should act as a protecting layer hindering ID providers from tracking users.

7. References

Digidentity. n.d. Digidentity. Accessed January 12, 2022. https://www.digidentity.eu/.
Post, Australia. n.d. DigitaliD. Accessed January 12, 2022. https://www.digitalid.com.

Yoti. n.d. Yoti. Accessed January 12, 2022. https://www.yoti.com/.

14

Appendix G: Requirement document

077

Digital ID Wallet App
Requirement documentation

Version <1.9>

ii

Revision history
Date Version Description Author

13.01.2022 1.1 Initial revision and translate to English Diderik, Rokas, Martin

21.01.2022 1.2 User stories and sequence diagram added Diderik, Rokas

03.02.2022 1.3 User stories, domain model, sequence

diagrams, prototypes

Rokas

10.02.2022 1.4 Enumerated user stories Rokas

22.04.2022 1.5 Updated user stories Rokas

05.05.2022 1.6 Updated domain model and table of

contents

Martin

06.05.2022 1.7 Updated page numbers for table of contents Martin

11.05.2022 1.8 Updated the DPI for the images included to

310, also updated the sequence diagrams,

added captions to figures. Added

subheadings and structured the table of

contents

Martin

18.05.2022 1.9 Added page numbers Rokas

iii

Table of contents

Figures iv

1. Introduction 5

2. User Stories 5

2.1 User/Owner 5
2.1.1 Case 1: 5

2.1.2 Case 2: 5

2.1.3 Case 3: 5

2.1.4 Case 4: 5

2.1.5 Case 5: 5

2.1.6 Case 6: 6

2.1.7 Case 7: 6

2.1.8 Case 8: 6

2.1.9 Case 9: 6

2.2 Verifier 6
2.2.1 Case 10: 6

2.3 Issuer 7
2.3.1 Case 11: 7

2.3.2 Case 12: 7

2.4 Developer 7
2.4.1 Case 13: 7

2.4.2 Case 14: 7

3. Domain model 8

3.1 Sequence diagrams 8

4. Prototypes 11

4.1 Wireframes 11
4.2 Storyboards 11

iv

Figures

Figure 3.1: Domain model describing the problem domain .. 8
Figure 3.2: Sequence diagram of physical verification.. 9
Figure 3.3: Sequence diagram of issuing an ID ... 10
Figure 4.1: Storyboard describing applications use case during interview .. 11
Figure 4.2: Storyboard displaying physical verification .. 12

5

1. Introduction

This document contains technical requirements that describe how the final product will be. The document is used as

a guidance during development and is consistently updated if any changes in technical requirements occur. The

changes to the document can be seen in the revision history. To describe the technical requirements, the document

contains user stories, as well as different models and prototypes.

2. User Stories

2.1 User/Owner

2.1.1 Case 1:

As a user
I wish to create a wallet

So that I can use the application and store my IDs.
Requirements:

• Must create an 8-digit code.

• Device is assigned a unique holder DID.

• If an error occurs, the user will be noted.

• User sent to home page when wallet creation was successful.

2.1.2 Case 2:

As a user
I wish to authenticate

So that I can use the application.

Requirements:

• The user has already created a wallet.

• Use the digit code authentication method.

• If an error occurs or bad credentials were sent, the user will be notified.

2.1.3 Case 3:

As a user
I wish to lock the application

So that I must authenticate myself again when entering the application.

Requirements:

• The user must authenticate next time they use the application.

• The application should lock itself after a certain amount of time of inactivity.

2.1.4 Case 4:

As a user

I wish to change my PIN-code

So that I can use another PIN-code

Requirements:

• The user must know the previous PIN-code.

• The user must select a new 8-digit code.

• Application notifies the user of failure or success.

2.1.5 Case 5:

As a user
I wish to add a new ID

So that I can use the document later for various purposes using the application.

Requirements:

• The user has access to this document through an ID provider.

6

• The ID provider sends the document to the user/application to be stored on device.

• A smart contract is stored on blockchain for later verification.

• Application notifies user of failure or success.

2.1.6 Case 6:

As a user
I wish to use one of my IDs

So that I can verify my identity to a third party physically.

Requirements:

• The user must authenticate themself in the application to access/submit the document.

• The user can choose the ID data they want to share with the third party.

• The application can generate a QR-code that can be scanned or submitted to verify the document’s integrity

and legality.

2.1.7 Case 7:

As a use

I wish to use one of my IDs

So that I can verify my identity to a third party through the internet.

Requirements:

• The user is prompted to the application.

• The user must authenticate themself in the application to access/submit the document.

• The user can choose the ID data they want to share with the third party.

• The verifier receives information about verification success.

2.1.8 Case 8:

As a user
I wish to remove an existing ID document from the application

So that the application does not have access to a document that is no longer valid.

Requirements:

• The user must authenticate themself.

• The user must confirm removal.

• Application notifies the user of failure or success.

2.1.9 Case 9:

As a user
I wish to refresh my ID

So that the previous version of the ID is updated with new data.

Requirements:

• The user must have the ID already stored in the application.

• The new data must update existing ID data.

• Application notifies the user of failure or success.

2.2 Verifier

2.2.1 Case 10:

As a verifier
I wish to perform verification of ID from another user

So that I can confirm the user’s identity.

Requirements:

• The verifier must open a scanner or code verifier on their application.

• The user must open an identity verification code on their application for the specific ID.

7

• The verifier can scan the user’s verification code to ensure that the document is verified.

• The verifier then receives some identity information about the user being verified.

2.3 Issuer

2.3.1 Case 11:

As an issuer
I wish to register myself as an ID provider

So that users of the application can add my ID.

Requirements:

• The issuer uses an API endpoint or UI in the application.

• The issuer submits their DID.

• Application notifies the issuer of failure or success.

2.3.2 Case 12:

As an issuer
I wish to revoke issued IDs

So that users of the application can no longer use the ID.

Requirements:

• The issuer uses an API endpoint or UI in the application.

• Blockchain invalidates IDs.

2.4 Developer

2.4.1 Case 13:

As a developer
I wish to have sufficient test coverage

So that future changes do not break the application.

Requirements:

• Tests consist of both integration and unit tests.

• All public methods must be unit tested to give consistent responses to dummy input.

• All API-endpoints must be tested to behave correctly.

2.4.2 Case 14:

As a developer
I wish the application has implemented Continuous Integration and Delivery

So that the changes that are delivered to production are tested to ensure the application works.

Requirements:

• Application has sufficient test coverage.

• Only push changes to production if tests pass.

