Tony Paulsen
Petter Henriksen

Development of ROV for aquaculture
inspection platform

Bachelor’s thesis in Automation
May 2022

2
4
=
P

k<)
o
C
e
]
'_
gel
C
(8]
[0}
9]
C
o
(&)
(V2]
Y
o
2
(%]
—
[}
2
C
o)
C
ke
Bo
:
o
zZ

n
]
= 0
=
v .
c O
[
UJE
= 2=
o ©
£z
O T
v C
o ©
l_
2y
T
@O
-
g5
o
£E
_
o ©
-
c g
o
=
©
IS
_
£
£
[
o
=]
o
[+
e

@ NTNU

Kunnskap for en bedre verden

Tony Paulsen
Petter Henriksen

Development of ROV for aquaculture
inspection platform

Bachelor's thesis in Automation
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

@ NTNU

Norwegian University of
Science and Technology

ONTNU

Kunnskap for en bedre verden

Development of ROV for aquaculture

inspection platform

Tony Paulsen

Petter Henriksen
May 2022
IELEA2920 / BACHELOR THESIS

Department of ICT and Natural Sciences

Norwegian University of Science and Technology

Supervisor 1: Ottar Laurits Osen

Supervisor 2: Lars Christian Gansel

Preface

This bachelor thesis is written by two students from automation engineering at NTNU Alesund.
The students in the group have similar backgrounds within technology, however some variation

in subjects studied during the degree.

For this thesis, we wanted to create a new Remotely Operated Underwater Vehicle, ROV, for the
Aquaculture Inspection Platform, AIP. We wanted to expand upon previous groups projects, by
continuing solutions that worked well, such as the thrust-vector configuration and the general
architecture of electronics. We rewrote the entire software, by doing this we had better control

of all the subsystems of the ROV.

The main functionality that we added for our ROV was the higher depth rating, the ROV can dive
and work as intended at 60 meters+ below surface. The ROV is much lighter and mobile than
previous iterations. The ROV also has more measurement capabilities, that are highly relevant
for aquaculture inspection. A maneuvering assisting system was implemented, which prevents
the ROV from colliding with underwater structures, that in turn supports the operator of the

ROV in challenging underwater areas.

We recommend that the reader of this report has a basic understanding of mechanical, electrical

and software engineering to be able to fully understand the content of this bachelor thesis.

ii

Acknowledgement
We would like to thank everyone who helped us during the project and especially:
e Our mentors Ottar L. Osen and Lars Gansel for guidance throughout the project.

e Family and friends for supporting us throughout the project.

* Laboratory engineers Anders Seetermoen and @yvind Andre Hanken for helping with or-

dering parts and supplying tools.

iii

Summary and Conclusions

This projects aims to create a new and improved prototype for a ROV that should later be inte-
grated into the aquaculture inspection platform. Our development used experiences and good
solutions from previous ROV projects, this included the general physical structure and electri-
cal architecture. The goals of the project was to create a brand new software system, that among
other things performs communication between the sub-systems in an efficient way. Addition-
ally, functionality as collision avoidance systems was integrated. For physical improvements,

the system should be lighter, more modular and able to dive to at least 60 meters depths.

The results suggests that the software was stable during operation of the ROV. By completing
gradually more demanding tests, first from under controlled environments and later with sea
trials, we adjusted the systems to work under variable conditions. Most of the implemented
functionalities worked as intended, however the video-streaming implementation did not de-
liver as originally hoped, however potential solutions to these problems were suggested. In sum-
mary, the developed ROV has good solutions for most of the new functionality. But still, there is

some key features that are not working as optimally as originally intended.

Contents

Acknowledgement e e e
Summary and Conclusions e

ACTONYINIS . . v v e

1 Introductions
1.1 Background e e
1.2 Problem formulation e
1.3 ODbjectives o it e e e e e e e e

1.4 StructureoftheReport L

2 Theoretical basis
2.1 PhySICS . . . v i e e e e e e
2.1.1 BUOyancCy. e e e e e e e e e e
2.2 Communicationprotocols. L e
2.2.1 OSImodel e
222 TCP . . o e e
223 UDP. . . e
224 Serial
225 I2C . e

2.3 CaAIEIA . . . o e e e e e e e e e e e e e e e

iv

ii

ii

CONTENTS

2.5

2.6

3.1
3.2

4.1
4.2

4.3
4.4

241 Conductivity o i e e e e e
242 Salinity e e e e e e e e

252 ACHVESONAT v ittt i e e e e e
Electrical
2.6.1 EMI e
2.6.2 EMC e

2.6.3 Power tranSmisSSion it e e e e e e e e e e e e e e

Material

COMPONENTS . . . v v o e

Software e e e e e e e e

3.2.2 CLION . . . oo e e e e e e e e e e e e
323 ArduinoIDE
324 Fusion360 e
3.25 PCSchematic e
3.2.6 GaNtt e e e e e e e e e e e e e e
3.2.7 RaspberryPIOS e
328 CUra. e

Method

ProjectOrganisation e
Function testingequipment
421 SONAT ot e e e e e
422 CaAMETA v v v e e e e e e e e e e e e e e e e e e
4.2.3 Combination sensor
4.2.4 Thrusters, [2C sensors and safetysensors
Collision avoidance system ittt

Graphical userinterface e

14
14
14
16
16
17
17
17
17

19
19
23
23
23
23
24
24
24
24
24

CONTENTS

4.5 Communication ot it e e e
4.5.1 Temperature & pressure sensors - RaspberryPi
4.5.2 ArduinoUno-RaspberryPi
4.5.3 Scanningimagingsonar - RaspberryPi
4.5.4 Conductivity sensor - RaspberryPi
4.5.5 Raspberry Pi - Personal Computer (GUI)

4.6 Designandmodelling
4.6.1 Concept e e e e e e e e e e e e e
4.6.2 Design and Manufacturingof ROVbody
4.6.3 MakingofInternal Mounts
4.6.4 Externalbox
4.6.5 Waterproofing e e

4.7 Electrical
4.7.1 Externalbox

472 WIIING o e e e e e e e e e e

5 Result

5.1 Softwaresolutions

5.1.1 GraphicalUserInterface

5.1.2 Software performance

5.1.3 Communicationresults
5.2 Electrical e e e e
53 Physical
5.4 Testl . .. e e
5.5 Test2 . .
5.6 Test3 e e e e e e e e e

6 Discussion
6.1 Technicalresults @ i i e e
6.1.1 Design e e

6.1.2 ElectroniCs o e e e e e e e

CONTENTS

6.1.3

Software

6.2 Project accomplishments

6.2.1 Distribution of work

6.2.2 Unforeseen consequences. v v it

7 Conclusions

Appendices
A

Iz 0 " m g 0O @

p—t

Bibliography

Preproject report .
Progress reports . .
Gantt diagram . . .
Electrical drawings
User Manual
Arduino code . . .
Raspberry Pi code .
GUIcode
Meeting invitations

Minutes of meeting

72
75
75
76

77

79
79
79
79
79
79
79
79
79
79
79

80

CONTENTS 2

Terminology

PID Proportional integral derivative controller
GUI Graphical User Interface, makes it possible to interact with a computer
API Application Programming Interface, activates functions from a remote software

TCP Transmission Control Protocol, connection oriented transmission protocol of informa-

tion.
UDP User Datagram Protocol, non connection based transmission protocol of information.

IP Internet Protocol is a "best effort" delivery protocol

Notation

C Degrees Celsius

M Meters

V Volt

DC Direct current

AC Alternating current

A Ampere

F Farad

Kg Kilogram

ACK Acknowledgement message

GND Ground in electronic circuits

CONTENTS

Abbreviations

IEEE Institute of Electrical and Electronic Engineers

I2C Inter-Integrated Circuit

Gnd Ground in electronic circuits

DOF Degrees of Freedom, number of unique directions an object can move
GPIO General purpose input/output

RPi Raspberry Pi

SONAR Sound Navigation and Ranging

JSON Sound Navigation and Ranging

ESC Electronic speed controller

List of Figures

2.1

2.2

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Angleoflist. e 11
Sonar paths illustrated when detecting an underwater object. 16
Initialization of serial communication with Aanderaa conductivity sensor

using HyperTerminal software. 28

Command line interface with Aanderaa conductivity sensor over serial using

HyperTerminal software. 29
Displaying communication between all devices for the ROV system. 32
Fusion 360 models of ROVbody 50
Fusion 360 Models of internalmounts 51
Photosofthe ROV 57
Photos of the internals of the ROV 58
Setupfortest1. e e e 60
Photos of the external box duringtest1 60
Photos of ROV beforetest2 61
External box filled withepoxy.. o L. 62
Checkingthe ROVforleaks. 63
BallastmountedtoROV 64
ROV submerged in water duringtesting 64

4

LIST OF FIGURES

List of Tables

4.1 RS232 serial connection settings for communication with conductivity sen-

sorfromAanderaa e e

Chapter 1

Introduction

1.1 Background

This project aims to create a brand new prototype for a remotely operated underwater vehicle,
ROV, for the Aquaculture Inspection Platform, AIP. The ROV is made to be used as a part of a
larger system consisting of an unmanned surface vehicle and winch. The AIP will be remotely
controlled by a operator, where it will be directed to the area that needs inspection. When it
reaches its destination the winch lowers the ROV into the water. The ROV will provide the oper-
ator with a visual feed from a camera and a selection of data from multiple sensors mounted on

it.

1.2 Problem formulation

This project aims to develop a brand new prototype ROV. The goal is to create aimproved version
of the existing prototype. The main focus will be on creating a ROV that is lighter, rated for
higher depths, easier to use, more modular and with more sensors than the previous design.

This prototype will also serve as a base for future development on AIP.

CHAPTER 1. INTRODUCTIONS 8

1.3 Objectives

The main requirement for this project was to make a functional prototype. The prototype needed
to carry a few different sensors, a camera and it needed to be able to dive 60 meters below sur-
face. Since the ROV needed to be built from the ground up a new software had to be created

from scratch,

1. Build new ROV body

2. Implement Aanderaa sensor and sonar

3. Create a brand new GUI with more functions

4. Implement new camera functions

5. Create and integrate a collision avoidance system

6. Test the ROV in the sea and try to dive to 60m

CHAPTER 1. INTRODUCTIONS 9

1.4 Structure of the Report

The rest of the report is structured as follows.

Chapter 2 - Theoretical basis: Chapter two gives an introduction to the theoretical background

for all aspects of the project.

Chapter 3 - Materials: Contains a description of the materials and software that were used in

the project.
Chapter 4 - Methodology: Goes over the methods and solutions used for the project.
Chapter 5 - Results: This chapter goes over the test results.

Chapter 6 - Discussion: Various discussions about the results and the groups thoughts on the

project.

Chapter 7 - Conclusions: This chapter present an overall conclusion for the project.

Chapter 2

Theoretical basis

This chapter goes over the theoretical background of the project.

2.1 Physics

2.1.1 Buoyancy

Buoyancy is a force that a liquid exerts on a object that it is immersed in. It is calculated with the
formula Fj, = —pgV where F}, is the force of the buoyancy, p is the fluid density, g is acceleration
due to gravity and V is fluid volume. For objects floating, sunken and in gases as well as liquids
Archimedes principle can be stated as such: "Any object, wholly and partially immersed in a
fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object". If the
force is positive the object floats because it is lighter than the fluid it is displacing and if it is

negative the the object sinks due to it being heavier than the liquid that’s being displaced [43].

2.2 Communication protocols

Communication protocols are descriptions for how digital information should be formatted and
transported between devices [41]. These protocols are required to efficiently and reliably send
information in computer systems [51]. There is a multitude of unique protocols, all with ad-

vantages and disadvantages when compared to one another. The majority of the sections un-

10

CHAPTER 2. THEORETICAL BASIS 11

der will briefly explain the working principle and key advantages for common communications
protocols often used in industrial automation. However, firstly, a conceptual model for better

understanding of how the protocols are implemented, known as the OSI-model, is explained.

2.2.1 OSImodel

The Open Systems Interconnection model is a conceptual and systematic way of structuring the
communication functions in computer systems [52]. Every layer in the model performs a func-

tion for the neighbouring layers. In total the model consists of 7 layers, as seen in Figure 2.2.

Application Allows access to network resour@
Software / /

Upper Layers Presentation Translates, encrypts and compresse@ Sender

\ N Establishes, manages and terminates
Seshcs session, API, Sockets, W|nSoD

HeartofOSl ——— . Transport Provides reliable processes for message ﬁ

and error delivery

Moves packests from source to
destination to provide internetworking. Receiver
Hardware / — >

Organizes bits into frames and provides

‘ ! hop-to-hop delivery
\ nsmits bits over a medium, provide:

and electrical like

Lower Layers

coax, wireless, hubs etc

Figure 2.1: Angle of list.

The OSI model is a helpful tool for recognising what function specific protocols perform.
That said, many of the protocols can be in multiple layers simultaneously, for example ethernet

which is in both the physical and data link layer [53].

2.2.2 TCP

The transmission control protocol operates in the transport layer of the OSI-model. TCP is widely
known as a reliable method of exchanging information, as it is reliant upon verifying packets
[22]. In simple terms this is performed by sending ACK acknowledgment packets in response
to received packets. If the sender of the original data packets did not receive ACK-packets, new

packets are resent. This ensures that lost packets will be replaced, and no data is lost [22].

This protocol is widely used in many applications, and most programming languages and de-

vices has an easy integration of TCP. Additionally the protocol is easily scalable and open-source

CHAPTER 2. THEORETICAL BASIS 12

[29]. However, TCP has some drawbacks that is important to be aware of. As it is dependent
upon constantly checking packets, and responding with ACK messages, a lot of bandwidth is

used. Typically in applications that use a lot of data, this can be a bottleneck.

2.2.3 UDP

The User Datagram Protocol operates in the transport layer of the OSI-model. UDP is often
considered an alternative to TCP, in certain applications [31]. In contrast to TCP, which sends
packets and listens for responses. UDP sends datagrams and does not listen for acknowledge-
ment messages that informs if the data has arrived correctly. UDP therefore does not have any
guarantee that data arrives at the destination, this method is considered as best-effort commu-

nications [31].

For applications that require low usage of bandwidth and quick processing time, UDP is often
superior to TCP. As the datagrams in UDP uses less bytes in overhead, in opposition to packets
in TCP. This means that there is less information to process in relationship to relevant data. This

can be very important in systems that are comprised of controllers and regulation logic.

2.2.4 Serial

Serial communication is a type of communication protocols that sends data one bit at a time, in-
stead of sending data over multiple wires at the same time ?2. Serial communication is a widely
used communication for small and simple components that do not require a lot of bandwidth.

Some of the common serial protocols are USB, 12C and two-wire ethernet connections ?2.

2.2.5 I2C

The Inter-Integrated Circuit protocol is a type of serial communication and is commonly used
for short-distance communication in simple circuits [23]. The protocol uses four wires, two of
the wires are used for power supply, and the remaining for transmitting and receiving data. The
communication wires are called Serial data (SDA) and Serial clock (SCL). The SCL signal trans-

mits a clock signal that is used to synchronize and confirm the data bits sent by the SDA line [23].

CHAPTER 2. THEORETICAL BASIS 13

Advantages of the I2C protocol is that it is relatively simple to program and set up, cost-efficiency
and good error handling capabilities. However, main disadvantages is that speed is limited, as it
is a half-duplex protocol. In addition, the protocol can not handle EMI when cable lengths are

long.

2.3 Camera

2.3.1 Machine vision

Machine Vision is a term for all technology and methods used to extract information from a
image. The task is automated and it can be used to get all sorts of data. Machine Vision can
be applied to a single image, a set of images and videos since each frame of a video is a single
image. There are many use cases for this technology like for example on assembly lines to filter
out products that are not up to a set standard, it can also be used to for guidance systems in

robots and it can also be used for monitoring people as a part of a security system [49].

2.3.2 Resolution and FPS

There are many things to take into consideration when working with cameras two of the most
important are FPS and Resolution. FPS stands for frames per second and as the name suggests
it tells how many images the camera captures in 1 second [47]. Resolution is a term that tells us
how many pixels a image consists of. It is usually expressed as "width x height" so for example
a 4K image has a resolution of 3840x2160 pixels. A image with a higher resolution will be able to

display more details but the file will be bigger and therefore take up more data storage [44].

CHAPTER 2. THEORETICAL BASIS 14

2.4 Aquaculture quality

2.4.1 Conductivity

Conductivity is a measure for how good a substance is able to conduct electricity. For liquids
and electrolyte solutions, the SI unit siemens per meter is used [56]. This characteristic is highly
relevant for aquaculture conditions, as it used to calculate values such as salinity. Additionally it

can also used to find how much, and which types of dissolved elements the water contains [56].

2.4.2 Salinity

The amount of dissolved salt in a body of water, is known as salinity [57]. Salinity is either mea-
sured in gram/litre or gram/kg. Salinity in aquaculture applications is highly relevant as it an
important factor in determining water quality and gives an estimation of different substances
in water [57][30]. Specifically salinity can affect density of water, therefore water with salt con-
centrations will sink, and obstruct water flow, which could result in poor circulation of water in

areas with high numbers of fish or other marine life [30].

Calculation

When calculating salinity, the term practical salinity is used, and it is measured in the dimen-
sionless quantity g/kg. Practical salinity is an approximation of salt dissolved in water, however
itis not interchangeable with absolute salinity, which is the true salinity level [57]. The equation

for practical solution is dependant on temperature, pressure and conductivity.

2.5 Sonar

Sonar, Sound navigation and ranging, is a technique that uses sound propagation to measure
distance, navigate and detect objects [55]. Sonar can be used both in air and in water, however
usage in air is very limited as speed of sound is slow and gives inaccurate results, and since the
development of superior technology such as radar gives better results [59] it is rarely used on

land.

CHAPTER 2. THEORETICAL BASIS 15

The working principle of sonar is based on that if speed of sound in water is known and time
between outgoing generated sound signals and incoming reflected sound signals is controlled.
The distance can be calculated with equation 2.1. Where d is the distance from measured ob-
ject, sigTimeRec and sigTimeSent is the time when the sound signal was received and sent,

respectively. Finally, speedSound is the speed of sound under water.

_ (sigTimeRec—sigTimeSent)-speedSound
- 2

d

2.1)

Another important parameter of sonar technology is the target-strength of objects. This
characteristic is used to determine the size, shape and type of objects [40][54]. The target strength
is evaluated with equation 2.2. TS is the value for how much signal is measured based on how
much signal was sent out, and is measured in decibels. §; is the back-scattering cross-section.
Where back-scattering is a measure of how much signal is reflected back from its origin [54].
Which helps determine the type of objects, as for example seabed reflects sound energy differ-

ently in comparison to fish.

0
TS=10-log(-2) 2.2)
4n

In addition to the applications mentioned above, back-scatter is also relevant when com-
pensating for false negatives and signal noise. Often sound signals will travel in many different
paths to- and from an object, as is illustrated in Figure 2.2. The figure shows three unique paths
for the signal to travel, although often there can be additional paths. One of these can arise if
there is a quick temperature change in seawater based on depth, the signal sound can bounce
off the warmer water level [55]. When signals take alternative paths, the time between sending
and receiving is artificially inflated, and will incorrectly indicate that measured objects are fur-
ther away than in reality. Back-scatter is used to combat this issue by comparing sound signals

strength and type, and determining which returns signal gives the most realistic value.

CHAPTER 2. THEORETICAL BASIS 16

Figure 2.2: Sonar paths illustrated when detecting an underwater object.

2.5.1 Passive sonar

Passive is one of two main categories of sonar types. This sonar type exclusively listens for am-
bient noise, and interprets the signals to find usable information. However passive sonars often
have clear limitations in term of performance. The sonar will often struggle with separating rel-
evant noise information, such as other ships, with its own vessel’s sound sources. This type of
sonar is often used when the vessel that is trying to locate objects, does not want to reveal its
own position, as in military applications. Or when the sonar signal can cause disturbances to

underwater life, as in aquaculture applications.

2.5.2 Active sonar

Active sonar has the added capability of transmitting sound pulses itself. This is the most typical
type of sonar, and is superior when locating objects quickly and often. This sonar often has a

rotational build, where it rotates around its z-axis and outputting and reading sound signals.

CHAPTER 2. THEORETICAL BASIS 17

2.6 Electrical

2.6.1 EMI

Electromagnetic interference is a disturbance on an electrical circuit by electromagnetic induc-
tion, electrostatic coupling or conduction [46]. Such disturbances can reduce the performance
of a circuit, or in worst case, completely shut down the functionality. Often communication
circuits are the most susceptible to such disturbances, as small changes in voltage levels can de-
cide the value of a signal. EMI can arise from natural sources, such as solar flares and lightning.
However, interference usually comes from other electrical components like frequency drives

and transformers [19].

2.6.2 EMC

Electromagnetic compatibility describes the ability of electrical equipment and systems to func-
tion in EMI environments [45]. EMC includes the generation, propagation and reception of elec-
tromagnetic interference. Most electrical systems utilise a combination of the before-mentioned
methods to function properly. A common technique to reduce generation and reception is to
use cables with shields that are grounded at one side [32]. The shield will work as a drain for

electric fields.

2.6.3 Power transmission

Transmission over long distances results in power loss. The main reason for this is that the
resistance in the cables increases the longer the cables are. If an application is using a constant
amount of current, but the length of cable is increased, the resistance will increase. And by

Ohm’s law, the voltage over the cable will increase, see equation 2.3.

Veavie = 1 Reaple (2.3)

As the voltage drop over the cable increases, the voltage over the application components

have to drop, as Kirchoff’s voltage law states, see equation 2.4.

CHAPTER 2. THEORETICAL BASIS

Vapplication = Vsource = Vcable

18

(2.4)

Chapter 3

Materials

In this chapter you will get a overview of all the components and software that were used for this

project.

3.1 Components

Raspberry Pi 4

The Raspberry Pi is a small computer made by the Raspberry Pi Foundation and is often used in
robotics. Its around the size of a credit card and can run a lot of different Linux based operating
systems. The model we are using for this project has 8GB of RAM and a 1.5 GHz Quad core
processor. The I/0 consists of 2 USB3 ports, 2 USB2 ports, 1 Gigabit ethernet port and 2 micro
HDMI ports. It also has 40 GPIO pins that can be used to control everything from motors to
LEDs [38].

Bar30 Depth/Pressure Sensor

The Bar30 is a waterproof pressure sensor made by BlueRobotics. The sensor itself is a Mea-
surement Specialities MS5837-30BA and it can measure up to 30 bar with 0.2 mbar resolution.
The sensor also measures temperature with a accuracy of +- 1 degree Celsius. It communicates

using [2C and the operating voltage ranges from 3,3V to 5,5V [7].

19

CHAPTER 3. MATERIAL 20

Celsius Fast-Response Temp Sensor

The Celsius Fast-Response is a waterproof temperature sensor made by BlueRobotics. The sen-
sor itself is a Measurement Specialities TSYSO1 and it can measure temperature with 0,1°C reso-
lution. The sensor communicates using I2C and the operating voltages ranges from 3,3V to 5,5V.

It also has a fast response time with 1 second with water flow and 2 seconds without [16].

SOS Leak Sensor

The SOS Leak Sensor is a sensor made by BlueRobotics which uses sponge tipped probes to

detect water leaks. The sensors operating voltage ranges from 3,3V to 5V [12].

T200 Thruster

The T200 is a underwater thruster made by BlueRobotics. It uses a brushless electric motor
housed in a body made of durable polycarbonate plastic. The motor is three phase and requires
a electronic speed controller to run it. The operating voltage ranges from 7 Volts to 20 Volts and
at full power it can produce 65.83 N of forward thrust and 49.37 N of reverse thrust. The thruster
is widely used in underwater robotics and can be run with a microcontroller like the Arudino

and the Raspberry Pi [15].

STC-MCA503USB

The STC-MCA503USB is a small USB 3.0 camera made by Omron Sentech. It has a 5 megapixel
sensor and a resolution of 2592 x 1944, it can record video at up to 14 fps. The camera uses
the C-mount standard for lenses, it gets its power from a USB 3.1 cable which it also uses for
communication. The camera has specific drivers made by Omron which are needed to make

the camera work [39].

CHAPTER 3. MATERIAL 21

Fathom-X Tether Board

The Fathom-X is a product made by BlueRobotics. It allows you to run a Ethernet connection on
only one pair in a standard CAT cable. It works by having one board on either end of the cable,
it can be powered by USB or a 7-28V input. It has a max practical bandwidth of 80Mbps and it
only consumes 5W of power. It is also fairly small which is advantageous when working in tight

spaces [10].

ICR18650 battery

The ICR18650 is a Lithium Ion battery sold by Biltema. The battery produces 3,7V and can out-
put up to 5,9A. It is rechargeable, and it has a max charging current of 4A and a max charging

voltage of 4,2V [6].

MEAN WELL RSDWG60F-15 DC/DC converter 60W 15V 5A

The RSDWG60F-15 is a small DC to DC converter made by MEAN WELL. It can output 15V and a
maximum of 4A. It can take a wide range of input voltages ranging from 9V to 36V. The output
voltage can also be adjusted up or down by 10 percent so it means the converter can output
voltages ranging from 13.5V to 16.5V. The converter has a max power output of 60W and can
operate in temperatures from -40 C to 85 C. It also has built in safety systems against short

circuits, overload, over voltage, over temperature and input under voltage lock out [21].

CHAPTER 3. MATERIAL 22

Murata UWE-12/6-Q48NB-C

The UWE-12/6-Q48NB-C is a a small isolated DC to DC converter made by Murata Power solu-
tions. It outputs 12V and up to 64, it can take inputs ranging from 18V to 75V. The converter can

operate in temperatures from -40 C to +85 C [34].

Arduino UNO

The Arduino UNO is a microcontroller made by Arduino. It has alot of different input and output
pins both analog and digital. Some of the digtial pins can also make a PMW signals. The Arduino
also has a power jack and a reset button. It has a recommended input voltage ranging from 7-

12V but it can run on 6-20V but this is not recommended [2].

Basic ESC

The Basic ESC(Electronic Speed Controller) is a motor controller made by BlueRobotics, it is
a improved version of a ESC made by BLHeli. The ESC allows you to control any three-phase

brushless motors. It runs on 7-26V and can consume up to 30A [9].

Ping 360 Sonar

The Ping 360 Sonar is a mechanical sonar made by BlueRobotics. It runs on 11-25V and con-
sumes at max 5W. The sonar is rated for depths of up to 300m and has a max range of 50m. It

communicates via USB, Ethernet or RS-485 [14].

Lumen Subsea Light

The Lumen Subsea Light is a LED light made by BlueRobotics. It has a waterproof housing which
is rated for depths of up to 500m. The LED has a peak brightness of 1500 lumen. It is dimmable
and can be controlled by using a micro controller by sending PWM signals. It runs on 7-48V and

has a peak current draw of Vin(Input Voltage)/15 [13].

CHAPTER 3. MATERIAL 23

Aanderaa Conductivity Sensor

The Aanderaa Conductivity Sensor 5819 is a small sensor made by Aanderaa. It measures tem-
perature, conductivity and depth to calculate a estimate of the salinity in water. The sensor
runs on 5-14V and consumes a maximum of 100mA. For communication it uses AiCaP, CANbus,
RS-232 and RS-422 [1].

BlueRobotics Watertight Enclosure

The enclosure is made by BlueRobotics and is rated for 100m depths. It consists of a acrylic tube
with two end caps that use double o-rings to ensure a water tight seal. For our configuration we

used one domed acrylic end and one aluminum end with 14 holes [11].

3.2 Software

3.2.1 Pycharm

PyCharm is a program made by JetBrains and it is used to write Python code. The program has

a lot of features which makes writing python code more intuitive [28].

3.2.2 CLion

CLion is a program made by JetBrains and it is used to write C and C++ code. The program has

a lot of features which makes writing C and C++ code more intuitive [27].

3.2.3 Arduino IDE

Arduino IDE is a software made for programming Arudino microcomputers. IDE uses C and C++
programming language with a few modifications, the software is available on Windows, macOS

and Linux [58].

CHAPTER 3. MATERIAL 24

3.2.4 Fusion 360

Fusion 360 is a 3D modeling CAD(Computer-aided design) software made by Autodesk, which

can be used for designing and engineering products. Fusion is a cloud based software [5].

3.2.5 PC Schematic

PC Schematic is a program made for drawing electrical schematic diagrams [37].

3.2.6 Gantt

A Gantt chart is a popular way of illustrating a project schedule, it makes it easier to get a

overview of what is actually being done in a project [48].

3.2.7 Raspberry PI OS

Raspberry PI OS is a GNU/Linux based operating system made by the Raspberry Pi Foundation.

It is specifically made for use on all Raspberry Pi computers [50].

3.2.8 Cura

Cura is a free software made by Ultimaker allowing you to 3D print your 3D models with a Ulti-

maker 3D printer [42].

Chapter 4

Methodology

4.1 Project Organisation

The group consists of two bachelor students with a similar background. Both students study
electrical engineering with a speciality of automation. However the students have taken some
different subjects leading up to the bachelor thesis, this gives a broader knowledge basis for the
project. Both members was assigned different positions within the group to ensure structure

and good cooperation. The positions were project leader and secretary.

The project leader’s responsibility was to ensure good time management and divide up the work
tasks in a reasonable way. To ensure this the project leader had to update the Gantt-diagram
regularly. In addition the project leader was tasked with organizing periodic meetings with the

control-group, producing progress-reports and meeting notices every two weeks.

The secretaries responsibility was to keep a structured overview of the general progress. Ad-
ditional tasks included reservation of eventual meeting location for the periodic meetings. And
writing and distributing minutes of meetings after meetings to ensure good documentation of

tasks and feedback.

25

CHAPTER 4. METHOD 26

4.2 Function testing equipment

To ensure that the components that were ordered were working properly and in a way that we
had planned, it was determined that we were going to prepare provisional connections and test-
ing scripts. These systems were simplified as much as possible, and further expanded with more
advanced functions that we needed for our purposes. The sub-chapters below describes in more

detail about how function testing for each respective components were performed.

4.2.1 Sonar

The initial test of the sonar was done by supplying the sonar with 12VDC externally, and con-
necting the USB-adapter into a computer. BlueRobotics the supplier of this sonar has created
a program, Ping-Viewer [18], to easily test parameters and sensor readings. This program was
downloaded and used. By watching the sonar circular and waterfall plots, we could see that the
sonar was apparently working as intended. We adjusted parameters as length and gradient step
length, to find first draft settings for the collision avoidance algorithm. Additionally the sonar
was lowered into a small tub of water to get more realistic sensor values, however even at the
shortest scan range, the sonar could not display any reasonable values. As the minimum scan

range is 0.75 [m], and the tub had dimensions of 0.5 x 0.4 [m].

After we had confirmation from previous tests that the sonar was functioning properly, imple-
mentation of the functionality in the RPi was the next step. The scanning imaging sonar has
open-source libraries that has the general functionality to operate the sonar and read raw data.
These libraries are available in multiple programming languages as Python, Arduino and C++.
For our purposes the functionality of the testing script will be implemented in a Python script,

as the finished main program will be run a Python system in our Raspberry Pi.

The before-mentioned libraries for Python was downloaded from the sonar suppliers official
GitHub page [35] to the Raspberry Pi from source using the built in Bash terminal in the RPi.
The commands were as follows:

$ git clone --single-branch --branch deployment

CHAPTER 4. METHOD 27

https://github.com/bluerobotics/ping-python.git
$ cd ping-python
$ python3 setup.py install --pi
The performed commands downloads the required libraries in a path that the assigned python
interpreter can access. Specifically this is done in the final command by using python3 in place
of python. This is important as the solution we want to implement is dependant on using python

version 3.7 or newer as the RPi has python 2.7 as the standard interpreter.

With these libraries it easy to communicate with the sonar from the python script. The sonar
is initialized as an object, and writing new commands and reading values are done with class
methods already implemented in the libraries. In conjunction with the libraries, the first logic
was heavily inspired by another example found on GitHub by CentraleNantesRobotics [33]. This
example sends new angles periodically, and reads the sonar reflections by using OpenCV plots
and displays the readings in a circular plot. With this implementation we had sufficient work-
ing code examples to expand into the algorithms needed for our desired functionality in later

implementations.

4.,2.2 Camera

The Omron Sentech camera was first tested with Omron specific software, StCamSWare. This
initial testing was simple, as it only required downloading of the camera driver, and the software

application. Using this software, parameters as light sensitivity could easily be adjusted.

After confirmation that the camera worked as specified, we began implementation of reading
the video feed in Python. Final system requirements requires us to open the camera in a Python
file running on our RPi. However, from downloading the camera drivers for the windows PC
previously, it was quicker to attempt using Python on the Windows computer. Launching the
camera and displaying images was done using the OpenCV Python library. In Python we exper-
imented with different compression techniques to reduce the image files from the camera, as
communication from the RPi to the surface computer running the GUI was limited to 80 MBps

(10].

