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Sammendrag

I denne oppgaven undersøkes ulike m̊ater å beregne p-verdier for en tosidig hypotesetest hvor
testobservatoren har en usymmetrisk sannsynlighetsfordeling. Først gis en kort introduksjon til
statistiske begreper før Fishers eksakte ensidige test introduseres. Her vises det at testobservatoren
X er hypergeometrisk fordelt og hvordan man da kan regne ut en p-verdi fra denne testobser-
vatoren. N̊ar man ønsker å teste en tosidig alternativ hypotese, s̊a foresl̊ar Agresti (1992) tre ulike
m̊ater å regne ut p-verdier p̊a. Hovedfokuset i bacheloroppgaven er å beregne styrken til disse
ulike p-verdiene p̊a ulike forkastningsniv̊a. Styrken blir b̊ade simulert og regnet ut eksakt og blir
sammenlignet mot hverandre. Til slutt vises det at disse tre p-verdiene er gyldige.
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Summary

In this thesis we consider different methods of constructing p-values for a two-sided hypothesis test
where the test statistic has an asymmetric probability distribution. First a short introduction to
relevant statistical terms is given, whereafter Fisher’s exact one-sided test is introduced. Here it
is shown that the test statistic is hypergeometrically distributed when the null hypothesis is true,
such that it is possible to calculate a one-sided p-value from this test statistic. For a two-sided
hypothesis test, Agresti (1992) suggest three different methods of calculating p-values. The main
focus of this thesis is to calculate the power of these three p-values in different situations. The
power is both simulated and calculated exactly to compare the different methods. Finally, the
p-values are also shown to be valid.
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1 Introduction

The history of hypothesis testing can be said to start even as early as the formulation of what is
known today as the scientific method. The scientific method in general can be said to proceed
in 4 steps: Formulating a hypothesis, gathering data, testing the hypothesis based on the set of
data and finally reaching a conclusion based on the test. As early as in the 11th century, Ibn
al-Haytham performed experiments to falsify a hypothesis from Euclid about the function of the
eyes (Rooney 2012).

Often in contemporary science one specifies two conflicting hypotheses, a null hypothesis and an
alternative hypothesis. These hypotheses can be statements about a parameter in a distribution
where both cannot be true simultaneously. In practical research, the test statistic generates a p-
value which is used as a form of evidence to reject the null hypothesis (although often misunderstood
to be the probability of the null hypothesis to be true).

Two-sided tests are often used, where the alternative hypothesis simply states that a parameter
is either larger or smaller than some range of parameter values which are specified by the null
hypothesis. Some journals such as the New England Journal of Medicine states in its guidelines:
“Unless one-sided tests are required by study design, [...], all reported p-values should be two-sided”
(New Manuscripts n.d.). Freedman (2008) notes that a possible reason for this guideline could be
to prevent so-called post-hoc abuse where one specifies the hypothesis after the data is collected.

This further underlines a need for two-sided p-values. However, Kulinskaya (2008) notes a problem
in the case where the test statistic is not symmetric: “two-sided statistical tests and p-values are
well defined only when the test statistic in question has a symmetric distribution.” Thus there is
no commonly accepted method for how to assess the 2-sided p-value of asymmetric distributions,
although different methods have been proposed for different situations (Agresti 1992).

This thesis will focus on different ways of constructing 2-sided p-values. These methods are then
applied to Fisher’s exact test, where the test statistic follows an asymmetric distribution when the
null hypothesis is true. The p-values are shown to be valid and we compare the power for each
p-value.

For data analysis and simulations we use the statistical software ”R” (R Core Team 2022) with
the package ”ggplot2” (Wickham 2016).
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2 Preliminaries

Suppose that an experiment is being conducted, which can be repeated and has a set of well-defined
outcomes. Each outcome is defined as a sample outcome and the set of all possible outcomes is
called the sample space S (Larsen and Marx 2018, p.17).

