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Abstract. An autotuner takes a parameterized code as input and tries
to optimize the code by finding the best possible values for a given archi-
tecture. To our knowledge, there are currently no standardized bench-
mark suites for comparing and testing autotuners. Developers of auto-
tuners thus make their own when presenting and comparing autotuners.

We thus present BAT, a Benchmark suite for AutoTuners with HPC-
based parameterized GPU programs. CUDA programs and kernels from
”The Scalable Heterogeneous Computing (SHOC) Benchmark” are pa-
rameterized. BAT contains a varied selection of benchmarks of differ-
ent complexity that can utilize multiple GPUs on one system, either by
running the same program and computations on multiple nodes, or by
splitting the work between nodes. BAT contains 9 different HPC bench-
marks that provide a large search space of autotuning parameters, and
are modified to suite many different autotuners. BAT also includes a CLI
that facilitates autotuning with the benchmarks.

Our benchmark suite is tested with four different autotuners, OpenTuner,
Kernel Tuner, CLTune and KTT. They differ in setup and how they tune.
The impact of the different benchmark parameters on the running time
across architectures is analyzed. Test systems used include a DGX-2,
IBM Power System AC922 with Tesla V100-SXM2 32 GB GPUs, an
RTX Titan, a GeForce GTX 980 and a server with 20 Tesla T4 GPUs.
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1 Introduction

A challenge when creating applications that will be run on different architectures,
is that the optimal program for one architecture might not be optimal for another
architecture. This issue of performance portability is becoming more important
as systems are becoming more heterogeneous and include GPUs.

In autotuning, one takes a parameterized code as input and tries to find the
best possible values for the tuning parameters defined. The challenge is that
optimal parameters might be different for different devices and architectures,
and that the optimal parameters might not be possible to find in a reasonable
time frame. The best values can also depend on the input format or input size.
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All types of code can be autotuned, but some autotuners are specific to only
tuning code for one language or style. Some autotuners can tune a full program,
and others will only tune a GPU kernel.

Autotuners will often use different search techniques to find the best param-
eter values. Examples of this is brute force, genetic algorithms and annealing
search. The autotuners will also often support parameter constraints, which is
where the tuning space of one or more parameters is restricted based on the
value of one or more parameters [Pet+20].

Benchmarking is often performed to reveal strengths and weaknesses in com-
puter systems by running the same program on multiple systems. It can even be
used to identify faults with software or hardware.

To our knowledge, there are currently no standardized benchmark suites for
autotuners. Developers of autotuners often make their own benchmarks when
presenting and comparing autotuners. However, it is cumbersome for the de-
velopers to make tunable benchmarks every time an autotuner is made. This
can also lead to issues with benchmarks being tailored for a given autotuner.
We have therefore developed a benchmarking suite for autotuners that future
standards can build upon.

2 Background

GPUs (Graphics Processing Units) are specialized units in computers optimized
for data parallelism. They were originally created for improving graphics com-
putations. In recent years, they have also shown to be incredibly useful for many
HPC and AI applications. GPUs are great at performing the same type of small
operation fast and multiple times in parallel. This stands in contrast to the Cen-
tral Processing Unit (CPU), which specializes in serial computing and processes
a sequence of operations very well.

GPU Programming CUDA (Compute Unified Device Architecture) is a plat-
form and programming model for parallel computing developed by NVIDIA.
CUDA makes it possible to directly use NVIDIA GPUs in programs with pro-
gramming languages like C, C++, Fortran and others.

In CUDA threads are grouped into thread blocks that execute together on
a Streaming Multiprocessor. It is common to set threads per block (block size)
as a multiple of 32, for best performance. This is because the threads in a block
are divided into groups of size 32, known as warps, that executes the same
instruction.

Optimization Techniques Setting optimal values for grid and block size can
help reduce execution times for a kernel. Other techniques for optimizing GPU
code can be loop unrolling. Unrolling a loop means writing out what happens in
multiple iterations and partly eliminating the loop. This optimization can some-
times reduce execution times. Choosing a memory type like shared memory or
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texture memory instead of global memory can also potentially affect the time
used for the program. There are many compiler options available for compil-
ers like G++, GCC and NVCC that can be useful when optimizing execution
time [NVI20].

