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ABSTRACT: 

Predicting the wave-induced response in the near-future is of importance to ensure safety of ships. To 

achieve this target, a possible method for deterministic and conditional prediction of future responses 

utilizing measured data from the most recent past has been developed. Herein, accurate derivation of the 

autocorrelation function (ACF) is required. In this study, a new approach for deriving ACFs from 

measurements is proposed by introducing the Prolate Spheroidal Wave Functions (PSWF). PSWF can be 

used in two ways: fitting the measured response itself or fitting the sample ACF from the measurements. 

The paper contains various numerical demonstrations, using a stationary heave motion time series of a 

containership, and the effectiveness of the present approach is demonstrated by comparing with both a non-

parametric and a parametric spectrum estimation method; in this case, Fast Fourier Transformation (FFT) 

and an Auto-Regressive (AR) model, respectively. The present PSWF-based approach leads to two 

important properties: (1) a smoothed ACF from the measurements, including an expression of the memory 

time, (2) a high frequency resolution in power spectrum densities (PSDs). Finally, the paper demonstrates 

that a fitting of the ACF using PSWF can be applied for deterministic motion predictions ahead of current 

time. 

 

1.  INTRODUCTION 

  Predicting the wave-induced responses that a ship will encounter in the near-future is important to support 

ship operation. For instance, various marine operations, such as a helicopter landing on the deck of a ship, 

and crane and maintenance operations (on deep water) of offshore installations, would benefit highly by a 

deterministic prediction of the future vessel responses expected a short period (less than a minute) ahead of 

time. The prediction methods developed in past studies are roughly classified in two categories; (a) those 



 Post-print 

 Published in J. Marine Science and Technology 

using the wave-excitation input and a hydrodynamic model, e.g. [1], or (b) methods using the correlation 

structure in the response itself (e.g. AR models), without the need of wave input. As regards (a), although 

time-domain numerical methods for computing wave-induced responses have matured, it is still hard to 

evaluate the response efficiently on board, as the input of the wave elevation sequence, together with design 

information of the ship, will be required. Thus, utilizing just the on-board measurements are ideal in order 

to achieve real-time prediction.  

  As pointed out, AR models, e.g. [2], are useful methods because they do not require input about the 

waves. Recent researches have shown that the AR models are capable of predicting non-stationary wave-

induced responses [3,4]. However, it is critical that the model parameters need to be updated every time the 

predictions are initiated, and another drawback relates to the amount of training data, which prohibits real-

time prediction because of too low computational efficiency [5]. Due to the remarkable advances of recent 

artificial intelligence technology, machine learning techniques have been developed and applied for 

achieving real-time prediction of waves and wave-induced responses. Sclavounos and Ma [6] and Ma et al. 

[7] applied the Support Vector Machine (SVM) regression algorithm for wave elevation forecast. The 

studies introduced the Gaussian kernel in SVM algorithm to provide robust and analytical solutions in 

solving inversion of large matrices for training the SVM algorithm. Most recently, Duan et al. [8] addressed 

the deterministic prediction of nonlinear ship motion by using a Long-Short-Term-Memory (LSTM) deep 

learning model. The nonlinear effect in the LSTM application was demonstrated. Notwithstanding the 

effectiveness and impressive performance of the machine learning techniques, some sort of offline training 

processes are vital to get a reliable prediction model, and there is no consistent way to decide the time 

length required for training. 

  Andersen et al. [9] and Nielsen et al. [10,11] investigated and demonstrated a different approach for 

deterministic response prediction, using the measured autocorrelation function (ACF). This method is based 

on an assumption that the response ahead of time follows the expected mean variation of the conditional 

process, considering its prior values. Consequently, stationary processes are assumed. In Ref. [10], the 

prediction accuracy of ship motion under stationary sea states is demonstrated using the ACF from inverse 

Fourier transform of the power spectrum density (PSD) from measured ship motion. This ACF-based 

prediction method neither requires input of the wave/sea conditions, nor does it require offline training, and 

it has been proved to provide fast and, in many cases, fairly accurate prediction 2-4 wave periods ahead. 

On the full scale side, a prediction horizon of 2-4 wave periods corresponds to 15-60 [s]. The ACF-based 

method is able to make predictions in real time, thus it allows the operator for instantaneous update of the 

prediction results. Besides, the method has the element of hydrodynamic memory time inherently built-in, 

as the ACF directly expresses the underlying memory time in the response. The main concern of this method 

is that, in principle, it is not useful for non-stationary responses. As the real sea state, even on relatively 

short time scales [12], is non-stationary, it is ideal to obtain ACF and PSD from the shortest possible 

measurement period. In addition, maneuvering effect, i.e. changes in ship speed and heading relative to the 
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waves, will also introduce a kind of non-stationary behaviour in the wave-induced responses.  

