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a b s t r a c t

The study of the free swimming of undulating bodies in an otherwise quiescent fluid
has always encountered serious difficulties for several reasons. When considering the
full system, given by the body and the unbounded surrounding fluid, the absence of
external forces leads to a subtle interaction problem dominated, at least at steady state
conditions, by the equilibrium of strictly related internal forces, e.g. thrust and drag,
under the forcing of a prescribed deformation. A major complication has been dictated by
the recoil motion induced by the non linear interactions, which may find a quite natural
solution when considering as unknowns the velocity components of the body center of
mass. A simplified two-dimensional model in terms of impulse equations has been used
and a fruitful separation of the main contributions due to added mass and to vorticity
release is easily obtained. As main results we obtain either the mean locomotion speed
and the oscillating recoil velocity components which have a large effect on the overall
performance of free swimming. Several constrained gaits are considered to highlight
the relevance of recoil for realizing graceful and efficient trajectories and to analyze its
potential means for active control.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The swimming of a deformable body in water, either fish or cetacean, has been studied since the beginning (see
.g. Bainbridge, 1958; Lighthill, 1960; Wu, 1961), by considering the body held in a fixed position under an incoming
niform stream, or tethered with an opposite velocity, to evaluate the performance at steady state conditions. This
hoice was considered the most favorable for the implementation of simplified mathematical models and instrumental
or experimental techniques or for computational solutions. As a consequence, the prevailing attention at the time was
iven to the resulting thrust which leads, together with the expended power, to the evaluation of the well known Froude
fficiency (see e.g. Lighthill, 1960), usually adopted for marine vehicles where the propulsive force is easily separated from
he resistive one. Hence, apart from the assigned stream in the forward direction, the other body motions either lateral
r angular, perceived as recoil motions, did receive in general a secondary interest or no interest at all. To the best of our
nowledge, Lighthill was the first one, at the beginning of the 60s, to emphasize the importance of the recoil, induced
y the fluid–body interactions. He did actually pursue, as primary objective of his elongated body theory, the evaluation
f thrust and efficiency produced by the prescribed deformation, but he analyzed also the recoil motion as a required
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correction to satisfy the equilibrium equations. Subsequently, several numerical investigations (see e.g. Maertens et al.,
2017) tried to determine by the same procedure the effects of the recoil motion on the overall performance.

Since the animal muscular contractions give rise only to a change of shape relative to the center of mass, the whole body
otion including the recoil should be given primarily by the center of mass motion generated by the interaction with the
urrounding fluid. To this aim, an approach more suitable for self-propelled swimming was suggested by Saffman (1967)
nd subsequently adopted in numerical simulations by Carling et al. (1998), Kern and Koumoutsakos (2006), Borazjani and
otiropoulos (2010), Yang et al. (2008), among others. The free-swimming mode provides as unknowns of the problem
he velocity components of the body center of mass under the action of the internal forces exchanged with the otherwise
uiescent fluid. Along this line, the motion of a deformable body in an unbounded fluid domain and in the absence of
xternal forces, is analyzed here by imposing the conservation of momentum and of its moment for the entire fluid–body
ystem. The undulatory deformation is usually prescribed, so to conserve linear and angular momenta in the absence
f fluid, while the kinematic variables for the body center of mass are obtained by solving the equilibrium equations.
amely, the mean forward velocity in the body frame gives the animal locomotion while the oscillatory angular and lateral
elocities are identified as the recoil motions with a significant impact on the swimming performance. The oscillatory part
f the forward velocity is also obtained, but, as recognized by many authors (Bale et al., 2014; Smits, 2019), it plays a
inor role in most cases.
Recently, several contributions in experimental biology fostered the measurements of the center of mass position, in

frame moving with the mean forward velocity, as a tool for evaluating and comparing different species and different
tyles of swimming (see e.g. Lauder, 2015; Xiong and Lauder, 2014). Actually, the forward, lateral and angular oscillating
elocity components (surge, sway and yaw) are easily obtained with the present model while heave, i.e. the motion in the
hird direction, is not so important in fish swimming. The numerical values of the oscillating velocities, properly treated by
tatistical tools, may reveal the main properties of the self propelled locomotion as a signature of the style of swimming.
Purpose of the paper is to define the role of the recoil for a self-propelled body under a prescribed deformation and a