SHOC (Scalable HeterOgeneous Computing) is a benchmark suite [Dan+10]
consisting of a collection of benchmarks for both single and multi GPU systems.
The benchmarks consist of standard HPC algorithms with both CUDA and
OpenCL versions. The parallel version runs on multiple nodes or devices with
MPI. SHOC offers two different ways of running benchmarks parallel, Embar-
rassingly Parallel (EP) and True Parallel (TP). When the benchmark is EP, the
same benchmark is run on all nodes without communication or collaboration.
When TP is activated, the task is split between the different nodes, and they
collaborate to find the solution.

The SHOC benchmarks are divided into three levels. Level 0 benchmarks are
focused on measuring low level performance like the performance of the bus be-
tween CPU and GPU. Level 1 benchmarks consist of common parallel algorithms
often used in bigger applications. Level 2 has benchmarks for real application
kernels. The following level 1 algorithms from SHOC are parameterized in BAT.

BFS (Breadth-First Search) algorithms are search algorithms used on trees or
graphs. They work by traversing one depth from the root node before it moves
on to the next depth. The BFS version used in SHOC performs search on an
undirected k-way tree, which is a tree where each node has at most k children.
SHOC’s version of BFS measures performance when the algorithm is used on a
random graph, and the number of graph vertices can be chosen as 1 000, 10 000,
100 000, or 1 000 000 when running the benchmark. The algorithm can be run
on multiple GPUs, but only in the embarrassingly parallel mode.

SpMV (Sparse Matrix-Vector multiplication) is where a sparse matrix and a
dense vector is multiplied with a dense vector as result. SHOC’s implementa-
tion of SpMV has benchmarks for both Compressed Sparse Row (CSR) and
ELLPACK-R, two formats for storing sparse matrices when performing SpMV.
There are also benchmarks for both normal and padded data for CSR.

SHOC’s implementation of the SpMV algorithm measures performance in
both single and double precision. It is also possible to run SpMV embarrassingly
parallel. For the CSR format, performance is measured for both a vector and
a scalar version. This means that for the scalar version, one thread is used for
calculations per row, but for the vector version, a warp is used per row.

MD5 Hash (Message-Digest algorithm 5) is a hashing algorithm that produces
a 128-bit hash value. A hash algorithm is a one-way function that takes an input
of arbitrary length and outputs a hash of a fixed length.
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In SHOC, the MD5 Hash algorithm has an option to choose between two
types of round styles. The MD5 algorithm can be run on multiple GPUs as EP
(embarrassingly parallel).

Scan The Parallel Prefix Sum algorithm, Scan, computes the sum of the prefixes
for each number in a sequence. This algorithm returns a sequence of sums that
is the same length as the input sequence.

SHOC’s implementation includes calculation for both single and double pre-
cision input sequences. It also has an implementation for true parallel (TP)
computation that can run on multiple nodes.

Radix Sort One of the benchmarks in SHOC is for measuring sorting perfor-
mance on the device using an implementation of the radix sort algorithm [Pro20].
This is a sorting algorithm that groups the digits by its position and compares
each digit one at a time in the selected positions.

SHOC’s implementation sorts unsigned integer key-value pairs and supports
the problem sizes 1, 8, 48 and 98 MB. The benchmark’s performance of the sort
kernel is measured in GB per seconds.

Triad The Triad benchmark in SHOC is based on the STREAM (Sustain-
able Memory Bandwidth in High Performance Computers) TRIAD benchmark
[McC95]. STREAM is a benchmark set consisting of the benchmarks COPY,
SCALE, SUM and TRIAD.

SHOC’s implementation of the triad benchmark uses single precision com-
putation with a problem size ranging from 16 KB to 64 MB and measures the
sustainable memory performance of a series of dot product operations [Dan+10].
In SHOC this benchmark does not have the possibility to select different problem
sizes, and by default it tests all different sizes.

Reduction Another benchmark in the SHOC benchmark suite is the reduction
benchmark. Reduction is an algorithm that takes an input array of numbers and
returns a single number using an operation on all the numbers. A type of reduc-
tion is a sum reduction, where the sum operation are applied to each element in
the sequence. Other operators can be, minimum, maximum and count [Bar15,
p. 546].

In SHOC the benchmark measures the performance of a large sum reduction
operation [Dan+10]. This reduction benchmark is implemented for both single
and double floating-point precision and have problem sizes ranging from 1 MB
to 64 MB. There is also implemented a true parallel version for this benchmark.
In this TP version, the data is communicated between the nodes using MPI.
[Dan+10]
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Molecular Dynamics The molecular dynamics (MD) benchmark in SHOC
measures the performance of an MD problem called Lennard-Jones potential [Ada01].
This is a pair potential for calculating the potential energy between two atoms.