8

3. Domain model

Figure 3.1: Domain model describing the problem domain

3.1 Sequence diagrams

Underneath is a scenario describing the action of physically verification. The verifier requests the whole

identification document e.g., security at the airport requesting passport of travelers. The requested ID is sent through

a QR code. Afterwards, the signature must be checked to ensure the integrity of the document. Then the verifier can

check the documents validity in the DLT (blockchain).

9

Figure 3.2: Sequence diagram of physical verification

The issuance of an ID from an issuer to a wallet is another action in the ecosystem. A centralized backend is

responsible for contacting the ID provider by requesting a new ID. When the document is returned, it must be

registered in the DLT (blockchain). The ID is then returned to the application for storage in the wallet.

10

Figure 3.3: Sequence diagram of issuing an ID

11

4. Prototypes

This section consists of different prototypes to better visualize how the application will look like and perform.

4.1 Wireframes

Figma has been used for wireframing, anyone with the link should be able to view the wireframes, but not edit them:

https://www.figma.com/file/HebhRgDKdJ6548nRspAkdb/Bachelor-app-draft-%232?node-id=0%3A1

4.2 Storyboards

The two figures below are storyboards that describe how physical verification may take place during a job interview.

Figure 4.1: Storyboard describing applications use case during interview

https://www.figma.com/file/HebhRgDKdJ6548nRspAkdb/Bachelor-app-draft-%232?node-id=0%3A1

12

Figure 4.2: Storyboard displaying physical verification

Appendix H: System documentation

077

Digital ID Wallet App
System documentation

Version <1.6>

ii

Revision history

Date Version Description Author
11.01.2022 1.0 Initial revision Diderik, Rokas, Martin
04.05.2022 1.1 Added continuous integration and testing Diderik
05.05.2022 1.2 Added introduction, architecture, structure,

security, installation manual
Diderik, Rokas, Martin

06.05.2022 1.3 Updated installation manual and security

section
Rokas

11.05.2022 1.4 Updated pictures to 310 DPI Martin

12.05.2022 1.5 Added captions to figure along with table of

figures

Martin

18.05.2022 1.6 Fixed reference list Rokas

iii

Table of contents

Figures iv

1. Introduction 5

2. Architecture 5

3. Project structure 7

3.1 Aphrodite 8
3.2 Athena 9
3.3 Iris 10
3.4 Kratos 11

4. Database model 12

4.1 PostgreSQL 12
4.2 Supabase 12
4.3 Redis 13

5. Server services 14

5.1 Athena 14
5.2 Iris 18

6. Security 21

7. Installation manual 22

7.1 Aphrodite 22
7.2 Athena 23
7.3 Iris 24
7.4 Kratos 24

8. Continuous integration and testing 26

9. References 26

iv

Figures

Figure 2.1: The system’s architecture, containing mock issuer, wallet, physical verifier, centralized backend, smart

contract and blockchain components. As well as Supabase, PostgreSQL and Redis databases 5
Figure 2.2: Athena’s architecture, containing web page, controller, service, connector and Supabase client

components 6
Figure 2.3: Iris’s architecture, containing web page, controller, service and Prisma ORM components 7
Figure 3.1: Aphrodite’s project structure 8
Figure 3.2: Athena’s project structure 9
Figure 3.3: Iris’s project structure 10
Figure 3.4: Kratos's project structure 11
Figure 4.1: ER diagram of the PostgreSQL database 12
Figure 4.2: ER diagram of Supabase database 13
Figure 5.1: Part of Athena’s API documentation 14
Figure 5.2: Part of Athena’s API documentation 15
Figure 5.3: Part of Athena’s API documentation 16
Figure 5.4: Part of Athena’s API documentation 17
Figure 5.5: Part of Iris’s API documentation 18
Figure 5.6: Part of Iris’s API documentation 19
Figure 5.7: Part of Iris’s API documentation 20

5

1. Introduction

This document is written to describe the entirety of the Digital ID Wallet project. By including both diagrams and

text regarding topics such as REST API, it aims to give the reader a better understanding of the project’s architecture

and structure, as well as the technicalities of the final MVP (Minimum Viable Product).

2. Architecture

There are three diagrams explaining the system architecture. The first one is the overall architecture, the second is

Athena’s architecture and the third is Iris's architecture. All dashed arrows are components that are outside the

system described in a diagram. All arrows include a description of the data that is exchanged between the

components, and what operations can be done with the data. The operations are: C for create, R for read, U for

update and D for delete/revoked (an agreement cannot be deleted but can be marked as revoked).

Figure 2.1: The system’s architecture, containing mock issuer, wallet, physical verifier, centralized backend,

smart contract and blockchain components. As well as Supabase, PostgreSQL and Redis databases

6

Figure 2.2: Athena’s architecture, containing web page, controller, service, connector and Supabase client

components

7

Figure 2.3: Iris’s architecture, containing web page, controller, service and Prisma ORM components

3. Project structure

The project is divided into four repositories:

Aphrodite – Frontend mobile application

Athena – Mock issuer

Iris – Backend

Kratos – Distributed ledger smart contract

8

3.1 Aphrodite

Figure 3.1: Aphrodite’s project structure

Aphrodite uses the React Native framework for creating a mobile application. Its most essential dependencies are

the Veramo library for handling DIDs, Verifiable Credentials and Verifiable Presentations, rn-nodeify allowing

developers to utilize Node libraries in a client JavaScript environment and lastly, React Native libraries.

Most folders are self-explanatory, for instance, the folders context, enums, interface and errors respectively contain

React Contexts, JavaScript Enums, TypeScript interfaces and custom JavaScript Error classes. The assets folder

contains external images or icons. The components folder contains smaller parts of a scene and is divided into three

folders, atoms, molecules, organisms following the template created by Muskan Jain (Jain, 2021). Atoms contains

the simplest components such as custom buttons. Molecules that are components built up of atom components.

Lastly, organisms combine molecules and atoms components to create complex structures. The scene folder contains

components that can be navigated to using the React Native navigator, while the styles folder contains React Native

style files, for most components and scene components, and the veramo folder contains necessary files to initialize

and configure Veramo.

9

3.2 Athena

Figure 3.2: Athena’s project structure

Athena uses the Next JS framework for creating an MVC application. Its most essential dependencies are the

Veramo library for handling DIDs, Verifiable Credentials and Verifiable Presentations, Supabase for storing

necessary data and MUI for styling React Components and providing UI tools.

Most folders are self-explanator, for instance will components, enum, errors and config respectively contain React

components, JavaScript Enums, custom JavaScript Error classes and configurations for the Next server.

