
Chapter 1
STHEM: Productive Implementation of
High-Performance Embedded Image Processing
Applications

Magnus Jahre

Abstract Developing embedded image processing systems is challenging, and one
key reason is that they face a rich set of (conflicting) constraints. The challenge
is further exacerbated by the need to deliver the product to the market as soon as
possible. This paper presents the STHEM tool-chain which was developed during
the Tulipp project to address this issue. STHEM is a collection of productivity
enhancing tools that help developers rapidly implement an image processing system
that satisfies all constraints. Currently, STHEM consists of six different utilities that
enable extensive analysis of performance and energy consumption, provide access
to highly efficient image processing functions, or help developers leverage advanced
hardware features.

1.1 Introduction

Building embedded image processing systems is challenging as developers face a rich
set of conflicting constraints including high performance, limited power dissipation
as well as size and weight restrictions. These constraints commonly force image pro-
cessing systems to become heterogeneous. More specifically, the key performance-
critical parts of the application typically needs to be offloaded to specialised hardware
units, commonly called accelerators [3], to enable delivering sufficient performance
while staying within the power budget.

Embedded image processing application development is therefore heavily tied
to the hardware platform it will be deployed on. Further, it is critically important
that the developer can easily track down the root cause of performance problems,
and developers typically rely on performance analysis tools to do this. To abstract
away the hardware platform dependencies, we introduce the Generic Heterogeneous
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Fig. 1.1 A Generic Heterogeneous Hardware Platform (GHHP).

Hardware Platform (GHHP) (see Figure 1.1). It contains a collection of compute
resources (i.e., CPUs, GPUs and an FPGA fabric) as well as an interconnection
network and input/output devices. In addition, the GHHP typically contains local
and global memory structures that may or may not be exposed to the developer.

At a high level, the performance analysis tools need to capture two classes of
information to help the developer identify performance problems in a GHHP:

• Inter-compute unit efficiency: Mapping different parts of the application to the
different compute units available in the hardware platform is necessary to fully
leverage the capabilities of a heterogeneous platform, and performance analysis
tools need to provide feedback on the quality of this mapping. Identification
of bottleneck compute units is especially important. Common techniques for
achieving this is to profile the application on each compute unit and present an
aggregated profile to the developer.

• Intra-compute unit efficiency: A performance bottleneck may also be due to
an inefficient implementation within a single compute unit. In this case, the
developer needs to map the performance problem to the source code responsible
for creating it. To achieve this, we need performance analysis tools that can
pinpoint performance problems with profiling and automatically relate these to
source code constructs.

One of the key objectives of the Tulipp project [12] was to contribute to making
the process of developing embedded image processing systems more efficient. We
addressed this problem by devising a tool-chain, called STHEM [21], that aims to
reduce the time it takes to implement an image processing application that satisfies
all requirements. STHEM is an acronym for Supporting uTilities for Heterogeneous
EMbedded image processing platforms. At the end of the Tulipp project, we released
STHEM under an open-source license on GitHub1.

STHEM ensures that the developer can focus on core application development
by automating recurring, but critical, tasks such as instrumenting code to gather
performance profiles, design space exploration, and vendor tool configuration. Thus,
our definition of the word tool-chain includes any tool that improves the efficiency
of image processing application development. We use also use the term performance
in a broad sense to cover key metrics such as runtime, energy dissipation, or power

1 https://github.com/tulipp-eu/sthem

https://github.com/tulipp-eu/sthem
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Fig. 1.2 The Generic Development Process (GDP)

consumption. For image processing systems, requirements are often specified in
terms of target frame rates or the maximum acceptable latency from frame arrival
until processing is complete.

Tools aiming at improving development productivity are not the only tools nec-
essary for supporting the full project life-cycle. In addition, tools are necessary
to, for instance, support regression tests, simulation, version control, configuration
handling, and bug tracking. We found that the existing state-of-the-art tools in-
clude decent support for such processes and provide options to embed third-party
mechanisms for missing features. Therefore, STHEM mainly focuses on developer
productivity.

1.2 The Generic Development Process (GDP)

Reaching the performance potential of the hardware platform requires adapting an
image processing algorithm to leverage the characteristics of the hardware compo-
nents as well as making a number of application-dependent trade-offs. To efficiently
support this procedure, we propose the Generic Development Process (GDP) as
shown in Figure 1.2. GDP is an iterative process that generalises the approach
taken by programmers when implementing highly efficient image processing appli-
cations [21].