CHAPTER 4. METHOD 28

4.2.3 Combination sensor

To get sufficient knowledge regarding interacting with the conductivity sensor, we used the start-
up guide provided in the sensors data-sheet. The guide instructed us to use a terminal-emulator
tool to be able to interact with the sensor over serial communication, we used a free tutorial

of Hyperlerminal [24]. Furthermore the communication parameters were specified as seen in

table 4.1.
Parameter Value
Bits per second | 9600
Data bits 8
Parity None
Stop bits 1
Flow control Xon/Xoff
ASCII sending | Active

Table 4.1: RS232 serial connection settings for communication with conductivity sensor from
Aanderaa

When launching HyperTerminal an initial prompt from the software is given as seen in Figure
4.1a, here we select an instance name that is used for saving the adjusted settings. Next the serial

settings are specified for the communication, see Figure 4.1b and Figure 4.1c, which is done

according to Table 4.1.

D cbmzpmpemés” - ? X |
I’ o i [Ascil setup ? %

- Pot Settings
1 ASCII Sending
J - | [V Send line ends with line feeds
Bispersecond: [3600 <] { | [T Echotyped characters locally
Daabis =] | Line delay: |0 miliseconds
i Character delay: |0 miliseconds.
{ Party: [None =
{
1 Stop bits: |1 - | ASCII Receiving
1 { | I Append line feeds to incoming line ends
Don /ot K4 -
Flow control |Gl [” Force incoming data to 7-bit ASCII
[V Wrap lines that exceed terminal width
Restore Defaults
[ok | cacd | oy || :()K Q&mcd
pisconnected [Auto detect__ Auto detect NuM §
(a) Configuration: sensor type and name (b) General serial settings (c) ASCII settings

Figure 4.1: Initialization of serial communication with Aanderaa conductivity sensor using Hy-
perTerminal software.

After the initial set-up is completed, the user interface menu is is displayed, as seen in Figure

4.2a. We can then send commands to the sensor by writing in ASCIIL. The possible commands

CHAPTER 4. METHOD 29

are listed in the data sheet []. From activating different modes and sensor data gathering, a good
understanding of how the conductivity sensor works was obtained. Figure 4.2b shows some
responses from the sensor resulting from commands sent. From experimenting with multiple
commands and reading resulting commands, we gained knowledge of how to structure the main

program in Python at a later point.

& Conductivity sensor - HyperTerminal . o X
File Edt View Call Tnsfer Help

R

1%
i |StartupInfo 4319 2247 Hode RiCaP CANID 0x18801E00 RiCaP Ve
rsion RS232 Protocol Version 3 Config Version 12

Trying to connect to CANbus network

S19 207 1491450603

Connected 0:06:01 Autodetect 9600 8-N-1 NUM ffomacnanors i i

(a) Initial serial communication interface (b) User interface showing inputs and outputs from user
and sensor, respectively

Figure 4.2: Command line interface with Aanderaa conductivity sensor over serial using Hyper-
Terminal software.

4.2.4 Thrusters, I12C sensors and safety sensors

The thrusters and ESCs were first tested one by one on land to ensure that all the components
were functioning as they should. After that the thrusters were tested in a water to measure and
confirm the current draw at different engine speeds. During this testing we also found the lim-
itations at which we could run them during the different stages of ROV operation. Furthermore
from this testing, we tuned how long the Arduino should attempt to initialize the ESC, before

running other functions like serial communications.

The sensors that communicate with 12C, the pressure sensor and the temperature sensor, were
tested in a separate C++ script with the Arduino extension. This script was found on the BlueR-
obotics Github page [26][25]. As both sensors measures different values, we did not have to
change the 12C address of either sensor. Finally the moisture detection sensor was simply tested

by connecting the input to a digital pin, initializing the pin as input, and checking if the sensor

CHAPTER 4. METHOD 30

gave the correct value when water was detected.

4.3 Collision avoidance system

An integral part of the maneuverability control of the ROV is the usage of sonar data to create a
system that actively prohibits the ROV to run into obstacles. As real life conditions can be un-
predictable, the system was designed with focus on simplifying operations for the user, but still

be easy to deactivate if not working as intended.

The collision avoidance system was coded as an object, initialized from class InterlockingSystem
which is located within python file Interlocking.py. In listing 4.1 it shown how the initialization
of the system is performed. For the explanation under the code within the class InterlockingSys-
tem will not be discussed as it is consisting of many code lines, but can be seen in detail within
Appendix G.

if __name__ == "__main__":

ils = InterlockingSystem()

Listing 4.1: Python Raspberry Pi: Initializing object for controlling collision avoidance system.

The main logic for using the interlocking system is referred to using the main.py script by
using object methods, this creates abstraction where the main logic is hidden away, making the
code easy to read and troubleshoot. In the continuously running while loop within main.py it is

first checked if operator is requesting reset of all interlocked zones, see listing 4.2.

while 1:
if config.forceReset:
print ("Operator is forcing reset of all interlocked zones")

ils.resetAllZones ()

Listing 4.2: Python Raspberry Pi: If user requests reset of interlocked zones

Next, within the while loop referred to in 4.2, a check is performed to see if any objects in
the scanned angle is located. If the object is detected, the currently scanned zone is interlocked
by calling a class method, this logic is shown within listing 4.3. Additionally this is shown in the

GUI by highlighting run zones as red.

CHAPTER 4. METHOD 31

if ils.findObject (config.data_lst):

ils.setInterlockZone (ils.findZone (config.angle), config.angle)

Listing 4.3: Python Raspberry Pi: Checking if object is detected an interlocks zones accordingly.

As the ROV will under normal operations be able to rotate freely even if there is interlock-
ing for linear movements, and objects could move away from ROV, logic to automatically reset
interlocked zones were implemented. The general logic for this is shown in listing 4.4. If the
sonar has rotated an entire and reads a previous interlocked value as no-object, this interlocking
is removed.

if ils.checkIfResetPermitted(config.angle):

ils.resetInterlockZone(ils.findZone (config.angle))

Listing 4.4: Python Raspberry Pi: Checking if a previously locked zones should be reset.

4.4 Graphical user interface

The user interface is the only way for the operator can interface with the ROV during normal
operation. The GUI was implemented with simplicity in mind, where a minimalist approach

was taken to ensure that little training was needed to operate the ROV safely.

To design the general layout of buttons, sensor values and other components Qt designer [20]
was used. This software enabled us to easily decide the position, size and types of objects for our
GUI. When all the objects are placed correctly, the software enables us to export the graphical
design file, into a Python file. This Python file contains a class which contains all the previously
designed objects. From the code within the class, graphical parameters can be adjusted, as for

example color and position if the initial design was not satisfactory.

However, for our purposes we mostly needed access to the class methods that changes if but-
tons the GUI are manipulated. In this way the logic needed for the system could be designed. To
create a tidy program for the surface PC, it was decided to split the GUI functionality into three
files. config.py contains the global variables, interfacing.py contains the generated class from

the designer software. Finally, main.py handles the logic between the communication and GUI.

CHAPTER 4. METHOD 32

4.5 Communication

For the system to work as intended, the components have to be able to share information as
sensor data and commands, efficiently. The total system consists of three main components
that handles computation and running algorithms. These components are the Raspberry Pi,
Arduino Uno and a personal computer running the graphical user interface at surface level. Ad-
ditionally, the more advanced sensors, like the sonar and conductance sensor also requires more
sophisticated communication, as opposed to more straightforward analog or discrete sensors.
In Figure 4.3 an overview of the total system communication is visualized. In the following sub-
chapters the methodology of implementing communication between the different devices are

explained.

Graphical User Interface
192.154.226.73

ROV for aqua-culture
inspection communication
overview

aaaaa
ssssss

Arduino Uno microcontroller

Safety/
alarms logic

TCP, UDP,
Serial

comm.
handlers

Figure 4.3: Displaying communication between all devices for the ROV system.

CHAPTER 4. METHOD 33

4.5.1 Temperature & pressure sensors - Raspberry Pi

Both the temperature and pressure sensors communicate over I2C protocol. 12C communica-
tion is implemented by supplying 3.3VDC to both sensors, and connecting two additional wires
in parallel that carry the data. The data wires consists of an SDA and SCL signal connected to pin
A4 and A5 on the Arduino Uno, respectively [3]. To use I12C communication on Arduino we need
to import functionality from the Wire library and specific libraries for each sensor, see listing
4.5.

#include <Wire.h>
#include "MS5837.h"

#include "TSYSO1.h"

Listing 4.5: C++ Arduino Uno: Importing I2C communiction functionality from Wire library.

In the Arduino setup function, the 12C bus is activated, and both I12C sensor objects are cre-
ated, see listing 4.6 for an excerpt of the Arduino code.

void setup() {

Wire.begin () ;

pressSensor.init () ;

tempSensor.init ();

Listing 4.6: C++ Arduino Uno: Setup phase of Arduino initializing I2C and sensor objects.

Finally to read the ambient pressure and temperature, built-in class methods are executed
on the objects. These values are saved to variables on the Arduino, that can later be communi-
cated or performed actions on, see listing 4.7.

void loop() {
tempSensor.read () ;

pressSensor.read () ;

temp = tempSensor.temperature () ;

depth = pressSensor.depth();

Listing 4.7: C++ Arduino Uno: Reading and storing data over I2C communication.

CHAPTER 4. METHOD 34

4.5.2 Arduino Uno - Raspberry Pi

The Arduino and RPi sends and receives data using serial communication. The communication
isimplemented in a way that data is only sent when necessary, which in turn reduces bandwidth
and computing power usage. The Arduino Uno sends data continuously with a set interval, as
new sensor values from temperature and pressure is needed in the GUI. But the RPi only sends

data to the Arduino when new commands or control parameters have been set.

On the Arduino side, the serial communication is initially started with defining one parameter,
baud-rate, see listing 4.8. The baud-rate has to correspond to settings in the RPi. No additional
configuration has to be done, as the default is eight data bits, no parity and one stop bit [4].
These settings are favorable for our transmission requirements, and are easily replicated on the

corresponding RPi end.

void setup() {
Serial.begin (9600) ;

Listing 4.8: C++ Arduino Uno: Initializing communication.

The Arduino software consists of multiple files to organize functionality. The serial com-
munication functions are located in the communications.cpp file, and has two functions, send-
ToRaspberry and receiveFromRaspberry, which is shown in listing 4.10 and 4.12, respectively.
Data sent from Arduino consists of sensor values temperature, depth and a boolean value of if
there is detected any leaks. These are sent every 30th iteration of the Arduino loop function, as
can be seen in listing 4.9. This was decided as the Arduino executes code quickly in relation to

the Python script in the RPi, and the measured values are slow processes.

void loop() {
// Every 30 program iteration the Arduino sends data to Raspberry
if (i > 30) {
sendToRaspberry (temp, depth, leakStatus);
i = 0;

CHAPTER 4. METHOD 35

i++;

Listing 4.9: C++ Arduino Uno: Logic in main.cpp that determines how often data is transmitted

to RPi.

The data is passed to a function that parses the data into a JSON object, which makes it easy
to access when received in the RPi. The JSON object is then serialized to a bytes object and sent
to the RPij, see listing 4.10.

void sendToRaspberry(float argl, float arg2, bool arg3) {
outDoc ["Temp"] = roundNum(argl, 1);
outDoc ["Depth"] = arg?2;
outDoc ["Leak"] = arg3;

// Format the data to serial

serializeJson (outDoc, Serial);

// Sending to Raspberry Pi
Serial.println();
}

Listing 4.10: C++ Arduino Uno: Function in communications.cpp that takes in arguments to be

sent over Serial to RPi.

For every loop in the main Arduino program, the program checks if there is data in the serial
input buffer. As the communication continuously sends data when the programs are active, a
loss of communication can be coded. If the loop is iterated four times and no data is found, all
motors are commanded to stop. This is to prevent the ROV from running if the communication
is broken, as new commands would not be detected, see listing 4.11 for an excerpt of the Arduino
main function. Otherwise if data is available, the data is unpacked in reveiveFromRaspberry
function shown in listing 4.12.

void loop () {
if (Serial.available()) {
receiveFromRaspberry () ;
missedPackets = 0;
} else {

missedPackets++;

CHAPTER 4. METHOD 36

if (missedPackets > 3) {

fullStop O);

Listing 4.11: C++ Arduino Uno: Initializing communication.

The function shown in listing 4.12 deserializes the data received from the RPi, and calls the
appropriate control functions with the new data. Initially, data is read into a string variable until
it reaches the end of a command, which is registered when a newline character is detected. The
input data is then stored in a JSON document, for easy accessibility. Finally all the received

values are used as arguments for functions that control the movement and light strength.

void receiveFromRaspberry () {
bool zllock; bool z2lock; bool z3lock; bool z4lock;
bool zblock; bool z6lock; bool z7lock; bool z8lock;

String ©payload;
payload = Serial.readStringUntil(’\n’);
StaticJsonDocument <512> doc;

deserializeJson (doc, payload);

setLights (doc["1light"]1);

z1llock doc["locked"][0];

z8lock doc["locked"][7];

setMotorSpeeds (doc ["runZone"], zllock, z2lock, z3lock,

z4lock, z5lock, z6lock, zT7lock, z8lock);

Listing 4.12: C++ Arduino Uno: Initializing communication.

For the RPi side of the serial communication with Arduino, the communication is executed
in a separate thread from the main program, see listing 4.13. This is done partly to make the

main system program, which is the Python scripts in the RPj, to be able to perform other actions

CHAPTER 4. METHOD 37

when communication is not active, or from other causes. Additionally, to increase program

execution speed.

SerialThread = threading.Thread(target=serialCom)

SerialThread.start ()

Listing 4.13: C++ Arduino Uno: Initializing communication.

The serial communication is executed in a function in the GUI_communications.py file. A
code snippet of this function is shown in listing 4.14. Here the connection is initialised by se-
lecting which port the RPi has the Arduino connected, and other parameters as baudrate and

number of stopbits are set to correspond with the settings set in the Arduino in listing 4.8.

def serialCom():
ardSer = serial.Serial(’/dev/ttyACMO’, 9600, timeout=1,
parity=serial .PARITY_NONE, bytesize=serial.EIGHTBITS, stopbits=serial.
STOPBITS_ONE)

Listing 4.14: C++ Arduino Uno: Initializing communication.

The main logic for the serial communication is located within a while loop that continuously
iterates. The logic within this loop is separated as two if statements. The first one is shown in the
beginning of listing 4.15, this checks if any new commands from the GUI has been received or
internal logic in the RPi has been updated. If new actions are to be executed, a JSON structure

will be formed and serialized, and lastly sent to the Arduino Uno.

The other if statement in listing 4.15 checks if the serial input buffer reserved for Arduino com-
munication has received any bytes, if new bytes are found, the data is unserialized and saved to

global variables, that can be easily accessed for the functionality that relies on those data values.

while 1:
if config.newArduinoCommands:
ArdDataOut = {}
ArdDataQOut ["light"] = config.light
ArdDataQOut ["runZone"] = config.runZone
ArdDataOut ["locked"] = config.interlockedZones
ArdDataOut = json.dumps (ArdDataOut)

ardSer .write (ArdDataOut .encode ())

CHAPTER 4. METHOD 38

if ardSer.in_waiting > O:
ArdDataln = json.loads (ardSer.readline())
config.temp = ArdDataIn["Temp"]
config.depth = ArdDataIn["Depth"]
config.leak = ArdDataIn["Leak"]

Listing 4.15: C++ Arduino Uno: Initializing communication.

4.5.3 Scanning imaging sonar - Raspberry Pi

The communication between the RPi and the sonar was implemented with serial connection
over USB. To share information the data was sent using the Ping protocol [36], which is a purpose
built protocol developed by the manufacturer of the sonar, BlueRobotics [17]. For our purposes
the in depth working principle of the protocol is not crucial to understand, as the functionality
is implemented in classes imported from the Ping360 libraries. In listing 4.16 the initialization
of the connection is established by creating an object p that is used to command and read values
from the sonar. Then a serial communication is initialized by using a class method with device
path and baud-rate set by the command line interface using the Python argparse module.

p = Ping360()

p.connect_serial (args.device, args.baudrate)

Listing 4.16: C++ Arduino Uno: Initializing communication.

To read sensor values and send actuator commands, class methods on the previously ini-
tialized object is called. An example of this is shown in listing 4.17, here an excerpt of the main
whilelogic is shown with a command that sends the new angle the sonar should rotate to.

while 1:

p-transmitAngle (config.angle)

Listing 4.17: C++ Arduino Uno: Initializing communication.

This class method is located within the Ping360 class, which is a child class of the PingDevice
class. Listing 4.18 shows the class method called in the previous listing, 4.17. In this method
a new function control_transducer is called, with the updated angle command and additional

parameters that are required to control the sonar.

CHAPTER 4. METHOD

def transmitAngle (self, angle):

self.control_transducer (
0,
self. _gain_setting,
angle,
self._transmit_duration,
self . _sample_period,
self . _transmit_frequency,
self . _number_of_samples,
1,
0

)

return self.wait_message ([definitions.PING360_DEVICE_DATA,

.COMMON_NACK], 0.5)

Listing 4.18: C++ Arduino Uno: Initializing communication.

39

definitions

The class method control_transducer is shown in listing 4.19. Here a new object m is initial-

ized from class PingMessage. Furthermore parameters are set to the new object, and finally the

object is serialized and sent over USB connection.

def control_transducer (self, mode, gain_setting, angle, transmit_duration,

sample_period, transmit_frequency, number_of_samples, transmit,

reserved) :

m = pingmessage.PingMessage (definitions.PING360_TRANSDUCER)

m.mode = mode

m.gain_setting = gain_setting

m.angle = angle

m.transmit_duration = transmit_duration
m.sample_period = sample_period
m.transmit_frequency = transmit_frequency
m.number_of_samples = number_of_samples
m.transmit = transmit

m.reserved = reserved

m.pack_msg_data ()

self .write(m.msg_data)

Listing 4.19: C++ Arduino Uno: Initializing communication.

CHAPTER 4. METHOD 40

4.5.4 Conductivity sensor - Raspberry Pi

The communication between RPi and the Aanderaa sensor is implemented as serial commu-
nication. Like the Arduino Uno and Sonar, the Aandera sensor program executes in a separate
thread using multithreading, as initialized in listing 4.13. At the start of an iteration in the while
loop, a command is sent to the Aanderaa that tells the sensor to perform a new sample, see
listing 4.20. Furthermore commands for each parameters are sent, and then the returning in-
formation is stored in global variables. The program does this for salinity, speed of sound in the
water, water density and conductivity.

def serialCom() :

condSer = serial.Serial(’/dev/ttyUSB1’, 9600)

while 1:
condSer.write("do_sample\n".encode ()) # Commands conductivity

sensor to conduct sample of parameters

config.salinity = getAanderaaData(condSer, "get_salinity\n")
soundSpeedReading = getAanderaaData(condSer, "get_soundspeed\n")
config.density = getAanderaaData(condSer, "get_density\n")

config.conductivity = getAanderaaData(condSer, "get_conductivity\n

Listing 4.20: C++ Arduino Uno: Initializing communication.

To send and receive the requested data, a function getAanderaaData is called, see listing
4.21. This function starts of by reading the input buffer, in a way that clears the buffer from
unwanted characters that the sensor periodically sends out. Next, the command is sent out,
and the returning data is decoded and saved in global variables. The input data goes through
several checks for unwanted characters before finally saving the data.

def getAanderaaData(condSer, request_str):

condIn = b’

condIn condSer .readline ()
condSer .write (request_str.encode ())
condIn = condSer.readline () .decode ()

data = condIn.split(’\t?)

CHAPTER 4. METHOD 41

data datal[-1]

data data.replace (’\r\n’, ’7)

return float (data)

Listing 4.21: C++ Arduino Uno: Initializing communication.

4.5.5 Raspberry Pi - Personal Computer (GUI)

As seen in the communication overview in Figure 4.3, the communication between the RPi and
the GUI application consists of two protocols. The camera data is sent from the RPi to the GUI
using UDP transmission. And all other data, including the commands from the GUI, and other
sensor data, is communicated with a TCP connection. Both of these protocols runs in separate
threads in the RPi and on the GUI side. This was implemented by creating unique functions for
each of the protocols, and calling them using the multithreading Python library. If for example
the camera functionality fails, the system can still take commands and read crucial sensor values
such as the leak sensor. The below sections explains how the UDP and TCP connections where

programmed for the RPi and GUI.

uDP

The UDP connection between the RPi and GUI was set up with the UDP server in the GUI, and
the respective client socket in the RPi. This was done purposely, as by design the client socket
should be able to disconnect and reconnect without any user interaction. As for the picture tak-
ing functionality, the camera feed will pause to be able to adjust quality of frames captured, and
automatically resume connection when picture is taken. In addition, if for some unexpected

reason the camera feed stops, it will be able to reconnect again automatically given the problem

fixes itself.

The initial setup for the UDP server is shown in listing 4.22. In the code snippet only an ex-
cerpt of the main logic of the GUI application is shown, here an instance of threading is started
on the function UDPCom. This thread is started without any exit functionality, as the thread is

designed to run continuously during the entire program execution.

CHAPTER 4. METHOD 42

if __name__=="__main__":

cam_communication = threading.Thread(target=UDPCom)

cam_communication.start ()

Listing 4.22: Python in GUI application: Initializing communication with UDP protocol for

camera feed in a seperate thread.

A part of the function UDPCom is shown in listing 4.23. Here the initial preparations for the
connection is performed. First the size of each data packet, datagram, is defined to be the maxi-

mum allowable size, 65536 bytes. Further, a function to empty the input buffer is implemented.

def UDPCom() :
MAX_DGRAM = 2xx*16

def dump_buffer(s):
while True:
seg, addr = s.recvfrom(MAX_DGRAM)
print (seg[0])
if struct.unpack(’B’, segl[0:1]) [0] == 1:
print ("finish emptying buffer")

break

Listing 4.23: Python in GUI application: Start of function that is executed in separate thread

Still within the UDP communication function, UDPCom, the UDP client is initialized and
the static IP address for the users computer is bound with a free port, example configuration is
shown in listing 4.24.

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.bind ((2169.254.226.737, 20001))

Listing 4.24: Python in GUI application: Setup of connection with UDP client within UDPCom

function.

Next in the UDP logic, a continuous running while loop is entered, see listing 4.25. This loop
checks for the next UDP datagrams. For every datagram it receives it checks if the information
should be added to a larger data variable, dat, that contains one image and if the datagram is

the final information needed for one image. If sufficient data for one image has been received,

CHAPTER 4. METHOD 43

the image is decoded and stored to an image variable. Later this image variable is displayed on
the GUI for the user to see.

while 1:

seg, = s.recvfrom (MAX_DGRAM)

if struct.unpack("B", segl[0:1]) [0] > 1:
dat += segl[1:]
else:
dat += segl1l:]
img = cv2.imdecode (np.frombuffer (dat, dtype=np.uint8), 1)

Listing 4.25: Python in GUI application: Functionality that unpacks datagrams into an image

datatype.

For the RPi side of the UDP connection, an UDP client has to be initialized. The UDP com-
munication is created within its own separate thread, in a similar way the UDP server was ini-

tialized in the GUI. The initialization for the UDP client is seen in listing 4.26.

_main__":

if __name_ == "

UDPThread = threading.Thread(target=UDP)
UDPThread.start ()
Listing 4.26: Excerpt of main functionality in Python main.py script. Initialises the UDP client

in a separate thread.

In listing 4.27 a code snippet of the function that handles UDP for the RPi is shown. The
first lines connects to the server in the GUI Then the camera data is continuously sent over
UDP using the class FrameSegment. If the operator of the GUI selects to take a picture, the UDP
connection will be closed during this process, and restarted when the picture is taken and saved
locally on the RPi.
def UDP():

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

port = 20001

fs = FrameSegment (s, port)

while not config.takeHighResPhoto:

CHAPTER 4. METHOD 44

fs.udp_frame (frame)

Listing 4.27: Connects to the GUI using UDP and initializes object that holds image frame.

As mentioned previously, a class FrameSegment, has a key role in sending data over UDP.
A snippet of the most relevant functionality of this class is shown in listing 4.28. The sending
of picture frames is handled by class method udp_frame, which takes the image taken by the

OpenCV functionality, and divides it into optimal sized UDP datagrams.

class FrameSegment (object):

def udp_frame(self, img):

compress_img = cv2.imencode(". jpg", img) [1]
dat = compress_img.tostring()
size = len(dat)

num_of_segments math.ceil (size/(self.MAX_IMAGE_DGRAM))

array_pos_start = 0

while num_of_segments:
array_pos_end = min(size, array_pos_start + self.
MAX_IMAGE_DGRAM)

self.s.sendto(
struct.pack("B", num_of_segments) +
dat [array_pos_start:array_pos_end],
(self.addr, self.port)
)

array_pos_start = array_pos_end

num_of_segments -= 1

Listing 4.28: Python in RPi: Excerpt of class with a method that divides up image frames to UDP
datagrams and sends to GUI.

CHAPTER 4. METHOD 45

TCP

For all other communication between the RPi and the GUI, except for the camera feed, a TCP
connection is used. The TCP connection is used in a way that only client or server sends data if
needed, this was done to save bandwidth, as the camera data needs a large part of communi-
cation bandwidth. As sensor data is continuously needed in the GUI, the RPi sends data with a
fixed interval. This data includes temperature, depth, sonar and other miscellaneous informa-

tion. Data from the GUI to the RPI only consists of user commands selected in the GUI.

The TCP server was decided to be implemented in the RPj, as the RPi Python script should be
running continuously during ROV operation. The TCP connection was created within a separate
thread, which was initialized from the main.py scipt, as seen in listing 4.29.

if __name__=="__main__

other_communication = threading.Thread(target=TCPCom)

other_communication.start ()

Listing 4.29: Python in GUI application: TCP connection is initialized in a separate thread.

In listing 4.30 a snippet of the TCPCom function is shown. Here the initial commands for
starting the TCP client is performed. The IP address and reserved port of the RPi TCP server is

saved to local variables, and called in connection initializion functions from the socket library.

def TCPCom() :
SERVER = "169.254.226.72"
PORT = 1422
HEADERSIZE = 10

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.connect ((SERVER, PORT))

Listing 4.30: Python in GUI application: Excerpt of function that handles TCP communication

with RPi. Shows initial set-up of connection as client side.

Next within the TCPCom function a continuously running while loop is entered, see list-
ing 4.31. For the first incoming data after the full msg variable has been reset to no data, the

message length is found and stored to variable msglen. This variable is used to check if the

CHAPTER 4. METHOD 46

partitioned data received is the final data to assemble one input message. Otherwise it can be

extrapolated that additional TCP packets are needed to be added to the message.

while 1:
msg = s.recv(8192)
if new_msg:
msglen = int (msg[:HEADERSIZE])

new_msg = False

full_msg += msg

Listing 4.31: Python in GUI application: Continuously checks for TCP data sent from RPI.

Next, within function TCPCom, if statements are used to check if assembled data is a finished
message, see listing 4.32. If it is, the data is deserialized and saved to variable RaspDataln. If
at this point, new commands have been selected on the GUI, a global boolean flag has been
activated, called config.newCommands, the TCP will respond with a message to the RPi. The
sending functionality consists of simply saving global variables to a dictionary, and serializing

this with the library pickles.

if len(full_msg)-HEADERSIZE == msglen:
RaspDatalIn = pickle.loads(full_msg[HEADERSIZE:])

if config.newCommands:
print ("[ATTENTION] New commands sent to Raspberry")

config.newCommands = False

RaspDatalOut = {

"light": config.light,

"takeVideo": config.takeVideo
}

Listing 4.32: Python in GUI application: Logic that checks if message has been parsed to

appropriate size

On the RPi side of the TCP connection, a TCP server has to be initialized. This is done within

the main while loop of the main.py program, as seen in listing 4.33. If the GUI client has not

CHAPTER 4. METHOD 47

connected, the code will try to initialize a new thread with the logic that handles incoming TCP
data. This thread will always be started as the GUI has no option to connect before the RPi
program has started.

while 1:
if config.address == "":
TCPThread = threading.Thread(target=TCPIn)
TCPThread.start ()

TCPOut (s, HOST, PORT, HEADERSIZE)

Listing 4.33: Excerpt of main while loop in main.py

In listing 4.34 the function that handles TCP communication to the RPi is shown. First the
size of the header of the TCP is chosen, corresponding with selected in the GUI application.
Next, the function continues to a series of while loops that checks for incoming data. If data is
registered, the message is deserialized and reassembled to a dictionary. Finally, global variables
are updated with the received information.

def TCPIn():
HEADERSIZE = 10

while 1:
receiving = True
full_msg = b’’
new_msg = True

incoming_message = config.clientsocket.recv(8192)

while receiving:
if new_msg:
msglen = int(incoming_message [: HEADERSIZE])

new_msg = False

full _msg += incoming_message

if len(full_msg)-HEADERSIZE == msglen:

GuiDatalIn = pickle.loads(full_msg[HEADERSIZE:])

CHAPTER 4. METHOD

config.light =

config.takeVideo =

config.newArduinoCommands =

receiving = False
new_msg = True
full_msg = b’’

True

48

GuiDataIn["light"]

GuiDataIn["takeVideo"]

Listing 4.34: TCP functionality that handles TCP data sent from the GUI.

To send data to the GUI over TCP, an additional function TCPOut is needed, see listing 4.35.

This function is called every program iteration, at the point new values from the sensors have

been registered. If no TCP client is registered, the RPi tries to connect, otherwise data is format-

ted into a dictionary, serialized and sent.

def TCPOut (s, HOST, PORT, HEADERSIZE):
communicating = True
startReceive = True

while communicating:
receiving = True
if not config.address:

config.clientsocket, config.address

= s.accept)

print (f"Connection from {config.address} has been established.

GuiDataOut = {
"temp": config.temp,

"density": config.density

msg = pickle.dumps(GuiDataOut)

CHAPTER 4. METHOD 49

msg = bytes(f"{len(msg) :<{HEADERSIZE}}", ’utf-8’) + msg

config.clientsocket.send(msg)

communicating = False

Listing 4.35: Python in RPi: TCP functionality that handles data so be sent to GUI.

4.6 Design and modelling

This section goes over how the group came up with the design of the ROV and the methods used

to build the prototype.

4.6.1 Concept

For the design it was decided early on that it should be a simple one due to the group having
no previous design experience and this being an automation thesis. The group had a few ideas
in mind when starting the project, but after selecting and ordering sensors, thrusters and the

waterproof enclosure a specific one was decided.

4.6.2 Design and Manufacturing of ROV body

For the final design a circle shape was chosen due to it allowing easy mounting of thrusters. For
the thruster positioning we decided to mount them at 120 degree intervals, this allows the ROV
to move in all directions. This thruster placement was taken from an earlier ROV made by an-
other group. The shape also gives a lot of surface area for mounting sensors, lights and other
components. The circles are made out of acrylic, the material was chosen due to its light weight
and high strength. Working with acrylic was made simple due to NTNUs laser cutter. The laser
cutter allowed the group to make designs in Fusion 360 and then cut them out with high preci-

sion and speed, making prototyping new mounts and parts a lot easier.

To hold the two circles together three aluminum extrusions were used, they are fastened with

nuts and bolts. These extrusions are also used as mounting points for the thrusters. To hold the

CHAPTER 4. METHOD 50

. . . (b) Acrylic Frame (Front View)
(a) Acrylic Frame (Side View)

(c) Acrylic Frame (No top plate)

Figure 4.4: Fusion 360 models of ROV body

BlueRobotics 4 inch waterproof enclosure in place, a bracket made out of acrylic was designed
in Fusion 360, see Figure 4.4. The bracket was cut out with the laser cutter and then glued in
place with epoxy. The reason for not permanently mounting the enclosure in place was to make
maintenance easier and allowing for reuse of the enclosure, seeing as the current design was

made to be a prototype this was deemed optimal.

CHAPTER 4. METHOD 51

(a) Mount for Arduino and RaspberryPi
(b) Mount for ESC speed controllers

(d) Battery holder end cap

(c) Battery holder

Figure 4.5: Fusion 360 Models of internal mounts

4.6.3 Making of Internal Mounts

Due to the small amount space in the enclosure and the quantity of components, custom hard-
ware mounts were needed to be able to fit everything inside. It is also important to keep EMI
emitting components away from sensitive components, as the RPi. To make these, Fusion 360
was used for designing, and then they were produced with the schools Ultimaker2+ 3D printers,

see Figure 4.5.

CHAPTER 4. METHOD 52

Shoulder Throat

(b) Figure showing how the cable penetrators work,
from [8]

(a) Photo of cable entry points

4.6.4 External box

When working on putting everything together it quickly became apparent that space inside the
enclosure would be a issue. It was quickly decided that adding an external box to house com-
ponents that produce electrical noise and heat would be a good solution. The box is IP66 rated
and is filled with clear casting epoxy so that it does not buckle under the pressure at the depths

the ROV will operate in.

4.6.5 Waterproofing

The BlueRobotics enclosure is sealed by a set of double o-rings on both of the end caps. For
the cable entry points BlueRobotics cable penetrators are used as seen in Figure 4.6a. These
are threaded and screwed in place. They use a combination of an o-ring and epoxy to seal the
cable entry point, see Figure 4.6b. A few of the cables came sealed from the factory. For the
other external sensors and the thrusters we had to seal them ourselves with the use of an epoxy
made by 3M called "Scotch-Weld Urethane Adhesive 620NS". This epoxy was recommended
by the JMRobotics, which is the official retailer of BlueRobotics products in Norway. For the
external box, the epoxy seals all the components in a way that even if water entered the box, the

components would be safe.