The pages folder contains the api/v1 folders that contain all API endpoints. Next JS is configured to use the file path

to equal its URL endpoint for instance, api/v1/example or api/v1/example/index will both create the endpoint

/api/v1/examples. “[key]” files also render endpoints but additionally allow for queries. For instance,

api/v1/example/[key].ts would create the endpoints /api/v1/examples/abc and /api/v1/examples/bca etc. React files

located directly inside the pages folder will render web pages. The URL structure is equivalent to the API endpoints,

using the file path.

10

3.3 Iris

Figure 3.3: Iris’s project structure

Iris uses the Next JS framework for creating an MVC application. Its most essential dependencies are the Veramo

library for handling DIDs, Verifiable Credentials and Verifiable Presentations, the Prisma ORM for storing

necessary data and MUI for styling React Components and providing UI tools. The structure is equivalent to

Athena’s structure.

11

3.4 Kratos

Figure 3.4: Kratos's project structure

Kratos uses the Anchor framework for creating smart contracts on Solana. All functionality is written in the file

located at /programs/kratos/src/lib.rs from the root of the project. Secondly, Anchor.toml defined in the root of the

project contains build settings and metadata, for instance, wallet address, deployment network and name.

12

4. Database model

4.1 PostgreSQL

The PostgreSQL database is written to by the Prisma ORM. Using these models:
model IssuerAccount {

issuerDid String @unique

publicKey String @unique

}

model DocumentAccount {

documentDid String @unique

publicKey String @unique

}

By connecting to the PostgreSQL database through the command line, it can be seen that the tables have this

schema:

Figure 4.1: ER diagram of the PostgreSQL database

4.2 Supabase

Supabase features three tables. The users table contains information about the user such as personal ID and

forename that is stored by the mock issuer and embedded in a verifiable credential as claims when a user requests it.

The hash and salt are used for authentication purposes along with the personal ID. The expiration date signifies

when the issuer will no longer make claims on behalf of the user, meaning it is embedded in requested verifiable

credentials and passed on to the blockchain when new agreements are created. The document DIDs array is used to

keep track of the verifiable credentials issued to a user, which is needed for revoking all agreements signed between

the issuer and user, when a user is deleted from the system. The issuer DID keys table stores the private key and

public key belonging to the issuer DID, which is needed for signing a verifiable credential. Both the private and

public key are stored in the JSON format. The issuer DID table stores the DID document belonging to the issuer,

which is required by Veramo.

13

Figure 4.2: ER diagram of Supabase database

4.3 Redis

All blacklisted JWT tokens are stored in the Redis in-memory store. The implemented Redis only use key values,

where the key represents a JWT token which is pointing to a string value that by default is “invalid”. Therefore,

there are no reasons for creating an ER-diagram.

14

5. Server services

The API documentation the repositories that have an API is written the corresponding README.md file.

5.1 Athena

Figure 5.1: Part of Athena’s API documentation

15

Figure 5.2: Part of Athena’s API documentation

16

Figure 5.3: Part of Athena’s API documentation

17

Figure 5.4: Part of Athena’s API documentation

Athena also initializes a WebSocket endpoint when a user wants to fetch their endpoint, that closes after sending the

Verifiable Credential. The endpoint is initialized at root path, meaning for instance if the server is hosted locally, the

endpoint will be ws://localhost:3000/.

18

5.2 Iris

Figure 5.5: Part of Iris’s API documentation

19

Figure 5.6: Part of Iris’s API documentation

20

Figure 5.7: Part of Iris’s API documentation

21

6. Security

Currently, there is no encrypted communication as the ecosystem is in an MVP phase and learning about encrypted

communication is not int the scope of the thesis. However, encrypted communication needs to be implemented

before the system can go to production.

Password hashing for both Aphrodite and Athena use the PBKDF2 algorithm (Kaliski, 2000) with sha-512 (Stinson

& Paterson, 2018) where both the iteration count and derived key size is set in the environment files. Before

deciding the number of iterations, the command openssl speed (OpenSSL, n.d.) should be run. By looking at the

result of sha-512 for three seconds and the wished key size it can be determined how many iterations should be used

for the wished number of seconds that authentication should take. Keep in mind that Aphrodite is run on mobile

devices which are weaker than PCs and should therefore have a lower iteration count, if else it may crash.

Aphrodite takes multiple precautions to secure the user. It requires a pin code of 8 digits. If the user is inactive for a

5-minute period, the user will be kicked out. Also, all sensitive information in Aphrodite, such as verifiable

credentials and wallet DID, are stored in an encrypted storage.

 As Athena was to be made as simple as possible, it does not use access tokens as only one endpoint (/login) requires

user credentials (added to simulate login process when retrieving a VC). Returning the data was decided to be a

better solution rather than creating an unneeded access token endpoint. There is no authentication for the

administrator functions either, meaning that Athena should not be deployed publicly, as it would enable anyone to

CRUD users.

Iris utilizes JWT tokens to create “API keys” that protects the API endpoint for adding issuer to the ecosystem. The

key generation endpoint is secured by Basic Authentication. A client therefore needs the admin username and

password before receiving a key. The key is a JWT token with an expiration of one hour and signed by Iris using a

random secret stored as an environment variable. After it has been validated, used and an issuer has been added to

the ecosystem, the key is blacklisted in a Redis cache.

The ecosystem is considered safe against SQL-injection. As the connection to Supabase is done through their

PostgreSQL API, prepared statements are used which hinders SQL-injection (GitHub, 2021). Prisma also prevents

SQL-injections since it is an ORM, which saves the developer “from writing repetitive SQL statements for common

CRUD operations and escaping user input to prevent vulnerabilities such as SQL injections” (Prisma, n.d.). The

implemented Redis cache only receives used and validated JWT tokens. Therefore, it will never take any user input

as parameters, meaning, no SQL injection or any type of security breach from user inputs will be possible.

React is used for creating the websites for Athena and Iris. In React’s documentation it is written that “React DOM

escapes any value embedded in JSX” (React, n.d.), since the team has made sure to use JSX, XSS is unlikely to

occur. As Aphrodite is written with React Native and that uses React (React Native, n.d.-a), it can be deduced that

XSS is unlikely to occur.

There is also a security concern connected to the smart contract Kratos. When adding an agreement to the

blockchain, the Kratos smart contract is called which creates a new account belonging to the agreement. When an

account is created, it generates a keypair. In the current implementation, when an agreement is added to an account,

its public key is returned to Iris and stored in PostgreSQL database using Prisma, together with the belonging

document DID or issuer DID, depending on the agreement type. Thereafter, anyone can find the public key of an

account by searching for the DID in the database. This means that anyone can fetch and view the agreement from

the blockchain, which is an intended feature. Anyone should be able to fetch and view an agreement in case of

verification. The strange part is that anyone can also “edit” the agreement in an account using the public key. This

means that anyone can invalidate a document agreement, whether it is owned by the person or not. The public key

acts like a private key, where any actions on an account can be made by using the public key. This is a security issue

with either the Anchor framework or the Kratos smart contract implementation itself, since “editing” of an

agreement should only be available for private key holders.

