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1 Introduction
Stable homotopy theory and the stable homotopy category were originally motivated by
stable phenomena that appear in homotopy theory. We have the Freudenthal Suspension
Theorem which says that, given some connectivity restriction, we have isomorphisms
of homotopy groups induced by the suspension. Furthermore, the suspension also in-
duces isomorphisms in homology. Hence the initial motivation was to create a category
in which these phenomena could be isolated. Afterwards it has been showed that sta-
ble homotopy theory is connected to several, often surprising, areas of mathemathics,
which has increased it’s motivation even further.

The Spanier–Whitehead category is one attempt to form the stable homotopy cate-
gory. The way it is constructed is very direct and simple, and it is therefore relatively
easy to understand, but this simplicity has its price. It lacks several of the properties
we would like the stable homotopy category to have. Because of this, many books and
articles use it to motivate other models for a stable homotopy category, but few devote
time to the properties they claim that the Spanier–Whitehead category does have, for
instance its triangulation.

One place where you can find an introduction to the Spanier–Whitehead category is
in "Spectra and the Steenrod algebra" by Margolis [7]. However, even here the details
are bygone. Margolis’ proof of the triangulation on Spanier–Whitehead is largely based
on properties of the homotopy category of CW-complexes, which are not proven. In
addition, the octahedron axiom of triangulated categories is not mentioned in Margolis’
proof. Therefore, this thesis is devoted to filling in the holes of the first chapter of [7],
and we here prove that the Spanier–Whitehead category is a triangulated category.

We start by reviewing CW-complexes and their properties, after which we move on
to the homotopy category of CW-complexes. In this section we define several essen-
tials, like the suspension and the mapping cone, which are the basis on which we make
triangles in both the homotopy category of CW-complexes and in Spanier–Whitehead.

Before we dive into the triangulation, we take a closer look at cofibration categories
and their properties, and we show that the category of CW-complexes is a cofibration
category. This section, and the reason for including it, is largely inspired by Schwede,
and his article about topological triangulated categories [10], in which he proves that
in fact all homotopy categories of a stable cofibration category are triangulated. We
will not give such a generalized proof, but we will use the properties of cofibration
categories in our proof.

After this we review the definition of a triangulated category, and make a triangu-
lated structure on the homotopy category of CW-complexes. This will not make it a
triangulated category, but we will see that this structure can be almost directly included
into, and completed in, the Spanier–Whitehead category. This will prove that Spanier–
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Whitehead is a triangulated category.
Conclusively we look at what Spanier–Whitehead lacks, and how this motivates

further work with the stable homotopy category.

2 CW-complexes
2.1 CW-complexes and their properties
CW-complexes are the spaces we will restrict ourselves to throughout this thesis. They
are a certain type of "nice" topological spaces, that is, they are compactly generated
Hausdorff spaces. They are much used in algebraic topology as they are constructed
from spheres and disks, spaces we have a lot of knowledge about topologically.
Definition 2.1. A CW-complex is a topological space 𝑋 equipped with a filtration
∅ = 𝑋−1 ⊆ 𝑋0 ⊆ ... ⊆ 𝑋𝑛 ⊆ ... ⊆

⋃

𝑛𝑋𝑛 = 𝑋, where each 𝑋𝑛 is a subspace of 𝑋𝑛+1.
For each 𝑛 we have an index set Γ𝑛 and attaching maps {𝑓𝛼}𝛼∈Γ𝑛 along with pushouts

∐

𝛼∈Γ𝑛
𝑆𝑛−1

∐

𝛼∈Γ𝑛
𝐷𝑛

𝑋𝑛−1 𝑋𝑛

𝑓𝛼 𝑒𝛼

where the maps {𝑒𝛼}𝛼∈Γ𝑛 are called the characteristic maps of the 𝑛-cells of 𝑋. An
𝑛-cell is an 𝑛-disk together with its characteristic map. A subset 𝑈 of 𝑋 is open if and
only if 𝑈 ∩ 𝑋𝑛 is open in 𝑋𝑛 for all 𝑛. The cell complex is called pointed if it has a
basepoint.
Remark 2.2. We say that a CW-complex is finite if for some 𝑛 we have 𝑋𝑖 = 𝑋𝑛 for
all 𝑖 > 𝑛 and if Γ𝑛 is a finite set for all 𝑛. This number 𝑛 is then said to be the dimension
of 𝑋. The subspace 𝑋𝑛 of 𝑋 is called the n-skeleton of the CW-complex.

We think of a CW-complex as a space inductively built from a set of points 𝑋0 by
attaching 𝑛-disks to 𝑋𝑛−1. The attaching maps tell us how the boundary of each 𝑛-disk
is mapped into 𝑋𝑛−1, while the characteristic maps tell us how the disks map into 𝑋𝑛.We say that we build a space as a cell complex, which means that we make a CW-
structure for a space. But the same space would just be a topological space if no CW-
structure was specified. For instance, 𝑆1 with your preferred topology is a topological
space, and it can be realized as a CW-complex, but it is not a CW-complex unless a
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filtration and attaching maps are specified. We will see that the filtration and attaching
maps are not unique. There are, in fact, often several ways of realizing a space as a
CW-complex.
Example 2.3. The 𝑛-sphere can be built from a single point 𝑋0 = {∗} and one 𝑛-cell
with the pushout

𝑆𝑛−1 𝐷𝑛

𝑋0 𝑆𝑛

where the attaching map collapses the boundary of 𝐷𝑛 to the point. However, we can
also build the 𝑛-sphere inductively from the (𝑛 − 1)-sphere, like this:

𝑆𝑛−1
∐

𝑆𝑛−1 𝐷𝑛∐𝐷𝑛

𝑆𝑛−1 𝑆𝑛

where 𝑆𝑛−1∐𝑆𝑛−1 ⟶ 𝑆𝑛−1 is the identity on their respective circles. So we map the
two boundaries onto 𝑆𝑛−1 such that the 𝑛-cells become the upper and lower hemisphere
of 𝑆𝑛.
Example 2.4. The torus can be made from a 0-cell by attaching two 1-cells 𝑎 and 𝑏
to the basepoint like in Figure 5, and then attaching a 2-cell where its boundary has an
identification like in Example 2.4.

The 2-cell is therefore attached to the circles along the loop 𝑎𝑏𝑎−1𝑏−1.
Definition 2.5. Let 𝑓 ∶ 𝑋 ⟶ 𝑌 be a map between two CW-complexes (𝑋, 𝑥0) and
(𝑌 , 𝑦0), where 𝑋 has filtration ⋃

𝑛𝑋𝑛 and 𝑌 has filtration ⋃

𝑛 𝑌𝑛. Then 𝑓 is cellular if
we have 𝑓 (𝑋𝑛) ⊆ 𝑌𝑛 for all 𝑛 ∈ ℕ. It is called basepoint preserving if 𝑓 (𝑥0) = 𝑦0.

To formalize everything, we define a category of based CW-complexes, which will
be the category we work with from here on.
Definition 2.6. Let C W be the category with finite pointed CW-complexes as objects,
and the morphisms are the cellular, basepoint preserving.

6



𝑎

𝑏

𝑎

𝑏

Figure 1: The identification on the 2-cell in the CW-complex 𝑇 2.

∙

Figure 2: The 1-skeleton of 𝑇 2.

Remark 2.7. We often omit the basepoints in notation, and thus denote the sets of maps
between two pointed CW-complexes as C W (𝑋, 𝑌 ).

We will be using pushouts a lot throughtout this thesis, and therefore include the
following theorem.
Theorem 2.8. The category C W is closed under pushouts.

Definition 2.9. For 𝑋 and 𝑌 in C W we define the wedge 𝑋 ∨ 𝑌 as the subspace
(𝑋 × {𝑦0}) ∪ ({𝑥0} × 𝑌 ) of 𝑋 × 𝑌 , where {𝑥0} × {𝑦0} is the basepoint.
Remark 2.10. Geometrically, this looks like gluing two spaces together at their base-
points. See Figure 3 for an example.

In non-pointed topological spaces and non-pointed CW-complexes one can easily
deduce that the coproduct is the disjoint union, but when we consider pointed spaces
the coproduct of course needs to have a cannonical basepoint. The wedge gives us this.
Proposition 2.11. The wedge is the categorical coproduct in C W .

Proof. Let 𝑋1, 𝑋2 and 𝑌 be pointed CW-complexes with basepoints 𝑥1, 𝑥2 and 𝑦, re-
spectively. Let

𝑓1 ∶ 𝑋1 ⟶ 𝑌 , 𝑓2 ∶ 𝑋2 ⟶ 𝑌

7



Figure 3: The wedge of two 2-spheres. The black bullet marks the new basepoint.

be two pointed maps. Then 𝑓1(𝑥1) = 𝑓2(𝑥2) = 𝑦, and therefore 𝑓 = (𝑓1, 𝑓2), which is
given by 𝑓1 when restricted to the subspace 𝑋1 in the wedge and 𝑓2 when restricted to
𝑋2, is well-defined, and makes the following diagram commute:

𝑌

𝑋1 𝑋1 ∨𝑋2 𝑋2𝑖1 𝑖2

𝑓
𝑓1 𝑓2

As both 𝑓1 and 𝑓2 preserve basepoints, it follows that 𝑓 is unique.

We now use the wedge to construct a new space, the smash product.
Definition 2.12. The smash product of two pointed CW-complexes (𝑋, 𝑥0) and (𝑌 , 𝑦0)is given by

𝑋 ∧ 𝑌 = 𝑋 × 𝑌
𝑋 ∨ 𝑌

.

Here the wedge is collapsed to the basepoint.
Proposition 2.13. The smash product is functorial in each variable on C W .

Proof. Let (𝑉 , 𝑣0) be a based CW-complex. We prove the statement only for 𝑉 ∧ − as
the proofs are similar.
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Let (𝑋, 𝑥0) be another based CW-complex. Elements in 𝑉 ∧ 𝑋 can be described
with classes [𝑣, 𝑥], so for a map 𝑓 ∶ 𝑋 ⟶ 𝑌 we define

𝑉 ∧ 𝑓 ∶ 𝑉 ∧𝑋 ⟶ 𝑉 ∧ 𝑌
[𝑣, 𝑥] ↦ [𝑣, 𝑓 (𝑥)]

We need to check that this is well-defined. Let [𝑣, 𝑥] and [𝑣′, 𝑥′] be two elements such
that [𝑣, 𝑥] = [𝑣′, 𝑥′]. Looking at the definition of the smash product we see that this
happens in three cases. Either 𝑣 = 𝑣′ and 𝑥 = 𝑥′, or 𝑣 = 𝑣′ = 𝑣0, or 𝑥 = 𝑥′ = 𝑥0.
That the functor is well-defined in the first case is trivial. For the second case we can
note that classes [𝑣0, 𝑓 (𝑥)] will all be identified as the basepoint in 𝑉 ∧ 𝑌 , so we get
[𝑣, 𝑓 (𝑥)] = [𝑣′, 𝑓 (𝑥′)] in this case as well. The same argument can be used in the third
case, as 𝑓 is basepoint preserving. Hence, 𝑉 ∧ 𝑓 is well-defined.

Now to functoriality: for two maps 𝑓 ∶ 𝑋 ⟶ 𝑌 and 𝑔 ∶ 𝑌 ⟶ 𝑍 in C W we get
(𝑉 ∧ 𝑔)◦(𝑉 ∧ 𝑓 )[𝑣, 𝑥] = (𝑉 ∧ 𝑔)[𝑣, 𝑓 (𝑥)] = [𝑣, (𝑔◦𝑓 )(𝑥)] = 𝑉 ∧ (𝑔◦𝑓 )[𝑣, 𝑥],

so
(𝑉 ∧ 𝑔)◦(𝑉 ∧ 𝑓 ) = 𝑉 ∧ (𝑔◦𝑓 ).

For 𝑖𝑑𝑋 ∶ 𝑋 ⟶ 𝑋 we get
𝑉 ∧ 𝑖𝑑𝑋[𝑣, 𝑥] = [𝑣, 𝑥],

so 𝑉 ∧ 𝑖𝑑𝑋 = 𝑖𝑑𝑉 ∧𝑋 . This proves functoriality.
In general, a good geometric understanding of the smash product is difficult to ob-

tain, but for certain spaces it can be visualized.
Example 2.14. The smash product of two circles is the 2-sphere: the subspace 𝑆1∨𝑆1

of the torus 𝑇 2 = 𝑆1 × 𝑆1 is the 1-skeleton of Example 2.4. Hence, collapsing this to
a point gives us the CW-structure of a 2-sphere.
Theorem 2.15. For 𝑋, 𝑌 and 𝑍 ∈ C W the smash product has natural isomorphisms
(homeomorphisms):

(i) 𝑋 ∧ (𝑌 ∧𝑍) ≅ (𝑋 ∧ 𝑌 ) ∧𝑍

(ii) 𝑋 ∧ 𝑌 ≅ 𝑌 ∧𝑋

(iii) 𝑆0 ∧𝑋 ≅ 𝑋 ≅ 𝑋 ∧ 𝑆0

9



Proof. We prove only (𝑖𝑖) and (𝑖𝑖𝑖). For (𝑖) see 5.8.2 in [3].
(𝑖𝑖) Since the wedge is the coproduct, we have 𝑋 ∨ 𝑌 ≅ 𝑌 ∨𝑋 and so we get

𝑋 ∧ 𝑌 = 𝑋 × 𝑌
𝑋 ∨ 𝑌

≅ 𝑌 ×𝑋
𝑌 ∨𝑋

= 𝑌 ∧𝑋.