The starting point of GDP is the baseline application that executes with correct
sequential behaviour on a modern machine with a general-purpose processor. This
is the initial development step for most image processing systems – ensuring that
all the functions of the system are fully understood. Although this is a critical
step, substantial effort is commonly needed to move the system onto the embedded
platform.

High-level partitioning decides which baseline functions should be accelerated
and how. Partitioning splits off into accelerator-specific development stages that
later join to produce an integrated application with the same correct behaviour as
the baseline. In some cases, application behaviour can be modified compared to the
baseline if this gives a substantial performance advantage on the target platformwhile
still providing acceptable accuracy. The performance of the integrated application
is checked against requirements. If found lacking, the partitioning and development
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stages are restarted. In this manner, programmers iteratively refine the baseline
application to approach the required power consumption and performance. The
purpose of the tool-chain is to minimise the number of iterations required and
the time spent in each iteration before arriving at an implementation that meets
requirements.

In the most basic case, GDP can be carried out manually without any software
support. This will likely result in low developer productivity for complex applica-
tions since GDP is reduced to a trial-and-error process. Furthermore, the developer
will typically spend considerable effort in developing support code for identifying
performance problems. Thus, a better approach is to create a tool-chain – such as
STHEM – that enables efficiently carrying out the iterations of GDP on the chosen
hardware platform.

1.3 Realising the Generic Development Process

We have now described GDP, and we now delve into how to realise GDP for a
particular embedded system application. A critical focus point will be how to enable
accelerating the performance critical application regions as acceleration is com-
monly necessary to meet the stringent performance, energy, or power consumption
requirements. Within an organisation, it is typically favourable to chose one (or a
small number) of development processes to build expertise and limit the overhead
of maintaining multiple tool-chains.

There are primarily threemain decisions that need to bemadewhen implementing
a GDP-based process:

1. What are the key performance-relevant characteristics of the targeted hardware
platform?

2. How should the application be implemented on the targeted hardware platform?
(See Section 1.3.1).

3. Which tools should be used to assess the performance characteristics of the
application? (See Section 1.3.2).

Since GDP assumes that development targets a known hardware platform, we
focus on the two last questions in this paper. The main reason is that hardware
platform selection typically needs to address the full range of system requirements
including size and weight in addition the the aforementioned performance criteria.

We use the term implementation approach in a broad manner to capture the high-
level methodology used to implement an application including choosing program-
ming language(s) and programming model(s) as well as the degree of automation
versus manual effort. Since GDP is iterative, performance analysis tools are critical
as they (i) direct the developer’s focus towards key performance issues, and (ii)
document which aspects of the application have sufficiently high performance and
hence do not require further work.
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Table 1.1 Advantages and challenges of the single- and multi-language strategies.

Advantages

• Setup is simpler since a single tool chain can be used for the complete applica-
tion.

• Application maintenance is simplified due to a single code-base and single
tool-chain.
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• The abstractions employed to support multiple different computing units tend
to result in less code being necessary to implement the application.

Challenges

• All platform components need to support the chosen programming language.
This may limit hardware platform options.

• The higher level of abstractionmay limit the achievable performance and energy
efficiency.

Advantages

• Using specialised vendor tools for each component reduces the risk of intro-
ducing performance-limiting abstractions.

• Platform selection is simplified since vendors can support different program-
ming languages.
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Challenges

• Application maintenance and integration is complicated by multiple tool-
chains, especially due to upgrades.

• Development is more difficult since the company needs to recruit and retain
people that are experts in each programming language.

• Efficient communication mechanisms and interfaces between the parts of the
application that are realised in different programming languages needs to be
designed, implemented, and verified.

1.3.1 Selecting the Implementation Approach

A key high-level decision when defining an implementation approach is to select
the programming language(s) to use. Note that the choice of programming lan-
guage is separate from that of choosing a programming model as the programming
model expresses an execution model in addition to the semantics of the program-
ming language. A straightforward example is OpenMP [6] where the programming
language is typically C++ but a parallel execution model is provided in addition to
the sequential execution model defined by the language’s semantics.

Thus, a key high-level decision is whether to use a single programming lan-
guage for the complete application (with its supported programming models) or to
accept that different parts of the system is implemented with different program-
ming languages. We refer to these strategies as a Single-Language (SL) strategy and
a Multi-Language strategy, respectively. While applications for CPUs and GPUs
commonly use a single-language approach (e.g., OpenMP [6] and CUDA [5]),
FPGA-accelerated applications have traditionally used a multi-language approach
with CPU-code implemented in C/C++ and the accelerator in Hardware Description
Languages (HDLs) such as VHDL or Verilog.