22

7. Installation manual

Dependencies:

• Node: JavaScript runtime environment (Node.js, n.d.)

• Solana: Blockchain (Solana, n.d.-b)

• Anchor: Solana framework (Anchor, n.d.-b)

• React Native: JavaScript framework for mobile application development (React Native, n.d.-b)

• Yarn or npm: package manager (Yarn, n.d.) (npm, n.d.)

7.1 Aphrodite

Currently only Android works, as a bug was discovered, that causes “yarn ios” to crash (to test on ios remember

to run “pod install” in /ios folder). Due to the projects's time constraint, and that only one team member can

run iOS (as MacOs developer platform is required), aborting the issue for now was decided.

1. Set up a development environment (React Native, 2022).
2. In the root of the repository, add an .env file containing:

RESET_APPLICATION_ON_STARTUP=false # Must be exactly "true" for

application to reset on startup. Else no reset is done.

IS_DEV=true # Must be exactly "true" for dev mode to be activated. Else

prod is used. Also, decides websocket url in EmbeddedWeb.tsx.

DEV_BACKEND_URL=10.0.2.2:3000 # Iris URL. 10.0.2.2 is the mobile version

of localhost.

DEV_PBKDF2_ITERATIONS=2048 # The amount of times the pbkdf2 algorithm

runs sha512

DEV_PBKDF2_KEY_SIZE=64 # The key size used in the pbkdf2 algorithm

PROD_BACKEND_URL=13.70.193.218:3000 # Iris URL

VERY important to run "openssl speed" (keep in mind it has to be run

on a mobile device, sine this is a mobile app) and view how many sha512

iterations can be done in 3s for the selected key size and choose the

prod iterations thereafter.

Aim for it to take enough time to hinder mass trial and error, but

also not long enough time to disturb the user.

E.g., 0.5s which would mean dividing the iterations by 3s/0.5s = 6.

Make sure to keep the iteration count and key size hidden to make it

harder for potential threat actors to crack passwords.

If the iterations or key size change remember to reset the device as

the hash for the same password will not equal the previously saved

hash.

The mobile device may crash on log in if the iteration count is too

high. In that case lower it, till it does not crash anymore.

PROD_PBKDF2_ITERATIONS=3767 # The amount of times the pbkdf2 algorithm

runs sha512

PROD_PBKDF2_KEY_SIZE=1024 # The key size used in the pbkdf2 algorithm

These are used as indexes for storing the user details and the list

containing all IDs stored in the RESET_APPLICATION_ON_STARTUP

The names do not matter to much but cannot be the same

IF VALUES ARE CHANGED REMEMBER THAT ALL SAVED DATA WILL BE LOST AS

THEY WILL BE LOCATED AT THE OLD VALUES

THIS CAN BE CONSIDERED THE SAME AS A DEVICE RESET

The nickname of an ID card cannot be the same as these two

SECURE_STORE_USER_KEY=LOCALHOST_USER

SECURE_STORE_ID_CARD_LIST_KEY=LOCALHOST_ID_CARD_LIST

3. Install dependencies:
npm install

or

23

yarn install

4. Application is now ready for running, run server:
npm run start

or

yarn start

5. Connect your development environment to the server
npm run android

or

yarn android

7.2 Athena

1. In the root of the repository, add a file called “.env.local” containing:
DEV_PROTOCOL=http # Protocol used when fetching data

DEV_SERVER_URL=localhost:3000 # Athena URL. Make sure that the server

starts on this domain and port. Cannot be the same as Iris URL.

DEV_SUPABASE_URL="https://example.supabase.co" # Valid supabase URL

DEV_SUPABASE_ANON_KEY="example key" # Valid supabase key

DEV_SUPABASE_USER_TABLE="Users" # User table name

DEV_BACKEND_URL=localhost:3001 # Iris URL. Cannot be the same as Athena

URL

This can be a lot less then the PROD version since no attacks are

expected.

DEV_PBKDF2_ITERATIONS=2048 # The amount of times th pbkdf2 algortihm

runs sha512

DEV_PBKDF2_KEY_SIZE=64 # The key size used in the pbkdf2 algorithm

IS_DEV=true # Must be exactly "true" for dev mode to be activated. Else

prod is used.

IMPORTANT that this is https to ensure encrypted communication

PROD_PROTOCOL=https # Protocol used when fetching data

PROD_SERVER_URL=13.70.193.218:3000 # Athena URL. Make sure that the

server starts on this domain and port. Cannot be the same as Iris URL

PROD_SUPABASE_URL="https://example.supabase.co" # Valid supabase URL

PROD_SUPABASE_ANON_KEY="example key" # Valid supabase key

PROD_SUPABASE_USER_TABLE="Users" # User table name

PROD_BACKEND_URL=localhost:3000 # Iris URL. Cannot be the same as Athena

URL

VERY important to run "openssl speed" and view how many sha512

iterations can be done in 3s for the selected key size and choose the

prod iterations thereafter.

Aim for it to take enough time to hinder mass trial and error, but

also not long enough time to disturb the user.

E.g., 0.5s which would mean dividing the iterations by 3s/0.5s = 6.

Make sure to keep the iteration count and key size hidden to make it

harder for potential threat actors to crack passwords.

PROD_PBKDF2_ITERATIONS=376890 # The amount of times th pbkdf2 algortihm

runs sha512

PROD_PBKDF2_KEY_SIZE=1024 # The key size used in the pbkdf2 algorithm

2. Install dependencies:
npm install

or

yarn install

3. Application is now ready for running, run development server:
npm run dev

or

yarn dev

24

7.3 Iris

1. Install Solana (Solana, n.d.-a).
2. If installed, run following commands in console:

solana config set --url testnet

solana airdrop 1

solana config get keypair

3. In the root of the repository, add an .env file containing:
DATABASE_URL="postgres://example:5432/example" # Valid Postgres Database

URL

KEY_PAIR_PATH="/PATH/TO/SOLANA/WALLET/KEYPAIR" # Path received from

"solana config get keypair"

REDIS_URL="redis://example" # Valid Redis Database URL

JWT_SECRET="VGhpcyBpcyBhbiBlYXN0ZXIgZWdnIGhhaGFoYWg=" # Random String

ADMIN_USERNAME="admin"

ADMIN_PASSWORD="test"

ANCHOR_ADDRESS="https://api.testnet.solana.com"