on linear interaction with the surrounding fluid. The motion of the body center of mass, in terms of locomotion speed
nd of oscillating recoil velocities, is the most natural quantity to evaluate. To reduce this subtle problem to its essential
eatures, as suggested by Schultz and Webb (2002) and recently by Akoz et al. (2019), we consider a two-dimensional
otential flow model with generation of non-diffusing vorticity and its release from the trailing edge. In this way the
elated numerical scheme is able to separate the contribution of potential and of vortical impulse, by highlighting their
ifferent roles in the time evolution of the unsteady solution. The identification of the added mass term may provide a
seful key for a physical interpretation of unsteady phenomena (see e.g. Limacher et al., 2018) while the analysis of the
ake evolution, essential to define the asymptotic value of the locomotion speed, allows for the calculation of the energy

njected into the fluid (see e.g. Bale et al., 2014). For the well known difficulties to disentangle the internal forces, given
y thrust and drag, the standard measures of the efficiency are not easily detectable and we adopt a suitable form of the
ost of transport (see e.g. von Kármán and Gabrielli, 1950; Bale et al., 2014) to evaluate the efficiency of the different
tyles of swimming . Moreover, we discuss with particular care the oscillating velocity components of the center of mass
hich have a notable importance for understanding different swimming modes and related means for active control.
Among the numerical results, for a better evaluation of free swimming features we analyze in comparison, as originally

roposed by Reid et al. (2012), the simulations of constrained motions which are representative of cases where some recoil
eactions are prevented. To obtain constrained gaits by the present model it is convenient to annihilate either one or more
elocity components in the body frame, among lateral motion and rotation. As a primary result, the efficiency, in terms
f the cost of transport, is measured for each one of the above simulations to assess the free swimming performance for
quatic locomotion. A simple tool for the active control of swimming may be obtained by modifying the recoil reaction
hroughout a sudden variation of the shape. For instance, as suggested by Domenici et al. (2014), the sailfish is able to
aise a vertical fin to reduce lateral and angular oscillations with the aim to stabilize the trajectory during a predator–
rey interaction. We will see by a crude approximation that an increase of the related components of the fish added mass
atrix, consistent with the sail raising, may be instrumental to implement the required pattern control.

. Material and methods

.1. Mathematical model

We study the motion of a two-dimensional deformable body within an infinite volume of initially quiescent fluid with
onstant density. Since no external forces or moments are applied to the fluid–body domain, the self-propelled motion is
ue to the body undulations. In other words the total linear and angular momenta are conserved for the whole domain,
hile the forces and moments exchanged between fluid and body appear as internal actions. To express the equations for
he fluid–body dynamics we adopt the classical formulation in terms of potential and vortical impulses that overcomes
he difficulties to treat an unbounded domain, as largely discussed in the literature (see e.g. Landau and Lifschitz, 1986;
u et al., 2006), and avoids the evaluation of the pressure on the body contour. Through the impulse formulation we can

mphasize the contribution of the acyclic (non circulatory) potential as well as the effects of both the free vorticity and
he cyclic part of the bound vorticity. A detailed formulation, though focused on pure potential flow, is given by Kanso

2009) while the extension to generated and released vorticity (see also Eldredge, 2007) is briefly presented here.
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The locomotion of the deformable body is obtained by coupling the dynamics of the body and of the surrounding fluid.
f we consider the body–fluid system (Vb + Vf ), in the absence of external forces and moments the linear and angular
omenta are conserved as given by

d
dt

[∫
Vb

ρb ub dV +

∫
Vf

ρ u dV

]
= 0 (1)

d
dt

[∫
Vb

ρb x × ub dV +

∫
Vf

ρ x × u dV

]
= 0 (2)

where (ρb,ub) and (ρ,u) are the density and the velocity of body and fluid, respectively.
Since forces and moments are not required in the present procedure, we may neglect in the above Eqs. (1)–(2) the

time differentiation which would otherwise lead to a subsequent integration to find the kinematics of the body. Hence,
by assuming an initial condition of quiescent fluid, we obtain a very efficient solution.