Table 1.1 outlines the advantages and challenges of the SL and ML strategies.
Overall, the SL-strategy simplifies the development process compared to the ML-
strategy. However, the SL-strategy may limit the attainable performance and energy
efficiency due to a higher abstraction level. In addition, the SL-strategy compli-
cates platform selection since the preferred programming language needs to be
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efficiently supported on all platform components. Deciding which strategy to follow
is a complex trade-off that depends on application requirements, hardware platform
requirements as well as the expertise and strategic focus of the company.

1.3.1.1 Single-Language Approaches

Multi-threadedmodels. Current hardware platforms for image processing applica-
tions tend to contain multiple CPUs which means that the programmer may need to
respond to the architectural challenges that can arise on multi-cores (e.g., [9, 10, 8]).
Programming models for multi-cores has been studied extensively, and powerful
tools such as OpenMP [6] are available to efficiently parallelise an application us-
ing task-based or data-parallel strategies. An added benefit of using tools such as
OpenMP is the existence of advanced performance analysis strategies [18, 16].

SIMD-based models. In these models, the part of the application that will be of-
floaded to the accelerator is rewritten as a kernel that performs the desired processing
on a subset of the application’s input data – a Single InstructionMultipleData (SIMD)
approach. In this way, the runtime can invoke a large number of threads – some of
which are executed in lock-step – to exploit parallelism at a comparatively low hard-
ware cost. Each thread is assigned a (possibly multi-dimensional) identifier which
the kernel uses to select its input data. One example of this model is OpenCL [23]
which supports a range of devices – including GPUs and FPGAs. For platforms that
include only GPUs and CPUs, NVIDIA CUDA [5] is another example.

The SIMD-based models are desirable because they leverage a familiar parallel
programming abstraction – i.e., Single-Program Multiple Data (SPMD) – and are
supported by a rich ecosystem of tools. OpenCL [23] is a standard API that enables
program execution on a GHHP containing hardware components such as CPUs,
GPUs, and other accelerators. It provides an abstraction layer where each computa-
tional device (e.g., a GPU) is composed of one or more compute units (e.g., processor
cores). These units are again subdivided into SIMD processing elements. The task
of the developer is to formulate the program in a data- or task-parallel manner to use
the computational resources available in the platform.

Although OpenCL guarantees that a program will run correctly on all OpenCL-
supported platforms, platform-specific optimisation is commonly necessary to
achieve high performance and energy efficiency. Further, some FPGA vendors sup-
port OpenCL on selected FPGA platforms, but it can be challenging to determine the
root cause of performance problems since the OpenCL compute model does not map
straightforwardly to the FPGA substrate [27]. In addition, performance problems can
occur when a multi-dimensional memory access pattern aligns unfavourably with
the underlying hardware organisation [17].

High-Level Synthesis (HLS). The abstractions of OpenCL may limit implemen-
tation flexibility on hardware platforms that contain reconfigurable fabrics such as
FPGAs. An alternative approach is HLS where the application is implemented in a
high-level language (commonly C or C++), and an HLS-tool is used to automatically
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generate an accelerator for a selected code segment (e.g., a function). HLS is a viable
design alternative due to the existence of multiple commercial and academic tools
(e.g., Xilinx Vivado HLS [29], LegUP [4], Bambu [19], and uIR [22]).

There are two important challenges when using HLS. First, the tools only support
a subset of the high-level language which commonly means that the code needs to
be modified to enable HLS. Second, the relationship between the high-level code
formulation and the generated hardware is not always obvious which complicates
performance analysis.

Library-based acceleration. In this approach, the programmer uses standard li-
braries such as OpenCV [11] or OpenVX [7] to implement performance critical
image processing kernels. Thus, the programmer does not need to deal with the
characteristics of the accelerators and simply leverages optimised implementations
provided by the libraries. However, the programmer is limited to the functionality
supported by the libraries, and a high-performance implementation of the preferred
library must be available on the chosen platform. Similar approaches are method-
ologies such as DCMI [14] which automatically generate application-specific accel-
erator hardware for performance-critical kernels.

A library-based strategy is a great option when the functions of the library map
well to the performance critical regions of the application. If it does not, it is un-
likely that a library-based approach will yield competitive performance. A common
situation is that the invocation of separate kernels lead to excessive copying of data –
resulting in excessive overhead that outweighs the performance improvement gained
by accelerating the function.