A random variable denoted X is a real-valued function which has as domain the sample space
(Larsen and Marx 2018, p.121). If we denote s as a sample outcome, then we denote the probability
ofX having an outcome of s as P (X = s). If the set of real values is countable or infinitely countable
the random variable is called discrete, and if the the output set is uncountably infinite the random
variable is called continuous.

If the random variable X is discrete we define a probability mass function to be a function of the
sample space S satisfying two conditions

0 ≤ P (X = s) ≤ 1∑
sϵS

P (X = s) = 1

where s is any element of S (Larsen and Marx 2018, p.117).

Analogous to the discrete case, we define the probability density function of a continuous random

variable Y to be a function f such that
∫ b

a
f(t)dt = P (Y ∈ [a, b]) and the two following conditions

hold:
f(t) ≥ 0, ∀ t∫ ∞

−∞
f(t) dt = 1

The expected value of a random variable X with sample space S is defined as

E(X) =


∑

s∈S s · P (X = s) if X is discrete

∫∞
−∞ t · f(t)dt if X is continuous

where the sum is over all s ∈ S.

We call the random variables X1, . . . , Xn a random sample of size n if these random variables
are independent and identically distributed (Casella and Berger 2002, p. 207). This means that
X1 . . . Xn all have the same probability density function or probability mass function.

A parameter is a numerical characteristic of a population or a model (Everitt and Skrondal 2010).
Informally this means that the parameter gives information about the distribution of the popula-
tion. In the following theoretical section, we use the symbol θ to refer to a population parameter.

2.1 Hypothesis testing and test statistics

A hypothesis is a statement about a population parameter (Casella and Berger 2002, p.373). This
can for example be the mean of a population.

We denote two conflicting hypotheses by the null hypothesis and the alternative hypothesis by H0

and H1, respectively (Casella and Berger 2002, p.373). We denote by Θ the set of possible values
of a parameter θ. Then we can state H0 and H1 as H0 : θ ∈ Θ0 and H1 : θ ∈ (Θ ∩ΘC

0 ) where C
denotes the complementary set.

Three situations are common in defining the sets corresponding to H0 and H1. Either H0 specifies
that θ is either (1) less than, (2) equal to, or (3) larger than a specified point. Thus the three
situations can be expressed mathematically in this way:
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H0 : θ ≤ θ0, H1 : θ > θ0 (1)

H0 : θ = θ0, H1 : θ ̸= θ0 (2)

H0 : θ ≥ θ0, H1 : θ < θ0 (3)

When we conduct a hypothesis test we are specifying a rule for which sample values H0 will be
rejected in favour of H1 (Casella and Berger 2002, p.374). Note that since the hypotheses are
complementary, acceptance of one implies rejection of the other.

We can define a test statistic to be a function of the sample that gives evidence either for or against
the alternative hypothesis H1 (Casella and Berger 2002, p.374). A test statistic will be denoted
T (X) where X is the sample (X1,. . . ,Xn).

Therefore a test statistic is the main tool to determine when H0 is rejected. Note that there often
exists multiple possible test statistics that is possible to use in the same situation (Bickel and
Doksum 2002, p.223).

2.2 p-values

A p-value is a value in the interval [0, 1] where small values gives evidence for rejecting H0 for all
possible samples (Casella and Berger 2002, p.397). Since the p-value is a function of the sample,
the p-value itself is also a test statistic. Thus we can denote the p-value as p(X) where X is the
sample as in the case of the test statistic.

In the case of (2), where H0 restricts itself to a single point and we use a test statistic, it is usual
to define the p-value to be the probability of obtaining a certain value or more extreme in the
particular test statistic given H0 is true (Larsen and Marx 2018, p.351). When the distribution of
a test statistic is asymmetric it is however not always clear how to define what constitutes ”more
extreme”.

The p-value does not by itself specify when H0 is rejected. In practical research one defines a
significance level denoted α, where if the p-value is below the significance level, H0 is rejected.
The significance level is most often set at 0.05, but also 0.10 and 0.01 are common significance
levels. If the distribution of a test statistic is known when H0 is true, it is possible to specify for
which samples a test statistic will have a p-value lower than the significance level. This sample
region is denoted the critical region of a test statistic where H0 is rejected (Larsen and Marx 2018,
p.348).