The second term within the square brackets in (1) is the fluid impulse p which can be expressed, via a well known
vector identity, by two contributions due to the field vorticity ω and to the vortex sheet over the body surface (see
e.g. Noca et al., 1999; Wu et al., 2006; Graziani and Bassanini, 2002):

p = ρ

[∫
Vf

x × ω dV +

∫
Sb

x × (n × u) dS

]
(3)

where Sb is the body contour, n is the normal vector to Sb pointing into the flow domain and u is here the limiting value
of the fluid velocity on Sb.

Another vector identity, is used for the second integral in (2) yielding an expression for the angular momentum
(positive anticlockwise) on the body. Here we consider the moment with respect to a given pole (to be specified later
either as the origin of the ground reference frame or as the body center of mass), so x is the generic distance of the field
point from the pole. The angular impulse π is defined as:

π = −
1
2
ρ

[∫
Vf

|x|2ω dV +

∫
Sb

|x|2(n × u) dS

]
(4)

The velocity field u is expressed through the Helmholtz decomposition as the sum of the acyclic component and of
the vorticity related one (i.e. wake plus the cyclic part of the bound vortex sheet):

u = ∇φ + ∇ × Ψ = ∇φ + uw (5)

where φ and Ψ are referred to as the scalar and the (solenoidal) vector potential, respectively. These are given by the
solution of the Laplace/Poisson equation, subject to the impermeable boundary condition on Sb and to a vanishing velocity
at infinity.

The fluid impulse p given by (3) can be expressed in terms of its potential and vortical components, pφ and pv

espectively, where pv is defined by adding the contributions of the released vorticity ω and of the cyclic part of the
ound vorticity n × uw on Sb:

pv = ρ

[∫
Vf

x × ω dV +

∫
Sb

x × (n × uw) dS

]
o follow Lighthill’s concept of additional vorticity which is given by summing up the field vorticity to the bound vorticity
inus its potential part (which is related to the added mass).
The acyclic potential contribution pφ , via a renown vector identity, is given by:

pφ =

∫
Sb

x × (n × ∇φ) dS = −ρ

∫
Sb

φ n dS (6)

he expression for the angular momentum can be similarly obtained by separating the potential πφ and the vortical πv

mpulses as:

πφ = −ρ

∫
Sb

φ x × n dS (7)

πv = −
1
2
ρ

[∫
|x|2ω dV +

∫
|x|2(n × uw) dS

]
(8)
Vf Sb
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To enforce the conservation of the total impulses, the linear and angular momenta of the body have to be evaluated.
o this aim, the location of the body center of mass xcm and its velocity are defined by:

xcm =
1
mb

∫
Vb

ρbxb dV ucm =
d
dt

xcm =
1
mb

∫
Vb

ρbub dV (9)

where mb is the body mass. Consequently, Eq. (1) yields:

mb ucm + p = 0 (10)

Similarly, the angular impulse is recast from Eq. (4) in terms of the distance x′ measured from xcm as π ′
= (π − xo × p)·

e3 where xo is a given reference point. Hence, the angular momentum balance reduces to:

Izz Ω + π ′
= 0 (11)

here Izz is the moment of inertia with respect to the center of mass and Ω is the angular velocity.
The self-propelled motion of the body is described by the above reported Eqs. (10) and (11) in terms of ucm and Ω

which provide the locomotion speed and the recoil oscillating motions.
By using a Cartesian inertial frame (e1, e2, e3), the body motion occurs in the plane (e1, e2) and its translation is given

by: xo = xo e1 + yo e2. Moreover, the body may undergo a rotation θ about the axis e3.
The motion of the body can be expressed as the sum of the prescribed deformation (shape variations with velocity

ush) plus the motion (with translational, ucm, and angular, Ω, velocities) of the center of mass (cm) reference frame. In the
ground fixed inertial frame the angular velocity is Ω = θ̇ e3 ≡ Ω e3. The linear velocity is ucm = ẋoe1 + ẏoe2. Thus we can
express the body motion as:

ub = ush + ucm + Ω × x′ (12)

where x′ is the position vector in the body reference frame, i.e.: x = xcm +x′. If Eq. (12) holds, the prescribed deformation
has to satisfy:∫