  The typical ACF of waves or wave-induced responses indicates a curve with a decaying envelope, i.e. it 

converges to zero up to the memory time. Thus, to achieve reliable prediction based on the ACF-based 

approach, an estimate of the memory time is necessary; otherwise the prediction accuracy will be 

deteriorated [10]. However, direct use of sample ACF is not reliable, since the practical measured signal is 

discretized and the measurement time window is limited, see Box et al. [13]. Therefore, a smoothing process 

is necessary by using the PSD estimation method such as Fast Fourier Transform (FFT). But, there is no 

consistent way to choose the smoothing parameters in FFT, e.g. window function or overlap period, to 

derive the proper ACF from measurements. Moreover, the FFT requires sufficiently long-time 

measurements to keep the frequency resolution in PSD high.  

  Recently, Prolate Spheroidal Wave Functions (PSWF) [14] have been utilized for stochastic ocean wave 

representation [15,16]. Behind this research trend is the presence of several useful approximate algorithms 

for numerical derivation of PSWF, presented by e.g. Refs. [17–21]. There are two interesting features of 

PSWF; PSWF are invariant to a finite and infinite Fourier transform [21], and every bandlimited functions 

can be represented by a linear superposition of PSWF [20–22]. Thus, it is expected that the measured wave-

induced response, ACF, and PSD can be explicitly and accurately represented by PSWF. Moreover, the 

PSWF are capable of achieving a high frequency resolution in PSD as indicated in Refs. [22,23]. Hence, it 

is also expected to estimate more reliable PSD from short time sequences, allowing estimation during non-

stationary periods. Here, it is noteworthy that loads and responses induced in seaways may exhibit 

considerable ‘non-stationary behaviour’ in the sense that shorter sequences (2-5 minutes) of, say, a 30 

minutes time window may show quite varying short-term statistics focused on, for instance, mean, variance, 

and maximum/minimum values [12]. This so-called short-term variability, as discussed later in the 

numerical results, is a main argument to study alternative methods for estimation of ACF and PSD. 

  This paper presents the first step towards achieving a consistent prediction of wave-induced responses 

based on short-term measurements. A new method for evaluating ACF and PSD of wave-induced responses 

is presented. The PSWF are introduced to evaluate them in two ways: fitting the time series measurements 

themselves or fitting the sample ACF from the measurements. Various numerical demonstrations are made 

by using a simulated heave motion time series of a containership. The effectiveness of the PSWF-based 

approach is demonstrated by comparing with other spectrum estimation methods. Then, the present PSWF-

based approach is applied to the ACF-based deterministic motion prediction [10] of heave motion. Finally, 

conclusions are stated and possible further applications of the PSWF-based approach are presented. 

 

2.  PSWF-BASED EXPRESSION OF ACF AND PSD 

2.1. Fitting of Time Series Measurements by PSWF (Method 1) 

  As the wave-induced response of a ship will be regarded as a band-limited signal, the time series 

measurements x(t) within the time range of T t T    can be represented by a linear superposition of 
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PSWF [15],  
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Here ψj denote the PSWF, c the Slepian frequency [14], and Ne the number of PSWF to be considered. The 
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due to the orthogonality of the PSWF [21], then  
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The discretized values of PSWF are derived with equidistant values of dt/T=0.001 as per the procedure 

described in Appendix A. The Fourier invariance of PSWF [21] indicates the following relationships,  
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where λj denote the scaled eigenvalues of PSWF, see Appendix A. Ω denotes the upper limit of angular 

frequency which satisfies the following relationship [14] 
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c T                                                                              (6) 

 

Then, the Fourier transform of xPSWF can be given as: 
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The double sided power spectrum density, , ( );d
xx PSWFS      , is then given explicitly by: 
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where /j j ja a     and the asterisk denotes the complex conjugate. The one sided PSD, 

, ; 0 ,xx PSWFS     is then 
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  It is well-known that the number of significant PSWF becomes 2c/π, cf. [21] for instance, therefore  
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is sufficient, otherwise the scaled eigenvalues λj become close to zero. Due to the Fourier invariance of 

PSWF, Eq. (5), aj will always be proportional to λj, and ja  will be finite, irrespectively how small all λj 

are. Having said that, however, use of too large Ne value might imply numerical instability in calculating 

PSD by Eq. (9). Specifically, as a result of the Legendre polynomials-based approach used in this paper, 

see Appendix A, λ64=0.1276 for c=100 and λ128=0.0801 for c=200 can be derived, and no numerical 

instabilities are observed. Therefore, 64eN    for c=100 and 128eN    for c=200 are used in the 
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numerical demonstrations considered later. 

  According to the Wiener–Khinchin theorem, the ACF from the PSWF-based PSD, ,xx PSWFS , is 

calculated by making use of , ; 0 ,xx PSWFS     
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2.2. Fitting of Sample ACF by PSWF (Method 2) 

  The sample ACF from time series measurements x(t) is defined by 
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The coefficients bj can be calculated by least-squares approach as is the case in Method 1, 
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Using the PSWF-based ACF Rxx,PSWF, Eq. (13), the PSD is also explicitly expressed by PSWF, as 
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due to the Fourier invariance of PSWF, Eq. (5), and the Wiener–Khinchin theorem.  
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3.  NUMERICAL DEMONSTRATIONS 

3.1. Heave Motion of a Ship 

  Time series of heave motion under irregular waves are simulated through the combined action of a wave 

spectrum and the heave transfer function using standard spectral calculations. For practical convenience, 

the transfer functions are computed by closed form expressions [24,25]. A sample container ship of which 

principal particulars are given in Table 1 is used. Head sea condition is assumed. The transfer function of 

heave motion is shown in Fig. 1, and a Pierson-Moskowitz wave spectrum with significant wave height Hs 

= 3.5 [m] and zero-crossing period Tz = 8.5 [s] is assumed, see Fig. 1. The PSD of the heave motion, later 

named ‘the input PSD’, is shown in Fig. 2.  