4. Install dependencies:
npm install

or

yarn install

5. Application is now ready for running, run development server:
npm run dev
or
yarn dev

7.4 Kratos

1. Install Solana (Solana, n.d.-a) and Anchor (Anchor, n.d.-a).
2. In the root of the repository, add an Anchor.toml file containing:

[features]

seeds = false

[programs.localnet]

kratos = "KEYPAIR_ADDRESS"

[registry]

url = "https://anchor.projectserum.com"

[provider]

cluster = "localnet"

wallet = "KEYPAIR_PATH"

[scripts]

test = "yarn run ts-mocha -p ./tsconfig.json -t 1000000 tests/**/*.ts"

3. Fetch the path to your wallet's public key:
solana config get keypair

4. Replace KEYPAIR_PATH in Anchor.tolm with the output path string from the previous step.
5. Run the following command inside the project's root folder to create a keypair:

solana-keygen new -o target/deploy/kratos-keypair.json

6. Replace KEYPAIR_ADDRESS in Anchor.tolm with the output pubkey. Go to programs/kratos/src/lib.rs

and paste the same output where it says “declare_id!("PASTE_IT_HERE")”

7. Run this command to include the new program id in the binary:
anchor build

8. Now it can either be deployed on a Solana cluster or run a local test validator.
1. To run a local test validator:

a. Change the Solana configuration to localhost:
solana config set --url localhost

25

b. Change the provider.cluster variable in Anchor.toml:
cluster = "localnet"

c. Run a local test validator:
solana-test-validator

d. While running the test validator, open a seperate terminal and airdrop some tokens
solana airdrop 1

e. Deploy the program to localnet if not already done. Use the makefile command (make sure to

replace the copy target directory in Makefile to the correct relative directory path to Iris if

needed):
make deploy_and_copy

f. (Optional) To connect Iris to the local test validator, the address in Iris src/config/anchor.ts

file needs to be changed to the localhost address. You can get the url address (RPC URL) by

running the command:
solana config get

2. To deploy on a public Solana cluster:
a. Depending on where the program is being deployed, change the provider.cluster variable in

Anchor.toml:
cluster = "devnet" / "testnet" / "mainnet-beta"

b. Set the solana config url to the same cluster as chosen above (replace <cluster> with devnet,

testnet or mainnet-beta):
solana config set --url <cluster>

c. Run the following command (make sure to replace the copy target directory in Makefile to the

correct relative directory path to Iris if needed):
make deploy_and_copy

d. If any errors arise while deploying, there might be an insufficient amount of tokens. If the

program is deployed on a cluster other than the mainnet, tokens can be freely acquired with

the following command as they are not real:
solana airdrop 1

9. Make sure a (test) validator is not running on the machine used for testing. Then run this command to test

the program:
anchor test

26

8. Continuous integration and testing

Continuous integration and continuous deployment are only implemented in the backend part of the project. Gitlab

is used for hosting their remote repository, and where the continuous integration and the continuous deployment is

executed. When a merge request is submitted in the backend repository, it will begin executing a pipeline, which

will chronologically execute jobs for installing dependencies, running the tests, before it deploys the changes. These

will be retried if changes are made to the merge request’s branch.

After installing the dependencies, a pipeline proceeds by executing tests written in the “test/” folder using the Jest

library. The tests consist of both unit-tests and integration tests. The unit-tests are running positive and negative tests

for the service functions and are used for validating that the API logic works as expected. External dependencies like

database and blockchain connections are mocked. The integration is checking that most of the API endpoints work

and respond as expected. These are mostly negative tests as there was no straightforward way in Next JS or Jest to

inject dependencies for the database or blockchain connection. After completing all tests without failure, the pipeline

continues by executing the last job, which is to deploy the changes to a virtual machine using SSH. As defined in the

“gitlab-ci.yml” file, Gitlab runs the CI/CD on a Docker Node image using the 14.19.1 version. To run the tests

manually, first navigate to the root of the backend folder and write the command in a command line “yarn install

&& yarn test”. This will install all necessary dependencies before running the tests.

9. References

Anchor. (n.d.-a). Installing Dependencies. Retrieved May 5, 2022, from https://project-

serum.github.io/anchor/getting-started/installation.html
Anchor. (n.d.-b). Introduction - The Anchor Book. Retrieved May 18, 2022, from https://book.anchor-lang.com/

GitHub. (2021). Does supabase sanitize data before putting into database? #1452. Retrieved May 5, 2022, from

https://github.com/supabase/supabase/discussions/1452

Jain, M. (2021, July 21). Best Folder Structure for React Native Project. Retrieved May 5, 2022, from Habilelabs:

https://learn.habilelabs.io/best-folder-structure-for-react-native-project-a46405bdba7

Kaliski, B. (2000, September). Password-Based Cryptography Specification. Retrieved May 5, 2022, from

https://datatracker.ietf.org/doc/html/rfc2898#section-5.2

Node.js. (n.d.). Node.js. Retrieved May 5, 2022, from https://nodejs.org/en/

npm. (n.d.). npm. Retrieved May 5, 2022, from https://www.npmjs.com/

OpenSSL. (n.d.). openssl speed. Retrieved May 5, 2022, from

https://www.openssl.org/docs/man1.1.1/man1/openssl-speed.html

Prisma. (n.d.). Is Prisma an ORM? Retrieved May 5, 2022, from

https://www.prisma.io/docs/concepts/overview/prisma-in-your-stack/is-prisma-an-orm#benefits-of-orms

React. (n.d.). Introducing JSX. Retrieved May 5, 2022, from https://reactjs.org/docs/introducing-jsx.html

React Native. (2022). Setting up the development environment. Retrieved May 5, 2022, from

https://reactnative.dev/docs/environment-setup

React Native. (n.d.-a). React Fundamentals. Retrieved May 5, 2022, from https://reactnative.dev/docs/intro-react

React Native. (n.d.-b). React Native - Learn once, write anywhere. Retrieved May 5, 2022, from

https://reactnative.dev/

Solana. (n.d.-a). Install the Solana Tool Suite. Retrieved May 5, 2022, from https://docs.solana.com/cli/install-

solana-cli-tools

Solana. (n.d.-b). Solana. Retrieved May 5, 2022, from https://solana.com/

Stinson, D. R., & Paterson, M. (2018). Cryptography: Theory and Practice (4th ed.). New York: Taylor & Francis

Group.

Yarn. (n.d.). Home | Yarn - Package Manager. Retrieved May 5, 2022, from https://yarnpkg.com/

Appendix I: Manual testing

077

Digital ID Wallet App
Manual Testing

Version <1.3>

 2

Revision history
Date Version Description Author

08.05.2022 1.0 Initial revision and translate to English Martin

09.05.2022 1.1 Added pictures of the tests in chapter 4.1-

4.3, along with front page, revision history

and table of contents.