(𝑖𝑖𝑖) Since 𝑆0 is two disjoint points where one of them is the basepoint, we get

𝑆0 ∧𝑋 = 𝑆0 ×𝑋
𝑆0 ∨𝑋

≅ 𝑋 ⨿𝑋
{∗} ⨿𝑋

≅ 𝑋.

The naturality of these homeomorphisms follows from the wedge and the cartesian
product being functorial.

As mentioned, smashing with simple spaces has simple geometric interpretations,
and we use this to define two important functors on C W .
Definition 2.16. For 𝑋 ∈ C W we can build two new spaces with the smash product:

• The suspension of 𝑋, Σ𝑋 = 𝑆1 ∧𝑋.
• The cone of 𝑋, 𝐶𝑋 = 𝐼 ∧𝑋, where 𝐼 = [0, 1] has the basepoint {0}.

Figure 4: The suspension and cone of a square.

Remark 2.17. The suspension as defined here is often called the reduced suspension
for based topological spaces, while the suspension is defined as a different, but similar
construction on unbased spaces. However, in C W , the two suspensions are homotopy
equivalent under free homotopies, that is, homotopies that don’t preserve basepoints.
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Proposition 2.18. As a direct consequence of Proposition 2.13 we have that the sus-
pension and the cone are functorial on C W .

Remark 2.19. There are several equivalent ways of defining the suspension, and they
are suitable for different purposes. Firstly, we can define it explicitly as a quotient space:

Σ𝑋 ≅ 𝐼 ×𝑋
𝜕𝐼 ×𝑋 ∪ 𝐼 × {𝑥0}

.

We can also define it as the pushout

𝑋 𝐶𝑋

∗ Σ𝑋

𝑖𝑋1

in which the left map sends all of𝑋 to the basepoint, and the above map is the inclusion
of𝑋 as a subspace in𝐶𝑋 at 𝑡 = 1. We see from the definition of𝐶𝑋 that𝑋 ≅ {[1, 𝑥] ∶
𝑥 ∈ 𝑋} ⊆ 𝐶𝑋.

One of the most important properties of the suspension is that it takes 𝑛-spheres to
(𝑛 + 1)-spheres.
Proposition 2.20. For all 𝑛 ∈ ℕ we have Σ𝑆𝑛 ≅ 𝑆𝑛+1.

We need the following technical lemma to prove this.
Lemma 2.21. If 𝑋 is a topological space and 𝛼 is an equivalence relation on X, then
there is a homeomorphism

𝐼 ×𝑋
∼

⟶ 𝐼 × 𝑋
𝛼

where ∼ is the identity relation on 𝐼 , i.e. it does nothing on 𝐼 , and the relation 𝛼 on 𝑋.

See [12, pp. 2] for a proof.
Proof of Proposition 2.20. Let 𝑠0 denote the basepoint in𝑆𝑛. Observe that the 𝑛-sphere
can be constructed as the quotient 𝐼𝑛∕𝜕𝐼𝑛, in which 𝑠0 = [𝑡] for all 𝑡 ∈ 𝜕𝐼𝑛. We use
Remark 2.19 to see that

Σ𝑆𝑛 ≅ 𝐼 × 𝑆𝑛
𝜕𝐼 × 𝑆𝑛 ∪ 𝐼 × {𝑠0}

≅
𝐼 × 𝐼𝑛

𝜕𝐼𝑛

𝜕𝐼 × 𝐼𝑛
𝜕𝐼𝑛 ∪ 𝐼 × 𝜕𝐼𝑛

𝜕𝐼𝑛

.
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Let ∼ denote the equivalence relation on 𝐼 ×𝐼𝑛 that is the identity relation on 𝐼 , and
is the quotient by 𝜕𝐼𝑛 on 𝐼𝑛. Then we can use Lemma 2.21 to see that the equivalence
relation ∼ gives us a homeomorphism

𝐼 × 𝐼𝑛

𝜕𝐼𝑛

𝜕𝐼 × 𝐼𝑛
𝜕𝐼𝑛 ∪ 𝐼 × 𝜕𝐼𝑛

𝜕𝐼𝑛

≅ 𝐼 × 𝐼𝑛
𝜕𝐼 × 𝐼𝑛 ∪ 𝐼 × 𝜕𝐼𝑛 ∪ {0} × 𝜕𝐼𝑛

= 𝐼 × 𝐼𝑛
𝜕𝐼 × 𝐼𝑛 ∪ 𝐼 × 𝜕𝐼𝑛

.

Using that the boundary of the 𝑛-cube can be written as 𝜕𝐼 × 𝐼𝑛 ∪ 𝐼 × 𝜕𝐼𝑛, we get

Σ𝑆𝑛 ≅ 𝐼 × 𝐼𝑛
𝜕𝐼 × 𝐼𝑛 ∪ 𝐼 × 𝜕𝐼𝑛

≅ 𝐼𝑛+1

𝜕𝐼𝑛+1
≅ 𝑆𝑛+1.

Lastly, we present a technical lemma about pushouts that will be very useful in
several proofs.
Lemma 2.22. In any category C , the following holds: If we have a commuting diagram
of objects in C like the following

𝐴 𝐵 𝐶

𝐴′ 𝐵′ 𝐶 ′

𝑓

𝛼

𝑓 ′

𝛽

𝑔

𝑔′

𝛾

where the left square is a pushout, then the right square is a pushout if and only if the
outer square is a pushout.

The similar result for pullbacks along with a proof can be found as 7.8.7 in [9]. The
proof of Lemma 2.22 is dual to this.

2.2 The homotopy category of CW-complexes
Homotopy theory is, after all, the basis for the construction of a stable homotopy cat-
egory, and although many of the terms probably are known to the reader, we review
the most important ones in order to have a common base. The most prominent differ-
ence from the typical first introduction to homotopy theory is that the homotopies we
consider will take basepoints into account.

12



Definition 2.23. For two maps 𝑓, 𝑔 ∈ C W ((𝑋, 𝑥0), (𝑌 , 𝑦0)), we say that 𝑓 is homo-
topic to 𝑔 if there exists a continuous map

𝐻 ∶ 𝑋 × 𝐼 ⟶ 𝑌

such that
𝐻(𝑥, 0) = 𝑓 (𝑥)
𝐻(𝑥, 1) = 𝑔(𝑥)

for all 𝑥 ∈ 𝑋. If we in addition have that 𝐻(𝑥0, 𝑡) = 𝑦0 for all 𝑡 ∈ 𝐼 , we say that the
homotopy is based. If the homotopy is not based we call it free.
Remark 2.24. We write 𝑓 ≃ 𝑔 if there is a based homotopy between 𝑓 and 𝑔. It
is well known that this unbased homotopy is an equivalence relation.See for instance
proposition 14.1.2 in [11]. The transfer from the unbased to the based case is trivial.
Definition 2.25. We define a new category of topological spaces, namely the homo-
topy category of CW-complexes, denoted C W ℎ. The objects are the same as in C W ,
but the maps are the equivalence classes C W (𝑋, 𝑌 )∕≃ with respect to the homotopy
relation for based homotopy. We denote the set of based homotopy classes of maps in
C W ℎ((𝑋, 𝑥0, 𝑌 , 𝑦0)) = [𝑋, 𝑌 ].

Among the most important concepts of homotopy theory and algebraic topology
in general are the homotopy groups, which are defined to be 𝜋𝑛(𝑋, 𝑥0) ≔ [𝑆𝑛, 𝑋] for
𝑛 > 0, and set of path components of 𝑋 for 𝑛 = 0. The homotopy groups are actually
groups for 𝑛 ≥ 1, and even abelian groups for 𝑛 ≥ 2. See chapter 2 in [12].
Definition 2.26. A based CW-complex (𝑋, 𝑥0) is 𝑛-connected if we have 𝜋𝑖(𝑋, 𝑥0) = 0
for all 𝑖 ≤ 𝑛.

The following theorem plays a big role in the history of stable homotopy categories.
It gives us a connection between the homotopy classes of maps and the suspension, and
as a consequence the homotopy groups and the suspension.
Theorem 2.27 (Freudenthal suspension theorem). Suppose that 𝑌 is a based
𝑛-connected CW-complex, and 𝑋 a based CW-complex with dimension ≤ 2𝑛. Then the
map

Σ∗ ∶ [𝑋, 𝑌 ] ⟶ [Σ𝑋,Σ𝑌 ]

of homotopy classes induced by the suspension is a bijection. The map is a surjection
if 𝑋 is of dimension 2𝑛 + 1.

13



This theorem along with a proof can be found as corollary 3.2.3 in [6].
Remark 2.28. We know that Σ is well-defined on C W , but we need to check that is
also is well-defined on C W ℎ as well. That is, for two maps 𝑓, 𝑔∶ 𝑋 ⟶ 𝑌 with 𝑓 ≃ 𝑔,
we must have Σ𝑓 ≃ Σ𝑔. Assuming we have a homotopy 𝐻 ∶ 𝑋 × 𝐼 ⟶ 𝑌 such that

𝐻(𝑥, 0) = 𝑓 (𝑥),
𝐻(𝑥, 1) = 𝑔(𝑥),

we can define a homotopy �̃� ∶ Σ𝑋 × 𝐼 ⟶ Σ𝑌 by
�̃�([𝑠, 𝑥], 𝑡) = [𝑠,𝐻(𝑥, 𝑡)].

This is continuous, and we have
�̃�([𝑠, 𝑥], 0) = [𝑠, 𝑓 (𝑥)]

and
�̃�([𝑠, 𝑥], 1) = [𝑠, 𝑔(𝑥)].

So Σ𝑓 ≃ Σ𝑔.
Corollary 2.29. Suppose that X is a 𝑛-connected based CW-complex. Then the induced
suspension map Σ∗ ∶ 𝜋𝑖(𝑋) ⟶ 𝜋𝑖+1(Σ𝑋) is a bijection for 𝑖 = 0, an isomorphism for
𝑖 ≤ 2𝑛, and a surjection for 𝑖 = 2𝑛 + 1.

Remark 2.30. We have that the suspension takes the 𝑖-sphere to the (𝑖 + 1)-sphere,
hence a class [𝑓 ] ∈ [𝑆 𝑖, 𝑋] is sent to [Σ𝑓 ] ∈ [Σ𝑆 𝑖,Σ𝑋] = [𝑆 𝑖+1,Σ𝑋]. Since an 𝑛-
sphere has dimension 𝑛, we see that the corollary follows from Theorem 2.27, where
we let 𝑋 = 𝑆𝑛.

From this we see that the suspension of a space increases the connectivity by 1: for
an 𝑛-connected space 𝑋, we have 𝜋𝑖(𝑋) = 0 for 𝑖 ≤ 𝑛, and the induced map Σ∗ is an
isomorphism 𝜋𝑖(𝑋) ⟶ 𝜋𝑖+1(Σ𝑋) for 𝑖 ≤ 2𝑛, so 𝜋𝑖(Σ𝑋) = 0 for 𝑖 ≤ 𝑛 + 1. But then
𝜋𝑖(Σ𝑋) ⟶ 𝜋𝑖+1(Σ2𝑋) is an isomorphism for 𝑖 ≤ 2(𝑛+1). We see that we can continue
this process, and since the level at which the induced suspension map is an isomorphism
grows faster than the connectivity of𝑋 under the suspension, the homotopy groups will
eventually stabilize. This leads to the following definition:
Definition 2.31. The 𝑛th stable homotopy group of 𝑋 is

𝜋𝑠𝑛(𝑋) ≔ colim
𝑟→∞

𝜋𝑛+𝑟(Σ𝑟𝑋).

14



While homotopy groups give us a lot of interesting information about the spaces
we want to study, the stable homotopy groups give another insight, and in a stable
homotopy category we wish to make a framework in which these groups more easily
can be computed. An important subproblem is the stable homotopy groups of spheres.
Some of them have been computed, but while we for instance do have 𝜋𝑠𝑛(𝑆𝑛) ≅ ℤ for
all 𝑛, the general pattern is unknown.
Lemma 2.32. For any CW-complex 𝑋, Σ𝑋 is path-connected.

Proof. From Remark 2.19 we have that Σ𝑋 = 𝐼 ×𝑋∕∼, which means we can describe
elements in Σ𝑋 as equivalence classes [𝑡, 𝑥]. Note that in Σ𝑋 all of {1}×𝑋 is collapsed
to the basepoint.

Let [𝑡1, 𝑥1] and [𝑡2, 𝑥2] be two points inΣ𝑋. We define two paths 𝑝1, 𝑝2 ∶ 𝐼 ⟶ Σ𝑋

𝑝1(𝑠) = [𝑡1(1 − 𝑠) + 𝑠, 𝑥1]
𝑝2(𝑠) = [𝑠𝑡2 + (1 − 𝑠), 𝑥2],

where 𝑝1 is a path from [𝑡1, 𝑥1] to [1, 𝑥1], and 𝑝2 is a path from [1, 𝑥2] to [𝑡2, 𝑥2]. Since
[1, 𝑥1] = [1, 𝑥2] we can concatenate these paths, and the concatenation is a path from
[𝑡1, 𝑥1] to [𝑡2, 𝑥2]. Hence, Σ𝑋 is path-connected.