  The inverse Fourier transform of the input PSD, hereafter referred to as ‘the input ACF’, is shown in Fig. 

3. In general, the memory time in ACF is defined as; “Lag beyond which the ACF drops to an insignificant 

value”, e.g. referring to Van der Schaar and Chou [26]. In the present study, the memory time of a response 

is defined as a time length of input ACF enough to represent the input PSD. The PSDs given by different 

time length of the input ACF are shown by colored lines in Fig. 2. It can be observed that input ACF up to 

80 [s] is enough to represent input PSD, which then can be regarded as the memory time of heave motion 

in this case. In the case of real phenomena, i.e., the PSD is unknown and only a time series is given, there 

is a possible way to determine the memory time by referring to the 95% confidence interval or so-called 

‘large-lag standard error’ [13] of the sample ACF. This point will be investigated as part of future works. 

  Using the PSDs in Fig. 2, a time series of heave motion, x(t), can be generated as 
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where iu   and iu   denote independent standard normal distributed stochastic variables, ωi are discrete 

frequencies, Δωi is the non-equidistant increment between discrete frequencies, and H(ωi) the input PSD. 

The frequency discretization is made within frequency interval of 0 3[ / s]i rad    discretized into 

Mw=800 components. 

 Wave-induced responses typically will show energy density in a range from 0.05 Hz to about 1 Hz; 

equivalent to where the wave energy density itself is distributed. However, some responses, such as 

structural (hull girder) vibrations, manifest themselves at the eigen frequencies of the vibrational modes of 

the hull girder. In principle, this extends the interesting frequency range, and hence the sampling frequency, 

until infinity. On the other hand, due to aliasing it is customary to sample at a much higher frequency; this 

is the standard approach to avoid aliasing (e.g., see Bendat and Piersol [27]). Specifically, for ships, it is 

normal practice to use a sampling frequency of 20-100 Hz, as also used for the sensor installations on the 

ships studied by Andersen et al. [9] and Nielsen et al. [28]. For these reasons, a time series of 4000 [s] in 

total is generated at a sampling frequency of 100Hz. The generated heave motion time series is shown in 
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Fig. 4.  

 

 

 

Table 1 Principal particulars of container ship 

Ship length  283.8 m 

Breadth 42.0 m 

Draught 14.0 m 

Block coefficient 0.67 

 

  

Fig. 1 Transfer function of heave motion and wave spectrum 

 

   

Fig. 2 Power spectral density of heave motion based on transfer function and wave spectrum 
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Fig. 3 Inverse Fourier transform of input PSD of heave motion 

 

 

Fig. 4 Heave motion time series 
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Method 1, see Eq. (11) and Eq. (9), respectively, and by Method 2, see Eq. (13) and Eq. (15), respectively, 

are calculated and compared. The sample ACF of heave motion is calculated according to the following 

discretized form [29], 
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where µx denotes the mean value of discretized heave motion xm within 0 100[s]t  , Ms the number of 

sampling. As the sampled frequency is 100Hz, Ms=10001. To obtain the ACF and PSD within 100 sec, 

c=100, T=50 [s], Ω=2.0 [rad/s] are used for Method 1, while c=100, T=100 [s], Ω=1.0 [rad/s] are used for 

Method 2. The upper frequency limit Ω=1.0 [rad/s] will be enough to capture the time series and ACF, as 

the input PSD is band-limited within 0 1.0[ / ]rad s  , see Fig. 2. To fit the time series by discretized 
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ACF is resampled to 10Hz.  

  The ACFs based on Method 1 and Method 2 are shown in Fig. 5. Besides, Fig. 6 provides the PSDs from 

the two methods. The input PSD, shown as Fig. 2, is included in the plots by gray solid lines. It is clearly 

seen that the PSD for the 100 [s] segment is much different from the input PSD indicating significant local 

non-stationary effects. The PSD from the sample ACF is also calculated and plotted in Fig. 6 with dotted 

lines, by using the following relationship according to the Wiener–Khinchin theorem 
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As mentioned earlier, Ne=64 is sufficient for c=100. From Fig. 5, when Ne=64 is used, the ACFs from two 

methods are close to the sample ACF. The difference between Method 1 and Method 2 appears when Ne 

value is decreased. In the case of Method 1, it can be seen that the ACFs drastically change as Ne decreases. 