Vb

ρbush dV = 0
∫
Vb

ρbx′
× ush dV = 0 (13)

Many authors (see e.g. Lighthill, 1970; Borazjani and Sotiropoulos, 2008; Reid et al., 2012; Maertens et al., 2017) adopt a
generic deformation ush which does not generally satisfy Eqs. (13), leading to∫

Vb

ρbush dV = mbuo

∫
Vb

ρb(x′
× ush) · e3 dV = IzzΩo (14)

n this case to maintain our approach, the rigid motions given by uo and Ωo have to be removed since they should not
be imposed on the self-propelled body as deeply analyzed by Bhalla et al. (2013) (see also Singh and Pedley, 2008).

The scalar potential φ introduced by the Helmholtz decomposition is further divided as φ = φsh + φloc , where φsh is
given by the imposed deformation velocity ush and φloc is given by the combination of the locomotion linear and angular
velocity ucm and Ω , according to the related boundary conditions on Sb

∂φsh

∂n
= ush · n

∂φloc

∂n
= (ucm + Ω × x′) · n

A similar decomposition holds for both the linear and the angular impulses, i.e. pφ = psh + ploc and π ′

φ = π ′

sh + π ′

loc .
inally, the locomotion impulses, ploc and π ′

loc , can be expressed in terms of the added mass coefficients reported in the
lassical treatises (see e.g. Lamb, 1975). For a body motion given by ucm and Ω , we consider the Kirchhoff base potentials
j to express φloc = ucm1Φ1 + ucm2Φ2 + ΩΦ3. When this decomposition is combined with the linear and angular fluid
otential impulses, the relevant added mass coefficients mij appear in the equations of motion.

.2. Solution procedure

To compute the numerical solution it is convenient to write the locomotion equations in a coordinate frame attached
o the body. For the 2D problem under investigation, we consider the ground fixed frame {e1, e2, e3} and the body frame
b1, b2, b3} whose origin is xo ≡ xcm and b3 is parallel to e3. In this frame, the linear velocity Vcm = V1 b1 + V2 b2 and the
omenta P and Π are given by:

ucm = RVcm p = RP π ′
= Π (15)

here R is the rotation matrix relating the inertial to the body frame. By starting from Eqs. (10) and (11) and by combining
ith the decompositions shown in the previous subsection for both potential and vortical impulses, we obtain the system
f equations that yields the body motion:⎧⎨⎩

V1 (m11 − mb) + V2 m12 + Ω m13 = Psh1 + Pv1

V1 m21 + V2 (m22 − mb) + Ω m23 = Psh2 + Pv2 (16)

V1 m31 + V2 m32 + bΩ (m33 − Izz) = Πsh + Πv

4
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Let us underline that the locomotion unknowns Ω , V1 and V2, appearing within the linear and angular impulses, remain
n the l.h.s while all the known quantities are shifted to the r.h.s., leading to a well-posed system of equations very suitable
or the numerical solutions. A more detailed description of the mathematical aspects supporting the overall procedure is
iven in Paniccia et al. (2021). The impulses Πsh and Psh are due to the body deformation, while Πv and Pv are the vorticity

related quantities. The terms appearing on the l.h.s. in Eq. (16) express the generalized added mass matrix which, together
with the body inertial properties, give the coefficient matrix for the locomotion variables. The body mass mb is assumed
to be constant while Izz and mij change in time according to the shape deformation. In the following, to be consistent with
most of the literature on the subject, the velocity components are renamed as U = −V1 and V = V2.