Because of the general definition of a p-value, we also introduce the concept of a valid p-value. A
p-value is said to be valid if the inequality

P (p(X) ≤ α) ≤ α (4)

holds for 0 ≤ α ≤ 1 and all θ which are elements of Θ0 (Casella and Berger 2002, p.397). Informally,
this means that the probability of the p-value being lower than α has to be lower than α for all θ0
in order to be valid. If P (p(X) ≤ α) = α for α ∈ [0, 1], then the valid p-value is called exact .

The most common way of defining a valid p-value is the following theorem.

Theorem 1. If W (X) is a test statistic where larger values of W (X) is evidence for H1, then

p(x) = sup
θ∈Θ0

P (W (X) ≥ W (x))

defines a valid p-value. (Casella and Berger 2002, p.397)

In the conditional setting that we will be considering, the null distribution of W (X) does not
depend on θ ∈ Θ0, in which case the supremum is superfluous.
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2.3 Errors in hypothesis testing and statistical power

If we use p-values to perform a hypothesis test, which means we reject H0 when the p-value is
below a given α, then a small p-value provides evidence against H0. However this evidence is not
definitive unless the p-value is equal to 0. This means that when we reject one of the hypotheses
based on the p-value or any other test statistic, there is a chance that we are making an error. We
denote rejecting H0 when H0 is true a type I error, and we denote accepting H0 when H0 is false
a type II error (Casella and Berger 2002). We can express the four possibilities in a 2× 2 table:

H0 Rejected H1 Rejected
H0 True Type I error Correct decision
H1 True Correct decision Type II error

If we specify a significance level, it is useful to know the probability of a type I or type II error
will be made. For this purpose we define a power function β(θ) = P (X ∈ R) where R denotes
the critical region. If θ ∈ Θ0 then the probability of the sample being in the critical region is the
chance of committing a type I error. If θ ∈ Θ ∩ ΘC

0 , then the probability of the sample being in
the critical region is 1 minus the probability of a type II error.

We want the probability of committing either type of error as low as possible. This means that we
want β(θ) for θ ∈ Θ0 as close to 0 as possible, and β(θ) for θ ∈ ΘC

0 as close to 1 as possible.

2.3.1 Example of the power of a simple rejection rule

Let Y be Poisson distributed with parameter λ. We specify H0: λ ≤ 2 and H1: λ > 2, and
assume we have a single observation from the distribution. If we reject H0 when the observation
is equal to 4 or above, then we can construct our power function. For any λ ∈ Θ0, P (Y ≥ 4) ≤
1 −

∑3
i=0

2i exp (−2)
i! = 0.143 which means that 0 ≤ β(λ) ≤ 0.143 for a λ between 0 and 2. For a

λ over 2, P (Y ≥ 4) ≥ 1 −
∑3

i=0
2i exp (−2)

i! = 0.143. This implies that 0.143 ≤ β(λ) ≤ 1 for a λ
greater than 2. Thus from our power function we know that the probability of committing a type
I error when λ ≤ 2 is between 0 and 0.143, and the probability of committing a type II error when
λ > 2 is between 0 and 0.857.

Using different test statistics for the same hypothesis test yields different power functions. Typically
using any test statistic in a hypothesis test, there is a tradeoff between the probability of committing
a type I and type II error. If the probability a type I error is low, then the probability of a type
II error is usually high and vice versa. With this in mind, for 0 ≤ α ≤ 1, we call a test statistic a
size α test if supθϵΘ0

β(θ) = α and we call it a level α test if supθϵΘ0
β(θ) ≤ α (Casella and Berger

2002, p.385).