We introduce spaces which have certain convenient properties in C W ℎ, and which
we will use when constructing the Spanier–Whitehead category.
Definition 2.33. For a map 𝑓 ∈ C W (𝑋, 𝑌 ) we define the mapping cone of 𝑓 as the
pushout

𝑋 𝑌

𝐶𝑋 𝐶(𝑓 )

𝑓

𝑖𝑋1 𝑖(𝑓 )

𝑖𝐶𝑋

where 𝑖𝑋1 includes 𝑋 as a subspace in 𝐶𝑋 at 𝑡 = 1. Equivalently, it can be defined as
the quotient space 𝐶𝑋 ⊔ 𝑌 ∕∼, where [1, 𝑥]𝐶𝑋 ∼ 𝑦 for 𝑦 ∈ 𝑓 (𝑋), i.e., we glue the base
of the cone of 𝑋 to 𝑌 along its image under 𝑓 . We may denote equivalence classes in
𝐶(𝑓 ) by [1, 𝑥]𝐶(𝑓 ) if 𝑥 ∈ 𝑋, and [𝑦]𝐶(𝑓 ) if 𝑦 ∈ 𝑌 .

The map 𝑖(𝑓 ) includes 𝑌 into 𝐶(𝑓 ) as a subspace, and likewise 𝐶𝑋 is included
as a subspace in 𝐶(𝑓 ) under 𝑖𝐶𝑋 . Note that 𝐶𝑋 itself is contractible; since [0, 𝑥] is
identified with the basepoint in 𝐶𝑋 for all 𝑥, we can slide all points [𝑡, 𝑥] down to the
basepoint along 𝑡. The mapping cone, however, is not necessarily contractible.
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Example 2.34. For the simple map 𝑖∶ 𝑆1 ↪ 𝐷2, the inclusion of the circle as the
boundary of the 2-disk, the mapping cone looks like an actual cone. Here we see that
𝐶(𝑖) ≃ 𝑆2, which is not contractible.

Figure 5: The mapping cone of 𝑆1 ↪ 𝐷2.

Definition 2.35. For a map 𝑓 ∶ 𝑋 ⟶ 𝑌 in C W (𝑋, 𝑌 ) we define the mapping cylin-
der of 𝑓 , 𝑀𝑓 , as the pushout

𝑋 𝑌

𝑋 × 𝐼 𝑀𝑓

𝑓

𝑖1

where 𝑖1 is the inclusion of 𝑋 into 𝑋 × 𝐼 at {1}. It is similar to the mapping cone, in
the sense that we are gluing 𝑋 to 𝑌 along its image, except now we have a "cylinder of
𝑋" instead of a cone. This makes𝑀𝑓 ≃ 𝑌 ; 𝑀𝑓 deformation retracts onto 𝑌 by sliding
all points coming from 𝑋 × 𝐼 , [𝑥, 𝑡], to their image in 𝑌 along 𝑡.
Definition 2.36. Let E be a class of topological spaces. A map 𝑖∶ 𝐴 ⟶ 𝑋 has the
homotopy extension property if the following extension problem has a solution: for
every 𝑌 ∈ E , for all 𝑓 and ℎ such that the solid part of the following diagram commutes
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𝐴 𝑌 𝐼

𝑋 𝑌 ,

ℎ

𝑖 𝑒𝑣0

𝑓

ℎ̃

there is a map ℎ̃ making the diagram commmute. The map 𝑒𝑣0 is the evaluation at 0,
i.e., an element in 𝐹 in 𝑌 𝐼 = C W (𝐼, 𝑌 ) is sent to 𝐹 (0).
Remark 2.37. By the adjunction C W (𝑋 × 𝑌 ,𝑍) ≅ C W (𝑋,𝑍𝑌 ), where 𝑍𝑌 =
C W (𝑌 ,𝑍) is given the compact-open topology, the homotopy extension property for
a map 𝑖∶ 𝐴 ⟶ 𝑋 is equivalent to the following universal property: for all 𝑓 and 𝐻
such that the solid part of the diagram commutes, there exists an extension �̃� making
the following diagram commute.

𝐴 𝐴 × 𝐼

𝑋 𝑋 × 𝐼

𝑌

𝑖0

𝑖 𝑖 × 𝑖𝑑

𝑖0

𝑓

�̃�

𝐻

Definition 2.38. If we let E = Ob(C W ) in Definition 2.36 we call the map 𝑖 a cofi-
bration.
Example 2.39. The map 𝑖𝑋1 in Definition 2.33 is a cofibration. The map 𝑗 ∶ 𝑋 ⟶𝑀𝑓is a cofibration, where 𝑀𝑓 is the mapping cylinder for 𝑓 ∶ 𝑋 ⟶ 𝑌 . See [1, pp. 76]
for a proof of the former.

We include the following lemmas for technical reasons.
Lemma 2.40. If 𝑖∶ 𝐴 ⟶ 𝐵 is a cofibration, then 𝑖 is injective and homeomorphic
into its image.

This lemma can be found as Proposition 4H.1 in [5].
Lemma 2.41. If 𝑖∶ 𝑋 ⟶ 𝑌 is an inclusion of connected CW-complexes, then 𝑋 is a
deformation retract of 𝑌 .

This lemma can be found as Theorem 4.5 in [5].
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3 Cofibration categories
We just defined a cofibration in C W ℎ, but we now approach cofibrations from a cat-
egorical standpoint. We will see, however, that the two definitions coincide, and the
properties from a cofibration category will be very useful later.
Definition 3.1. Let C be a category, and let there be two classes of maps in C called
weak equivalences and cofibrations. The category C is a cofibration category if it
satisfies the following axioms:
(CF1)All isomorphisms in C are weak equivalences and cofibrations. There exists an

initial object 𝐼 ∈ C such that for all 𝐶 ∈ C the unique morphism 𝐼 ⟶ 𝐶 is a
cofibration. Cofibrations are stable under composition.

(CF2)Given two composable morphisms 𝑓 and 𝑔, if two of 𝑓, 𝑔 and 𝑔◦𝑓 are weak
eqivalences, the last one is as well.

(CF3)Let 𝑖 ∶ 𝐴 ⟶ 𝐵 be a cofibration. Then for any morphism 𝑓 ∶ 𝐴 ⟶ 𝐶 there is
a pushout square

𝐴 𝐶

𝐵 𝑃

𝑓

𝑖 𝑗 (1)

in C . The morphism 𝑗 is a cofibration. If 𝑖 is in addition a weak equivalence,
then 𝑗 is also a weak equivalence.

(CF4)All morphisms 𝑓 ∶ 𝐴⟶ 𝐵 can be factored to 𝑓 = 𝑔◦𝑖, where 𝑖 is a cofibration
and 𝑔 is a weak equivalence.

The following lemma gives a particularly nice relation between pushouts and weak
equivalences in a cofibration category.
Lemma 3.2 (Gluing lemma). Assume we have the following diagram in a cofibration
category

𝐴 𝐵 𝐶

𝐴′ 𝐵′ 𝐶 ′

𝑖

∼ ∼

𝑖′ 𝑓

𝑓 ′

∼
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where 𝑖 and 𝑖′ are cofibrations, and all the vertical maps are weak equivalences. Then
the induced morphism on pushouts, 𝐴 ⊔𝐵 𝐶 ⟶ 𝐴′ ⊔𝐵′ 𝐶 ′, is a weak equivalence.

The proof of the gluing lemma is not the most difficult, but it is rather long and
technical, and we therefore leave it as a reference. See [8, pp. 7-10] for a proof.
Theorem 3.3. The category C W is a cofibration category with weak equivalences the
based homotopy equivalences of spaces, and cofibrations the maps in Definition 2.38.

Remark 3.4. We could demand that the weak equivalences were weak homotopy equiv-
alences, i.e., morphisms in C W inducing isomorphims on homotopy groups. However,
by Whiteheads theorem (see Theorem 2.4.7 in [12] for full theorem and proof), weak
equivalences on CW-complexes are homotopy equivalences. Hence we need only con-
sider homotopy equivalences.
Proof. (CF1): Isomorphisms in C W are homeomorphisms, which are trivially homo-
topy equivalences. To see that all homeomorphims are cofibrations, look at the follow-
ing diagram for a homeomorphism 𝑓 ∶ 𝑋 ⟶ 𝑌 :

𝑋 𝑋 × 𝐼

𝑌 𝑌 × 𝐼

𝑍

𝑖0

𝑓 𝑓 × 𝑖𝑑

𝑖0

𝑔

�̃�

𝐻

Here �̃�(𝑦, 𝑡)∶ = 𝐻(𝑓−1(𝑦), 𝑡) is our extension. It is well defined, as 𝑓−1 exists
and is itself a homeomorphism. Note that

�̃�(𝑦, 0) = 𝐻(𝑓−1(𝑦), 0) = 𝑔◦𝑓◦𝑓−1(𝑦) = 𝑔(𝑦),

so the diagram commutes.
Let (𝑌 , 𝑦0) ∈ C W . The initial object is the one-point space ∗, and since all mor-

phisms in C W are basepoint-preserving the only possible map ∗ ⟶ (𝑋, 𝑥0) is the
inclusion to the basepoint of 𝑋. Let 𝑏 denote the inclusion of the basepoint. Then 𝐻
in the following diagram
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∗ {𝑥0} × 𝐼

𝑋 𝑋 × 𝐼

𝑌

𝑖0

𝑏 𝑏 × 𝑖𝑑

𝑖0

𝑓

�̃�

𝐻

can only be𝐻(𝑥0, 𝑡) = 𝑦0, as we are working with based homotopies. Then the diagram
commutes for �̃�(𝑥, 𝑡) ≔ 𝑓 (𝑥).

Lastly we check that that compostion of cofibrations are cofibrations. Let 𝑓 ∶ 𝑥⟶

𝑌 and 𝑔∶ 𝑌 ⟶ 𝑍 be cofibrations, i.e., both satisfy Definition 2.36. Look at the
following composition:

𝑋 𝐴𝐼

𝑌

𝑍 𝐴

𝐻

𝑓

𝑔

𝑒𝑣0

𝜓

ℎ

ℎ̃

where 𝜓 and 𝐻 are the arbitrary maps. Then there exists an ℎ such that the diagram
commutes, because of Definition 2.36 for 𝑓 with 𝜓◦𝑔 and 𝐻 as the arbitrary maps.
Then, because of Definition 2.36 for 𝑔 with ℎ and 𝜓 as the arbitrary maps, ℎ̃ exists. In
total ℎ̃ solves the extension problem for 𝑔◦𝑓 .

(CF2): Let 𝑓 ⟶ 𝑌 and 𝑔∶ 𝑌 ⟶ 𝑍 be maps in C W . We have three cases to
show; 𝑓 and 𝑔 are homotopy equivalences, 𝑓 and 𝑔◦𝑓 are homotopy equivalences and
𝑔 and 𝑔◦𝑓 are homotopy eauivalences. However, the last two cases are similar, so we
only prove the first two cases.

If 𝑓 and 𝑔 are homotopy equivalences, we have inverses 𝑓 ′ and 𝑔′ with composition
homotopic to their respective identity morphisms. Then

𝑓 ′◦𝑔′◦𝑔◦𝑓 ≃ 𝑓 ′◦𝑖𝑑𝑌 ◦𝑓 ≃ 𝑖𝑑𝑋
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and
𝑔◦𝑓◦𝑓 ′◦𝑔′ ≃ 𝑔◦𝑔′ ≃ 𝑖𝑑𝑍 ,

and so 𝑓 ′◦𝑔′ is the homotopy inverse to 𝑔◦𝑓 .
If 𝑓 and (𝑔◦𝑓 ) are homotopy equivalences, then we have inverses 𝑓 ′ and ℎ. We

claim that 𝑓◦ℎ is the homotopy inverse to 𝑔. We already know that (𝑔◦𝑓 )◦ℎ ≃ 𝑖𝑑𝑍 .
Then

ℎ◦𝑔◦𝑓 ≃ 𝑖𝑑𝑋
⟹ 𝑓◦ℎ◦(𝑔◦𝑓 )◦𝑓 ′ ≃ 𝑓◦𝑖𝑑𝑋◦𝑓

′

⟹ 𝑓◦ℎ◦𝑔 ≃ 𝑓◦𝑓 ′ ≃ 𝑖𝑑𝑌 .

(CF3): Pushouts exist in topological spaces, and from Theorem 2.8 we know that
pushouts of CW-complexes are still CW-complexes. Given the pushout (1), we want to
show that 𝑗 is a cofibration.

Consider the following diagram

𝐴 𝐶 𝑌 𝐼

𝐵 𝑃 𝑌

𝑓

𝑖 𝑗

𝜙 𝑔

ℎ

𝑒𝑣0

in which the left square is the pushout, and the right square is the homotopy extension
problem for arbitrary maps 𝑔 and ℎ. Then there exists a map ℎ′ ∶ 𝐵 ⟶ 𝑌 𝐼 since 𝑖 is a
cofibration; ℎ′ is the solution to the extension problem for 𝑔◦𝜙. Now we use ℎ′ and ℎ
to see that the universal property of the following pushout

𝐴 𝐶

𝐵 𝑃

𝑌 𝐼

𝑓

𝑖 𝑗

𝜙

ℎ′

ℎ

ℎ̃

gives us a unique map ℎ̃. Since ℎ = ℎ̃◦𝑗, we see that if 𝑒𝑣0◦ℎ̃ = 𝑔, ℎ̃ solves the
extension problem and 𝑗 is a cofibration. Now compare the following diagrams:
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𝐴 𝐶 𝐴 𝐶

𝐵 𝑃 𝐵 𝑃

𝑌 𝐼 𝑌

𝑌

𝑓

𝑖 𝑗

𝜙

ℎ′

ℎ

ℎ̃

𝑔◦𝜙

𝑒𝑣0◦ℎ

𝑒𝑣0

𝑓

𝑖 𝑗

𝜙

𝑔◦𝜙

𝑒𝑣0◦ℎ

𝑔

We have 𝑒𝑣0◦ℎ′ = 𝑔◦𝜙 since ℎ′ is the solution to extension problem with 𝑓◦ℎ as the
upper arbitrary map. From the uniqueness of the induced map in pushouts, 𝑔 = 𝑒𝑣0◦ℎ̃.