To solve the system of Eqs. (16), we consider an accurate but simplified numerical procedure which does not involve
vorticity diffusion (see also Akoz and Moored, 2018). The evaluation of both potential and vortical impulses can be
obtained by the discretization of the body surface and by a suitable model for the release of the concentrated vortex
sheet via a Kutta condition to mimic the presence of a vanishing viscosity. Let us mention briefly some of the techniques
adopted for the numerical results. The linearity of the impulse equations enables to isolate and separate the contribution
of the added mass which is correctly evaluated at each time-step and partly located on the l.h.s. driving to a well-posed
system of equations.

The flow solution is obtained by using an unsteady potential code which is based on the approach of Hess and Smith
(1967) approximating the body by a finite number of panels, each one with a specific source strength, but with a common
circulation density. The impermeability condition on each panel together with a suitable unsteady Kutta condition are
needed in order to evaluate the source strengths and the uniform circulation density γ . Moreover, according to Kelvin’s
theorem, any change in circulation about the airfoil results in the release of vorticity by a wake panel attached to the
trailing edge (see Basu and Hancock, 1978). At each time step the released wake panel is lumped into a point vortex which
is shed into the wake and advected downstream by the flow field. Finally, let us stress that the extension to vorticity
diffusion would lead to a classical vortex method (see Chorin, 1973; Koumoutsakos et al., 1994) without substantially
changing the adopted numerical procedure. By this extension it would be possible to consider also a release from smooth
portions of the body as in the case of the leading edge vortex which plays a very important role in several unsteady
maneuvers out of the scope of the present work.

2.3. Swimming kinematics

The swimming fish is represented by an undulating body with a chord length c equal to 1 m and whose shape at rest
corresponds to a NACA0012 airfoil. The body undulates according to an artificially designed deformation more suitable
for bio-mimetic applications, hereafter referred to as synthetic deformation. This deformation is obtained by assigning
the slope β of the body mid-line by the following expression for a traveling wave of constant amplitude dβ (assumed as
π
10 rad) and a wave number k related to a wavelength (assumed equal to c) along the curvilinear coordinate s

β(s, t) = dβ sin(ks − 2π f t) (17)

where f is the frequency (assumed equal to 10
2π s−1). The instantaneous coordinates of the airfoil mid-line in the body-fixed

rame are obtained by integrating Eq. (17)

xc(s, t) =

∫ s

0
cos (β(s, t)) ds (18a)

yc(s, t) =

∫ s

0
sin (β(s, t)) ds (18b)

and the resulting configurations are shown in Fig. 1a.
This coordinates are properly corrected consistently with Eq. (13) by removing any rigid linear and angular displace-

ments associated to the center of mass to obtain the mid-line configuration shown in Fig. 1b. Basically, the shape of the
body is prescribed with respect to its center of mass and its principal axes of inertia. A further advantage of the synthetic
deformation consists in the automatic compliance of the inextensibility condition expressed as(

∂yc
∂s

)2

+

(
∂xc
∂s

)2

= 1 (19)

hich ensures that the length of the body does not change during the motion. Different deformations, closely related to
atural styles of swimming, e.g. carangiform and anguilliform, will be considered later for a comparative analysis.

. Numerical results

.1. The effects of motion constraints

As anticipated in the previous sections, we are interested in evaluating the effect of both lateral translation and rotation,
.e. the two most relevant recoil motions, accompanying the fish locomotion generated by its shape deformation. To this
5
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Fig. 1. (1a) Representative mid-line configurations obtained by the direct integration of Eqs. (17) giving an insight of their envelope– (1b) The same
for the modified ones to satisfy Eq. (13). The dots represent the center of mass positions.

