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Summary
This thesis contains insight into how to determine the attitude of a circuit board.
For this, measurements from an IMU (inertial measurement unit) combined with
an ESKF (error state Kalmen filter) have been used. The IMU provides measure-
ments from three different sensors; accelerometer, gyroscope, and magnetometer.
The final attitude for the circuit board is displayed in the Euler angles roll, pitch
and yaw. Estimating roll and pitch with gyroscope measurement and correction
from the accelerometer measurement, as shown in the result, wasmainly accurate.
However, I did not succeed in accurate and reliable estimate yaw with gyroscope
measurement and correction from the magnetometer measurement in my imple-
mentation. Possible reasons for this are discussed in Section 5.
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1Introduction
1.1 Project

This thesis aims to compute the attitude of a circuit board based on sensor read-
ings from an accelerometer, gyroscope, and magnetometer. All of these measure-
ments come from an IMU. The gyroscope outputs from the IMUwill be integrated
through a kinematic model to provide an estimate of the attitude represented as a
unit quaternion. The unit quaternion will provide a 4-dimensional attitude repre-
sentation that will avoid singularities. When describing the attitude in the results,
the quaternion will be converted to the triple Euler angles roll, pitch, and yaw for
better readability.

Further, an ESKF (error state Kalman filter) will estimate and compensate for
bias and filter the noisy measurements. Acceleration andmagnetometer measure-
ments will, among other things, be used for this correction. The singularity-free
unit quaternion fits well in the state vector in the ESKF. The state vector also
contains the gyroscope bias.

1.2 IMU

IMU stands for inertial measurement unit and is sensor assembly of inertial sen-
sors. All of the sampled sensor data in this thesis is gathered from a so-called 9
degree of freedom. The chosen IMU is called LSM9DS1 and is featured with a 3D
digital linear acceleration sensor, a 3D digital angular rate sensor, and a 3D digital
magnetic sensor (STMicroelectronics, 2015). An IMU is never perfect, and the
main errors are measurement noise and measurement bias. Even with calibration
these errors still has to be taken into account when performing calculation with
measured values. In addition, it is not given that the mounted IMU is perfectly
aligned with the body frame coordinates. All of these problems give room for
possible errors when estimating roll, pitch, and yaw.

An essential aspect of an IMU is the sampling rate that is used. This is most
often described in Hz and tells us howmany samples are measured in one second.
The IMU does typically provide measurements much more frequently than other
navigation sensors, likeGNSS (GlobalNavigation Satellite Systems). The sampling
time of the IMUmeasurements usedwhen testing is 100 Hz andwas present in the
hardware delivered by Squarehead Technology. The hardware is further described
in Section 1.3 and comes with software to run and extract data from the IMU.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: A close-up look of themiddle IMU that ismounted on the circuit board.

1.3 Circuit board

Squarehead Technology provides hardware for testing that is the same as what
they use in their products. The hardware is a circuit board composed of different
audio and video processing features and access to mounted IMUs. The only
feature that is of interest by now is the mounted IMUs. The circuit board is shown
in Figure 1.2. Because the true look of the complete circuit board is classified, the
figure shows only a drawing. There are five mounted IMUs, and their location is
highlighted in the figure as a black square with white filling and a black dot in the
left lower corner. Four IMUs are located in all corners of the circuit board, and the
fifth is located in the middle. All IMUs are operative and gather data, but only the
data from the IMU in the middle is used when estimating attitude for the circuit
board. For power and data transfer, a 1-meter long USB-C to USB-A cable is used.
This cable is connected to a stationary computer running on Ubuntu 18.04 LTS
operative system.

The orientation shown in Figure 1.2 represents the idle orientation of the cir-
cuit board. In this orientation roll, pitch and yaw are expected to be zero. The
coordinate system for the circuit board is shown in Figure 1.3. Movement about
the x-axis will represent changes in roll, movement about the y-axis will repre-
sent changes in pitch, and movement about the z-axis will represent changes in
yaw. The local coordinate system for the IMUs was not originally aligned with the
chosen coordinate system shown in Figure 1.3. This was adjusted by rotating the
IMUs measurements vector with a rotation matrix. The method used is further
explained in Section 3.2.
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Figure 1.2: A complete drawing of the circuit board provided by Squarehead
Technology. Only the IMU located in the middle was used when estimating the
results. The dot shown on the IMUs indicates the mounted rotation of the IMU
relative to the circuit board.
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Figure 1.3: The coordinate system that is used for the circuit board. It shows the
direction for the x-axis, the y-axis, and the z-axis.