CHAPTER 4. METHOD 53

4.7 Electrical

To power the ROV, 48VDC is sent through three pairs of wires that go down to the ROV. A DC
to DC converter steps down the voltage to 12VDC. This converter is connected to a 5V Linear
Voltage Regulator and another DC to DC converter that outputs 16.5V. The Voltage regulator is
required to power the RPi. The 16.5V DC to DC converter is connected in parallel to a battery
made up of 4 3,7V Lithium ion batteries. This setup is in place to stop voltage drops from turning
off the RPi. There is also a 12V Voltage regulator which is needed to power the Aanderaa con-
ductivity sensor and Arduino. For the voltage regulators capacitors are used to ensure stability,
see Appendix D. The 5V regulator is connected to 12V DC to DC converter to limit the amount

of heat the regulator produces.

The 5V and 12V supplies both have one fuse each and on the 16,5V supply there are three fuses.
One for the thrusters, one for the lights and one for the sonar and Fathom-X Tether. There is also
a fuse between the battery and the 16.5V DC-DC converter. It is in place to ensure safety of the

batteries and the DC to DC converter itself.

4.7.1 External box

The components located inside the external box are the voltage regulators and the DC to DC
converters. These components produce a significant amount of heat as well as electrical noise

which could cause problems if they were located inside the main enclosure.

4.7.2 Wiring

As mentioned space was a issue so most of the cables are soldered or clamped to conserve space,
these connections were covered with heat shrink tubing. For the poles of the batteries/power
supply WAGO terminal blocks are used so its possible to disconnect the power without cutting

any wires. This also allows the user to charge the battery.

Chapter 5

Result

The final results of the implementation of our proposed solutions described in methodology are
presented in the chapter. The first chapters describes the results for the software and communi-

cation solutions, and finally more physical results as the electrical and structure are described.

5.1 Software solutions

In the following sub-chapters the results from the software solutions are described. The results
are describing the most relevant results for the separate solutions, and finally how the solutions

worked together.

5.1.1 Graphical User Interface

The final GUI satisfied most of our requirements. We wanted a simplistic and clean overview of
the most relevant systems. The video stream and sonar plot occupied most of the space, as these
are types of information that is advantageous to have in larger formats. The resulting space was
used for sensory data that was numerical, as the salinity, depth and other values. The control

mechanisms were placed close to the video plot, to make movements as intuitive as possible.

54

CHAPTER 5. RESULT 55

5.1.2 Software performance

The Arduino Uno executes code very quickly in relation to the Python program running in the
RPi. It was therefore decided to only execute the Arduino serial communication sending func-
tion every 30th iteration of the Arduino while loop. As the measured sensor values have a slow
rate of change, this was more than sufficient in terms of performance. During older versions
of the program, the Arduino continuously sent data every iteration, and this used a lot of the
processing power within the RPi, which reduces other functionality, as the collision avoidance

system.

The Python RPi program consisted of multiple files. The distribution of the logic into multiple
files was advantageous as finished functionality could be abstracted away and simply reused for
other functionality by calling functions or object methods. Using multithreading for the RPi pro-
gram was essential to achieve the desired functionality and required response times. As some
communication configurations only sent data when certain conditions are met, and other con-
tinuously sends data every iteration of a program, an RPi system without multithreading would

greatly delay response times.

5.1.3 Communication results

The system contains of multiple communication configurations. All were tested separately ini-
tially to be able to localize and find errors and bugs, and fix them early in the integration process.
Later when integrating all the systems together, this was relatively problem free, as the different

communication configurations had been hidden using programming abstraction.

The simplest communication configuration between devices, as the I2C and serial communi-
cations worked very reliably when connection was established. As communication libraries are
already very refined, and relatively flexible with integration. However, the serial communication
between the RPi and Arduino would sometimes crash upon initialization. When this happened,

it was solved by restarting the RPi programs, and it would always work on the second attempt.

CHAPTER 5. RESULT 56

For the ethernet based communication protocols, TCP and UDP, the integration was more de-
manding. Initially, we planned to only use TCP for all of the communication between the GUI
and RPi. However, it was concluded fairly early on that we would struggle with bandwidth, as
especially the camera feed is very demanding. Still, by using UDP the communication was strug-
gling to send the picture frames as quickly as we had intended, during the final sea tests we had

between 2-4 fps on the GUI.

5.2 Electrical

Most of the electrical system worked well during testing. All the of the components were pow-
ered and could perform their function as intended. It should be mentioned that the thrusters
maximum output is limited artificially in order to keep the power draw within a reasonable level.
The output is still enough to allow the ROV to do all of its movements and functions. The value
of the implemented battery system is questionable, where it at times seems to have a positive
effect, but often not. The current battery solution is described more in detail under the test

chapters.

5.3 Physical

The final version of the ROV and the internals can be seen in Figure 5.1 and 5.2. We were mostly
satisfied with how the ROV performed. It worked well in the sea and it held up well during
testing with it only experiencing a few problems. The design is also very modular allowing for

quick changes when needed.

CHAPTER 5. RESULT

(e) ROV front

Figure 5.1: Photos of the ROV

57

CHAPTER 5. RESULT

(c) Internals of the ROV top

Figure 5.2: Photos of the internals of the ROV

58

CHAPTER 5. RESULT 59

5.4 Test1

Test 1 is defined as the first test of the complete system, however multiple subtests between the
different systems had been completed prior to this test. Test 1 was completed in the lab in a con-
trolled environment, and not underwater at any point, see Figure 5.3. There was a multitude of
uncertainties that had to be checked before filling the box containing the Linear Voltage Regu-
lators and DC to DC converters with epoxy, see Figure 5.4. During the test it was discovered that
some of the cables had bad connections and needed to be redone properly, especially the supply
for the Arduino would sometimes fall out. This was done quickly so the rest of the testing could
go ahead with small delays. When testing the system it seemed like the local battery inside the
enclosure did not work as required. When using the ROV at high power, for example with lights
at high power, and then starting the motors, the voltage over the RPi would drop significantly,

and therefore reboot.

The job of the local batteries is to deliver power when a peak current is needed to run starting of
the motors. As if there is high current, the voltage drop in the tether would be significant, and
therefore the voltage within the ROV would drop below required levels. When the drop occurs,
the batteries should take over supplying. But we suspect that the batteries never starts supply-
ing, as the supply voltage after a multitude of voltage regulator is kept too high at the charging
circuit of the batteries. However, no conclusion regarding the battery situation was reached.
We increased the constraints of usable light power to a level that even when ran at maximum,
and starting the thrusters, the current would not be high enough to induce a voltage drop high

enough to disconnect the RPi.

CHAPTER 5. RESULT

Figure 5.3: Setup for test 1.

(b)

Figure 5.4: Photos of the external box during test 1

60

CHAPTER 5. RESULT 61

(a) (b)

Figure 5.5: Photos of ROV before test 2

5.5 Test2

Test 2 was the first test of the full system in water. The test was done in a water tank located at
NTNU Aalesund. The water tank has windows and its shallow enough to allow retrieval without
any problems. This was the ideal location for the first water test. During this test as with test 1
a power supply was used to power the ROV. For this test the external box was filled with epoxy
in order to waterproof it, see Figure 5.6. The Omron Sentech camera was also swapped out due
to a suspected driver issue. The new camera was a standard 1080p webcam that required no
drivers, and were therefore easy to integrate into the system. See Figure 5.5 to see how the ROV

looked during test 2.

Before submerging the ROV it was checked for leaks. This was done by using a vacuum hand
pump which allows you to suck air out of the ROV, see Figure 5.7. If it holds this negative pres-
sure it means the seal is good and that the ROV is ready to be submerged. When the ROV was first
submerged everything looked good and all systems performed as intended. There was however
a problem with the balance as the rear was heavier leading to the front tilting upwards. To fix
this problem two pieces of metal were screwed in place at the front of the ROV. This fixed the
problem and the ROV became stable, see Figure 5.8. Another problem was the position of the

camera, this was fixed after the test as it did not interfere with testing of the system as a whole.

CHAPTER 5. RESULT 62

Figure 5.6: External box filled with epoxy.

CHAPTER 5. RESULT 63

Figure 5.7: Checking the ROV for leaks.

CHAPTER 5. RESULT 64

Figure 5.8: Ballast mounted to ROV

-
=i

Figure 5.9: ROV submerged in water during testing

CHAPTER 5. RESULT 65

5.6 Test3

The ROV is primarily designed to be used to observe and inspect aquaculture conditions at sea,
therefore it was essential to test the ROV in that environment. This testing allowed for testing
of components that could not properly be tested in a simulation tank, like reading of salinity

values, sonar data acquisition and depth and pressure testing of the overall structure.

This test took place in Storfjorden right outside of Glomset. At this location NTNU has a small
boat with an outboard motor available to use, see Figure 5.10a. This allowed us to get to water
where the depths reached up to about 100m, in addition to have underwater structures avail-
able to inspect. There was also several fish farming facilities, however we were not permitted to

use the ROV in close proximity to those.

As we used a small Pioneer 13 boat, we did not have access to a high voltage output which
would allow us to run power supplies to energize the ROV. Like we had done at previous testing
in controlled environments at the modelation tank at NTNU. We therefore used four 12V - 75Ah
batteries connected in series, to produce 48V, see Figure 5.10d. Whilst simultaneously taking out
12V from one of the batteries to power the communication card. By connecting an ethernet ca-
ble with RJ45 plugs to the communication interfacing box and to the topside computer, we were
able to control the ROV from the GUI. See Figure 5.10b, 5.10c and 5.11 to see the equipment and
the ROV from test 3.

During the test several dives were completed starting at a couple of meters and then gradu-
ally increasing the depths as the test went on. During the tests everything worked as intended
and all of the sensors were showing good and realistic data. The camera feed was stable, how-

ever as expected the FPS was a bit low to get a seamless user experience.

The testing ended during a gradual pressure increase during a dive at 70+ meters, where some
of the components lost power. Many critical components lost power, including the communi-
cation board, which instantly made it possible to get any data or control the ROV further. We

instantly turned off power, to prevent as much damage as possible if there was a leak. After

CHAPTER 5. RESULT 66

(c) ROV ready for test 3. (d) Battery setup used for test 3.

Figure 5.10

hoisting the ROV up to the boat again, we began troubleshooting the ROV. We could not regain

control of the ROV at this point and decided to end test 3.

Further troubleshooting took place back at the lab at NTNU. During the troubleshooting all the
components inside the enclosure were checked and none of them were broken. The problem
was traced to the external box and specifically to the 16.5V converter. But, since all the com-
ponents inside were encased in epoxy it was not feasible to find and fix the exact problem, and
recast the external box with epoxy. The problem seems to be with either the converter itself or
the cables going from the converter to the ROV. It seems that the pressure at the 70+ meters may
have caused this, but without digging the components out of the epoxy its hard to conclude ex-

actly.

When testing in water and operating the ROV using the GUI, we got good experience of how
the user experience was, see Figure 5.12 for snapshot of testing. The numerical sensor values
updates quickly enough for most purposes and is placed in a intuitive location. But, most no-

ticeably, the camera feed has a static delay at around 1 second, in addition to only operating at a

CHAPTER 5. RESULT 67

(b) ROV equipment rigged up and ready for test

(a) Tether cable in the sea

Figure 5.11: Photos from Test 3

few fps. This combined with strong underwater currents, the control of the ROV could be chal-
lenging at times. However, after operating the ROV for extended amount of times, experience of

how the ROV reacts to commands is gained, and controlling is easier.

CHAPTER 5. RESULT 68

Figure 5.12: Screenshot of the GUI during the test 3.

Chapter 6

Discussion

6.1 Technical results

This chapter will go over the technical results and discuss how the solutions performed, and

what could have been done better.

6.1.1 Design

While working with the project it became clear that there was a lot of things that could have
been done different when designing the ROV. The biggest thing that could have been done dif-
ferent is designing it with an additional external compartment in mind. For the current solution
it was added midway due to space issues. It also helped with reducing electrical noise and heat
inside the enclosure. If the batteries and motor controllers were also moved to a external box
it would further reduce the heat and electrical noise. During sea testing an issue occurred with
something inside the external box. However, due to to it being filled with epoxy, troubleshoot-
ing and fixing this problem would require us to remove the epoxy, which is quite a challenge. To
prevent such an issue the external box could be replaced by a enclosure from BlueRobotics. This
would allow easier access to the components inside, therefore making maintenance a lot easier.

It would also make upgrading or changing out parts easier.

The overall size of the ROV could also have been reduced, as not all of the available surface area

69

CHAPTER 6. DISCUSSION 70

was used. But having this additional space is not necessarily bad, as it allows the implementa-
tion of additional sensors with relative ease and only minor modifications. When it comes to
assembly the main thing that should have been done different is gluing the acrylic with acrylic
glue. Instead of the current solution, which is using epoxy, as the acrylic glue would have en-
sured an even stronger hold. But based on the results from testing the epoxy worked fine and

did not give any signs of loosening.

With the current design the rear aluminium extrusion has to be removed in order to access the
BlueRobotics enclosure. To remove it four screws and bolts have to be taken out. This is fairly
easy but somewhat time consuming. A solution that could simplify this could be to implement

a quick disconnect system. This would be especially helpful when it comes to servicing the ROV.

Another area that can be improved is the length of the cables. Currently the cables are very
long to make service easier, which was helpful during testing. However, the length also causes
the cables to take up more space and is harder to manage. While the space is hard to do some-
thing with unless you want to compromise on the serviceability, the cable management could
be improved with the use of cable clips that can be opened and closed. It should also be men-
tioned that the conductivity sensor’s cable was kept extra long, due to it being expensive and the

plugs were precast from factory.

6.1.2 Electronics

The original plan for supplying power was to exclusively use a DC-DC converter that could sup-
ply enough power to the system. However, after discussions with supervisors it was mentioned
that the thrusters have a large current spike when starting and that could result in the RPi to
reboot. When several thrusters are started they will attempt to pull high amounts of current for
a short time. This will result in a high voltage drop over the tether cables, which in supplies less
voltage over internal components in the ROV. Sensitive equipment, as the RPi, can not handle
low voltages and will therefore shut down. Because of this it was decided that we should add

batteries that could take over when such a large current surge occurs.

CHAPTER 6. DISCUSSION 71

This decision came quite late and therefore the implementation could have been done better.
From testing it seems to be working, but its unclear whether or not the batteries are actually
taking over properly. Due to lack of time for testing we could not reach a conclusion on this.
If we had planned on using batteries from the start, a battery management system could have
been used. This would manage the batteries by keeping them in a safe operating area and pre-
venting them from over-current, over-voltage, under-voltage and over-temperature. Currently
there is no way to monitor the status of the batteries without opening the ROV, therefore this
is a feature that should be added. This would give the operator better insight into the status of
the ROV. A battery management system could also potentially eliminate the need for the DC to
DC converters in the current setup. This is only possible if the management system allows high

voltage inputs.

The voltage regulators in the current system should also be looked at. A voltage regulator low-
ers the voltage by converting the excess input voltage to heat. In the current system the 12V
regulator works fine and doesn’t produce much heat as the step down in voltage is low. The 5V
regulator however produces a lot of heat and requires a big heat sink to stop it from overheating.
A possible solution to this is to use a 5V DC to DC converter instead of a voltage regulator. The
converter would take up more space but since it wont need a heat sink it should take up approx-

imately the same amount of space.

The safety solutions that were implemented worked as intended. It is hard to say whether or
not the leak sensors would detect a leak fast enough to allow us to save any components. This
is because during testing we did not experience any leaks. The fuses worked well and none of
the components inside the enclosure were destroyed. Currently blade style fuses are used, the

same type of fuses used in cars. They worked great but could be replaced with smaller style fuses.

The wiring works as intended but as this is a prototype the cable management could have been
done a lot better. By cutting the cables exactly to length and planning the cable routing bet-
ter the space taken by cables could be reduced by a lot. Doing this would also make servicing

the ROV easier. Another thing that should be added is a magnetometer this would allow us to

CHAPTER 6. DISCUSSION 72

integrate a compass in the GUI and therefore helping the to stay orientated in deep water.

6.1.3 Software

Below the implemented software solutions for the ROV system is discussed. Additionally, the

feasibility of any potential improvements of the systems are considered.

Collision avoidance

The collision avoidance system was implemented to assist the operator with maneuvering in
tight areas without crashing and damaging the ROV. We have determined that it was a good de-
cision to implement the logic as an object, as difficult logic was abstracted into class methods.
When using the functionality in the Python main script implementation was intuitive, and trou-
bleshooting was simple. When testing the collision avoidance under a controlled environment,
as the tank at the school, the functionality worked as intended. If an object was detected within
a zone, movement towards that zone was prohibited. And this could be reset either automati-

cally when the zone was cleared in the next scan cycle, or manually from user input in the GUI.

When testing the ROV under more demanding conditions, as the sea test, the collision avoid-
ance system was harder to use properly. This comes from delay in the camera feed, coupled
with low frame-rate, made it hard to maneuver properly. Additionally, underwater currents in-
duced rotations of the ROV, which meant that interlocked zones was quickly not relevant. As
the interlocked zone would quickly rotate in a way that the zone on the GUI did not correspond
to the actual underwater obstruction. And an open zone, actually should instead have been in-
terlocked. Another challenge with the collision avoidance system, was the rotation speed of the
scanning. The ROV was operating quicker than the sonar was able to get updated information.
We partly solved this by increasing the step size for each scan, but this would negatively affect

the resolution and the quality of the sonar scan.

CHAPTER 6. DISCUSSION 73

Communication

The serial communication was implemented in a fairly standard way, that worked in a stable way
during the testing when connection had been established between the different devices. How-
ever as previously mentioned, the connection between the RPi and Arduino Uno would some-
times fail during the initialization of the connection. And an error indicating that the buffer
array had overflown was given in the Python console. To fix this issue, a function that checks for
incoming data, and clears the input buffer accordingly if the RPi is not yet ready to receive data,
should be implemented. Alternatively, the order of initialization of the different communication
between devices should be changed in a way that the Python serial connection happens at the

same time as the Arduino is trying to initialize the connection.

The I2C and other serial connections worked as intended, and is implemented in a way that
facilitates for future additions of sensors. Especially for more Aanderaa type sensors, that mea-
sures parameters such as oxygen and turbidity could easily be added to the Python program.

But a USB hub, would have to be installed as all the USB ports on the RPi is currently in use.

The communication between RPi and the topside computer (GUI) is working as intended. To
separate critical data, commands and camera feed to TCP and UDP, respectively, was a good de-
cision. Three way handshake functionality guarantees with high certainty that no data packets
are lost. And the UDP connection is optimal to save bandwidth when sending video frames, lost

frames are no point in re-sending anyways, as those are in the past and irrelevant for the user.

Camera and light control

We had originally planned to use a Sentech machine vision camera suited for low visibility con-
ditions. We performed multiple isolated tests with this camera, and a constant problem that
occurred was that the frame size was very large, and not suitable for our tether communica-
tion. We had to compromise by reducing the quality and compressing the frames before sending
them. This resulted with the quality of the images shown on the GUI was not as great as orig-

inally planned. By reducing the quality enough to get a usable frame rate, the camera quality

CHAPTER 6. DISCUSSION 74

was comparably the same as a normal 1080p web-camera. However, it could still be beneficial
to use this camera, as when using the picture taking functionality, the Python scripts re-adjusts

to not compress the frame, and a high quality image is saved to the RPi.

As previously mentioned in results, we had problems with the driver for the Sentech camera
during the later stages of the project. It was therefore decided to switch to a 1080p USB camera,
that required no drivers. This camera is not ideal for low light conditions, and we experienced
that it was difficult to see contrasts when the ROV was tested at high depths. Even when the
lights were set to maximum, underwater particles reflected the light and prohibited the camera
to see at distance. A potential solution for this could be to place the subsea lights further apart
and angle the lights in a way that both lights are focused on a single point, directly in front of
the camera. For more advanced solutions, a control mechanism for the lights could be imple-

mented, granting the user functionality to adjust the angle with the GUI.

Databases and historical information

Several functions were implemented to save relevant data for offline analysis after testing was
completed. In the GUI a function was added allowing the user to take photos and videos of
the camera feed during operation of the ROV. This data was saved locally on the RPi, and had
to be transferred to the user computer after finished testing using either SCP from the termi-
nal, or other programs as WinSCP. This could be improved by instead sending the photos using
the same UDP communication, and instead saving the photos on the computer used to run the
GUI. The video functionality could be done in a similar way, in addition to displaying the video
frames on the GUI, the frames could be written to a video file, in a similar way this is done in the
RPi. By implementing this logic, the user experience of accessing relevant data would be easier

and consist of fewer steps.

The ROV does not have a function for saving sensor values currently. This could have been
added by simply writing the received values in the GUI TCP connection to a csv file. By using
the Python library csv, this could have been integrated to the system with a few lines. In addi-

tion to writing the value, information about which time that sample was taken should be written

CHAPTER 6. DISCUSSION 75

simultaneously for easier inspection later.

Graphical User Interface

The GUI was implemented with the functionality to operate the ROV under basic conditions.
Using PyQt as the GUI software made it easy to design and use the functions we needed for the
project, as the RPi on the other end of the communication is also designed in Python. The GUI
had a very simplistic approach, containing all of the information and buttons needed for the

project.

However, if as previously discussed, sensor values was stored in a database updated during op-
eration. Historical plots could be visualized, constantly updating when new sensor values are
read. These sensor plots could be visualized on multiple pages in the GUI, giving the operator
an option to toggle what values are shown. In addition to this, logic could be implemented that
gives further information or alerts about if values has a high rate of change, which could be im-
portant for values as salinity. As sometimes it could be difficult to notice areas in the water with

different values.

6.2 Project accomplishments

This section goes over what the group learned and the unforeseen problems that were faced.

6.2.1 Distribution of work

The group had different preferences and experience when it came to working with software and
hardware before the project started. One group member preferred working with hardware while
the other preferred software. Due to this distributing the work was made easier. The work was
split so that one group member worked on hardware while the other worked on software. There
was of course some overlap and both group members learned a lot from each other while also
gaining more knowledge on their assigned task. The group overall were satisfied with how the

work distribution worked out.

CHAPTER 6. DISCUSSION 76

6.2.2 Unforeseen consequences

During the project there were several unforeseen consequences, the one that caused the most
problems was the amount time it took to order new parts and get them delivered. Another
unforeseen issue was the implementation of the battery system. There was a lot of work on
trying to get it work and while during testing all systems looked good the group is still unsure on

whether or not it actually worked.

Chapter 7

Conclusions

The purpose for our project was to create a new prototype of a ROV for aquaculture inspection.
ROVs for this purpose have been developed by other students at NTNU prior to our project, and
through these developments, new desired functionality has been defined. Therefore, we got
tasked with creating a ROV that was more lightweight, easier to work with and rated for deeper
depths. Additionally, the ROV had to be fitted with sensors that measures aquaculture relevant
parameters. With the functionality that we added, future groups can easily expand on our pro-
totype and create the other systems that is required for the Aquaculture inspection platform, as

the winch and platform itself.

From our proposed and defined goals set in the preliminary report, and from our results and
discussion we can conclude that we created solutions that answered the thesis’s main focus
areas. The ROV can be easily controlled by other groups by using the same source code, and

following the instructions defined in the user manual.

However, one of the planned improvements was not completed as originally planned. High
quality live video streaming was not implemented as described in the pre-project report. As we
had substantial problems with the driver for the camera, and we did not find time to solve the
issues. Additionally, if the drivers are fixed, the communication would still struggle with sending

high quality frames at a quick enough frame-rate for the user experience to be seamless.

77

CHAPTER 7. CONCLUSIONS 78

Further work on the ROV and surrounding systems should be feasible. All parts, from the phys-
ical to software, was designed with usability and options to expand in mind. By addressing the
challenges and limitations of our solution, the ROV could be implemented with the complete

system and perform the required actions with high performance.

All things considered, the group believes the final ROV was a solid product, that addressed most
of the system requirements. The project has given the group experience in terms of planning,
cooperating and working through challenges. The ROV constantly evolved as new challenges
appeared, however, through working systematically and with a solution-oriented focus, these

challenges were solved and valuable experience and abilities were gained.

Appendices

A Preproject report

B Progress reports

C Gantt diagram

D Electrical drawings
E User Manual

F Arduino code

G Raspberry Picode
H GUIcode

I Meeting invitations

J Minutes of meeting

79

Bibliography

[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

(9]

(10]

(11]

Aanderaa. Conductivity sensor 5819. URL https://www.aanderaa.com/media/pdfs/

d425_conductivity_sensor_5819.pdf.

Arduino. Arduino uno rev3, . URL https://store.arduino.cc/products/

arduino-uno-rev37selectedStore=eu.
Arduino. Wire library, . URL https://www.arduino.cc/en/reference/wire.

Arduino. Serial.begin(), . URL https://www.arduino.cc/reference/en/language/

functions/communication/serial/begin/.
Autodesk. Fusion 360.
Biltema. Rechargeable icr18650 battery, 2950 mah.

BlueRobotics. Bar30 high-resolution 300m depth/pressure sensor, . URL https://

bluerobotics.com/store/sensors-sonars-cameras/sensors/bar30-sensor-ri/.

BlueRobotics. Potted cable penetrator, . URL https://bluerobotics.com/store/

cables-connectors/penetrators/penetrator-vp/.

BlueRobotics. Basic esc, . URL https://bluerobotics.com/store/thrusters/

speed-controllers/besc30-r3/.
BlueRobotics. Fathom-x tether interface board, .

BlueRobotics. ~ Watertight enclosure for rov/auv 4inch series, . URL https://

bluerobotics.com/store/watertight-enclosures/4-series/wte4-asm-r1/.

80

https://www.aanderaa.com/media/pdfs/d425_conductivity_sensor_5819.pdf
https://www.aanderaa.com/media/pdfs/d425_conductivity_sensor_5819.pdf
https://store.arduino.cc/products/arduino-uno-rev3?selectedStore=eu
https://store.arduino.cc/products/arduino-uno-rev3?selectedStore=eu
https://www.arduino.cc/en/reference/wire
https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/
https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/bar30-sensor-r1/
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/bar30-sensor-r1/
https://bluerobotics.com/store/cables-connectors/penetrators/penetrator-vp/
https://bluerobotics.com/store/cables-connectors/penetrators/penetrator-vp/
https://bluerobotics.com/store/thrusters/speed-controllers/besc30-r3/
https://bluerobotics.com/store/thrusters/speed-controllers/besc30-r3/
https://bluerobotics.com/store/watertight-enclosures/4-series/wte4-asm-r1/
https://bluerobotics.com/store/watertight-enclosures/4-series/wte4-asm-r1/

BIBLIOGRAPHY 81

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

BlueRobotics. Sos leak sensor, . URL https://bluerobotics.com/store/

sensors-sonars-cameras/leak-sensor/sos-leak-sensor/.

BlueRobotics. Lumen subsea light, . URL https://bluerobotics.com/store/

thrusters/lights/lumen-r2-rp/.

BlueRobotics. Ping 360 scanning imaging sonar, . URL https://bluerobotics.com/

store/sensors-sonars-cameras/sonar/ping360-sonar-ri-rp/.

BlueRobotics. T200 thruster, . URL https://bluerobotics.com/store/thrusters/

t100-t200-thrusters/t200-thruster-r2-rp/.

BlueRobotics. Celsius fast-response, +0.1°c temperature sensor (i2c), . URL
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/

celsius-sensor-rl/.
BlueRobotics. Bluerobotics, . URLhttps://bluerobotics.com/.

BlueRobotics. Ping viewer documentation, . URL https://docs.bluerobotics.com/

ping-viewer/#installing-and-running-the-application.

Anthony A. DiBiase. Electromagnetic interference sources and their
most significant effects. URL https://interferencetechnology.com/

electromagnetic-interference-sources-and-their-most-significant-effects/.

doc.qt.io. Qt designer manual. URL https://doc.qt.io/qt-5/qtdesigner-manual.

html.

ELFA. Rsdw60f-15 - dc/dc-omformer 9 ... 36v 15v 4a 60w, mean well. URL https://www.
elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/
p/302300897trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&

origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d156%26filter

Utgangsstrc3%b8m+1~~A%3d4&track=true.

Pamela Fox. Transmission control protocol (tcp). URL https:

//www.khanacademy.org/computing/computers-and-internet/

https://bluerobotics.com/store/sensors-sonars-cameras/leak-sensor/sos-leak-sensor/
https://bluerobotics.com/store/sensors-sonars-cameras/leak-sensor/sos-leak-sensor/
https://bluerobotics.com/store/thrusters/lights/lumen-r2-rp/
https://bluerobotics.com/store/thrusters/lights/lumen-r2-rp/
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping360-sonar-r1-rp/
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping360-sonar-r1-rp/
https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/celsius-sensor-r1/
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/celsius-sensor-r1/
https://bluerobotics.com/
https://docs.bluerobotics.com/ping-viewer/#installing-and-running-the-application
https://docs.bluerobotics.com/ping-viewer/#installing-and-running-the-application
https://interferencetechnology.com/electromagnetic-interference-sources-and-their-most-significant-effects/
https://interferencetechnology.com/electromagnetic-interference-sources-and-their-most-significant-effects/
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://www.elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_Utgangsstr%c3%b8m+1~~A%3d4&track=true
https://www.elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_Utgangsstr%c3%b8m+1~~A%3d4&track=true
https://www.elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_Utgangsstr%c3%b8m+1~~A%3d4&track=true
https://www.elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_Utgangsstr%c3%b8m+1~~A%3d4&track=true
https://www.elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_Utgangsstr%c3%b8m+1~~A%3d4&track=true
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.

BIBLIOGRAPHY 82

xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d: transporting-packets/a/
transmission-control-protocol--tcp#:~:text=The)20Transmission20Controly

20Protocol’20(TCP, duplicate’20packets’2C%20and’%20corrupted’,20packets.

[23] GeeksforGeeks. I12c communication protocol. URL https://www.geeksforgeeks.
org/i2c-communication-protocol/#:” :text=I12C%20stands%20for%20Inter,

2DIntegrated, protocol’,20for%20short)2Ddistance’%20communication.
[24] HILGRAEVE. Hyperterminal trial.

[25] Rustom Jehangir. Bluerobotics ms5837 library, . URL https://github.com/
bluerobotics/BlueRobotics_MS5837_Library.

[26] Rustom Jehangir. Bluerobotics tsys01 temperature sensor library, . URLhttps://github.
com/bluerobotics/BlueRobotics_TSYSO1_Library.

[27] JetBrains. Clion, . URL https://www.jetbrains.com/clion/
promo/?source=google&medium=cpc&campaign=11959979214&gclid=
CjOKCQiApL2QBhC8ARIsAGMm-KHSiCNnF4caJnbNrukvx3cgGSq7WLpLVcG7AMjo3X0yRbdtQuLvZWYaAilt

wcB.
(28] JetBrains. Pycharm,. URLhttps://www. jetbrains.com/pycharm/.

[29] Fendadis John. Advantages and disadvantages of the tcp/ip model. URL https://www.

tutorialspoint.com/Advantages-and-Disadvantages-of-the-TCP-IP-Model.

[30] Jennifer Kennedy. Salinity: Definition and importance to marine life. URL
https://www.thoughtco.com/salinity-definition-2291679#:~:text=Salinity’

20canj,20affect’20the’20density, regulate’20its’20intake)200f%20saltwater.

[31] LawtonChuck Moozakis Linda Rosencrance, George. User datagram protocol
(udp). URL https://www.techtarget.com/searchnetworking/definition/
UDP-User-Datagram-Protocol#: "~ :text=User’20Datagram)20Protocol%20 (UDP)
%20is, provided’%20by’%20the’20receiving’20party.

https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.geeksforgeeks.org/i2c-communication-protocol/#:~:text=I2C%20stands%20for%20Inter%2DIntegrated,protocol%20for%20short%2Ddistance%20communication.
https://www.geeksforgeeks.org/i2c-communication-protocol/#:~:text=I2C%20stands%20for%20Inter%2DIntegrated,protocol%20for%20short%2Ddistance%20communication.
https://www.geeksforgeeks.org/i2c-communication-protocol/#:~:text=I2C%20stands%20for%20Inter%2DIntegrated,protocol%20for%20short%2Ddistance%20communication.
https://github.com/bluerobotics/BlueRobotics_MS5837_Library
https://github.com/bluerobotics/BlueRobotics_MS5837_Library
https://github.com/bluerobotics/BlueRobotics_TSYS01_Library
https://github.com/bluerobotics/BlueRobotics_TSYS01_Library
https://www.jetbrains.com/clion/promo/?source=google&medium=cpc&campaign=11959979214&gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHSiCNnF4caJnbNrukvx3cgGSq7WLpLVcG7AMjo3X0yRbdtQuLvZWYaAiItEALw_wcB
https://www.jetbrains.com/clion/promo/?source=google&medium=cpc&campaign=11959979214&gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHSiCNnF4caJnbNrukvx3cgGSq7WLpLVcG7AMjo3X0yRbdtQuLvZWYaAiItEALw_wcB
https://www.jetbrains.com/clion/promo/?source=google&medium=cpc&campaign=11959979214&gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHSiCNnF4caJnbNrukvx3cgGSq7WLpLVcG7AMjo3X0yRbdtQuLvZWYaAiItEALw_wcB
https://www.jetbrains.com/clion/promo/?source=google&medium=cpc&campaign=11959979214&gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHSiCNnF4caJnbNrukvx3cgGSq7WLpLVcG7AMjo3X0yRbdtQuLvZWYaAiItEALw_wcB
https://www.jetbrains.com/pycharm/
https://www.tutorialspoint.com/Advantages-and-Disadvantages-of-the-TCP-IP-Model
https://www.tutorialspoint.com/Advantages-and-Disadvantages-of-the-TCP-IP-Model
https://www.thoughtco.com/salinity-definition-2291679#:~:text=Salinity%20can%20affect%20the%20density,regulate%20its%20intake%20of%20saltwater.
https://www.thoughtco.com/salinity-definition-2291679#:~:text=Salinity%20can%20affect%20the%20density,regulate%20its%20intake%20of%20saltwater.
https://www.techtarget.com/searchnetworking/definition/UDP-User-Datagram-Protocol#:~:text=User%20Datagram%20Protocol%20(UDP)%20is,provided%20by%20the%20receiving%20party.
https://www.techtarget.com/searchnetworking/definition/UDP-User-Datagram-Protocol#:~:text=User%20Datagram%20Protocol%20(UDP)%20is,provided%20by%20the%20receiving%20party.
https://www.techtarget.com/searchnetworking/definition/UDP-User-Datagram-Protocol#:~:text=User%20Datagram%20Protocol%20(UDP)%20is,provided%20by%20the%20receiving%20party.