Fig. 2. Time history of (a) the forward velocity and (b) the kinetic energy for free swimming (blue) and constrained gaits: lateral and angular
constraints (yellow), lateral constraint (red) and angular constraint (green). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

purpose, we consider the comparison between a fish whose recoil motions are allowed and a fish whose lateral and
angular recoil motions in the body frame are prevented. This constrained gait implies that the center of mass of the fish
is able to move exclusively along the forward direction as it occurs in many experimental investigations.Fig. 2a shows that,
in these conditions (yellow curve), the body cannot reach the same asymptotic speed as in the free swimming case (blue
curve). Correspondingly, the much larger energy consumption E shown in Fig. 2b, implies a larger cost of transport (COT ),
efined as the ratio between the mean rate of change of the energy Ė and the mean forward velocity Uloc (see e.g. Bale
t al., 2014; von Kármán and Gabrielli, 1950; Maertens et al., 2015). Consistently, for a certain steady state velocity, if
uch an unfavorable constraint is imposed, it follows an overestimation of the energy consumption. Let us mention that
or the present model it is convenient to evaluate Ė as the mean rate of change of the excess energy 1

2

∫
Ψ · ω dV .

At this point, it is also interesting to analyze partial constraints which involve either the lateral or the angular motion
hile the forward oscillations are expected to have a minor impact on the swimming performance as claimed by many
uthors (see e.g. Maertens et al., 2017; Smits, 2019). When only the lateral motion is inhibited, the steady-state speed
red curve in Fig. 2a) is slightly lower than for free swimming (blue curve), while the energy consumption is still larger
hough almost comparable (same colors in Fig. 2b).

Instead, when only the angular motion is prevented, the velocity time history (green curve in Fig. 2a) shows a larger
teady-state value together with a shorter transient. However, the energy consumption is even larger, as shown in Fig. 2b,
hen compared to the fully constrained case.
The bars shown in Fig. 3a represent the peak-to-peak oscillation of the forward, lateral and angular velocity components

or the different constrained cases (see Xiong and Lauder, 2014).
It is interesting to note that the angular constrained case, characterized by the largest mean forward velocity, shows

arger lateral oscillations to which, in general, is associated a larger thrust force in the forward direction. At the same
ime, the reduction of the locomotion speed associated with the lateral constraint may be a direct consequence of the
uppression of lateral motion. The center of mass displacement is shown in Fig. 3b within a reference frame which moves
6
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Fig. 3. (a) Amplitude of the peak-to-peak forward, lateral and angular velocity oscillations in the body frame. (b) Center of mass displacement in the
ocomotion frame for free (blue) and constrained motions: lateral and angular constraints (yellow), lateral constraint (red) and angular constraint
green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Comparison at steady-state of the fully constrained (yellow) and the free swimming case (blue) - (animation-link). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

with the locomotion velocity, hereafter referred to as locomotion frame. We may notice that in this frame the lateral
constrained case is characterized by an orthogonal motion with respect to the swimming direction which leads to a style
of swimming quite close to the unconstrained one, as suggested also by the similar energy consumption in Fig. 2b (blue
and red curves). Let us stress that large angular oscillations are present both in free swimming and in lateral constrained
motions, together with a better energetic performance. Hence, we may consider the angular recoil as a primary form of
control to optimize the center of mass trajectory. From the point of view of the expended energy, the lateral recoil motion
does not seem as influential as the angular one.

To summarize, when only the lateral motion is constrained, the angular velocity is slightly lower than in free swimming
hile the associated energy consumption (see red curve in Fig. 2b) is almost the same. On the other hand, when the
ngular recoil motion is prevented, a huge increase in the energy consumption is observed (see green curve in Fig. 2b).
ome of the phenomena related to constrained gaits are poorly intuitive hence, for a quick evaluation of the corresponding
otions, we provide an animation (animation-link) with the direct comparison at steady-state of two quite different styles

ike the fully constrained (yellow case) and the free swimming one (blue case). For the sake of convenience a frame of the
ideo is reported in Fig. 4. We may appreciate the larger speed of the free swimmer together with the stronger vortical
ake for the constrained one corresponding to a much larger intensity of the released vortices whose circulation Γ is
eported in Fig. 5. The impact of recoil on the swimming performance was also highlighted by other authors, starting
rom the preliminary work of Reid et al. (2012), limited to the lateral recoil motion, up to the work of Maertens et al.
2017) who clearly showed the importance of recoil for a correct estimation of the overall efficiency. On the same line of
easoning, Yang et al. (2008) reported much larger forces, hence larger power consumption, for the constrained case.