2Theory
This chapter will introduce the necessary mathematics and theory to better un-
derstand calculation with quaternion, converting between quaternion, rotation
matrix, Euler angles, and step by step implementation of the ESKF with explana-
tory equations.

2.1 Norm and Skew-symmetric matrix

In further calculation the term Euclidean norm will be used on vectors when
need of scaling. Euclidean norm (Farrell, 2008, B.2) of a =-dimensional vector
v = {E1 , ..., E=} is defined as the square root of the scalar product of a vector with
itself:

| |v| |2 =
√
v) · v (2.1)

| |v| |2 =
√
E2

1 + ... + E2
= (2.2)

The Euclidean norm is also the length of the vector. This property can further be
used to normalize a vector with

v = v
| |v| |2

(2.3)

that can be used when only the relation between the values in the vector is of
interest. This will be done with the measurements from the accelerometer and
magnetometer. For these measurements, only the direction of the vector is nec-
essary. Normalizing a vector is a way to scale the vector, so the vector’s length is
equal to 1.

For some calculation in the ESKF it is needed to take the cross product between
two vectors. To simplify this the Skew-symmetric matrix operator will be used.
The definition for this is such that v × a = Y(v)a, or equivalently (Brekke, 2020, eq.
10.5):

Y(v) =


0 −E3 E2
E3 0 −E1
−E2 E1 0

 (2.4)

2.2 Quaternion

The quaternion will be used as the main way to represent the attitude state. This
is a 4-dimensional attitude notation and will not suffer from singularities, like any
3-dimensional representation, where an infinite number of possible Euler angles

5



6 CHAPTER 2. THEORY

are possible (Brekke, 2020, ch. 10). The mathematical notation for a quaternion
used in this thesis is (Brekke, 2020, eq. 10.19):

q =

[
�
&

]
(2.5)

where

& = [&1 , &2 , &3]) (2.6)

Taking the norm of a quaternion is done the same way as in (2.2) and yields
(Brekke, 2020, eq. 10.25):

| |q| | =
√
�2 + &2

1 + &2
2 + &2

3 (2.7)

Now it is very straightforward to normalize the quaternion with

q =
q
| |q| | (2.8)

and is similar as done for a normal vector in (2.3).
Another good property for the quaternion is when you want to rotate the

quaternion attitude representation. Suppose you have one quaternion represent-
ing the attitude and another quaternion representing the change. You can take the
product between these two for obtaining the new attitude. The calculation of the
quaternion product (Brekke, 2020, eq. 10.34) is:

q0 ⊗ q1 =

(
�0I +

[
0 −&)0
&0 −Y(&0)

] ) [
�1
&1

]
(2.9)

2.3 Conversion between quaternion, rotation matrix and Euler
angles

It is helpful to convert betweendifferent attitude representations. While the quater-
nion is used as the attitude state, a mix of quaternion and rotation matrix will be
used in the ESKF calculations. When plotting the estimated attitude for the results,
the Euler angles roll, pitch, and yaw will be used. This makes a more familiar and
readable representation of the attitude.

Firstly we have the equation for converting from quaternion to rotation matrix
(Brekke, 2020, eq. 10.37):
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R = I + 2�Y(&) + 2Y(&)Y(&) (2.10)

=


�2 + &2

1 − &2
2 − &2

3 2
(
&1&2 − �&3

)
2
(
&1&3 + �&2

)
2
(
&1&2 + �&3

)
�2 − &2

1 + &2
2 − &2

3 2
(
&2&3 − �&1

)
2
(
&1&3 − �&2

)
2
(
&2&3 + �&1

)
�2 − &2

1 − &2
2 + &2

3

 (2.11)

The rotation matrix is an attitude representation of 9 dimensions and will be used
for intermediate calculations in the ESKF method.

Secondly, we have the equation for converting from quaternion to Euler angles
(Brekke, 2020, eq. 10.38):

) = arctan2
(
2(&3&2 + �&1), �2 − &2

1 − &2
2 + &2

3
)

(2.12)
� = arcsin

(
2(�&2 − &1&3)

)
(2.13)

# = arctan2
(
2(&1&2 + �&3), �2 + &2

1 − &2
2 − &2

3
)

(2.14)

This will be used when plotting the attitude state in the results. Then we have to
go from quaternion to a more readable representation of the attitude.