In SHOC, the force potential is computed in the MD benchmark and each
thread on the GPU computes acceleration for a single atom with impact from
the other atoms in the given space [Dan+10]. This benchmark uses problem
sizes based on number of atoms to compute, ranging from 12288 atoms to 73728
atoms. The input data for the kernel is both single and double floating-point
precision.

2.1 Selected Autotuners

OpenTuner is a framework for building program autotuners described by J.
Ansel et al. in ”OpenTuner: An extensible framework for program autotun-
ing” [Ans+17]. The framework is written in Python and supports autotuning
of programs written in different programming languages. Any compile or run
commands needs to be set in the tuning file. In the tuning file, the parameters
and their search space must be defined. The parameters are grouped in prim-
itive parameters, with lower and upper bounds, and complex parameters for
parameters that are not gradual. OpenTuner provides a range of 12 available al-
gorithms to perform the autotuning and also has support for adding new search
techniques [Ans+17].

Kernel Tuner Kernel Tuner is an autotuner [Wer18] that can tune both CUDA
and OpenCL kernels with and without host code. To verify that a tuned kernel
produces correct results, there is an option to add a list of correct results that
Kernel Tuner can use for correction verification. Kernel Tuner uses brute force
as the default search technique, but it is possible to choose from nine additional
techniques.

CLTune CLTune is an autotuner for tuning CUDA and OpenCL kernels [NC17].
The autotuner is written in C++, and needs a C++ file for setting up the
autotuner and providing information to the kernel. To check for correctness, it
is possible to provide a reference kernel with input that is guaranteed correct
where the output will be compared with output from kernels during tuning.

KTT Kernel Tuning Toolkit (KTT) is an autotuner that focuses on autotun-
ing CUDA and CLTune kernels [Pet+20]. KTT is based on CLTune, and the
main part used from CLTune is the Annealing search, the generation of kernel
configuration and tuning parameter restrictions. To check the kernel results for
correctness, KTT needs a reference kernel, like CLTune also requires.
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2.2 Selected GPU Systems

The IBM Power System AC922 is a system designed for giving great performance
to data analytics, HPC applications and especially AI training. The system has
two IBM POWER9 processors with 32 cores and 128 threads each. The system
also includes 4 Nvidia V100 32GB GPUs.

The NVIDIA DGX targets deep learning and complex AI applications. The
DGX-2 used in our experiments consists of 16 Tesla V100 GPUs with 32 GB
of memory each.The DGX-2 has two Intel Xeon Platinum 8168 CPUs with 24
cores and a base clock frequency of 2.7 GHz. Between the two CPUs there is a
QPI connection and each CPU has a PCIe connection with two PCIe switches
to each GPU on their baseboard. It can achieve the maximum performance for
deep learning applications of 2 petaFLOPS which means that this system can
be well suited for large workloads [Ish+18].

Our T4 System contains 20 Nvidia Tesla T4 GPUs with 16 GB each and two
Intel Xeon Gold 6230 CPUs with 20 cores and 40 threads each. Lastly, we also
include a system with an RTX Titan and a system with a GTX 980.

2.3 Related Work

Even though there is no standardized, easy to use benchmark suite for test-
ing autotuners, most autotuners have various parameterized code examples for
testing said autotuner.

OpenTuner includes several examples with very large search spaces. The
search space of these benchmarks are large enough such that it is infeasible to
brute-force the solutions.

Kernel Tuner also includes a set of parameterized examples, but these have
a much lower search space than the examples from OpenTuner. Most of these
examples can be brute forced in some minutes to an hour. CLTune’s example
set is similar to the set in Kernel Tuner.

KTT advertises a benchmark set in their paper [Pet+20]. The kernels are
highly efficient, but they generally do not have a large search space, and are
possible to brute-force in less than a day on modern hardware. KTT evaluated
their benchmark set by comparing the algorithms to their theoretical peak. They
also used their set for demonstrating that autotuning for different systems is
important for performance portability.

