
Ba
ch

el
or

’s
 th

es
is Auspex

May 2022

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Design

Peder Hovdan Andresen
Patrick Eilert Krosby
Anders Christoffer Westby

Bachelor’s thesis
2022

Bachelor’s thesis

Auspex

May 2022

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Design

Peder Hovdan Andresen
Patrick Eilert Krosby
Anders Christoffer Westby

Auspex

Peder Hovdan Andresen, Patrick Krosby, Anders Christoffer Westby

2022

Abstract

Telenor, one of the leading telecommunication companies in Norway, provides a
wide range of services. Many of these services rely on microservices running as
Docker containers. For this reason, Telenor has a need to continually evaluate se-
curity for the microservices they provide, using various tools that unfortunately
produce hard to understand and overly extensive output. To help solve this is-
sue, we we will develop develop an application called Auspex. The application
will parse the output from scans of container images, and create human-readable
reports of the findings. This will give an overview of the security state of their
containers and thus make this information more accessible to a wider audience.

This thesis will cover the process of development for Auspex in its entirety, from
the initial planning stages through implementation. The first three chapters covers
introductory information regarding the topics explored in this thesis, as well as
how the need for our application came to be. The next four chapters will cover
the development of our application. This includes requirements, system design,
development process and implementation. Finally, the last two chapters will be
dedicated to discussing some of the decisions made, concluding the thesis and
suggesting further work.

i

Sammendrag

Telenor, en av de ledende telekommunikasjonsselskapene i Norge, tilbyr et bredt
spekter av tjenester. Mange av disse tjenestene er avhengige av mikrotjenester
som kjører i Docker containere. Av denne grunn har Telenor behov for å kontin-
uerlig evaluere sikkerheten i de mikrotjenestene de tilbyr, ved å bruke diverse
verktøy som produserer kompliserte dataresultater som er vanskelig å forstå. Må-
let for dette prosjektet er å utvikle en applikasjon kalt Auspex. Applikasjonen kan
gjennomgå dataresultatene fra scanninger av containere, og lage menneskelige
forståelige rapporter av funnene som gir et overblikk av sikkerhetstilstanden for
en container som dermed gjør denne informasjonen mer tilgjengelig for et bredere
publikum.

Denne oppgaven vil dekke prosessen med å utvikle Auspex i sin helhet, fra de
innledende planleggingsstadiene, til implementasjonen. De tre første kapitlene
dekker introduserende informasjon rundt temaene som er dekket i denne opp-
gaven, samt hvordan behovet for vår applikasjon oppstod. De neste fire kapitlene
dekker utviklingen av vår applikasjon. Dette inkluderer systemkrav, systemdesign,
utviklingsprosess og detaljer om implementasjonen. Til slutt, de siste to kapitlene
diskuterer noen av valgene som er gjort, konkluderer oppgaven og kommer med
forslag til fremtidig arbeid.

ii

Contents

Abstract . i

Sammendrag . ii

Contents . iii

Figures . ix

Tables . xi

Code Listings . xii

Glossary . xiv

1 Introduction . 1

1.1 Project Background . 1

1.2 Task Description and Project Goals . 2

1.2.1 Application Description . 2

1.3 Project Scope . 3

1.4 Project Group . 3

1.5 Relevant Hyperlinks . 4

1.5.1 GitHub Repository . 4

1.5.2 GitLab Repository . 4

1.5.3 Service URLs . 4

1.6 Thesis Structure . 4

2 Background . 6

iii

Contents iv

2.1 Cloud Computing and Containers . 6

2.1.1 What is a Container? . 7

2.1.2 Benefits of Using Containers . 7

2.1.3 Containers and Scaling . 8

2.2 Monolithic vs Microservices . 9

2.2.1 Monolithic . 10

2.2.2 Microservices . 10

2.2.3 Microservices and Containers 10

2.3 Container Security . 11

2.3.1 Main Vulnerability Sources . 11

2.3.2 Container Security Scanning Tools 12

2.3.3 CVE . 13

2.4 Applicability of our Application . 14

2.4.1 Issues with the Current Solution 14

2.4.2 How Our Application Solves These Issues 15

3 Related Work . 16

4 Requirements . 18

4.1 Functional Requirements . 18

4.2 Non-Functional Requirements . 19

5 System Design . 21

5.1 Application Overview . 21

5.2 Detailed Component Description . 23

5.2.1 Clients and API Gateway . 23

5.2.2 Scanner . 25

5.2.3 Reporter . 25

Contents v

5.2.4 Automated Report Creation . 26

6 Development Process . 28

6.1 Development Model . 28

6.2 Documentation . 29

6.2.1 Kanban Board . 29

6.2.2 Thesis Writing . 30

6.2.3 Source Code . 30

6.2.4 Other Documentation . 30

6.2.5 Meetings and Minutes of Meeting 30

6.2.6 Time Tracking . 31

6.2.7 Expenses . 31

6.3 Routines . 32

6.3.1 Work Policies . 32

6.3.2 Tools . 32

6.3.3 Communication . 32

7 Implementation . 33

7.1 Repository Structure . 33

7.1.1 Monorepo and Microservices: an Anti-pattern? 33

7.1.2 Choosing a Repository Structure 35

7.1.3 Implementing Monorepo Builds With Docker and Poetry . . 35

7.2 Code Quality and Formatting . 36

7.2.1 Mypy . 36

7.2.2 Black . 36

7.3 Data Validation With Pydantic . 37

7.4 Service: Scanner . 38

Contents vi

7.4.1 Endpoints . 38

7.4.2 Running Snyk In A Container 40

7.4.3 Storing Scan Results . 41

7.5 Service: Reporter . 42

7.5.1 Endpoints . 42

7.5.2 Initiating Report Creation . 44

7.5.3 Parsing Scans . 46

7.5.4 Single vs Aggregate . 47

7.5.5 Generating a PDF Report . 51

7.5.6 Creating Tables . 55

7.5.7 Creating Plots . 57

7.5.8 Final Output . 58

7.6 Service: API Gateway . 59

7.6.1 Endpoints . 60

7.7 Testing . 63

7.7.1 Pytest . 64

7.7.2 Fuzzing with Hypothesis . 65

7.7.3 Coverage . 66

7.8 Deployment . 67

7.8.1 CI/CD . 68

7.8.2 Cloud Run Configuration . 70

7.9 Sending Emails . 70

8 Evaluation . 75

8.1 Survey . 75

8.1.1 Survey Results . 76

Contents vii

8.1.2 Survey Feedback and Improvements 77

8.1.3 Other Feedback . 81

8.2 Does It Meet the Requirements? . 82

8.2.1 Evaluation of Functional Requirements 82

8.2.2 Evaluation of Non-Functional Requirements 84

9 Discussion . 87

9.1 Why Auspex Was Developed . 87

9.2 Website . 88

9.3 Cloud Run . 88

9.4 Email Workflow . 89

9.5 Choice of Database . 89

10 Closing Remarks . 91

10.1 Learning Outcome . 91

10.1.1 Project . 91

10.1.2 Teamwork and Communication 91

10.1.3 Writing the Thesis . 92

10.2 Conclusion . 92

10.3 Further Work . 92

10.3.1 Website . 92

10.3.2 Email Workflow . 93

10.3.3 Optimizing Service Docker Images 93

10.3.4 Other Scanning Tools . 93

10.3.5 Supporting Multiple Container Registries 93

10.3.6 Feedback . 93

Bibliography . 94

Contents viii

A Additional Material . 97

A.1 Early Report Example . 130

A.2 Example of a Single Report . 135

A.3 Example of a Aggregate Report . 142

A.4 Auspex Survey . 150

A.5 Auspex Survey Result . 161

B Schemas . 168

B.1 POST /reports Response Schema . 169

B.2 Scan Metadata Schema . 171

B.3 Report Metadata Schema . 172

B.4 Reporter Query Parameter Schema . 173

C Minutes of Meeting . 176

Figures

2.2 Public and private registry use case . 8

2.3 Virtual Machines (left) vs Containers (right) resource usage 9

2.4 Microservice (left) vs Monolithic (right) Architecture 11

3.1 Some of the reasons for how Snyk calculates Priority Score 17

3.2 An example of how Snyk Code presents found vulnerabilities 17

5.1 Overview of all the components and microservices of Auspex 22

5.2 API Gateway communicates with Scanner and Reporter 24

5.3 Simple illustration of Scanner storage including the schema for
Scan Database . 26

5.4 Simple illustration of Reporter storage with schema. (Some keys
are omitted to ease presentation of the schema.) 27

7.1 API endpoints exposed by the Scanner service 38

7.2 API endpoints exposed by the Reporter service 43

7.3 Reporter service requests a scan log from Scanner 45

7.4 The table data rendered as a LaTeX table 57

7.5 A scatter plot of CVSS mean score for current and previous reports
of the same image, with a trend line 58

7.6 Structure of a report . 59

ix

Figures x

7.7 API endpoints exposed by the API gateway 60

7.8 Screenshot of Pytest collecting and running tests 64

7.9 The coverage of the largest source files of the Reporter service . . . 67

7.10 Example of code that is not covered by tests 67

7.11 Cloud Build repository trigger configuration 70

7.12 Visual representation of the workflow. 74

7.13 Visual representation of the workflow. 74

8.6 An example of clickable CVSS ID’s in a table listing vulnerabilities . 81

Tables

2.1 CVSSv3 Severity Levels . 14

xi

Code Listings

1 Shared document retrieval function with backoff 34
2 Example of Pydantic usage showing composition of models 37
3 Schema for POST /scans request body 39
4 Schema for GET /status response body 40
5 Running Snyk as a subprocess with Python 41
6 Data structure for documents representing scans in the database . . 42
7 Report request schema for the Reporter service 44
8 Snyk JSON scan log (abbreviated) . 46
9 The Pydantic-derived class that corresponds to Listing 8 (abbreviated) 47
10 The interface shared by all report data structures (Abbreviated; ori-

ginally >150 lines long) . 48
11 Implementation of most_severe_n for an image scanned with Snyk 49
12 Implementation of most_severe_n for the aggregate report data

structure . 50
13 The VulnerabilityType interface (abbreviated) 51
14 Custom class wrapping a PyLaTex document (abbreviated) 52
15 LatexDocumentmethod that adds a section containing a table show-

ing exploitable vulnerabilities . 52
16 Utilty method for adding a section containing a longtable 53
17 Utilty method for adding a longtable to the document 54
18 The TableData data structure . 55
19 Example of a function that returns TableData 56
20 The PlotData data structure . 57
21 Schema for requests to the POST /reports endpoint 62
22 Response schema for POST /reports endpoint (most keys omitted) 63
23 Test using assert statement . 65
24 Example of fuzzing with Hypothesis (abbreviated) 66
25 Build and deployment script for the Reporter service (abbreviated) 68
26 Retrieving a secret in a workflow. 71
27 Requesting scan and report creation for images in a workflow. . . . 72
28 Workflow step that sends an email. 73
29 Workflow step that sends an email. 73

xii

Code Listings xiii

Glossary

API Application Programming Interface. An abstraction layer over a more com-
plex and opaque underlying implementation that can be used by developers..
35

artifact Used to describe the output from a process and/or service. . 21

Auspex The name of our application. When used alone, it should be taken to
mean the application as a whole, not its constituent parts. 2, 3, 5, 11, 18,
19, 21, 23, 24, 27, 33, 76, 83, 84, 91, 92

boilerplate Refers to code implemented repeatedly with small or no variation to
achieve minor functionality. . 57

CI/CD Pipeline Continuous Integration/Continuous Deployment Pipeline. Method
for automating integration and deployment of code. 15, 22, 24

CLI Text-based computer interface for input of commands. 25

Cloud Native Describes an approach to building cloud applications that utilize
and take advantage of technologies such as containers and microservices to
deploy applications in the cloud. 18, 19, 84, 85

coupled applications whose parts/modules are dependent on each other to able
to function. xv

Docker Open source containerization platform to deliver software as packages
called containers. 6–8, 24, 25

Firestore Managed NoSQL database provided Google Cloud Platform. See: NoSQL.
21, 25

Google Cloud Platform GCP is Google’s cloud platform, offering various cloud
services within the categories of compute, network and storage.. 19, 31, 84

xiv

Code Listings xv

HTTP Hypertext Transfer Protocol. Text-based application-level protocol primar-
ily used for communication between hosts on a network. 35

JSON JavaScript Object Notation. Text-based format used to store and transmit
data. 19, 23, 25, 35, 40, 83

LaTeX Typesetting system and language with markup tagging. Can be compiled
to a wide range of output formats. Widely used in academia . ix, 25, 26, 30,
51, 52, 54, 55, 57

Matplotlib Python library used for mathematical typesetting and to create dia-
grams and figures. 25, 57

NoSQL Database design paradigm that emphasizes storing data as key-value pairs,
rather than relationally. xiv, 21, 34

NTNU Norwegian University of Science and Technology. 3, 30

PyLaTex Python library used for creating and compiling LaTeX files. xii, 26, 51,
52, 55, 57

Service Level Agreement An agreement between service provider and customer
specifying the level of service that will be provided.. 18

Snyk Tool for scanning and finding vulnerabilities in container images. 2, 3, 12,
14, 23, 25, 48

strongly coupled see: coupled. 10

Chapter 1

Introduction

This chapter introduces the background and purpose of the project. It also outlines
the scope of the project and everyone who participate in the project.

1.1 Project Background

Telenor, one of the leading telecommunication companies in Norway, provides
wide array of services and products to about 2.8 million customers in Norway
[1]. The products and services ranges from mobile phone plans, to providing in-
ternet and TV subscriptions, to both private and commercial customers. As tech-
nology has evolved, so has the repertoire of products and services Telenor offers
its customers. For instance, Telenor has started offering a tracking service for pets,
cloud-storage for its customers, and various other data-collection services with its
expansion into the Internet of Things (IoT) market [2]. Additionally, they deliver
a wide range of security products and solutions to both private consumers and
businesses. A large part of these solutions are cloud based solutions using pro-
viders such as Amazon Web Services (AWS)1, Google Cloud Platform (GCP)2 or
Microsoft Azure3, and organized in containers, typically created using Docker4,
and orchestrated using container orchestration solutions such as Kubernetes5.

This rapid expansion has lead to new realities and challenges. Their increasingly
wide range of services offered, has necessitated a more modern approach to how
they run these services and how their IT-infrastructure is organised. Their solu-

1https://aws.amazon.com/
2https://cloud.google.com/
3https://azure.microsoft.com/en-gb/
4https://www.docker.com/
5https://kubernetes.io/

1

https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/en-gb/
https://www.docker.com/
https://kubernetes.io/

Chapter 1: Introduction 2

tion, as for many others facing similar challenges, has been a container-based
architecture that takes advantage of ease of setup, re-usability, and high availab-
ility. However, this comes with security issues, and the tools that are used to solve
and mitigate these issues often are not as helpful as they could be, due to the ex-
pertise level required to fully comprehend the output from these tools. Therefore,
we have been tasked with creating a solution to this problem by Telenor, hereafter
referred to as our employer.

1.2 Task Description and Project Goals

Our task is to create a service, called Auspex, that can capture and parse the result
of a container vulnerability scan, and produce a corresponding report.

The report produced by the Auspex service should be both readable, and under-
standable to employees without a specialized technical background. Though this
seems straightforward in terms of what our goal is, it does come with certain
challenges.

Firstly, we need to develop Auspex, deploy it on on Google Cloud Platform, and
make sure it can automatically capture all important information from the scan
and generate a report.

Secondly, we need to make sure that the generated report is human-readable and
understandable, especially for those who do not have much security background.
We plan to follow iterative feedback from our employer on the report produced
by Auspex since they will know what information they want to obtain from the
report.

1.2.1 Application Description

For this project we will be using Snyk, which is a collection of tools that can auto-
matically detect vulnerabilities in source code, dependencies, container images
and Infrastructure as Code definition files [3]. More specifically, we will use the
feature of Snyk that scans Docker images for vulnerabilities [4]. In this thesis we
will refer to Snyk as a vulnerability scanning tool.