The last conversion is the equation for converting from Euler angle to quater-
nion (Brekke, 2020, eq. 10.39):

q =


cos )

2 cos �
2 cos #

2 + sin )
2 sin �

2 sin #
2

sin )
2 cos �

2 cos #
2 − cos )

2 sin �
2 sin #

2
cos )

2 sin �
2 cos #

2 + sin )
2 cos �

2 sin #
2

cos )
2 cos �

2 sin #
2 − sin )

2 sin �
2 cos #

2


(2.15)

It is more intuitive to represent the initial attitude of the circuit board as Euler
angles in the Python code. This is then immediately converted to quaternion for
the initial attitude state.

2.4 The error state Kalman filter (ESKF)

2.4.1 States

Will step by step show the mathematics and method behind the ESKF. We have
three different state kinematics for the system, the nominal state, error state, and
true state. The nominal and true statewill represent the attitude and gyro bias, and
the error state will represent the error between these state vectors. The notation
for these will be the same as in (Brekke, 2020, eq. 10.52), but with fewer states.
Since it is only of interest to estimate the attitude of the circuit board, the states
containing the position and velocity are removed. The accelerometer is only used
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for correction and compared with Earth’s gravity, so acceleration bias is removed
to simplifying the state. A bias in acceleration will only yield a slight offset in
the attitude representation and is durable. If the position and velocity were also
predicted, thiswould lead to a constantdrift andmake thepositionmore inaccurate
over time.

Since the error state will represent the error in attitude and gyro bias, it is no
need to use a 4-dimensional representation of the attitude. Here a 3-dimensional
Euler angles representation is more suited. The ESKF will always try to make all
of the entities in this state go towards zero. The representation is:

�x =
[
�) �81

]) (2.16)

The nominal state will be the predicted representation of the attitude and gyro
bias. It is from this state that we extract the results shown in the plots in Section 4.
The representation is:

x =
[
q 81

]) (2.17)

The true state is completely unknown, given that this is a real experiment. If all
of the data was generated through simulations, we could have used the true state
of compassion when evaluating the performance of the implemented ESKF. This
is not done in this thesis, but the true state is mentioned for possible later usage in
further work. The representation is:

xC =
[
qC 81C

]) (2.18)

So when trying to estimate the error state, we use the measurements from the ac-
celerometer and magnetometer to assist. Extracting the quaternion from the nom-
inal state, converting it to a rotationmatrix, andmultiply it with the earth’s gravity
vector yields an acceleration vector close to what the accelerometer measurement
from the IMU should be. Looking at the difference here gives us information on
possible errors in the attitude and gyro bias. This is explained inmore detail when
updating the Kalman filter. The same principle is used for the magnetometer
measurements and the magnetic field around the circuit board. Combining these
measurements, we can validate the roll and pitch with an accelerometer and yaw
with a magnetometer.

Further, we have the error state covariance matrix P. When estimating the
attitude and gyroscope bias for the circuit board, we follow these steps:

1. Set x−0 , P
−
0 and : = 0
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2. With new specific force and magnetometer measurements we calculate the
error state �x: , correct the nominal state x+

:
and update the error state matrix

P+
:
. Otherwise we set x+

:
= x−

:
and P+

:
= P−

:
.

3. Predict x−
:+1 and P−

:+1 with gyroscope measurement.

4. Set : = : + 1 and repeat from 2.

2.4.2 Update Kalman filter

All of the measurements received from the IMU have the true magnitude of the
measured values. In the case of the acceleration and magnetometer, only the
direction of the measurements is of interest. With this in mind, we can scale the
measurement vectors and the corresponding reference vectors with normalizing
(2.2):

g =
g
| |g| |2

(2.19)

z022 =
z022
| |z022 | |2

(2.20)

mA4 5 =
mA4 5

| |mA4 5 | |2
(2.21)

z<06 =
z<06

| |z<06 | |2
(2.22)

As mentioned in Section 2.4.1 we further extract q=
1
from the nominal state and

convert this to the rotationmatrixR=
1
. Than estimate the accelerationmeasurement

in this orientation given Earth’s gravity as the only force (Farrell, 2008, eq. 11.143):