A. Rasch et al. [RHG18] describes the autotuning framework ATF. They
also compare ATF with OpenTuner and CLTune with the help of a set of pa-
rameterized benchmarks. They measured the runtime of tuned kernels and found
that ATF’s tuned kernels has better speedups compared to the kernels of Open-
Tuner and CLTune. ATF compared the autotuners by using the same tuning
techniques, with presumably the same options or tuning time limit.

TuneBench is a GitHub repository with a set of simple, tunable OpenCL
kernels [Scl17]. The project does not seem to be actively maintained and lacks
documentation for setting up and testing the benchmark suite.
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3 The Benchmark Suite

BAT1 is a standardized benchmark suite for auto-tuners that is based on bench-
marks from SHOC and contains benchmarks for CUDA programs. The bench-
marks are for both whole programs and kernel-code.

The benchmark suite is composed of 9 different benchmarks with several au-
totuning parameters. A summary of the search space for each available bench-
mark can also be found in Table 1, where MBS is the Maximum Block Size for
the GPU for that benchmark.

The most common parameters in the algorithms are block size, single or
double precision types, loop unrolling, work per thread, using texture memory
or not, function inlining, various options for compiler optimization, loop unrolling
and the number of GPUs to use when possibility for multi-GPU run.

Some algorithms also contains constraints where certain parameter values
are dependent on each other. Additional details about the benchmark suite and
its evaluation is also available in two previous theses on the topic [Kir20; Sun20].

Table 1: Search space for each parameterized benchmark.

Benchmark Search Space Cardinality Dimensionality

BFS MBS × 4× 3× 3 36 864 4

SpMV MBS × 2× 5× 2× 2 40 960 5

MD5 Hash MBS× 2× 2× 2× 2× 2× 2× 5 327 680 8

Scan 5× 10× 2× 2× 2× 2 89 600 ×GPUS 10

×4× 4× 7×GPUS

Sort 2× 2× 3× 3× 7× 7× 2× 2× 2 14 112 9

Triad MBS × 10× 2× 2 40 960 4

Reduction blog2(MBS)c ×GPUS 394 240 11

×11× 2× 4× 4× 2× 7× 2× 2× 2 ×GPUS

MD MBS × 2× 2× 5 20 480 4

Testing the benchmark suite is an important part for making sure that the
benchmark suite will work for multiple types of autotuners. The testing was done
by implementing the benchmarks with some known autotuners. The autotuners
that were chosen for this were OpenTuner, Kernel Tuner, CLTune and KTT.
KTT is based on CLTune, but outside of that, all the autotuners are different
with different setups.

1 https://github.com/NTNU-HPC-Lab/BAT
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The autotuners are often built different and takes different code as input.
An example of this is that not every autotuner has the possibility to set texture
memory if they only take a kernel as input.

Most of the benchmarks from BAT are implemented with the mentioned
autotuners to make sure that all benchmarks would work for different types of
autotuners. One example of a benchmark that did not work with an autotuner
is Scan with CLTune. This is because CLTune can only autotune single kernels
and the Scan algorithm has sequential kernels where the result is dependent on
data from other kernels.

4 Evaluation of the Benchmark Suite

Fig. 1: Correlation between block size and running time for each system and
benchmark.

Fig. 1 indicates how the block size is correlated with running time for each
benchmark for four of our architectures. A negative value for the correlation
indicates that a higher value for the block sizes provides a lower running time
for the kernel, and vice versa.

From this we see that for most benchmarks a higher block size is usually
better, however for the SpMV and Triad benchmark lower block sizes can be
better. This behavior also varies between different systems, where the RTX Titan
on the MD benchmark generally performs worse with higher block sizes. This
behavior is also shown in Fig. 3 later in this Section.
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BFS We wanted to see how the time varied for the values of block size in BFS.
The circles on the graph in Fig. 2 are block sizes that are divisible by 32. The
single block size 16 is also marked. Values below around 15 are outside of the
graph due to their high running time. In the figure, we can see that generally the
values divisible by 32 seem to be the sizes that leads to the fastest run time. For
the GeForce GTX980, block sizes divisible by 32 are the fastest up to around
block size 150. When the block size increases for this GPU, we can see that the
values divisible by 32 actually leads to higher run time.

This figure shows that the time varies with block size values differently on
different systems. All graphs except for the GeForce GTX980 shows a trend of
the block sizes divisible by 32 being the block sizes that leads to lower time used.