Now assume that 𝑖 is a homotopy equivalence in addition to a cofibration. Further-
more, we will assume that𝐴 and𝐵 are connected CW-complexes. Then by Lemma 2.40
and Lemma 2.2 we have𝐴 ≅ 𝑖(𝐴) and an 𝑟∶ 𝐵 ⟶ 𝐴with 𝑟◦𝑖 = 𝑖𝑑𝐴, 𝑖◦𝑟 ≃ 𝑖𝑑𝐵 . Then
we have a homotopy inverse 𝑖′ ∶ 𝐵 ⟶ 𝐴, and 𝑓◦𝑖′◦𝑖 ≃ 𝑓 . Let 𝐻 ∶ 𝐵 ⟶ 𝐵𝐼 be the
homotopy between 𝑖◦𝑟 and 𝑖𝑑𝐵 , i.e. 𝐻 solves the following extension problem

𝐴 𝐵𝐼

𝐵 𝐵,

𝐼

𝑖 𝑒𝑣0

𝑖◦𝑟

𝐻

where 𝐼 ∶ 𝐴⟶ 𝐵𝐼 is the constant homotopy 𝑒𝑣𝑡◦𝐼 = 𝑖.
Using that 𝑓◦𝑟◦𝑖 = 𝑓 we can make the following commutative diagram.
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𝐴 𝐶

𝐵 𝑃

𝐶

𝑓

𝑖 𝑗

𝜙

𝑓◦𝑟

𝑖𝑑𝐶

𝑗′

(2)

Then the universal property of the pushout gives us a map 𝑗′ ∶ 𝑃 ⟶ 𝐶 with 𝑗′◦𝑗 =
𝑖𝑑𝐶 . Hence if 𝑗◦𝑗′ ≃ 𝑖𝑑𝑃 , 𝑗′ is the homotopy inverse to 𝑗.

In Remark 2.37 we mentioned the adjunction C W (𝑋×𝑌 ,𝑍) ≅ C W (𝑋,C W (𝑌 ,𝑍)),
but more specifically −×𝑋 is a left adjoint functor, which means that it commutes with
colimits. As pushouts are colimits, we see that the following diagram is a pushout:

𝐴 × 𝐼 𝐶 × 𝐼

𝐵 × 𝐼 𝑃 × 𝐼.

𝑓 × 𝑖𝑑

𝑖 × 𝑖𝑑 𝑗 × 𝑖𝑑

𝜙 × 𝑖𝑑

We already have a homotopy𝐻 with𝐻(𝑖(𝑎), 𝑡) = 𝑖(𝑎). Let𝐿∶ 𝐶×𝐼 ⟶ 𝑃 be the con-
stant homotopy 𝐿(𝑐, 𝑡) = 𝑗(𝑐) for all 𝑡. Then looking at (2) we see that 𝜙◦𝐻(𝑖(𝑎), 𝑡) =
𝜙◦𝑖(𝑎) = 𝑗◦𝑓 (𝑎) = 𝐿(𝑓 (𝑎), 𝑡) for all 𝑡, which means that the following diagram com-
mutes for all 𝑡

𝐴 × 𝐼 𝐶 × 𝐼

𝐵 × 𝐼 𝑃 × 𝐼

𝐵 𝑃

𝑓 × 𝑖𝑑

𝑖 × 𝑖𝑑 𝑗 × 𝑖𝑑

𝜙 × 𝑖𝑑

𝐻

𝜙

𝐿

𝐽
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and the universal property of the pushout gives us a homotopy 𝐽 ∶ 𝑃 × 𝐼 ⟶ 𝑃 . The
induced map is unique, we can evaluate it at 𝑡 = 0 and 𝑡 = 1 to see what it must be.

At 𝑡 = 0 we get 𝜙◦𝐻(𝑏, 0) = 𝜙◦𝑖◦𝑟(𝑏) = 𝑗◦𝑓◦𝑟 because of (2). Then following
diagram commutes for 𝐽 (𝑝, 0) = 𝑗◦𝑗′.

𝐴 × {0} 𝐶 × {0}

𝐵 × {0} 𝑃 × {0}

𝑃

𝑓

𝑖 𝑗

𝜙

𝑗◦𝑓◦𝑟

𝑗

𝑗◦𝑗′

Likewise, at 𝑡 = 1 we have 𝜙◦𝐻(𝑏, 1) = 𝜙◦𝑖𝑑𝐵 , so the diagram commutes for
𝐽 (𝑝, 1) = 𝑖𝑑𝑃 .

𝐴 × {0} 𝐶 × {0}

𝐵 × {0} 𝑃 × {0}

𝑃

𝑓

𝑖 𝑗

𝜙

𝜙

𝑗

𝑖𝑑𝑃

In total, we have that 𝐽 defines a homotopy from 𝑗◦𝑗′ to 𝑖𝑑𝑃 , which means that 𝑗 is a
homotopy equivalence.

If 𝐴 and 𝐵 were not connected, we see that they would each be a disjoint union of
CW-complexes. Furthermore, since we have a homotopy equivalence between them,
this homotopy equivalence would have to distribute over the different components,
i.e. if we have 𝐴 =

∐

𝐴𝑖 and 𝐵 =
∐

𝐵𝑖 we should have a homotopy equivalence
𝑖𝑖 ∶ 𝐴𝑖 ⟶ 𝐵𝑖 for each 𝑖. Then we can repeat the above argument on the different
components.

(CF4): As seen in Example 2.39, every map 𝑓 ∶ 𝑋 ⟶ 𝑌 factors as
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𝑋 𝑌

𝑀𝑓

𝑓

𝑖 ≃

in which 𝑖 is a cofibration.
In total we see that C W is a cofibration category.
Recall that we already know some cofibrations in C W ℎ, and using the formalities

of a cofibration category we can see the following.
Corollary 3.5. Since the map 𝑖1 ∶ 𝑋 ⟶ 𝐶𝑋 is a cofibration, we have that 𝑖(𝑓 ) ∶
𝑌 ⟶ 𝐶(𝑓 ) in Definition 2.33 is a cofibration by (CF3).

4 Triangulated categories
Triangulated categories are categories with a class of "triangles", a sequence of three
morphisms, that satisfies a set of axioms. They appear in several areas of mathemathics,
and one of the properties we want from a stable homotopy category is that it is triangu-
lated. We are aiming to show that the Spanier–Whitehead category is triangulated.

In this section we will present the framework for and the definition of a triangulated
category, after which we will make an attempt to define a triangulated structure on
C W ℎ. This attempt and its flaws leads us to the construction of the Spanier–Whitehead
category.

4.1 Definition
All triangulated categories are constructed from additive categories, which we define
here.
Definition 4.1. Let C be a category. We say that it is additive if it satisfies

(𝑖) The set of morphisms C (𝐴,𝐵) is an abelian group for all 𝐴,𝐵 ∈ C

(𝑖𝑖) Composition of morphisms is a bilinear operation.
(𝑖𝑖𝑖) There is a zero-object 0C such that C (0C , 𝐴) and C (𝐴, 0C ) are trivial groups for

all 𝐴 ∈ C .
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(𝑖𝑣) For all 𝐴,𝐵 ∈ C there is a biproduct 𝐴⊕ 𝐵, i.e., morphisms

𝐴 𝐴⊕ 𝐵 𝐵

𝑖𝐴

𝜋𝐵

𝑖𝐵

𝜋𝐴

such that 𝜋𝐴◦𝑖𝐴 = 𝑖𝑑𝐴, 𝜋𝐵◦𝑖𝐵 = 𝑖𝑑𝐵 and 𝑖𝑑𝐴⊕𝐵 = (𝑖𝐴◦𝜋𝐴) + (𝑖𝐵◦𝜋𝐵).
Definition 4.2. For two additive categories C and D a functor 𝐹 ∶ C ⟶ D is said to
be additive if for all𝐴,𝐵 ∈ C we have 𝐹 (𝑓 +𝑔) = 𝐹 (𝑓 )+𝐹 (𝑔) for all 𝑓, 𝑔 ∈ C (𝐴,𝐵).
Lemma 4.3. If a category A satisfies (i) through (iii) in Definition 4.1 and A has
all finite coproducts (products), then it also has all finite products (coproducts), which
coincide such that A has a biproduct.

See proposition 12.2.5 in [9] for a proof.
Having an additive category in mind, we move on to defining triangles. All triangles

are defined for a specific functor Σ, often called the suspension or shift.
Definition 4.4. Let C be an additive category, and let Σ ∶ C ⟶ C be an additive
automorphism, that is, an additive functor on C with an additive inverse Σ−1, such that
Σ◦Σ−1 = 𝑖𝑑C and Σ−1◦Σ = 𝑖𝑑C . A triangle in C with respect to Σ is a diagram in C
of the form

𝐴 𝐵 𝐶 Σ𝐴.
𝑓 𝑔 ℎ

A morphism of triangles is a triple of morphisms (𝛼, 𝛽, 𝛾) such that the following
diagram commutes

𝐴 𝐵 𝐶 Σ𝐴

𝐴′ 𝐵′ 𝐶 ′ Σ𝐴′

𝛼 𝛽 Σ𝛼𝛾

We say that (𝛼, 𝛽, 𝛾) is an isomorphism of triangles if each of them are isomorphisms
in C . The triangles are then said to be equivalent.

The left and right rotation of 𝐴 𝑓
←←←←←←←→ 𝐵

𝑔
←←←←←←→ 𝐶

ℎ
←←←←←←→ Σ𝐴 is given by
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𝐵 𝐶 Σ𝐴 Σ𝐵
𝑔 ℎ −Σ𝑓

and

Σ−1𝐶 𝐴 𝐵 𝐶−Σ−1ℎ 𝑓 𝑔

respectively.
Definition 4.5. Let C be an additive category, Σ an additive automorphsim on A and
Δ a collection of triangles called distinguished triangles. We say that (C ,Σ,Δ) is a
triangulated category if the following properties hold:
(TR1) • Δ is closed under isomorphisms of triangles.

• The triangle 𝐴 𝑖𝑑𝐴
←←←←←←←←←←←←←←→ 𝐴

0
←←←←←←→ 0

0
←←←←←←→ Σ𝐴 ∈ Δ for all 𝐴 ∈ C .

• For all 𝑓 ∶ 𝐴⟶ 𝐵 in C there is a triangle starting with 𝑓 .
(TR2) Δ is closed under left and right rotation.
(TR3) If we have the following commuting diagram of triangles

𝐴 𝐵 𝐶 Σ𝐴

𝐴′ 𝐵′ 𝐶 ′ Σ𝐴′

𝛼 𝛽 Σ𝛼𝛾

then there is a 𝛾 ∶ 𝐶 ⟶ 𝐶 ′ making the diagram a morphism of triangles.
(TR4) Assume we have a commuting diagram with rows in Δ
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𝐴 𝐵 𝐶 Σ𝐴

𝐴 𝐵′ 𝐶 ′ Σ𝐴

𝐵 𝐵′ 𝐶 ′′ Σ𝐵

Σ𝐶

𝑓 𝑔 ℎ

𝑓 ′ 𝑔′ ℎ′

𝛽

𝑓 Σ𝑓

𝛽 𝑔′′ ℎ′′

Σ𝑔◦ℎ′′

where the solid diagram commutes. Then we have morphisms 𝛾 ∶ 𝐶 ⟶ 𝐶 ′

and 𝛾 ′ ∶ 𝐶 ′ ⟶ 𝐶 ′′ such that the whole diagram commutes and the triangle
𝐶

𝛾
←←←←←←→ 𝐶 ′ 𝛾′

←←←←←←←←←→ 𝐶 ′′ Σ𝑔◦ℎ′′
←←←←←←←←←←←←←←←←←←←←←←←←←→ Σ𝐶 is in Δ.

Example 4.6. A rather trivial example of a triangulated category is the category of
vector spaces over a field 𝑘, whose maps are the 𝑘-linear maps of vector spaces. Here
the suspension is the identity, and the distinguished triangles are isomorphic to 𝑋 →
𝑌 → 𝑍 → 𝑋, which is exact at 𝑋, 𝑌 and 𝑍.

Other, more complicated examples are the homotopy category of an abelian cat-
egory, and the derived category of an abelian category. However, these examples are
what are known as algebraic triangulated categories. The Spanier–Whitehead category
is one example of a topological triangulated category.

4.2 A triangulated structure on C W ℎ

We can motivate the construction of the Spanier–Whitehead category by looking at how
C W ℎ is almost a triangulated category, and how it fails to be a triangulated category.
Note that the homotopy category is not additive, meaning that it fails to be triangulated
before we have even tried to define some triangulated structure. However, we will see
that our attempt to define triangles on C W ℎ will largely translate into the Spanier–
Whitehead category, and the properties of these triangles will be very useful to us later.
The following definitions are due to [7].
Definition 4.7. For an 𝑓 ∈ C W (𝑋, 𝑌 ) we define the mapping sequence of 𝑓 as
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𝑋 𝑌 𝐶(𝑓 ) Σ𝑋
𝑓 𝑖(𝑓 ) 𝑗(𝑓 )

We say that a sequence of CW-complexes

𝑈 𝑉 𝑊 Σ𝑈
𝑓 ′ 𝑔 ℎ

is an unstable distinguished triangle if it is equivalent in C W ℎ to a mapping sequence.
This means that there exists an isomorphism of triangles (𝛼, 𝛽, 𝛾) in C W ℎ such that the
following diagram commutes up to homotopy

𝑋 𝑌 𝐶(𝑓 ) Σ𝑋

𝑈 𝑉 𝑊 Σ𝑈.