Transparent acceleration. Transparent acceleration strategies aim at accelerating
applications without programmer intervention. In other words, they aim to com-
pletely automate GDP. To achieve this, they first profile the reference application to
identify the key performance-critical function(s). Then, they analyse and optimise
the performance-critical functions(s) at the level of the compiler Intermediate Rep-
resentation (IR) and finally map these functions to a target accelerator. Transparent
acceleration approaches are currently research prototypes and not sufficiently mature
to be used for industrial application development.

Although transparent acceleration is an attractive concept, it is very challenging
to realise. The state-of-the-art approach is Needle [15] which identifies collections
of hot program paths (called Braids) within a performance critical function and
then speculatively offloads these to a reconfigurable accelerator. If the application
diverts from the accelerated paths during execution, any performed changes are
rolled back and the procedure is executed on the CPU. A key challenge is to achieve
sufficient coverage of the application such that the benefits of offloading outweighs
the overheads.
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1.3.1.2 Multi-Language Approaches

While CPU and GPU programming models tend to favour a single-language ap-
proach, FPGA-targeted development has traditionally used RTL languages such as
VHDL or Verilog to describe the accelerator (see e.g., [26]) and C/C++ for the
CPU code. This typically results in development of the FPGA functionality being
performed independently of the CPU code after an initial interface specification.
Thus, the FPGA/CPU partitioning of the system is performed early in the project,
based on limited performance analysis data, and typically cannot be reversed without
incurring significant costs.

VHDLandVerilog require repeatedly specifying low-level implementation details
such as the width of signals. Thus, development using VHDL or Verilog tends to be
time-consuming. An alternative approach is to use high-productivity RTL languages
such as Chisel [1]. These languages improve productivity by (i) not requiring to
repeatedly specify all implementation details, and (ii) providing powerful, reusable
constructs. In contrast toHLS-tools, the developer still specifies the concrete structure
of the hardware. Thus, high-productivity RTL languages provide higher productivity
while enabling the developer to specify most implementation details.

Overall, an SL-strategy is generally preferable compared to an ML-strategy as it
enables iterative performance-data-driven acceleration. Further, it is (much) easier
to modify the application (e.g., if requirements change during a project) when the
application is implemented in a single language. An important exception is for
(extremely) performance-sensitive components as anRTL-level implementationmay
be necessary to achieve sufficient performance in this case.

1.3.2 Selecting and Evaluating Performance Analysis Tools

The implementation approach and hardware platform determines an application’s at-
tainable performance and energy efficiency while the capabilities of the performance
analysis tools determine how productively an application that meets requirements
can be developed. In other words, the existence of efficient performance analysis
tools is a secondary concern. It is not useful to quickly develop a solution with
an implementation approach that cannot meet performance and energy efficiency
requirements.

The performance analysis tool availability can only impact the choice of imple-
mentation approach when there are multiple options that can meet requirements. In
this case, the performance analysis tools can be evaluated on their ability to (i) effi-
ciently detect performance problems, (ii) relate the performance problem to source
code construct that caused it, and (iii) provide suggestions or solutions to how the
performance problem can be alleviated.

Efficient performance problemdetection tends to require some formof application
profiling combined with high-level visualisations such as Gantt charts or Grain
Graphs [18]. With appropriate mechanisms, the visualisations can automatically
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zoom in on problematic sections and thereby significantly simplify performance
problem detection.

By leveraging the debug information available in the application binary, it is
possible to map a performance problem to a specific source code location. By
externally sampling the CPU program counter, it is possible to implement a similar
strategy to relate instantaneous power measurements to source code constructs (see
Chapter ??).

Providing analysis functions that can automatically solve performance problems
is a challenging research problem. Thus, solving problems tends to be the responsi-
bility of the application developer. A different approach is restricting the formulation
of programs such that performance problems are less likely to occur (e.g., [13, 20]).
Another class of approaches can avoid some platform-specific performance issues by
conducting extensive design-space exploration to ensure that implementation details
are chosen to arrive at a high-performance design point (e.g., [30]). An interesting
compromise is to explore semi-automatic approaches where a tool provides sugges-
tions on how a performance problem can be dealt with and the developer leverages
domain knowledge to choose the exact strategy.

1.4 STHEM: The Tulipp Tool-Chain

The previous sections discussed development and analysis of embedded system
applications in a general sense. In this section, we provide a concrete tool-chain
example by introducing the collection of performance- and productivity-enhancing
utilities that have been developed during the Tulipp project. More specifically, we
explain the choices made to support GDP on the Tulipp hardware platforms [24, 25].
Overall, we follow an HLS-based Single-Language strategy and use a combination
of state-of-the-art vendor tools and novel research-based utilities. We also support
library-based acceleration since this strategy is very efficient when the functionality
of the library is a good fit for the needs of the application.