BIBLIOGRAPHY 83

[32] EMC Bayswater Pty Ltd. A guide to electromagnetic com-
patibility (emc) testing methods. URL https://wuw.
emcbayswater.com.au/blog/emc-testing/commercial-emc-testing/
guide-electromagnetic-compatibility-emc-testing-methods/.

[33] Anas Mazouni. ping360;onar.URL.

Mouser. Uwe-12/6-q48nb-c. URLhttps://no.mouser.com/ProductDetail/Murata-Power-Solutions/

UWE-12-6-Q48NB-C?qs=E1E},2F8fqQeYgYGfPEPkQx2A%3D%3D.

NickNothom, jaxxzer, patrickelectric, Williangalvani, ES-Alexander, and rjehangir. ping-python,

. URLhttps://github.com/bluerobotics/ping-python.

NickNothom, jaxxzer, patrickelectric, Williangalvani, ES-Alexander, and rjehangir. ping-protocol,

. URLhttps://github.com/bluerobotics/ping-protocol.
PCSCHEMATIC. Pcschematic. URLhttps://www.pcschematic.com/en/.

Raspberry Pi. Raspberry pi 4 tech specs. URL https://www.raspberrypi.com/products/

raspberry-pi-4-model-b/specifications/.

Omron Sentech. Stc-mca503usb. URL https://automation.omron.com/en/mx/products/

family/STUSB3/STC-MCA503USB.
Sonar-info. Target strength. URL http://www.sonar-info.info/p278/TS.pdf.

techopedia. Communication protocol. URL https://www.techopedia.com/definition/

25705/communication-protocol.

Ultimaker. Ultimaker cura. URLhttps://ultimaker.com/software/ultimaker-cura.
Wikipedia. Buoyancy, . URLhttps://en.wikipedia.org/wiki/Buoyancy.

Wikipedia. Display resolution, . URLhttps://en.wikipedia.org/wiki/Display_resolution.

Wikipedia. Electromagnetic compatibility, . URLhttps://en.wikipedia.org/wiki/Electromagnetic_

compatibility.

Wikipedia. Electromagnetic interference,. URLhttps://en.wikipedia.org/wiki/Electromagnetic_

interference.

Wikipedia. Frame rate, . URLhttps://en.wikipedia.org/wiki/Frame_rate.

https://www.emcbayswater.com.au/blog/emc-testing/commercial-emc-testing/guide-electromagnetic-compatibility-emc-testing-methods/
https://www.emcbayswater.com.au/blog/emc-testing/commercial-emc-testing/guide-electromagnetic-compatibility-emc-testing-methods/
https://www.emcbayswater.com.au/blog/emc-testing/commercial-emc-testing/guide-electromagnetic-compatibility-emc-testing-methods/
https://github.com/CentraleNantesRobotics/ping360_sonar
https://no.mouser.com/ProductDetail/Murata-Power-Solutions/UWE-12-6-Q48NB-C?qs=ElE%2F8fqQeYgYGfPEPkQx2A%3D%3D
https://no.mouser.com/ProductDetail/Murata-Power-Solutions/UWE-12-6-Q48NB-C?qs=ElE%2F8fqQeYgYGfPEPkQx2A%3D%3D
https://github.com/bluerobotics/ping-python
https://github.com/bluerobotics/ping-protocol
https://www.pcschematic.com/en/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://automation.omron.com/en/mx/products/family/STUSB3/STC-MCA503USB
https://automation.omron.com/en/mx/products/family/STUSB3/STC-MCA503USB
http://www.sonar-info.info/p278/TS.pdf
https://www.techopedia.com/definition/25705/communication-protocol
https://www.techopedia.com/definition/25705/communication-protocol
https://ultimaker.com/software/ultimaker-cura
https://en.wikipedia.org/wiki/Buoyancy
https://en.wikipedia.org/wiki/Display_resolution
https://en.wikipedia.org/wiki/Electromagnetic_compatibility
https://en.wikipedia.org/wiki/Electromagnetic_compatibility
https://en.wikipedia.org/wiki/Electromagnetic_interference
https://en.wikipedia.org/wiki/Electromagnetic_interference
https://en.wikipedia.org/wiki/Frame_rate

BIBLIOGRAPHY 84

Wikipedia. Gantt chart, .
Wikipedia. Machine vision, . URLhttps://en.wikipedia.org/wiki/Machine_vision.
Wikipedia. Raspberry pi os, .

Wikipedia. Communication protocol, . URLhttps://en.wikipedia.org/wiki/Communication_
protocol#:~:text=A%20communication’,20protocol’20is?%20a, and%20possible’20errory

20recovery’20methods.
Wikipedia. Osi model, . URLhttps://en.wikipedia.org/wiki/0SI_model.

Wikipedia. List of network protocols (osi model),. URLhttps://en.wikipedia.org/wiki/

List_of_network_protocols_(0SI_model).

Wikipedia. Target strength, . URLhttps://en.wikipedia.org/wiki/Target_strength#: ™ :
text=The’,20target’%20strength’,20orj20acoustic, as%20a%20numbery200f’20decibels.
&text=Target%20strength’20(TS)?%20is%20equal, cross’%20section’20is%204%CF}80%CFY
83bs.

Wikipedia. Sonar, . URLhttps://en.wikipedia.org/wiki/Sonar#Passive_sonar.

Wikipedia. Conductivity (electrolytic), . URLhttps://en.wikipedia.org/wiki/Conductivity_

(electrolytic).
Wikipedia. Salinity,. URLhttps://en.wikipedia.org/wiki/Salinity).
Wikiwand. Arduino. URL https://www.wikiwand.com/en/Arduino.

RF Wireless World. Sonar vs radar | difference between sonar and radar. URL https://www.
rfwireless-world.com/Terminology/SONAR-vs-RADAR.html#:~:text=SONARY%20stands’%20for
20S0und%20Navigation, above20the’,201and%200r%20sea.

https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Communication_protocol#:~:text=A%20communication%20protocol%20is%20a,and%20possible%20error%20recovery%20methods.
https://en.wikipedia.org/wiki/Communication_protocol#:~:text=A%20communication%20protocol%20is%20a,and%20possible%20error%20recovery%20methods.
https://en.wikipedia.org/wiki/Communication_protocol#:~:text=A%20communication%20protocol%20is%20a,and%20possible%20error%20recovery%20methods.
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)
https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)
https://en.wikipedia.org/wiki/Target_strength#:~:text=The%20target%20strength%20or%20acoustic,as%20a%20number%20of%20decibels.&text=Target%20strength%20(TS)%20is%20equal,cross%20section%20is%204%CF%80%CF%83bs.
https://en.wikipedia.org/wiki/Target_strength#:~:text=The%20target%20strength%20or%20acoustic,as%20a%20number%20of%20decibels.&text=Target%20strength%20(TS)%20is%20equal,cross%20section%20is%204%CF%80%CF%83bs.
https://en.wikipedia.org/wiki/Target_strength#:~:text=The%20target%20strength%20or%20acoustic,as%20a%20number%20of%20decibels.&text=Target%20strength%20(TS)%20is%20equal,cross%20section%20is%204%CF%80%CF%83bs.
https://en.wikipedia.org/wiki/Target_strength#:~:text=The%20target%20strength%20or%20acoustic,as%20a%20number%20of%20decibels.&text=Target%20strength%20(TS)%20is%20equal,cross%20section%20is%204%CF%80%CF%83bs.
https://en.wikipedia.org/wiki/Sonar#Passive_sonar
https://en.wikipedia.org/wiki/Conductivity_(electrolytic)
https://en.wikipedia.org/wiki/Conductivity_(electrolytic)
https://en.wikipedia.org/wiki/Salinity)
https://www.wikiwand.com/en/Arduino
https://www.rfwireless-world.com/Terminology/SONAR-vs-RADAR.html#:~:text=SONAR%20stands%20for%20SOund%20Navigation,above%20the%20land%20or%20sea.
https://www.rfwireless-world.com/Terminology/SONAR-vs-RADAR.html#:~:text=SONAR%20stands%20for%20SOund%20Navigation,above%20the%20land%20or%20sea.
https://www.rfwireless-world.com/Terminology/SONAR-vs-RADAR.html#:~:text=SONAR%20stands%20for%20SOund%20Navigation,above%20the%20land%20or%20sea.

Appendix A

Preproject report

FORPROSIJEKT - RAPPORT B NTNU

FOR BACHELOROPPGAVE
Kunnskap for en bedre verden

TITTEL:

Forprosjekt rapport for ROV- Remotely Operated Underwater Vehicle

KANDIDATNUMMER(E):

Tony Paulsen
Petter Henriksen

DATO: EMNEKODE: EMNE: DOKUMENT TILGANG:
19.01.2022 IELEA2920 Bacheloroppgave - Apen
STUDIUM: ANT SIDER/VEDLEGG: | BIBL. NR:
ELEKTROINGENIGR-AUTOMATISERING OG ROBOTIKK 10/4 - Ikke i bruk -

OPPDRAGSGIVER(E)/VEILEDER(E):

NTNU i Rlesund v/Lars Christian Gansel, Ottar L. Osen

OPPGAVE/SAMMENDRAG:

NTNU i Alesund gnsker & videreutvikle en USV plattform, et ubemannet overflatefartgy som
skal baere en ROV og vinsj for @ kunne observere undervanns akvakulturer. ROVen skal ha
kamera, sensorer for maling av diverse verdier og thrustere for bevegelse. Produksjon av en
prototype av denne ROVen er gitt som bachelor oppgave til studenter som studerer
Automatisering og Robotikk. Denne forprosjektrapporten er en prosjektbeskrivelse av denne
bacheloroppgaven.

Bacheloroppgaven skal utrede et konsept for en slik ROV med fokus pa integrering av kamera,
sensorer og en brukervennlig GUI. Viktige designkriterier vil vaere vekt, kostnad og brukbarhet
av bilde og sensorverdier for forskning pa akvakulturer. Oppgaven skal ogsa utfgres pa en
mate som gjor det lett for fremtidige grupper & videreutvikle ROVen videre.

Prototypen skal testes i vann p& NTNU test lokaler og ute pa lokasjon for & kunne demonstrere
at design og implementasjon av nye funksjoner fungerer som angitt.

Denne oppgaven er en eksamensbesvarelse utfort av student(er) ved NTNU i Alesund.

Postadresse Besgksadresse Telefon Telefax Bankkonto
Hggskolen i Alesund Larsgardsvegen 2 7016 12 00 70 16 13 00 7694 05 00636
N-6025 Alesund Internett Epostadresse Foretaksregisteret

Norway www.hials.no postmottak@hials.no NO 971 572 140

mailto:postmottak@hials.no

NTNU I ALESUND SIDE 2
FORPROSJEKTRAPPORT — BACHELOROPPGAVE

INNHOLD

ININHOLD ...ttt ettt b et h e s et e st e ee e eE e e Eeeh a8 e e m e e st ee e e b e e bt eb e e Rt e m e et eaeebenbeebeebeeneensesbesbenbeaneanes 2
1 INNLEDNING ...ttt bbbt st a8 e e e ke bt e bt e R e e Rt e s £ e n e e beseeeb e e beeb e e s e enbesbesbenbesbeebeene e 3
2 BEGREPER ...ttt bRttt e E e R e Rt R e Rt e Rt e R e e R e ARt Rt e Rt e Rt e ee b e b nbeereaneenes 3
3 PROSIEKTORGANISASION. ..ottt ettt ettt sttt e et e st e s be s bttt e st eneeseessesbesbesbeabeeseeseeneebesbesbesseaneas 3
3.1 PROSIEKTGRUPPEttiuttitttitttattesteeteesteastesteesbeesteeabeaasesaeeeheeeb e e bt e s be e s beeh e e ehe e She e ebe e b e eab e eh b e eb e e ekt e beesbeasbesneeseeesbeennis 3
311 Oppgaver for prosjektgruppen — OrganISEIINGcvierreiiiirreieie ettt ene e 3
3.1.2 OPPGAVEr fOr PrOSJEKIIEUETc.vee et te e e s re e s aeesaeenteeneenree e 3
3.1.3 L@ o oTo TN T g (o] ST (=] : T SR 3

3.2 STYRINGSGRUPPE (VEILEDER OG KONTAKTPERSON OPPDRAGSGIVER)cviiviatiriiasiaiensistestestesseaseeseeneessessesnesseans 4

A AVTALER . et bttt bbb R R R e oAb bR R R e R £ R e e e bR bRt Rt e R e e b et e bbb enes 4
4.1 AVTALE MED OPPDRAGSGIVERceittitietiesteastesieesteesteesteasseassessseaseesseesseeseasseassesseesseesseeaseanseanseanrenseenteenseesnessneas 4
4.2 ARBEIDSSTED OG RESSURSERutittettetiesteastesseesteesteesseasseassessesaseesseeseeseassesssesseesseesseaaneanseanseansesseenteenseensessnens 4
43 GRUPPENORMER — SAMARBEIDSREGLER — HOLDNINGERc.utteiuieiieititestestesieeite e see sttt sie s s e snesne e s sneens 4
5 PROSIEKTBESKRIVELSE ...ttt bttt bbbt bbbt e e e e e b nbe b b ene s 4
5.1 PROBLEMSTILLING - MALSETTING = HENSIKT ...utittiuteutestestestesteeteeiie e ss bt st sbe s e see s e b sbesbesbeese e e eneeneseesbesbesneenes 4
5.2 KRAV TIL L@SNING ELLER PROSIEKTRESULTAT — SPESIFIKASIONc.uoitirtiriiatiaieeieeestestesiestesseeseeseensesseseessessessens 5
521 FOIDEATE KAMEIA ...ttt bbbt bbbt e b s bt bt bt e bt e s e et et sb e b e sbeeneas 5
5.2.2 0] 0 F= 1 T T PP P P OP TP PPRPRPPY 5
5.2.3 L0] o] [P TSy 0] ST g T SR 5

53 PLANLAGT FRAMGANGSMATE(R) FOR UTVIKLINGSARBEIDET — METODE(R) ...vveivveveeieetienteesteesieesieeseeseesnnesneenas 5
5.4 INFORMASJONSINNSAMLING — UTF@RT OG PLANLAGTeeuveteteteeteeteeeestestessesieaseaseasessesaessessesnsessensessessessessesseas 6
55 VURDERING — ANALYSE AV RISIKOc.ttitteutiaitesitesieesteesieesteassessseastesseesbeesseassesssesseesbeesseaaseansessseassesssenbeenbeennessneas 6
5.6 HOVEDAKTIVITETER | VIDERE ARBEIDutitttttiuiautestestestestesteesteeessestesaesbesseeseaseassesessesbesaessesseessessessesbesaessessessens 6
5.7 FRAMDRIFTSPLAN — STYRING AV PROSIEKTETeutetiutesteatesieaueeseesestestessessessesseessessessessessessesseessessessessessessessessens 6
5.7.1 [(0120] o] F= o PSS 6
5.7.2 R4 10001 AT =2 o L=T T o | =T USSR 7
5.7.3 L0 LAY T T T YL o=l T Lo | =] SR 7
5.7.4 INtErN KONEFOI — BVAIUBKTINGeivieie ettt ettt st e et e et e et e e st e snaesteenaeesreenneas 7

5.8 BESLUTNINGER — BESLUTNINGSPROSESStteuttauteattesttesteesteasteassesssesseesteesseasseassesssesssesseesseensesssesssesssessesssesssesnes 7

B DOKUMENTASJION ..ottt et b bt b £ e bt et e beeb e b e e bt eb £ e b e e a e e s e e b e besbeebeebeeheehe et e besbeabeabeeneas 7
6.1 RAPPORTER OG TEKNISKE DOKUMENTER. ... tttutttuttautesttesteesteasteastesseessessteesseasseassesssesssesssesseessesssesssesssessesssesssesnnes 7

7 PLANLAGTE MZTER OG RAPPORTER.......i it st 8
7.1 Y [/ 1 = TP PP TP UPRRTPN 8
711 MBLEr MEA SEYFINGSUIUDPEIN .c.veieieite ettt sttt ettt ettt st bttt ettt e bt s b b et be st e st ebe st e st sbenene st 8
7.12 POSTEKIMBLEN ...ttt ettt et bbb bbbt b e bt e bt s b b et bt e bt bt b et b ne et 8

7.2 PERIODISKE RAPPORTERettttteatteseeseeseessessesssasesseessessessessessessessesssessessessesssssesseessessessessessessessessesssssessessessessenns 8
721 Framdriftsrapporter (inKL. MIIEPERI) ..o 8

8 PLANLAGT AVVIKSBEHANDLINGccciiiiiitiieieee sttt st stesneeneeseesesaesnesnesnannens 8
9 UTSTYRSBEHOV/FORUTSETNINGER FOR GJENNOMF@RING........cccoviiieienicie e 9

VEDLEGG ...ttt bkttt bbb b h s E R R R AR R R R R e Rt R Rt Rt Rt Rt n e nn e n e r e r s 10

NTNU I ALESUND SIDE 3
FORPROSIEKTRAPPORT — BACHELOROPPGAVE

1 INNLEDNING

I Norge og spesielt pa Vestlandet er fiske oppdrett en viktig del av gkonomien, men oppdretts bedrifter har
matt p& problemer i form av bakterier og lus. For & lgse dette problemet trenger marine biologer redskap for
a kunne observere fisken og miljget rundt dem. For & hjelpe med dette skal vi videreutvikle en ROV
prototype. ROVen skal ha et kamera og diverse sensorer for & kunne samle data, den skal ogsa ha thrustere
for bevegelse slik at man kan flytte kameraet der man gnsker. ROV skal i tillegg ha en GUI som gjer den
brukervennlig, og viser relevante data pa en oversiktlig mate. ROVen er en del av et stgrre system som i
bestar av en vinsj og en flytende plattform.

2 BEGREPER

- ROV (Remotely Operated Underwater Vehicle), betegnelse for fjernstyrt undervanns kjaretay.

- GUI (Graphical User Interface), grafisk brukergrensesnitt, ett brukergrensesnitt for dataprogram som lar
brukeren benytte utstyr som tastatur og datamus for & lese data og sende kommandoer.

3 PROSJEKTORGANISASJON

3.1 Prosjektgruppe

Studentnummer(e)

517297 — Tony Paulsen — Prosjektleder
510317 — Petter Henriksen — Sekretaer

Tabell: Studentnummer(e) for alle i gruppen som leverer oppgaven for bedemmelse i faget IELEA2920

3.1.1 Oppgaver for prosjektgruppen — organisering

Alle gruppemedlemmene har samme ansvar for gjennomfaring av prosjektet, bade dokumentasjon og
arbeid pa prosjektet. Gruppemedlemmene skal til alle tider holde hverandre oppdatert om fremdrift og
eventuelle avvik.

3.1.2 Oppgaver for prosjektleder

e Oppdatere Gantt-diagram
e Mgteinnkalling med agenda
e Lede mgter med styringsgruppen

3.1.3 Oppgaver for sekreteer

NTNU I ALESUND SIDE 4
FORPROSIEKTRAPPORT — BACHELOROPPGAVE

e Reservasjon av eventuelt mgterom for styringsgruppe-mgter
e Skrive og distribuere mgtereferat
e Skrive framdriftsrapport

3.2 Styringsgruppe (veileder og kontaktperson oppdragsgiver)

Styringsgruppen bestér av Ottar Osen og Lars Christian Gansel fra NTNU i Alesund.

4 AVTALER

4.1 Avtale med oppdragsgiver

Oppgaven gér ut pa a videreutvikle og forbedre en ROV, arbeidet bygger pa tidligere studentprosjekter
som har blitt utfert ved NTNU i Alesund. Tidligere oppgaver rundt ROVen har hatt tverrfaglige grupper,
der arbeidsoppgaver som produktdesign og kontrollsystemer ble utfart av egnede personer. Gruppen var
bestar av kun automatiseringselever, og derfor blir design/ valg av materiell og lignende forenklet slik at
gruppen har mulighet til & fokusere pa mer relevante arbeidsoppgaver. Fra mgte med styringsgruppen ble
det avtalt at arbeidsoppgavene var veldig apne, og at vi far stor valgfrihet til a velge gnskelige
forbedringer pad ROVen.

4.2 Arbeidssted og ressurser

Prosjektet skal utfares ved NTNU i Alesund. Her jobber begge veilederne fra styringsgruppen, som er
gunstig for tilgang til hjelp pa kort varsel. Veilederne har uttrykt mulighet for testing ved lokasjon om
dette er gnskelig. Mate med veilederne skal ta stede enten digitalt eller pa avtalt lokasjon annenhver
tirsdag.

4.3 Gruppenormer — samarbeidsregler — holdninger

Gruppen har avtalt & innfgre en kjernetid mellom 09:00 til 14:00 hver ukedag. Dette er for & sikre god
fremgang pa prosjektet og a veere tilgjengelige for hverandre ved sparsmal og diskusjoner. Likevel
settes det som mal at gruppemedlemmene skal jobbe minimalt 37.5 timer hver uke, ekskludert pauser. |
tillegg er det utarbeidet en samarbeidsavtale for & sette hverandre ansvarlige for gode holdninger innen
gruppen, se vedlagt.

Gruppemedlemmene skal behandle hverandres meninger og synspunkt med respekt. Alle
gruppemedlemmene skal arbeide ngyaktig, @rlig og vaere punktlig iht. avtaler og mater.

5 PROSJEKTBESKRIVELSE

5.1 Problemstilling - malsetting - hensikt

Prosjektet tar basis i tidligere prototyper av ROVer utarbeidet av studenter ved NTNU. Ettersom
gruppemedlemmene ikke har mye erfaring innen design av fartgy, avgrenses oppgaven til a lage en
veldig simpel prototype for ett ROV fartay, som gnskelige sensorer kan monteres pa og videre brukes/
testes.

Etter mgte med styringsgruppen fikk vi informert om mulige utvidelser av ROV som var gnskelig. Fra
mgtet og etter intern diskusjon innen gruppen bestemte vi oss for a dele opp prosjektet i tre
hovedtemaer, kamera, sonar og kombinasjonssensor.

NTNU I ALESUND SIDE 5
FORPROSIEKTRAPPORT — BACHELOROPPGAVE

3.2

5.2.1

5.2.2

5.2.3

3.3

Krav til lasning eller prosjektresultat — spesifikasjon

Auvsnittene under beskriver i mer detalj kravene og malene som settes for hver enkelt av de tre
hovedtemaene som prosjektet bestar av. Farst forklares kravene til oppgradering av kamera, deretter
beskrives kravene for sonar og kombinasjonssensor. | tillegg til sonar sensor og kombinasjonssensor
montering og avlesning av data, -beskrives det at ytterligere logikk som skal implementeres. Men en
presis formulering av lgsning er ikke spesifisert, dette er fordi det kreves mye forsking og utreding som
skal utfares etter forprosjektrapporten for a finne realistiske og gode logikk implementasjoner.

Forbedre kamera

Fra tidligere iterasjoner av prosjektet er det nd montert et vanlig Webkamera. Vi gnsker & dimensjonere,
montere og integrere ett kamera som er bedre egnet for darlige lysforhold og som har mulighet for &
skille mellom kontraster effektivt. En del av prosjektet blir & finne et slikt kamera som oppfyller
kravene. Malet er ogsa & finne et kamera som er bedre eller like bra som GoPro kameraene som blir
brukt pa andre ROVer som allerede er i bruk av biologi avdelingen. Men GoPro kameraene har egne
program som er spesial-tilpasset for dem. Ved valg av nytt kamera som er bedre egnet for egenskapene
som vi behgver, vil sending av informasjon til GUI en utfordring.

Sonar

Montere og integrere en sonar sensor pa undersiden av ROV. Farste steg blir & avlese dataen fra
sonaren pa en mate som er intuitivt pA GUI, som i hovedsak vil gi lokasjon pa fisk. Videre skal det
utvikles kollisjons-beskyttelse for & sikre ROV mot skade under operasjon. Der vi gnsker a gi alarm pa
GUI, og utvikler logikk som aktiverer variabler som kan brukes til forrigling under kjering av thrustere i
retningen det oppdages objekt(er).

Ett alternativ for sonar er Ping360 fra BlueRobotics.

Kombinasjonssensor

Montere og integrere en kombinasjonssensor som maler flere viktige parameter som er essensielle for
akvakultur. Malevariabler som saltholdighet, pH, vann-hardhet og vann-konduktivitet er relevante for
ROVen. Andre variabler som oksygen og temperatur er allerede utredet og integrert pa en god mate, og
behgves ikke endres. Dataen fra denne sensoren skal behandles og det skal veere mulighet for & vise
infoen i GUlen. Videre skal det utvikles logikk som bestar av moving-average avlesninger av kritiske
verdier for akvakultur, dersom endringene er store over kort tid, eller det oppstar verdier som er
benevnet som kritiske, skal dette vises med alarmer og visuelle hjelpemiddel pa GUI.

Ett alternativ for en kombinasjonssensor er Model 5819 fra Aanderaa.

Planlagt framgangsmate(r) for utviklingsarbeidet — metode(r)

Gruppearbeidet vil utfgres opp mot mal som er satt i Gantt diagrammet. Der aktivitetene som er oppfart

farst skal prioriteres hgyest. Gruppemedlemmet som er ansvarlig for en spesifikk aktivitet har fullt ansvar
for & fullfare denne aktiviteten innen tiden, ellers gi beskjed om fristen ikke kan holdes.

Ettersom gruppen bestar av to medlemmer vil begge medlemmer jobbe med alle arbeidsoppgavene, der
det byttes pa hvilket medlem som har ansvar. Det er antatt at noen aktiviteter vil ga over fristen, eller

NTNU I ALESUND SIDE 6
FORPROSIEKTRAPPORT — BACHELOROPPGAVE

5.4

3.5

3.6

mmoOO P

G.

aktiveten mangler informasjon eller komponenter, i slike situasjoner skal arbeidet justeres dynamisk slik
at det blir alltid jobbet med relevante arbeidsoppgaver.

Informasjonsinnsamling — utfgrt og planlagt

I lgpet av forprosjekt rapport arbeidet har gruppemedlemmene studert relevant litteratur for prosjektet.
Medlemmene har lest tidligere rapporter og dokumentasjon utarbeidd fra bade studenter og fagleerere ved
NTNU, i tillegg har medlemmene studert informasjon fra tilsvarende internasjonale prosjekter.

Informasjonsinnsamlingen er svert viktig for & bygge ett godt kunnskaps fundament slik at beslutninger
som valg av arbeidsoppgaver blir gjort slik at ROVen blir forbedret, samtidig som at lgsningen som blir
startet er overkommelig for to studenter som en bachelor oppgave.

Denne informasjonsinnsamlingen skal utfares kontinuerlig gjennom prosjektets gang. Medlemmene skal
begynne fra starten av med & tilfgre viktige og relevant informasjon under teoretisk bakgrunn pa
rapporten.

Vurdering — analyse av risiko

Ettersom gruppen bestar av to medlemmer vil begge medlemmer jobbe med alle arbeidsoppgavene, der
det byttes pa hvilket medlem som har ansvar. Det er antatt at noen aktiviteter vil ga over fristen, eller
aktiveten mangler informasjon eller komponenter, i slike situasjoner skal arbeidet justeres dynamisk slik
at det blir alltid jobbet med relevant arbeidsoppgaver.

Vi har utviklet en risikomatrise som viser risikoen for ulike aspekt av prosjektet, der en hgy risiko betyr at
det er stor sannsynlighet for at situasjonen som oppstar skaper hgy tidsforsinkelse i prosjektet.
Risikomatrisen skal utvikles videre gjennom prosjektet nar nye situasjoner ma tas i vurdering.

Hovedaktiviteter i videre arbeid
Hovedaktivitet: Utredning av ROV konsept

Hovedaktivitet: Utstyrsanskaffelse
Hovedaktivitet: Bygge prototype

Hovedaktivitet: Programvare utvikling
Hovedaktivitet: Integrasjon av alle del-systemer
Hovedaktivitet: Testing av protype

Hovedaktivitet: Fullfgre rapport og endelig innlevering

En mer detaljert versjon av dette som inneholder tidsrammer og ansvars person vil vare i Gantt-diagrammet

3.7

Framdriftsplan — styring av prosjektet

5.7.1 Hovedplan

Hovedplanen for prosjektet blir satt i form av Gantt-diagrammet. | dette diagrammet settes start -og stopp
dato for hver enkelt aktivitet. Diagrammet viser ogsa hvilket medlem som star med ansvar for hver enkelt
aktivitet. Gantt-diagrammet skal utredes med en hierarkisk struktur, der store aktiviteter skal deles ned i
mindre og mindre aktiviteter. Dette resulterer i god kontroll over prosjektet, i tillegg til at aktivitetene
ikke virker uoverkommelige.

NTNU I ALESUND SIDE 7
FORPROSIEKTRAPPORT — BACHELOROPPGAVE

5.7.2 Styringshjelpemidler

For rapportskriving i LaTeX benytter vi Overleaf for & kunne enkelt arbeide samtidig, samtidig ha
tilgang til hjelpemiddel som versjonskontroll og kommentering av tekst.

Til Gantt diagram brukes nettsiden teamgantt.com.

5.7.3 Utviklingshjelpemidler

For utvikling og simulering av data fra sonar sensor vil gruppen ha behov for Matlab.
For programmering av sensorer som er tilkoblet Arduino benyttes Arduino IDE og jetbrains Clion.
For kjering av GUI benyttes NetBeans IDE.

5.7.4 Intern kontroll — evaluering

Prosjektleder har ansvar for utvikling og oppdatering av Gantt skjema minst en gang i uken.
Sekreteer har ansvar for skriving av framdriftsrapporter.

Samtaler mellom gruppemedlemmene skal utfares daglig.

5.8 Beslutninger — beslutningsprosess

Konkrete rammevilkar for prosjektet bestemmes i mgte mellom prosjektgruppen og
styringsguppen.

Skal signifikante endringer utfares fra anske av prosjekt -eller styringsguppen skal dette bli tatt opp
i ett formelt mate.

6 DOKUMENTASJON

6.1 Rapporter og tekniske dokumenter

Gantt-diagram

Magteinnkallinger

Mgtereferater

Framdriftsrapporter (m/ referat av mater)
Underveispresentasjon
Videopresentasjon av ferdig prosjekt
Risikoanalyse

Alle dokumentert blir lastet opp i teams slik at de er sikkerhetskopiert

NTNU I ALESUND SIDE 8
FORPROSIEKTRAPPORT — BACHELOROPPGAVE

7 PLANLAGTE M@TER OG RAPPORTER

7.1 Magter

7.1.1 Mgter med styringsgruppen
e Oppstarts mgte 13.01.2022 klokken 13:00 med prosjekt gruppe, Ottar L. Osen og Lars Christian Gansel

e Planlagt mgte annenhver tirsdag fra og med 01.02.22. Disse mgtene gjgr at prosjekt gruppen kan
informere styringsgruppen om framdriften i prosjektet og be om veiledning fra styringsgruppen

e Sekreter sender matereferat pa mail sa for som mulig til alle deltagere etter mate

7.1.2 Prosjektmgater

Prosjekt gruppen bestar bare av 2 personer og gruppen vil jobbe tett sammen gjennom det meste av prosjektet
derfor er ikke det ngdvendig med slike mater.

Dersom det oppstér problem i samarbeidet, kan det bli aktuelt med slike mgter
7.2 Periodiske rapporter

7.2.1 Framdriftsrapporter (inkl. milepael)

Far mgter vil det bli laget en framdriftsrapport som viser arbeidet som skulle veert utfgrt og det som faktisk ble
gjort. Rapporten vil inneholde eventuelle endringer og avvik fra plan. | tillegg vil ogsa arbeidet som skal jobbes
med til neste mgte bli presentert. Denne rapporten vil bli sendt til styringsgruppen dagen far mgatet. Oppdatert
Gantt-diagram vil bli sendt sammen med mgte innkalling. Mgtereferat blir sendt ut til alle deltakere etter hvert
mate.