𝑓 𝑖(𝑓 ) 𝑗(𝑓 )

𝑓 ′ 𝑔 ℎ

𝛼 𝛽 𝛾 Σ𝛼

Remark 4.8. The map 𝑖(𝑓 ) from 𝑌 into the mapping cone is given by the pushout
in Definition 2.33. Recall that this includes 𝑌 as a subspace into 𝐶(𝑓 ). Then 𝑌 as a
subspace is mapped to the basepoint under 𝑗(𝑓 ), while classes [𝑡, 𝑥]𝐶𝑋 in 𝐶𝑋 are sent
to their classes [𝑡, 𝑥]𝐶𝑋 in Σ𝑋, where [0, 𝑥]Σ𝑋 = [1, 𝑥]Σ𝑋 .

What happens in the mapping sequences is that the mapping cone is constructed
for some map, and then all of the codomain of the map, which is a subspace of the
mapping cone, is collapsed, to reveal the suspension of our original space. Consider
the simple map which includes the circle into the 1-disk as its boundary. We have seen
in Example 2.34 that the mapping cone of this looks like a cone, and collapsing the
bottom disk of this space gives a space that is homotopy equivalent to the 2-sphere.
(In fact, the mapping cone in this example is also homotopy equivalent to the 2-sphere.
This is because 𝑌 in this case is the 2-disk, which again is homotopy equivalent to a
point).

We are now going to see that, as far as the category allows us, C W ℎ does satisfy
several of the axioms of Definition 4.5. The construction and proof given for the at-
tempted triangulated structure on C W ℎ is a very geometric one, and differs a lot from
other proofs of the triangulation of stable homotopy categories, which are often more
based on category theory. However, it can be nice to have an understanding of what the
triangles in the stable homotopy categories "look like".
Theorem 4.9. The homotopy category of CW-complexes, C W ℎ satisfies
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(i) The set of unstable distinguished triangles is closed under isomorphisms of tri-
angles in C W ℎ.

(ii) The triangle ∗ } ∶→ 𝑋 → 𝑋 → ∗, where ∗ is the one-point space is an unstable
distinguished triangle.

(iii) For every 𝑓 ∈ [𝑋, 𝑌 ], there is an unstable distinguished triangle starting with
𝑓 .

(iv) If we have the following diagram of unstable distinguished triangles:

𝑋 𝑌 𝑍 Σ𝑋

𝑈 𝑉 𝑊 Σ𝑈

𝑓 𝑔 ℎ

𝑓 ′ 𝑔′ ℎ′

𝛼 𝛽 Σ𝛼
𝛾

such that the left, right and outer squares commute, then there is a map 𝛾 ∶ 𝑍 ⟶

𝑊 such that the whole diagram commutes up to homotopy.

(v) If we have the following commuting diagram of unstable distinguished triangles

𝑋 𝑌 𝑍 Σ𝑋

𝑋 𝑌 ′ 𝑍′ Σ𝑋

𝑌 𝑌 ′ 𝑍′′ Σ𝑌

Σ𝑍

𝑓 𝑔 ℎ

𝑓 ′ 𝑔′ ℎ′

𝛽

𝑓 Σ𝑓

𝛽 𝑔′′ ℎ′′

Σ𝑔◦ℎ′′

𝛾

𝛾 ′

then there exists maps 𝛾 and 𝛾 ′ such that the triangle [𝛾, 𝛾 ′,Σ𝑔◦ℎ′′] is an unstable
distinguished triangle.
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Proof. We see that (𝑖) and (𝑖𝑖𝑖) follows from the definition of the unstable distinguished
triangles.

(𝑖𝑖) This triangle is equivalent to the mapping sequence of the inclusion 𝜄 ∶∗↪ 𝑋.
To see this, note that the cone of a point is the interval, which again is glued to 𝑋 at
the basepoint, so the mapping cone of 𝜄 is homeomorphic to the wedge 𝐼 ∨𝑋. So, the
mapping sequence of 𝜄 is

∗⟶ 𝑋 ⟶ 𝐼 ∨𝑋 ⟶ 𝐼, (3)
since 𝑗(𝜄) sends all of 𝑋 to the basepoint in Σ ∗ ≅ 𝐼 . Because 𝐼 ≃ ∗, (3) equivalent to
∗⟶ 𝑋 ⟶ 𝑋 ⟶ ∗.

(𝑖𝑣) This reduces to showing that the statement holds for mapping sequences. We
want there to be a 𝛾 such that the following diagram commutes:

𝑋 𝑌 𝐶(𝑓 ) Σ𝑋

𝑈 𝑉 𝐶(𝑔) Σ𝑈

𝑓 𝑖(𝑓 ) 𝑗(𝑓 )

𝑔 𝑖(𝑔) 𝑗(𝑔)

𝛼 𝛽 Σ𝛼𝛾 (4)

Both 𝐶(𝑓 ) and 𝐶(𝑔) are defined by the pushout in Definition 2.33. Consider the fol-
lowing diagram where the bottom square is the pushout defining 𝐶(𝑔), and the upper
square comes from the above diagram:

𝑋 𝑌

𝐶𝑋 𝑈 𝑉

𝐶𝑈 𝐶(𝑔)

𝑓

𝛼

𝑔

𝛽

𝑖𝑑 ∧ 𝛼

𝑖𝑋1

𝑖𝑈1 𝑖(𝑔)

𝑖𝐶𝑈

Because of the functoriality of the smash product, the outer square commutes. Now
we can use this in the diagram defining 𝐶(𝑓 ) to see that the universal property of the
pushout gives us 𝛾 ∶ 𝐶(𝑓 ) ⟶ 𝐶(𝑔).
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𝑋 𝑌

𝐶𝑋 𝐶(𝑓 ) 𝑉

𝐶𝑈 𝐶(𝑔)

𝑓

𝑖𝑋1

𝛾

𝛽

𝑖𝑑 ∧ 𝛼

𝑖(𝑓 )

𝑖(𝑔)

𝑖𝐶𝑋

𝑖𝐶𝑈

From this diagram we see that 𝛾 commutes with the middle square in (4). Thus,
what remains is to show that the right square also commutes.

The space 𝐶(𝑓 ) is the cone of 𝑋 glued to 𝑌 along the image of 𝑓 . Hence, points
in the mapping cone can either be described as some class [𝑦]𝐶(𝑓 ) where 𝑦 ∈ 𝑌 , or
by some class [𝑡, 𝑥]𝐶(𝑓 ) where 𝑥 ∈ 𝑋, such that [1, 𝑥]𝐶(𝑓 ) = [𝑓 (𝑥)]𝐶(𝑓 ). From the
definition of 𝑗(𝑓 ) we know that all points [𝑦]𝐶(𝑓 ) in the mapping cone are sent to the
basepoint in Σ𝑈 under the composition Σ𝛼◦𝑗(𝑓 ). Likewise, 𝑗(𝑔) sends all [𝑣]𝐶(𝑔) to the
basepoint inΣ𝑈 . Since the map 𝑖(𝑓 ) ∶ 𝑌 ⟶ 𝐶(𝑓 ) is the inclusion and the composition
𝑗(𝑔)◦𝑖(𝑔)◦𝛽 sends everything to the basepoint in Σ𝑈 , we see that 𝑗(𝑔)◦𝛾 also must send
all [𝑦]𝐶(𝑓 ) to the basepoint.

Elements in 𝐶(𝑓 ) on the form [𝑡, 𝑥], 𝑡 ≠ 1, are just points in 𝐶𝑋, which are sent to
[𝑡, 𝛼(𝑥)] in 𝐶(𝑔) under 𝑖𝐶𝑈◦(𝑖𝑑 ∧ 𝛼). These elements are just included into 𝐶(𝑓 ), and
so by functoriality of the smash product, they are sent to [𝑡, 𝛼(𝑥)] in Σ𝑈 under 𝑗(𝑔)◦𝛾 .

This concludes the proof of (iv), but for the sake of the next part we write an explicit
decription for 𝛾 , based on the above argument. Indeed, looking at the diagrams we see
that we must have

𝛾([𝑡, 𝑧]𝐶(𝑓 )) =

{

[𝑡, 𝛼(𝑧)]𝐶(𝑔), 0 ≤ 𝑡 ≤ 1, 𝑧 ∈ 𝑋
[𝛽(𝑧)]𝐶(𝑔), 𝑧 ∈ 𝑌

where the subscripts denotes where the classes are.
(𝑣) Again, we can consider all the unstable distinguished triangles to be mapping

sequences, in which case the diagram looks like the following.
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𝑋 𝑌 𝐶(𝑓 ) Σ𝑋

𝑋 𝑌 ′ 𝐶(𝑓 ′) Σ𝑋

𝑌 𝑌 ′ 𝐶(𝛽) Σ𝑌

Σ𝐶(𝑓 )

𝑓 𝑖(𝑓 ) 𝑗(𝑓 )

𝑓 ′ 𝑖(𝑓 ′) 𝑗(𝑓 ′)

𝛽

𝑓 Σ𝑓

𝛽 𝑖(𝛽) 𝑗(𝛽)

Σ𝑖(𝑓 )◦𝑗(𝛽)

𝛾

𝛾 ′ (5)

From (𝑖𝑣) we know that such maps 𝛾 and 𝛾 ′ exit, and that the diagram commutes.
Hence, to prove the statement we need to show that the triangle

𝐶(𝑓 )
𝛾
←←←←←←→ 𝐶(𝑓 ′)

𝛾′
←←←←←←←←←→ 𝐶(𝛽)

(Σ𝑖(𝑓 ′))◦𝑗(𝛽)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Σ𝐶(𝑓 ′) (6)

is an unstable distinguished triangle. We will construct𝐶(𝛾) and𝐶(𝛽) as pushouts from
𝑌 , after which Lemma 3.2 will give us a homotopy equivalence between them. Then
we check that the mapping sequence of 𝛾 ,

𝐶(𝑓 )
𝛾
←←←←←←→ 𝐶(𝑓 ′)

𝑖(𝛾)
←←←←←←←←←←←←←←→ 𝐶(𝛾)

𝑗(𝛾)
←←←←←←←←←←←←←←←→ Σ𝐶(𝑓 ), (7)

is equivalent to (6).
We already know that 𝐶(𝛽) is a pushout from 𝑌 , the difficult part is to show that

𝐶(𝛾) also is a pushout from 𝑌 . Recall how 𝛾 was constructed; it is (in this case) the
unique map that makes the following diagram commute:

𝑋 𝑌

𝐶𝑋 𝐶(𝑓 ) 𝑌 ′

𝐶(𝑓 ′)

𝑓

𝑖𝑋1

𝛾

𝛽

𝑖′𝐶𝑋

𝑖(𝑓 )

𝑖(𝑓 ′)

𝑖𝐶𝑋
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where 𝑖′𝐶𝑋 is the inclusion of 𝐶𝑋 as a subspace of 𝐶(𝑓 ′). Most importantly, we have
𝛾◦𝑖𝐶𝑋 = 𝑖′𝐶𝑋 and 𝑓 ′ = 𝛽◦𝑓 , which means that when we look at the following diagram

𝑋 𝑌 𝑌 ′

𝐶𝑋 𝐶(𝑓 ) 𝐶(𝑓 ′)

𝑓

𝑖𝑋1

𝛾

𝛽

𝑖𝐶𝑋

the outer square is the pushout defining𝐶(𝑓 ′), and the left square is the pushout defining
𝐶(𝑓 ). Then Lemma 2.22 implies that the right square is a pushout as well. In order to
simplify the notation we denote the cone of 𝐶(𝑓 ), which is 𝐶(𝐶(𝑓 )), by 𝐶 , and recall
that the mapping cone of 𝛾 is defined by the pushout of

𝐶
𝑖𝐶1
←←←←←←←←←←← 𝐶(𝑓 )

𝛾
←←←←←←→ 𝐶(𝑓 ′),

where 𝑖𝐶1 is the inclusion of 𝐶(𝑓 ) into 𝐶 at 𝑡 = 1. Now we can consider the following:

𝑌 𝐶(𝑓 ) 𝐶

𝑌 ′ 𝐶(𝑓 ′) 𝐶(𝛾)

𝑖(𝑓 )

𝛽

𝑖(𝛾)

𝑖𝐶1

𝛾 𝑖𝐶

𝑖(𝑓 ′)

Again by Lemma 2.22 we see that the outer square is a pushout, and hence we are all
set to use Lemma 3.2:

𝐶𝑌 𝑌 𝑌 ′

𝐶 𝑌 𝑌 ′

𝛽𝑖𝑌1

𝛽

𝑖𝑑𝐼 ∧ 𝑖(𝑓 )

𝑖𝐶1 ◦𝑖(𝑓 )

We have that all the vertical maps are homotopy equivalences; the identities are trivially
so, and for 𝑖𝑑𝐼 ∧ 𝑖(𝑓 )∶ 𝐶𝑌 ⟶ 𝐶 we can let its inverse be the map sending every-
thing to the basepoint. Since both 𝐶 and 𝐶𝑌 are contractible, their respective identities
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are homotopic to the maps collapsing everything to their respective basepoints. Fur-
thermore, 𝑖𝑌1 ∶ 𝑌 ⟶ 𝐶𝑌 and 𝑖𝐶1 ◦𝑖(𝑓 )∶ 𝑌 ⟶ 𝐶 are cofibrations by Example 2.39,
Corollary 3.5 and (CF1) in Definition 3.1. In total, we have a homotopy equivalence
𝜓 ∶ 𝐶(𝛽) ⟶ 𝐶(𝛾).