STHEM [21] contains two types of tool packages:

• Vendor Tools (VTs): VTs are existing, industry-grade tool packages that are
critical to enable GDP on a particular platform instance, and they are commonly
supplied by platform vendors or third-party companies. For the Tulipp platforms,
examples of VTs are the Xilinx SDSoC development [28] environment and the
HIPPEROS real-time operating system. VT are commonly large and complex,
and it is both infeasible and inefficient to not use them when they are available.

• Utilities:Utilities are smaller tool packages provided by theTulipp project that are
designed to resolve limitations that hamper developer productivity on a particular
platform. To facilitate reuse across platforms, the utilities are designed to be
as independent of the VT as possible and are often stand-alone. A utility may
consist of a single hardware or software tool, or a collection of several tools
working together to provide a certain functionality.
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Table 1.2 The STHEM utilities and their key benefits.
Utility Key Benefits

PMU

• Reduces the time spent establishing system power and energy consumption by
providing power profiles with high temporal and high spatial resolution.

• Automatically correlates power samples with program counter values non-
intrusively retrieved from the platform CPUs.

AU

• Reduces the time it takes the developer to identify performance and power con-
sumption issues by visualising the performance and power profiles collected by
the PMU.

• Reduces development time with automatic Design Space Exploration (DSE) of
HLS configurations – in contrast to time-consuming manual exploration of con-
figuration options.

DPRU
• Reduces development time by enabling using HLS in systems that require dy-

namically reconfiguring the FPGA. Concretely, it enables using dynamic partial
reconfiguration with SDSoC.

HiFlipVX • Reduces development time by adding optimised FPGA-enabled implementations
of commonly used image processing functions.

IIU
• Reduces development time by including support for cameras that support the

CameraLink interface.
• Reduces development time by readily supporting HDMI input and output.

FDU • Provides lossless stream of signal values to facilitate on-FPGA accelerator de-
bugging.

The objective of STHEM is to provide efficient support for GDP on the Tulipp
platform. To reach this objective, we leverage VTs when they are available to ensure
that the baseline tool-chain is comparable to current state-of-the-art tool-chains.
Within the Tulipp project, we identified cases where executing GDP is unnecessarily
cumbersome and developed utilities to address these productivity issues.

The core of STHEM is the Xilinx SDSoC development environment [28] which
provides support for accelerating specific functions within an application with Xilinx
Vivado HLS [29]. However, it is generally challenging to manually use HLS to
accelerate applications functions. First, it is difficult – and thereby time-consuming
– to establish which functions to accelerate. Second, it is also difficult to develop
an HLS-based implementation that has sufficient performance, acceptable power
consumption, and does not need more computational resources than are available
in the chosen FPGA [2]. Third, developing high-performance I/O-controllers for
commonly used high resolution camera and display interfaces can be challenging.

STHEM contains the following utilities that help alleviate these challenges:

• The Power Measurement Utility (PMU) gathers power consumption samples
with high spatial (i.e., high sample rate) and temporal resolution (up to seven con-
current inputs) and relates them to application behaviour through non-intrusively
sampling the program counter of the CPUs.

• The Analysis Utility (AU) enables visual and automatic analysis of application
performance and power consumption based on the profiles collected by the PMU.
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• The Dynamic Partial Reconfiguration Utility (DPRU) enables using dynamic
partial reconfiguration within SDSoC.

• HiFlipVX includes highly optimized image processing functions that developers
can use to transparently accelerate their image processing application.

• The I/O IP Utility (IIU) includes IP-cores for camera input over the Camera
Link interface as well as for HDMI input and output.

• The FPGA Debug Utility (FDU) provides a lossless stream of signal data to
simplify online FPGA debugging.

Collectively, the STHEM utilities improve support for GDP on the Tulipp plat-
forms by streamlining the process of developing an image processing system that
meets performance and power constraints, and Table 1.2 summarises the key bene-
fits of each utility. We showcase the capabilities of selected STHEM utilities later in
this book. More specifically, selected features of the PMU and AU are described in
Chapter ?? while Chapter ?? covers HiFlipVX.

1.5 Conclusion

We have now presented the STHEM tool-chain developed during the Tulipp project.
STHEM is a collection of utilities that work alongside vendor tools with the overall
objective of reducing the time it takes a developer to implement an embedded image
processing application that satisfies all constraints. Althoughwe have had a particular
focus on the Tulipp platforms, we have taken care to keep the utilities as general as
possible to simplify porting to other platforms.
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