Our application, Auspex is designed to parse the output of Snyk on a single con-
tainer image or a collection of container images. This is facilitated through a mi-
croservice with access to Snyk that scans container images. The resulting scan
data is then passed to another microservice that parses this data and presents

Chapter 1: Introduction 3

it as figures and tables in a PDF document using tools such as Matplotlib6 and
PyLatex7 so as to display it in a readable and understandable format. Utilising
Google Workflows8, the whole process can be automated, and expanded if need
be.

As our employer is mostly hosting their services on GCP, it is beneficial for ease of
service integration with their existing infrastructure, if Auspex is hosted on GCP
as well.

1.3 Project Scope

This project will focus on the aspects of container security that can be discerned
from analysing container images in a non-runtime environment. For this purpose,
our application will use the container scanning tool Snyk. Thus, while our ana-
lysis is limited to the Common Vulnerabilities and Exposures (CVE)program’s list
of identified vulnerabilities [5], this list is constantly updated and added to by a
dedicated and professional community [nist2022]. There are certain vulnerab-
ilities that our analysis will not include, such as vulnerabilities in the software
itself, the system- and network architecture, and how persistent data is stored.
This means that our analysis will not be addressing the handling of personal data
under the General Data Protection Regulation (GDPR), nor will it evaluate other
privacy related issues.

1.4 Project Group

The project owner is Telenor, and our employer contact at Telenor is Eirik Stephansen,
Tech Lead IoT at Telenor Mobil. His role is to define our task, clarify requirements
and answer any questions we might have. Jia-Chun Lin (Kelly), assistant professor
at the Norwegian University of Science and Technology (NTNU) in Gjøvik, is the
supervisor for this bachelor project.

Our group consists of three students, Peder Hovdan Andresen, Anders Christoffer
Westby, and Patrick Krosby. All of us are following the study program Digital Infra-
structure and Cybersecurity at NTNU Gjøvik. We chose this assignment based on
our previous experiences with using container-based infrastructure, and orches-
tration tools such as Kubernetes. Additionally, we have experience developing a
service that scans and parses code to receive feedback, which undoubtedly is use-
ful for this project.

6https://matplotlib.org/
7https://jeltef.github.io/PyLaTeX/current/
8https://cloud.google.com/workflows

https://matplotlib.org/
 https://jeltef.github.io/PyLaTeX/current/
https://cloud.google.com/workflows

Chapter 1: Introduction 4

1.5 Relevant Hyperlinks

This section contains hyperlinks relevant to the project, such as source code re-
positories and the various URLs associated with the deployed application.

1.5.1 GitHub Repository

We moved to GitHub9 after discovering GCP provided native CI/CD support for
building applications hosted in GitHub repositories

Repository URL: https://github.com/auspex-ntnu/auspex

1.5.2 GitLab Repository

We started off developing the project on NTNU’s gitlab.stud.idi.no GitLab10

instance, but after discovering that GCP did not provide a satisfactory CI/CD solu-
tion for GitLab repositories. Furthermore, we wanted to use GitHub to to ease the
process of handing over the repository to our employer in the future.

Repository URL: https://gitlab.stud.idi.ntnu.no/containers-bachelor/repo

1.5.3 Service URLs

The relevant Auspex URLs are the following:

Auspex API Gateway (preferred) https://restapi-qk6stf4ejq-lz.a.run.app

Scanner service https://scanner-qk6stf4ejq-lz.a.run.app

Reporter service: https://reporter-qk6stf4ejq-lz.a.run.app

1.6 Thesis Structure

• Chapter 1 - Introduction: Describes the main background for this thesis,
scope, description of the task and the project goals, application description,
all involved in the project, and the structure of the thesis.

9http://github.com/
10https://gitlab.stud.idi.ntnu.no/

https://github.com/auspex-ntnu/auspex
https://gitlab.stud.idi.ntnu.no/containers-bachelor/repo
https://restapi-qk6stf4ejq-lz.a.run.app
https://scanner-qk6stf4ejq-lz.a.run.app
https://reporter-qk6stf4ejq-lz.a.run.app
http://github.com/
https://gitlab.stud.idi.ntnu.no/

Chapter 1: Introduction 5

• Chapter 2 - Background: Describes and goes in to detail about the main
technologies and concepts for this bachelor project.
• Chapter 3 - Related Work: Describes the projects and solutions with similar

goals to our project.
• Chapter 4 - Requirements: Describes the requirements for Auspex.
• Chapter 5 - System Design: Describes the main components and architec-

ture of Auspex.
• Chapter 6 - Development Process: Describes how this project was com-

pleted.
• Chapter 7 - Implementation: Describes implementation details of the ap-

plication, code and tools.
• Chapter 8 - Evaluation: Describes and evaluates the feedback received

from our survey as well as other feedback received from both supervisor
and employer.
• Chapter 9 - Discussion: Describes and discusses various decisions made

throughout the project.
• Chapter 10 - Closing Remarks: Describes the learning outcome from this

work, our conclusion and future work for the application.

Chapter 2

Background

This chapter aims to explain the industry evolution that lead to the demand for the
application we were tasked with developing, as well as introduce core concepts
that will be repeatedly discussed throughout this thesis.

2.1 Cloud Computing and Containers

In order to fully understand what container technology is, we must first under-
stand what purpose containers serve, and by extension why they became so pop-
ular. The rapid rise of cloud computing in the early to middle 2010’s set the stage
for new technologies to take advantage of this revolutionary way of delivering
services and computing resources. An in-depth explanation of all the reasons for
this meteoric rise in popularity is out of scope for this thesis.

It is important to note that in addition to Docker being established, the popularity
boost of containers is clearly linked to the cloud computing revolution [6]. This
was partly due to how cloud computing services were sold to consumers. The
prices of these services were based on actual usage of resources, and therefore no
longer based on the maximum capacity of the physical hardware used to host web
applications. Naturally, not using more computing resources than needed became
increasingly important for companies moving their services to cloud-based infra-
structure. As we will see, this is one of the main benefits of using containers, and
most likely contributed to their widespread adaptation.

6

Chapter 2: Background 7

2.1.1 What is a Container?

As with many concepts within the field of information technology, a universal
definition of a container is non-existant. However, Intel defines it as "... an abstract
unit of software that is a stand-alone, executable unit that has everything needed to
run an application: code, runtime, system tools, and system libraries." [7]. While
this definition is concise and to the point, it lacks in explanatory power.

Though clearly over-simplified and purely for illustrative purposes, a way to think
about containers can be as cakes at different stages in the baking process. Like
a cake, a container has a recipe that specifies what ingredients it needs, called
a container definition file. Once needed, the container is built. Meaning all its
dependencies specified are translated to container orchestration commands and
installed, in the same way a cake’s ingredients are put together and put in the
oven. When all instructions in the definition file are executed successfully, we
call the resulting file a container image, which when deployed with a container
runtime environment is simply referred to as a container, or in keeping with our
illustrative analogy, a finished cake. Thus, a container is run just as an isolated
processes on its host system, containing what it needs, and only what it needs, to
fulfill the purpose for which it was built. This process is illustrated in Figure 2.11.

Figure 2.1: Simplified illustration of the containerization process

2.1.2 Benefits of Using Containers

Another important reason for the popularisation of containers is its portability
and ease of implementation. While the technology had existed for a while, the
founding of Docker Inc. was an important milestone for its widespread use. Docker
was the first container orchestration Perhaps the most revolutionary feature of
Docker, was the invention of the Dockerfile. The Dockerfile abstracts away the
need for the user to manually create container namespaces, as it manages the
whole container creation process. This is the power of Docker. It lets users be
concerned with the what of their containers, and handles most of the how. Some

1Figure 2.1 is based on: https://mariadb.com/kb/en/creating-a-custom-docker-image

https://mariadb.com/kb/en/creating-a-custom-docker-image

Chapter 2: Background 8

of the "how" includes things like managing caching of individual build steps to
improve the speed of repeated instructions, and injecting secrets which automates
authentication. In keeping with our cake analogy, the Dockerfile is the equivalent
to the cakes’ recipe, specifying all the needed ingredients, and Docker makes puts
them together in the tray ready to be put in the oven for baking.

Note that the Dockerfile not only specified the dependencies for the service, but
also allows the creation of process namespaces to keep the container-process isol-
ated. The only dependency remaining therefore, is the host system’s kernel. Mean-
ing containers are platform agnostic, and can in most cases run on any OS, allow-
ing for widespread sharing of standardised container images between developers.
This allowed developers to start building up libraries of standardised services that
they could deploy to their production environments, without having to "re-invent
the wheel" every time they wanted to expand their functionality.

Again, Docker inc further enhanced these possibilities by creating Docker registries,
which allows developers to easily push and pull premade images from the public
Docker Hub, or from their own private registries [8]. If we return to our cake
analogy, a Docker registry is like a cookbook containing recipes for specific cakes.
Whether that is a public cookbook or a closely guarded family secret, it functions
in a similar way. Figure 2.2 illustrates a use case where a base image is pulled
from a public registry as specified by a dockerfile, built and pushed to a private
registry.

Figure 2.2: Public and private registry use case

2.1.3 Containers and Scaling

So far, we have examined some of the contributing factors to why containers are
convenient, but containers also have benefits in the form of performance and
scalability. To understand this, we need to examine the differences between con-
tainers and their alternative (and in many cases, predecessors), virtual machines.
Firstly, virtual machines, or VM’s for short, are partitioned parts of computing
resources that run their own operating system, and can therefore do anything a

Chapter 2: Background 9

physical computer can do, within the bounds of its allocated computing resources.

The partitioned computing resources a virtual machine has access too are fixed
however, and will therefore not scale usage with how much it actually needs to
perform its tasks. For comparison, since a container runs as any other process, it
has access to all of its host systems computing resources but will only use them
as they are needed. Additionally a virtual machine can run any operating system.
While this is undoubtedly useful for certain things, it also means that there is an
added minimal computing resource cost of each virtual machine instance. There
are steps one can take to minimize this cost, such as running a Linux distribution
that is specifically designed to be as lightweight as possible. However in the con-
text of cloud computing, where not wasting computing resources is so crucial, the
fixed partition cost of each VM becomes a significant downside, as illustrated in
Figure 2.3.

Figure 2.3: Virtual Machines (left) vs Containers (right) resource usage

2.2 Monolithic vs Microservices

To understand the purpose of our application and thesis, we first need to explain
the rise of microservices, and why container technology compliments this type of
architecture so well. We will begin by explaining the differences between mono-
lithic and microservice oriented architectures, before moving on to microservices
and containers.

Chapter 2: Background 10

2.2.1 Monolithic

A monolithic application is an application that can have many different functional-
ities, but only has one executable. A prudent programmer will often divide the dif-
ferent functionalities the program provides into modules for simplicity purposes.
Yet, even though different modules of the software may do very different things,
none of them can work without each other, as the program only has one execut-
able. We call applications with these characteristics strongly coupled, referring to
each module being dependant on the others in order to function.

2.2.2 Microservices

Microservices are not radical patented inventions that someone explicitly came up
with, but rather the result of continually evolving best-practices to suit the ever ex-
panding landscape of available technologies. For this reason, a universally agreed
upon definition of the term does not exist, but there have been attempts. Drogani
et al. (2017) defines it as such: "A microservice is a cohesive, independent process
interacting via messages", and a microservice architecture as "... a distributed ap-
plication where all its modules are microservices."[9]. Cohesive in this case, refers
to each service or application being specifically designed for a singular function,
which is a core distinction between a microservice oriented software architecture
and a monolithic one.

What this means in practice, is that microservices are independent from each
other. One service can be taken down without the others being affected, mean-
ing that for a large complex web-application, microservices add a crucial layer of
resiliency. We call this type of architecture, loosely coupled, which is the opposite
of its monolithic strongly coupled counterpart. Additionally, microservice oriented
architecture makes making changes to the software, particularly adding function-
ality, far easier than before. In fact, certain types of functionality can be added
to a web-application without even taking the application down while doing so,
allowing for much faster development cycles and agility. The Figure 2.4 visualises
the difference between the architecture types.

2.2.3 Microservices and Containers

Recall the portability and reusability benefits that containers add. The use of
premade container definition files, allow developers to share and re-use their
software amongst themselves without having to write any code. If the software
within these shared containers were monolithically programmed, i.e. containing
many different functionalities and dependencies, their reusability is significantly

Chapter 2: Background 11

Figure 2.4: Microservice (left) vs Monolithic (right) Architecture

reduced in the context of cloud computing due to their cost to both computing
resources and resiliency. Additionally, containers makes the the different func-
tionalities that make up a web-application more shareable. In keeping with our
cake analogy, a recipe for a cake that is split into multiple independent parts that
are subsequently combined, can be used by far more people and for more cake
types, than a recipe for a wedding cake. Thus, the benefits of using containers are
more or less negated when designing software with a monolithic architecture in
web-applications.

2.3 Container Security

So far, we have examined the benefits of using containers, and their role in the
cloud computing revolution. However, we have alluded to the downsides of using
containers, namely security. It should be noted, that when discussing this topic
we do so in a relative sense. Containers are not known to be a particularly vul-
nerable technology, but they are nonetheless more vulnerable than some of their
alternatives, particularly virtual machines [10]. In this section, we will elaborate
on the reasons for this, before explaining how this relates to the requirements of
Auspex, the application we are developing.

2.3.1 Main Vulnerability Sources

The main reason for the higher vulnerability of containers compared to virtual
machines, is that a container runs on its host operating system, which means it
is using the host system’s kernel. A virtual machine, by contrast, needs its own

Chapter 2: Background 12

operating system, libraries, dedicated resources and applications to run anything.
The added layer of abstraction means that at least theoretically, malware and other
malicious code executed on a virtual machine will only affect its own operating
system and applications, and not its host’s.

This is not necessarily the case with containers however, as they share the underly-
ing kernel and run on the host’s operating system. There is thus a non-zero chance
of malicious code spreading outside of the container’s namespace, assuming an
attacker manages to escape it [10]. Further, given the mass scale and deployment
of containers in cloud computing, these types of incidents can and do occur. There
are of course, layers of protection in containers as well, and certain security re-
lated practices that developers are highly encouraged to follow to avoid the most
common pitfalls.

2.3.2 Container Security Scanning Tools

As with most vulnerabilities, most originate from running outdated versions of
software. In cloud computing, such issues are exasperated further by the sheer
volume of clients they serve, thus exposing themselves to a proportionally large
amount of malicious actors. Also, given the ease of deployment for pre-made con-
tainers, a container definition file can specify outdated and or vulnerable versions
of software to run, which in turn can be deployed en-masse. Fortunately though,
since the container definition files specify the versions of all software, we can use
container security scanning tools to catch commonly known vulnerabilities before
they are deployed to production. Intuitively, this can be thought of as scanning
a cake-recipe for dangerous ingredients before baking and serving hundreds of
them, as opposed to serving first and testing for danger later.

These scanning tools include, but are not limited to Docker Bench Security, Kube-
bench, and Snyk. They all work in similar ways, but have certain implementation
related differences. For our project we use Snyk, as this tool was recommended
by our employer, and is shipped with Docker as default. [4].

The only issue with these tools is the interpretation of the output they produce. It
is very extensive in length, and difficult to understand without thorough analysis
by someone who is familiar with its structure from before. Given the availability
of qualified personnel to do this for each scan, it may not be a problem. However,
this approach negates both the speed and agility a microservice oriented approach
provides when taking services in and out of production or making changes. An
automated approach to container security for every image deployed to production
seems a better solution, and is one of the main functionalities our application aims
to implement.