It should be noted that since the ACF value at t=0 [s], i.e. Rxx(0), is equal to the variance of signal, mismatch 

of Rxx(0) may lead to the unphysical expression of PSD. In fact, the PSD from Method 1 with Ne=30 

indicates unreliable high frequency components, see Fig. 6 a).  

  When Method 2 is applied, on the other hand, PSWF can express the sample ACF up to a certain time, 

keeping an accurate Rxx(0) expression even if Ne decreases. In other words, by changing Ne values, the ACF 

are modified so that it converges to zero at an arbitrary time. This is attributed to a fact that only the high-

order PSWF are significant to express the ACF where t/T is large. Further, it can be deduced that Method 2 

enables to smoothen the PSD by decreasing Ne values, see also Fig. 6 b). It is noted that negative values 

appear in the estimated PSD when Ne=30 is applied. This is a result from the smoothing of ACF by PSWF. 

However, the magnitude of the negative values themselves is small, e.g. the area of negative PSD is only 

about 1% of the total area in the case of Ne=30, and it has been confirmed that the shape of ACF will not 

change much if the negative components are removed. One may find a mismatch against the input PSD, 

but such mismatch is unavoidable due to the presence of short-term variability inside the time series. This 

point will be discussed in Section 3.3. The performance of this kind of smoothing effect by Method 2 is 

further investigated in the following subsection. From here onward, Method 2 is adopted as the PSWF-

based expression of ACF and PSD. 

 



 Post-print 

 Published in J. Marine Science and Technology 

 

a)  Method 1 

 

b)  Method 2 

Fig. 5 ACFs estimated from PSWF-based methods 
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b)  Method 2 

Fig. 6 PSDs estimated from PSWF-based methods 

 

3.2.2  Smoothing of ACF by Method 2 

  The convergence time of ACF by Method 2 with different Ne values will now be investigated. Three 

different cases with different combinations of c, T, and Ω listed in Table 2 are used for a series of 

examinations. The sample ACFs from 0 [s]t T    measurements are fitted by Method 2. The ACFs 

smoothed by Method 2 do not strictly converge to zero and have values at very small digits. In order to 

investigate the convergence time of ACF by Method 2 consistently, the convergence time t_conv is defined 

as the time over which the ACF converged to 5.0E-7 [m2] or less, and then the relationships between Ne 

and t_conv/T are plotted in Fig. 7. Results on c=100 (Case A1) and c=200 (Case A2 and Case A3) are plotted. 

t_conv/T can be adjusted from 0.4 to 1.0 in Case A1 and 0.3 to 1.0 in Case A2 and Case A3 by changing Ne 

values. Note that if the same c value is used, t_conv represents the similar tendencies, see Fig. 7 b). On the 

other hand, one should keep in mind that correct representation of Rxx(0) by Method 2 is vital, in order for 

the variance value of the response to be maintained. Fig. 8 shows the relationships between Rxx(0) values 

by Eq. (13) and Ne values for each case. The dotted lines indicate the variance value of the heave response 

within 0 [sec]t T  . From the figures, the accuracy of Rxx(0) representation is kept for Ne>26 in Case A1, 

Ne>40 in Case A2, and Ne>70 in Case A3, otherwise the accuracy is deteriorated. By comparing Case A2 

and Case A3, smaller Ne can be used for Case A2 to maintain Rxx(0) value with the same value of c. From 

this result, larger Ω value is ideal to ensure the accuracy for small Ne values. 

 

Table 2 Combination of c, T, and Ω for each case on Method 2 

 c (Method 2) T [s] Ω [rad/s] 

Case A1 100 100 1.0 

Case A2 200 100 2.0 

Case A3 200 200 1.0 
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                  a)  c=100                                   b)  c=200 

Fig. 7 Non-dimensional convergence time of ACFs with respect to Ne values 

 

  
                 a)  Case A1                                b)  Case A2 

 
c)  Case A3 

Fig. 8 Rxx(0) values by Method 2 with respect to Ne values 
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widely varying results depending on the method for deciding the AR model order. This study adopted a 

combination of Multiple Final Prediction Error (MFPE) and the Bayesian Information Criterion (BIC) 

criteria, which was used in Nielsen [34] for cross-spectrum estimates. The heave motion time series within 

00 [s]t t   where t0=100, 200, or 500 [s] are used for a series of comparisons. To obtain ACF or PSD by 

Method 2, sample ACFs from 00 [s]t t    measurements are calculated, and then PSWF-based 

smoothing is applied using the combination of c, T, and Ω as Case A2 in Table 2. Moreover, Ne=50 is used 

in smoothing the ACFs. By applying Ne=50, it is expected that the ACFs are modified to be converged up 

to about t_conv/T=0.8, i.e. 80 [s], see Fig. 7 b). The ACFs from FFT and AR are calculated via the Wiener–

Khinchin theorem by using the computed PSDs, see Eq. (11). 