ŷ022 = (R=
1
)) · −g (2.23)

Thiswill be used for correction in roll and pitch. For correction in yaw,we calculate
the cross-product between the accelerometer and magnetic field measurement for
better stability. We do the same for Earth’s gravity and magnetic reference.

z<06 = z022 × z<06 (2.24)
ŷ<06 = (R=

1
)) · (−g ×mA4 5 ) (2.25)

Here g = [0, 0, 9.81]) and mA4 5 is set equal to the magnetometer measurement
when the sensor is in an idle position. In this position, the headings direction is
straight to synthetic north as described in Section 3.5.

For correction of the nominal state, we need to calculate the measurement
matrix:
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H6G6 =

[
Y(ŷ022) 0
Y(ŷ<06) 0

]
(2.26)

The basis for the measurement matrix comes from:

ŷ = −R̂)
g (2.27)

y = −R)g (2.28)

= (I + Y(�)))R̂)
g (2.29)

= −R̂)
g − Y(�)))R̂)

g (2.30)

= −R̂)
g + Y(�))R̂)

g (2.31)

= −R̂)
g − Y(R̂)

g)�) (2.32)
= ŷ + Y(ŷ)�) (2.33)

where we extract Y(ŷ) and use inH. Further, we calculate the Kalman gain matrix
from (Solà, 2017, eq. 274) and (Brekke, 2020, eq. 10.75):

K = P−:H
)
(
HP−:H

) + R022

)−1 (2.34)

The Kalman gainmatrix is then used to calculate the estimated error state (Solà,
2017, eq. 275):

�x: = K
[
z022 − ŷ022

z<06 − ŷ<06

]
(2.35)

Now we have to update the error state covariance matrix P+
:
(Solà, 2017, eq.

276) and is done with the symmetric and positive Joseph form:

P+
:
= (I −KH)P−: (I −KH)) +KR022K) (2.36)

P+
:
=

P+
:
+ (P+

:
))

2 (2.37)

After estimating the error state, it is time to update the nominal state x+
:
=

x−
:
⊗ �x: with corrections from the error state (Brekke, 2020, eq. 10.72) and (Solà,

2017, eq. 283c, 283e):

�q =
[

1
�)/2

]
(2.38)

q = q=
1
⊗ �q (2.39)
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81 = 81 + �81 (2.40)

We want to keep the quaternion as a unit quaternion. This means that the length
of the quaternion is equal to 1 and will be achieved by normalizing it, as done in
(2.8).

Finally, we also correct the error states covariance matrix P+
:
after correction of

the nominal states (Brekke, 2020, eq. 10.86):

P+
:
= GP+

:
G) G6G6 =

[
I − ((�)/2) 0

0 I

]
(2.41)

2.4.3 Predict the next nominal state

Now the next nominal state has to be predicted. Starting with obtaining the IMU
measurements assuming $ is constant over the sampling time period:

8 ≈ z6HA> − 81 (2.42)

Further extracting q from the nominal states and predict the next q with respect
to 8 (Solà, 2017, eq. 214):

+ = )B · 8 (2.43)

Δq = 4
+
2 =

[
cos( | |+ | |22 )

sin( | |+ | |22 ) +)

| |+ | |2

]
(2.44)

q = q ⊗ Δq (2.45)

Same as for after updating the nominal state, the quaternion also has to be nor-
malized in this case.

To predict the complete nominal state, also the gyroscope bias is predictedwith
(Brekke, 2020, eq. 10.58):

81 ≈ 81 + )B ∗ ¤81 (2.46)
81 = 81 − ?$1 · I3 · 81 (2.47)

were the bias is modeled as a Gauss-Markov process (Brekke, 2020, eq. 10.50).
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2.4.4 Predict the error state covariance matrix

After predicting the next nominal state, our last error state covariance matrix is
no longer up to date. To overcome this, a new error state covariance matrix is
predicted. Starting with extracting the q=

1
from the nominal state and convert this

to the rotation matrix R=
1
. Further, it will be shown a way to calculate the needed

F andGmatrices. In this project, the given method is used because the correction
of the quaternion is done with the local angular error (Solà, 2017, table 4). This
decision is seen in (2.39) when updating the nominal states with the corrections
from the error states and is repeated here:

q = q ⊗ �q (2.48)

and yields (Brekke, 2020, eq. 10.68):