Chapter 2: Background 13

2.3.3 CVE

So far, we have explained what scanning tools are available, and to a lesser extent
our reasoning behind choosing to use Snyk for our application. What we have
eluded to however, is how Snyk identifies each vulnerability and its severity, and
what factors contribute to what extent. In this section, we will elaborate further
on the some of the intricacies of these systems, due to their critical role in the
functionality of our application.

Snyk uses an open database called Common Vulnerability and Exposures (CVE),
that keeps records of all publicly known vulnerabilities. We will refer to each vul-
nerability as CVEs throughout this thesis. Each CVE has a unique ID which en-
ables third party systems and databases such as Snyk to accurately identify them
regardless of context [11]. Additionally, each CVE uses the Common Vulnerability
Scoring System (CVSS) to calculate and rank the severity of each vulnerability.
The CVSS is not a a system specifically designed for use in container scanning
tools, but rather a system for objectively ranking any software vulnerabilities. It
allows users of this system to prioritise which issues are the most pressing, and
thus theoretically allow for an optimized distribution of security measures.

The different factors that make up the final severity score can be separated into
one base metric, and three modifying categories, temporal, impact, and environ-
ment [12]. The base metrics are calculated from an assessment of the degree of
difficulty to gain access. Taking into account access vectors, access complexity and
to what degree authentication is required. This base score, as the name suggests,
is used as the base value in the calculation of all the subsequent categories. The
impact metrics are calculated based on confidentiality, integrity and availability.
Further, the temporal metrics are an attempt at an objective way of measuring how
a vulnerability changes over time, as exploits, patches and mitigation techniques
are developed. These include report confidence, remediation levels, and crucially
whether or not a proven exploit has been found. Finally, the environment factors
refers to how much horizontal mobility an attacker would gain in the event of a
successful attack [12].

The minute detail of each mathematical calculation being made to reach the final
CVSS score are out of scope for this thesis, but knowing what factors it takes
into account is still important information to security decision makers. The final
CVSS score is a number that ranges between 0 and 10 with one decimal, with a
corresponding tier system ranging from ’low’ to ’critical’, as illustrated in Figure
??. Note that the CVSS score is not a cumulative score reflecting the security of
the environment as a whole, but rather a score reflecting the severity of each CVE
in a container image [12].

Chapter 2: Background 14

CVSS Score Severity Rating
0.0 - 0.1 None
0.1 - 3.9 Low
4.0 - 6.9 Medium
7.0 - 8.9 High
9.0 - 10.0 Critical

Table 2.1: CVSSv3 Severity Levels

2.4 Applicability of our Application

So far, we have elaborated on the core benefits of microservices and the use of con-
tainers, as well as examined related issues regarding security. Further, we have
seen that there are currently available tools such as Snyk that address these is-
sues, but these tools have certain aspects that limit their usefulness to our em-
ployer. Telenor’s expansion into cloud computing services has made this apparent
to them, and these limitations lead to them forming the subject of this thesis. In
this section, we will first elaborate on what these issues are, before concluding
this chapter with how our application aims to address them.

2.4.1 Issues with the Current Solution

As previously outlined, one of the main benefits a microservice architecture brings,
is the added agility with which its developers can operate. The ability to rapidly
make changes and push these to production environments, is a radical new way of
doing what used to be a comparatively slow and cumbersome process. Naturally,
the ease of which changes can be made under such agile development models,
allows for the possibility of more frequent mistakes. Moreover, this highlights the
need for fast and thorough automatic testing frameworks to be included in the
pipelines of developers. Ensuring that any change made to a service, will not res-
ult in the loss of its functionality. This automatic testing framework should ideally
include the use of container security scanning tools to ensure equally high stand-
ards being applied to security, but the overly extensive output the tools produce
unfortunately makes this a sub-optimal solution.

Another issue with the current solution, is its inability to benchmark the secur-
ity state of an environment over time. Part of the agile development model is to
constantly review and improve on your practices, and this should once again, in-
clude security as well. The inconsistent structure of the output, combined with
the manual input required to log the results, gives a confusing picture of how the
developers are performing over time regarding the security of their environment.

Chapter 2: Background 15

Due to the ever changing landscape of vulnerabilities and exploits, this will still
be a difficult issue to fix, but we certainly hope our software will make this aspect
easier.

Lastly, the extensive nature of the scans’ output makes it difficult to comprehend
by personnel without specialised technical knowledge. The vast majority of the in-
formation it gives is useless to most people, even developers. The need to highlight
what is vulnerable, and what can be done to fix it is therefore a prevalent issue,
and needs to be effectively conveyed to more than a few people with specialised
knowledge within our employer’s organisation.

2.4.2 How Our Application Solves These Issues

First and foremost, our application needs to be able to parse output from a con-
tainer security scanning tool, and highlight the most important information they
provide in a concise way. This will allow us to model the data, meaning we can re-
shape it to into figures and other easily presentable statistics, thereby eliminating
the issue of having only specialised personnel being able to understand and use
the output. We will also need to implement a persistent logging service to help
with benchmarking performance over time, and allow personnel to review trends
in their environment’s security. Finally, we hope to to make the whole process of
producing report fully automated, so it can be included in a CI/CD Pipeline, as
well as triggered on a fixed time schedule. The details of how we intend to achieve
these things will be further explained in Chapters 4, 5 and 7.

Chapter 3

Related Work

The aim of this chapter is to explore different alternatives to our application, in
order to evaluate its originality. There may be other solutions available with a
similar purpose, or solutions that are not publicly available.

Our research has revealed no service, neither commercial nor open-source that
offers the same functionality as our application. That is, a service that parses the
output of container scanning tools and compiles a PDF highlighting the most im-
portant information. This does not mean that there are no private solutions that
achieve the same outcome, but since we can not verify their existence, we will
instead focus on what is available.

The closest thing we have found is Snyk’s own web based solution, Snyk Code1.
Like our application, it highlights the most severe vulnerabilities, but unlike our
application allows users to interactively hide, group and sort vulnerabilities by
certain categories.

Snyk Code has its own scoring system which they call Priority Score, as shown
in the information popup in Figure 3.1. The Priority Score is based on multiple
criteria, the discussion of which is outside the scope of this thesis. The purpose of
the Priority Score is clear however, to give the context of why a vulnerability is
more severe, and therefore posing a greater risk, than another severity.

What is lacking in this solution however, is a statistical overview of the most im-
portant information. It simply shows each vulnerability’s name, a short descrip-
tion, and its corresponding severity score. This means that any details the user
wishes to extract beyond the aforementioned ones, requires expanding each vul-
nerability and read through a large amount of information. Figure 3.2 shows a
screen capture of how the web based solution showcases the vulnerabilities found.

1Snyk Code: https://snyk.io/product/snyk-code/

16

https://snyk.io/product/snyk-code/

Chapter 3: Related Work 17

Figure 3.1: Some of the reasons for how Snyk calculates Priority Score

Figure 3.2: An example of how Snyk Code presents found vulnerabilities

There are more key ways in which our application differs from Snyk’s web based
solution. One of which is persistent storage, and the ability to query the informa-
tion on demand. Because of the latter, users will be able to use past data to identify
trends in how the security level of their environment is evolving over time. Addi-
tionally, if a user wants more information on something other than what can be
discerned from the PDF report our application generates, they will also be able to
query the raw scanning output in a JSON format.

Chapter 4

Requirements

This chapter will define the requirements for the application. The requirements
are divided in to functional and non-functional requirements that each specify
different aspects of the application. Functional requirements are typically related
to the technical details of a system and its components [13]. These requirements
help define how the system should behave and function. On the other hand, non-
functional requirements are complementary to functional requirements, and they
are used to to define the criteria of how a system should perform in terms of
quality [14].

It is important to note that the leading design principle of our application is to
be Cloud Native. Cloud native means that the application is developed first and
foremost with a cloud platform deployment target in mind, and all the infrastruc-
ture choices that brings with it.[15]. Cloud platforms bring numerous advantages
in the form of improved availability and resiliency, but also removes some agency
on our part for ensuring the service is available. Both our functional and non-
functional requirements are thus directly affected by the guarantees of our cloud
platform provider’s Service Level Agreement (SLA).

4.1 Functional Requirements

The following list shows all the functional requirements of Auspex.

F-1 Auspex should scan container images in a connected Container Registry.

◦ Auspex needs to be connected to an existing Container Registry that
contains all the container images Auspex can scan. Auspex does not
have an internal Container Registry itself, but is connected to the Con-

18

Chapter 4: Requirements 19

tainer Registry of the environment Auspex pulls the container images
from.

F-2 Auspex’s Scanner microservice should perform a vulnerability scan on the
given container images and output a JSON formatted response body.

◦ Given that we structure our application components as multiple mi-
croservices, one microservice should be able to pass information to
another microservice, without interfering or knowing each other’s in-
ternal functionality and inner workings. Passing the data in a common
and predictable format allows the data to be used in different ways,
but remain unchanged.

F-3 Auspex’s Reporter microservice should transform JSON formatted responses
into human-readable PDF reports detailing vulnerabilities for a given con-
tainer image.

◦ The report that Auspex generates is at the core of the application. This
report is generated based on data from a scan of a container image
and used to highlight and convey key information about vulnerable
container images in a human-readable presentation.

4.2 Non-Functional Requirements

The following list shows all the non-functional requirements of Auspex.

N-1 Auspex should be as available, as the guarantees given by the cloud platform
provider.

◦ Auspex will be deployed on Google Cloud Platform, and is thus tightly
connected with the availability of GCP and its services. The availabil-
ity is defined as a Service Level Obective (SLO) in the SLA, outlining
the objectives for the service, such as uptime, latency and error rate
[16]. The main services that is used by Auspex are Cloud Run and
Cloud Storage, and both define their Monthly Uptime Percentage as
99.95%12. To achieve this requirement, our application needs to be
Cloud Native so that the aforementioned SLO terms are guaranteed.

N-2 Auspex must ensure confidentiality and privacy.

◦ Since Auspex deals with the security of our employer’s container image
environment, it is of vital importance that our application does not
disclose any sensitive information to potential attackers. To this end,
we strive to design the application to be Cloud Native, which in turn

1https://cloud.google.com/run/sla
2https://cloud.google.com/storage/sla

https://cloud.google.com/run/sla
https://cloud.google.com/storage/sla

Chapter 4: Requirements 20

will allow our employer to utilize the many different security options
provided by cloud platforms.

N-3 Auspex reports must show all vulnerabilities detected in a scan.

◦ The generated reports must show all vulnerabilities detected from a
scan of container images. It is vitally important that our report does not
omit any information, as this will undermine the credibility of Auspex’s
reports.

N-4 Auspex must produce readable and understandable reports.

◦ The Auspex report needs to be human-readable and understandable
for personnel within Telenor with varying levels of expertise. There-
fore, we need to ensure a minimal threshold for readability, by omitting
unnecessary information, and highlighting more important elements.

Chapter 5

System Design

This chapter introduces the microservices of Auspex and its main components. It
then goes further into explaining the main components in detail and their func-
tion.

Clarifications

The name of our application is Auspex. The origin of the name comes from ancient
Rome. In ancient Rome, an Auspex was a priest responsible for interpreting omens
and signs to guide decisions. We chose this name due to the similarities between
priests interpreting omens and our software uncovering vulnerabilities to warn of
potential future disasters.

For the purposes of this thesis we use ’artifact’ to describe the output of a pro-
cess, intermediate or otherwise. An artifact can be the data produced by a tool,
the output of a microservice or the end-result of a pipeline or process. Wherever
the specific contents or format of an output is not relevant, we will use the term
artifact, but otherwise we will use a more descriptive name where applicable.

5.1 Application Overview

To better understand the application, one should first know its functionality. Fig-
ure 5.1 shows an overview of the microservices, illustrated as blue hexagons, that
deliver the functionality of Auspex. The yellow cylinders represents Firestore data-
bases, and the grey circles represents a storage bucket. Firestore is an organized,
cloud-based NoSQL database hosted by Google where data is stored in documents
that contain key-value pairs, and each key is automatically indexed. These doc-

21

Chapter 5: System Design 22

uments are stored in collections, similar to how a row is stored in a table in a
SQL database. Collections are used to organize documents and enables clients to
query and filter documents based on these collections [17]. Buckets are used to
store artifacts produced by the different microservices. A bucket is a cloud-based
storage solution that allows clients to store unstructured data [18]. More details
on the implementation of these microservices can be found later in this chapter.
Note that Auspex can also take a request to scan multiple container images at
once, and create an aggregate report from the output. For simplicity however, Fig-
ure 5.1 shows a scan on a single image which creates what we call a single report,
with the corresponding steps listed below.

Figure 5.1: Overview of all the components and microservices of Auspex

1. The process starts with a request issued to the API Gateway. The API Gate-
way is a REST API that takes incoming requests via its available endpoints.
See Section 7.4.1 for more details. The request is primarily issued on a
schedule, or by a CI/CD Pipeline. Additionally, a scan can be triggered manu-
ally by a user.

Chapter 5: System Design 23

2. The API Gateway issues a request to Scanner for a container image to be
scanned.

3. The requested image is pulled from the connected Container Registry, which
is a repository of container images. The container image is then subsequently
scanned by Scanner, using Snyk as the scanning tool, which is integrated
into our application, Auspex. In short, Snyk goes through all the dependen-
cies and libraries of the container image, and checks for vulnerabilities or
other issues.

4. The full information output from Scanner is collected and sent to Scan Stor-
age, as a JSON formatted file, where it is stored. A snippet of this information
is stored in Scan Database with a reference and link to the full output in the
Scan Storage bucket.

5. The API Gateway issues a request to Reporter for a report to made of the
container image that has been scanned.

6. Reporter request the scan data produced by Scanner in order to produce its
artifact, an Auspex report, which is a readable PDF document of the findings
from the scanned image. The document shows key information about relev-
ant security metrics for the detected vulnerabilities of a scanned container
image

7. The created artifact is stored in the Report Storage bucket, and a reference
to this artifact as well as metadata such as time, date and scores is stored in
the Report Database.

8. The Auspex PDF report is returned in the response to the caller.

5.2 Detailed Component Description

Auspex consist of multiple components as illustrated in Figure 5.1. The purpose
of these components working together, is to take in a request for an image or
multiple images to be scanned, and pass the request over to a specially created
cloud function which will analyze the image or images. The output from this scan
will both be stored in a raw format, and also used to generate a report in a human-
readable format. This report will also be stored. The subsequent subsections will
go into further detail on the components of the application.

5.2.1 Clients and API Gateway

We have defined three types of clients that can invoke requests to the application,
by a pipeline trigger, on a schedule or manually by a user. The clients invokes a
request for a scan, either manually by a user, automatically on a schedule or as a
part of a pipeline. The main scenarios is an automatic scan triggered on a sched-
ule, or by an event, such as a change or update to an existing container image. The

Chapter 5: System Design 24

requests are issued to the API Gateway which provides a limited number of end-
points for interaction with the microservices of Auspex and is hosted as a Cloud
Run function. The endpoints allows for scanning of a single container image as
well as scanning multiple container images. In addition there are endpoints for
querying stored information such as previous scans and reports which is available
through the Scanner and Reporter microservices. See Section 7.4.1 for more detail
on the endpoints.

Figure 5.2: API Gateway communicates with Scanner and Reporter

The purpose of Auspex is to have it automatically scan container images, not re-
quiring user input or interaction. Manual operations takes time and can be incon-
sistent. Removing and automating manual processes frees up time and resources
for other tasks and work, as well as ensuring consistency for operations.

A pipeline trigger or a schedule can be setup to achieve automation by integrating
a CI/CD Pipeline trigger for Auspex in the Git repository1 for an application which
builds Docker containers, defined in Dockerfiles, as part of its deployment. When
new code is pushed to the source code repository and a new deployment is started,
Auspex can be triggered to scan the Dockerfiles and create a report which can be
sent via email to the developers of the application.

The scheduled scan is what we determine to be one of the main use cases of Aus-
pex. Auspex can be set up to scan a connected Container Registry on a schedule.
The schedule can be freely determined by the user, or an organization, depending
on what is appropriate for their application. Factors such as frequency of builds,
the security requirements for the containers and personal preferences can influ-
ence the intervals for scans.