7.2.2 Mgtereferater
Referatene vil inneholde:
e Navn pa deltakere
e Framgang fra forrige mate
e Eventuelle avvik og endringer i prosjektet

e Mal til neste mote

8 PLANLAGT AVVIKSBEHANDLING

Dersom det oppstar avvik, vil gruppen stille disse spgrsmalene i en intern diskusjon.
e Kan avviket fikses med mer ressurser?
e Kan avviket unngas?
e Kan avviket lgses med ekstern hjelp?
e Kan arbeidsoppgaven bli byttet ut slik at man unngar avviket?

Eventuelle endringer som gruppen kommer fram til vil bli sendt til styringsgruppen slik at det kan komme
eventuelle innspill fgr en endelig avgjarelse

NTNU I ALESUND SIDE 9
FORPROSIEKTRAPPORT — BACHELOROPPGAVE

9 UTSTYRSBEHOV/FORUTSETNINGER FOR
GJENNOMFQRING

e Utstyr / programvare eller andre spesielle ressurser som en vanligvis ikke har tilgang til og som er
ngdvendig for & gjennomfare prosjektet

e Eventuelt spesialutstyr / programvare som det sgkes om innkjgp av- begrunnes
(Vanligvis vil det veere oppdragsgivers ansvar 4 stille slikt utstyr og programvare til disposisjon for
prosjektgruppen)

Gruppen ma finne og kjepe inn alle deler som trengs for ROVen dette inkluderer sensorer, sonar og kamera.
Utstyret trenger en trygg oppbevarings lokasjon under prosjektet. Det trengs ogsa en plass for testing av ROVen,
der vi behgver en vanntank for tidlige tester, og reise til en lokasjon for full skala test. Utstyr som blir essensielt
som vi ikke har tilgjengelig og som vi antar ma bestilles er

e 360 Sonar
e Aanderaa Sensor
e Nytt kamera

NTNU I ALESUND

FORPROSIEKTRAPPORT — BACHELOROPPGAVE

VEDLEGG

Vedlegg 1
Vedlegg 2
Vedlegg 3
Vedlegg 4

Gantt-diagram
Risikomatrise
Samarbeidsavtale

Mgtereferat, farste mgte med styringsgruppe 13.01.22

SIDE 10

Vedlegg 1

Gantt-diagram

“=teamgantt

Created with Free Edition

IELEA2920 ROV

Forprosjektrapport
Definere problemstillinger
Lage risikomatrise
Lage Gantt-diagram
Kombinere alle dokument

Utredning av ROV konsept
Bestemme sonar type
Bestemme komb. sensor type
Bestemme kamera
Bestemme utforming av prototype sk...
Vurdere plassering av sensorer

Utstyrsanskaffelse
Bestille sensorer
Bestille annet utstyr

Bygge prototype

Demontere gammel ROV

Montere gammelt utstyr

Tilpasse prototype for sensorer
Lage montasje for sonar
Lage montasje for komb. sensor
Lage montasje for kamera m/ vann...

Montere nye sensorer
Montere sonar
Montere komb. sensor
Montere kamera

Programvare utvikling
Kombinasjons sensor
Program for avlesning data
Program til system
Sonar
Program for avlesning data
Program til system
Kamera
Vise kamera i GUI
Tilpasse kode for system

Integrasjon av alle del-systemer

Integrasjon av komb. sensor

Vise sensor verdier

Gi beskjed om ending av snittverdi...
Integrasjon av sonar data

Vise data som bilde

Gi beskjed om kollisjonsfare
Integrasjon av kamera

Vise kamera i GUI

start

01/12/22
01/12
01/20
01/19
01/20

01/24/22
01/24
01/24
01/24
01/31
02/01

01/31/22
01/31
01/31

02/07/22
02/07
02/10/22
02/10
02/10
02/17
02/28/22
02/28
02/28
02/28

03/07/22
03/07/22
03/07
03/07
03/09/22
03/09
03/09
03/14/22
03/14
03/21

03/28/22
03/28/22
03/28
04/05
03/28/22
03/28
04/05
03/28/22
03/28

end

01/21/22
01/21
01/21
01/21
01/21

02/04/22
01/28
01/28
01/28
02/03
02/04

02/03/22
02/03
02/03

03/04/22
02/09
02/25/22
02/16
02/16
02/25
03/04/22
03/04
03/04
03/04

03/28/22
03/11/22
03/11
03/11
03/16/22
03/16
03/16
03/28/22
03/18
03/28

04/08/22
04/08/22
04/08
04/08
04/08/22
04/08
04/08
04/08/22
04/08

0

0%

0%
0%
0%
0%
0%

0%
0%
0%
0%
0%
0%

0%
0%
0%

0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%

0%
0%
0%
0%
0%
0%
0%
0%
0%
0%

0%
0%
0%
0%
0%
0%
0%
0%
0%

1/22 2/22 3/22 4/22 5/22
1 17 24 3 7 14 21 2 7 14 21 28 4 11 18 25 2 9 16
H
| —
=
-
Tony Vikene Paulsen
[_—""1 [Tony Vikene Paulsen
[|Petter Henriksen

E

] Petter Henriksen
"] Tony Vikene Paulsen

Tony Vikene Paulsen
Petter Henriksen

[Petter Henriksen
|
[Petter Hen
[Tony Viken

| I—

—

iksen
e Paulsen
Petter Henriksen

Petter Henriksen
Tony Vikene Paulsen
Petter Henriksen

—

—
[Tony Vikene Paulse
[Tony Vikene Paulse
—
""" Tony Vikene Pal
[Tony Vikene Pal
—
[Petter Henri
| I—

ulsen

ulsen

Petter Henriksen

Petter Henriksen []

Tony Vikene Paulsen

Tony Vikene Paulsen [|

Petter Henriksen

“=teamgantt

Created with Free Edition

Testing av prototype
Testing av alle sensorer pa GUI
Testing av implementert logikk
Full skala test pa lokasjon

Fullfere rapport
Fullfgre rapport i LaTeX
Kombinere LaTeX m/ alle vedlegg

04/11/22 04/29/22
04/11 04/15
04/18 04/22
04/25 04/29

02/07/22 05/20/22
02/07 05/19
05/19 05/20

Oh

0%
0%
0%
0%
0%
0%
0%

11

1/22

24

2/22
14

21

3/22
14

4/22 5/22
21 28 4 11 18 25 2 9 16 23
Petter Henriksen [0
Tony Vikene Paulsen []

Petter Henriksen, Tony Vikene Paulsen

Petter Henriksen, Tony Vikene Paulsen

Petter Henriksen, Tony Vikene Paulsen []

http://www.tcpdf.org

Vedlegg 2

Risikomatrise

Sannsynlighet

Innvirkning

Neglisjerbart |Liten [Moderat

Sveert sannysnlig
Sannsynlig

Usanssynlig
Sveert usannsynlig

Sannsynlighet beskriver hvor ofte en slik feil typisk vil oppsta.
Innvirkning beskriver hvor mye ekstra tid som vil medfgre ved en feil.
Fargen gir ett overslag over hvor utfordrende denne feil typen er.

Risiko-tabell

Nr. [ldentifiserte risikoer Dato for risiko oppdagelse
1|Sykdom i gruppen (COVID-19) 17.01.2022
2|Nedstenging av arbeidslokale 17.01.2022
3[Problemer med sensor kalibrering 17.01.2022
4|Mangel pa tid pga lang leverings tid pa deler 19.01.2022
5|Feil med vanntetting av elektronikk 19.01.2022
6[Mangel pa monterings-verktgy 19.01.2022
7[Mangel pa ngdvendige deler som feks kamera sensorer 19.01.2022
8|@deleggelse av sensorer (feil polaritet) 23.01.2022
9

10
11

[uny
N

Vedlegg 3

Samarbeidsavtale

Samarbeidsavtale

Leveranse

1.

Alle mgter til avtalt tid. Om du er forsinket, gi beskjed sa raskt som mulig. Viss samme person er
forsinket to eller flere ganger, skal dette noterast og gis grunn for i rapport.

2. Begge deler ansvaret likt for at utviklingsprosessen og rapporten er av tilfreds kvalitet for en hgy
karakter.
Tilfredshet
3. Vignsker at det er givende og g@y a jobbe med prosjektet. Det skal vaere en god atmosfaere og
om en av oss mener den andre er urettferdig eller negativ, skal dette bli tatt opp og diskutert.
4. Viss en av oss ikke har en god dag, eller er i darlig humgr, gnsker vi & ta det opp slik at
samarbeidet blir tilpasset.
5. Vitar opp og setter innleveringsfrister til hverandre underveis, slik at arbeidet ikke hoper seg
opp mot slutten. Det er viktig at vi overholder disse fristene sa godt som mulig.
Leering
6. Begge skal vaere apne mot hverandre med 3 gi regelmessig konstruktiv kritikk for a gi oss st@rst
mulig sjanse for ett vellykket prosjekt. Mottakeren av kritikken skal ta radene serigst og ikke ta
dette personlig.
7. Viskal utfordre oss selv med a ta deloppgaver som vi ikke har mestret enda, for a laere mer
underveis.
8. Om noen er usikker eller sitter fast, skal det vaere enkelt a8 kontakte medarbeider for bistand.
Tony Paulsen Petter Henriksen

Vedlegg 4

Mgtereferat 13.01.22

Mgte referat

Mgte mellom prosjekt -og styringsgruppen, bachelor ROV

Varighet: 60 min

Dato: 13.01.22

Start tidspunkt: 13:00

Mgte lokasjon:

Zoom

Mgte innkalt av:

Tony Paulsen

Mgte type: Fremdriftsmgte med styringsgruppe
Mgtet styrt av: Tony Paulsen
Sekretzer: Petter Henriksen

Tids ansvarlig:

Petter Henriksen

Deltakere:

Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda nummer

Agenda

Diskutert

1

Lars presenterer hva han gnsker
seg

Ble informert at vi kunne tolke oppgaven
veldig apent.

Interesse for sonar og ulike
kombinasjonssensorer.

Interesse for ett nytt kamera som er
bedre egnet for lokasjon av fisk i
vanskelige lysforhold.

Viste eksempel pa sonar og
kombinasjonssensor.

Ottar sier litt om hva vi gnsker a
prioritere

Ga tips om hvordan vi kan utvikle
prototypen for ROV pa en mate som er
tilstrekkelig for var testing.

Informerte prosjektgruppe om at det ma
undersgkes hvilke sensorer som skal
bestilles raskt som mulig.

Studentene reflekterer over
informasjon

Uttrykte at vi ville fokusere pa
programmering og kryss implementasjon
av sensorene pa en mate som gir en
tydelig forbedring av tidligere ROVer.

Appendix B

Progress reports

IELEA2920 Project Number of meeting this period 1). Firma - Oppdragsgiver Side

Hovedprosjekt AlPROV 0 planned NTNU i Aalesund lav?2
Prog ress repo rt Period/week(s) Number of hours this period. (from | Prosjektgruppe (navn) Dato
2 log) Approx. 5() ROV 08.03.22

Main goal/purpose for this periods work

Test all sensors (temperature, depth, conductance, sonar etc)
Test all actuators (lights, thrusters)
Make ROV-platform

Planned activities this period

Write test scripts in Arduino IDE for 12C sensors, integrating all 12C sensors on same bus
Setting up Raspberry Pl with Python scripts for testing serial communication sensor
Make mounts for sensors

Mount Camera

Mount Sensors to ROV

Actually conducted activites this period

Finished testing all 12C sensors that will be connected to Arduino, with single scripts
reading all devices on 12C bus

Tested all actuators with test scripts in Arduino

Set up Raspberry PI, but did not compete testing script for communicating over serial bus
with conductance sensor

Made ROV-platform and mounted lights(2), thrusters(3), Aanderaa conductivity sensor and
Ping 360 Sonar

Description of/ justification for potential deviation between planned and real activities

Completed most of the testing tasks

Serial communication with conductance sensor and sonar was not completed as planned,
this has resulted from lack of time used on task. It is not a result of a single troubleshooting
problem. Reduced time spent on project was because of sickness during some days, so time
was directed towards other subjects.

Camera wasn’t mounted due to it not having arrived yet.

Description of/ justification for changes that is desired in the projects content or in the further plan of action — or progress report

Serial communication has to be fixed early during next two week period. It should not be a
difficult task as there are many example scripts and well documented sources for this.

Main experience from this period

The testing of sensors and actuators was relatively easy, as the progress was steady and
there were only small fixable problems that was easy to solve. Raspberry Pl was very
simple to set up initially. However due to not enough spent on task not everything planned
was completed.

Learning how to use Fusion 360 to make 3D models and use the schools 1200W laser
cutter to make parts was relatively easy to get the hang of and it.

Main purpose/focus next period

Creating programs that are adjusted and unique for the system functions that we want to
implement for the ROV.

Finding solution and completing communication from the ROV to surface through thether
cable.

Side

IELEA2920 Project Number of meeting this period 1). Firma - Oppdragsgiver
Hovedprosjekt AlPROV 0 planned NTNU i Aalesund 2av?
Prog ress repo rt Period/week(s) Number of hours this period. (from | Prosjektgruppe (navn) Dato
2 log) Approx. 5() ROV 08.03.22

- Mount and use camera

Planned activities next period

- Complete the now postponed activities that is creating testing scripts in Python for serial

communication with sonar and conductance sensors.

- Create system programs for motor controls, lights, temperature, sonar, conductance.

- Test communication and see if the use of an Arduino can be bypassed

Other

Wish/need for counceling

- Discuss order of cable(s) that are watertight for the conductance, turbidity and oxygen

Sensors.

Approval/signature group leader

Tony Paulsen

Signature other group participants

Petter Henriksen

IELEA2920 Project Number of meeting this period 1). Firma - Oppdragsgiver Side

Hovedprosjekt AlPROV 0 planned NTNU i Aalesund lav?2
Prog ress repo rt Period/week(s) Number of hours this period. (from | Prosjektgruppe (navn) Dato
2 log) Approx. 70 22.03.22

Main goal/purpose for this periods work

Creating programs that are adjusted and unique for the system functions that we want to
implement for the ROV.

Finding solutions and completing communication from the ROV to the surface through
thether cable.

Planned activities this period

Complete the now postponed activities that is creating scripts in Python for serial
communication with sonar and conductance sensors.

Create system programs for motor controls, lights, temperature, sonar, conductance.
Test communication and see if the use of an Arduino can be bypassed.

Actually conducted activites this period

Completed most of the sonar program for system, implemented functions that can change
the scanning range (different modes for collision avoidance and general inspection).
Collision avoidance algorithm needs resetting of interlocked zones logic to be completed.
Sonar communication has not been initialized, and program has not been started.

The removal of Arduino idea was scraped, as it was seen as a benefit to have it there and
communication seems to work great using serial communication

Description of/ justification for potential deviation between planned and real activities

Sonar program progress was steady throughout the period, final completion of the program
has not been completed due to testing various solutions for resetting of interlocked zones.
Conductance sensor serial communication was worked on, but after researching connection
diagrams, it was discovered that we did not have the appropriate testing cable for RS232
serial communication.

Camera has not progressed much due to delivery issues, we have acquired a temporary
substitute but we decided to focus on the problems that were guaranteed to be on the final
product.

Description of/ justification for changes that is desired in the projects content or in the further plan of action — or progress report

Sonar program has a tendency to increase in complexity due to when researching libraries
and functionality, new ideas of how we want the sonar to perform is gained. Important to
keep in mind that we need all aspects of project to work, and from that point maybe add
additional functionality.

When we get required parts for conductance sensor, we have to focus on getting that part of
the project finished. New cable was ordered. Plugs for the sensor has been found and is
ready to be ordered.

When looking at previous solutions we found that one group had used a product from
BlueRobotics that allowed them to use 3 out 4 pairs on the tether for power and only 1 for
communication while still maintaining usable data speeds. Whether or not this will be used
needs to be discussed with project supervisors.

Main experience from this period

Sonar functionality and improvement can always be improved, important to get basic

IELEA2920 Project Number of meeting this period 1). Firma - Oppdragsgiver Side

Hovedprosjekt AlPROV 0 planned NTNU i Aalesund 2av?
Prog ress repo rt Period/week(s) Number of hours this period. (from | Prosjektgruppe (navn) Dato
2 log) Approx. 70 22.03.22

functionality working, and focusing on fully completing all aspects of project first.
Should have checked that we had all needed parts for initializing communicating with all
sensors earlier in the project, to avoid having to wait for parts.

Main purpose/focus next period

Complete communication from Raspberry Pi and conductance sensor.

Complete conductance sensor programs and functionality in Raspberry Pi.

Research and implement format for sending data over serial.

Research and implement format for sending data from Raspberry Pi and surface GUI.
Try to get camera up in Python

Planned activities next period

When conductance sensor final parts arrive, finish communication and programs in
Raspberry PI that handles the data.

Find format of transmitting data between components that use serial (Raspberry PI and
Arduino UNO), and format for transmitting data from Raspberry PI and surface GUI.
Should be formatted in a way that is easy to expand and logical.

Try to get substitute camera to work

Decide and order parts for power delivery (step down converter)

Other

Wish/need for counceling

Power delivery and comunication
Camera solution

Approval/signature group leader Signature other group participants

Tony Paulsen Petter Henriksen

IELEA2920 Project Number of meeting this period 1). Firma - Oppdragsgiver Side
Bachelor PI‘Oj ect A Flexible and Common Control 0 planned NTNU | AleSUnd 1 av 2
Architecture for Rolls-Royce Marine
Cranes and Robotic Arms
Prog ress repo rt Period/week(s) Number of hours this period. (from | Prosjektgruppe (navn) Dato
2 log) Approx. 70 AIP-ROV 07.04.22

Main goal/purpose for this periods work

- Complete communication from Raspberry Pi and conductance sensor.

- Complete conductance sensor programs and functionality in Raspberry Pi.

- Research and implement format for sending data over serial.

- Research and implement format for sending data from Raspberry Pi and surface GUI.
- Try to get camera up in Python

Planned activities this period

- When conductance sensor final parts arrive, finish communication and programs in
Raspberry PI that handles the data.

- Find format of transmitting data between components that use serial (Raspberry PI and
Arduino UNO), and format for transmitting data from Raspberry P1 and surface GUI.
should be formatted in a way that is easy to expand and logical.

- Try to get substitute camera to work

- Decide and order parts for power delivery (step down converter)

Actually conducted activites this period

- Finished researching and completed serial communication using UART for transmission
between Arduino Uno and Raspberry Pi.

- Ordered communication solution for tether communication (Raspberry Pi to PC GUI).
Decided communication protocol and borrowed similar components from a similar project
to test our solution. Found easy and efficient libraries to use for serializing data and
initializing communication.

- Added extra functionality for the sonar collision avoidance programs, added extra control
options (inspection-mode and collision-avoidance-mode).

- Got Camera to work with OpenCV in Python

- Started work on GUI using Python and the library PyQt5

- Ordered parts for power delivery.

Description of/ justification for potential deviation between planned and real activities

- Conductance sensor plug arrived last day of this working period, work on this part of the
project has not been performed. However some research in data-sheets to prepare for easy
integration.

Description of/ justification for changes that is desired in the projects content or in the further plan of action — or progress report

- Asubstantial part of the work planned for this period revolved around the conductance
sensor integration, as this was not possible, those work hours were redirected towards
working on thether communication.

Main experience from this period

- Learned about advantages and disadvantages with threading and multiprocessing in
Python.

- Increased knowledge about advantages and disadvantages with TCP and UDP transmission
protocols.

IELEA2920 Project Number of meeting this period 1). Firma - Oppdragsgiver Side
Bachelor PI‘Oj ect A Flexible and Common Control 0 planned NTNU | Alesund 2 av 2
Architecture for Rolls-Royce Marine
Cranes and Robotic Arms
Prog ress repo rt Period/week(s) Number of hours this period. (from | Prosjektgruppe (navn) Dato
2 log) Approx. 70 AIP-ROV 07.04.22

- Increased knowledge about serialization of data techniques (JSON, Pickle) in Python. And
how to properly set up communication between different programming languages
efficiently.

- Learned how to make a GUI in Python and learned about object orientated programming

Main purpose/focus next period

- Finishing the GUI so that it is ready for implementation of communication
- Conductance sensor integration
- Make the ROV ready for testing in water.

Planned activities next period

- Finish GUI functions and visuals

- Integrate conductance sensor with the system.

- Finish making mounts for hardware inside the ROV.

- Determine if power delivery solution is sufficient.

- Wire up all components inside the ROV and start full scale-testing.
- Finishing most of theoretical basis/ methods and results in report.

Other

Wish/need for counceling

- Increasing communication bandwidth measures recommendations (multi- threading and
processing).
- Discussing current achieved framerate of camera.

Approval/signature group leader Signature other group participants

Tony Paulsen Petter Henriksen

IELEA2920 Project Number of meeting this period 1). Firma - Oppdragsgiver Side

Bachelor Project | """ 0 planned NTNU i Alesind lav?2
Prog ress report Period/week(s) Number of hours this period. (from Projectgroup (name) Dato
2 log) Approx. 70 Tony Paulsen 22.04.22

Petter Henriksen

Main goal/purpose for this periods work

- Finishing the GUI so that it is ready for implementation of communication
- Conductance sensor integration
- Make the ROV ready for testing in water.

Planned activities this period

- Finish GUI functions and visuals

- Integrate conductance sensor with the system

- Finish making mounts for hardware inside the ROV

- Determine if power delivery solution is sufficient

- Wire up all components inside the ROV and start full scale-testing
- Finishing most of theoretical basis/ methods and results in report

Actually conducted activites this period

- GUI was completed (sonar plots properly and all relevant data is displayed)

- Conductance sensor has been integrated with RPi using serial communication and reads
and samples data as desired

- The mounts for components are done

- Most of the components are wired up but not all

Description of/ justification for potential deviation between planned and real activities
— Waiting for components has prevented the wiring of all components from being completed

but most of it is done
— Testing of power delivery has also not been done due to waiting for components

Description of/ justification for changes that is desired in the projects content or in the further plan of action — or progress report

Main experience from this period

- Learned more about GUI implementation using PyQt5

- Learned how to integrate conductance sensor, writing commands and reading parameters

- Learned about implementing multiple communication protocols simultaneously (UDP and
TCP) for different types of data

- The enclosure is tight so working with that requires a lot of space and cable -management

Main purpose/focus next period

- Testing of ROV
- Work on report
- Tune system

Planned activities next period

Finish the unfinished task from this period
Complete multiple tests

Find weaknesses from tests and improve solutions
Finish all main parts of report

Other

Petter Henriksen

IELEA2920 Project Number of meeting this period 1). Firma - Oppdragsgiver Side
Bachelor Project | """ 0 planned NTNU i Alesind 2av?2
Prog ress report Period/week(s) Number of hours this period. (from Projectgroup (name) Dato
2 log) Approx. 70 Tony Paulsen 22.04.22

Wish/need for counceling

- Placement of Voltage Regulators and DC/DC Converter

- Setup of the power system
- Supplying voltage during tests

Approval/signature group leader

Tony Paulsen

Signature other group participants

Petter Henriksen

1D301702 Project Number of meeting this period 1). Firma - Oppdragsgiver Side
HOVdeI"OSjekt AFIe.xibIe and Common Control . 0 planned NTNU Aalesund 1 av 2
Architecture for Rolls-Royce Marine
Cranes and Robotic Arms
Prog ress report Period/week(s) Number of hours this period. (from | Prosjektgruppe (navn) Dato
2 log) Approx- 70) 06.05.22

Main goal/purpose for this periods work

- Testing of ROV
- Work on report

- Tune system

Planned activities this period

Finish the unfinished tasks from this period
Complete multiple tests
Find weaknesses from tests and improve solutions
Finish all main parts of report

Actually conducted activites this

period

- Finished most of the methodology in the report
- Only integration tests over water was completed
- Some changes in software has been completed to improve full system functionality

Description of/ justification for potential deviation between planned and real activities

— During the integration test the group found some issues and bugs that had to be sorted out
so the focus went towards fixing these issues but that meant that we couldn’t do as many
test as hoped. One of the biggest issues had to do with the battery solution which did not
work as intended and a lot of changes had to be made. More testing is required to verify if

the fixes work

ed.

Description of/ justification for changes that is desired in the projects content or in the further plan of action — or progress report

Main experience from this period

— Testing took more time than expected and the results can cause delays

Main purpose/focus next period

- Get a water test completed in the coming weekend
- Finishing report

Planned activities next period

- Finish test to get good data to describe in report
- Creating a directions of use for starting and using the ROV
- Focusing on discussion in report

Other

Wish/need for counceling

- General progress
- Priorities in final weeks
- Battery system fixes

Approval/signature group leader

Tony Paulsen

Signature other group participants

Petter Henriksen

Side

1D301702 Project Number of meeting this period 1). Firma - Oppdragsgiver
HOVdeI"OSjekt A Flexible and Common Control 0 p|anned NTNU Aalesund 2 av 2
Architecture for Rolls-Royce Marine
Cranes and Robotic Arms
Prog ress report Period/week(s) Number of hours this period. (from Prosjektgruppe (navn) Dato
2 log) Approx. 7() 06.05.22

Appendix C

Gantt diagram

“=teamgantt

Created with Free Edition

IELEA2920 ROV

Forprosjektrapport
Definere problemstillinger
Lage risikomatrise
Lage Gantt-diagram
Kombinere alle dokument

Utredning av ROV konsept
Bestemme sonar type
Bestemme komb. sensor type
Bestemme kamera

Bestemme utforming av prototype sk...

Vurdere plassering av sensorer

Utstyrsanskaffelse
Bestille sensorer
Bestille annet utstyr

Bygge prototype
Tilpasse prototype for sensorer
Lage montasje for sonar
Lage montasje for komb. sensor

Lage montasje for kamera m/ vann...

Montere nye sensorer
Montere sonar
Montere komb. sensor
Montere kamera

Funksjonstest utstyr
Teste thrustere
Teste lys
Teste temperatur sensor
Teste trykk sensor
Teste fuktighets sensor

Programvare utvikling

Kombinasjons sensor
Program for avlesning data
Program til system

Sonar
Program direkte til PC
Program for avlesning data
Program til system

Kamera
Apne Kamera i Python
Apne Kamera p8 Raspberry Pi

Integrasjon av alle del-systemer
Kommunikasjon
Seriell (arduino-raspberry)
TCP (raspberry-GUI)

start

01/12/22
01/12
01/20
01/19
01/20

01/24/22
01/24
01/24
01/24
01/31
02/01

01/31/22
01/31
01/31

02/10/22
02/10/22
02/23
02/18
02/10
02/28/22
02/28
02/28
02/28

02/14/22
02/14
02/14
02/14
02/14
02/14

02/21/22
04/07/22
04/07
04/11
02/21/22
02/21
02/28
03/07
03/24/22
03/24
03/28

03/28/22
03/28/22
03/28
04/04

end

01/21/22
01/21
01/21
01/21
01/21

02/09/22
01/28
01/28
01/28
02/09
02/09

02/09/22
02/09
02/09

03/04/22
02/25/22
02/25
02/25
02/17
03/04/22
03/04
03/04
03/04

02/18/22
02/18
02/18
02/18
02/18
02/18

04/14/22
04/14/22
04/13
04/14
03/11/22
02/25
03/04
03/11
04/08/22
04/08
04/08

04/15/22
04/08/22
04/01
04/08

Oh

o ©o o o

o ©O © o o

Oh
Oh
0
0

100%

100%
100%
100%
100%
100%

100%
100%
100%
100%
100%
100%

100%
100%
100%

100%
100%
100%
100%
100%
100%
100%
100%
100%

100%
100%
100%
100%
100%
100%

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

100%
100%
100%
100%

Tony Vikene Paulsen
Tony Vikene Paulsen
Petter Henriksen

Petter Henriksen
Tony Vikene Pauls

Tony Vikene Pauls

Petter Henriksen

2N

Y

>

[—

I Petter H
B Petter H
I Tony Vi
I Tony Vi
I Tony Vi

Il Petter Henriksen
I Petter Henriksen
I Petter Henriksen

enriksen
enriksen
ene Paulsen
ene Paulsen
ene Paulsen

ony Vikene Paulsen

Petter Henriksen
Petter Henriksen
Petter Henriksen

—

I
Tony Vikene Paulsen [N
Tony Vikené Paulsen [N

Tony Vikene Paulsen
I Tony Vikene Paulsen

Petter Henriksen
Petter Henriksen

Tony Vikene Paulsen
Tony Vikene Paulsen [N

25

16

“=teamgantt

Created with Free Edition

11 17 24 3 7 14 21 2 7 14 21 28 4 11 18 25 2 9 16
Integrasjon av komb. sensor 04/13/22 04/15/22 Oh 100% —
Vise sensor verdier 04/13 04/15 0 100% Tony Vikene Paulsen Il
Integrasjon av sonar data 03/28/22 04/08/22 Oh 100%
Vise data som bilde 03/28 04/08 0 100% Tony Vikene Paulsen
Gi beskjed om kollisjonsfare 04/05 04/08 0 100% Tony Vikene Paulsen [N
Integrasjon av kamera 03/28/22 04/15/22 Oh 100%
Vise kamera i GUI 03/28 04/08 0 100% Petter Henriksen
Vise bilde fra Raspberry 04/05 04/15 0 100% Tony Vikene Paulsen [INIEIEGEE
Bygge prototype 04/11/22 05/06/22 Oh 100%
Gjgre ROV klar for testing 04/11 05/06 0 100% Petter Henriksen
Testing av prototype 04/25/22 05/16/22 Oh 100%
Testing av alle sensorer pa GUI 04/25 05/06 0 100% Petter Henriksen
Testing av implementert logikk 04/25 05/06 0 100% Tony Vikene Paulsen
Tank test ved skulen 04/25 05/06 0 100% Tony Vikene Paulsen
Full skala test pa lokasjon 05/09 05/16 0 100% Petter Henriksen, Tony Vikeng Paulsen [N

Fullfgre rapport i LaTeX 02/07 05/17 0 100% sen

Kombinere LaTeX m/ alle vedlegg 05/18 05/19 0 100% Petter Henriksen, Tony Vikene Paulsen [l

http://www.tcpdf.org

Appendix D

Electrical drawings

Electrical schematic - ROV
2022 - Bachelor

PCSCHEMATIC Automation
Project title: Electrical schematic - ROV 2022 - Bachelor Project no.: Project rev.: Page 1
Customer: NTNU Alesund DCC: Scale: 1:1
Page title: Front page Dwg. no.: Page rev.: Previous page:
NTNU File name: Prosjekt (1) Eng. (proj/page)Tony Paulsen Last print: 19.05.2022 | Next page: 2
Page ref.: Appr. (date/init): Last edit: 19.05.2022 | Total no. of pages: 9

Bachelor

|
N
KN
-
N
>
o
14
|
b
b
5
5
2
=
O
=
whd
O
o
LL]

Diagrams 1 11
Layout 2 12
Lists 3 13
Graphical plans 4 14
Page remarks D 15
6 16

7 17

8 18

9 19

10 20

Title

Revision

Last edit Page

Title Revision Last edit Page
Front page 17.02.2022 13:42:44 1
Index - horizontal 17.02.2022 13:42:44 2
Table of Contents 17.02.2022 13:45:10 3
Diagrams
Diagram 17.02.2022 13:42:44 4
Diagram 17.02.2022 13:42:44 5
Diagram 17.02.2022 13:42:44 6
Control circuit diagram 17.02.2022 13:42:44 7
Control circuit diagram 17.02.2022 13:42:44 8
Diagram 17.02.2022 13:42:44 9
Diagram 17.02.2022 13:42:44 10
Layout
Arrangement - A4 - 1:4 - CompList 17.02.2022 13:42:44 11
Arrangement - A4 - 1:4 - CompList 17.02.2022 13:42:44 13
Lists
Parts list 17.02.2022 13:42:44 14
Components list 17.02.2022 13:42:44 15
Terminal list - External connections 17.02.2022 13:42:44 16
Cable plan 17.02.2022 13:42:44 17
PLC list 17.02.2022 13:42:44 18
Net list 17.02.2022 13:42:44 19
Graphical plans
Terminal plan 17.02.2022 13:42:44 20
Cable plan 17.02.2022 13:42:44 21
Connection plan 17.02.2022 13:42:44 22
Page remarks
Page remarks 17.02.2022 13:42:44 23

PCSCHEMATIC Automation

NTNU

Project title: Electrical schematic - ROV 2022 - Bachelor Project no.: Project rev.: Page 3
Customer: NTNU Alesund DCC: Scale: 1:1
Page title: Table of Contents Dwg. no.: Page rev.: Previous page: 2
File name: Prosjekt (1) Eng. (proj/page)Tony Paulsen Last print: 19.05.2022 | Next page: 4
Page ref.: Appr. (date/init): Last edit: 17.02.2022 | Total no. of pages: 9