As a further deepening on these constrained motions, let us analyze how the potential and vortical impulses, as
ntroduced in Section 2, cooperate to give the above presented results. To this purpose, we analyze both free swimming
nd fully constrained motion. We may observe in Fig. 6a how the potential contribution to the forward velocity reaches
nstantaneously a steady oscillatory state which is going to anticipate and guide the vortical contribution continuously
rowing in time together with release of new vortices. From the peak-to-peak oscillations shown in Fig. 6b, we may
ppreciate a larger value of the potential contribution for the constrained case while the value of the vortical one is
uite comparable. Finally, a phase shift among the two contributions seems to be responsible for the significantly lower
mplitude of the total velocity oscillations for free swimming. This result is confirmed by looking again at Fig. 2a and it

eems clearly related to the lower circulation amplitude shown in Fig. 5.
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Fig. 5. Time history of the released circulation Γ for the fully constrained (yellow) and free swimming case (blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. (a) Time history of the forward velocity potential (Uφ ) and circulatory (Uw) contributions for free swimming (blue) and fully constrained
otion (yellow); (b) peak-to-peak oscillation for Uφ , Uw and the total velocity U . (For interpretation of the references to color in this figure legend,

he reader is referred to the web version of this article.)

.2. The impact of shape deformation

The above results has been obtained for the synthetic deformation to have a preliminary account of the constraints.
owever, in the literature, a large number of different approaches is used to describe different fish species. Most of them
re based on analytical expressions for the lateral displacement of the mid-line obtained by fitting data from direct
bservations. These expressions usually consist of a traveling wave multiplied by a polynomial amplitude modulation
(x) = ax2 + bx + c , whose coefficients are changed according to the fish swimming style. For an anguilliform swimmer,
he amplitude modulation of the swimming motion is given by (Tytell and Lauder, 2004)

A(x) = 0.1 + 0.0323 (x − 1) + 0.0310
(
x2 − 1

)
(20)

or a carangiform swimmer, the amplitude modulation is given by (Videler and Hess, 1984)

A(x) = 0.1 − 0.0825 (x − 1) + 0.1625
(
x2 − 1

)
(21)

These prescribed swimming displacements are supposed to represent the real motions of the observed fishes.
evertheless, in general, they do not satisfy the linear and angular momentum conservation and a recoil correction is
equired. It follows a substantial change of the final displacement as shown by Fig. 7, where it is possible to appreciate the
ifferences between the prescribed mid-line envelopes and the modified ones accounting for the recoil, hence representing
he whole motion. The synthetic deformation introduced here is also shown in the same figure to facilitate the comparison.

Despite the different prescribed deformations, once the recoil motions are considered, the three amplitude envelopes
re quite similar, in particular with regard to the bottleneck near the center of mass. As a further strength for this analogy,
he effects of constraints on the performance with the experimentally observed deformations are comparable to those
iscussed for the synthetic one. For instance, Fig. 8 summarizes the results obtained by constraining the anguilliform
wimmer. No significant variation with respect to the synthetic deformation (see Fig. 2) appears if we exclude the mean
symptotic forward velocity reached in the case of the angular constraint, which in the present case almost coincides with
he free swimming one. An even more significant comparison among the analyzed cases, (all with the same oscillation
8
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Fig. 7. Envelope of mid-line configurations for several prescribed deformations (top) and their corresponding recoil corrected displacement (bottom).

Fig. 8. Anguilliform (a) swimming velocity components and (b) fluid kinetic energy for free swimming (blue) and constrained gaits: lateral and
angular constraints (yellow), lateral constraint (red) and angular constraint (green). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Effects of constraints on the cost of transport for the analyzed different deformations for free swimming (blue) and constrained gaits: lateral
nd angular constraints (yellow), lateral constraint (red) and angular constraint (green). (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

requency and tail-beat amplitude) is given by the cost of transport whose increase (Fig. 9) is mostly affected by the
ngular constraint.