Scans can be triggered manually if needed by a user. This is not one of the main
intended use cases, but it is accommodated for to allow for testing purposes, and

1Most other code repositories offers CI/CD Pipelines, but for this project we only consider Git

Chapter 5: System Design 25

querying for scans and reports in storage. The endpoints are the same as those
the microservices Scanner and Reporter use, but of course requires manual input
by a user. See Section 7.4.1 for details on how the endpoints are constructed and
the options available.

5.2.2 Scanner

The Scanner microservice is deployed on Cloud Run and takes in requests for
a scan. A request may invoke a single image to be scanned or multiple images
to be scanned. The requested image, or images, respective Dockerfiles will be
scanned and generate an output of information. The output of the scan is re-
turned as a JSON encoded string in the response payload. The Scanner service
itself is a Docker container based on the Python 3.10 slim image, with theSnyk
CLI installed as well. The Snyk CLI is used to invoke commands to scan for se-
curity vulnerabilities [19]. Scanner uses the docker scan command to scan the
Dockerfile of an image for vulnerabilities. Scanner relies on a Container Registry
to function. Container Registry stores the container images with their respective
Dockerfiles. An incoming request will call for a specific image or multiple images
that is subsequently pulled from Container Registry and scanned.

The information artifacts produced by Scanner is organized and stored, and may
also be sent to the Reporter microservice if such a request was issued via the
API Gateway. The full information artifacts from the scan is stored as a JSON
file in the Scan Storage bucket, and select data is stored as metadata in the Scan
Database. The metadata is stored in a Firestore database. Due to limitations on
the file sizes in Firestore, all the data from the scan cannot be stored in such a
database. To circumvent this we generate a link to the matching JSON file in the
storage bucket, the complete scan, and store this link in the metadata. The schema
for the metadata can be seen in Figure 5.3. The purpose of storing and keeping
the scan data is to use it later on, for example to compare trends over time, and
thus be able to assert if security state of a given container image is improving or
worsening over time.

5.2.3 Reporter

Once a scan is complete, the output from Scanner may be sent to Reporter which is
also deployed on Cloud Run. Reporter is a Docker container based on the texlive/-
texlive2, with Python3.9 and Matplotlib installed. TeX Live is a distribution of the
TeX typesetting system, which includes LaTeX [20]. Thus, the tools within TeX live,
is used to typeset our generated reports, using the same typesetting as this doc-

2https://hub.docker.com/r/texlive/texlive

https://hub.docker.com/r/texlive/texlive

Chapter 5: System Design 26

Figure 5.3: Simple illustration of Scanner storage including the schema for Scan
Database

ument. Matplotlib is used for mathematical typesetting and creating graphs and
plots with Python [21]. This is all combined using PyLaTex, an interface between
Python and LaTeX for creating and compiling LaTeX files [22]. The end result is
a report document showcasing how many vulnerabilities are found, their severity
and distribution and more.

The storage of the artifacts produced by Reporter is very similarly organized as
Scanner, however the artifacts stored are very different. By default we are prefer-
ring to store the artifacts produced by Reporter as PDF documents in an unorgan-
ized bucket. This is due to the same file size constraint as describe in Section 5.2.2.
In addition to the storage bucket for documents, the metadata of the documents
is stored in a database. This metadata includes such data as an ID for the database
entry, time and date of the report and a link to the corresponding document stored
in the bucket. In Figure 5.4, part of the schema for the metadata Reporter stores
can be seen.

5.2.4 Automated Report Creation

In order for Auspex to work autonomously, we envision the application to run on
a schedule, which can be facilitated by scheduling and automation tools such as

Chapter 5: System Design 27

Figure 5.4: Simple illustration of Reporter storage with schema. (Some keys are
omitted to ease presentation of the schema.)

Google Cloud Scheduler3 and Google Cloud Workflows4

The Email Service is setup to receive a document from the Reporter microservice
and deliver this document via email. The Email Service works hand in hand with
the automated scanning capabilities of Auspex. For example when the scheduled
workflow for Scanner scans a container image and Reporter creates the corres-
ponding Auspex report,The service takes in the finished report from Reporter and
uses a predefined list of recipients to send the report via email. The Email Service
is implemented as a Google Cloud Workflow workflow, with predefined steps.

3https://cloud.google.com/scheduler
4https://cloud.google.com/scheduler

https://cloud.google.com/scheduler
https://cloud.google.com/scheduler

Chapter 6

Development Process

This chapter gives an overview of the development process and work methods
for the application and the bachelor thesis. In addition we also describe how we
documented our work as well as our routines.

6.1 Development Model

Choosing the most suitable development model for this project proved challen-
ging. We discussed multiple different models that might have been appropriate
for our work. We needed a development model that allowed for quick, frequent
iterations and allowed us to quickly respond to changes in scope or requirements
based on feedback from our supervisor, our employer or ourselves as we pro-
gressed. The Agile methodology as a whole focuses on continuous development
and working in iterations when developing software [23]. As discussed in our Pro-
ject Plan section 4.1 Development Model (ref to appendix), we decided against
the rigid Waterfall model [24] and the Agile Lean methodology [25]. Instead we
decided for the Agile methodology of Kanban [23].

Kanban is a more flexible, continuous approach to development, utilizing cards
organized on a Kanban board to define work items [26]. The cards define the
tasks that must be completed and, optionally, their priority. This approach allows
for new tasks to be added continuously, while also allowing for changes in tasks
at any time.

We decided Kanban was a suitable method for our approach and what we were
trying to achieve with our work, working iteratively. This varied somewhat from
how we defined our approach in our Project Plan, a combination of Scrum and
Kanban, but we found out very quickly that Kanban was better suited for us and

28

Chapter 6: Development Process 29

allowed for a less rigid work structure. We found that it was difficult to have
all the necessary requirements ready and defined before the sprint start. As de-
scribed previously, we wanted an approach that allowed us to work iteratively,
which allowed for changes in scope and requirements without being constrained
to assumptions and processes defined early in the project. Despite this flexibility,
we needed to approach this in a structured manner. Thus, we found it appropriate
to follow the Kanban approach.

We started to utilize a Kanban board, Trello1, to define our task and keeping track
of them. Later on we decided to switch to using the built- in issue board on Git-
Lab2. The issue board helped us keep track of the tasks that needed to be worked
on.

6.2 Documentation

Various documentation has been produced throughout this project. This chapter
gives an overview of the main pieces of documentation and the work routines
used to achieve this work.

6.2.1 Kanban Board

We utilized a Kanban board for the purpose of keeping track of all the various
tasks that needed to be completed, what was being worked on, and which tasks
that had been completed. This was separated into the main categories TODO,
DOING and DONE. A new task would start in TODO where a title, and optionally
a description, would be added, as well as relevant labels for the task. A task would
then be moved to the DOING category when it was being worked on, and finally
to the DONE category when completed.

As previously described, we started by using Trello as our Kanban board and later
switched to using the built-in issue board in our GitLab repository. We transferred
all the cards that we had on Trello over to GitLab. Then we split the task into two
issue boards, one for tasks related to writing the thesis, and one for application
related tasks.

1https://trello.com/
2https://docs.gitlab.com/ee/user/project/issue_board.html

Chapter 6: Development Process 30

6.2.2 Thesis Writing

This thesis was written using the online LaTeX3 editor Overleaf4 which allowed
writing the thesis collaboratively. Using Overleaf ensured that everyone worked
on the correct version of the thesis at all times. Furthermore, it ensured consistent
typesetting and formatting across the entire document. In addition, we used a
LaTeX thesis template created by Community of Practice for Computer Science
Education (CoPCSE) at NTNU5 available free of charge under an open license.

6.2.3 Source Code

The source code for the application is kept in a online GitLab6 repository hosted by
NTNU. We used the built-in Issue tracker in GitLab as our Kanban board. Git takes
care of versioning and also serves as a backup for the source code. Additionally,
the source code is also hosted in GitHub to ensure that it is available to Telenor,
see Chapter 1

6.2.4 Other Documentation

Documentation written over the duration of the project, such as notes, status re-
ports, minutes of meeting and any other documents has mostly been written in
Google Docs and stored in a shared Google Drive folder. The shared Google Drive
folder is only accessible to the members of the team. No sensitive information was
stored in the folder, as per guidelines received by our employer.

Other documentation such as technical documentation and user manual was writ-
ten both manually and created automatically from our source code. MkDocs, a
static site generator for creating project documentation [27], was used to create
a website on GitLab for technical documentation. The user manual was written
manually and features guides and tutorial on how to use the application and how
it works.

6.2.5 Meetings and Minutes of Meeting

We had semi-regular weekly meetings with our supervisor each Wednesday from
1pm to 1:30pm. Beforehand we would hand in a weekly status report outlining

3https://www.latex-project.org/
4https://www.overleaf.com/
5https://github.com/COPCSE-NTNU/thesis-NTNU
6https://about.gitlab.com/

Chapter 6: Development Process 31

the work we had done, if there were any issues or problems encountered, any
questions that we might have, as well as our plans for the coming week. The
purpose of these meeting was to review our progress.

We had semi-regular meetings with our employer, the purpose of which was to
keep them updated on our progress and clarifying any questions we might have
regarding our work. In addition to this we also conducted communication through
Slack, a desktop messaging application7, for various questions we had that did not
require a meeting of its own.

In addition to these meetings, Eirik arranged multiple private presentations for
us that gave us greater insight on how Telenor works with, and approaches de-
velopment and operations (DevOps) and related practices. We also received a
behind-the-scenes look at the development of Mitt Spor, a service and device for
tracking pets [2], and how they use GCP to organize and run the microservices and
workflows. The presentation gave us an interesting insight in to how professionals
approach development and some inspiration for our own application.

For each meeting, both with our supervisor and with our employer, we wrote
minutes of meeting and took personal notes. The purpose of minutes of meeting
is to act as a summary of our meetings and to be a reference for any feedback we
receive. These documents can be found in Appendix C. The only exception from
this was the private presentations Eirik arranged, for which we needed to sign a
confidentiality agreement, which can be seen in Appendix A.

6.2.6 Time Tracking

For tracking time we used Clockify8, an online time tracker and timesheet app.
All time spent on the project was logged by each team member individually. The
total time spent on this project can be viewed in Appendix A

6.2.7 Expenses

For this project we did not anticipate any notable expenses, and any incurred cost
would have been split equally amongst ourselves. As Telenor graciously gave us
access to their Google Cloud Platform plan, no costs were incurred on our part for
cloud services.

7https://slack.com/
8https://clockify.me/

Chapter 6: Development Process 32

6.3 Routines

6.3.1 Work Policies

As part of the project we wrote a Project Plan outlining the expectations for every
team member in regards to work, both quality and quantity. These are guidelines
set by us in common agreement. Each team member has been expected to con-
tribute 30 hours per week and log this in Clockify.

6.3.2 Tools

We used an agreed upon set of tools for work and communication. Adaptations or
changes in these has been permitted if we found the tools not beneficial or that
other tools might be more beneficial. We also sought to be flexible in regards to
adapting to Telenor’s tool set.

6.3.3 Communication

We were in a unique situation where all three of us lived together and this of course
influenced our approach to the work and our routines. This was also beneficial for
our inter-group communication as we could have discussions around the dinner
table and work tightly together. For external communication we used email for the
introductory communication and used this to establish communication channels
on Microsoft Teams, Slack and Google Meet, the latter two preferred by Telenor.

Chapter 7

Implementation

This chapter goes in depth in the technical implementation and details of Auspex.

7.1 Repository Structure

Traditionally, a repository was used to store the source code for a single applic-
ation along with its documentation and tests. This made sense with regards to
monolithic applications that are self-contained. However, as developers increas-
ingly moved towards microservice architectures, the need to rethink the structure
of source code repositories arose.

We believe this to be one of the key reasons for the emergence of monorepos.
A monorepo is a single monolithic repository that contains the source code of
all the microservices that define a modern application built on a microservice
architecture. One of the main benefits of a monorepo is that multiple applications
can share certain internal libraries or data structures that are located in a "core"
or "shared" directory in the repository. This pattern reduces code duplication and
bloat when building microservices, and ensures that developers spend less time
writing the same code repeatedly.

7.1.1 Monorepo and Microservices: an Anti-pattern?

Microservice architectures emphasize loose coupling, which means the the state
of one service should not affect the state of another service. Code changes in one
service should therefore not affect other services in the application. The concept
of a core directory that is used by multiple different microservices goes against

33

Chapter 7: Implementation 34

this idea. Modifying a library or data structure in the core directory could affect
multiple services, not just one - thereby violating the principle of loose coupling.

This is a valid concern, and on the surface it does indeed affect the degree to which
each microservice is self-contained. However, what the core directory contains is
highly relevant with regards to judging its impact on the overall architecture.

In order to reduce the impact on the application as a whole due to changes to the
core directory, it should contain no business logic; business logic should be con-
fined to the microservices themselves. The core module should only be concerned
with defining certain shared data structures and utility functions. In effect, the
core directory becomes a vendored dependency of general-purpose code.

The core module can be used to share generalized utility functions that may be
used by multiple microservices. An example of such a utility function is a func-
tion that retrieves a document from a NoSQL database and performs rudimentary
error checking and logging as well as providing retry on failure with exponential
backoff. Given that multiple microservices will be using a NoSQL database, having
access to such a function in every microservice frees developers up from having
to redefine or copy functions that already exist in other microservices.

@backoff.on_exception(
backoff.expo,
exception=aiohttp.ClientResponseError,
max_tries=5,
jitter=backoff.full_jitter,

)
async def get_document(collection_name: str, document_id: str) ->

DocumentSnapshot:,→

db = get_firestore_client()
Get firestore document
docpath = f"{collection_name}/{document_id}"
logger.debug(f"Fetching {docpath}")
d = db.document(docpath)
doc = await d.get() # type: DocumentSnapshot
if not doc.exists:

raise ValueError(f"Document '{document_id}' not found.")
return doc

Listing 1: Shared document retrieval function with backoff

The code snippet above demonstrates the general-purpose nature of a function
defined in the core module. The function makes no assumptions about the shape

Chapter 7: Implementation 35

or size of the data; it only checks if the document exists, and then subsequently
returns it if it does. In the event of an HTTP error with a code of 400 or above, the
function retries up to 5 additional times, thereby ensuring a degree of protection
against intermittent downtime on the cloud platform’s part.

7.1.2 Choosing a Repository Structure

Most of our microservices will be interacting with Google Cloud Platform APIs in
some capacity, and each service will use Google Firestore for database purposes.
Furthermore, inter-service communication is facilitated by HTTP requests with
JSON-encoded payloads. In order to validate data going in and out of the services,
the services will need to define a range of shared data structures modeling this
input/output. Given that we are not using Protocol Buffers1 to define these data
structures across services, we need to do this in-code with native Python data
structures (classes). To share these definitions across all services, each service
must have access to this code through an importable Python module.

For the reasons stated, the need to share data structures and interface definitions
between multiple services, we will be using a monorepo repository structure for
our application. The benefits of sharing certain code between services, as well as
having all of our application code in a single repository will greatly simplify the
development process, and reduces duplication of data structures. (utvid litt mer
her)

7.1.3 Implementing Monorepo Builds With Docker and Poetry

Poetry2 is a Python dependency manager and packaging tool that is rapidly gain-
ing popularity in the Python world. Poetry makes it easy to work with a monorepo
structure with it’s built-in support for local, editable dependencies for its projects.

Poetry is not native to Python, and must thus be installed in each Docker image to
export its dependencies to the native Python requirements.txt format. In order to
not ship Poetry with the final Docker image, as well as separating the step of ex-
porting dependencies from the step of installing the application, we used Docker
multi-stage builds3. Additionally, we cached the installation of Python dependen-
cies in order to speed up subsequent builds.