Martin

10.05.2022 1.2 Added pictures for tests in chapter 4.4 and

on.

Martin

11.05.2022 1.3 Also added captions for all figures. Martin

 3

Table of contents

Figures 4

1 Purpose 6

2 How to run repositories 6

3 Before starting 6

4 Tests 6

4.1 Case 1 6

4.2 Case 2 9

4.3 Case 5 12

4.4 Case 6/10 17

4.5 Case 8 19

4.6 Case 11 23

4.7 Case 12 29

 4

Figures
Figure 3.1: Section of Aphrodite's environment file 6
Figure 3.2: Section of Athena's environment file 6
Figure 4.1: Section of Aphrodite's environment file 7
Figure 4.2: The startup page 7
Figure 4.3: The registration process of creating and confirming a PIN code 8
Figure 4.4: The home page along with a confirmation message for new users 9
Figure 4.5: Section of Aphrodite's environment file 9
Figure 4.6: The login screen 10
Figure 4.7: The screen when a wrong PIN is entered 11
Figure 4.8: The screen when a correct PIN is entered, after a wrong attempt 12
Figure 4.9: The issuer's registration schema for creatin a new user 13
Figure 4.10: The issuer's overview of registered users 13
Figure 4.11: A row from the user table in Supabase 13
Figure 4.12: The start of the process of adding an ID 14
Figure 4.13: The process of connecting and sending the user’s credentials to the selected issuer 15
Figure 4.14: The screen when the ID has been sent from the issuer to the application 16
Figure 4.15: A row from the user table in Supabase, containing data such as the document DIDs linked to

the user 16
Figure 4.16: A row from the users table in Supabase, with the option to copy the documentDIDs column

 16
Figure 4.17: A REST call for viewing the data for the newly created agreement 17
Figure 4.18: The process of generating a QR-code for physical verification 18
Figure 4.19: The process off scanning a QR-code for verification 19
Figure 4.20: The screen displaying the verification status and the data sent in the ID 19
Figure 4.21: A REST API call to view the existing agreement 20
Figure 4.22: The process of deleting an ID from the mobile application 21
Figure 4.23: Metro, giving the option to restart the application 21
Figure 4.24: The home screen without the previously deleted ID 22
Figure 4.25: A REST API call to view the same agreement after it has been revoked 23
Figure 4.26: The process of logging in to a user that has already added some IDs 24
Figure 4.27: The process of exiting from the add ID screen to the home screen 25
Figure 4.28: The REST API call necessary to retrieve a token for issuer registration 26
Figure 4.29: The issuer registration web page 26
Figure 4.30: A REST API call for getting all registered issuers 27
Figure 4.31: The issuer registration web page filled in with credentials for registration 28
Figure 4.32: The success message after an issuer registration 28
Figure 4.33: The process of viewing the available issuers, starting from the home screen 29
Figure 4.34: The documentDIDs of a user being displayed by the Supabase table editor 29
Figure 4.35: The process of physically verifying an ID through a QR-code 30
Figure 4.36: The issuer's overview of users 31
Figure 4.37: The issuer's overview of users, with one user being selected 31
Figure 4.38: The issuer's overview of users, with no users left 31
Figure 4.39: The Supabase table editor for the user table, with no users left 32

 5

Figure 4.40: A REST API call for retrieving an agreement 32
Figure 4.41: The process of physically verifying an ID through a QR-code 33

 6

1 Purpose
This document is used to give an overview of manual test that can be done for different use cases from the

requirement document, along with pictures of the result from when the team completed them. Therefore, working as

proof that the use cases in this document have been accomplished.

2 How to run repositories
Read the system documentation or the README.md file of the corresponding repository. E.g., Athena.

3 Before starting
Keep in mind that process that communicate with the blockchain may take some time.

For the tests it is assumed that Athena runs on localhost:3000 and that Iris runs on localhost:3001, as well that the

ecosystem is in developer mode. This means that Aphrodite, Athena and Iris will run locally. While Kratos runs on

the test net. Both Supabase and Prisma run on their designated cloud server. Make sure to change the corresponding

dotenv file values from that of those in the README.md files to reflect that.

For Aphrodite (.env):

Figure 3.1: Section of Aphrodite's environment file

For Athena (.env.local):

Figure 3.2: Section of Athena's environment file

4 Tests

4.1 Case 1
Run a reset instance of Aphrodite. Meaning that RESET_APPLICATION_ON_STARTUP is set to exactly “true”.

 7

Figure 4.1: Section of Aphrodite's environment file

Press the get started button.

Figure 4.2: The startup page

Enter a PIN-code, then confirm it.

 8

Figure 4.3: The registration process of creating and confirming a PIN code

Then a message confirming the creation of the wallet appears.

 9

Figure 4.4: The home page along with a confirmation message for new users

4.2 Case 2
Run an instance of Aphrodite where a user has been created as in case 1. However, make sure to set the

RESET_APPLICATION_ON_STARTUP environment variable to false and restart the application (run yarn start

and yarn android again to make sure it loads the new environment variables).

Figure 4.5: Section of Aphrodite's environment file

 10

Figure 4.6: The login screen

Enter the wrong PIN-code which leads to an error message as the user has not been verified.

 11

Figure 4.7: The screen when a wrong PIN is entered

Enter the correct PIN-code which verifies the user and sends the user to the home screen.

 12

Figure 4.8: The screen when a correct PIN is entered, after a wrong attempt

4.3 Case 5
If the experiment needs a restart at any point remember to restart Athena. It is needed for it to be able to deliver the

VC over WebSocket as there currently is a bug.

Add a user via Athena at localhost:3000/ids/create in a web browser. Remember the personalId and password.

 13

Figure 4.9: The issuer's registration schema for creatin a new user

Figure 4.10: The issuer's overview of registered users

Check the documentDIDs column in the user table in Supabase for the user to be used for testing.

Figure 4.11: A row from the user table in Supabase

Run an instance of Aphrodite and log in as in case 2 or create a wallet as in case 1. Thereafter, press the “+” button

on the home screen. An Add ID form appears, select a name and the ID provider Athena 10.0.2.2 3000 and press the

“CONNECT” button.

 14

Figure 4.12: The start of the process of adding an ID

Enter the login credentials used in Athena in embedded login screen (personalId and password) and press the

“SUBMIT” button.

 15

Figure 4.13: The process of connecting and sending the user’s credentials to the selected issuer

Wait for the success message. The user is then redirected to the home screen where the new ID appears.