In Fig. 2 we can see that the system with the GeForce GTX980 is the one
that uses the most time when running autotuning with KTT. Since this is a
more common consumer GPU, this is expected. One thing that might not be
obvious before seeing the results, is that the autotuning uses less time on one
single GPU on the DGX-2 system than on one single GPU on the IBM Power
System AC922.

The two systems have practically the same GPU model, however the differ-
ence in performance might come from a difference in the interconnects. For the
Power AC922, NVLink is used between CPU and GPU, while the DGX-2 has
PCIe switches between CPU and GPU.

Fig. 2: KTT: BFS (size 4) on all systems. Chunk factor 2.

For the BFS benchmark on the AC922, RTX and T4 system, running time
is most strongly inversely correlated with block size(-0.201, -0.118, -0.181), in-
dicating that a larger block size is often better. For the same benchmark on the
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DGX-2 however, surprisingly all of the parameters are correlated with running
time(from 0.05-0.11), indicating that a low block size and few manual optimiza-
tions provides the best performance for this system. None of the other autotuning
parameters had consistently a positive or negative impact on the performance
across all systems.

SpMV We investigated how the best parameter values for SpMV differed for
the different machines. By looking at the best results, we found out that to loop
unroll or not varied much over the machines.

We also found that precision equal to 32 was the best on every machine for
the tests. The best SpMV matrix format also varied some for the machines,
but it seems that a format of 0, 3 or 4 is the best. These are the formats for
ELLPACK-R, CSR Normal Vector and CSR Padded Vector, none for the CSR
Scalar version.

This can also be seen in our correlation results, where the Format had a signif-
icant impact on the runtime of the program, with the parameter being strongly
inversely correlated with runtime for the DGX-2(-0.461), RTX Titan(-0.359) and
AC922(-0.233) and strongly correlated with runtime for the T4 system(0.712).
The block size was correlated with runtime for all of the systems in this bench-
mark (0.013-0.312).

Scan For the brute force version of scan, 32 is shown to be the best value for
precision for all the systems. The effect of applying loop unrolling varies greatly
between different systems. When analyzing the Scan results, we found that block
size and grid size of 128 or 256 gave generally the best run time.

For our correlation results for Scan the RTX Titan, DGX-2 and AC922 had a
running time that was strongly inversely correlated with block size(-0.616, -0.354,
-0.624) and grid size (-0.718, -0.377, -0.631). This indicates that a large block size
and grid size has a very significant impact on the running time of the kernels
for these architectures. For the T4 system, this correlation was much weaker
(-0.166, -0.051). The optimization levels for the host-side code and the device-
code also had a significant impact, with a large variance between architectures.
For the RTX Titan, DGX-2, AC922 and T4 system respectively, Device-side
optimizations were inversely correlated (-0.104, -0.247, 0.099, -0.412) apart from
AC922, however host-side optimization had a negative correlation for AC922
and RTX Titan, yet positive for the others (-0.204, 0.437, -0.357, 0.426).

MD5 Hash Analyzing the MD5 Hash benchmark result showed that work-
per-thread factor varied significantly for the different systems. This was also the
situation for inline and loop unrolling.

The correlation results for the MD5 Hash benchmark show that block size
and round style were inversely correlated with runtime for the DGX-2, RTX
Titan, AC922 and T4 System (-0.193, -0.221, -0.289, -0.402 and -0.049, -0.018,
-0.105, -0.051). The rest of the parameters showed no consistent trend.
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Sort Using the sort benchmark implementation with Kernel Tuner, we could
see that generally 512 for scan block size and 128 for sort block size gave the
best run time.

Scan block size, scan data size and LSB loop unroll are inversely correlated
with running time for all systems. Inline LSB has a strong correlation on DGX-2
(0.697), yet a negative correlation on the RTX, T4 and AC922 systems (-0.379,
-0.078, -0.484). Indicating that inlining is greatly beneficial for all systems except
for the DGX-2. The other parameters showed no consistent trends.

Triad When analyzing the triad results for autotuning with KTT, we could see
that a precision of 32 gave the fastest result and that it generally had a low value
for the work per thread parameter.

For the Triad benchmark, block size was consistently positively correlated
with running time for the Titan RTX(0.019), DGX-2(0.164), AC922(0.074) and
Tesla T4(0.020) systems. This indicates that higher block sizes might not neces-
sarily improve the running time for this kernel. Precision was also strongly cor-
related with running time for all systems, indicating the natural conclusion that
the single-precision performance of the kernel is higher than double-precision
performance for all systems. The rest of the parameters showed no consistent
trend.