1https://developers.google.com/protocol-buffers
2https://python-poetry.org/
3https://docs.docker.com/develop/develop-images/multistage-build/

Chapter 7: Implementation 36

7.2 Code Quality and Formatting

Our application code should have a consistent quality throughout all its source
code. One aspect of code quality is its correctness, meaning the degree to which
it provably does what it should. Another aspect is how readable the code is. This
includes the use of consistent formatting across all files, as well as following best
practices with regards to writing idiomatic Python code [28].

7.2.1 Mypy

Python is a dynamically typed language. In essence, it means that variables and
function parameters can take on any type at runtime. This allows for a great deal
of developer freedom, but also introduces the possibility of type errors, where a
function or method receives an argument of a type it is unable to handle.

Keeping track of dynamic types in larger projects adds a lot of mental overhead to
the development process, and thinking one can avoid all type errors is hubris in
line with C/C++ programmers who think they can avoid all memory errors [29]
[30].

To rectify this potentially problematic aspect of the Python language, we used
mypy4, which introduces optional static typing to Python. Mypy runs static ana-
lysis on Python code that has type annotations5. By adding type annotations to
the code, mypy verifies the correctness of the code and warns of possible type er-
rors. This process, however, does not uncover potential logical errors or otherwise
incorrect implementations of features.

7.2.2 Black

To ensure consistent formatting of all Python source code, we used the formatting
tool Black6. Black is self-described as "uncompromising", which we find to be apt
given its lack of configuration options. Black produces consistently formatted files
across every project it is applied to. Given its ubiquity in the Python ecosystem,
we decided to use it as our one and only Python formatter. We configured Black
to run client-side on every file we saved in our IDE, Visual Studio Code, but it can
also be set up to run as CI hook as well.

4http://mypy-lang.org/
5https://docs.python.org/3/library/typing.html
6https://github.com/psf/black

Chapter 7: Implementation 37

7.3 Data Validation With Pydantic

In order to parse, validate, serialize and deserialize the different data structures
used in the project, we chose to make Pydantic7 a central part of all our services.
Pydantic provides data validation and settings management using python type
annotations, and enforces these at runtime.

from pydantic import BaseModel

class OrgLicenseRule(BaseModel):
licenseType: str
severity: str
instructions: str

class LicensesPolicy(BaseModel):
severities: dict[str, Any] # unknown contents; thus Any
orgLicenseRules: dict[str, OrgLicenseRule] # key: License

name,→

Listing 2: Example of Pydantic usage showing composition of models

Listing 2 shows how Pydantic can be used to define data structures that incoming
data must comply with. The example also demonstrates how models can utilize
composition to include other models.

Pydantic is able to parse and validate any data that can be expressed in a JSON
schema, and as such is a perfect fit for the data we are working with. Furthermore,
by defining constraints we can ensure the data only includes values that is valid;
for example making sure the value of a CVSSv3 score is between 0 and 10.

Names of fields in Pydantic models must match the name of the data passed in,
and vice versa. This is the reason we used camelCase casing for the field names.
Pydantic does support converting between snake_case and camelCase, but we
decided to follow Snyk key names 1:1, which are all in camelCase.

Throughout this chapter, examples will frequently include data structures created
with Pydantic, which is signified by inheriting from BaseModel.

7https://pydantic-docs.helpmanual.io/

https://pydantic-docs.helpmanual.io/

Chapter 7: Implementation 38

7.4 Service: Scanner

The Scanner service is a FastAPI8 application running on a Uvicorn9 web server
inside a Docker container based on the python:3.10.4 image. The application
handles incoming HTTP requests and initiates actions based on the contents of the
request. The primary use case of the service is to provide an interface for scanning
container images remotely and storing the results in a database. Scanner performs
no analysis of the results, and only verifies that the scanning proceeded without
any errors. It is up to other services to use the results produced by Scanner for
further processing. The service also provides an interface for retrieving previously
completed scans.

The service runs as a Cloud Run service configured to handle at most 1 connection
per container, meaning each scan request spins up a new container. The reason for
this is twofold; it is mainly done to reduce the latency associated with scanning
multiple images, ensuring that congestion is not a problem. However a secondary
reason is also to avoid out-of-memory errors that could occur as a result of scan-
ning multiple images in parallel on a system that uses an in-memory filesystem,
such as Cloud Run. In these situations, downloading and scanning large images
takes up a sizable portion of the container’s memory. Reducing concurrency to 1
connection per container solves this.

7.4.1 Endpoints

The scanner service exposes its functionality as a range of REST API endpoints.
The main purpose of the endpoints is to facilitate creation and retrieval of scans.
Figure 7.1 shows the REST API endpoints exposed by the Scanner service.

Figure 7.1: API endpoints exposed by the Scanner service

8https://fastapi.tiangolo.com/
9https://www.uvicorn.org/

https://fastapi.tiangolo.com/
https://www.uvicorn.org/

Chapter 7: Implementation 39

GET /scans

Retrieves all scans, with the option to only return scans for a specific image.

Returns an array of objects following the schema described in appendix B.2.

GET /scans/<id>

Retrieves a scan with the specific ID. Intended to be used by other services to fetch
scans for further processing.

See Appendix B.2 for response schema.

POST /scans

Initiates scanning of an image with the desired scanning backend. At the time of
writing, Snyk is the only supported scanning backend.

Scan request bodies have the following schema:

{
"image": "string",
"backend": "snyk"

}

Listing 3: Schema for POST /scans request body

See Appendix B.2 for response schema.

GET /status

Returns the status of the service. The status is determined by the service’s ability
to contact its own database and bucket.

The endpoint returns data with the following schema:

Chapter 7: Implementation 40

{
"status": "OK",
"message": "string",
"url": "string"

}

Listing 4: Schema for GET /status response body

7.4.2 Running Snyk In A Container

Snyk is available both as an online SaaS solution10 and as a standalone CLI tool11.
The SaaS version features a wide range of service integrations, from GitHub and
GitLab, to Google Container Registry. It has one fatal shortcoming though; it does
not produce a structured data file compiling the results of the scan which can be
used by our application. All the information is presented in Snyk’s web interface,
but cannot otherwise be downloaded.

As a result of this, we decided on using the Snyk CLI. The Snyk CLI performs
the same scanning operation that the SaaS version does, but additionally has the
capability of exporting its data as both JSON12 and SARIF13. Due to the ubiquity
of JSON parsing tools, as well as having more experience with JSON than with
SARIF, we ended up selecting to use the JSON output option of Snyk CLI.

Although Snyk provides an official Snyk CLI Docker image14 (snyk/snyk-cli), we
found it easier to base the Scanner service’s image on the official ‘python‘ Docker
image15. Installing the Snyk CLI is as simple as downloading a file, making it ex-
ecutable and moving it to a directory on the system’s PATH. Meanwhile, installing
all the the various Python packages requires somewhat more work. To that end,
we decided to use the python:3.10.4 image for the Scanner service.

In the code, Snyk is executed as a Python subprocess. The Snyk CLI has has no
Python ABI, and must thus be executed as a normal program via the shell.

10https://snyk.io/
11https://docs.snyk.io/snyk-cli
12https://www.json.org/json-en.html
13https://docs.oasis-open.org/sarif/sarif/v2.1.0/csprd01/sarif-v2.1.0-csprd01.html
14https://hub.docker.com/r/snyk/snyk-cli
15https://hub.docker.com/_/python

https://snyk.io/
https://docs.snyk.io/snyk-cli
https://www.json.org/json-en.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/csprd01/sarif-v2.1.0-csprd01.html
https://hub.docker.com/r/snyk/snyk-cli
https://hub.docker.com/_/python

Chapter 7: Implementation 41

def run_snyk_scan(image: str) -> SnykScanResults:
snyk_exe = get_snyk_exe()

We use the --json option to pipe the results to stdout
and then read it directly into memory.
snyk_cmd = f'{snyk_exe} container test --json

--username=_json_key --password="$(cat
{AppConfig().google_credentials})" {image}'

,→

,→

logger.debug(f"Running snyk command: {snyk_cmd}")
p = subprocess.run(

["/bin/bash", "-c", snyk_cmd],
capture_output=True,
text=True,

)
return SnykScanResults.from_subprocess(p)

Listing 5: Running Snyk as a subprocess with Python

The code snippet above demonstrates how the program initiates a Snyk container
scan. In order to authenticate with a container registry hosted on Google Con-
tainer Registry, Snyk needs to provide a username and password. Google Con-
tainer Registry supports authenticating with Google Cloud Platform credentials16

as a JSON file for the password field and _json_key as the username.

The code snippet also demonstrates that the program delegates the responsibility
of retrieving the account credentials to the shell, instead of reading that informa-
tion into the program memory. This makes drastically reduces the likelihood that
the program leaks the credentials, as it never processes this data itself.

7.4.3 Storing Scan Results

The result of a completed Snyk scan with the --json option is JSON-formatted
data printed as text to Stdout17. See appendix APPENDIX REF HERE for the full
schema definition. The Python subprocess.run function then captures this output
and stores it in the program’s memory. From here, the program uploads the output
to a bucket as a UTF-8 encoded file with a content type of application/json.
Further, it creates a Firestore document containing the URL of the uploaded file
as well as other metadata pertaining to the scan. The data structure for documents
is the following:

16https://cloud.google.com/docs/authentication/getting-started#creating_a_service_account
17The default file that processes can write to in Unix-like operating systems.

https://cloud.google.com/docs/authentication/getting-started#creating_a_service_account

Chapter 7: Implementation 42

class ScanLog(BaseModel):
"""Model for documents in scanner's collection"""

image: ImageInfo
backend: str # Scanner backend tool used
id: str
timestamp: datetime
url: str # absolute URL of scan file
blob: str # scan file blob name
bucket: str # scan file bucket name

Listing 6: Data structure for documents representing scans in the database

The data structure with the relevant values filled in is then returned to the caller,
complete with metadata and a URL for the scan file. This is also the schema that
the GET /scans and GET /scans/<id> endpoints follow.

7.5 Service: Reporter

The Reporter service is a FastAPI application running on a Uvicorn web server
inside a Docker container based on the texlive/texlive image. The application
handles incoming HTTP requests and initiates actions based on the contents of the
request. The primary use case of the service is to enable users and other services
to create PDF reports from the contents of the container image scans performed
by the Scanner service.

7.5.1 Endpoints

The reporter provides several endpoints for retrieving and creating reports. Figure
7.2 shows the REST API endpoints the Reporter service exposes.

Chapter 7: Implementation 43

Figure 7.2: API endpoints exposed by the Reporter service

GET /reports

Retrieves existing reports based on a range of filters.

The URL for the endpoint has the following structure:

/reports?image=[IMAGE_NAME]
&aggregate=[true,false]
&ge=[0-10]
&le=[0-10]
&field=[mean,median,stdev,max,min]
&limit=[>0]
&order=[newest, oldest]

See Appedix B.4 for more information about the query parameters. Otherwise,
this documentation can also be accessed on the service’s /docs endpoint.

GET /reports/<id>

Retrieves a report by its ID. This endpoint is mostly intended to be used by other
services, as users are not expected to know autogenerated report IDs.

POST /reports

Requests the creation of a report given a scan ID and other parameters. See section
7.5.2 for more information about this endpoint.

Chapter 7: Implementation 44

GET /status

Retrieves the status of the service. The endpoint mainly checks whether or not its
own database and buckets are reachable.

7.5.2 Initiating Report Creation

A client initiates the creation of a report by sending a POST request to the service’s
/reports endpoint. The body of the request must comply with the schema in
Listing 7.

{
"aggregate": true,
"individual": true,
"ignore_failed": false,
"format": "latex",
"trend": true,
"trend_weeks": 26,
"scan_ids": [

"string"
]

}

Listing 7: Report request schema for the Reporter service

Fields

"aggregate" determines whether or not an aggregate PDF report should be cre-
ated if two or more scans are provided.

"individual" determines whether or not single reports should be created for
the individual scans, or if they should just be parsed and have their results stored
in the database without creating an output report. This option is useful if one only
wants to create an aggregate report.

"ignore_failed" discards scans with errors and proceeds with the creation of
individual and/or aggregate reports for the scans that succeed. By default this is
disabled.

Chapter 7: Implementation 45

"format" determines the output format of the report. As of now, only LaTeX
typeset PDF documents are supported, and as such "latex" is the only accepted
value for this field.

"trend" controls whether to include the plot showing CVSS mean score trend
for the relevant image(s).

"trend_weeks" controls the extent to which the trend plot should show older
scans.

"scan_ids" is a list of IDS of scans created by Scanner to parse and create re-
ports for. See section 7.5.2 for more information regarding this field.

Scan IDs vs. Image Names

Users should mainly interact with the API Gateway service, which provides an
abstraction over the "scan_ids" field, and provides the ability to use the name
of the image that should be scanned and reported, which is a more user-friendly
interface in line with the requirements18. However, Reporter is only concerned
with scans that already exist, and as such it takes in specific Scan IDs to parse and
report. See section 7.6 for more information about the intended interaction with
Auspex as a whole for external clients.

Once Reporter has a list of Scan IDs to retrieve, it queries the Scanner service for
information about the scans. The Scanner service returns a JSON data structure
containing a list of objects with metadata for each scan. Each scan contains a URL
to a bucket which Reporter can use to download the scan log from.

Figure 7.3: Reporter service requests a scan log from Scanner

18Based on the access control configuration Telenor chooses to employ, the Reporter service might
not even be generally available to users, and they instead must use the API Gateway.

Chapter 7: Implementation 46

See Figure 5.3 for more information about the schema used by Scanner to store
its scans.

7.5.3 Parsing Scans

After downloading the Snyk JSON scan output from its bucket, the Reporter ser-
vice parses the contents of the scan with Python’s built-in JSON parsing module.
As outlined in section 7.3, it then passes the data to a Pydantic-derived class that
validates its contents.

{
"vulnerabilities": [

// ...
],
"ok": false,
"dependencyCount": 183,
"org": "pederha",
"policy": "# Snyk (https://snyk.io) policy file, patches or

ignores known vulnerabilities.\nversion: v1.22.1\nignore:
{}\npatch: {}\n",

,→

,→

"isPrivate": true,
"licensesPolicy": {

// ...
},
"packageManager": "deb",
"ignoreSettings": null
// ...

}

Listing 8: Snyk JSON scan log (abbreviated)

Chapter 7: Implementation 47

class SnykContainerScan(BaseModel):
"""Represents the output of `snyk container test --json`"""

vulnerabilities: list[SnykVulnerability]
ok: bool
dependencyCount: int
org: str
policy: str
isPrivate: bool
licensesPolicy: LicensesPolicy
packageManager: str
ignoreSettings: Any
...

Listing 9: The Pydantic-derived class that corresponds to Listing 8 (abbreviated)

This class implements various methods used to retrieve and aggregate the in-
formation from the scan. These methods include retrieving all vulnerabilities of a
specific severity, getting the N most severe vulnerabilities, getting all exploitable
vulnerabilities, and more. Section 7.5.4 goes more into detail on these methods.

7.5.4 Single vs Aggregate

From the outset, it was clear that we needed to support creating reports for indi-
vidual images as well as being able to aggregate the results of scanning multiple
images into one report. See section 5.1 for more information regarding this re-
quirement and the concept of single- and aggregate reports.

In order to avoid having to do double the work and have to create one set of code
for generating single reports and another for generating aggregate reports, we
had to find a way to consolidate the code that managed the two report types and
support the creation of single- and aggregate reports using shared functionality.
To this end, we established an interface that all report data structures must follow,
which we implemented for both single and aggregate reports.

Chapter 7: Implementation 48

@runtime_checkable
class ReportType(Protocol):

...

@property
def vulnerabilities(self) -> Iterable[VulnerabilityType]:

"""All vulnerabilities."""