We write the full diagram induced by the gluing lemma to understand what 𝜓 does.

𝑌 𝑌 ′

𝑌 𝑌 ′

𝐶𝑌 𝐶(𝛽)

𝐶 𝐶(𝛾)

𝛽

𝑖𝐶1 ◦𝑖(𝑓 )

𝛽

𝑖𝑌1 𝑖(𝛽)

𝑖𝐶𝑌

𝑖𝑑𝐼 ∧ 𝑖(𝑓 )

𝑖𝐶

𝑖(𝛾)◦𝑖(𝑓 ′)

𝜓

(8)

Using (8) we construct the following explicit description of 𝜓 :

𝜓([𝑡, 𝑧]𝐶(𝛽) =

{

𝑖𝐶 [𝑡, 𝑖(𝑓 )(𝑧)]𝐶 , 0 ≤ 𝑡 ≤ 1, 𝑧 ∈ 𝑌
𝑖(𝛾)◦𝑖(𝑓 ′)([𝑧]𝐶(𝛽)), 𝑡 = 1, 𝑧 ∈ 𝑌 ′

Furthermore, from the proof of (iv), we have the following descriptions of 𝛾 and 𝛾 ′:

𝛾([𝑡, 𝑧]𝐶(𝑓 )) =

{

[𝑡, 𝑧]𝐶(𝑓 ′), 0 ≤ 𝑡 ≤ 1, 𝑧 ∈ 𝑋
[𝛽(𝑧)]𝐶(𝑓 ′), 𝑡 = 1, 𝑧 ∈ 𝑌

𝛾 ′([𝑡, 𝑧]𝐶(𝑓 ′)) =

{

[𝑡, 𝑓 (𝑧)]𝐶(𝛽), 0 ≤ 𝑡 ≤ 1, 𝑧 ∈ 𝑋
[𝑧]𝐶(𝛽), 𝑡 = 1, 𝑧 ∈ 𝑌 ′

which we will use to see that the following diagram commutes up to homotopy

𝐶(𝑓 ) 𝐶(𝑓 ′) 𝐶(𝛽) Σ𝐶(𝑓 )

𝐶(𝑓 ) 𝐶(𝑓 ′) 𝐶(𝛾) Σ𝐶(𝑓 ).

𝛾 𝛾 ′ Σ𝑖(𝑓 ′)◦𝑗(𝛽)

𝛾 𝑖(𝛾) 𝑗(𝛾)

(9)
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If so, we have an equivalence of the triangles (6) and (7), which means that the former
is an unstable distinguished triangle.

We start with the middle square in (9), and we will see that 𝜓◦𝛾 ′ ≃ 𝑖(𝛾). Checking
this is an exercise in keeping track of where the elements lie. We split it in two cases;
0 ≤ 𝑡 < 1 and 𝑡 = 1. For 0 ≤ 𝑡 < 1 the classes [𝑡, 𝑧]𝐶(𝑓 ′) are included from 𝐶𝑋, i.e.,
𝑧 ∈ 𝑋. We get

(𝜓◦𝛾 ′)([𝑡, 𝑧]𝐶(𝑓 ′)) = 𝜓([𝑡, 𝑓 (𝑧)]𝐶(𝛽)) = 𝑖𝐶 ([𝑡, 𝑖(𝑓 )(𝑓 (𝑧))]𝐶 )

where
𝑖(𝑓 )(𝑓 (𝑧)) = [𝑓 (𝑧)]𝐶(𝑓 ) = [1, 𝑧]𝐶(𝑓 ),

so we get
𝑖𝐶 ([𝑡, 𝑖(𝑓 )(𝑓 (𝑧))]𝐶 = [𝑡, [1, 𝑧]𝐶(𝑓 )]𝐶(𝛾).

On the other hand we have
𝑖(𝛾)([𝑡, 𝑧]𝐶(𝑓 )) = [1, [𝑡, 𝑧]𝐶(𝑓 ′)]𝐶(𝛾).

Then 𝐻 ∶ 𝐶(𝑓 ′) × 𝐼 ⟶ 𝐶(𝛾) given by
𝐻([𝑡, 𝑧]𝐶(𝑓 ′), 𝑠) = [𝑠 + (1 − 𝑠)𝑡, [𝑠𝑡 + (1 − 𝑠), 𝑧]𝐶(𝑓 ′)]𝐶(𝛾)

is a continuous map which we claim to be a homotopy from 𝜓◦𝛾 ′ to 𝑖(𝛾).
Since [𝑡, 𝑥]𝐶(𝑓 ) ↦ [𝑡, 𝑥]𝐶(𝑓 ′) under 𝛾 , they identify as the same class in 𝐶(𝛾). We

therefore get
𝐻(𝑥, 0) = [𝑡, [1, 𝑧]𝐶(𝑓 ′)]𝐶(𝛾) = [𝑡, [1, 𝑧]𝐶(𝑓 )]𝐶(𝛾) = (𝜓◦𝛾)([𝑡, 𝑧])

and
𝐻(𝑥, 1) = [1, [𝑡, 𝑧]𝐶(𝑓 ′)]𝐶(𝛾) = 𝑖(𝛾)([𝑡, 𝑧]𝐶(𝑓 ′)),

and so 𝜓◦𝛾 ′ ≃ 𝑖(𝛾) for 𝑡 < 1. For 𝑡 = 1 the diagram commutes directly. We start with
a class [𝑧]𝐶(𝑓 ′) where 𝑧 ∈ 𝑌 ′, and get

𝜓◦𝛾 ′([𝑧]𝐶(𝑓 ′)) = 𝜓([𝑧]𝐶(𝛽)) = (𝑖(𝛾)◦𝑖(𝑓 ′))([𝑧]𝐶(𝛽)) = 𝑖(𝛾)([𝑧]𝐶(𝑓 ′)).

Now we show that 𝑗(𝛾)◦𝜓 = Σ𝑖(𝑓 ′)◦𝑗(𝛽). Again we split it into 0 ≤ 𝑡 < 1 and
𝑡 = 1. For 0 ≤ 𝑡 < 1 we start with a class [𝑡, 𝑧]𝐶(𝛽), where 𝑧 ∈ 𝑌 . We then have

(𝑗(𝛾)◦𝜓)([𝑡, 𝑧]𝐶(𝛽)) = (𝑗(𝛾)◦𝑖𝐶 )([𝑡, 𝑖(𝑓 )(𝑧)]𝐶
= 𝑗(𝛾)([𝑡, [𝑧]𝐶(𝑓 )]𝐶(𝛾)) = [𝑡, [𝑧]𝐶(𝑓 )]Σ𝐶(𝑓 ).
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Furthermore we have
(Σ𝑖(𝑓 )◦𝑗(𝛽))([𝑡, 𝑧]𝐶(𝛽)) = Σ𝑖(𝑓 )([𝑡, 𝑧]Σ𝑌 ) = [𝑡, [𝑧]𝐶(𝑓 )]Σ𝐶(𝑓 ).

For 𝑡 = 1 we have that both 𝑗(𝛽) and 𝑗(𝛾) send all classes to the basepoint in Σ𝑌 and
Σ𝐶(𝑓 ) respectively, and it follows that the diagram commutes.

This concludes the proof.
A lot of these properties are similar to those of Definition 4.5. What we are lacking

is, as mentioned before, an additive structure on [𝑋, 𝑌 ], and of course that Σ is an
automorphism. For now, left and right rotation does not exist in C W ℎ. We will see
that the homotopy classes of maps almost have an additive structure, and using this we
can also prove that left rotation holds in C W ℎ.

The following lemma is often used to show that the homotopy groups are abelian
for 𝑛 ≥ 2, and will also be used to show that we have an abelian groups structure on
[𝑋, 𝑌 ].
Lemma 4.10 (Eckmann–Hilton). Let𝑆 be a set and let ∗,× be two binary operations on
S with unit elements. If we have (𝑎 ∗ 𝑏)×(𝑐 ∗ 𝑑) = (𝑎×𝑐) ∗ (𝑏×𝑑) for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑆,
then the two operations coincide and the two units coincide. Furthermore, the operation
is commutative and associative.

See [4, pp. 10–11] for a proof.
Theorem 4.11. In C W ℎ we have that [Σ𝑋, 𝑌 ] are groups, and [Σ2𝑋, 𝑌 ] are abelian
groups for all 𝑋 and 𝑌 in C W .

Sketch of proof. We present only a sketch of the proof, as there are many details, and
most can easily be verified by the reader. For a proof see proposition 2.3.4 and 2.3.8 in
[1].

We begin by showing that there is a group structure on [Σ𝑋, 𝑌 ]. As before, we
describe an element in Σ𝑋 by an equivalence class [𝑡, 𝑥]. For two maps 𝑓, 𝑔∶ Σ𝑋 ⟶

𝑌 we can define a binary operation on them as

(𝑓 + 𝑔)[𝑡, 𝑥] =

{

𝑓 [2𝑡, 𝑥] 0 ≤ 𝑡 ≤ 1
2 ,

𝑔[2𝑡 − 1, 𝑥] 1
2 ≤ 𝑡 ≤ 1.

This is a continuous function since 𝑓 [1, 𝑥] = 𝑔[0, 𝑥] = 𝑦0, the basepoint in 𝑌 .
We claim that [Σ𝑋, 𝑌 ] is a group under this operation, with the constant map sending
everything to the base-point in 𝑌 as the unit. Denote this map by 𝑐𝑦0 .

Left/right unit: Consider the homotopy 𝐻 ∶ Σ𝑋 × 𝐼 ⟶ 𝑌 given by
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𝐻([𝑡, 𝑥], 𝑠) =

{

𝑓 ([2𝑡(1 − 𝑠) + 𝑠𝑡, 𝑥] 0 ≤ 𝑡 ≤ 1
2 (1 + 𝑠)

𝑐𝑦0 ([𝑡, 𝑥], 𝑠)
1
2 (1 + 𝑠) ≤ 𝑡 ≤ 1.

This gives us 𝑓 +𝑐𝑦0 ≃ 𝑓 . Likewise we can define a homotopy to see that 𝑐𝑦0 +𝑓 ≃
𝑓 .

Inverse: For a map 𝑓 the inverse is given by 𝑓 [1 − 𝑡, 𝑥] and we get:

(𝑓 − 𝑓 )([𝑡, 𝑥]) =

{

𝑓 [2𝑡, 𝑥] 0 ≤ 𝑡 ≤ 1
2 ,

𝑓 [2 − 2𝑡, 𝑥] 1
2 ≤ 𝑡 ≤ 1,

i.e., 𝑓 − 𝑓 ≃ 𝑐𝑦0 .
Associativity: For three maps 𝑓, 𝑔, ℎ ∈ [Σ𝑋, 𝑌 ] we get

(𝑓 + (𝑔 + ℎ))([𝑡, 𝑥]) =

{

𝑓 [2𝑡, 𝑥] 0 ≤ 𝑡 ≤ 1
2 ,

(𝑔 + ℎ)[2𝑡 − 1, 𝑥] 1
2 ≤ 𝑡 ≤ 1,

=

⎧

⎪

⎨

⎪

⎩

𝑓 [2𝑡, 𝑥] 0 ≤ 𝑡 ≤ 1
2 ,

𝑔[4𝑡 − 2, 𝑥] 1
2 ≤ 𝑡 ≤ 3

4 ,
ℎ[4𝑡 − 3, 𝑥] 3

4 ≤ 𝑡 ≤ 1,

so associativity follows by stretching the three intervals for 𝑡 appropriately. Hence,
[Σ𝑋, 𝑌 ] is a group.

To prove that [Σ2𝑋, 𝑌 ] is abelian, we use that the double suspension can be written
as a quotient space (𝐼×𝐼×𝑋)∕∼. So an element in Σ2𝑋 is an equivalence class [𝑡, 𝑠, 𝑥].
We can now define two binary operations on the set, +𝑡 and +𝑠 as follows

(𝑓 +𝑡 𝑔)[𝑡, 𝑠, 𝑥] =

{

𝑓 [2𝑡, 𝑠, 𝑥] 0 ≤ 𝑡 ≤ 1
2 ,

𝑔[2𝑡 − 1, 𝑠, 𝑥] 1
2 ≤ 𝑡 ≤ 1,

(𝑓 +𝑠 𝑔)[𝑡, 𝑠, 𝑥] =

{

𝑓 [𝑡, 2𝑠, 𝑥] 0 ≤ 𝑠 ≤ 1
2 ,

𝑔[𝑡, 2𝑠 − 1, 𝑥] 1
2 ≤ 𝑠 ≤ 1.

The reader can check that the two operations satisfy Lemma 4.10 up to homotopy. It
follows that the operations agree and are commutative, and thus [Σ2𝑋, 𝑌 ] is an abelian
groups.
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Corollary 4.12. For two maps 𝑓, 𝑔∶ Σ𝑋 ⟶ 𝑌 we get

Σ(𝑓 + 𝑔)([𝑠, 𝑡, 𝑥]) = Σ(𝑓 + 𝑔)([𝑠, [𝑡, 𝑥]] = [𝑠, (𝑓 + 𝑔)([𝑡, 𝑥])]

=

{

[𝑠, 𝑓 [𝑡, 𝑥]], 0 ≤ 𝑠 ≤ 1
2

[𝑠, 𝑔[𝑡, 𝑥]], 1
2 ≤ 𝑠 ≤ 1

=

{

𝑓 [𝑠, [𝑡, 𝑥]], 0 ≤ 𝑠 ≤ 1
2

𝑔[𝑠, [𝑡, 𝑥]], 1
2 ≤ 𝑠 ≤ 1

=

{

𝑓 [𝑠, 𝑡, 𝑥], 0 ≤ 𝑠 ≤ 1
2

𝑔[𝑠, 𝑡, 𝑥], 1
2 ≤ 𝑠 ≤ 1

= (Σ𝑓 + Σ𝑔)[𝑠, 𝑡, 𝑥].

i.e., the suspension is an additive functor when restricted to doubly suspended spaces.