Reduction The systems IBM Power System AC922 and DGX-2 found the best
values for the precision to be 64, but on the other machines a precision of 32
was the best. For the grid size parameter, we could see that all the best values
found, were larger values.

For the Reduction benchmark, the RTX Titan, DGX-2, AC922 and Tesla T4
system had an inverse correlation for block size (-0.402, -0.256, -0.381, -0.165)
and grid size(-0.402, -0.359, -0.170, -0.435) with running time. Loop unrolling
of two different functions in the reduction kernel also have potential to give a
substantial speedup, based on their correlation factors. For the first loop un-
rolling the RTX Titan, DGX-2, AC922 and T4 systems had both a positive and
negative correlation, depending on the system (0.172, -0.218, -0.044, -0.218). For
the second function the loop unrolling was mostly inversely correlated (-0.158,
-0.168, 0.036, -0.681). This indicates that loop unrolling generally leads to higher
performance for this benchmark.

MD In Fig. 3 we can see that the parameter for block size is an impactful
parameter because the best value changes for different architectures. Note, that
behind the Power AC922 system plots, there are plots for a DGX-2 system. The
very similar runtime is most likely due to the GPUs being practically the same
model for these systems. We can see that for all the GPUs a very low block size
results in a very poor runtime, and just by increasing this slightly we can see
that the runtime improves significantly. However, the runtime of block size does
not change any drastically when further increasing these sizes.
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Fig. 3: Work per thread parameter and block size parameter for all systems for
the MD benchmark in KTT.

In this figure, as well as in Fig. 2, the block sizes are divisible by 32 and the
block size equal to 16 is marked with a circle. From this, we can notice better
runtime for each block size value matching these values. This is perhaps due
to the warp size being 32, where a multiple of 32 is often considered to be the
optimal when launching kernels.

One observation in Fig. 3, is that despite NVIDIA Tesla T4 GPUs being a
much newer generation graphics card and having generally better performance
than the NVIDIA GeForce GTX 980, it performed worse. This is an interesting
result and might be due to the difference in the interconnects and how the GPUs
are connected to the CPUs in the two systems.

For the MD benchmark the RTX Titan, DGX-2, AC922 and T4 system
all had a positive correlation with increased running time for use of texture
memory (0.224, 0.657, 0.089, 0.138) and work per thread (0.317, 0.229, 0.160,
0.170). These results indicate that thread coarsening and use of texture memory
is generally not beneficial for this benchmark.

5 Conclusion and Future Work

In this paper we presented BAT, an HPC-based benchmark suite with param-
eterized algorithms in CUDA. It contains a varied selection of benchmarks of
different complexity as both singular GPU kernels and programs with both host
code and GPU code. The benchmarks can utilize multiple GPUs on one system,
either by running the same program and computations on multiple nodes, or by
splitting the work between nodes.
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The tested hardware included the DGX-2, two of the IBM Power System
AC922 with two and four Tesla V100-SXM2 32 GB GPUs and a server with 20
Tesla T4 GPUs. We also did tests on a system with consumer GPUs, including
GTX 980 and Titan RTX.

The benchmark suite is tested with four different autotuners that differs in
setup and how they tune. These are OpenTuner, Kernel Tuner, CLTune and
KTT. All the benchmarks have been modified to suite autotuners that have
support for different parameter implementations. One example of this is that
texture memory needs a possibility to be disabled because multiple autotuners
that tune kernels do not support using it as a tuning parameter.

Our results show that the optimal parameters, including block size, change
drastically between different architectures and benchmarks. This provides a
strong argument for autotuning these algorithms to most efficiently utilize the
underlying hardware.

BAT is publically available2 and includes documentation for the benchmark
suite. This consists of a description of BAT, who can benefit from using it,
and how a user can use it. The project contains examples of how to use the
benchmarks with autotuners. BAT also has a CLI that makes it easier to run
autotuning with the benchmarks.

Current and future work includes expanding the benchmark suite with more
benchmarks and tunable parameters. This includes the option of adding OpenCL
or HIP kernels to support benchmarking autotuners for AMD GPUs. We would
also like to develop better tools for easily comparing different autotuners au-
tomatically on the benchmark suite. A scoring system for the performance of
autotuners on benchmark suite would also be useful.
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