F6G6 =

[
−Y(8) −I

0 −?$1I

]
G6G6 =

[
−I 0
0 I

]
(2.49)

Now, the next error state covariance prediction can be obtainedwithVan Loan’s
formula (Brekke, 2020, eq. 4.63). First, construct the Van Loan matrix:x:

Q6G6 =

[
�2
$I 0
0 �2

$1I

]
(2.50)

\12G12 =

[
−L MWM)

0 L)

]
(2.51)

With this, we use Van Loan’s formula:

exp (\)B) = exp
( [
−L MWM)

0 L)

]
)B

)
=

[
× \2
0 \1

]
(2.52)

and further calculate:

L3 = \)
1 (2.53)

W3 = \)
1 \2 (2.54)

Taking exp of the Van Loan matrix can be time-consuming. A faster approach for
this is to use a 2. order Taylor approximation:

exp (\)B) = O + \)B +
(\)B)2

2 (2.55)
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Finally, the prediction of the next error states covariance matrix can be done
with:

P−: = L3P+:−1L
)
3
+Q3 (2.56)





3Implementation
3.1 Setup in Python

All of the sensor data extracted from the IMU in Figure 1.1 is stored in a CSV file.
This file is generated when running the sensor with a Python program inside a
Docker container. Different data set is labeled based on the given test case (type
of movement in pitch, roll and yaw direction for a set time duration). The central
part of the program works in the numbered stages:

1. Load sensor data from labeled data set.

2. Allocate memory for all the results.

3. Set parameters values as shown in Table 3.1.

4. Set initialization values for the nominal state and the error state covariance
matrix as shown in (3.3).

5. Run a loop for all the iterations:

a) Update the Kalman filter as shown in Section 2.4.2.
b) Predict the next nominal state and error state covariance matrix as

shown in Sections 2.4.3 – 2.4.4.

6. Plot the estimated nominal state for each iteration. The quaternion is con-
verted to Euler angles with (2.12 – 2.14), and the gyro bias is taken directly
from the state.

3.2 Rotation of sensors axes

From Figure 3.1 we see the original rotation for the IMU in Figure 1.1. The white
dot shown on the IMU in Figure 3.1 corresponds to the dots on the mounted IMUs
shown on the circuit board in Figure 1.2. For the axes displayed in Figure 1.3 to
be correct, all of the measurements received were rotated before further use in the
implemented system. The accelerometer and the gyroscope were rotated with the
rotation matrix:

' =


1 0 0
0 1 0
0 0 −1

 (3.1)

The magnetometer was rotated with the rotation matrix:

15
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Figure 3.1: Sensor axes from the datasheet STMicroelectronics (2015, Figure 1.)

' =


−1 0 0
0 1 0
0 0 −1

 (3.2)

Multiplying all of the measurements with its corresponding rotation matrix
yields new orientations set in the same frame. With this, we get the wanted x-,
y-, and z-direction for accelerometer, gyroscope, and magnetometer as shown in
Figure 1.3. Now roll, pitch, and yaw are zero when the circuit board is in idle
position. The new IMU rotation is used for all the measurement data that is
gathered to estimate the attitude for the circuit board.

3.3 Tuning

The parameters were set by testing the system and adjusting for a better result.
From the last table shown in Zinn (2018), focusing on the values for the LSM9DS1
model. This model is the same IMU that is mounted on the circuit board used in
this project. Herewegather the standarddeviation for the gyroscopemeasurement
as 1.38 deg/

√
h and the gyro bias stability as 61.2 deg/h. For usage in the model

implemented in python, these values are converted to rad/s as shown in Table 3.1.
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3.4 Parameters and initial states

Accelerator andmagnetometer measurements are used in the Kalman filter to cor-
rect the estimated attitude based on gyroscope measurements. The constant noise
variance matrix values for acceleration and magnetometer used in the Kalman
filter are shown in Table 3.1 as R022 and R<06 .