  Fig. 9 shows a comparison of ACFs from Method 2, FFT and AR, respectively. The sample ACFs are 

shown with dotted lines in the figures. As found from the figures, the FFT-based ACFs show large 

amplitudes beyond the memory time of response, i.e. 80 [s]. To prevent this “failure of damping out” [13], 

smoothing process of PSD as demonstrated in Ref. [10] is necessary, but, as mentioned earlier, there is no 

consistent way to select the smoothing parameters. The AR based ACFs provide the decayed curve until 

certain time. However, a memory time indicated by the ACFs, i.e. time to converge to zero, is not 

consistently evaluated by the AR based ACFs. In other words, the expected memory time cannot be inferred 

by using AR-based methods. 

  Fig. 10 shows a comparison of PSDs from Method 2, FFT and AR, respectively. The Fourier transform 

from the sample ACFs (within 0 100[s]t  ) are also shown with dotted lines as a reference. It is evident 

that for the FFT-based PSDs from a short time window, e.g. t0=100 [s], the frequency resolution is too low 

noting that the frequency resolution of FFT is based on the following relationship: 

 

0

2

t

                                                                           (19) 

 

Therefore, for t0=100 [s], Δω becomes 0.063 [rad/s] which covers only 16 discrete frequencies within 

0 1  [rad/s] range, thus it is hard to capture the local spectrum peaks properly. On the other hand, the 

PSDs from Method 2 keep a high frequency resolution. This owes to a fact that the frequency resolution in 

Method 2 relies only on discretization of PSWF, equivalently dt/T in Eq. (14), which can be set arbitrarily 

in obtaining numerical values of PSWF. The AR-based PSDs keep a high frequency resolution with the 

smoothed PSD. But, the memory time of response is not observed clearly, as pointed above, and moreover, 

the estimated PSDs are single peaked, which may have been influenced by the selection method of the order 

of the AR model adopted in this study.    



 Post-print 

 Published in J. Marine Science and Technology 

 

a) t0=100 [s] 

 

b) t0=200 [s] 

 

c) t0=500 [s] 

Fig. 9 Comparison of ACFs with Method 2, FFT and AR 
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a) t0=100 [s] 

 

b) t0=200 [s] 

 

c) t0=500 [s] 

Fig. 10 Comparison of PSDs with Method 2, FFT and AR 
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time series may be included even in stationary time series, as presented in Hong et al. [12,35]. To investigate 

the short-term variability, the variance values from short time windows are first examined. Fig. 11 shows 

the variance values within different time windows, i.e. 100, 200, and 500 seconds, comparing with that from 

complete time sequence. It can be easily verified that the variance for short time windows, see 100 or 200 

seconds, varies significantly. Obviously, this short-term variability leads to the large variation in the PSDs, 

as shown by Fig. A1 in Appendix B.  

  In light of the short-term variability of the time series, the ACFs and PSDs from short time windows are 

modified by accounting for the variance value σ2, of the whole time span: 

   

2

( ) ( )
(0)xx xx

xx

R t R t
R


    

2

( ) ( )
(0)xx xx

xx

S S
R

                                                                 (20) 

 

By applying Eq. (20), every single pair of ACF and corresponding PSD indicates the same variance value, 

i.e. σ2. 

  Figs. 12-15 show the ACFs from 100, 200, 500, and 4000 [s] measurements, while Figs. 16-19 show the 

corresponding PSDs. The ACFs and /or PSDs by Method 2 are calculated like in subsection 3.2.3, i.e. using 

the combination of c, T, and Ω as Case A2 with Ne=50. As a reference, sample ACFs themselves and PSDs 

from sample ACFs are shown in gray lines. The PSDs from the sample ACFs are calculated by using the 

sample ACFs within the period 0 100[s]t  . In the plots, black thick lines indicate the input ACF and 

PSD of heave motion. When the time window size is long enough, say 4000 [s], the sample ACF becomes 

closer to the input ACF, and the resulting PSD is similar to the input PSD, see Fig. 12 a) and Fig. 16 a). 

However, relatively large fluctuations in the sample ACFs can be seen from short time windows, see Figs. 

13-15 a). This (large) variation results in the large variation of PSDs, as can be observed from Figs. 17-19 

a). On the other hand, PSWF-based smoothing results provide rather smoothed PSDs even for short time 

window cases, see Figs. 17-19 b). It is seen that the longer the time window length, the closer the evaluated 

PSD will be to the input PSD. This agreement is apparently owing to the smoothed ACFs.  

  It is envisioned that the present PSWF-based smoothing method, i.e. Method 2, enables a rapid updating 

of ACFs from short time measurements, without the need for long time sequences, along with a clear 

expression of the memory time of target response. In practice, the PSD of any response may be roughly 

approximated by using the transfer function and wave spectrum estimate, based on for example the wave-

buoy analogy [36]. In this case, the memory time of the response may be roughly estimated from the inverse 

Fourier transform of the PSD. Subsequently, the present PSWF-based smoothing method can be applied so 

that the sample ACFs are modified to converge up to estimated memory time, as discussed in subsection 

3.2.2. 