 16

Figure 4.14: The screen when the ID has been sent from the issuer to the application

Reload the Supabase table editor and check the user table and see that a new value has been appended to the

documentDIDs column for the user being tested. Copy the value by right clicking the value and clicking “Copy cell

content”. The value should be at the documentDIDs column and the corresponding user’s row.

Figure 4.15: A row from the user table in Supabase, containing data such as the document DIDs linked to the user

Figure 4.16: A row from the users table in Supabase, with the option to copy the documentDIDs column

 17

Check that the agreement exists in Kratos. This can be accomplished by using e.g., Postman to send a GET REST

call to /api/v1/ids/{document-did}, where document-did is the DID of the newly created ID card. Use the written

down value from Supabase as document DID. A response with the same documentDid, and other variables such as

“valid”, “issuerDid”, “expirationDate” and “holderDid” is returned.

Figure 4.17: A REST call for viewing the data for the newly created agreement

4.4 Case 6/10
Run Iris and two instances of Aphrodite, one should be on a mobile device (verifier). The other can be run on an

emulator (ID holder). The ID holder logs in and presses on an ID card on the home screen, then selects all attributes

and presses the share button. A QR code will then appear onscreen.

 18

Figure 4.18: The process of generating a QR-code for physical verification

The verifier opens the scanner tool via the menu bar (option 3 from the left) and allows access to the camera. Then

scans the user’s QR-code with the scanner tool and makes sure the QR-code fits inside the square while keeping it

there.

 19

Figure 4.19: The process off scanning a QR-code for verification

A pop up will appear with the status of the verification process (success, revoked, invalid and more). If successful,

the details will be displayed.

Figure 4.20: The screen displaying the verification status and the data sent in the ID

4.5 Case 8
Run Iris and Aphrodite. Then log into the mobile application as in case 2. Add an ID and remember the document

DID being stored in Supabase, as in case 5. Check that the agreement exists in Kratos. This can be accomplished by

using e.g., Postman to send a GET REST call to /api/v1/ids/{document-did}, where document-did is the newly

created ID card’s DID. The “valid” variable of the newly created ID card should be “true”.

 20

Figure 4.21: A REST API call to view the existing agreement

Press on the three dots on the card correlating to the document DID and press the delete option. Therafter press the

confirm button.

 21

Figure 4.22: The process of deleting an ID from the mobile application

There currently is a UI bug which makes the ID card stay on screen after deletion. However, by pressing R to reload

Metro and logging in to the application again, the bug is worked around. Thereafter the ID card should no longer

exist on the home menu.

Figure 4.23: Metro, giving the option to restart the application

 22

Figure 4.24: The home screen without the previously deleted ID

Check that the agreement is revoked in Kratos. This can be accomplished by using e.g., Postman to send a GET

REST call to localhost:3001/api/v1/ids/{document-did}, where document-did is the newly created ID card’s DID.

The “valid” variable should be “false” now.

 23

Figure 4.25: A REST API call to view the same agreement after it has been revoked

4.6 Case 11
Run Iris and Aphrodite. Then log into Aphrodite. Press the “+” button on the home screen. Look at the ID providers

drop down list and take note of the available providers. Thereafter, go back to the home screen by pressing the left

pointing arrow in the upper left corner of the device.

 24

Figure 4.26: The process of logging in to a user that has already added some IDs

 25

Figure 4.27: The process of exiting from the add ID screen to the home screen

Run a GET REST call to /api/v1/key, with BasicAuth using the ADMIN password and username defined in the .env

file to fetch a valid token. Make sure to copy it.

 26

Figure 4.28: The REST API call necessary to retrieve a token for issuer registration

Go to /registration/{key} in a web browser and replace “{key}” with the token from the last step.

Figure 4.29: The issuer registration web page

 27

Write the wished name for the issuer, it should be distinguishable from that of those already registered, to be able to

prove that this one is registered when the test is complete. The URL is the URL that Athena is running on (if set up

correctly it is 10.0.2.2:3000, because that is corresponding to localhost:3000 for the Android emulator). For DID use

a value of format did:key:{arbitrary number} (e.g., did:key:123), make sure that no issuers are already registered

with this did. This can be checked by running GET localhost:3001/api/v1/issuers. Keep in mind that the arbitrary

value will hinder the issuer from being used for verification in the future, but it will suffice for this test.

Figure 4.30: A REST API call for getting all registered issuers

 28

Figure 4.31: The issuer registration web page filled in with credentials for registration

Press the submit button and wait for some time before the success message arrives.

Figure 4.32: The success message after an issuer registration

 29

Make sure to remember the name of the issuer registered. Then press the “+” button on the home screen. The new

ID provider should now appear as an option in the dropdown list for ID providers along with the previous providers.

Figure 4.33: The process of viewing the available issuers, starting from the home screen

4.7 Case 12
Run Athena and Iris, and two instances of Aphrodite. An ID holder on an emulator and a verifier on a mobile

device. Thereafter, complete case 5, thereby checking that a user has been created in Athena, a verifiable credential

has been issued to a wallet, and that an agreement between Athena and the wallet has been reached and published on

the blockchain. Take note of the user’s id, and all document DIDs belonging to the user which can be found in the

Users table in Supabase.

Figure 4.34: The documentDIDs of a user being displayed by the Supabase table editor

By completing case 06/10 one can also verify that the credential is verifiable before being revoked.

 30

Figure 4.35: The process of physically verifying an ID through a QR-code

Go to localhost:3000/ids in a web browser.

 31

Figure 4.36: The issuer's overview of users

Thereafter hit the check mark for the created user and press the delete button.

Figure 4.37: The issuer's overview of users, with one user being selected

Figure 4.38: The issuer's overview of users, with no users left

 32

Check that the user no longer exists in Supabase.

Figure 4.39: The Supabase table editor for the user table, with no users left

There is currently a bug in the code that makes Iris return immediately after calling deleting, meaning that the

process for revoking the agreements may run for a while afterwards. However, waiting a minute or two should

suffice. For each document DID, check that the corresponding agreements have been revoked. This can be

accomplished by using e.g., Postman to send a GET REST call to /api/v1/ids/{document-did} for each document

DID, where document-did is the newly created ID card’s DID. The “valid” variable for each call should be “false”.

Figure 4.40: A REST API call for retrieving an agreement

Try to verify the ID card as in case 6/10. However, this will return the message “Revoked” instead of “Success”

along with the data of the ID.

 33

Figure 4.41: The process of physically verifying an ID through a QR-code

Appendix J: Kanban board description

Kanban board rules

Open

Issues that are available to take.

Limit: None

Critical

Issues that need to be completed. They may be critical for the operation of the application,

or they may be considered bottlenecks.