Parameter Value Unit
R022 0.52 · I3
R<06 0.052 · I3

�$ 61.2
3600 · �

180 rad/s
�$1

1.38
60 · �

180 rad/s
?$1

1
3600

5 B 100 1/s

6 9.81 m/s2

Table 3.1: Parameters used for IMU data set.

x0 is the initial nominal state usedwhen the sensor is in an assumed idle starting
position. Here the identity quaternion is used and corresponds to roll, pitch, and
yaw equal to zero. The gyro bias is also set to zero. This is fitting to the initial idle
state that is wanted. P0 is used for the initial error state covariance matrix. These
initial states are shown in (3.3).

x0 =



1
0
0
0
0
0


P0 =

[
I3(6 · �

180 )2 03
03 I3(1 · �

180 )2
]

(3.3)

3.5 Synthetic north for magnetic reference

For simplifying this thesis, the natural magnetic field in the office where all the
testing was conducted was not calculated. Instead, a more extended test with
the circuit board in an idle position was completed. For 1000 seconds with no
interference, the IMU gathered measurement data. For this period, the mean of
the magnetometer measurement was calculated and used asmA4 5 . This represents
magnetometermeasurementswhenyawequals zero, and the circuit board is facing
straight synthetic north. This is our local north and the base for the idle position.
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Figure 3.2: Timeline for actions done when the measurement data was gathered
from the IMU.

3.6 Conducting testing

This circuit board shown in Figure 1.2 with the mounted IMU shown in Figure
1.1 was used in every test for this thesis. The sensor data is extracted with a
program written in Python using a library supported by Squarehead Technology.
The circuit board is lying leveled on a table and shows the base for the idle and
starting position. For testing, only data from the middle IMU is used. It is not
important that the attitude is accurately estimated when the circuit board is in
large motion, but when it is set in a fixed orientation, the estimate of roll, pitch,
and yaw needs to be as correct as possible.

The idle testwas done by letting the sensor stay in an idle position for 5minutes.
For testingwithmovement, Figure 3.2 shows a timeline for howmost of the testing
was done. All of the movement was done by hand and contained errors like
not moving correctly to wanted attitude, small changes in the wrong directions,
movement away from the original location, and non-modeled linear acceleration.
From (2.23), it is clear that only acceleration from Earth’s gravity is modeled for
the estimated acceleration measurement vector. So acceleration coming from the
movements itself will be a source of error. Hopefully, slow movements will make
the possible self-inflicted acceleration negligible. The sum of all these possible
errors will impact the result and are some of the reasons behind minor spikes in
gyro bias and attitude.



4Results
4.1 Idle

The first result is based on the whole system in an idle position. For this test, no
movement was carried out for the entire sampling period. The initial values for
roll, pitch, and yaw were set to zero, and the test duration was 300 seconds. The
blue line represents roll ()), the red line pitch (�), and the green line yaw (#).

As seen in Figure 4.1 the gyro bias converts toward the correct values. Based
on the observation that the Euler angles stay around zero with no movement, we
should expect an idle system. We notice that attitude is a bit off from idle, and
this comes the acceleration measurement used in the measurement matrix does
not account for accelerometer bias. Further, we observe that yaw is not as accurate
as roll and pitch. This is clearly demonstrated with much higher variance in yaw
and gyro bias around the z-axis than the other states shown in Figure 4.1.

The system is also tested for initial values not equal to zero. In Figure 4.2 initial
roll is set to -30 degrees, pitch to 20 degrees and yaw to -40 degrees. As shown
in the figure, the system is still able to convert to the correct values. This yields
a larger transient bias estimate but progresses towards the same bias values as in
Figure 4.1.
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Time [s]

Figure 4.1: State estimates showcasing attitude and gyro bias in idle position for
300 seconds
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Figure 4.2: State estimates showcasing attitude and gyro bias in idle position for
300 seconds. The initial roll was set to -30 degrees, pitch to 20 degrees, and yaw to
-40 degrees.
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4.2 45, 90 and 180 degree roll

The systemalsoneeds towork fordifferent angularmovements. Testingofdifferent
magnitude of movement in only roll direction is shown in Figures 4.3 – 4.5. Here
we see the estimated angularmovement in roll following themovement conducted
in the test. When larger movement in roll is done, the error in yaw increases. This
comes from the not optimal correction of attitude with the help of magnetometer
measurement that is a repeating problem for many testing cases in this project.
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Figure 4.3: State estimates showcasing attitude and gyro bias for 45 degrees move-
ment in positive and negative roll direction and back to idle.
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Figure 4.4: State estimates showcasing attitude and gyro bias for 90 degrees move-
ment in positive roll direction and back to idle.
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Figure 4.5: State estimates showcasing attitude and gyro bias for 180 degrees
movement in positive roll direction and back to idle.
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4.3 45, 90 and 180 degree pitch