 Post-print 

 Published in J. Marine Science and Technology 

  

Fig. 11 Variance values for each time window 
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               a)  Sample ACF                          b)  Method 2 (Ne=50) 

Fig. 12 ACFs from time window length of 4000 seconds (whole data). Black thick line denotes the 

input ACF 

 

  

               a)  Sample ACF                          b)  Method 2 (Ne=50) 

Fig. 13 ACFs from time window length of 100 seconds. Black thick line denotes the input ACF 

 

  

               a)  Sample ACF                          b)  Method 2 (Ne=50) 

Fig. 14 ACFs from time window length of 200 seconds. Black thick line denotes the input ACF 

 

  

               a)  Sample ACF                          b)  Method 2 (Ne=50) 

Fig. 15 ACFs from time window length of 500 seconds. Black thick line denotes the input ACF 
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       a)  Fourier transform of sample ACF                  b)  Method 2 (Ne=50) 

Fig. 16 PSDs from time window length of 4000 seconds (whole data). Black thick line denotes the 

input PSD 

 

  

       a)  Fourier transform of sample ACF                  b)  Method 2 (Ne=50) 

Fig. 17 PSDs from time window length of 100 seconds. Black thick line denotes the input PSD 

 

  

       a)  Fourier transform of sample ACF                  b)  Method 2 (Ne=50) 

Fig. 18 PSDs from time window length of 200 seconds. Black thick line denotes the input PSD 

 

  

       a)  Fourier transform of sample ACF                  b)  Method 2 (Ne=50) 

Fig. 19 PSDs from time window length of 500 seconds. Black thick line denotes the input PSD 
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3.4. ACF-based Predictions Based on Method 2 

  In the last numerical demonstration, the effectiveness of the PSWF-based approach, using Method 2 to 

fit the ACF for response prediction [10,11] is investigated. The interested reader is referred to [10], but for 

completeness the following includes the basics of the prediction method. Thus, using the recent n+1 

measurements, x(t0), x(t1),…, x(tn) where t0>t1>…>tn, the predictions at time t ahead of current time are 

given by: 

 

1ˆ( ) ( )Tx t t  r R x                                                                     (21) 

 

where r(t) denotes the autocorrelation vector, R the autocorrelation matrix, and x=[x(t0), x(t1),…, x(tn)]T the 

measurement vector. In formulating the autocorrelation matrix, a noise term is normally included in order 

to reflect the inherent randomness in the measurements [37]. Herein, the noise terms are assumed to follow 

a normal distribution with mean 0 and variance 2
 . Thereby, r(t) and R are given by the following form: 
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                                   (22) 

 

The time series data are down-sampled to 10Hz (Δt=0.1 [s]) in order to reduce the size of the autocorrelation 

matrix. 

  Using the smoothed ACFs by Method 2 with c, T, and Ω as set in Case A2 (named ‘PSWF-based ACF’), 

the ACF-based predictions starting from 2200 [s] are made. Predictions are made until 60 [s] ahead, i.e. up 

to 2260 [s], by using past 100 [s] measurements. The prediction results using the sample ACF (without 

noise) and PSWF-based ACF with Ne=50 derived from whole time measurements (from 0-4000 [s]) and 

recent 200 [s] measurements (from 2000-2200[s]) are first compared. Note that the sample ACF 

automatically includes unknown numerical noise for what reason the additional noise term, 2
 /Rxx(0) in 

Eq. (22), is not included in the sample ACF results. Fig. 20 shows the prediction results on the former case, 
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while Fig. 21 shows the latter case. From Fig. 20, one can find good predictions from PSWF-based ACFs 

and the sample ACFs when whole time measurements are used, especially within the first 20 [s]. The 

prediction accuracy using the sample ACF deteriorates when the recent 200 [s] measurements are used, as 

noted by the blue dotted line in Fig. 21.  

  Two metrics, the Pearson Correlation Coefficient ρ and the Determination Coefficient R2 of the prediction 

results are calculated according to 
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where x  and x̂   denote the mean values of measurements and predictions, respectively. Npre is the 

number of predictions or measurements ahead, e.g. if ρ and R2
 are calculated until 60 [s] ahead, Npre=600. ρ 

and R2 corresponding to Figs. 20 and 21 are calculated and listed in Tables 3 and 4, respectively, where Npre 

= 600 or 200. From Tables 3 and 4, the shorter prediction time, see Npre=200 cases, offers better accuracy 

in both terms of ρ and R2. It appears that the PSWF-based ACFs give better prediction results even if the 

recent 200 [s] measurements are used. This may be due to the fact that the sample ACF contains a large lag 

time error [13], whereas the PSWF can correct it. On the other hand, the prediction accuracy on the PSWF-

based ACFs varies to a large degree depending on the variance of noise.  