Limit: 3

Doing

Issues that are currently being solved.

Limit: 6

In review

Issues that are currently being reviewed.

Limit: 6

Done

Issues that have been completed and accepted by review.

Limit: None

Closed

Issues that were aborted.

Limit: None

Appendix K: Source code

The source code containing the four repositories, including environment files, is found in a

folder called “IDATT2900”.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Rokas Bliudzius
Martin Slind Hagen
Diderik Kramer

Decentralized Identity - a mobile
wallet and verification platform

Bachelor’s thesis in Bachelor of Engineering in Computer Science
Supervisor: Surya Kathayat
May 2022Ba

ch
el

or
’s

th
es

is

	077
	Figures
	Abbreviations/symbols
	1 Introduction
	1.1 Thesis/Problem statement
	1.2 Structure

	2 Theory
	2.1 Attack vector
	2.2 Threat actor
	2.3 DLT
	2.4 Blockchain
	2.4.1 Cryptographic Hashes
	2.4.2 Decentralized
	2.4.3 Tamper-proof
	2.4.4 Consensus mechanism
	2.4.5 Smart contract
	2.4.6 Parachains

	2.5 Dapp
	2.6 QR
	2.7 DIDs
	2.8 Zero-knowledge proof
	2.9 VCs
	2.10 VPs
	2.11 Verifying VC/VP

	3 Method
	3.1 Research method
	3.2 Choice of technology
	3.2.1 Solana and Anchor
	3.2.2 Polkadot and Substrate
	3.2.3 React Native
	3.2.4 Next JS
	3.2.5 UI libraries
	3.2.5.1 React Native Paper
	3.2.5.2 MUI

	3.2.6 Jest
	3.2.7 Veramo
	3.2.8 Prisma and PostgreSQL
	3.2.9 Redis
	3.2.10 WebSocket
	3.2.11 Git
	3.2.12 TS
	3.2.13 React Native Encrypted Storage
	3.2.14 Supabase

	3.3 Development method
	3.3.1 Kanban
	3.3.2 Experimenting through “Hello world” repositories
	3.3.3 Wireframing in Figma
	3.3.4 Work and role management

	4 Result
	4.1 Scientific Results
	4.1.1 Ecosystem architecture
	4.1.1.1 Aphrodite
	4.1.1.2 Athena
	4.1.1.3 Iris
	4.1.1.4 Kratos

	4.1.2 Handling ID

	4.2 Engineering results
	4.2.1 ID storage
	4.2.1.1 Add ID
	4.2.1.2 Remove ID
	4.2.1.3 Refresh ID
	4.2.1.4 Encryption of ID

	4.2.2 ID viewing
	4.2.2.1 Card display
	4.2.2.2 Search and filter IDs
	4.2.2.3 Scroll through the IDs

	4.2.3 Verification
	4.2.3.1 Generate QR-code to prove one’s identity
	4.2.3.2 Verify other identities by scanning other QR-codes
	4.2.3.3 Selection of ID data to be used

	4.2.4 Authentication
	4.2.4.1 Unlock wallet with password

	4.2.5 Provider registration
	4.2.5.1 Register as ID provider with public key and DID

	4.3 Administrative results
	4.3.1 Project schedule
	4.3.2 Time management and activity distribution
	4.3.3 Agile development

	5 Discussion
	5.1 Scientific
	5.1.1 Ecosystem architecture
	5.1.1.1 Centralized backend vs fully decentralized ecosystem
	5.1.1.2 Mock issuer

	5.1.2 Handling ID
	5.1.2.1 Blockchain agreement model

	5.2 Engineering
	5.2.1 ID storage
	5.2.2 ID viewing
	5.2.3 Verification
	5.2.4 Authentication
	5.2.5 Provider registration

	5.3 Administrative
	5.4 Group reflection
	5.5 Veramo

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work
	Sustainability

	References
	Appendix

	Bachelor task
	AppendixD
	Pre-project plan
	1. Goals and conditions
	1.1 Orientation
	1.2 Thesis question, project description and performance targets
	1.3 Effect goals
	1.4 Conditions

	2. Organizing
	3. Implementation
	3.1. Main activities
	3.2. Milestones

	4. Supervision and quality assurance
	4.1 Quality assurance
	4.2 Reporting

	5. Risk assessment
	6. Appendix
	6.1 Schedule
	6.2 Address list
	6.3 Contractual documents
	6.3.1 Labor agreement for bachelor-group

	AppendixE
	AppendixF
	Vision document
	Figures
	1. Introduction
	2. Summary of problem and product
	2.1 Summary of problem
	2.2 Summary of product

	3. Overall description of stakeholders and users
	3.1 Summary of stakeholders
	3.2 Summary of users
	3.3 User environment
	3.4 Summary of user needs
	3.5 Alternatives to our product

	4. Product synopsis
	4.1 The product's role in the user environment
	4.2 Prerequisites and dependencies

	5. Functional properties of the product
	6. Non-functional properties and other needs
	7. References

	AppendixG
	Requirement document
	Figures
	1. Introduction
	2. User Stories
	2.1 User/Owner
	2.1.1 Case 1:
	2.1.2 Case 2:
	2.1.3 Case 3:
	2.1.4 Case 4:
	2.1.5 Case 5:
	2.1.6 Case 6:
	2.1.7 Case 7:
	2.1.8 Case 8:
	2.1.9 Case 9:

	2.2 Verifier
	2.2.1 Case 10:

	2.3 Issuer
	2.3.1 Case 11:
	2.3.2 Case 12:

	2.4 Developer
	2.4.1 Case 13:
	2.4.2 Case 14:

	3. Domain model
	3.1 Sequence diagrams

	4. Prototypes
	4.1 Wireframes
	4.2 Storyboards

	AppendixH
	System documentation
	Figures
	1. Introduction
	2. Architecture
	3. Project structure
	3.1 Aphrodite
	3.2 Athena
	3.3 Iris
	3.4 Kratos

	4. Database model
	4.1 PostgreSQL
	4.2 Supabase
	4.3 Redis

	5. Server services
	5.1 Athena
	5.2 Iris

	6. Security
	7. Installation manual
	7.1 Aphrodite
	7.2 Athena
	7.3 Iris
	7.4 Kratos

	8. Continuous integration and testing
	9. References

	AppendixI
	Manual Testing
	Figures
	1 Purpose
	2 How to run repositories
	3 Before starting
	4 Tests
	4.1 Case 1
	4.2 Case 2
	4.3 Case 5
	4.4 Case 6/10
	4.5 Case 8
	4.6 Case 11
	4.7 Case 12

	AppendixJ
	Kanban board description
	AppendixK