...

def most_common_cve(self, n: Optional[int] = 5) ->
list[tuple[str, int]]:,→

"""Sorted list of tuples of CVE IDs and number of
occurences.""",→

@property
def most_severe(self) -> Optional[VulnerabilityType]:

"""Most severe vulnerability"""

def most_severe_n(
self, n: Optional[int] = 5, upgradable: bool = False

) -> Collection[VulnerabilityType]:
"""Returns the `n` most severe vulnerabilities (if any),

optionally only upgradable ones.""",→

Listing 10: The interface shared by all report data structures (Abbreviated; ori-
ginally >150 lines long)

The interface stipulates that classes must implement a wide range of different
methods in order to fulfill the contract. Even though the implementation differs
between classes, they all must take in the same arguments and return the same
type of data. As long as this is fulfilled, they can be used interchangeably in the
process of report creation. When we say all, we mainly refer to Snyk single image
scan reports and Aggregate reports. However, should a new scanning tool be ad-
ded in the future, its results can be integrated into aggregate reports along with
existing Snyk reports as long as it fulfills the inteface. This is the power of using
interfaces; it allows for multiple different types to all use the same functions as
long as they implement a common interface.

An implementation of the method most_severe_n for a single report is shown in
listing 11.

Chapter 7: Implementation 49

class SnykContainerScan(BaseModel):
"""Represents the output of `snyk container test --json`"""
...

def most_severe_n(
self, n: Optional[int] = 5, upgradable: bool = False

) -> list[SnykVulnerability]:
v = sorted(self.vulnerabilities, key=lambda v:

v.cvssScore, reverse=True),→

if upgradable:
v = list(filter(lambda v: v.isUpgradable, v))

if n and len(v) > n:
return v[:n]

return v

Listing 11: Implementation of most_severe_n for an image scanned with Snyk

The same ReportType interface was implemented for the aggregate report class,
shown in listing 12. The difference between the two implementations is that the
AggregateReport class must fetch all vulnerabilities from all reports it contains.
Similar functionality was implemented for all methods stipulated by the interface,
each time having AggregateReport aggregate the data from each of its reports.

As such, AggregateReport follows the ReportType interface and can be used in-
terchangably with SnykContainerScan in all functions and classes that take in
ReportType objects. This is accomplished without any use of inheritance, thus
avoiding murky method resolution behavior typically associated with inheritance
in objected-oriented programming.

Chapter 7: Implementation 50

@dataclass
class AggregateReport:

reports: list[ReportType]
id: str = ""
timestamp: datetime = field(default_factory=datetime.now)
...
@property
def vulnerabilities(self) -> Iterable[VulnerabilityType]:

"""Generator that yields vulnerabilities from all
reports.""",→

for report in self.reports:
yield from report.vulnerabilities

def most_severe_n(
self, n: Optional[int] = 5, upgradable: bool = False

) -> list[VulnerabilityType]:
vulns = list(self.vulnerabilities)
vulns.sort(key=lambda v: v.cvssScore, reverse=True)
if upgradable:

vulns = list(filter(lambda v: v.is_upgradable, vulns))
if n and len(vulns) > n:

return vulns[:n]
return vulns

Listing 12: Implementation of most_severe_n for the aggregate report data struc-
ture

Furthermore, we also implemented an interface for vulnerabilities (Vulnerab-
ilityType); again allowing for other scanning tools to be integrated as long as
they can model and present the data representing vulnerabilities they detect in a
certain shape and with the necessary methods. Listing 13 shows some of the prop-
erties a class that fulfills the VulnerabilityType interface is expected to have.

Chapter 7: Implementation 51

@runtime_checkable
class VulnerabilityType(Protocol):

@property
def cvssScore(self) -> float:

"""CVSSv3 score of the vulnerability."""

@property
def title(self) -> str:

"""Title of the vulnerability."""

@property
def severity(self) -> str:

"""CVSSv3 severity of the vulnerability."""

@property
def exploitable(self) -> bool:

"""Whether the vulnerability is exploitable."""

...

Listing 13: The VulnerabilityType interface (abbreviated)

7.5.5 Generating a PDF Report

The end-result produced by Auspex should be a human-readable report. Consider-
ing that one of the main requirements stipulated by our employer was the ability
to show the results from the service in physical meetings, we needed to find a
format and presentation that worked on all devices, as well as having the capab-
ility of being presented in a printed format.

To that end, we had to find a way to produce written documents with consistent
typesetting, support for tables and figures, and the ability to automate this pro-
cess. It quickly became clear that LaTeX was our best option for facilitating this.
Furthermore, we needed a way to generate LaTeX code automatically from the
service itself; for that we used the Python package PyLaTex19. With the help of
this library we could program the structure of the report in a declarative manner,
and let PyLaTex perform the work of actually generating the LaTeX code.

We wrapped the PyLaTex Document class in our own LatexDocument class, which
encapsulates it along with the report and previous reports (used for showing

19https://jeltef.github.io/PyLaTeX/current/index.html

https://jeltef.github.io/PyLaTeX/current/index.html

Chapter 7: Implementation 52

trends). Listing 14 shows the attributes of the class.

class LatexDocument:
filename: str
plots: list[Path]
doc: Document
report: ReportType
prev_reports: list[ReportData]
...

Listing 14: Custom class wrapping a PyLaTex document (abbreviated)

Furthermore, the LatexDocument class implements reusable utility methods that
create sections, tables and plots with minimal boilerplate code, thereby making
the code easier to both read and write. Listing 15 shows how minimal the Latex-
Document methods that add tables and figures are.

class LatexDocument:
...
def add_table_exploitable_vulns(self) -> None:

"""Adds a table of exploitable vulnerabilities."""
tabledata = exploitable_vulns(self.report)
self._add_section_longtable(tabledata)

Listing 15: LatexDocumentmethod that adds a section containing a table showing
exploitable vulnerabilities

The add_table_exploitable_vulns() method adds a section containing a table
of exploitable vulnerabilities for the current report. This is all facilitated by the
methods _add_section_longtable() and _add_longtable()which allows passing
a TableData data structure to automatically create a section containing a LaTeX
longtable.

Chapter 7: Implementation 53

def _add_section_longtable(
self,
tabledata: TableData,
numbering: bool = True,
newpage: bool = True,
**kwargs,

) -> Section:
"""Adds a section with a longtable of the given table data."""
if newpage and not tabledata.empty: # only make new page if

we have rows,→

self.doc.append(NewPage())
with self.doc.create(

Section(tabledata.title, numbering=numbering)
) as section: # type: Section

if tabledata.description:
section.append(tabledata.description)

section = cast(Section, section) # mypy
Only add table if we have rows
if not tabledata.empty:

self._add_longtable(tabledata, LongTabularx, **kwargs)
return section

Listing 16: Utilty method for adding a section containing a longtable

This method in turn uses the method _add_longtable() to add a longtable to the
section it just created in the document.

Chapter 7: Implementation 54

def _add_longtable(
self,
tabledata: TableData,
table_type: Type[LongTable] = LongTabularx,
row_height: float = ROWHEIGHT_MULTIROW,
booktabs: bool = True,

) -> None:
"""Creates a LongTable wrapped in a Table environment."""
Wrap tabular in a table so we can add a caption
if tabledata.caption:

ctx = self.doc.create(Table(position="h"))
else:

ctx = contextlib.nullcontext()

with ctx as table:
Create the tabular environment
table_spec = " ".join(["l"] * len(tabledata.header))
with self.doc.create(

table_type(table_spec, row_height=row_height,
booktabs=booktabs),→

) as tabular:
tabular = cast(LongTable, tabular) # mypy

init_longtable(tabular, tabledata.header)
for row in tabledata.rows:

add_row(tabular, row)

Add caption to table if it exists
if tabledata.caption:

table = cast(Table, table) # mypy
table.add_caption(tabledata.caption)

Listing 17: Utilty method for adding a longtable to the document

_add_longtable() is responsible for the actual creation and configuration of the
LaTeX Tabular environment. Further, it inserts the table rows, and finally adds a
caption if one exists.

Chapter 7: Implementation 55

7.5.6 Creating Tables

What facilitates these reusable methods for creating tables is the data structure
TableData, which encapsulates all the data required to render a table and its
section. Listing 18 shows the relative simplicity of this class. Other helper functions
and classes also exist to add text formatting such as hyperlinks.

@dataclass
class TableData:

title: str
header: list[str] = field(default_factory=list) # column

names,→

rows: list[list[Any]] = field(
default_factory=list

) # each row is a list of len(header)
caption: str = ""
description: str = ""

@property
def empty(self) -> bool:

return len(self.rows) == 0

Listing 18: The TableData data structure

Since the data is encapsulated in a data structure that is not coupled to PyLaTex
in any way, it can be used for any type of frontend, be that a LaTeX document,
a website or a mobile application. Even though our application currently only
produces PDF reports, it would be trivial to render this data in other formats, as
long as those formats support creating tables, embedding images and adding text.

Chapter 7: Implementation 56

def image_info(report: ReportType, digest_limit: Optional[int] =
8) -> TableData:,→

"""Generates the table data used to display the info for an
image.""",→

columns = [
"Image",
"Created",
"Tags",
"Digest",

]

rows = [] # type: list[list[str]]
if isinstance(report, AggregateReport):

for r in report.reports:
rows.append(_get_image_info_row(r.image,

digest_limit)),→

else:
rows.append(_get_image_info_row(report.image,

digest_limit)),→

if isinstance(report, AggregateReport):
title = "Images in This Report"

else:
title = "Image Information"

return TableData(
title=title,
header=columns,
rows=rows,
caption="",
description="",

)

Listing 19: Example of a function that returns TableData

Listing 19 shows a function that takes in an object that fulfills the ReportType
interface and creates a table displaying the image info of the report(s). As this
object can be either a single- or aggregate report, the function needs to determine
how it should retrieve the image info from the ReportType object. If the object’s
actual type is AggregateReport, the function iterates through all the single reports
it contains.

Chapter 7: Implementation 57

Figure 7.4: The table data rendered as a LaTeX table

As long as tables are created via functions that return TableData objects, the actual
data aggregation of the program is completely frontend-agnostic. Figure 7.4 shows
the image info table rendered as a PyLaTex table. See section 9.2 for a discussion
around the possibility of expanding the presentation of the Auspex reports.

7.5.7 Creating Plots

The report features a wide range of different plots used to visualize the findings.
To generate these plots we used the Python library Matplotlib. Matplotlib enables
the creation of a wide range of plots with minimal boilerplate code.

Similarly to the way we create tables, we also have a PlotData data structure
for holding data for plots, so that they can be rendered by any frontend, not just
LaTeX.

@dataclass
class PlotData:

title: str
plot_type: PlotType
description: str = ""
caption: str = ""
path: Optional[Path] = None

Listing 20: The PlotData data structure

Plots are generated by Matplotlib and stored on disk20, and then the path of the
generated file is added to the PlotData object’s path field. In cases where a plot

20In the case of a Google Cloud Run service, this is an in-memory file system: https://cloud.
google.com/run/docs/container-contract#filesystem

https://cloud.google.com/run/docs/container-contract#filesystem
https://cloud.google.com/run/docs/container-contract#filesystem

Chapter 7: Implementation 58

cannot be created (such as when there is no data to present), rendering methods
should fall back on the plot’s description to display a message stating that the
plot cannot be displayed. It is up to functions that create PlotData objects to add
alternate descriptions in these cases.

Figure 7.5: A scatter plot of CVSS mean score for current and previous reports
of the same image, with a trend line

7.5.8 Final Output

The final output of the PDF report creation process is a PDF document spanning
multiple pages, containing tables, figures and descriptions. This information in-
cludes:

• CVSSv3 scoring system overview
• Image information
• Vulnerability statistics
• Plot showing mean CVSSv3 score over time with trend line
• Table of most critical vulnerabilities
• Table of most critical vulnerabilities that can be upgraded
• Pie chart of vulnerability severity distribution

Chapter 7: Implementation 59

Figure 7.6: Structure of a report

• Scatter plot of vulnerability age and score
• Table of exploitable vulnerabilities
• Pie chart of severity of exploitable vulnerabilities
• Table of all critical vulnerabilities

Figure 7.6 shows an overview of the general structure of the generated report.
The full report can be found in Appendix A.2.

7.6 Service: API Gateway

The service that end-users and outside applications will interact with is the API
Gateway. The API Gateway service is a FastAPI application running on a Uvicorn
web server inside a Docker container based on the python:3.10.4 image. The
application handles incoming HTTP requests and initiates actions based on the
contents of the request.

The API Gateway acts as an abstraction over the underlying Scanner and Reporter
services, and is able to orchestrate these more efficiently than a user would other-
wise be able to do manually. The API Gateway dispatches multiple scan requests
in parallel to the Scanner service to ensure that the time it takes to get the results
of a scan is constant regardless of how many image scans a user or application
requests. As outlined in 7.4, each Scanner instance only takes in 1 connection at

Chapter 7: Implementation 60

the time, and each new connection spins up a new instance. The API Gateway
orchestrates the dispatching of requests in parallel to Scanner.

API Gateway is then able to take the results of the parallel scans and send them as
a request to the POST /reports endpoint of Reporter. After receiving a response
from Reporter, it then forwards that response back to the caller. See section ?? for
more information.

7.6.1 Endpoints

Most of the endpoints follow the same interface as the underlying services, and
their descriptions here will refer to the description located in the relevant service’s
endpoints section. Figure 7.7 shows the endpoints the service exposes.

Figure 7.7: API endpoints exposed by the API gateway

GET /scans

This endpoint mirrors the GET /scans endpoint of Scanner.

See section 7.4.1.

Chapter 7: Implementation 61

GET /scans/<id>

This endpoint mirrors the GET /scans/<id> endpoint of Scanner.

See section 7.4.1.

POST /scans

This endpoint mirrors the POST /scans endpoint of Scanner.

See section 7.4.1.

GET /reports

This endpoint mirrors the GET /reports endpoint of Reporter.

See section 7.5.1.

GET /reports/<id>

This endpoint mirrors the GET /reports/<id> endpoint of Reporter.

See section 7.5.1.

POST /reports

As outlined in section 7.6, the service provides this endpoint as a way to auto-
matically scan one or more images and create reports for those images, optionally
also creating an aggregate report of all images.

API Gateway which uses an interface with the following schema for this endpoint:

Chapter 7: Implementation 62

{
"aggregate": true,
"individual": true,
"ignore_failed": false,
"format": "latex",
"trend": true,
"trend_weeks": 26,
"images": [

"string"
]

}

Listing 21: Schema for requests to the POST /reports endpoint

The schema shown in Listing 21 is almost identical to the schema of Reporter’s
POST /reports endpoint, only replacing its "scan_ids" field with "images". See
Listing 7 for that schema.

The endpoint returns a data structure with a schema roughly like the one shown
in listing 22.

Chapter 7: Implementation 63

{
"reports": [

{
// ...
"report_url": "string"
// ...

}
],
"aggregate": {

// ...
"report_url": "string",
// ...

},
"message": "",
"failed": [

{
"scan_id": "string",
"error": "string"

}
]

}

Listing 22: Response schema for POST /reports endpoint (most keys omitted)

The data returned by the service contains information about each image and
their reports, as well as the optional aggregate report. Furthermore, it contains
a "failed" section with a list of errors for failed reports/scans if the option "ig-
nore_failed" was set to true in the request, otherwise this value is empty.

See appendix B.1 for the full schema.

7.7 Testing

The concept of testing code can manifest itself in several different forms. As a
developer, the first and foremost kind of testing one tends to engage with is unit
testing [31]. Unit testing is the practice of isolating pieces of source code, called
units, and testing that they behave as expected given a range of different test
inputs. Certain unit testing frameworks exist in most languages to facilitate setup
and teardown of tests, reduce the amount of boilerplate code developers have
to write, and allow for more granularity and control over tests that otherwise

Chapter 7: Implementation 64

handwritten tests can achieve [32].