The same procedure as for roll is done to demonstrate pitch. Herewewould expect
no movement in roll and yaw for Figure 4.6 and 4.7. This is not the case, and we
get the same problem as for roll movement that the yaw angle yields the incorrect
estimate. This error is larger for the pitch than for the roll. In Figure 4.8 we see
that roll and yaw flip 180 degrees as expected when pitch move further than 90
degrees. The range for pitch is [-90, 90] and the range for roll and yaw is [-180,
180]. We still see an error in the yaw estimate, and this is correlated to the same
problems as before.
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Figure 4.6: State estimates showcasing attitude and gyro bias for 45 degrees move-
ment in positive and negative pitch direction and back to idle.
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Figure 4.7: State estimates showcasing attitude and gyro bias for 90 degrees move-
ment in positive pitch direction and back to idle.
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Figure 4.8: State estimates showcasing attitude and gyro bias for 180 degrees
movement in positive pitch direction and back to idle.
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4.4 45, 90, 180 degree yaw

When only conduction movement in yaw direction, the system struggles to follow
the test movement. The yaw movement stops at 15 degrees or drops to negative
value as shown in Figures 4.9 – 4.11. This is incorrect and is based on the same
problem as described for idle, roll, and pitch.

When simulating the test shown in Figure 4.9, butwith correction of yaw turned
off after 10 seconds, we can observe a more accurate estimate of the movement.
The result of this can be observed in Figure 4.12. Removing the error that the
magnetometermeasurement introduceswhenmoving away from the idle position.
On the bad side, it also introduces a new bias error in yaw that grows through the
testing case.
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Figure 4.9: State estimates showcasing attitude and gyro bias for 45 degrees move-
ment in positive and negative yaw direction and back to idle.
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Figure 4.10: State estimates showcasing attitude and gyro bias for 90 degrees
movement in positive yaw direction and back to idle.
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Figure 4.11: State estimates showcasing attitude and gyro bias for 180 degrees
movement in positive yaw direction and back to idle.
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Figure 4.12: State estimates showcasing attitude and gyro bias for 45 degrees
movement in the positive and negative yaw direction and back to idle. For this
test, the magnetometer measurements were only used for correction in the first 10
seconds.
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4.5 Mixing roll and pitch in same test

In this result, we combine multiple movements in the roll and yaw direction. In
Figure 4.13 we first orientate 45 degrees in positive roll direction and then 45
degrees in positive pitch direction. This is illustrated with changes in the in roll
and pitch for the estimated attitude. The same movement is also done in reverse
back to idle. The result for pitch and yaw is correct, but we still get the same
problem with changes in yaw. This is a repeating problem for all the results.
In Figure 4.14 we have a negative orientation in the roll direction and a positive
orientation in the pitch direction. For this scenario, the unwanted orientation in
yaw is smaller than in Figure 4.13, but still not zero as wanted.
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Figure 4.13: State estimates showcasing attitude and gyro bias for 45 degrees
movement in positive roll and pitch direction and back to idle.
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Figure 4.14: State estimates showcasing attitude and gyro bias for 45 degrees
movement in negative roll and positive pitch direction and back to idle.





5Discussion and conclusion
5.1 Discussion

A clear observation from the results is the less accurate estimate of yaw than for
roll and pitch. Possible reasons behind this could be that the correction of yaw
is based on the difference between the measured magnetic field vector and the
estimated magnetic field vector (2.25). This method is not as accurate as for roll
and pitch, where the Earth’s gravity is used as a reference when estimating the
error states. Another reason and most likely more influential are noise and bias in
the magnetometer measurements that are not considered.

The errors in the yaw are clearly shown when we move away from the initial
zero yaw value. If we turn off the correction based on the magnetometer, as done
in Figure 4.12, we see that the estimate of yaw is closer to correct, but we also
get a constant deviation in yaw. This indicates that the implementation struggles
to stabilize the correct gyroscope bias about the z-axis when in an idle position.
This conclusion is reinforced when looking at the variance for gyroscope about
the z-axis when in idle position as shown in Figure 4.1. This variance bias is much
larger than the variance of the gyroscope bias about the x- and y-axis. The estimate
of yaw is, as mentioned before, a repeating problem for almost all of the results.