3 Fisher’s exact test

3.1 Fisher’s exact test one-sided

LetX and Y be independent binomially distributed with parameters px, py and n1, n2, respectively.
We wish to test the null hypothesis H0: px = py against the alternative hypothesis H1: px > py.
We can represent a single realization in a 2× 2 contingency table:

x y x+ y
n1 − x n2 − y n1 + n2 − x− y
n1 n2 n1 + n2

Here x and y are the respective number of successes and n1, n2 are the respective fixed trials in
each experiment. For brevity, x+ y is denoted as c subsequently.
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Fisher’s exact test is a popular test for testing whether the probability parameters are equal in
two different binomial distributions with fixed n1, n2. Fisher showed that if one can assume the
number of trials for both variables to be known as well as the combined amount of successes, then
the probability of successes in one of the variables follows a hypergeometric distribution when the
null hypothesis is true (Agresti 1992, p.134). Let X and Y be binomially distributed as before.
This can be shown by the definition of conditional probability:

P (X = x | X + Y = c) =
P (X = x ∩ Y +X = c)

P (X + Y = c)

Now the intersection determines that Y + X = c is the same as Y = c − x and X + Y follows
a binomial distribution with parameters (n1+n2, px) when H0 is true (Larsen and Marx 2018,
p.177). Thus when H0 is true the expression simplifies to

P (X = x|X + Y = c) =

(
n1

x

)
pxx(1− px)

n1−x
(

n2

c−x

)
pc−x
x (1− px)

n2−c+x(
n1+n2

x+y

)
px+y
x (1− px)n1+n2−x−y

=

(
n1

x

)(
n2

c−x

)(
n1+n2

c

) (5)

which is the probability mass function of a hypergeometric distribution with parameters (n1 + n2,
n1, c). Continuing in this section, we will refer to P (X = x | X + Y = c) as f(x | c) (as H0 is
assumed to be true in the following calculations).

Example 1 Consider the observation of the following table:

15 7 22
4 4 8
19 11 30

Table 1: Observations in Example 1

In Table 2, the probability mass function f(x | 22) as in (5) is shown for any observed x. Thus
under H0 the probability of obtaining Table 1 is 0.218.

Since the conditional distribution of X is known when H0 is true, using X itself as a test statistic
is sensible. The sum of the probabilities of obtaining an x that is equal to or larger than X when
H0 is true is then a valid p-value. This p-value can be expressed mathematically by

p(x) =

min(n1,c)∑
j=x

f(j | c) (6)

for any sample point x .

Consider testing H0 : px = py against H1 : px > py conditional on observing c = 22. For this

x f(x)
11 0.012
12 0.094
13 0.254
14 0.328
15 0.218
16 0.076
17 0.001
18 0.000
19 0.000

Table 2: The probability mass function of X for every possible x in Example 1
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example the p-value becomes:

p(x) =

min(19,22)∑
j=15

f(j | 22) =
19∑

j=15

f(j | 22) = 0.31

(see Figure 1 and Table 2).

0.0

0.1

0.2

0.3

11 12 13 14 15 16 17 18 19
j

f(
X

|c
)

Figure 1: The probability mass function of X of Example 1. The green bars indicate the sum of
f(j | c) for j = 15, . . . , 19 that gives the p-value for Fisher’s 1-sided exact test.

3.2 Constructing two-sided p-values for Fisher’s exact test

In the preceding section we tested H0: px = py against H1: px > py and the p-value was the
conditional probability of obtaining the observed value or more extreme when H0 was true. This
one-sided p-value can be extended to a two-sided p-value in the case where H0 : px = py is tested
against H1 : px ̸= py.

We look at three possible ways of constructing valid p-values for Fisher’s exact test, that is, when
we are able to condition on c. The three p-values are shown to be valid in Appendix A, and will
henceforth be denoted p1, p2 and p3. Agresti (1992) notes the three possible ways to extend the
conditional one-sided p-value to the two-sided case:

p1) Doubling the smallest one-sided conditional p-value. Let Pr denote the p-value for the
one-sided test H0: px = py against H1: px > py, and let Pl denote the test for H1: px < py against
H0 : px = py. Pl is calculated as in equation 6. Pr is also calculated as in (6) when substituting
the distribution of X with Y and using Y = c−x as the sample point. Then the two-sided p-value
is defined as

p1(X) = 2min

(
Pl, Pr,

1

2

)
. (7)

p2) Using f(x | c) as a test statistic. For this method we sum all probabilities of outcomes
having probabilities less than or equal to the probability of the observed x, that is,

p2(X) =
∑
j

f(j|c) (8)

where the sum is over all j such that f(j | c) ≤ f(x | c).