  The prediction results at the other time window, starting from 970 [s], are shown in Fig. 22. Within the 

time window of 970-1030 [s], sudden increase of heave motion has been observed from measurements, see 

a black solid line in Fig. 22. When 2
 /Rxx(0) of 0.1 or 0.01 are used for PSWF-based autocorrelation 

matrices, extremely large unrealistic oscillations appeared in the prediction results. In the present case, the 

determinant values of autocorrelation matrices R are extremely close to zero for every case, and such large 

oscillations appear in many noise level cases. 2
 /Rxx(0) of 0.05 and 0.5 provide stable prediction time 

sequences. In Fig. 22, the recent 200 [s] measurements are used for obtaining ACFs, and the noise levels 
2
 /Rxx(0) of 0.05 and 0.5 are selected. Table 5 compares the two metrics in this case. It is again observed 

that the prediction accuracy by the PSWF-based ACF varies widely with the noise level, see Fig. 22 and 

Table 5. From Fig. 22, the sample ACF and PSWF-based ACF with 2
 /Rxx(0)= 0.05 can roughly capture 

the motion amplitude of the first wave, that is, up to about 17 [s] ahead, however, the accuracy is still low 

in terms of ρ and R2
 values, see Table 5.  

  It is inferred that the high variability in prediction accuracies by PSWF-based ACF results from the 

positive definiteness of the autocorrelation matrix R has not been secured in some cases. Although the 

inclusion of white noise is one of the ways to avoid non-positive definiteness of autocorrelation matrix [38], 
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further research effort should be paid to determine appropriate noise variance level or to modify the 

autocorrelation matrix R. The eigenvalue decomposition and selection of dominant eigenvalues in the 

autocorrelation matrix R would be one of the possible solutions [38]. Moreover, for practical reasons, a 

statistical evaluation of the prediction accuracy, e.g. evaluation of the peak value distribution or standard 

deviation, will be needed, and then the length of time for which the prediction accuracy is guaranteed should 

be clarified. Thus, it is early to draw definite conclusions on the accuracy of predictions by PSWF-based 

ACFs at this stage, necessitating future work. If an appropriate noise setting or autocorrelation matrix 

modification method can be established, since the present PSWF-based approach give reasonable ACFs for 

short time measurements, the method will be applicable to non-stationary time series, contrary to the 

conventional FFT based approach [10,11]. 

  It would also be expected that the reference of confidence interval of sample ACF will be important for 

prediction accuracy, when the input PSD is unknown and only time series measurements are given under 

nonstationary operational conditions. The large-lag standard error [13] might be useful to determine a 

consistent lag time of sample ACF and may give an insight for determining PSWF settings. This point 

should also be investigated in the future. 

 

 

Fig. 20 Comparisons of ACF based prediction results starting from 2200 [s] between sample ACF and 

PSWF-based ACF with Gaussian noise. Sample ACF and PSWF-based ACF are calculated from whole 

time measurements (from 0-4000 [s]) 
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Fig. 21 Comparisons of ACF based prediction results starting from 2200 [s] between sample ACF and 

PSWF-based ACF with Gaussian noise. Sample ACF and PSWF-based ACF are calculated from recent 200 

[s] measurements (from 2000-2200[s]) 

 

 

Fig. 22 Comparisons of ACF based prediction results starting from 970 [s] between sample ACF and 

PSWF-based ACF with Gaussian noise. Sample ACF and PSWF-based ACF are calculated from recent 200 

[s] measurements (from 770-970[s]) 

 

Table 3 Comparison of the Pearson Correlation Coefficient ρ and the Determination Coefficient R2 within 

2200-2260 [s] when sample ACF and PSWF-based ACF are calculated from whole time measurements 

(from 0-4000 [s]) 

 
Sample ACF 

PSWF-based ACF 

 ( 2
 /Rxx(0)=0.01) 

PSWF-based ACF 

 ( 2
 /Rxx(0)=0.1) 

ρ (Npre=600) 0.691 0.644 0.772 

R2 (Npre=600) 0.472 0.329 0.595 

ρ (Npre=200) 0.915 0.828 0.954 

R2 (Npre=200) 0.805 0.648 0.877 
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Table 4 Comparison of the Pearson Correlation Coefficient ρ and the Determination Coefficient R2 within 

2200-2260 [s] when sample ACF and PSWF-based ACF are calculated from recent 200 [s] measurements 

(from 2000-2200[s]) 

 
Sample ACF 

PSWF-based ACF 

 ( 2
 /Rxx(0)=0.01) 

PSWF-based ACF 

 ( 2
 /Rxx(0)=0.1) 

ρ (Npre=600) 0.186 0.416 0.307 

R2 (Npre=600) -0.036 0.023 -0.142 

ρ (Npre=200) 0.630 0.860 0.682 

R2 (Npre=200) 0.305 0.719 0.425 

 

Table 5 Comparison of the Pearson Correlation Coefficient ρ and the Determination Coefficient R2 within 

970-1030 [s] when sample ACF and PSWF-based ACF are calculated from recent 200 [s] measurements 

(from 770-970[s]) 

 
Sample ACF 

PSWF-based ACF 

 ( 2
 /Rxx(0)=0.05) 

PSWF-based ACF 

 ( 2
 /Rxx(0)=0.5) 

ρ (Npre=600) -0.217 0.157 -0.059 

R2 (Npre=600) -0.973 -0.456 -0.298 

ρ (Npre=200) 0.705 0.696 0.229 

R2 (Npre=200) 0.483 -0.354 -0.346 

 