Using this additive structure, we can at least look at what happens when we rotate
triangles in C W ℎ to the left.

Theorem 4.13. If 𝑋
𝑓
←←←←←←←→ 𝑌

𝑔
←←←←←←→ 𝑍

ℎ
←←←←←←→ Σ𝑋 is an unstable distinguished triangle, then so

is 𝑌
𝑔
←←←←←←→ 𝑍

ℎ
←←←←←←→ Σ𝑋

−Σ𝑓
←←←←←←←←←←←←←←←←←←→ Σ𝑌 .

Proof. To prove this we need only consider the left rotation of a mapping sequence,
𝑋

𝑓
←←←←←←←→ 𝑌

𝑖(𝑓 )
←←←←←←←←←←←←←←←→ 𝐶(𝑓 )

𝑗(𝑓 )
←←←←←←←←←←←←←←←←→ Σ𝑋. Then the proof reduces to showing that the mapping

cone of 𝑖(𝑓 ), denoted 𝐶(𝑖(𝑓 )), is homotopy equivalent to Σ𝑋, and that the following
diagram commutes up to homotopy:

𝑌 𝐶(𝑓 ) 𝐶(𝑖(𝑓 )) Σ𝑌

𝑌 𝐶(𝑓 ) Σ𝑋 Σ𝑌 .

𝑖(𝑓 ) 𝑖(𝑖(𝑓 )) 𝑗(𝑖(𝑓 ))

𝑖(𝑓 ) 𝑗(𝑓 ) −Σ𝑓

𝛾 (10)

We will use Lemma 3.2 to show this. Then we need both 𝐶(𝑖(𝑓 )) and Σ𝑋 to be defined
as pushouts from 𝑋. We know from Remark 2.19 that Σ𝑋 can be identidied as the
pushout

𝐶𝑋
𝑖𝑋1
←←←←←←←←←←← 𝑋 ←←→ ∗,
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where 𝑖𝑋1 is a cofibration. To see that 𝐶(𝑖(𝑓 )) is a pushout from𝑋, consider the follow-
ing commutative diagram

𝑋 𝑌 𝐶𝑌

𝐶𝑋 𝐶(𝑓 ) 𝐶(𝑖(𝑓 ))

𝑓 𝑖𝑌1

𝑖𝐶𝑋 𝑖(𝑖(𝑓 ))

𝑖𝑋1 𝑖(𝑓 ) 𝑖𝐶𝑌
(11)

where we again have that 𝑖𝑌1 is a cofibration. The left and right square are the construc-
tion of the mapping cones of 𝑓 and 𝑖(𝑓 ) respectively, i.e., both squares are pushouts.
Then by Lemma 2.22 the outer square is a pushout as well. We then have the following
commutative diagram

𝐶𝑋 𝑋 𝐶𝑌

𝐶𝑋 𝑋 ∗,

𝑖𝑋1 𝑖𝑌1 ◦𝑓

𝑖𝑋1

≃

on which Lemma 3.2 applies, and we get a homotopy equivalence 𝛾 ∶ 𝐶(𝑖(𝑓 )) ⟶ Σ𝑋.
Before proceeding, we look a bit more closely at 𝐶(𝑖(𝑓 )). We now know that it can

be defined as the pushout of 𝐶𝑋 𝑖𝑋1
←←←←←←←←←←← 𝑋

𝑖𝑌1 ◦𝑓
←←←←←←←←←←←←←←←←←←←→ 𝐶𝑌 . This tells us quite a bit about the

space𝐶(𝑖(𝑓 ); while we could consider it to be the space𝐶𝑌 ⊔𝑖(𝑓 )𝐶(𝑓 ), where 𝑌 is glued
to 𝐶(𝑓 ) along 𝑖(𝑓 ) as in our original construction of a mapping cone, we see that it can
also be identified as the two cones 𝐶𝑋 and 𝐶𝑌 glued together along [1, 𝑥] ∼ [1, 𝑓 (𝑥)].

To make the following part, in which we check the commutativity of (10), more
comprehensive, we make a more explicit identification on the space 𝐶(𝑖(𝑓 )). We want
to make an identification like in Figure 6, where the whole space is given by classes [𝑡, 𝑧]
for 𝑡 ∈ 𝐼 , with the two cones glued together at 𝑡 = 1

2 . This is clearly homeomorphic to
𝐶(𝑖(𝑓 )), it is just a matter of shrinking the intervals.

We have homeomorphisms

𝐶𝑋 = 𝐼 ∧𝑋 ≅
[

0, 1
2

]

∧𝑋 =∶ ̃𝐶𝑋,𝐶𝑌 = 𝐼 ∧ 𝑌 ≅
[1
2
, 1
]

∧ 𝑌 =∶ ̃𝐶𝑌 ,

where ̃𝐶𝑋 has basepoint at 𝑡 = 0, and ̃𝐶𝑌 has basepoint at 𝑡 = 1. Note that these spaces
are not constructed with the functor in Definition 2.16, only a new space homeomorphic
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𝐼 𝐼

0

1
2

1

0

1
2

1

𝐶𝑋 𝐶𝑌

𝑓

Figure 6: We have the cone of 𝑋 = [0, 1] and 𝑌 = [−1, 2] on the left, where our map
𝑓 ∶ 𝑋 ⟶ 𝑌 is the inclusion. Then we want an identification on 𝐶(𝑖(𝑓 )) as above,
where 𝐶𝑌 is the upper half and 𝐶𝑋 is the lower half. We see that 𝐶𝑌 must be rotated
before we can glue the cones together.

to the cone of 𝑋 and 𝑌 . Furthermore, when ̃𝐶𝑌 is glued to ̃𝐶𝑋, ̃𝐶𝑌 is both a rotated
and shrinked version of 𝐶𝑌 , so the map 𝐶𝑌 ⟶ ̃𝐶𝑌 is given by [𝑡, 𝑦] ↦

[

1 − 1
2 𝑡, 𝑦

]

.
Then 𝐶(𝑖(𝑓 )) ≅ 𝐶𝑋′ ⊔𝑋 𝐶𝑌 ′, which is exacly the space that Figure 6 describes.

We see that 𝐶(𝑓 ) ≅ {[𝑡, 𝑧]𝐶(𝑖(𝑓 ) ∶ 0 ≤ 𝑡 ≤ 1
2}, so 𝐶(𝑓 ) lives in 𝐶(𝑖(𝑓 )) as a subspace.

Under this identification, we see that the following maps are altered:

𝑖𝐶𝑋 ∶ 𝐶𝑋 ⟶ 𝐶(𝑖(𝑓 )), [𝑡, 𝑧]𝐶𝑋 ↦
[ 𝑡
2
, 𝑧
]

𝐶(𝑖(𝑓 ))

𝑖𝐶𝑌 ∶ 𝐶𝑌 ⟶ 𝐶(𝑖(𝑓 )), [𝑡, 𝑧]𝐶𝑌 ↦
[

1 − 1
2
𝑡, 𝑧

]

𝐶(𝑖(𝑓 ))

𝑖(𝑖(𝑓 ))∶ 𝐶(𝑓 ) ⟶ 𝐶(𝑖(𝑓 )), [𝑡, 𝑧]𝐶(𝑓 ) ↦
[ 𝑡
2
, 𝑧
]

𝐶(𝑖(𝑓 ))

By writing out the diagram from the gluing lemma, we can explicitly say what 𝛾
does.
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𝑋 ∗

𝑋 𝐶𝑌

𝐶𝑋 𝐶(𝑖(𝑓 ))

𝐶𝑋 Σ𝑋

𝑖𝑋1

𝑖𝑌1 ◦𝑓

𝑖𝑋1 𝑖𝐶𝑌

𝑖𝐶𝑋

𝑝

𝛾

(12)

The map 𝑝∶ 𝐶𝑋 ⟶ Σ𝑋 is the quotient map collapsing 𝑋 × {1} to the basepoint.
Looking at (12) we see that 𝛾 sends all classes [𝑡, 𝑧] ∈ 𝐶(𝑖(𝑓 )) for 1

2 ≤ 𝑡 ≤ 1 to the
basepoint, while for 0 ≤ 𝑡 ≤ 1

2 they are sent to their corresponding class in Σ𝑋. We
also need 𝛾 to commute, i.e, we need 𝛾◦𝑖𝐶𝑋 = 𝑝. Therefore, an explicit description of
𝛾 for our identification on 𝐶(𝑖(𝑓 )) is given by

𝛾([𝑡, 𝑧]𝐶(𝑖(𝑓 )) =

{

[2𝑡, 𝑧]Σ𝑋 , 0 ≤ 𝑡 ≤ 1
2

∗, 1
2 ≤ 𝑡 ≤ 1,

which is well-defined since [1, 𝑧]Σ𝑋 ∼ ∗ for all 𝑧. We see also that

𝛾◦𝑖𝐶𝑋([𝑡, 𝑧]𝐶𝑋) = 𝛾([ 𝑡
2
, 𝑧]𝐶(𝑖(𝑓 ))) = [𝑡, 𝑧]Σ𝑋 ,

so (12) commutes.
Now we use this to check commutativity of (10). Firstly, we need 𝛾◦𝑖(𝑖(𝑓 )) ≃ 𝑗(𝑓 ).

We have
𝑗(𝑓 )([𝑡, 𝑧]𝐶(𝑓 )) = [𝑡, 𝑧]Σ𝑋 ,

so we get
(𝛾◦𝑖(𝑖(𝑓 )))([𝑡, 𝑧]𝐶(𝑓 )) = 𝛾([ 𝑡

2
, 𝑧]𝐶(𝑖(𝑓 ))) = [𝑡, 𝑧]Σ𝑋 = 𝑗(𝑓 )([𝑡, 𝑧]Σ𝑋 ,

i.e., the middle square in (10) commutes directly.
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Now we check that (−Σ𝑓◦𝛾) ≃ 𝑗(𝑖(𝑓 )). Since 𝑗(𝑖(𝑓 )) collapses the subspace
𝐶(𝑓 ) ⊆ 𝐶(𝑖(𝑓 )) to the basepoint in Σ𝑌 , we see that 𝑗(𝑖(𝑓 )) is described by

𝑗(𝑖(𝑓 ))([𝑡, 𝑧]𝐶(𝑖(𝑓 ))) =

{

∗, 0 ≤ 𝑡 ≤ 1
2

[2 − 2𝑡, 𝑧]Σ𝑌 ,
1
2 ≤ 𝑡 ≤ 1,

while
(−Σ𝑓◦𝛾)([𝑡, 𝑧]𝐶(𝑖(𝑓 ))) =

{

[1 − 2𝑡, 𝑓 (𝑧)]Σ𝑌 , 0 ≤ 𝑡 ≤ 1
2

∗, 1
2 ≤ 𝑡 ≤ 1.

Then we claim that 𝐻 ∶ 𝐶(𝑖(𝑓 )) × 𝐼 ⟶ Σ𝑌 given by

𝐻([𝑡, 𝑧]𝐶(𝑖(𝑓 )), 𝑠) =

{

[(1 − 𝑠)(1 − 2𝑡), 𝑓 (𝑧)]Σ𝑌 , 0 ≤ 𝑡 ≤ 1
2

[𝑠(2 − 2𝑡), 𝑧]Σ𝑌 ,
1
2 ≤ 𝑡 ≤ 1

is a homotopy from (−Σ𝑓◦𝛾) at 𝑠 = 0 to 𝑗(𝑖(𝑓 )) at 𝑠 = 1. This holds because we have
[0, 𝑧]Σ𝑌 = ∗ for all 𝑧.

This concludes the proof.
Remark 4.14. Looking back at Figure 6 we see that we rotated 𝐶𝑌 when making our
identification on𝐶(𝑖(𝑓 )). Yet,Σ𝑌 does not have this rotated identification in the triangle

𝑌
𝑖(𝑓 )
←←←←←←←←←←←←←←←→ 𝐶(𝑓 )

𝑖(𝑖(𝑓 ))
←←←←←←←←←←←←←←←←←←←←←←←→ 𝐶(𝑖(𝑓 ))

𝑗(𝑖(𝑓 ))
←←←←←←←←←←←←←←←←←←←←←←←←→ Σ𝑌 . (13)

This explains why we need the minus in −Σ𝑓 . The map 𝛾 does not take into consider-
ation that 𝐶𝑌 has been rotated, so we need −Σ𝑓 to give Σ𝑌 the same identification as
it has in (13).

The conclusion of this subsection is that if we restricted ourselves to doubly sus-
pended (or more) spaces in 𝐶𝑊ℎ, and Σ had an inverse which made right rotation com-
patible with our definition of triangles, we would have a triangulated category. This is,
roughly speaking, the idea behind the Spanier–Whitehead category; we try to fix these
flaws directly by defining some structure on C W ℎ which makes Σ invertible.

5 The Spanier–Whitehead category
5.1 Definition and triangulation
Definition 5.1. The Spanier–Whitehead category, S W , consists of objects (𝑋, 𝑛)
where 𝑋 is an object from C W ℎ and 𝑛 ∈ ℤ. The set of maps between objects is given
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by
S W ((𝑋,𝑚), (𝑌 , 𝑛)) = colim

𝑟→∞
[Σ𝑟+𝑚𝑋,Σ𝑟+𝑛𝑌 ].