p3) Using the absolute value of the deviation of the sample point from the expected
value as a test statistic. This means summing all distributions further from the expected value

9
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0.2

0.3

11 12 13 14 15 16 17 18 19
j

f(
X

|c
)

Figure 2: The probability mass function of X of Example 1. The blue bars indicate the sum of
f(j | c) for j = 11, . . . , 15 that gives the value of Pl. Since Pl > Pr (see Figure 1), p1(15 | 22) =
2Pl = 0.62.

x p1(x | 22) p2(x | 22) p3(x | 22)
11 0.026 0.014 0.028
12 0.215 0.199 0.199
13 0.725 0.672 0.672
14 1 1 1
15 0.619 0.417 0.417
16 0.182 0.104 0.104
17 0.029 0.027 0.015
18 0.002 0.001 0.001
19 <0.001 <0.001 <0.001

Table 3: 2-sided p-values for each method for different observed x in Example 1.

than the observed x. The expected value of X is given by c n1/n when H0 is true (Larsen and
Marx 2018). This p-value can be expressed mathematically as

p3(X) =
∑
j

f(j|c) (9)

summed over all j where |j − E(X)| ≥ |x− E(X)|.

It is shown in Appendix A that all three p-values are valid.

Example 1 (continued)

We continue to use the same example as in the previous section to calculate the two-sided p-values.
In our example this gives p1 to be 0.62, as our previous one-sided p-value is the smallest of Pr, Pl

and 1
2 (see Figure 1 and 2).

p2 is the sum of all probabilities lower than or equal to the observed x. p2 is thus 0.42 (see Figure
3).

Note that under H0, E(X) is a fixed constant as all values are given. In our example the expected
value of X is 22·19/30 = 13.93. The observed x is equal to 15. Thus the sum is over all x which
are less than or equal to 12 or greater than or equal to 15. For our example, this method gives the
same p-value as in method 2 of 0.42 (see Figure 3).

Table 3 shows the possible observations of x and the respective p-values generated for each point
x.
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j
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)

Figure 3: The probability mass function of X of Example 1. The blue bars indicate the sum of
the probabilities f(j | c) for p2(15 | 22) and p3(15 | 22) which gives a value of 0.42.

In the following sections we show that these 2-sided p-values are valid and we investigate the
statistical power of the three different methods.

3.3 Simulation of power for the three methods

We wish to estimate the power by simulation for each of the three methods for various combinations
of n1, n2, px, py and α. The results are given in Tables 3 and 5. A detailed description of four
cases is given below.

We denote γ̂1, γ̂2, γ̂3 to be the estimated power for a significance level of α for the respective 2-sided
p-values. The variables γi are all binomially distributed with an unknown probability of rejecting
H0. We provide a 95% Clopper-Pearson confidence interval for each γi based on each γ̂i.

3.3.1 Simulation of H1: px ̸= py with 110 and 100 trials

Let X and Y be independent and binomially distributed with 110 and 100 trials respectively, and
with probabilities of success px = 0.2, py = 0.1. Thus H1 : px ̸= py is true, and we wish to see how
often H0 is rejected for the different methods. Here we let α = 0.05.

Using 1000 simulations with an α of 0.05, the null hypothesis is rejected 448, 476 and 476 times,
respectively (see Figure 4, first column). The respective 95% Clopper-Pearson confidence intervals
are [0.417, 0.479], [0.445, 0.507] and [0.445, 0.507].

The mean of the simulated p-values for the three methods are 0.169, 0.151 and 0.151 for the
simulation, respectively. In only 30 out of 1000 simulations was one of the p-values strictly smaller
than both others. Method 1 was smallest in 9 simulations, method 2 was smallest in 21 simulations,
and method 3 never gave a strictly lowest p-value of the three. Method 3 and 2 gave equal p-values
in 979 simulations, and in one of these cases all 3 p-values were equal. Otherwise, they were
dissimilar.