-
RS,
0
-
O
>
Q
O
R
N

Diagrams

1 2 3 4 5 6 8
16.5VDC /5.1
ovDC /51
- - —Gt - 52 -—G%—-—-Gﬁl—iFﬂH— L
) e)) -C3+[& -C4+| 2
. | | | 1 T= T
8 c I| I| I| I| o o
a5 12VDC
©2Z D BATTERIES
! o - - - - - - - - -
N |' o Vout GND
= H 'l TRIM -12V REGULATOR
Sl g
3l 3
o 4 ovDC
-C1+ -C2 JLL“—
= = __C?J-
ato g o 5VDC
SO
E
- || Vin Vout GND
EN -5V REGULATOR
&
ol §
CE
COM-
X0 —°? -
| ~| o] v <o x COM+
| — o
T
i, - i, _ - i, - i, = i, i,
=
) TETHER 100 [M] X
©[~[o o] [o N =
(@) 1
L
)_
KC
| +L
=] =
(& (& \
(- [
SURFACE PC
g g g
Nl Y Y 1
+ + g 9 g
[m)] £
-+48V oV % >
O 1
SURFACE ELHCRONICS <
¥ .
PCSCHEMATIC Automation
Project title: Electrical schematic - ROV 2022 - Bachelor Project no.: Project rev.: Page 4
Customer: NTNU Alesund DCC: Scale: 1:1
Page title: Diagram Dwg. no.: Page rev.: Previous page: 3
NTNU File name: Prosjekt (1) Eng. (proj/page)Tony Paulsen Last print: 19.05.2022 | Next page: 5
) Page ref.: Appr. (date/init): Last edit: 19.05.2022 | Total no. of pages: 9

/4.8 _16.5VDC 16.5VDC /71
/4.8 QVDC VDC /6.1
-U1 -U1 -U1 -U1 -U1
-F2_3A H
D9~ D10~ D11 D5~ D6~
-F1_3A H
'd 'd 'd
3 |s 3 |s 3 |s
))) -F3_3A
P 1 S S S < = 1 al
ol>= o[>= o[>z |
-W5.1 -W5.2 -W5.3) -W5.4) -W5.5
(= |w (= |w (= w [a) = X [a) = ~
3= 3= 3= N 2 B R
I I - -
=(&" =(&" =(6" T A
> >
[m) o
- - - - - - g = gl =
o> o> o> S0 S| O
L L~ L~ > O] > > O] >
-M1 y -M2 y -M3 y . g . S ! ! g 5 o | Sy | com+
3 3™~ 3~ T -LED1 T -LED2
| | %
Thruster 1 Thruster 2 Thruster 3 ; \ ; \ COM-
o o~
A A 8 x
0] w
L - - - - - zZ I
o m
' (=
[N DI N [N DI N N | N— >,<
=
g
USB to Raspberry Pi E Ethernet to Raspberry Pi
PCSCHEMATIC Automation
Project title: Electrical schematic - ROV 2022 - Bachelor Project no.: Project rev.: Page 5
Customer: NTNU Alesund DCC: Scale: 1:1
Page title: Diagram Dwg. no.: Page rev.: Previous page: 4
NTNU File name: Prosjekt (1) Eng. (proj/page)Tony Paulsen Last print: 19.05.2022 | Next page: 6
) Page ref.: Appr. (date/init): Last edit: 19.05.2022 | Total no. of pages: 9

5vVDC 5VDC From Arduino
/5.8 0VDC ovDC /71

112¢ Bus

03 |
A4 A5

X
> < LEAK HOST BOARD
{5E
I2C LEVEL CONVERTER I2C LEVEL CONVERTER
<
— >DC_IJu>) ><D(C_|3Lr>)
ol | n| ¥ ol | n| ¥
2ol 8|3 ool &| 3
+(/)(/) +(D(D
)-W6.3 -W6.4
Az |W|Xx Az |W|Xx
w|w|= O ww|= |0
m&zj m&zj
(Dim gim

PROBE1 Q
PROBE2 Q
PROBE3 Q
PROBE4 Q

Pressure sensor Temperature sensor

L - |

N | N

PCSCHEMATIC Automation

Project title: Electrical schematic - ROV 2022 - Bachelor Project no.: Project rev.: Page 6

Customer: NTNU Alesund DCC: Scale: 1:1

Page title: Diagram Dwg. no.: Page rev.: Previous page: 5

NTNU File name: Prosjekt (1) Eng. (proj/page)Tony Paulsen Last print: 19.05.2022 | Next page: 7
Page ref.: Appr. (date/init): Last edit: 18.05.2022 | Total no. of pages: 9

1 2 3 4 6 7 8
12VDC 12VvDC
/6.8 ovDC OVDC
-F4 3A
U1: ARDUINO
))
Z £ = c
O > O] >
O
=z
)
Konduktvitetssensor E
Model 4319B <
Aanderaa

-CONDUCTIVITY SENSOR

USB to Raspberry Pi

USB to Raspberry Pi

PCSCHEMATIC Automation

Project title: Electrical schematic - ROV 2022 - Bachelor Project no.: Project rev.: Page 7

Customer: NTNU Alesund DCC: Scale: 1:1

Page title: Control circuit diagram Dwg. no.: Page rev.: Previous page: 6

NTNU File name: Prosjekt (1) Eng. (proj/page)Tony Paulsen Last print: 19.05.2022 | Next page: 8
Page ref.: Appr. (date/init): Last edit: 19.05.2022 | Total no. of pages: 9

5VDC(REG)

5VDC(REG)

0VDC (5V REG)

GND
Vin

USB from Aanderaa sensor

USB from Arduino
]

0VDC (5V REG)

o
>
e
o
w
m
o
)
<
o USB from Sonar
Ethernet from Fathom-X Tether 2
PCSCHEMATIC Automation
Project title: Electrical schematic - ROV 2022 - Bachelor Project no.: Project rev.: Page 8
Customer: NTNU Alesund DCC: Scale: 1:1
Page title: Control circuit diagram Dwg. no.: Page rev.: Previous page: 7
NTNU File name: Prosjekt (1) Eng. (proj/page)Tony Paulsen Last print: 19.05.2022 | Next page:
) Page ref.: Appr. (date/init): Last edit: 19.05.2022 | Total no. of pages: 9

Appendix E

User Manual

AIP-ROP User Manual

Describes the preparations and procedures needed to use the ROV under defined
environment conditions. Additionally, shows how to connect and start the programs to
be able to control the ROV using the GUI.

Step 1:

Connect 48V, 12V and 0V to terminals
as shown in picture. Both positive
supplies has to have common ground,
otherwise communication might not
work as intended.

Connect an ethernet cable with RJ45
plug into box with the other end to the
computer running the GUI.

Step 2:

Connect the tether cable coming from
the communication interface box
shown in previous step to the tether
spool to complete the circuit to the
ROV.

If power is activated for interface box
the ROV should be energized. Arduino
Uno lights should blink, and electronic
speed controllers should make
initialization sounds.

Step 3:

Inside the ROV enclosure, the local
battery pack must be connected to the
circuit. This is done by connecting the
red wire to the Wago quick connector.

Step 4:

Slide the electronics tray into the
acrylic cylinder. Be careful for wires
that may get stuck and unplugged. The
tray is slid all the way in to seal

properly.

Step 5:

Mount the aft thruster to the acrylic
ROV foundation using four M5 bolts as
shown in figure.

Checkpoint

After the above instructions the ROV
should be mounted as seen in the
figure. It is important that the thruster
is mounted in the orientation as shown
in the figure.

Step 6:

Attach the vacuum pump hose to the
vent plug at the backplate of the ROV.
Pump until the pressure on the
manometer shows 15 inHg.

Wait for 15 minutes, and check if the
pressure is still above 14.5 inHg.

If it is not return to step 4 and check for
broken seals or other leak indicators.

If pressure is above the limit defined,
the ROV is ready to be used in water.

Step 8:

Remove the hose plug from the
vacuum pump, and screw in the plug
indicated with <OK>.

It is extra important that this plug is
properly greased and tightened, as it
was not tested in the previous vacuum
test.

Step 9:

Next open a terminal on the computer
that will run the GUI.

Set the ethernet adapter on the
computer to: 169.254.226.73

Connect to the ROV using SSH and
command:

>>ssh pi@169.254.226.72

Step 10:

If tether and power is properly
connected, the terminal will prompt for
the RPi password.

Enter password:

>>rov2022

Step 11:

You know have access to the RPi
computer. Check for previously saved
photos and videos and transfer them to
external device. Media is located at
relative path from login within
pi/Programs/Photos
pi/Programs/Videos

Step 12:

For running the GUI, navigate into
Programs folder.

To run the Python ROV program use
command as seen in figure.

Step 13:

When the RPi program has been
started, the terminal will display a
message indicating that the operator
has to launch GUI script.

Navigate to where the Python GUI
scripts are located, and run the files
with command as shown in figure.

Step 14:

You have now launched all systems for
the ROV and should see the sensor
values update on the GUI regularly.
Control of the motors are done with
the arrows, and brightness of lights can
be adjusted with slider.

Appendix F

Arduino code

5/20/22, 2:15 AM main.cpp

=

VW oOoNOUVTLh WN

50
51
52
53
54
55
56
57
58
59

/**

* PROGRAM THAT CONTROLS AN ARDUINO FOR A REMOTE OPERATING VEHICLE (ROV).

ROV IS DESIGNED FOR AQUACULTURE INSPECTION. THE PROGRAM CONTROLS
MOVEMENT WITH THREE THRUSTERS AND VISION WITH TWO SUBSEA LIGHTS.
ADDITIONALLY THE PROGRAM READS TEMPERATURE AND PRESSURE FROM THE
ENVIRONMENT THROUGH I2C COMMUNICATION. THE ARDUINO COMMUNICATES

WITH RASPBERRY PI THROUGH SERIAL COMMUNICATION.
S KKK KR KK SO SR K SRR R KR K SR SRR SRR KR KR K KK SRR SRR KR KR K K SRR SRR KR KR KR Sk koK K

* X ¥ * *

#tinclude <Arduino.h>
#tinclude <Servo.h>
#include <Wire.h>
#tinclude "MS5837.h"
#tinclude "TSYS@1.h"
t#tinclude <ArduinoJson.h>
#tinclude "Communication.h"
#include "Functions.h"

// Initialize I2C OBJECTS
MS5837 pressSensor;
TSYSO1 tempSensor;

// Initialize actuator objects for motors and lights
Servo motor_1;

Servo motor_2;

Servo motor_3;

Servo starboard_light;

Servo port_light;

// Initializes run commands from the globals

int runZone = -1; // Initial run state is set to offf
bool zllock;

bool z2lock;

bool z3lock;

bool z4lock;

bool z5lock;

bool z6lock;

bool z7lock;

bool z8lock;

// Input and output pins are selected based on PWM capabilities
byte pinMl1l = 9;

byte pinM2 = 10;

byte pinM3 = 11;

byte 11 = 5;

byte 12 = 6;

// Local variables used for logic and communication

int val;

int leakPin = 3; // Leak Signal Pin //pin must be 3 not 1 or 2
int leak = 09; // @ =Dry , 1 = Leak

float temp;

float depth;

bool leakStatus;
int missedPackets;
int i;

// Json document used to hold and format data to be sent to RPi

localhost:4649/?mode=clike

13

5/20/22, 2:15 AM main.cpp

60 StaticJsonDocument<48> outDoc;

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
lo1
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

void setup() {

}

// Initialize serial communication with RPi
Serial.begin(9600);

// Initialize I2C bus sensors
Wire.begin();
pressSensor.init();
tempSensor.init();

// Declaring properties to pressure sensor object
pressSensor.setModel(MS5837::MS5837 30BA);
pressSensor.setFluidDensity(997);

// Declaring PWM pins for motors and lights
port_light.attach(11);
starboard_light.attach(12);
motor_1.attach(pinM1);
motor_2.attach(pinM2);
motor_3.attach(pinM3);

// Declaring leak sensor as input
pinMode(leakPin, INPUT);

// Motors need to receive zero thrust signal for 7

// seconds to properly initialize

fullStop();

setLights(@); // Lights are set to off for inital operation
delay(7000);

void loop() {

// Read I2C sensor values
tempSensor.read();
pressSensor.read();

// Gets the required sensor values and place in variables
temp = tempSensor.temperature();

depth = pressSensor.depth();

leakStatus = digitalRead(leakPin);

// Every 30 program iteration the Arduino sends data to Raspberry
if (1 > 30) {

sendToRaspberry(temp, depth, leakStatus);

i= 0;
}

i++;

// If data is found within serial buffer, handle data
if (Serial.available()) {
receiveFromRaspberry();
missedPackets = 0;
} else { // Otherwise connection is broken and motors are stopped
missedPackets++;
if (missedPackets > 3) {
fullStop();
}
}

localhost:4649/?mode=clike 2/3

5/20/22, 2:15 AM main.cpp

120 // Control motor speed and directions based on commanded zone
121 // and information from collision avoidance system

122 setMotorSpeeds(runZone, zllock, z2lock, z3lock,

123 z4lock, z5lock, z6lock, z7lock, z8lock);

124 }

125

126

localhost:4649/?mode=clike 3/3

5/20/22, 2:20 AM

Functions.cpp

1 /**

* SUBPROGRAM OF THE ARDUINO UNO CODE FOR CONTROLLING ROV. FILE CONTAINS
* THE FUNCTIONS NEEDED TO CONTROL THE MOTORS AND LIGHTS.

***/

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59

#tinclude <Arduino.

h>

#include "Functions.h"

/**

the appropiate
movements, the
directions are
@param zone

@param zllock
@param z2lock
@param z3lock
@param z4lock
@param z5lock
@param z6lock
@param z7lock
@param z8lock

* X X X X K K X X X X X ¥ ¥ ¥

*/

Function that controls the direction the ROV is moving in. Takes in
a zone that operator wants the ROV to be moving towards, and given that
zone is not prohibited from the interlocking system, the function sends out

PWM signals to the motor drivers. In addition to linear
ROV can rotate both clockwise -and counterclockwise, these
never prohibited by the interlocing system.

Requsted propulsion in this zone direction

Propulsion in zone 1 direction prohibited variable
Propulsion in zone 2 direction prohibited variable
Propulsion in zone 3 direction prohibited variable
Propulsion in zone 4 direction prohibited variable
Propulsion in zone 5 direction prohibited variable
Propulsion in zone 6 direction prohibited variable
Propulsion in zone 7 direction prohibited variable
Propulsion in zone 8 direction prohibited variable

CONOUVT A WNER

void setMotorSpeeds(int zone, bool zllock, bool z2lock, bool z3lock,

bool z4lock, bool
switch (zone) {

z5lock, bool z6lock, bool z7lock, bool z8lock) {

case 0: // Forward

if (z1lock) {
fullStop();
} else {

controlMovement (1550, 1550, 1500);

}

break;

case 1: // Forward-right

if (z2lock) {
fullStop();
} else {

controlMovement (1550, 1500, 1550);

}

break;

case 2: // Right

if (z3lock) {
fullStop();
} else {

controlMovement (1530, 1470, 1550);

}

break;

case 3: // Reverse-right

if (z4lock) {
fullStop();
} else {

controlMovement (1500, 1450, 1550);

¥

break;

case 4: // Reverse

if (z5lock) {
fullStop();

localhost:4649/?mode=clike

13

5/20/22, 2:20 AM

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
lo1
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

} else {
controlMovement (1450, 1450, 1500);
¥
break;
case 5: // Reverse-left
if (z6lock) {
fullStop();
} else {
controlMovement (1450, 1500, 1450);
}
break;
case 6: // Left
if (z7lock) {
fullStop();
} else {
controlMovement (1470, 1530, 1450);
}
break;
case 7: // Forward-left
if (z8lock) {
fullStop();
} else {
controlMovement (1500, 1550, 1450);
¥
break;
case 8: // Counterclock-wise
controlMovement (1470, 1530, 1530);
break;
case 9: // Clock-wise
controlMovement (1530, 1470, 1470);
break;
case -1: // Stand still
fullStop();
break;

}
}

/**

* Sets subsea lights power output, both lights have the exact same value. Takes
* in an integer that ranges from ©-255 and translates that to ©0-100% light power.

* Sets light with PWM setting.

* @param pwr Integer that ranges from ©-255 for 0-100% power
*/

void setLights(int pwr) {
int val;

val = map(pwr, ©, 255, 1100, 1500); // 1900 draws 2.5A current

port_light.writeMicroseconds(val);
starboard_light.writeMicroseconds(val);

}
/**

* Function that sets all motors to neutral output. Zero propulsion in any

* direction for all three motors.
*/

void fullStop() {
motor_1.write(1500);
motor_2.write(1500);
motor_3.write(1500);

}

localhost:4649/?mode=clike

Functions.cpp

2/3

5/20/22, 2:20 AM Functions.cpp

120 /**
121 * Function that sets all the motor power and direction outputs. Takes in three
122 * arguments with PWM settings that controls each respective motor.

123 * @param mlpwr PWM setting for motor 1
124 * @param m2pwr PWM setting for motor 2
125 * @param m3pwr PWM setting for motor 3
126 */

127 void controlMovement(int mlpwr, int m2pwr, int m3pwr) {
128 motor_1.writeMicroseconds(mlpwr);
129 motor_2.writeMicroseconds(m2pwr);
130 motor_3.writeMicroseconds(m3pwr);

131 }

132

133 /**

134 * Function that rounds an input float number to a new float number with reduced
135 * number of decimals.

136 * @param value input argument for number to reduce decimals

137 * @param prec number of decimals to be returned

138 * @return returns a float number rounded as specificed

139 */

140 float roundNum(float value, unsigned char prec) {
141 float pow 10 = pow(10.0f, (float)prec);

142 return round(value * pow 10) / pow_10;

143 }

localhost:4649/?mode=clike 3/3

5/20/22, 2:22 AM Communication.cpp

1 /**

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

* SUBPROGRAM OF THE ARDUINO UNO CODE FOR COMMUNICATION BETWEEN THE

*

***/

#1i
#1i
#1i
#i

/*

* Function that handles communication Raspberry Pi. Takes in three arguments
with predefined types, and structures the data to JSON format. The JSON strings

*
*
*
*
*

*

ARDUINO AND THE RASPBERRY PI

nclude <Arduino.h>

nclude <ArduinoJson.h>

nclude "Communication.h"

nclude "Functions.h" // Remove after testing

*

are serialized and sent to Raspberry Pi.

@param argl Environment temperature value

@param arg2 Environment pressure value

@param arg3 Value that indicates if there is leak inside

/

void sendToRaspberry(float argl, float arg2, bool arg3) {

/*

* ¥ X X ¥ ¥

*

VO

outDoc["Temp"] = roundNum(argl, 1);
outDoc["Depth"] = arg2;
outDoc["Leak"] = arg3;

// Format the data to serial
serializeJson(outDoc, Serial);

// Sending to Raspberry Pi
Serial.println();

*

Function that handles serial data communicated from the Raspberry Pi. First
eight function specific bool variables are declared. Those values stores
information about which control zones are interlocked. The data is stored to

a string variable which is in turn deserialized and loaded into a JSON

document. The JSON document data is accessed using keys and stores the values in
variables that are then used in function calls for movement and light control.

/

id receiveFromRaspberry() {

bool zllock; bool z2lock; bool z3lock; bool z4lock;
bool z5lock; bool z6lock; bool z7lock; bool z8lock;

String payload;

payload = Serial.readStringUntil('\n');
StaticJsonDocument<512> doc;
deserializelson(doc, payload);

// If new values where communicated from Raspberry, update
setLights(doc["1light"]);

runZone = doc["runZone"];
z1llock = doc["locked"][@];
z2lock = doc["locked"][1];
z3lock = doc["locked"][2];
z4lock = doc["locked"][3];
z5lock = doc["locked"][4];
z6lock = doc["locked"][5];
z71ock = doc["locked"][6];
z8lock = doc["locked"][7];

localhost:4649/?mode=clike

ROV

outputs

12

5/20/22, 2:22 AM Communication.cpp

60 }
61
62

localhost:4649/?mode=clike 2/2

5/20/22, 2:25 AM Functions.h

=

#tdefine Functions.h
#include "Servo.h"

// Declaring global servo objects
extern Servo motor_1;

extern Servo motor_2;

extern Servo motor_3;

extern Servo starboard_light;
extern Servo port_light;

VW oOoNOUVTLhA WN

[ERyY
Lo

// Declaring global variables
extern int runZone;
extern bool zllock;
extern bool z2lock;
extern bool z3lock;
extern bool z4lock;
extern bool z5lock;
extern bool z6lock;
extern bool z7lock;
extern bool z8lock;

NNMNNRPRPRPRPRRPRRRPR
NPFPO®WOVWOoKLNOU D WN

// Functions declaration

void setMotorSpeeds(int zone, bool zllock, bool z2lock, bool z3lock,
bool z4lock, bool z5lock, bool z6lock, bool z7lock, bool z8lock);
void setLights(int pwr);

void fullStop();

void controlMovement(int mlpwr, int m2pwr, int m3pwr);

float roundNum(float value, unsigned char prec);

NNDNDNDNNDN
oONOUVT bW

localhost:4649/?mode=clike

5/20/22, 2:25 AM Communication.h

1 #define Communication.h

2 #include "ArduinoJson.h"

3

4 // Defining global JSON documents

5 extern StaticJsonDocument<512> inDoc;
6 extern StaticJsonDocument<48> outDoc;
7

8 // Functions declaration

9 void sendToRaspberry(float argl, float arg2, bool arg3);
10 void receiveFromRaspberry();

11

localhost:4649/?mode=clike

7

Appendix G

Raspberry Pi code

5/20/22, 3:12 AM Main.py

VWoOoNOOUVLE, WN PR

NNNNMNNMNNNNRRRRRRBRRBRR
NOUDWNROUOUONOOTUDWNRO®

N
(o]

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53

54
55
56

#!/usr/bin/env python3

RASPBERRY PI MAIN PROGRAM FOR ROV OPERATION. PROGRAM USES MULTIPLE
PYTHON SUB SCRIPTS FOR COMMUNICATION, COLLISION AVOIDANCE AND GENERAL
SENSOR READINGS.

import numpy as np
import threading
from math import *
import socket
import argparse

Custom libraries imports for specific functionality

from sonarFunctionality.BlueRoboticsSonar import Ping360

from sonarFunctionality.Interlocking import InterlockingSystem
from COM.communication import TCPIn

from COM.communication import TCPOut

from COM.communication import UDP

from COM.communication import serialCom

import config

if __name__ == "__main__":
Terminal connection alternatives for sonar connection

parser = argparse.ArgumentParser(description="Ping python library example.")
parser.add_argument('--device', action="store", required=True, type=str,

help="Ping device port.")

parser.add_argument('--baudrate', action="store", type=int, default=2000000,

help="Ping device baudrate.")
args = parser.parse_args()

Establishes connection to Ping 360 sonar
p = Ping360()
p.connect_serial(args.device, args.baudrate)

Defining sonar parameters
print("Initialized: %s" % p.initialize())
p.set_transmit_frequency(1000)
p.set_sample period(50)

p.set_number_of_ samples(1200)
p.set_range(50)

Initial zone control command to stand-still thrusters
prevMode = -1

Initalize interlocking system for motor driving zones
ils = InterlockingSystem()

Variables for internal logic
objectData = []

operatorForceReset = False

TCP communication variables

HOST = "169.254.226.72" # The IP address of the RASPBERRY Pi assigns to this

communication

PORT = 1422 # Port to listen on (non-privileged ports are > 1023)

HEADERSIZE = 10

localhost:4649/?mode=python

13

5/20/22, 3:12 AM Main.py

57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97
98
99
100
lo1
102
103
104
105
106
107
108
109
110
111
112
113
114

Establishes a reliable data delivery TCP connection

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind((HOST, PORT)) # Binds <eth@> port to requested IP and Port

s.listen(2) # Specifies number of unaccepted connection before
refusing new

Initialize serial communication with seperate thread
SerialThread = threading.Thread(target=serialCom)
SerialThread.start()
Initialize UDP communication with seperate thread
UDPThread = threading.Thread(target=UDP)
UDPThread.start()
Continuously running while loop handling communication and various commands
while 1:
Sets new angle for sonar to scan
p.transmitAngle(config.angle)
Reads sonar echo strengths into array for one angle
data = bytearray(getattr(p,'_data'))
Empties sonar data from previous iteration from array
config.data_lst = []
Stores echo strengths in global variable
for k in data :
config.data_lst.append(k)
If no TCP connection already established, attempt to establish
if config.address == "":
print("[ATTENTION] Start computer script to initialize TCP communication
with RoOvV!I™)
TCPOut(s, HOST, PORT, HEADERSIZE)
TCPThread = threading.Thread(target=TCPIn)
TCPThread.start()
Updating system variables for communication with GUI
config.step = p.get_step()
config.interlockedZones = ils.lockedZones
Sends sensor and system data to GUI
TCPOut(s, HOST, PORT, HEADERSIZE)
If new command for mode control is received, perform changes
if config.mode != prevMode:
print("A new mode has been activated")
p.changeOperatingMode(config.mode)
prevMode = config.mode
Checks for operator induced forced reset of interlocked zones
if config.forceReset:
print("Operator is forcing reset of all interlocked zones")
ils.resetAllZones()
If object is found, interlock the current zone
if ils.findObject(config.data_1lst):
ils.setInterlockZone(ils.findZone(config.angle), config.angle)

localhost:4649/?mode=python

2/3

5/20/22, 3:12 AM Main.py

115 # Incrementing for next sonar-scan

116 config.angle = (config.angle + p.get_step()) % 400

117

118 # If the current angle is equal to any of the angles that were used to lock
a zone

119 if ils.checkIfResetPermitted(config.angle):

120 # Reset that zone as the sonar has scanned that zone again, and no
object is detect

121 ils.resetInterlockZone(ils.findZone(config.angle))

122

localhost:4649/?mode=python 3/3

5/20/22, 3:15 AM config.py

RASPBERRY PI SUB PROGRAM CONTAINING GLOBAL VARIABLES USED BETWEEN
THE OTHER PYTHON SCRIPTS.

=

Global variables being received from GUI
light= 0

motorSpeed = 0

runZone = -1

mode = 1

forceReset = False

takeHighResPhoto = False

VW oOoNOUVTLhA WN

BoR R
N RO

13 takeVideo = False

14

15 # Global variables being sent to GUI
16 temp = ©

17 depth = 0

18 leak = False

19 angle = ©

20 data_lst = []

21 step = ©

22 interlockedZones = [False] * 8

23 salinity = ©

24 conductivity = 150

25 density = 1000

26

27 # General functionality not used by communication
28 address = ""

29 clientsocket = ""

30 newArduinoCommands = False

localhost:4649/?mode=python

7

5/20/22, 3:23 AM BlueRoboticsSonar.py

VWoOoONOOUVTE, WN PR

NNNNNNNNRRPRRRRRBRRERR
NOUBMWNROWOUONOANUDNWNRO®

28
29

30
31
32
33

34

35

36
37
38
39
40
41
42
43
44

45
46

RASPBERRY PI SUB PROGRAM CONTAINING A PING 360 CLASS USED
FOR CONTROLLING AND READING FROM THE SCANNING IMAGING SONAR

MOST OF THIS CLASS, AND ALL OF THE <brping> MODULES IMPORTED
BELOW, ARE DEVELOPED BY THE MANUFACTORER OF THE SCANNING IMAGING
SONAR, BLUEROBOTICS.

from brping import definitions
from brping import PingDevice
from brping import pingmessage

class Ping360(PingDevice):
def initialize(self):
if not PingDevice.initialize(self):
return False
if (self.readDeviceInformation() is None):
return False
self. speed of sound = 1500
self. step = 2
return True

H#it
@brief Get a device_data message from the device\n
Message description:\n
This message is used to communicate the current sonar state. If the data field
is populated, the other fields indicate the sonar state when the data was captured.
The time taken before the response to the command is sent depends on the difference
between the last angle scanned and the new angle in the parameters as well as the
number of samples and sample interval (range). To allow for the worst case reponse
time the command timeout should be set to 4000 msec.
#
@return None if there is no reply from the device, otherwise a dictionary with
the following keys:\n
mode: Operating mode (1 for Ping360)\n
gain_setting: Analog gain setting (© = low, 1 = normal, 2 = high)\n
angle: Units: gradian Head angle\n
transmit_duration: Units: microsecond Acoustic transmission duration (1~1000
microseconds)\n
sample period: Time interval between individual signal intensity samples in
25nsec increments (80 to 40000 == 2 microseconds to 1000 microseconds)\n
transmit_frequency: Units: kHz Acoustic operating frequency. Frequency range
is 500kHz to 1000kHz, however it is only practical to use say 650kHz to 850kHz due
to the narrow bandwidth of the acoustic receiver.\n
number_of samples: Number of samples per reflected signal\n
data: 8 bit binary data array representing sonar echo strength\n
def get _device_data(self):
if self.request(definitions.PING360_DEVICE_DATA, 4) is None:
print("empty request")
return None
data = ({
"mode": self. mode, # Operating mode (1 for Ping360)
"gain_setting": self._gain_setting, # Analog gain setting (0 = low, 1 =
normal, 2 = high)
"angle": self._angle, # Units: gradian Head angle
"transmit_duration": self._transmit_duration, # Units: microsecond
Acoustic transmission duration (1~1000 microseconds)

localhost:4649/?mode=python

1/6

5/20/22, 3:23 AM BlueRoboticsSonar.py

47

48

49

50

51
52
53
54
55
56
57
58

59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94

"sample period": self. sample period, # Time interval between
individual signal intensity samples in 25nsec increments (80 to 40000 ==
microseconds to 1000 microseconds)

"transmit_frequency": self._transmit_frequency, # Units: kHz Acoustic
operating frequency. Frequency range is 500kHz to 1000kHz, however it is only
practical to use say 650kHz to 850kHz due to the narrow bandwidth of the acoustic
receiver.

"number_of samples": self. number_of samples, # Number of samples per
reflected signal

"data": self._data, # 8 bit binary data array representing sonar echo
strength

)

return data
#i#
@brief Send a device_id message to the device\n
Message description:\n
Change the device id\n
Send the message to write the device parameters, then read the values back

from the device\n
#
@param id - Device ID (1-254). © and 255 are reserved.
@param reserved - reserved
#

@return If verify is False, True on successful communication with the device.

If verify is False, True if the new device parameters are verified to have been
written correctly. False otherwise (failure to read values back or on verification
failure)
def device_id(self, id, reserved, verify=True):

m = pingmessage.PingMessage(definitions.PING360 DEVICE_ID)

m.id = id

m.reserved = reserved

m.pack_msg_data()

self.write(m.msg_data)

if self.request(definitions.PING360 DEVICE_ID) is None:

return False
Read back the data and check that changes have been applied

if (verify
and (self._id != id or self._reserved != reserved)):
return False
return True # success m.id = id

m.reserved = reserved
m.pack_msg_data()
self.write(m.msg _data)

def control reset(self, bootloader, reserved):
m = pingmessage.PingMessage(definitions.PING360_RESET)
m.bootloader = bootloader
m.reserved = reserved
m.pack_msg_data()
self.write(m.msg_data)

def control_transducer(self, mode, gain_setting, angle, transmit_duration,
sample_period, transmit_frequency, number of samples, transmit, reserved):
m = pingmessage.PingMessage(definitions.PING360_TRANSDUCER)
m.mode = mode
m.gain_setting = gain_setting
m.angle = angle
m.transmit_duration = transmit_duration
m.sample_period = sample_period

localhost:4649/?mode=python

2/6

5/20/22, 3:23 AM BlueRoboticsSonar.py

95 m.transmit_frequency = transmit_frequency

96 m.number_of samples = number_ of samples

97 m.transmit = transmit

98 m.reserved = reserved

99 m.pack_msg_data()

100 self.write(m.msg_data)

101

102

103 def set_mode(self, mode):

104 self.control_transducer(

105 mode,

106 self. _gain_setting,

107 self. angle,

108 self. transmit_duration,

109 self._sample_period,

110 self._transmit_frequency,

111 self._number_of_samples,

112 0,

113 0

114)

115 return self.wait_message([definitions.PING360_ DEVICE_DATA,
definitions.COMMON_NACK], 4.0)

116

117 def set gain_setting(self, gain_setting):

118 self.control_transducer(

119 self._mode,

120 gain_setting,

121 self._angle,

122 self. transmit_duration,

123 self. sample_period,

124 self._transmit_frequency,

125 self._number_of_samples,

126 0,

127 0

128)

129 return self.wait_message([definitions.PING360 DEVICE_DATA,
definitions.COMMON_NACK], 4.90)

130

131 def set _angle(self, angle):

132 self.control transducer(

133 self._mode,

134 self._gain_setting,

135 angle,

136 self. transmit_duration,

137 self. sample period,

138 self. transmit_frequency,

139 self._number_of_samples,

140 9,

141 0

142)

143 return self.wait_message([definitions.PING360 DEVICE_DATA,
definitions.COMMON_NACK], 4.90)

144

145 def set_transmit_duration(self, transmit_duration):

146 self.control transducer(

147 self. mode,

148 self._gain_setting,

149 self._angle,

150 transmit_duration,

151 self. sample period,

localhost:4649/?mode=python 3/6

5/20/22, 3:23 AM BlueRoboticsSonar.py

152 self._transmit_frequency,

153 self. number_of samples,

154 0,

155 0

156)

157 return self.wait_message([definitions.PING360_DEVICE_DATA,
definitions.COMMON_NACK], 4.0)

158

159 def set_sample_period(self, sample_period):

160 self.control_transducer(

161 self. mode,

162 self. _gain_setting,

163 self. angle,

164 self. transmit_duration,

165 sample_period,

166 self._transmit_frequency,

167 self._number_of_samples,

168 0,

169 0

170)

171 return self.wait_message([definitions.PING360_ DEVICE_DATA,
definitions.COMMON_NACK], 4.0)

172

173 def set_transmit_frequency(self, transmit_frequency):

174 self.control_transducer(

175 self._mode,

176 self. _gain_setting,

177 self._angle,

178 self. transmit_duration,

179 self. sample_period,

180 transmit_frequency,

181 self._number_of_samples,

182 0,

183 0

184)

185 return self.wait_message([definitions.PING360 DEVICE_DATA,
definitions.COMMON_NACK], 4.90)

186

187 def set number_of samples(self, number_ of samples):

188 self.control transducer(

189 self._mode,

190 self._gain_setting,

191 self._angle,

192 self. transmit_duration,

193 self. sample period,

194 self. transmit_frequency,

195 number_of_samples,

196 0,

197 0

198)

199 return self.wait_message([definitions.PING360 DEVICE_DATA,
definitions.COMMON_NACK], 4.90)

200

201

202 def readDeviceInformation(self):

203 return self.request(definitions.PING360 DEVICE_DATA)

204

205 def transmitAngle(self, angle):

206 self.control transducer(

207 0, # reserved

localhost:4649/?mode=python 4/6

5/20/22, 3:23 AM BlueRoboticsSonar.py

208
209
210
211
212
213
214
215
216
217

218
219
220
221
222
223
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257
258

259
260
261
262
263

self._gain_setting,
angle,

self. transmit_duration,
self._sample_period,
self._transmit_frequency,
self._number_of_samples,
1,

0

)
return self.wait_message([definitions.PING360_ DEVICE_DATA,

definitions.COMMON_NACK], ©.5)

def transmit(self):
return self.transmitAngle(self. angle)

Below functions are created specifically for the ROV project, functions over are

developed

by the manufactor of the sonar, BlueRovotics.