.3. A tool for active control

The above reported constrained cases give, as a primary result, interesting information about the effect of the recoil
otions on the swimming performance. At the same time, these constraints may represent also the limit case of an
ctive control adopted by the fish through its appendages. For example, the sailfish, is well known to exploit the dorsal
in raising to optimize its performance during the predator–prey interactions. The dorsal fin, i.e. the sail, is kept retracted
9
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Fig. 10. Sailfish with (orange) and without (blue) the sail model: (a) forward, lateral and (b) angular velocity components. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Amplitude of the peak-to-peak oscillations for the sailfish: (a) forward, lateral and angular velocity and (b) forces and moment with (blue)
nd without (orange) the sail model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)

hen cruising or fast swimming to avoid larger energy consumption, while it is extended to increase control during
unting maneuvers. On this subject, Domenici et al. (2014) deeply analyzed the behavior of the sailfish to show how the
ail raising may be effective to reduce rotations and lateral translations. By approaching the schooling prey, the sailfish
uddenly insert their long bill trying, in the mean time, to minimize any disturbance before slashing. Actually, when the
ail is extended, the angular oscillations of the bill are reduced so as to make the bill a stealthy object, not easily detectable,
hile the approach velocity is reduced to match the prey swimming speed.
To reproduce the effect of the erected dorsal fin, we assumed, as a very crude approximation of a 3D extension, an

xtra value of the added mass consistent with a rigid flat plate (Faltinsen, 1993). The associated coefficients modify the
ody mass matrix to take into account the effects of the sail on the linear and angular velocity components.
As shown in Fig. 10, we obtain (as given by the experimental measurements by Domenici et al., 2014; Marras et al.,

015) either a lower swimming speed and the reduction of the angular and lateral oscillations. These are shown in a
eat way in Fig. 11a, accompanied by an increase of both the moment and the lateral force experienced by the body (see
ig. 11b), since the larger inertance of the body due to the sail extension leads to a larger power consumption.

. Final remarks

The locomotion of an undulating, neutrally buoyant, body has been studied either for the steady state and for the
ransient regime. Due to the involved complex phenomena, a simplified two-dimensional model has been adopted to
btain neat results as proposed by several authors (e.g. Schultz and Webb, 2002; Akoz and Moored, 2018; Akoz et al.,
019) and in a way encouraged by the midbody plane results obtained by Wolfgang et al. (1999) with a three-dimensional
umerical model. Apart from the mean forward velocity representing the required locomotion, a particular attention has
een given to the oscillating velocity components of the body center of mass which give the recoil motion originally
ntroduced by Lighthill to satisfy the equilibrium equations of the free swimmer. The main points and related results
iscussed so far are here briefly summarized to highlight the most interesting findings about the relevance of recoil for
ree swimming performance:
10
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– several constrained gaits have been considered to evaluate the importance of the various velocity components by
inhibiting, either singly or jointly, their effect on the overall body motion;

– the locomotion velocity and the related expended energy clearly show the optimal performance of the free swimming
with respect to all the considered constrained motions;

– the oscillating velocity components of the body center of mass, corresponding to the recoil motions, may be a simple
and efficient tool, as recently proposed by experimental biologists, to understand and classify different styles of
swimming;

– the attenuation of the recoil motions, on the other hand, may be seen as a suitable way to control several kinematic
and dynamic aspects of the swimmer trajectory, as revealed by well known cases in nature;

– the most typical deformations proper of anguilliform and carangiform swimming styles are analyzed in comparison
with the proposed synthetic deformation, with regard to the behavior in presence of recoil.

Some of the above statements, although based on simplified numerical results, give a valuable insight about the
importance of recoil for the study of free swimming. Most of the results have been obtained for a synthetic shape
deformation of particular interest for bio-mimetic applications and their assessment, through a systematic application
to natural swimming styles, is requested. As a final comment, an extension of the methodology to account for vorticity
diffusion (see e.g. Graziani et al., 1995; Eldredge, 2007) and for three-dimensional effects (see Wolfgang et al., 1999)
should be implemented to deepen the analysis and to better understand further aspects of fish locomotion.
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