Unit testing gives developers confidence that changes they make to a system do
not have a cascading effect leading to bugs and other unwanted behavior. As a
project grows in size, having unit tests in place for existing code allows developers
to expand and modify the system without fear of breaking things. A robust test
suite gives developers more agility and confidence to work quickly.

For our project, we did not employ the development process known as Test Driven
Development (TDD). TDD requires developers to write unit tests before writing
implementation code, and is generally a useful approach when requirements are
defined and the overall program architecture is planned out beforehand. We, how-
ever, did not have the luxury of having a fully planned out service architecture be-
forehand, and we had to "feel" out, that is to say work iteratively and periodically
assess, the overall program structure as we went. In order to reduce the amount of
time spent writing test code for implementations that might be scrapped a week
later, we wrote implementation code first, then test code. This approach worked
well for us, and the only thing we had to make certain of when writing the imple-
mentation code was that it was modularized to the extent that it could easily be
tested. Having completed programming projects involving unit testing previously
during our study program, the concept of writing testable code was not unknown
to us.

7.7.1 Pytest

To test the code we used the Python testing framework Pytest21, which accord-
ing to the JetBrains Python Developer Survey 2020 is the most popular testing
framework for the language [33].

Figure 7.8: Screenshot of Pytest collecting and running tests

21https://docs.pytest.org/en/7.1.x/

https://docs.pytest.org/en/7.1.x/

Chapter 7: Implementation 65

Pytest provides a comfortable test development experience with features such as
the ability to use assert statements directly in the test code, fixtures to automate
parameterization of test inputs, and a good command-line interface. Listing 23
shows the complete lack of boilerplate code required to write basic tests with
Pytest.

def test_timestamp_ms_to_datetime():
assert timestamp_ms_to_datetime("1588888888000") ==

datetime(2020, 5, 8, 0, 1, 28),→

Listing 23: Test using assert statement

7.7.2 Fuzzing with Hypothesis

The data structures used by the different services have numerous fields and has
a wide range of permutations as a result. It is of course impossible to test every
possible permutation, but spending some time testing different permutations can
be highly beneficial. In order to automatically generate different permutations of
the data structures when testing, we used the testing library Hypothesis22 which
integrates natively with Pytest.

Hypothesis is a library that allows for fuzz testing (also known as property-based
testing), where values are generated based on some property or specification.
The rules for generating data are determined via "strategies", which can generate
primitives such as strings and integers, but also more complex user-defined types.
An example of a basic strategy is strategies.text(), which is a built-in strategy
that creates different kinds of strings.

Pydantic also has a built-in Hypothesis plugin, and as such is able to automatically
generate strategies for any Pydantic-derived class, making it trivial to integrate our
large data structures with Hypothesis.

Using Hypothesis, we were able to perform unit tests with randomly generated
data, which allowed us to find and uncover bugs and corner-cases much more
efficiently than we could have otherwise done without it.

22https://hypothesis.readthedocs.io/

https://hypothesis.readthedocs.io/

Chapter 7: Implementation 66

@settings(max_examples=10,
suppress_health_check=[HealthCheck.too_slow]),→

@given(CLASS_STRATEGIES[SnykContainerScan])
def test_fuzz_SnykContainerScan(scan: SnykContainerScan) -> None:

CVSS sanity tests
assert scan.cvss_max >= scan.cvss_min
...

Listing 24: Example of fuzzing with Hypothesis (abbreviated)

In the code snippet in Listing 24, we have limited the test to accepting 10 valid
executions before being marked as successful, while the default is 100 valid ex-
ecutions. The reason we chose a number this low is because the program’s data
structures are large and take time to generate, so to avoid an extremely long exe-
cution time of our test suite, we chose a relatively low number. This optimization
of runtime duration is doubly important when running tests on CI/CD machines
that have less computing resources than our local machines.

Regardless of number of iterations per test, what’s important is that we are able to
test the program with a wide range of inputs to improve its resiliency and reliabil-
ity. Hypothesis has helped us catch numerous edge-cases and bugs by simulating
a far larger quantity of inputs, and more varied to boot, than we could ever write
by hand. As such, Hypothesis has been an integral part of ensuring that we deliver
a robust end-product.

7.7.3 Coverage

Test coverage is a metric that defines which percentage of the overall application
code is executed by the program’s test suite. This metric is not the be-all-end-all
of testing, but is an indicator to which degree the program code that is covered
by tests is able to run without errors given specific test inputs. As mentioned in
section 7.7.2, given that we are running with a wide range range of inputs, we
are able to fairly confidently assert that the program code we cover is robust.

However, in general, code coverage can be a misleading metric, as a block of code
that runs successfully with a single known valid input is reported as having 100%
coverage despite containing a bug waiting to manifest itself given the right (or
indeed wrong) input. For this reason, we focused on thorough testing of important
functionality over trying to achieve 100% coverage.

Chapter 7: Implementation 67

Figure 7.9: The coverage of the largest source files of the Reporter service

As a result, we defined comprehensive Hypothesis strategies and numerous tests
for the report data structures in the program in order to maximize the coverage
of their modules. Figure 7.9 shows that the module containing the Snyk data
structures is the largest one in the program (800 lines23, 370 statements), and
has 92% test coverage. The lines that are lacking coverage are often fall-backs or
failsafes that don’t trigger due to our strategies, which can be seen as the lines
marked in red in Figure 7.10.

Figure 7.10: Example of code that is not covered by tests

7.8 Deployment

In order to deploy our services on Cloud Run, we needed to define build scripts
that could upload the source files to Google Cloud Build24, build the services’
container images, and then push them to Cloud Run. To this end, we created
Google Cloud Build cloudbuild.yaml files for each service that defined the build
and deployment process for each image.

23This is nothing to brag about, and some might see it as a symptom of a file that should be split
up into smaller sub-modules

24https://cloud.google.com/build

https://cloud.google.com/build

Chapter 7: Implementation 68

steps:
Build the container image
- name: 'gcr.io/cloud-builders/docker'

env:
- DOCKER_BUILDKIT=1

args: ['build', '-t', '${_IMAGE_NAME}', '-f',
'reporter/Dockerfile', '.'],→

Push the container image to Container Registry
- name: 'gcr.io/cloud-builders/docker'

args: ['push', '${_IMAGE_NAME}']
Deploy container image to Cloud Run
- name: 'gcr.io/google.com/cloudsdktool/cloud-sdk'

entrypoint: gcloud
args: [

'run',
'deploy',
'${_SERVICE_NAME}',
'--image',
'${_IMAGE_NAME}',
...
]

...

Listing 25: Build and deployment script for the Reporter service (abbreviated)

Listing 25 shows the general structure of such a build script, and how it can be
implemented. Omissions from the listing include the full extent of arguments to
gcloud run deploy, the last step that redirects all traffic to the new version, as
well as variable substitution rules. Important to note that the environment variable
DOCKER_BUILDKIT is set to 1 to enable multi-stage builds, which we outlined in
Section 7.1.3.

7.8.1 CI/CD

Continuous Integration / Continuous Delivery (CI/CD) is the practice of continu-
ously integrating changes to the code base in a quick and agile manner while
also deploying the selfsame code to production. To cover every aspect of CI/CD is
outside of the scope of this thesis, but in essence it means that a great deal of the
process of submitting new code, testing it, building it and pushing to production is
automated. This is enabled through the use of hosted runners or dedicated servers.
GitHub and GitLab both offer the ability for integrating CI/CD with source called

Chapter 7: Implementation 69

repositories with their services called Actions25 and Pipelines26 respectively.

By setting up an automated CI/CD pipeline, we were able to have our code tested,
built and deployed automatically each time code is pushed to the master branch
of our GitHub repository.

Testing

By using GitHub Actions, we were able to set up a workflow that ran each of the
services’ unit tests and reported back their completion status. Since we utilized
Poetry as our virtual environment manager for Python, we needed to include a
step in our workflow that installed the dependencies from the pyproject.toml
file via Poetry. To that end, we used the action Python Poetry Action27.

Building and Deploying

Being able to deploy the services by running the scripts manually from our local
machines is well and good for the very first deployment, but subsequent deploy-
ments needed to be automated. To that end, we added the application’s GitHub
repository as a build trigger for Google Cloud Build. In the trigger’s options, we
configured it to run each time the master branch of the repository received up-
dates, as shown in Figure 7.11.

25https://github.com/features/actions
26https://docs.gitlab.com/ee/ci/pipelines/
27https://github.com/marketplace/actions/python-poetry-action

https://github.com/features/actions
https://docs.gitlab.com/ee/ci/pipelines/
https://github.com/marketplace/actions/python-poetry-action

Chapter 7: Implementation 70

Figure 7.11: Cloud Build repository trigger configuration

The Google Cloud Build hook runs a top-level cloudbuild.yaml file that contains
shared environment variable definitions which are passed on to the build scripts
for all 3 services (+ 1 setup script that ensures all necessary resources such as
buckets and database indexes are created). All services are built in parallel and
are completely independent of each other. The end result of the build process is
that all services are updated, and their new images are uploaded to the project’s
container image registry.

7.8.2 Cloud Run Configuration

All services are mostly configured using standard Cloud Run parameters, how-
ever the Scanner service differs slightly with regards to its maximum requests per
container, as detailed in section 7.4. Furthermore, it has been allocated 4 GiB of
memory, as opposed to the default 512 MiB This allows for automatic horizontal
scaling when multiple images are scanned, and is one of the reasons why a man-
aged container runtime such as Cloud Run is a great fit for our application.

7.9 Sending Emails

As a proof of concept for emailing the results, we set up a Google Cloud Workflows
workflow that issues a request to Auspex for it to scan multiple images, create
individual reports for each of them, as well as create an aggregate report of all

Chapter 7: Implementation 71

image scans. These results are then passed to the SendGrid28 API which sends the
results by mail to a destination address.

Listing 26 first retrieves the SendGrid API secret key from Google Cloud Secret
Manager29.

main:
steps:
- init:

assign:
- project_id: ${sys.get_env("GOOGLE_CLOUD_PROJECT_ID")}
- secret_id: "SENDGRID_API_KEY"
- version: "latest"
- email_destination: "peder.andresen@gmail.com"

- get_secret:
call: googleapis.secretmanager.v1.projects.\

secrets.versions.accessString
args:

secret_id: ${secret_id}
version: ${version}
project_id: ${project_id}

result: SENDGRID_API_KEY

Listing 26: Retrieving a secret in a workflow.

Further, the workflow contacts the Auspex API gateway, wherein it requests the
scanning and subsequent report creation of all of Auspex’s images. Listing 27
shows that the workflow tries to complete this step up to 8 times before giving up.

28https://sendgrid.com/
29https://cloud.google.com/secret-manager

https://sendgrid.com/
https://cloud.google.com/secret-manager

Chapter 7: Implementation 72

Request a scan + create reports
- getReports:

try:
call: http.post
args:

url: https://restapi-qk6stf4ejq-lz.a.run.app/reports
body:

images: ["eu.gcr.io/ntnu-student-
project/auspex/reporter",
"eu.gcr.io/ntnu-student-
project/auspex/scanner",
"eu.gcr.io/ntnu-student-
project/auspex/restapi",
"eu.gcr.io/ntnu-student-project/auspex/setup"]

,→

,→

,→

,→

,→

,→

aggregate: true
individual: true
ignore_failed: false

timeout: 1200
result: reportResult

retry:
max_retries: 8
backoff:

initial_delay: 1
max_delay: 60
multiplier: 2

Listing 27: Requesting scan and report creation for images in a workflow.

Thereafter, the URL of the generated aggregate report is sent by mail to a specific
destination address. Listing 28 shows how this step uses the API key retrieved
from secret manager initially and uses it to authenticate with the SendGrid API
when issuing the /mail/send request.

Chapter 7: Implementation 73

- sendEmail:
call: http.post
args:

url: https://api.sendgrid.com/v3/mail/send
headers:

Content-Type: "application/json"
Authorization: ${"Bearer " + SENDGRID_API_KEY}

body:
personalizations:

- to:
- email: ${email_destination}

from:
email: auspexmailer@gmail.com

subject: Daily Auspex Report
content:

- type: text/html
value: ${"<a clicktracking=off href=\"" +

reportResult.body.aggregate.report_url +
"\">Report"}

,→

,→

result: email_result
- return_result:

return: ${email_result.body}

Listing 28: Workflow step that sends an email.

The report is encoded as a HTML hyperlink using the <a> tag. Clicktracking is dis-
abled to prevent SendGrid from rerouting the request through their own servers.

Finally, the full contents of the response from Auspex is returned to the workflow
logger, which allows for inspection of the response after completion, shown in
listing 29.

- return_result:
return: ${email_result.body}

Listing 29: Workflow step that sends an email.

The recipient receives an email containing a hyperlink to the PDF report, shown
in Figure 7.12

Chapter 7: Implementation 74

Figure 7.12: Visual representation of the workflow.

Figure 7.13 shows a visualization of the different steps in the workflow that ends
with sending an email.

Figure 7.13: Visual representation of the workflow.

This is still a proof of concept, and has a lot of room for improvement, which we
discuss in Chapter 9.

Chapter 8

Evaluation

In this chapter we discuss the survey and its results, as well as evaluate the re-
quirements defined in Chapter 4

8.1 Survey

As part of this thesis and this project as a whole, we conducted a survey to asses
perhaps the most important, and most visually prominent, part of our application;
the Auspex report generated from a scan of a container image. The survey was
distributed via our contact at Telenor, Eirik Stephansen, and he distributed the
survey amongst his team. As the usefulness of our application will ultimately be
determined by the relevancy and comprehensibility of its content, the decision
on what to include and the our ability to respond to feedback is crucial. In this
section, we will elaborate on how we chose to address this challenge.

The survey itself is a series of questions to asses our attempt at conveying useful
and relevant information about the security state of the scanned container image.
Our main goal is to evaluate whether the information displayed in the figures and
tables of the Auspex report is helpful or not, and to what degree.

Note, that our assignment specification was fairly vague in stating the level of
competency of the team our product is intended for, thus making it challenging to
determine what to show them. For this reason, we decided to include a question
for each section of our product’s output that relates to whether or not the section
is understandable to the reader. In addition, we added an introductory question
where the participant states whether or not he or she is a developer, as a way to
control for biased data. The value of this particular question in and of itself is ar-
guably not particularly high. However it helps us understand why one respondent

75

Chapter 8: Evaluation 76

might ask for more technical info or details to be presented, while another might
ask for more descriptive explanations of the information presented.

In the final section of the survey we are asking the respondents if there is any
information they feel is missing and would like to see, and for general feedback.
Particularly, someone working with development or other task related might have
an idea of information they would like to see that can be helpful in their role and
would add information value to the Auspex report.

Accompanying the survey is a sample report, which will form the basis of the feed-
back we will receive. This sample report was generated by our software, scanning
a known vulnerable image of PHP 5.4.1, found online in the Vulhub repository1.
This particular image contains many different vulnerabilities, meaning it was very
useful for our purpose to test Auspex, and ensuring realistic input data. For the
purpose of the survey however, the data for the trend diagram was mocked using
random scores and dates. All other data was genuine. To ensure the report’s con-
tent would be evaluated in a contextual manner, we decided to include a picture
of each section from the example report, together with its corresponding question
in our survey.

8.1.1 Survey Results

In chapter 4, we specified the requirements for the application as a whole. We also
outlined some requirements relating to the Auspex report.

The survey was shared via Eirik onApril 26th, with a deadline of May 6th, to his
team at Telenor, and to an external team in Poland working on developing Mitt
Spor. These two teams consist of 8 people in Oslo and 12 more in Poland at the
time of writing, a total of 20 people. These are the people who we believe would
have use for Auspex, and would directly benefit from its use. First lets preface
that we did not get as many responses as we would have like to. That was the
consequence of sharing the survey with only relevant people who undoubtedly
had more pressing matters to attend to. Relevant people is in this context people
working at or with Telenor, and working with container images. We did not have
direct access to share the survey at Telenor internally and was working through
Eirik to do so, and as such did not want to burden him with having to search all
of Telenor to find suitable candidates. Thus our pool of possible respondents was
quite limited.