4.  CONCLUSIONS AND FUTURE WORKS 

  This paper has presented a new approach for obtaining reliable autocorrelation functions (ACFs) and 

power spectrum densities (PSDs) from time series measurements. Specifically, Prolate Spheroidal Wave 

Functions (PSWF) were introduced to fit, respectively, a measured time series signal (Method 1) and the 

sample ACF (Method 2). A series of numerical demonstrations was made by using heave motion time series 

of a containership. The effectiveness of the present approach was discussed by comparing with other PSD 

estimation methods; herein Fast Fourier Transformation (FFT) and Auto-regressive (AR) based method, 

respectively. Finally, the present PSWF-based approach was applied to ACF-based deterministic time series 

prediction. The following conclusions can be drawn: 

1. The sample ACF can be accurately reproduced by both Method 1 and Method 2, when a sufficient 

number of PSWF is considered. On the other hand, if the number is too low, the variance of the 

signal cannot be maintained by Method 1, and this leads to unreliable PSD estimation.  

2. By applying Method2 with the appropriate number of PSWFs, the ACF converges up by a certain 

time, which is physically consistent with the response memory time. Meanwhile, a care should 

also be taken to choose large enough number of PSWFs to maintain the variance of the signal. 
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3. Method 2 enables provision of a high frequency resolution in the PSDs even if short time 

sequences of the measurements are used. Besides, the variability of PSD from short time sequences 

can be suppressed by converging the ACF to the memory time of response using Method 2. 

4. By using the PSWF-based ACF by Method 2, it is expected that the PSWF-based ACF is capable 

of improving accuracy of deterministic motion prediction, since it makes it possible to correct the 

large-lag time error in the sample ACFs even if just the most recent short time sequences are used. 

However, it must be emphasized that further investigations will be needed to determine the 

appropriate noise variance level together with achieving positive definiteness of the 

autocorrelation matrix, which are highly associated with the large variation in results and 

prediction accuracy. Additional sensitivity studies and statistical evaluation of the prediction 

accuracy using Method 2, e.g. evaluation of standard deviation of predicted responses or peak 

value distributions, are therefore required in this line, and then it will be needed to clarify how 

long the predictions are practically accurate. 

    

  The potential for further applications of the proposed approach is suggested by the fact that, as the PSWF 

are adoptable for fitting band-limited signals, it may also be useful for cross-spectrum estimation, which is 

necessary for evaluating e.g. wave direction when ship motions are applied for sea state estimation using 

the wave buoy analogy [36,39]. This kind of application has particular interest, as it has been shown that 

short-term variations (“aleatory uncertainty”) in the seaway compromise results of the wave buoy analogy 

[35]. In this sense, it is expected that an improvement of the wave buoy analogy will be possible by 

introducing PSWF to estimate cross spectra during non-stationary sea states.  

 



 Post-print 

 Published in J. Marine Science and Technology 

APPENDIX A: Derivation of PSWF 

  The numerical derivation of PSWF is made using the Legendre polynomials-based approach presented 

by Xiao et al. [20]. The Legendre polynomials Pn are defined by the three-term recursion, 

 

1 1
2 1

( ) ( ) ( )
1 1n n n

n n
P u uP u P u

n n 


 
 

                                                  (A1) 

 

with the initial conditions P0(u)=1, P1(u)=u. The numerical evaluation of PSWF can be made by: 

 

0

( , ) ( )j
j kk

k

u c P u 




                                                                (A2) 

 

where nP  is the normalized version of the Legendre polynomials, i.e. 

 

( ) ( ) 0.5n nP u P u n                                                                (A3) 

 

For each j=0, 1, …, by denoting the coefficients β in Eq. (A2) as a column vector βj,  

 

0 1( , ,...)j j jβ                                                                    (A4) 

 

The values in βj are derived by solving the following algebraic eigenvalue problem. 

 

( )( ) 0j
j  A I β                                                                  (A5) 

 

where χj denotes the eigenvalues corresponding to matrix A. The components in matrix A is given by 
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To solve Eq. (A5) an eigenvalue solver based on the Jacobi’s method can be applied. In practice, the number 

of k is limited to certain value, say, M. In this study, the cut-off number M is determined according to a 

suggestion given by Boyd [40], 
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2 30eM N                                                                       (A7) 

 

where Ne+1 denotes the number of PSWF to be evaluated. Ne is determined according to the value of Slepian 

frequency c so that the following condition is satisfied. 

 

1 2 /eN c                                                                       (A8) 

 

After that, the scaled eigenvalues of each PSWF λj are calculated by using following relationships [22]. 
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here u  denotes the partial derivative in terms of u. Note that as the eigenvalues of PSWF µj should be 

less than 1, the absolute values of λj should be less than 2 / c . 

 

APPENDIX B: PSD HISTORIES FROM DIFFERENT TIME WINDOWS 

 

 

a) 100 seconds 
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b) 200 seconds 

 

c) 500 seconds 

Fig. A1 PSD histories of heave motion from different time window length 
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