Function that returns the currently set speed of sound
def get speed of_sound(self):
return self._speed_of_sound

Function that changes the speed of sound
def set speed of sound(self, newSpeed):
if (newSpeed == self.get speed of sound()):
print("Requested speed of sound is already set")
return
else:
self. speed of sound = newSpeed

Function that returns the sample period set for the sonar

def samplePeriod(self):
Multiply with samplePeriodTickDuration which is 25 nanoseconds
return self._sample_period * 25E-9

Returns the currently set scanning range
def get_range(self):
return self.samplePeriod() * self. number_of_samples *

self.get_speed_of_sound() / 2

Sets new sonar scan range
def set_range(self, newRange):
Checks if new argument is different from set range
if (newRange == self.get_range()):
return
else:
Calculate the new sample period to achieve requested distance
self._sample_period = int(newRange/(self._number_of_samples*25E-9*750))

Sets new step size, that indicates how many angles the sonar jumps for every

iteration

def set_step(self, newStep):
self._step = newStep

Returns the current step
def get step(self):

localhost:4649/?mode=python

5/6

5/20/22, 3:23 AM BlueRoboticsSonar.py

264 return self. step

265

266 # Function that changes settings needed for the sonar to scan in a new mode
267 def changeOperatingMode(self, newMode):

268 # Checks if input is different from last iteration

269 if newMode ==

270 self.set_range(20) # Short range collision avoidance mode
271 self.set_step(4)

272 self.set_gain_setting(0)

273 elif newMode ==

274 self.set_range(50) # Medium range collision avoidance mode
275 self.set_step(2)

276 self.set_gain_setting(1)

277 elif newMode ==

278 self.set_range(2) # Aquaculture inspection mode

279 self.set_step(10)

280 self.set_gain_setting(9)

281 elif newMode ==

282 self.set_range(4) # Aquaculture inspection mode

283 self.set_step(8)

284 self.set_gain_setting(9)

285 else:

286 print("Did not recognize mode command")

287 print("Corrupt or invalid data given")

288 return

localhost:4649/?mode=python 6/6

5/20/22, 3:50 AM

=

VW oOoNOUVTLh WN

10

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57

communication.py

RASPBERRY PI SUB PROGRAM CONTAINING THE LOGIC TO HANDLE
THE COMMUNICATION BETWEEN ALL DEVICES CONNECTED TO THE RPI.
INCLUDES SERIAL COMMUNICATION, TCP AND UDP.

import
import
import
import
import
import
import

socket
pickle
numpy as np
config
threading
struct

math

from imutils.video import VideoStream

import
import
import

serial
json
time

class FrameSegment(object):

Initialization of functionality that handles dividing picture frames to

correctly sized UDP datagrams
def init_ (self, sock, port, addr="169.254.226.73"):

Function that takes in a frame, compresses it, divides it into UDP datagrams

and

self.s = sock

self.port = port

self.addr = addr

self.MAX_DGRAM = 2**16

self.MAX_ IMAGE DGRAM = self.MAX DGRAM - 64

sends it over UDP to the GUI
def udp_frame(self, img):

Compress image to .jpg format

compress_img = cv2.imencode(".jpg", img)[1]

dat = compress_img.tostring()

size = len(dat)

Finds number of datagrams needed to be sent for this frame
num_of_segments = math.ceil(size/(self.MAX_IMAGE_DGRAM))
array_pos_start = 0

Sends out all the datagrams needed for the frame
while num_of_segments:
array_pos_end = min(size, array_pos_start + self.MAX_IMAGE_DGRAM)
self.s.sendto(
struct.pack("B", num_of segments) +
dat[array_pos_start:array_pos_end],
(self.addr, self.port)

)
array_pos_start = array_pos_end
num_of segments -= 1

Function that handles the TCP data coming from the GUI
def TCPINn():

localhost:4649/?mode=python

1/5

5/20/22, 3:50 AM communication.py

58 HEADERSIZE = 10

59

60 # Constantly checking for new messages

61 while 1:

62 receiving = True

63 full_ msg = b"'

64 new_msg = True

65 incoming message = config.clientsocket.recv(8192)

66

67 while receiving:

68

69 if new_msg:

70 msglen = int(incoming message[:HEADERSIZE])

71 new_msg = False

72

73 full_msg += incoming_message

74

75 # If full message received, update global variables

76 if len(full _msg)-HEADERSIZE == msglen:

77 GuiDataIn = pickle.loads(full msg[HEADERSIZE:])

78 print("[ATTENTION] New data has been applied to global variables
from GUI commands")

79 config.light = GuiDatalIn["light"]

80 config.motorSpeed = GuiDataIn["motorSpeed"]

81 config.runZone = GuiDataIn["runZone"]

82 config.forceReset = GuiDataIn["forceReset"]

83 config.mode = GuiDataIn["mode"]

84 config.takeHighResPhoto = GuiDataIn["takePhoto"]

85 config.takeVideo = GuiDataIn["takeVideo"]

86 config.newArduinoCommands = True

87

88 # Resetting variables for next iteration

89 receiving = False

90 new_msg = True

91 full msg = b""’

92

93

94 # Function that handles the TCP data to be sent to the GUI
95 def TCPOut(s, HOST, PORT, HEADERSIZE):

96 communicating = True

97 startReceive = True

98

99 while communicating:

100 receiving = True

101

102 # If no connection is established, try to find one
103 if not config.address:

104 config.clientsocket, config.address = s.accept()
105 print(f"Connection from {config.address} has been established.")
106

107 # Finalizing dicitionary with all values to be sent to GUI
108 GuiDataOut = {

109 "image": "",

110 "temp": config.temp,

111 "depth": config.depth,

112 "leak"™: config.leak,

113 "angle": config.angle,

114 "step": config.step,

115 "lockedZones": config.interlockedZones,

116 "dataArray": config.data_lst,

localhost:4649/?mode=python 2/5

5/20/22, 3:50 AM communication.py

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161l
162
163
164
165
166
167
168

169
170
171
172
173
174

"salinity": config.salinity,
"conductivity": config.conductivity,
"density": config.density

}

Serializing the dicitionary and sending

msg = pickle.dumps(GuiDataOut)

msg = bytes(f"{len(msg):<{HEADERSIZE}}", 'utf-8') + msg
config.clientsocket.send(msg)

communicating = False

Function that handles the UDP communication with GUI
def UDP():

Establish connection with server
s = socket.socket(socket.AF_INET, socket.SOCK DGRAM)
port = 20001

Declare object for handling image frames
fs = FrameSegment(s, port)

Variables for naming photo and video files
photoNum = ©

videoNum = ©

Opens camera port and defines video format
cap = VideoStream(src=0).start()

size = (640, 480)

while 1:
If commanded from GUI, take photo and save to determined path
if config.takeHighResPhoto:

photoNum += 1
photo = cap.read()

status = cv2.imwrite(f'/home/pi/Programs/Photos/photo_{photoNum}.png"',

photo)

print(f'Image written to file system status: {status}')
time.sleep(1) # Sleeps for 1 second before resuming UDP video stream
config.takeHighResPhoto = False

If no commands to take picture, resume video stream over UDP to GUI
while not config.takeHighResPhoto:
frame = cap.read()

If user commands to save video, store video to file
if config.takeVideo:
if not vidConfigured:
videoNum += 1
result =

cv2.VideoWriter(f'/home/pi/Programs/Videos/Video{videoNum}.avi"',

cv2.VideoWriter_ fourcc(*'mp4v'), 12, size)
vidConfigured = True

result.write(frame) # Writing to disk as a video
else:
vidConfigured = False

localhost:4649/?mode=python

3/5

5/20/22, 3:50 AM

communication.py

175

176 fs.udp_frame(frame) # Sending to GUI using UDP communication
177

178 cap.release()

179 cv2.destroyAllWindows ()

180 s.close()

181

182

183 # Function that handles serial communication with Arduino Uno and combination sensor

184 def serialCom():

185

186 # Initialize serial communication with Arduino UNO

187 ardSer = serial.Serial('/dev/ttyACMO', 9600, timeout=1,

188 parity=serial.PARITY_NONE, bytesize=serial.EIGHTBITS,
stopbits=serial.STOPBITS_ONE)

189 print(f'Arduino serial communication status: {ardSer.isOpen()}')

190

191 # Initialize serial communication with conductivity/combination sensor

192 condSer = serial.Serial('/dev/ttyUSB1', 9600)

193 print(f'Conductivity sensor communication status: {condSer.isOpen()}')

194

195 time.sleep(2)

196

197 # Continuously send and receive over serial connection

198 while 1:

199

200 # Commands conductivity sensor to conduct sample of values

201 condSer.write("do_sample\n".encode())

202

203 # Commands for values, and reads response to global variables

204 config.salinity = getAanderaaData(condSer, "get salinity\n")

205 soundSpeedReading = getAanderaaData(condSer, "get soundspeed\n™)

206 config.density = getAanderaaData(condSer, "get_density\n")

207 config.conductivity = getAanderaaData(condSer, "get conductivity\n")

208

209 # If new commands has been updated for Arduino Uno, structure data from
global variable, serialize and send

210 if config.newArduinoCommands:

211 ArdDataOut = {}

212 ArdDataOut["light"] = config.light

213 ArdDataOut["runzZone"] = config.runZone

214 ArdDataOut["locked"] = config.interlockedZones

215 ArdDataOut = json.dumps(ArdDataOut)

216 ardSer.write(ArdDataOut.encode())

217 config.newArduinoCommands = False

218

219 # If the serial input buffer reserved for Arduino traffic has data,
unserialize and store in global variables

220 if ardSer.in_waiting > 0:

221 ArdDataIn = json.loads(ardSer.readline()) # Deserializes input from
Arduino

222 config.temp = ArdDatalIn["Temp"]

223 config.depth = ArdDataIn["Depth"]

224 config.leak = ArdDataIn["Leak"]

225

226 # Have to read and purge input buffer for combination sensor, as old data
can ruin future readings

227 condIn = condSer.readline()

228

229

localhost:4649/?mode=python

4/5

5/20/22, 3:50 AM communication.py

230 # Function that compresses frame read from camera
231 def commpressImage(img, k):

232 width = int((img.shape[1])/k)

233 height = int((img.shape[0])/k)

234 return cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
235

236 # Function that sends commands and reads response. Reads value
237 # based on given parameter
238 def getAanderaaData(condSer, request_str):

239 condIn = b"'

240 condIn = condSer.readline() # Have to read the buffer to stop future splitting
issues

241 condSer.write(request_str.encode())

242 condIn = condSer.readline().decode()

243 data = condIn.split('\t")

244 data = data[-1]

245 data = data.replace('\r\n‘, '")

246 return float(data)

localhost:4649/?mode=python 5/5

5/20/22, 3:30 AM Interlocking.py

1
2 RASPBERRY PI SUB PROGRAM CONTAINING THE INTERLOCKING LOGIC
3 NEEDED FOR ASSISTING THE OPERATOR OF THE ROV TO CONTROL THE
4 ROV IN TIGHT SPACES.
g wen
6
7 class InterlockingSystem:
8 def init_ (self):
9 print("Interlocking system initalized")
10 self.lockedZones = [False] * 8
11 self.zonelLockedAngles = [None] * 8
12
13 # Resets all interloked zones
14 def resetAllZones(self):
15 print("Operator-forced reset of all interlocked zones")
16 self.lockedZones = [False] * 8
17
18 # By taking in the currently scanned angle, finds which zone the angle
19 # is a part of, and return this zone
20 def findZone (self, angle):
21 if 175 < angle <= 225:
22 return ©
23 elif 125 < angle <= 175:
24 return 1
25 elif 75 < angle <= 125:
26 return 2
27 elif 25 < angle <= 75:
28 return 3
29 elif 325 < angle <= 375:
30 return 5
31 elif 275 < angle <= 325:
32 return 6
33 elif 225 < angle <= 275:
34 return 7
35 else:
36 return 4
37
38 # Function taking in the echo strengths from sonar, and finds if these
39 # values within close proximity is above a certain treshold, and determines
40 # if an object was located
41 def findObject (self, dataPoints):
42
43 # Constants for object detection, can be adjusted for range and sensitivity
44 numOfValues = 100
45 thresholdObjDetect = 40
46
47 # Slicing list to appropiate values, changing this means changing what range
are scanned for objects
48 objectData = dataPoints[numOfValues:2*numOfValues]
49 avrObj = sum(objectData)/numOfValues
50 # print("Average echo strength (©-255): ", avrObj)
51
52 # If average of datapoints is above threshold return true (object is
detected)
53 if avrObj > thresholdObjDetect:
54 return True
55 else:
56 return False
57

localhost:4649/?mode=python 1/3

5/20/22, 3:30 AM

58 # Takes in zone and angle and interlocks that zone for no movement in that
direction

59 # Additionally the angle which the object was located at is saved, for later
resetting

60 # of zone during normal operation

61 def setInterlockZone (self, zone, angle):

62 if zone == 0:

63 self.lockedZones[@] = True

64 self.zonelLockedAngles[0] = angle

65 elif zone ==

66 self.lockedZones[1] = True

67 self.zonelLockedAngles[1] = angle

68 elif zone == 2:

69 self.lockedZones[2] = True

70 self.zoneLockedAngles[2] = angle

71 elif zone ==

72 self.lockedZones[3] = True

73 self.zonelLockedAngles[3] = angle

74 elif zone == 4:

75 self.lockedZones[4] = True

76 self.zonelLockedAngles[4] = angle

77 elif zone ==

78 self.lockedZones[5] = True

79 self.zonelLockedAngles[5] = angle

80 elif zone == 6:

81 self.lockedZones[6] = True

82 self.zonelLockedAngles[6] = angle

83 elif zone ==

84 self.lockedZones[7] = True

85 self.zonelLockedAngles[7] = angle

86 else:

87 print("Invalid set zone given")

88

89 # Checks if the scanned angle has been interlocked last revolution
90 # and if no object was found this reviolution, reset the zone
91 def checkIfResetPermitted (self, angle):

92 for i in range(len(self.zoneLockedAngles)):
93 if (self.zoneLockedAngles[i] == angle):
94 self.resetInterlockZone(self.findZone(angle))
95

96 # Takes in an angle, and resets the zone containing that angle
97 def resetInterlockZone (self, zone):

98 if zone ==

99 self.lockedZones[@] = False

100 elif zone == 1:

101 self.lockedZones[1] = False

102 elif zone ==

103 self.lockedZones[2] = False

104 elif zone ==

105 self.lockedZones[3] = False

106 elif zone == 4:

107 self.lockedZones[4] = False

108 elif zone ==

109 self.lockedZones[5] = False

110 elif zone == 6:

111 self.lockedZones[6] = False

112 elif zone ==

113 self.lockedZones[7] = False

114 else:

115 print("Invalid reset zone given")

localhost:4649/?mode=python

Interlocking.py

2/3

5/20/22, 3:30 AM Interlocking.py

localhost:4649/?mode=python 3/3

Appendix H

GUI code

5/20/22, 2:47 AM main.py

1

o wum

3 MAIN PROGRAM FOR GUI APPLICATION. HANDLES THE COMMUNICATION WITH THE
4 RASPBERRY PI INSIDE THE ROV ENCLOSURE. THIS PROGRAM CONTAINS A TCP

5 CLIENT AND A UDP SERVER. PROGRAM IS DEPENDANT ON CONFIG.PY FOR GLOBAL
6 VARIABLES, AND INTERFACING.PY FOR GUI APPLICATION FUNCTIONALITY.
7w

8

9 from xmlrpc.client import Server

10 import socket

11 import pickle

[ERY
N

import cv2

import time

import numpy as np

from PyQt5.QtWidgets import QWidget, QApplication, QLabel, QVBoxLayout
import sys

import cv2

from math import *

import threading

import config

from interfacing import VideoThread, App
import struct

NNNNNRRRRRRR
BWNROWOVWONOU MW

Sonar constants needed for plotting visualization
MAX_RANGE = 80*200*1450/2

LENGTH = 640

CENTER (LENGTH/2,LENGTH/2)

image = np.zeros((LENGTH, LENGTH, 1), np.uint8)

N NDNDNDN
O 00N O U
Il

w w
[

Function that creates a circular plot of the sonar readings. Takes

32 in the angle scanned, step size for next angle and a list of echo

33 strengths.

34 """

35 def plotSonarInput(angle, step, data_lst):

36

37 linear_factor = len(data_lst)/CENTER[Q]

38 for i in range(int(CENTER[©])):

39 if(i < CENTER[©]*MAX_RANGE/MAX_RANGE):

40 try:

41 pointColor = data_lst[int(i*linear_factor-1)]

42 except IndexError:

43 pointColor = ©

44 else:

45 pointColor = ©

46 for k in np.linspace(9,step,8*step):

47 image[int (CENTER[@]+i*cos(2*pi*(angle+k)/400)),
int (CENTER[1]+i*sin(2*pi*(angle+k)/400)), @] = pointColor

48

49 # Updates GUI animation with new sonar plot

50 a.update_sonar(cv2.applyColorMap(image, cv2.COLORMAP_JET))

51

52 "

53 Function that handles the TCP Communication between the GUI and the
54 Raspberry Pi.

55 "

56 def TCPCom():

57 # Define connection parameters of RPi server
58 SERVER = "169.254.226.72"

localhost:4649/?mode=python 1/4

5/20/22, 2:47 AM main.py

59 PORT = 1422

60 HEADERSIZE = 10

61

62 # Using socket library, initialize a communication object

63 # and initialize TCP connection.

64 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

65 s.connect ((SERVER, PORT))

66

67 print(f"[NEW CONNECTION] With {SERVER} established")

68

69

70 full msg = b"’'

71 new_msg = True

72 while 1:

73 # Receives TCP packets and stores in variable

74 msg = s.recv(8192) # 8192

75

76 # If the start of a data message is sent, find length of expected
information

77 if new_msg:

78 msglen = int(msg[:HEADERSIZE])

79 new_msg = False

80

81 # Sum all packets to a full message

82 full msg += msg

83

84 # If length of message is as previously decided, unpack data and call
functions

85 if len(full _msg)-HEADERSIZE == msglen:

86

87 RaspDataIn = pickle.loads(full_msg[HEADERSIZE:])

88

89 a.setDisplayValues(RaspDataIn["temp"], RaspDataIn["depth"],
RaspDataIn["leak"],

90 RaspDataIn["lockedZones"], RaspDataln["salinity"],
RaspDataIn["conductivity"],

91 RaspDataIn["density"])

92 plotSonarInput(RaspDataIn["angle"], RaspDataIn["step"],
RaspDataIn["dataArray"])

93

94 # Resets for next message

95 new_msg = True

96 full msg = b""

97

98 # If TCP packet was not succesfully unpacked last message

99 # reset the input buffer

100 if len(full_msg) > 2500:

lo1 new_msg = True

102 full msg = b""

103

104

105 # If user has performed actions on GUI, sends commands over TCP to RPi

106 if config.newCommands:

107 print ("[ATTENTION] New commands sent to Raspberry")

108 config.newCommands = False

109

110 RaspDataOut = {

111 "light": config.light,

112 "motorSpeed": config.motorSpeed,

113 "runZone": config.runZone,

localhost:4649/?mode=python 2/4

5/20/22, 2:47 AM main.py

114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
lel
162
163
164
165
166
167
168
169
170
171
172

"forceReset": config.forceReset,
"mode": config.mode,
"takePhoto": config.takePhoto,
"takeVideo": config.takeVideo

}
RaspDataOut = pickle.dumps(RaspDataOut)
RaspDataOut = bytes(f'{len(RaspDatalOut):<{HEADERSIZE}}', 'utf-8') +

RaspDataOut

s.send(RaspDataOut)

Function that handles the UDP communication between the GUI and the
Raspberry Pi.

def UDPCom():

Datagram set to maximum allowable size
MAX_DGRAM = 2**16
dat = b""'

Function that dumps the UDP buffer.
def dump_buffer(s):
while True:
seg, addr = s.recvfrom(MAX_DGRAM)
print(seg[@])
if struct.unpack('B', seg[0:1])[0] == 1:
print("UDP input buffer emptied")

break

Using socket library, initialize a communication object
and initialize UDP connection.

s = socket.socket(socket.AF_INET, socket.SOCK DGRAM)
s.bind(('169.254.226.73"', 20001))

Dumps buffer, so that completely new data will be read at this point
dump_buffer(s)

Continuously checking for UDP datagrams and unpacks if an entire message
has been received, else summing up datagrams until this is true
while 1:
seg, _ = s.recvfrom(MAX_DGRAM)
if struct.unpack("B", seg[@:1])[0] > 1:
dat += seg[1l:]
else:
dat += seg[1:]
img = cv2.imdecode(np.frombuffer(dat, dtype=np.uint8), 1)
try:
config.rovCamera = img
except:
print("error (-215:Assertion failed)")
if cv2.waitKey(20) & OxFF == ord('q"):
break
dat = b"'

cv2.destroyAllWindows ()
s.close()

localhost:4649/?mode=python 3/4

5/20/22, 2:47 AM main.py

173 if __name__==

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

__main__":
Initializing GUI objects

app = QApplication(sys.argv)
a = App()

Opening an UDP server in GUI application
cam_communication = threading.Thread(target=UDPCom)
cam_communication.start()

Opening a TCP client in GUI application
other_communication = threading.Thread(target=TCPCom)
other communication.start()

Opens GUI as a seperate window
a.show()
sys.exit(app.exec_())

localhost:4649/?mode=python

4/4

5/20/22, 2:51 AM config.py

VW oOoONOOUVLD, WN PR

NNNNMNNNMNMNMNMNNMNMNNRPRPRRPRPRPRPRPRPRPEREREPR
VCoONOUPP,WNROLOVONOOTUD,WNEREDO®

PYTHON SCRIPT FOR GUI APPLICATION FOR ROV. CONTAINS THE GLOBAL VARIABLES
THAT ARE SHARED BETWEEN MAIN.PY AND INTERFACING.PY, RESPECTIVELY COMMUNICATION
AND MAIN GUI SCRIPTS.

import numpy as np

Holds the frame communicated from Raspberry Pi
rovCamera = np.array([])

Commands from GUI to raspberry with initial values
light = ©

motorSpeed = ©

runZone = -1

forceReset = False

mode = 1
takePhoto
takeVideo

False
False

Sensor information from Raspberry with inital values
temp = 0

pressure = 0

leak = 0

angle = 0

interlockedZones = [True] * 8

Boolean flag that indicates if new actions have been
performed on GUI
newCommands = False

localhost:4649/?mode=python

7

5/20/22, 2:56 AM interfacing.py

q men
PYTHON SCRIPT FOR GUI APPLICATION FOR ROV. CONTAINS AUTOGENERATED

GUI OBJECTS FROM QT DESIGNER AND FUNCTIONS NEEDED FOR GUI AND
COMMUNICATION THE WORK TOGETHER.

from PyQt5 import QtGui

from PyQt5 import QtWidgets

from PyQt5 import QtCore

9 from PyQt5.QtGui import QFont

10 from PyQt5.QtWidgets import QWidget, QApplication, QLabel, QVBoxLayout
11 from PyQt5.QtGui import QPixmap

12 from PyQt5.QtCore import pyqtSignal, pyqtSlot, Qt, QThread,QTime,QTimer
13 import cv2

14 import numpy as np

15 import config

coNOUVT DA WN

16

17

18 class VideoThread(QThread):

19 change_pixmap_signal = pyqtSignal(np.ndarray)

20

21 def __init_ (self):

22 super().__init_ ()

23 self. run_flag = True

24

25 def run(self):

26 while self. run_flag:

27 try:

28 if (len(config.rovCamera) > 10):

29 self.change_pixmap_signal.emit(config.rovCamera)
30 config.rovCamera = np.array([])

31 except:

32 continue

33

34 def stop(self):

35 self. run_flag = False

36 self.wait()

37

38 class App(QwWidget):

39 def init (self):

40 super().__init_ ()

41 self.setWindowTitle("ROV-AIP USER INTERFACE")

42 self.setGeometry(90,0,2560,1440)

43 self.setStyleSheet("background-color: rgb(93, 93, 93);")
44 self.g = 9.81 # [m/s"2]

45 self.density = 1000 # [kg/m"3]

46 self.prevLockedZones = [True] * 8

47

48 self.image_label = QLabel(self)

49 self.image_label.setGeometry(690, 0, 1221, 671)

50 self.image_label.setFrameShape(QtWidgets.QFrame.Panel)
51

52 self.sonar=QLabel(self)

53 self.sonar.setText("Sonar_Placeholder")

54 self.sonar.setStyleSheet("background-color: rgb(134, 134, 134);")
55 self.sonar.setGeometry(15, 15, 640, 640)

56 self.sonar.setFrameShape(QtWidgets.QFrame.Panel)

57

58 self.Forward = QtWidgets.QToolButton(self)

59 self.Forward.setGeometry(QtCore.QRect (1280, 770, 51, 41))

localhost:4649/?mode=python 110

5/20/22, 2:56 AM interfacing.py

60 self.Forward.setStyleSheet("background-color: rgb(134, 134, 134);")
61 self.Forward.setIcon(QtGui.QIcon('GUI interface\Icons\icon_forward.png'))
62 self.Forward.setIconSize(QtCore.QSize(32, 32))

63 self.Forward.setPopupMode (QtWidgets.QToolButton.InstantPopup)

64 self.Forward.setArrowType(QtCore.Qt.NoArrow)

65 self.Forward.setObjectName("Forward")

66 self.Forward.pressed.connect(lambda: self.activateZone(9))

67 self.Forward.released.connect(self.release)

68

69 self.Reverse = QtWidgets.QToolButton(self)

70 self.Reverse.setGeometry(QtCore.QRect(1280, 870, 51, 41))

71 self.Reverse.setStyleSheet("background-color: rgb(134, 134, 134);")
72 self.Reverse.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_reverse.png'))
73 self.Reverse.setIconSize(QtCore.QSize(32, 32))

74 self.Reverse.setPopupMode (QtWidgets.QToolButton.InstantPopup)

75 self.Reverse.setArrowType(QtCore.Qt.NoArrow)

76 self.Reverse.setObjectName("Reverse")

77 self.Reverse.pressed.connect(lambda: self.activateZone(4))

78 self.Reverse.released.connect(self.release)

79

80 self.Left = QtWidgets.QToolButton(self)

81 self.Left.setGeometry(QtCore.QRect (1210, 820, 51, 41))

82 self.Left.setStyleSheet("background-color: rgb(134, 134, 134);")

83 self.Left.setIcon(QtGui.QIcon('GUI interface\Icons\icon_left.png'))
84 self.Left.setIconSize(QtCore.QSize(32, 32))

85 self.Left.setPopupMode(QtWidgets.QToolButton.InstantPopup)

86 self.Left.setArrowType(QtCore.Qt.NoArrow)

87 self.Left.setObjectName("Left")

88 self.Left.pressed.connect(lambda: self.activateZone(6))

89 self.Left.released.connect(self.release)

90

91 self.Right = QtWidgets.QToolButton(self)

92 self.Right.setGeometry(QtCore.QRect(1350, 820, 51, 41))

93 self.Right.setStyleSheet("background-color: rgb(134, 134, 134);")
94 self.Right.setIcon(QtGui.QIcon('GUI interface\Icons\icon_right.png'))
95 self.Right.setIconSize(QtCore.QSize(32, 32))

96 self.Right.setPopupMode(QtWidgets.QToolButton.InstantPopup)

97 self.Right.setArrowType(QtCore.Qt.NoArrow)

98 self.Right.setObjectName("Right")

99 self.Right.pressed.connect(lambda: self.activateZone(2))

100 self.Right.released.connect(self.release)

101

102 self.ForwardRight = QtWidgets.QToolButton(self)

103 self.ForwardRight.setGeometry(QtCore.QRect(1350, 770, 51, 41))

104 self.ForwardRight.setStyleSheet("background-color: rgb(134, 134, 134);")
105

self.ForwardRight.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_forward_right.png')
)

106 self.ForwardRight.setIconSize(QtCore.QSize(32, 32))

107 self.ForwardRight.setPopupMode (QtWidgets.QToolButton.InstantPopup)

108 self.ForwardRight.setObjectName("ForwardRight")

109 self.ForwardRight.pressed.connect(lambda: self.activateZone(1))

110 self.ForwardRight.released.connect(self.release)

111

112 self.ForwardLeft = QtWidgets.QToolButton(self)

113 self.ForwardLeft.setGeometry(QtCore.QRect(1210, 770, 51, 41))

114 self.ForwardLeft.setStyleSheet("background-color: rgb(134, 134, 134);")
115

self.ForwardLeft.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_forward_left.png'))
116 self.ForwardLeft.setIconSize(QtCore.QSize(32, 32))

localhost:4649/?mode=python 2/10

5/20/22, 2:56 AM

117
118
119
120
121
122
123
124
125

self.ReverselLeft.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_reverse_left.png'))
self.
self.
self.
self.
self.

126
127
128
129
130
131
132
133
134
135

self

self.
self.
self.

self
self
self

.ForwardLeft.
self.
self.
self.

ForwardLeft
ForwardLeft
ForwardLeft.

ReverselLeft
ReverselLeft.
ReverselLeft.

ReverselLeft.
ReverselLeft.
ReverselLeft.
ReverselLeft.
ReverselLeft.

.ReverseRight
.ReverseRight
.ReverseRight.setStyleSheet("background-color: rgb(134, 134, 134);")

interfacing.py
setPopupMode (QtWidgets.QToolButton.InstantPopup)

.setObjectName("ForwardLeft")
.pressed.connect(lambda: self.activateZone(7))

released.connect(self.release)

= QtWidgets.QToolButton(self)
setGeometry(QtCore.QRect (1210, 870, 51, 41))
setStyleSheet("background-color: rgb(134, 134, 134);")

setIconSize(QtCore.QSize(32, 32))

setPopupMode (QtWidgets.QToolButton.InstantPopup)
setObjectName("ReverseLeft")
pressed.connect(lambda: self.activatezZone(5))
released.connect(self.release)

= QtWidgets.QToolButton(self)
.setGeometry(QtCore.QRect (1350, 8790, 51, 41))

self.ReverseRight.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_reverse_right.png')

)
136

137
138
139
140
141
142
143
144
145

self.
self.
self.
self.
self.

self.
self.

self

ReverseRight.
ReverseRight.
ReverseRight.
ReverseRight.
ReverseRight.

setIconSize(QtCore.QSize(32, 32))

setPopupMode (QtWidgets.QToolButton.InstantPopup)
setObjectName("ReverseRight")
pressed.connect(lambda: self.activateZone(3))
released.connect(self.release)

CounterClockwise = QtWidgets.QToolButton(self)
CounterClockwise.setGeometry(QtCore.QRect(1210, 710, 51, 41))

.CounterClockwise.setStyleSheet("background-color: rgb(134, 134, 134);")

self.CounterClockwise.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_rotate_left.png

"))
146
147
148
149
150
151
152
153
154
155

self.Clockwise.setIcon(QtGui.QIcon('GUI interface\Icons\icon_rotate_ right.png'))
self.
self.
self.
.Clockwise.pr
self.

156
157
158
159
160
161l
162
163
164
165
166
167
168
169
170

localhost:4649/?mode=python

self.
self.
self.
self.
self.

self.
self.
self.

self

self.
self.
self.
self.
self.
self.
self.
self.
self.