In all 1000 simulations, method 2 provided p-values smaller than or equal to method 3. Thus it
seems plausible that this method has more power than method 3 in this case. However, note that
all differences between p2 and p3 did not imply any difference in the rejection of H0 (see Table 4).
In the previous section by Table 3, p2(17 | 22) > p3(17 | 22), so the difference in power may vary
to a great extent based on the number of trials in the distributions of X and Y .

In all cases where method 1 gave lower p-values than method 2, the difference between the two
was smaller than 0.001. When method 2 gave smaller p-values than method 1, the difference was
as large as 0.131.
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Figure 4: The distribution of the simulated p-values p1, p2 and p3 when px = 0.2 py = 0.1 (first
column) and px = py = 0.1 (second column). The first row is of p1, the second row of p2 and the
third row is of p3, all for the same 1000 simulations. n1 = 110, n2 = 100

3.3.2 Simulation of H0 : px = py with 110 and 100 trials

We again consider 1000 simulations, with the only difference being that px = py = 0.1 in this case.
This means that we are investigating the probability of making a type I error using the different
p-values and α = 0.05 for rejection of H0.

Of the 1000 simulations the p-values are below 0.05: 29, 39 and 39 times for each method respect-
ively. Similar to the previous simulation, method 2 and 3 give equal p-values in 970 out of 1000
simulations, with 19 giving equal p-values for all three methods (see Figure 4, right column).

3.3.3 Simulation of H1: px ̸= py with 220 and 55 trials

We saw in the previous section that the difference between the methods were not large. Out of
1000 simulations when px=0.2 and py=0.1 when α = 0.05, H0 was rejected 28 times more using
either p2 or p3 instead of p1. However simulating under H0, p2 and p3 led to 10 more type I errors
than p1 using a 0.05 rule. Thus p1 seems to be more conservative than the others, meaning less
likely to reject H0 in general.
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n1/n2 p1 < p2, p3 p2 < p1, p3 p3 < p1, p2
H0 220/200 11 25 0

110/100 11 32 0
220/55 18 224 141
440/55 11 223 209
300/75 20 182 120

H1 > 220/200 23 111 0
110/100 9 21 0
220/55 133 264 42
440/55 177 297 71
300/75 166 353 41

H1 < 220/200 0 8 62
110/100 2 8 11
220/55 0 133 225
440/55 0 126 285
300/75 0 76 340

Table 4: Number of times a p-value is strictly smaller than the other two when H0 and H1 is true.
“H0” denotes px = py = 0.1, “H1 > ” denotes px = 0.2, py = 0.1 and “H1 < ” denotes px = 0.1,
py = 0.2.

To highlight the possible differences we draw 1000 observations from X and Y , both independent
and binomially distributed with 220 and 55 trials and px=0.2, py=0.1. n1 has been doubled and
n2 has been halved. The significance level is set at α = 0.05.

Using a 0.05 rule, H0 is rejected 350, 358 and 341 times by each respective p-value (see Table 4).
The respective 95% confidence intervals are [0.320, 0.380], [0.328, 0.389] and [0.312, 0.371]. While
the total number of trials has been increased, the power has decreased.

A p-value for each method was strictly smaller than the others 133, 264 and 42 times respectively.
All three perform similarly, rejecting the null hypothesis roughly 35% of the time.

3.3.4 Simulating of H0: px = py with 220 and 55 trials

We consider the same example of n1 = 55, n2 = 220, α = 0.05, but change px and py to be
px = py = 0.1.

H0 is rejected 0.031, 0.038 and 0.030 by the respective methods, with 95% Clopper-Pearson inter-
vals [0.021, 0.044], [0.027, 0.052] and [0.020, 0.043] respectively. p1 was strictly smallest 18 times,
p2 was strictly smallest 224 times and p3 was strictly smallest 141 times. In 739 simulations p2
was equal to p3, with 23 simulations of these giving equal p-values for all three.