5.2 Conclusion

Based on the results, the estimation of roll and pitch is close to the actualmovement
conducted in the test, and yaw hasmuch instability. This shows that the correction
based on the accelerometer is far better than the correction based on the magnetic
field as currently implemented. A lot of this comes from weaknesses in simple
tuning and a possibility of not choosing the best initial values and parameters.
My implementation of the error state Kalman filter also has room for improve-
ments and optimization. Different sources of possible errors that primarily impact
heading are discussed in Section 5.1.

The estimate for roll and pitch is close to the actualmovements for almost all the
results. Using the Earth’s gravity as a reference yields a good comparison for the
correct orientation for roll and pitch. We have the measured acceleration from the
IMU’s accelerometer and the expected acceleration based on vector g rotated with
the given attitude of the system. This attitude is extracted from the quaternion in
the nominal state as a rotationmatrix. This works nicely because the magnitude of
the Earth’s gravity is dominant and makes minor deviations and errors negligible.
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5.3 Further work

Further work for master thesis that will improve the estimate of the correct orien-
tation. Many improvements can increase the accuracy of the estimated orientation
for the circuit board. Some of these improvements will briefly be explained.

5.3.1 Allan variance based tuning

The datasheet for the LSM9DS1 IMU provided by STMicroelectronics (2015) sup-
ports only fundamental specifications. Information about bias stability, random
walk, and noise are limited. This information can be estimated by collecting sam-
ple data in an idle position over a time period of about 12-24 hours. Then calculate
the Allan variance (Farrell, 2008, ch. 4.9.2) based on the sampled data.

5.3.2 Estimate magnetometer bias

The IMU used in this thesis consist of an accelerometer, gyroscope, and magne-
tometer. For the states in the ESKF described in Section 2.4.1, only the gyroscope
biases are estimated as states. By adding magnetometer bias in the x-, y-, and
z-direction, we do not need to set a fixed synthetic north as a reference. This is
important if we want to estimate the orientation based on real north. Adding this
will also increase the states of the ESKF by three.

5.3.3 Estimate accelerometer bias

As seen in the result for an idle position in Figure 4.1, the estimated roll and pitch
is not equal to zero. This could be improved by adding accelerometer bias in x-,
y-, and z-directions as states in the ESKF. It should be said that a possible scenario
for errors is that the table the circuit board was laying on when conducting the
idle test was not completely leveled.

5.3.4 Calibration of magnetometer

The magnetic field is not equal for every position around the globe. The mea-
surements from the magnetometer are also affected by the environment close to
the IMU. Considering this, we need a procedure to calibrate the magnetometer
on-site, where it will be used for a more accurate estimate of orientation in yaw.
This should be a simple method that can be done in the initial phase every time
the product will be used in a new location. Without this, it will not be possible to
find the true north without providing a fixed reference.



5.3. FURTHER WORK 41

5.3.5 Detailed calculation of every tuning parameter

To better adjust the parameters used in the error state Kalman filter, there should
be more depth behind the choice of the current values. Trial and error can give
good results, but complete calculation behind every value yields a better starting
point for possible improvements and more correct attitude estimates.

5.3.6 Use multiple IMUs

As shown in Figure 1.2 we have five IMUs at our disposal. Accuracy for estimating
correct orientation can be improved by collecting data from every sensor and
compere this before final calculations. Gathering the sensor data from every IMU
is already implemented in Python, but only data from the middle sensor is used
in this thesis. This gives opportunities for further improvements.

5.3.7 Use GNSS with two antennas to correct heading

The magnetic field for an area is vulnerable to disturbances and will change based
on location. These factors make the magnetometer in a cheap IMU potentially not
the most reliable source for correction of heading in ESKF. Another solution for
this could be to use a GNSS module with heading capability. An example for this
is the mosaic-H from Septentrio (2021). With a dual-antenna input, this module
can provide an estimated heading that can be used for correction in the ESKF.
Optimal these two antennas should be mounted with 1-meter separation, but it
is not enough space on the intended product from Squarehead Technology for
that. Here it is only room for 30 cm of separation between the antennas. Further
work could investigate how precise and reliable this approach is, given the short
separation between the antennas.
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