Remark 5.2. Theorem 2.27 tells us that the colimit in this definition will be attained
for some finite number 𝑟. Let 𝑟 be a number such that 𝑟 − 𝑚 and 𝑟 − 𝑛 are positive.
This is finite, since 𝑚 and 𝑛 are integers. Then, assume that 𝑋′ = Σ𝑟𝑋 is 𝑁 dimen-
sional, and that 𝑌 ′ = Σ𝑟𝑌 is 𝑘-connected. We have already seen that the suspension
increases the connectivity and dimension of a space by 1. Then Theorem 2.27 tells us
that [Σ𝑙𝑋′,Σ𝑙𝑌 ′] ⟶ [Σ𝑙+1𝑋′,Σ𝑙+1𝑌 ′] is a bijection if 𝑁 + 𝑙 ≤ 2(𝑘 + 𝑙). Equiva-
lently, if 𝑁 − 2𝑘 ≤ 𝑙. Since we are restricting ourselves to finite CW-complexes, 𝑘 and
𝑁 are finite, we have that there is a large 𝑙 such that for all 𝑙′ ≥ 𝑙 [Σ𝑙′𝑋′,Σ𝑙′𝑌 ′] ⟶
[Σ𝑙′+1]𝑋′,Σ𝑙′+1𝑌 ′] is an isomorphism.
Remark 5.3. The sets of maps in S W are constructed with the colimit operation,
which is not completely unambiguous. For, which category is the colimit taken in? We
have seen that [𝑋, 𝑌 ] in C W ℎ are abelian groups if𝑋 is an (at least) doubly suspended
space, so for 𝑟 ≥ 2 we can consider this a colimit in the category of abelian groups.
However for 𝑟 = 0 and 𝑟 = 1, [Σ𝑟𝑋, 𝑌 ] is a set and a group, respectively. Hence
S W ((𝑋, 𝑛), (𝑌 , 𝑚)) is not completely well-defined. This could be mended by ignoring
it, i.e., we first let the suspension act on the sets two times, and then do the colimit
in abelian groups. However, through the colimit we identify elements in [𝑋, 𝑌 ] and
[Σ𝑋,Σ𝑌 ] with elements in [Σ2𝑋,Σ2𝑌 ] where we do have an abelian groups structure.
Thus, we have an induced abelian group structure in [𝑋, 𝑌 ] and [Σ𝑋,Σ𝑌 ] which we
can use to make the colimit in Definition 5.1 more well-defined.

We see then that two objects (𝑋, 𝑛) and (𝑌 , 𝑚) in S W are isomorphic if and only
if after some finite number 𝑟, Σ𝑛+𝑟𝑋 and Σ𝑚+𝑟𝑌 are homotopy equivalent.

As mentioned before, this definition is the most direct way to mend the shortcomings
of C W ℎ. The sets S W ((𝑋, 𝑛), (𝑌 , 𝑚)) trivially abelian groups, just make a restriction
on 𝑟 in Definition 5.1 such that min{𝑟 + 𝑛, 𝑟 + 𝑚} ≥ 2. Furthermore, this definition
allows us to define an obvious automorphism on S W .
Definition 5.4. The suspension in S W , 𝑠∶ S W ⟶ S W , is given by 𝑠(𝑋, 𝑛) =
(𝑋, 𝑛 + 1).
Remark 5.5. The inverse of 𝑠, 𝑠−1 is of course given by 𝑠−1(𝑋, 𝑛) = (𝑋, 𝑛 − 1), and
we see that 𝑠◦𝑠−1 = 𝑖𝑑S W and 𝑠−1◦𝑠 = 𝑖𝑑S W . So 𝑠 is an automorphism.

We also have an obvious functor from C W ℎ ⟶ S W where 𝑋 ↦ (𝑋, 0), known
as the stabilization.

The suspension in the homotopy category of CW-complexes extends naturally to
the Spanier Whitehead category, where we let Σ(𝑋, 𝑛) = (Σ𝑋, 𝑛).
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Proposition 5.6. There is a natural equivalence from 𝑠 to Σ.

Proof. We have that 𝑠(𝑋, 𝑛) ≅ Σ(𝑋, 𝑛) ≅ (Σ𝑋, 𝑛) if for some 𝑟 we have Σ𝑟(𝑠(𝑋, 𝑛)) ≅
Σ𝑟(Σ𝑋, 𝑛) in C W ℎ. This holds because in S W we have
S W (𝑠(𝑋, 𝑛), (Σ𝑋, 𝑛)) = colim

𝑟→∞
[Σ𝑟+𝑛+1𝑋,Σ𝑟+𝑛(Σ𝑋)] = colim

𝑟→∞
[Σ𝑟+𝑛+1𝑋,Σ𝑟+𝑛+1𝑋]

which means that in [Σ𝑟+𝑛+1𝑋,Σ𝑟+𝑛+1𝑋] for some large enough 𝑟 we find the identity,
which corresponds to the desired natural isomorphism in S W (𝑠(𝑋, 𝑛), (Σ𝑋, 𝑛)).

This means that we can bring a lot of the structure from C W and C W ℎ into S W .
We see, for instance, that 𝑠 is additive, as a consequence of Proposition 5.6 and Corol-
lary 4.12. Which means that Σ is an additive automorphsim, as we would like it to be.
Note that the inverse suspension Σ−1 does not have any meaningful geometric interpre-
tation, it is only a technical tool to enable the triangulated structure.

For there to be a triangulated structure on S W it needs to be additive. Now, the
coproduct is inherited from C W , where it is 𝑋 ∨ 𝑌 . Then in S W the coproduct of
(𝑋, 𝑛) and (𝑌 , 𝑚) is

(𝑋, 𝑛)⊕ (𝑌 , 𝑚) = (Σ𝑙−𝑚(𝑋) ∨ Σ𝑙−𝑛(𝑌 ), 𝑛 + 𝑚 − 𝑙),

where 𝑙 ≥ max{𝑛, 𝑚}.
We also inherit the zero-object from C W ℎ: look at [Σ𝑟𝑋, ∗] and [∗,Σ𝑟𝑋] in C W ℎ.

For all 𝑟 they can only consist of one map, namely the map sending everything to the
point, and the inclusion to the basepoint, respectively. Hence, the zero-object in S W
is the one-point space (∗, 0).
Proposition 5.7. The category S W is additive.

Proof. This is a direct consequence of Lemma 4.3 and Theorem 4.11, where we have
seen that there is an additive structure on C W ℎ. In fact, it would be enough to re-
strict ourselves to doubly-suspended spaces in C W ℎ for there to be a biproduct. The
bilinearity of compositions can be checked by the reader.

Hence we are all set to define the triangulated structure on S W .
Definition 5.8. For a sequence (𝑋, 𝑛) ⟶ (𝑌 , 𝑚) ⟶ (𝑍, 𝑘) ⟶ (𝑋, 𝑛 + 1) of ob-
jects in S W we say that it is a distinguished triangle if for some even number 𝑙 the
following sequence

Σ𝑙+𝑛𝑋
𝑓
←←←←←←←→ Σ𝑚+𝑙𝑌

𝑔
←←←←←←→ Σ𝑘+𝑙𝑍

ℎ
←←←←←←→ Σ𝑛+𝑙+1𝑋

of objects in C W ℎ is an unstable distinguished triangle.

45



The restriction on 𝑙 to even numbers will become obvious in the following proof.
Theorem 5.9. The Spanier–Whitehead category is triangulated.

Proof. For a distinguished triangle
(𝑋, 𝑛) ⟶ (𝑌 , 𝑚) ⟶ (𝑍, 𝑘) ⟶ (𝑋, 𝑛 + 1) (14)

we can find an unstable distinguished triangle representing (14). Using these represen-
tations we see that we can repeat all of the arguments from Theorem 4.9 and Theo-
rem 4.13, and so S W satisfies almost all of Definition 4.5. There are only two prop-
erties left to show: right rotation and that the trivial triangle (𝑋, 𝑛)

𝑖𝑑(𝑋,𝑛)
←←←←←←←←←←←←←←←←←←←←←←←←→ (𝑋, 𝑛) ⟶

(∗, 0) ⟶ (𝑋, 𝑛 + 1) is distinguished. However, the latter follows from the former and
part (𝑖) in Theorem 4.9. So we are left with only right rotation.

Let (𝑋, 𝑛) ⟶ (𝑌 , 𝑚) ⟶ (𝑍, 𝑘) ⟶ (𝑋, 𝑛 + 1) be a distinguished triangle.
Then we have a large, even 𝑙 such that the following triangle in C W ℎ is an unstable
distinguished triangle.

Σ𝑛+𝑙𝑋
𝑓
←←←←←←←→ Σ𝑚+𝑙𝑌

𝑔
←←←←←←→ Σ𝑘+𝑙𝑍

ℎ
←←←←←←→ Σ𝑛+𝑙+1𝑋. (15)

Rotating this triangle five times to the left gives us

Σ𝑘+𝑙+1
−Σℎ
←←←←←←←←←←←←←←←←←→ Σ𝑛+𝑙+2𝑋

Σ2𝑓
←←←←←←←←←←←←←←←←→ Σ𝑚+𝑙+2𝑌

Σ2𝑔
←←←←←←←←←←←←←←←→ Σ𝑘+𝑙+2𝑍. (16)

Then (𝑍, 𝑘−1) ⟶ (𝑋, 𝑛) ⟶ (𝑌 , 𝑚) ⟶ (𝑍, 𝑘) kan be represented by (16), an unsta-
ble distinguished triangle in C W ℎ, and hence the right rotation of (15) is a distinguished
triangle. We see here why we restrict ourselves to even numbers in the definition of tri-
angles in S W – it is forced by the signs that appear in the rotations.

This completes the proof.
Remark 5.10. The Spanier–Whitehead category is sometimes defined with objects in-
cluded from C W and S W (𝑋, 𝑌 ) = colim

𝑟→∞
[Σ𝑟𝑋,Σ𝑟𝑌 ]. See for instance [2, pp. 28 ].

This does seem similar at first sight, but with this definition we have, at least according
to Margolis, no formal desuspension.

5.2 S W as a stable homotopy category
Up until now the triangulated structure on the stable homotopy category has been the
main focus, and we have indeed shown that S W is triangulated. However, it is not
all we want from a stable homotopy category. There are several models for the stable
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homotopy category, and they do vary slightly. Here, we will base ourselves on [2, pp.
26 – 27], where a list of the wanted properties is presented. We will see that our naive
attempt is, in fact, naive, and falls short in several aspects.

Firstly, we have restricted ourselves to finite CW-complexes, which also means that
we have restricted ourselves to finite coproducts, as a countable coproduct of finite CW-
complexes rarely is a finite CW-complex. This is a disadvantage because it leaves out
spaces like the infinite sphere 𝑆∞, and the infinite projective spaces, ℝ𝑃∞ and ℂ𝑃∞.
Were we, however, to include infinite CW-complexes in our definition we would see
that our definition of coproducts in S W does not extend to the infinite case. Take for
instance

S W

(

⋁

𝑖≥0
(𝑆 𝑖, 0), (𝑆0, 0)

)

= colim
𝑟→∞

[

⋁

𝑖≥0
Σ𝑟𝑆 𝑖,Σ𝑟𝑆0

]

≅ colim
𝑟→∞

∏

𝑖≥0

[

𝑆𝑟+𝑖, 𝑆𝑟
]

≠
∏

𝑖≥0
colim
𝑟→∞

[

𝑆𝑟+𝑖, 𝑆𝑟
]

=
∏

𝑖≥0
colim
𝑟→∞

[

Σ𝑟𝑆 𝑖,Σ𝑟𝑆0] =
∏

𝑖≥0
S W

(

(𝑆 𝑖, 0), (𝑆0, 0)
)

,

which must hold for coproducts.
Another important notion is Brown Representability. This is a result about re-

duced cohomology theories; for a reduced cohomology theory 𝐸∗ we have that for all
𝑛 there is a connected CW-complex 𝐾𝑛 such that for all connected CW-complexes 𝑋
there is a natural isomorphism 𝐸𝑛(𝑋) ≅ [𝑋,𝐾𝑛]. What holds in the stable homotopy
category, and fails in S W , is the opposite. Namely, that every element in the stable
homotopy category defines a reduced cohomology theory on pointed CW-complexes.
In S W that would mean that every (𝑋, 0) defines a reduced cohomology theory via
�̃� 𝑖(𝑌 ) = S W ((𝑌 , 0), (𝑋, 𝑖)). As this is zero whenever 𝑖 is greater than the dimen-
sion of 𝑌 , and hence we can not represent for example K-theory, which is periodic and
therefore has negative dimension cohomologies.

We should also mention that S W is a symmetric monoidal category, as we would
like the stable homotopy category to be, with the smash product as the symmetric
monoidal product, and the 0-sphere as the unit. It has not been given much attention
through this thesis, but it does follow from the naturality of the morphisms in Theo-
rem 2.15.

One of the interesting things to notice, is that the category S W as defined here,
with finite CW-complexes, should be contained in every stable homotopy category as a
subcategory of compact objects. This tells a great deal about S W - it is the right idea,
but it is just too small. We need more objects, for the reasons described above.

The overall takeaway from this thesis is that the Spanier–Whitehead category is a
great place to start when learning about the stable homotopy category. It is simple, and
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it has a lot of geometric intuition, while it tells you clearly where to continue in the
search for the stable homotopy category.
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