3.4 Exact calculation of power

It is also possible to exactly calculate the power of rejection based on each p-value. Let n1, n2, px, py
be the number of trials and the success parameters, respectively. Then the power γi for each p-
value pi is the probability of obtaining any outcome in X and Y such that the p-value is below or
equal to α, that is, ∑

i

∑
j

P (X = i) · P (Y = j),

where the sum is taken over all pairs (i, j) such that pi ≤ α, 0 ≤ i ≤ n1, 0 ≤ j ≤ n2. The exact
power of each method is given in Table 6.
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α = 0.05 n1/n2 γ̂1 γ̂2 γ̂3
H0 220/200 0.030 0.034 0.034

110/100 0.029 0.039 0.039
220/55 0.031 0.038 0.030
440/55 0.020 0.027 0.025
300/75 0.032 0.041 0.043

H1 > 220/200 0.788 0.808 0.808
110/100 0.448 0.476 0.476
220/55 0.350 0.358 0.341
440/55 0.415 0.432 0.412
300/75 0.518 0.546 0.522

H1 < 220/200 0.790 0.807 0.807
110/100 0.469 0.501 0.501
220/55 0.400 0.472 0.482
440/55 0.452 0.507 0.521
300/75 0.543 0.603 0.603

α = 0.1
H0 220/200 0.065 0.084 0.084

110/100 0.051 0.068 0.067
220/55 0.052 0.071 0.069
440/55 0.039 0.052 0.049
300/75 0.065 0.080 0.079

H1 > 220/200 0.870 0.885 0.885
110/100 0.585 0.623 0.620
220/55 0.475 0.500 0.499
440/55 0.560 0.573 0.570
300/75 0.651 0.671 0.664

H1 < 220/200 0.855 0.871 0.871
110/100 0.597 0.623 0.621
220/55 0.535 0.593 0.588
440/55 0.575 0.629 0.627
300/75 0.673 0.718 0.711

Table 5: Simulated γ̂1, γ̂2, γ̂3, using the p-value p1, p2, p3, respectively, for combinations of n1, n2,
px and py when α = 0.05 and α = 0.10. “H0” denotes px = py = 0.1, “H1 > ” denotes px = 0.2,
py = 0.1 and “H1 < ” denotes px = 0.1, py = 0.2. n1 and n2 are given in column n1/n2.
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α = 0.05 n1/n2 γ1 γ2 γ3
H0 220/200 0.034 0.041 0.041

110/100 0.029 0.037 0.037
220/55 0.028 0.036 0.035
440/55 0.028 0.039 0.038
300/75 0.029 0.038 0.036

H1 > 220/200 0.787 0.807 0.807
110/100 0.459 0.491 0.489
220/55 0.357 0.365 0.351
440/55 0.392 0.409 0.393
300/75 0.493 0.523 0.500

H1 < 220/200 0.790 0.808 0.808
110/100 0.465 0.496 0.496
220/55 0.416 0.474 0.486
440/55 0.464 0.521 0.537
300/75 0.545 0.597 0.598

α = 0.1
H0 220/200 0.071 0.085 0.085

110/100 0.060 0.077 0.073
220/55 0.056 0.076 0.074
440/55 0.060 0.075 0.073
300/75 0.062 0.082 0.077

H1 > 220/200 0.870 0.881 0.881
110/100 0.583 0.615 0.614
220/55 0.485 0.509 0.507
440/55 0.528 0.543 0.536
300/75 0.628 0.647 0.641

H1 < 220/200 0.871 0.883 0.883
110/100 0.582 0.622 0.621
220/55 0.535 0.587 0.582
440/55 0.584 0.638 0.635
300/75 0.661 0.707 0.701

Table 6: Exact power, γ1, γ2, γ3, using the p-value p1, p2, p3, respectively, for combinations of n1,
n2, px and py when α = 0.05 or α = 0.10. “H0” denotes px = py = 0.1, “H1 > ” denotes px = 0.2,
py = 0.1 and “H1 < ” denotes px = 0.1, py = 0.2. n1 and n2 are given in column n1/n2.
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4 Discussion and conclusion

Having shown that the three p-values are valid in general for the null hypothesis H0 : px = py
(see Appendix A), we consider the influence of the parameters n1, n2 and α on the power of the
different methods.