CounterClockwise
CounterClockwise
CounterClockwise.
CounterClockwise
CounterClockwise.

.setIconSize(QtCore.QSize(32, 32))

.setPopupMode (QtWidgets.QToolButton.InstantPopup)
setObjectName("CounterClockwise™)
.pressed.connect(lambda: self.activateZone(8))
released.connect(self.release)

Clockwise = QtWidgets.QToolButton(self)

Clockwise.se
Clockwise.se

Clockwise.se
Clockwise.se
Clockwise.se

Clockwise.re

Temp

Temp.
Temp.
Temp.
Temp.
Temp.
Temp.
Temp.
Temp.

= QtWid
setGeom
setStyl
setFram
setSmal
setDigi
setSegm
setProp
setObje

tGeometry(QtCore.QRect(1350, 710, 51, 41))
tStyleSheet("background-color: rgb(134, 134, 134);")

tIconSize(QtCore.QSize(32, 32))

tPopupMode (QtWidgets.QToolButton.InstantPopup)
tObjectName("Clockwise")

essed.connect(lambda: self.activatezZone(9))
leased.connect(self.release)

gets.QLCDNumber(self)

etry(QtCore.QRect(30, 710, 141, 31))
eSheet("background-color: rgb(134, 134, 134);")
eShadow(QtWidgets.QFrame.Plain)
1DecimalPoint(True)

tCount(8)

entStyle(QtWidgets.QLCDNumber.Flat)
erty("value", 0.0)

ctName("Temp")

3/10

5/20/22, 2:56 AM

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229

localhost:4649/?mode=python

134);")

self

self

self.
self.
self.
self.
.Salinity.set
.Salinity.set
.Salinity.set
self.
self.

self
self
self

self.
self.
self.
self.
self.
self.
self.
self.
self.

self
self
self

self.
self.
self.

self.
self.

self
self
self

self.

self.
self.
self.
self.
self.
self.
self.

.Temp.display

.Depth = QtWi
self.
self.
self.
self.
self.
self.
self.
self.

Depth.setGeo
Depth.setSty
Depth.setFra
Depth.setSma
Depth.setDig
Depth.setSeg
Depth.setObj

interfacing.py
(999)

dgets.QLCDNumber(self)

metry(QtCore.QRect(30, 790, 141, 31))
leSheet("background-color: rgb(134, 134, 134);")
meShadow(QtWidgets.QFrame.Plain)
11DecimalPoint(True)

itCount(8)

mentStyle(QtWidgets.QLCDNumber.Flat)
ectName("Depth")

Depth.display(999)

Salinity = QtWidgets.QLCDNumber(self)

Salinity.set
Salinity.set
Salinity.set

Geometry(QtCore.QRect(30, 870, 141, 31))
StyleSheet("background-color: rgb(134, 134, 134);")
FrameShadow(QtWidgets.QFrame.Plain)
SmallDecimalPoint(True)

DigitCount(8)
SegmentStyle(QtWidgets.QLCDNumber.Flat)

Salinity.setObjectName("Salinity")

Salinity.dis

Conductivity

Conductivity.
Conductivity.
Conductivity.
Conductivity.
Conductivity.
Conductivity.
Conductivity.

Conductivity

Density.setF
Density.setS
Density.setD
Density.setS
Density.setO
Density.disp

Light_Value_
Light Value_
Light Value_

Light_Value_
Light_Value_
.Light_Value_
.Light Value_
.Light Value_
Light_Value_

ResetButton

ResetButton.
ResetButton.
ResetButton.
ResetButton.
ResetButton.
ResetButton.

play(999)

= QtWidgets.QLCDNumber(self)
setGeometry(QtCore.QRect(30, 950, 141, 31))
setStyleSheet("background-color: rgb(134, 134, 134);")
setFrameShadow(QtWidgets.QFrame.Plain)
setSmallDecimalPoint(True)

setDigitCount(8)
setSegmentStyle(QtWidgets.QLCDNumber.Flat)
setObjectName("Conductivity")

.display(999)

.Density = QtWidgets.QLCDNumber(self)
.Density.setG
.Density.setS
self.
self.
self.
self.
self.
self.

eometry(QtCore.QRect(30, 1030, 141, 31))
tyleSheet("background-color: rgb(134, 134, 134);")
rameShadow(QtWidgets.QFrame.Plain)
mallDecimalPoint(True)

igitCount(8)
egmentStyle(QtWidgets.QLCDNumber.Flat)
bjectName("Density")

lay(999)

Slider = QtWidgets.QSlider(self)
Slider.setGeometry(QtCore.QRect(920, 710, 61, 201))
Slider.setStyleSheet("background-color: rgb(134, 134,

Slider.setOrientation(QtCore.Qt.Vertical)
Slider.setTickPosition(QtWidgets.QSlider.TicksBelow)
Slider.setObjectName("Light_Value_Slider")
Slider.setMaximum(255)

Slider.setMinimum(®@)
Slider.valueChanged.connect(self.userInteractlLights)

= QtWidgets.QPushButton(self)
setGeometry(QtCore.QRect(1080, 710, 100, 100))
setStyleSheet("background-color: rgb(134, 134, 134);")
setObjectName("ResetButton")
setText("Reset\ninterlocked\nzones")
pressed.connect(self.setReset)
released.connect(self.releaseReset)

4/10

5/20/22, 2:56 AM

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
134);")
278
279
280
281
282
283
284
285
286
287
288

localhost:4649/?mode=python

self.
self.
self.
self.
self.
self.
self.

self.
self.
self.
self.
self.
self.
self.

self.
self.
self.
self.
self.
self.

self.
self.
self.
self.
self.
self.

self.
.CollisionAvoid2m.
.setStyleSheet("background-color: rgb(134, 134, 134);")
.setObjectName("CollisionAvoid2m")

CollisionAvoid2m.
CollisionAvoid2m.

self

self.
self.
self.
self.

self.
self.
self.
self.
self.
self.

self.
self.
self.

self
self

self.
self.
self.
self.
self.
self.

TakePhoto =
TakePhoto.s
TakePhoto.s
TakePhoto.s
TakePhoto.s
TakePhoto.p
TakePhoto.r

StartVideo

StartVideo.
StartVideo.
StartVideo.
StartVideo.
StartVideo.
StartVideo.

ScanMode20m
ScanMode20m

ScanMode20m.
ScanMode20m.
ScanMode20m.
ScanMode20m.

ScanMode50m

ScanMode50m.
ScanMode50m.
ScanMode50m.
ScanMode50m.
ScanMode50m.

interfacing.py

QtWidgets.QPushButton(self)
etGeometry(QtCore.QRect(1740, 710, 171, 61))
etStyleSheet("background-color: rgb(134, 134, 134);")
etObjectName("TakePhoto")
etText("Take HD photo")
ressed.connect(self.takePhoto)
eleased.connect(self.streamvideo)

= QtWidgets.QPushButton("toggle", self)
setGeometry(QtCore.QRect(1740, 810, 171, 61))
setStyleSheet("background-color: rgb(134, 134, 134);")
setObjectName("Startvideo")

setText("Start video capture")

setCheckable(True)

clicked.connect(self.takeVideo)

= QtWidgets.QPushButton(self)
.setGeometry(QtCore.QRect (450, 710, 200, 71))
setStyleSheet("background-color: rgb(134, 134, 134);")
setObjectName("ScanMode20om")

setText("Scanning [20m]")

clicked.connect(lambda: self.userInteractModeSonar(9))

= QtWidgets.QPushButton(self)
setGeometry(QtCore.QRect (450, 790, 200, 71))
setStyleSheet("background-color: rgb(50, 205, 50);")
setObjectName("ScanMode50m")

setText("Scanning [560m]")

clicked.connect(lambda: self.userInteractModeSonar(1l))

.1blTemperature.
.1lblTemperature.
self.

CollisionAvoid2m

CollisionAvoid2m
CollisionAvoid2m

CollisionAvoid4m

CollisionAvoid4m.
CollisionAvoid4m.
CollisionAvoid4m.
CollisionAvoid4m.
CollisionAvoid4m.

lblTemperature
lblTemperature.
lblTemperature.

lblTemperature.

1b1Depth

1b1Depth.
1blDepth.
1blDepth.
1blDepth.
1b1Depth.

= QtWidgets.QPushButton(self)
setGeometry(QtCore.QRect (450, 870, 200, 71))

setText("Collision Prevention [2m]")
clicked.connect(lambda: self.userInteractModeSonar(2))

= QtWidgets.QPushButton(self)
setGeometry(QtCore.QRect (450, 950, 200, 71))
setStyleSheet("background-color: rgb(134, 134, 134);")
setObjectName("CollisionAvoid4m™)

setText("Collision Prevention [4m]")
clicked.connect(lambda: self.userInteractModeSonar(3))

QtWidgets.QLabel(self)

setGeometry(QtCore.QRect (30, 680, 141, 21))
setStyleSheet("\n""background-color: rgb(134, 134,

setFrameShape(QtWidgets.QFrame.Panel)
setObjectName("1lblTemperature")
setText("Temperature [°C]:")

= QtWidgets.QLabel(self)

setGeometry(QtCore.QRect(30, 760, 141, 21))
setStyleSheet("\n""background-color: rgb(134, 134, 134);")
setFrameShape(QtWidgets.QFrame.Panel)
setObjectName("1lblDepth")

setText("Depth [m]:")

5110

5/20/22, 2:56 AM

289
290
291
292
293
294
295
296
297
298
134);")
299
300
301
302
303
304
305
306
307
308
309
310
311
312
134);")
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

localhost:4649/?mode=python

self
self
self

self.
self.
self.

self.
self.
self.

self.
self.
self.

self.

self
self
self

self.
self.
self.

self.
self.
self.
self.

self.

self

self.
self.
self.
self.
self.
self.
self.

self.
.lblLeaks.
.setStyleSheet("background-color:
.setObjectName("1lblLeaks")

setText ("

self

self.
self.
self.

self.
self.
self.
self.
self.
self.

.1blSalinity =
.1blSalinity.
.1blSalinity.
lblSalinity.
1blSalinity.
1blSalinity.

1blConductivity =
1blConductivity.
1blConductivity.

1blConductivity.
lblConductivity.
lblConductivity.

lblDensity =
.1blDensity.
.1blDensity.
.1blDensity.
self.
self.

lblDensity.
1blDensity.

lblLightInt
lblLightInt
lblLightInt

lblLightInt
lblLightInt
lblLightInt
lblLightInt

1blControls =
.1blControls.
self.
self.
self.
self.
self.

1blControls
1blControls

1blControls.
1blControls.
1blControls.

1blAlarms =
1blAlarms.s
1blAlarms.s
1blAlarms.s
1blAlarms.s
1blAlarms.s
1blAlarms.s

1blLeaks =
1blLeaks
lblLeaks
1blLeaks.

SonarMode =

interfacing.py

QtWidgets.QLabel(self)

setGeometry(QtCore.QRect (30, 840, 141, 21))
setStyleSheet("\n""background-color: rgb(134, 134, 134);")
setFrameShape(QtWidgets.QFrame.Panel)
setObjectName("1lblSalinity")

setText("Salinity [g/kg] PSU:")

QtWidgets.QLabel(self)
setGeometry(QtCore.QRect (30, 920, 141, 21))
setStyleSheet("\n""background-color: rgb(134, 134,

setFrameShape(QtWidgets.QFrame.Panel)
setObjectName("1blConductivity")
setText("Conductivity [mS/cm]:")

QtWidgets.QLabel(self)

setGeometry(QtCore.QRect (30, 1000, 141, 21))
setStyleSheet("\n""background-color: rgb(134, 134, 134);")
setFrameShape(QtWidgets.QFrame.Panel)
setObjectName("1lblDensity")

setText("Water density [kg/m"3]:")

ensity = QtWidgets.QLabel(self)
ensity.setGeometry(QtCore.QRect(900, 680, 101, 21))
ensity.setStyleSheet("background-color: rgb(134, 134,

ensity.
ensity.
ensity.
ensity.

setFrameShape(QtWidgets.QFrame.Box)
setFrameShadow(QtWidgets.QFrame.Plain)
setObjectName("1blLightIntensity")
setText("Light intensity")

QtWidgets.QLabel(self)
setGeometry(QtCore.QRect (1255, 675, 100, 30))
.setStyleSheet("background-color: rgb(134, 134, 134);")
.setFrameShape(QtWidgets.QFrame.Box)
setObjectName("1lblControls")

setFont(QFont('Arial', 14))

setText("Controls")

QtWidgets.QLabel(self)

etGeometry(QtCore.QRect(1500, 675, 100, 30))
etStyleSheet("background-color: rgb(134, 134, 134);")
etFrameShape(QtWidgets.QFrame.Box)
etObjectName("1lblAlarms")

etFont(QFont('Arial', 14))

etText("Alarms")

QtWidgets.QLabel(self)
setGeometry(QtCore.QRect (1500, 730, 100, 60))

rgb(60, 179, 113);")
No detected\n leaks™)

QtWidgets.QLabel(self)

SonarMode.
SonarMode.
SonarMode.
SonarMode.
SonarMode.

setGeometry(QtCore.QRect (440, 680, 211, 21))
setStyleSheet("background-color: rgb(134, 134, 134);")
setFrameShape(QtWidgets.QFrame.Box)
setObjectName("SonarMode")
setText("Current Sonar Mode:

")

6/10

5/20/22, 2:56 AM interfacing.py

347

348 # Create new thread that handles video stream

349 self.thread = VideoThread()

350 # Connect thread to function that updates image

351 self.thread.change_pixmap_signal.connect(self.update_image)

352 # Start thread

353 self.thread.start()

354

355

356 def closeEvent(self, event):

357 self.thread.stop()

358 event.accept()

359

360 def update_image(self, cv_img):

361 gt_img = self.convert_video_qt(cv_img)

362 self.image_label.setPixmap(qt_img)

363

364 def update_sonar(self, cv_img):

365 gt_img = self.convert_sonar_qt(cv_img)

366 self.sonar.setPixmap(qt_img)

367

368 def convert_video_qt(self, cv_img):

369 rgb_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)

370 h, w, ch = rgb_image.shape

371 bytes_per_line = ch * w

372 convert_to_Qt_format = QtGui.QImage(rgb_image.data, w, h, bytes_per_line,
QtGui.QImage.Format_RGB888)

373 p = convert_to_Qt_format.scaled(1920,960, Qt.KeepAspectRatio)

374 return QPixmap.fromImage(p)

375

376 def convert_sonar_qt(self, cv_img):

377 rgb_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)

378 h, w, ch = rgb_image.shape

379 bytes per_line = ch * w

380 convert_to_Qt_format = QtGui.QImage(rgb_image.data, w, h, bytes per_line,
QtGui.QImage.Format_RGB888)

381 return QPixmap.fromImage(convert_to_Qt_format)

382

383 def setDisplayValues(self, temp, depth, leak, lockedZones,

384 salinity, conductivity, density):

385 self.Temp.display(temp)

386 self.Depth.display(depth)

387 self.Salinity.display(salinity)

388 self.Conductivity.display(conductivity)

389 self.displayLeakStatus(leak)

390 self.density = density

391 self.Density.display(self.density)

392 self.configureZonesDisplay(lockedZones)

393

394 def displaylLeakStatus(self, leak):

395 if leak:

396 self.lbllLeaks.setStyleSheet("background-color: rgb(255, @, 0);")

397 self.lbllLeaks.setText(" DETECTED\n LEAKS")

398

399 def configureZonesDisplay(self, lockedZones):

400 if lockedZones == self.prevLockedZones:

401 return

402 else:

403 print("Changes in locked zones array discovered")

404 for idx, zoneState in enumerate(lockedZones):

localhost:4649/?mode=python 7/10

5/20/22, 2:56 AM

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
449
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

def

def

def

def

def

interfacing.py

if lockedZones[idx] != self.prevLockedZones[idx]:
if zoneState:
self.setlLockedStatus(idx)
else:
self.resetLockedStatus(idx)
break
self.prevLockedZones = lockedZones

setLockedStatus(self, zone):
if zone ==

self.Forward.setStyleSheet("background-color: rgb(200, 134, 134);")
elif zone ==

self.ForwardRight.setStyleSheet("background-color: rgb(200, 134, 134);")
elif zone == 2:

self.Right.setStyleSheet("background-color: rgb(200, 134, 134);")
elif zone ==

self.ReverseRight.setStyleSheet("background-color: rgb(200, 134, 134);")
elif zone == 4:

self.Reverse.setStyleSheet("background-color: rgb(200, 134, 134);")
elif zone ==

self.ReverselLeft.setStyleSheet("background-color: rgb(200, 134, 134);")
elif zone ==

self.Left.setStyleSheet("background-color: rgb(200, 134, 134);")
elif zone == 7:

self.ForwardLeft.setStyleSheet("background-color: rgb(200, 134, 134);")

resetLockedStatus(self, zone):
if zone ==

self.Forward.setStyleSheet("background-color: rgb(134, 134, 134);")
elif zone == 1:

self.ForwardRight.setStyleSheet("background-color: rgb(134, 134, 134);")
elif zone ==

self.Right.setStyleSheet("background-color: rgb(134, 134, 134);")
elif zone == 3:

self.ReverseRight.setStyleSheet("background-color: rgb(134, 134, 134);")
elif zone ==

self.Reverse.setStyleSheet("background-color: rgb(134, 134, 134);")
elif zone ==

self.ReverselLeft.setStyleSheet("background-color: rgb(134, 134, 134);")
elif zone == 6:

self.Left.setStyleSheet("background-color: rgb(134, 134, 134);")
elif zone ==

self.ForwardLeft.setStyleSheet("background-color: rgb(134, 134, 134);")

resetAllLockedStatus(self):

self.prevLockedZones = [False] * 8
self.Forward.setStyleSheet("background-color: rgb(134, 134, 134);")
self.ForwardRight.setStyleSheet("background-color: rgb(134, 134, 134);")
self.Right.setStyleSheet("background-color: rgb(134, 134, 134);")
self.ReverseRight.setStyleSheet("background-color: rgb(134, 134, 134);")
self.Reverse.setStyleSheet("background-color: rgb(134, 134, 134);")
self.ReverselLeft.setStyleSheet("background-color: rgb(134, 134, 134);")
self.Left.setStyleSheet("background-color: rgb(134, 134, 134);")
self.ForwardLeft.setStyleSheet("background-color: rgb(134, 134, 134);")

release(self):
config.runZone = -1

config.newCommands = True

activateZone(self, zone):

localhost:4649/?mode=python 8/10

5/20/22, 2:56 AM

465
466
467
468
469
4709
471
472
473
474

475

476
477
478
479
480

481

482
483
484
485
486

487

488
489
490
491
492

493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

def

134);")

134);")

134);")

134);")

50);")

134);")

134);")

50);")

def

def

def

def

interfacing.py

config.runZone = zone
config.newCommands = True

userInteractModeSonar(self, mode):

display_string = ""

if mode == 0:
display_string = "Scanning [20m]"
self.ScanMode50m.setStyleSheet("background-color: rgb(134, 134, 134);")
self.ScanMode20m.setStyleSheet("background-color: rgb(50, 205, 50);")
self.CollisionAvoid2m.setStyleSheet("background-color: rgb(134, 134,

self.CollisionAvoid4m.setStyleSheet("background-color: rgb(134, 134,

elif mode == 1:
display_string = "Scanning [50m]"
self.ScanMode50m.setStyleSheet("background-color: rgb(50, 205, 50);")
self.ScanMode20m.setStyleSheet("background-color: rgb(134, 134, 134);")
self.CollisionAvoid2m.setStyleSheet("background-color: rgb(134, 134,

self.CollisionAvoid4m.setStyleSheet("background-color: rgb(134, 134,

elif mode ==
display string = "Collision [2m]"
self.ScanMode50m.setStyleSheet("background-color: rgb(134, 134, 134);")
self.ScanMode20m.setStyleSheet("background-color: rgb(134, 134, 134);")
self.CollisionAvoid2m.setStyleSheet("background-color: rgb(50, 205,

self.CollisionAvoid4m.setStyleSheet("background-color: rgb(134, 134,

elif mode == 3:
display_string = "Collision [4m]"
self.ScanMode50m.setStyleSheet("background-color: rgb(134, 134, 134);")
self.ScanMode20@m.setStyleSheet("background-color: rgb(134, 134, 134);")
self.CollisionAvoid2m.setStyleSheet("background-color: rgb(134, 134,

self.CollisionAvoid4m.setStyleSheet("background-color: rgb(50, 205,

self.SonarMode.setText(f"Sonar Mode: {display_string}")
config.mode = mode
config.newCommands = True

userInteractSpeeds(self):
config.motorSpeed = self.Motor Speed Slider.value()
config.newCommands = True

userInteractLights(self):
config.light = self.Light_Value_Slider.value()
config.newCommands = True

setReset(self):
self.resetAllLockedStatus()
config.forceReset = True
config.newCommands = True

releaseReset(self):
config.forceReset = False
config.newCommands = True

def takePhoto(self):
localhost:4649/?mode=python 9/10

5/20/22, 2:56 AM

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

def

def

interfacing.py
self.TakePhoto.setStyleSheet("background-color: rgb(50, 205, 50);")

config.takePhoto = True
config.newCommands = True

takeVideo(self):

if config.takeVideo == False:
self.StartVideo.setStyleSheet("background-color: rgb(50, 205, 50);")
self.StartVideo.setText("Capturing video...")
config.takeVideo = True

else:
self.StartVideo.setStyleSheet("background-color: rgb(134, 134, 134);")
self.StartVideo.setText("Start video capture")
config.takeVideo = False

config.newCommands = True

streamVideo(self):

self.TakePhoto.setStyleSheet("background-color: rgb(134, 134, 134);")
config.takePhoto = False

config.newCommands = True

localhost:4649/?mode=python

10/10

Appendix |

Meeting invitations

Agenda

Periodic meeting between project and control group

Date: 25.01.2022
Time: 09:15 —09:45
Place: Teams
Participants: Tony Paulsen

Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 Is the equipment list as listed in the pre-project report approved?

Item 2 Discuss project-groups proposed solution as defined in pre-project report.
- Anything missing?
- Part-tasks listed that is not relevant?
- Any extra functionality the control group wants?

Agenda

Periodic meeting between project and control group

Date: 08.02.2022
Time: 09:15 - 10:00
Place: Teams
Participants: Tony Paulsen

Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 Access to software from ROV 2017
Item 2 Discuss solution on communication/ power supply in tether cable
Item 3 Proposed camera solution discussion

Item 4 Conductivity sensor solution discusion

Agenda

Periodic meeting between project and control group

Date:
Time:
Place:

Participants:

23.02.2022
11:00 - 11:30
Teams

Tony Paulsen
Petter Henriksen

Ottar L. Osen
Lars Christian Gansel

Item 1 General progress report discussion

Item 2 Cables for Aanderaa sensor(s)

Item 3 Camera order update

Item 4 Lazercutting / fusion360 tips/course discussion

Agenda

Periodic meeting between project and control group

Date: 08.03.2022
Time: 09:15 -10:00
Place: Zoom
Participants: Tony Paulsen

Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 General progress
Item 2 Discuss ordering waterproof cable(s) for conductance, turbidity, and oxygen
sensors.

Item 3 Communication from ROV to surface GUI in tether

Agenda

Periodic meeting between project and control group

Date:
Time:
Place:

Participants:

22.03.2022
15:25-16:00
Teams

Tony Paulsen
Petter Henriksen

Ottar L. Osen
Lars Christian Gansel

Item 1 General progress, discuss progress report
Item 2 Camera
- Currently using school camera for testing
Item 3 Conductance sensor progress
Item 4 Tether communication and power supply

- Using BlueRobotics fathom tether X
- Power converter DC-DC, 48V-12V

Agenda

Periodic meeting between project and control group

Date:
Time:
Place:

Participants:

07.04.2022
13:00 - 13:30
Teams

Tony Paulsen
Petter Henriksen

Ottar L. Osen
Lars Christian Gansel

Item 1 General progress discussion

Item 2 Important contents for report

Item 3 Framerate camera

Item 4 Increasing program execution measures

Agenda

Periodic meeting between project and control group

Date: 22.04.2022
Time: 13:00 - 13:30
Place: Teams
Participants: Tony Paulsen

Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 General progress update

Item 2 Electrical connections
- Converter solution
- Placement of Regulators and Converter
- Setup of the power delivery

Agenda

Periodic meeting between project and control group

Date: 06.05.2022
Time: 12:00 - 12:30
Place: Tunglab
Participants: Tony Paulsen

Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 General progress update

Item 2 Priorites forward

Item 3 Battery solution limitations

Appendix J

Minutes of meeting

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 30min Date: 25.01.2022 Start time: 09:15
Meeting location: Zoom
Meeting called by: Tony Paulsen

Meeting type:

Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary:

Petter Henriksen

Time responsibility: Petter Henriksen

Participants:

Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda Agenda Discussed

number

1 Discussion around materials | Aanderaa sensor, camera og combination sensor

list from pre-project report was discussed. It was also mentioned that the ROV

is going to be built with all new parts. The group
also need research and select an umbilical cable.
Special parts need to be ordered as fast as possible
so that it doesn’t cause delays.

2 Discuss the proposed The examples around implementation of logic were

solutions that were defined
in the pre-project report

approved. They were considered as relevant
functions for the system. For now, the group is
planning to use the sonar for collision avoidance.
The alarm for big changes in measured values can
be done with python. If alternative solutions are
found, they will be considered and compared to the
current solutions.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 35min

Date: 08.02.2022

Start time: 09:15

Meeting location:

Meeting called by:

Tony Paulsen

Meeting type:

Progress report with Supervisors

Meeting led by:

Tony Paulsen

Secretary:

Petter Henriksen

Time responsibility:

Petter Henriksen

Participants:

Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda number

Agenda

Discussed

1

Access to programs from
earlier projects

The group asked if earlier work
on the previous ROV was
available specifically code for
the propulsion system. Ottar is
going to check but the project
finished a long time ago so its
highly likely it won't be found.
From the reports we have a lot
of info.

Discuss communication/power
delivery

It was decided that the main
plan for the tether is to use 2
pairs for communication and 2
pairs for power delivery. A few
other solutions were
mentioned like sending the
communication on top of the
power. The group is also going
to look at previous work on
the Towed ROV who have had
to overcome similar problems
when it comes to
communication and power
delivery.

Camera solution

It was decided that the camera
from FLIR ticked all the boxes.
The lenses were also agreed

on. Something the group must
take into consideration is
reflection inside the acrylic
dome.

Conductivity sensor

The sensor from Aanderaa was
deemed too expensive so the
group will borrow one instead.
If it's necessary ordering a new
one can be considered. The
supervisors also wanted the
group to make swapping
sensors easy so that the ROV is
more modular.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 30min

Date: 23.02.2022

Start time: 11:00

Meeting location:

Teams

Meeting called by:

Tony Paulsen

Meeting type:

Progress report with Supervisors

Meeting led by:

Tony Paulsen

Secretary:

Petter Henriksen

Time responsibility:

Petter Henriksen

Participants:

Tony Paulsen, Petter Henriksen, Ottar L. Osen

Agenda number

Agenda

Discussed

1

General Progress

The group were told to make progress reports and to
update the Gantt diagram more frequently.

Aanderaa cable

There was some discussion regarding cables from
Aanderaa since they are quite expensive. No decision
was made but it was concluded that the work could
continue and that a decision could wait until the next
meeting.

Camera update

Waiting on order confirmation from supplier.

Laser cutting

Ottar gave tips on how to make and design mounts
and gave suggestions on gluing the acrylic together.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 45min

Date: 08.03.2022

Start time: 09:15

Meeting location:

Zoom

Meeting called by:

Tony Paulsen

Meeting type:

Progress report with Supervisors

Meeting led by:

Tony Paulsen

Secretary:

Petter Henriksen

Time responsibility:

Petter Henriksen

Participants:

Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda number

Agenda

Discussed

1 General progress The group informed the
supervisors on the progress
made during the previous
period.

2 Discuss ordering waterproof The group were told to get
cable(s) for conductance, more information from
turbidity and oxygen sensors. Aanderaa before a decision is

made.

3 Communication from ROV to Tips for establishing

surface GUI in tether

communication between GUI
and ROV were given. The
group was also told to look at
other similar projects for more
solutions.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 52min Date: 22.03.22 Start time: 15:25
Meeting location: Teams

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel
Agenda number | Agenda Discussed

1 Camera situation Due to long shipping time the group has

gotten to borrow an unused camera from
another project. It was decided that due to
the time constraint that this borrowed
camera will be used instead so that the group
will be able to finish the project within the
given time frame.

2 Power and communication Based on recommendations from Ottar the
group checked out the report from “Slepe
ROV” and found out how they were able to
power it and have communication. This was
done by using a product from BlueRobotics
called “Fathom-X Tether”. This product allows
use of a single pair in the CAT5 cable for data
transfers up to 80mb/s. This frees up the 3
other pairs to be used for power delivery. It
was decided that this would be used on this
project.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 35min Date: 07.04.22 Start time: 15:00
Meeting location: Teams

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel
Agenda number | Agenda Discussed

1 General Progress The group gave a quick summary of the

progress on the project and what had been
done this period.

Areas where the group could test the ROV in
the ocean were given. Two areas were
mentioned either take a boat to the fish farms
or the floating jetty at Sunnmgre Museum.

2 Framerate camera The camera feed from the raspberry was
shown to supervisors and a discussion
regarding how the group could improve the
framerate and resolution. A couple of
different methods were mentioned like
sending the feed as a video with
Keyframes(eframes) instead of sending every
frame as a photo. Another method that was
mentioned was sending the camera data
separately from everything else and with a
different protocol and speeds.

Something else that was mentioned regarding
the camera was implementing features
allowing the user to select the fps and
resolution. Another feature was a record
button and a picture button that would take a
full resolution picture and save it when
clicked.

Program execution measures | The group asked about tips regarding how to
make the program run better and what data
should be prioritised.

A few things were mentioned like splitting all
the processes into individual threads and to
then setup these with different levels of
importance. Another thing that was
mentioned was to not send commands all the
time and to setup one server with multiple
clients

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 45min Date: 22.04.22 Start time: 13:00
Meeting location: LO44

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel
Agenda number | Agenda Discussed

1 General Progress The group gave a quick summary of the

progress on the project and what had been
done this period.

The group showed off how the ROV looked,
and the supervisors suggested changing the
position of the lights to improve the
performance of the lights. The supervisors
also mentioned that adding a compass would
be beneficial.

2 Electrical connections The planned circuit diagram for the power
delivery system was shown to the advisors
and feedback was given. This system includes
voltage regulators and the DC-to-DC
converter. It was also decided that these
components will be in their own box that will
be filled with epoxy.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 30min Date: 06.05.22 Start time: 12:00
Meeting location: LO44

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel
Agenda number | Agenda Discussed

1 General Progress The group gave a quick summary of the

progress on the project and what had been
done this period.

The group showed of how the the current
state of the ROV and updated the supervisors
on the results of the first test of the whole
system.

2 Priorities going forward The groups plan for the final weeks of the
project were discussed. This plan includes
getting at least one test in the water tank with
as many systems as possible in working order.

@ NTNU

Kunnskap for en bedre verden

	Preface
	Acknowledgement
	Summary and Conclusions
	Acronyms
	Introductions
	Background
	Problem formulation
	Objectives
	Structure of the Report

	Theoretical basis
	Physics
	Buoyancy

	Communication protocols
	OSI model
	TCP
	UDP
	Serial
	I2C

	Camera
	Machine vision
	Resolution and FPS

	Aquaculture quality
	Conductivity
	Salinity

	Sonar
	Passive sonar
	Active sonar

	Electrical
	EMI
	EMC
	Power transmission

	Material
	Components
	Software
	Pycharm
	CLion
	Arduino IDE
	Fusion 360
	PC Schematic
	Gantt
	Raspberry PI OS
	Cura

	Method
	Project Organisation
	Function testing equipment
	Sonar
	Camera
	Combination sensor
	Thrusters, I2C sensors and safety sensors

	Collision avoidance system
	Graphical user interface
	Communication
	Temperature & pressure sensors - Raspberry Pi
	Arduino Uno - Raspberry Pi
	Scanning imaging sonar - Raspberry Pi
	Conductivity sensor - Raspberry Pi
	Raspberry Pi - Personal Computer (GUI)

	Design and modelling
	Concept
	Design and Manufacturing of ROV body
	Making of Internal Mounts
	External box
	Waterproofing

	Electrical
	External box
	Wiring

	Result
	Software solutions
	Graphical User Interface
	Software performance
	Communication results

	Electrical
	Physical
	Test 1
	Test 2
	Test 3

	Discussion
	Technical results
	Design
	Electronics
	Software

	Project accomplishments
	Distribution of work
	Unforeseen consequences

	Conclusions
	Appendices
	Preproject report
	Progress reports
	Gantt diagram
	Electrical drawings
	User Manual
	Arduino code
	Raspberry Pi code
	GUI code
	Meeting invitations
	Minutes of meeting

	Bibliography
	1: Front page
	2: Index - horizontal
	3: Table of Contents
	Diagrams: Diagrams
	4: Diagram
	5: Diagram
	6: Diagram
	7: Control circuit diagram
	8: Control circuit diagram