When n1 and n2 are both over 200, all p-values often reject H0 when H0 is false. From Table 6 we
see that it is most important to have a sufficient number of trials in both X and Y for the power
of the different methods. This matters more for the power than increasing the number of trials
in only one of the random variables. Having both n1 and n2 above 200 seems ideal for the cases
considered in Chapter 3.3, as having fewer trials than this leads to more type II errors.

From Table 5 and 6, we see that changing α from 0.05 to 0.10 leads to roughly 35-45 more type I
errors and 75-150 less type II errors. In practice this tradeoff has to be evaluated by considering
the potential consequences of committing either error.

The exact calculations in Table 5 are within 95% Clopper-Pearson confidence intervals constructed
from each γ̂i with one exception when α = 0.1, H0 is true and with trials 440/55. These exact
γi are not contained in 95% Clopper-Pearson confidence intervals of γi constructed from each γ̂i,
while they are contained in a 99.9% confidence interval.

This outlier is probably due to randomness, as there is little difference in the sum of rejections
between the simulated p-values and the exact calculations when α = 0.05. Consider the upper
half of Table 4, where each row corresponds to 1000 simulations. For the 15 000 simulations,
the difference between the exact and simulated rejections for each pi is less than 20 for all three
p-values.

From Table 6 we see that p1 is overall more conservative in rejecting H0 than p2 and p3 both when
H0 is true and when H1 is true. While p1 is strictly smaller than p2 and p3 in some cases when
H1 is true, this does not lead to more rejections than p2 (see Tables 4 and 6). This pattern holds
for both α = 0.05 and α = 0.10.

p2 seems in general to have the highest power of the three, with an exception being made when
H1 : px = 0.1 < py = 0.2 where p3 seems to have higher power when α = 0.05 (see Tables 5 and
6). However when α = 0.10, p2 has higher power than p3. Thus there are a select few scenarios
where p3 performs better (see Table 6).

Overall, p2 seems to have the highest power of the three methods. This finding is not too surprising
as p2 is used as the standard method of calculating p-values for the fisher.test function in the
statistical software R (R Core Team 2022).
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Appendix

A Proofs of validity of the 2-sided p-values

A.1 The doubled one-sided p-value, p1

Let p(X) = 2 min(Pr, Pl,
1
2 ) where Pr and Pl are the one-sided p-values corresponding to Fisher’s

one-sided test as in (7). Then by (4), for α ∈ [0, 1), when H0 is true we see that

P (p(X) ≤ α) = P

(
2min

(
Pr, Pl,

1

2

)
≤ α

)
= P

(
min

(
Pr, Pl,

1

2

)
≤ α

2

)
≤ P

(
Pr ≤ α

2

)
+ P

(
Pl ≤

α

2

)
+ P

(
1

2
≤ α

2

)
=

α

2
+

α

2
= α

and P (p(X) ≤ α) ≤ α by definition for α = 1. This means that the p-value is valid.

A.2 The sum over all smaller probabilities, p2

Let p(x) =
∑

i f(i | c) be the sum of all f(i | c) less than or equal to f(x | c) as in (8). Denote by
x1 the x to give the largest p(x) which is smaller than or equal to α. Denote by x2 the x to give
the second largest p(x), and so on until xn), the giving the smallest nonzero p-value. Then by (4),

P (p(x) ≤ α) = P (X = x1 ∪X = x2 ∪ · · · ∪X = xn) =

n∑
i=1

f(xi | c) = p(x1) ≤ α

which means that p(x) is a valid p-value.

A.3 Sum of all probabilities with absolute larger deviations from the mean, p3

Let W (X) = |X − E(X)|. Then

P (W (X) ≥ W (x)) = P (|X − E(X)| ≥ |x− E(X)|) =
∑
j

f(j | c)

where the sum is over all j such that |j − E(X)| ≥ |x − E(X)|. Thus by Theorem 1, the p-value
is valid.
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