Our final response rate was 15%. The amount of responses does then not provide
much in the way of statistical value in and of itself. Therefore we had to evaluate
the written feedback and responses we received. We are quite pleased that most

1https://github.com/vulhub/vulhub

Chapter 8: Evaluation 77

Figure 8.1: Example of a question from our survey

of the respondents provided written feedback to most questions.

8.1.2 Survey Feedback and Improvements

Through the survey we received feedback on the example Auspex report, and from
this feedback we made corresponding improvements.

Improved Explanations

The biggest finding from the survey, and also the easiest to improve, was to provide
better descriptions and explanations of the figures and tables in the Auspex report.
The example report provided with the survey lacked sufficient explanations to help

Chapter 8: Evaluation 78

the reader understand the purpose and details of a particular section.

An example of lacking descriptive and explanatory text is evident in the section
for the trend diagram, as pictured in Figure 8.2. The explanation is minimal and
does not provide the reader with much understanding. What is lacking is the ex-
planation of what each blue dot represent, in addition to the what the red line rep-
resents. Making assumptions on what a random reader will understand, or not, is
counterproductive. It is therefore much better to provide clear explanations from
the get go to avoid misunderstanding of the information provided.

Figure 8.2: Trend section prior to feedback

In Figure 8.3 we added more explanatory text to the Trend section and gave the
section a more descriptive name. In addition we added a green dot in the diagram
to represent the current scan. Note that this version of the trend diagram has less
data points compared to the trend diagram in Figure 8.2 due to being based on
real data, and not mock data.

Chapter 8: Evaluation 79

Figure 8.3: Trend section after receiving feedback.

Scoring Intervals

Throughout the Auspex report we are using the scoring intervals from CVSSv3,
see Table 2.1. This was not clarified very well and led to some confusion from our
respondents in terms of what the different scores meant, and their significance, in
the tables and figures we presented to them. Figure 8.4 showcases our previous,
minimal explanation of the scoring intervals for severities.

To provide the context for the scoring intervals used in the Auspex report, we
added a new static table at the very beginning of the report, outlining the scoring
intervals used throughout the report, together with a short explanation. This table,
pictured in Figure 8.5, helps the reader to understand the context for the scoring
values used throughout the Auspex report.

Chapter 8: Evaluation 80

Figure 8.4: The scoring intervals, highlighted in the red box, as presented in the
survey and prior to feedback

Figure 8.5: The scoring intervals presented at the top of an Auspex Report in the
final version

Hyperlink to Vulnerability Information

In the survey feedback, and other feedback, it was suggested that the CVSS ID’s
should have a link to more information about that specific vulnerability. The in-
formation provided by the official sources is much more comprehensive than what
could be presented in the Auspex report, and also outside its scope and purpose.
Therefore we added hyperlinks for all CVSS ID’s throughout the Auspex report
that takes an interested reader to either the official CVE Program website2, or the
Snyk equivalent3, depending on which site is listed for that vulnerability in the
output of Scanner. Both websites provides very similar information, and the Snyk
website also provides a link to the CVE website for that specific vulnerability.

2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33574
3https://security.snyk.io/vuln/SNYK-DEBIAN10-GLIBC-1296899

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33574
https://security.snyk.io/vuln/SNYK-DEBIAN10-GLIBC-1296899

Chapter 8: Evaluation 81

Figure 8.6: An example of clickable CVSS ID’s in a table listing vulnerabilities

Pie Chart of Exploitable Vulnerabilities

One of the respondents asked for a second pie chart that refined the distribution
of found vulnerabilities further, showing the distribution of found, exploitable vul-
nerabilities. Exploitable means that there are known exploits for a vulnerability.
This can be helpful to understand the level of risk that the container images are
exposed to. A container image with a high number of exploitable vulnerabilities
of high severity is more exposed to risk than a container image with a low number
of exploitable vulnerabilities of low severity.

Not Implemented Feedback

There was some feedback that we were unable to accommodate due to priorit-
izing having the basic features and implementations ready for the final delivery.
Focusing on advanced tasks and implementing them well, unfortunately fell out-
side of the scope in the final few weeks of work. The features or changes that
were suggested or asked for in the survey included clustering the vulnerabilities
by type, refining upgradable to patchable without breaking change and showing
the scatter plot for age of vulnerabilities as years since current date. These can
absolutely be implemented with the current codebase, but not by us within the
deadline for the project.

8.1.3 Other Feedback

In addition to the survey we handed out, we also received feedback directly from
Eirik, as well as Kelly, our supervisor. All the feedback was used to improve the
final version of the Auspex report.

Chapter 8: Evaluation 82

During our talks with Eirik, speaking about what information he wanted to see
in a report, he was very clear that he wanted to see a trend line of the security
state. The trend line provides information at a glance. With a quick look, one can
be able to determine if the security is improving or worsening over time. This was
implemented as a diagram, plotting the mean score of all vulnerabilities found
for the specific image scanned. Scans of previous versions of that image is also
plotted in the diagram, and a trend line is calculated and added. An example of
the trend diagram can be seen in Figure 8.3.

Our supervisor had some suggestion for improvement of the Auspex report dur-
ing our meeting in week 17, which can be seen in Appendix C. At the core of her
suggestion was the need to clarify the scoring system and the corresponding in-
tervals for severity. We are using the CVSS scoring system, and more specifically
the CVSSv3 scoring system, in all parts of the Auspex report and in this thesis.
The scoring system should be clear immediately upon reading the Auspex report.
Additionally, we received feedback suggesting that the ID of each vulnerability
should be clickable. CVSS uses a unique ID for all the vulnerabilities identified.
This ID is non-descriptive however, and mostly used as a way of telling different
vulnerabilities apart. From this feedback, and the feedback from the survey, we
made the ID part of the vulnerabilities clickable hyperlinks, ensuring the reader
can easily find more information as seen in Figure 8.6.

8.2 Does It Meet the Requirements?

By design, our survey only covers our application’s output, the Auspex report,
thus limiting the usefulness of any feedback received to just what the user sees.
Therefore, we formulated a collection of both functional and non-functional re-
quirements early on in the development process, that would ultimately determine
whether or not our application functions to our, and our employer’s satisfaction.
In this section, we will review the requirements we set and whether or not our
application meets them. We will begin by evaluating our application as it relates
to our functional requirements, followed by the non-functional, before finally con-
cluding with a discussion of our findings.

8.2.1 Evaluation of Functional Requirements

We set three functional requirements that we believe to be necessary for the ap-
plication to be useful to our employer. We will go through each requirement in
turn, and discuss whether or not our application actually met them, as well as the
rationale behind why they were included.

Chapter 8: Evaluation 83

F-1 "Auspex should scan container images in a connected Container Registry."

Description: Auspex needs to be connected to an existing Container Registry that
contains all the container images Auspex can scan. Auspex does not have an in-
ternal Container Registry itself, but is connected to the Container Registry of the
environment Auspex pulls the container images from.

Evaluation: Auspex has the capability to scan any image of whichever container
registry it is authenticated with. In the current implementation, only one registry
can be accessed per service deployment, but expanding this to allow authentica-
tion with multiple registries should be trivial.

Our application does indeed meet this requirement. We use Google Workflows to
automate the process of pulling container images from a container registry and
performing a scan.

F-2 "Auspex’s Scanner microservice should perform a vulnerability scan on the
given container images and output a JSON formatted response body."

Description: Given that we structure our application components as multiple mi-
croservices, one microservice should be able to pass information to another mi-
croservice, without interfering or knowing each other’s internal functionality and
inner workings. Passing the data in a common and predictable format allows the
data to be used in different ways, but remain unchanged.

Evaluation: Our application is structured as a collection of microservices, and
should thus adhere to a number of recommended practices and design patterns
that unlock the benefits of this architecture type. In essence, the looser the coup-
ling between two services, the less they know about the inner working of each
other. This has several benefits regarding portability, security and reusability that
are beyond the scope of this chapter, but it is important not only for the function-
ality of our application, but also for its continued use and development by our
employer when they take over the application code. Our application meets this
requirement as well since ’Scanner’ does indeed pass its output in JSON format to
’Reporter’ without the latter being aware of the inner workings of the former.

F-3 "Auspex’s Reporter microservice should transform JSON formatted responses
into human-readable PDF reports detailing vulnerabilities for a given con-
tainer image."

Description: The report that Auspex generates is at the core of the application.
This report is generated based on data from a scan of a container image and used

Chapter 8: Evaluation 84

to highlight and convey key information about vulnerable container images in a
human-readable presentation.

Evaluation: The core idea behind this assignment, was that the raw output from
the existing container security scanning tools was too extensive and complicated
to be useful for non-experts. Therefore, a simplified report highlighting the most
important information within this output was needed, and specified as a require-
ment. We do however, somewhat rely on opinion on this point, as a clear objective
assessment of the understandability of our application’s output is difficult to estab-
lish, even with the survey we conducted. Our application does meet this require-
ment as it stands, since it can successfully transform JSON formatted responses
into a PDF reports. Yet we rely on feedback from our survey and our employer
to further improve report readability, and to properly assess how understandable
and helpful the actual generated reports are to the intended users.

8.2.2 Evaluation of Non-Functional Requirements

In this section, we will evaluate whether or not our application met our non-
functional requirements.

N-1 "Auspex should be as available, as the guarantees given by the cloud plat-
form provider."

Description: Auspex will be deployed on Google Cloud Platform, and is thus
tightly connected with the availability of GCP and its services. The availability
is defined as a Service Level Obective (SLO) in the SLA, outlining the objectives
for the service, such as uptime, latency and error rate [16]. The main services
that is used by Auspex are Cloud Run and Cloud Storage, and both define their
Monthly Uptime Percentage as 99.95%45. To achieve this requirement, our ap-
plication needs to be Cloud Native so that the aforementioned SLO terms are
guaranteed.

Evaluation: From the outset, our application was developed with a Cloud Native
design philosophy, meaning that all of the infrastructure surrounding the applic-
ation’s deployment is controlled by a third party cloud provider. The SLA of GCP
guarantees a high degree of availability for the cloud services our application uses
[16] [34] [35] [36]. Our application’s expected availability thus matches the avail-
ability specified by GCP.

4https://cloud.google.com/run/sla
5https://cloud.google.com/storage/sla

https://cloud.google.com/run/sla
https://cloud.google.com/storage/sla

Chapter 8: Evaluation 85

N-2 "Auspex must ensure confidentiality and privacy."

Description: Since Auspex deals with the security of our employer’s container
image environment, it is of vital importance that our application does not disclose
any sensitive information to potential attackers. To this end, we strive to design
the application to be Cloud Native, which in turn will allow our employer to utilize
the many different security options provided by cloud platforms.

Evaluation: We decided early on that we wanted to make our project a cloud-
native application. Partly for functionality reasons, but also because of the flexib-
ility it would give our employer with regard to security. Unauthorized disclosure
of Auspex reports would give an attacker a list of environment’s most vulnerable
points.

The application is deployed on Google Cloud Platform which provides a great
degree of security and authentication configuration options for users and ser-
vices [37] [38]. The application uses individual service accounts, thereby ensur-
ing granular control over the permissions of each microservice. This allows the
application to be deployed in a Google Cloud Project with the confidence that
the individual microservices do not have privileges beyond the bare minimum.
Moreover, since parts of Telenor’s infrastructure is already hosted on GCP, the ap-
plication should be easy to integrate with their existing network-based security
and access control measures.

These are just some of the possibilities our employer can implement, and ulti-
mately, we are satisfied with the confidentiality and privacy aspect of our non-
functional requirements.

N-3 "Auspex reports must show all vulnerabilities detected in a scan. "

Description: The generated reports must show all vulnerabilities detected from a
scan of container images. It is vitally important that our report does not omit any
information, as this will undermine the credibility of Auspex’s reports.

Evaluation: For our employer to be able to trust the data Auspex’s reports provide,
we needed to ensure that the report would not omit important information. For
practical reasons however, we could not display every detail of every vulnerability
in the report, as that would make the reports too long. Instead, we rank and
prioritize the different vulnerabilities according to their severity, highlight those
that have a known exploit, and show the total distribution grouped by severity.

Furthermore, we decided to display a complete list of all critical vulnerabilities as
the very last chapter of the generated Auspex report, thereby ensuring no critical
vulnerabilities could ever be omitted from the report. Should there be a need

Chapter 8: Evaluation 86

to include a full list of every vulnerability, this would be trivial to implement,
but would make the report less applicable for printed mediums due to the large
number of pages this would require.

Ultimately we are satisfied with our solution in relation to this requirement. We
give the reader enough information to find the most critical elements without
omitting other crucial data. Furthermore, we give the readers information about
the concrete vulnerabilities that can be upgraded, as well as any vulnerabilities
that have working exploits.

N-4 "Auspex must produce readable and understandable reports.""

Description: The Auspex report needs to be human-readable and understandable
for personnel within Telenor with varying levels of expertise. Therefore, we need
to ensure a minimal threshold for readability, by omitting unnecessary informa-
tion, and highlighting more important elements.

Evaluation: The degree to which we are able to fulfill this requirement depends
on the feedback from our employer and the results of our survey. Ultimately, the
usefulness of our application will be determined by whether or not our employer
finds the reports generated by Auspex helpful in their security work.

We believe we satisfied this requirement in the end by using feedback from the sur-
vey to make changes that users requested. These changes include, but are not lim-
ited to, modifying the presentation of certain figures, adding new figures, adding
new columns to tables, and adding more descriptive text for each category in the
report. Even if the number of survey responses was low, we made sure that the
respondents were made up of people who would be using Auspex in their work.

Chapter 9

Discussion

In this chapter we discuss why we made Auspex, as well as some of the choices
made throughout the project.

9.1 Why Auspex Was Developed

In the original task description presented by Telenor, see Appendix A, the project
was pitched as an assignment mainly looking at different tools used to rate con-
tainer image security, such as Docker Bench Security1 and kube-bench2. However,
in our meeting with Eirik after the presentation, he expressed interest in being
able to aggregate the information from these tools and present them in meetings
where people didn’t necessarily have the technological background required to
understand the raw output of these container scanning tools.

In our initial talk with Eirik after being assigned this task, he told us about Snyk,
and that Telenor was interested in using it, and indeed had given it the greenlight
to be used for internal services. This inspired us to investigate the applicability of
Snyk for our project

Looking at the capabilities of Snyk, it became obvious that it was possible to auto-
mate the scanning process, parse the results, and then aggregate it. The raw JSON
output from Snyk, however, was far too complicated to read and parse manually.
As such, we needed to look at the possibility of presenting that information in a
concise and understandable manner. Auspex is our proof of concept that this is in
fact possible.

1https://github.com/docker/docker-bench-security
2https://github.com/aquasecurity/kube-bench

87

https://github.com/docker/docker-bench-security
https://github.com/aquasecurity/kube-bench

Chapter 9: Discussion 88

9.2 Website

As outlined in Sections 7.5.6 and 7.5.7, the data structures TableData and Plot-
Data and the functions that return them are frontend-agnostic, and as such can
theoretically be used to display the data in a range of different mediums and
formats. Generating a static website using this data should be a rather trivial af-
fair using a templating library such as Jinja3, along with a HTML/CSS framework
such as Bootstrap4. Due to time constraints, we did not have the ability to do this
before the thesis deadline.

We envision that a website could be implemented to present a user interface for
scanning images, creating reports, and viewing previously generated reports. Re-
ports could be presented natively on the website as HTML elements and embed-
ded images, while also giving users the ability to download the reports in a PDF
format. Since we already have a REST API in place to facilitate the scanning of
images and creation of reports, the website itself would only act as a presenta-
tion layer over the actual business logic implemented in the individual services
themselves. Having the ability to select images from a list of images found in a
repository, queue up scans, schedule report creation, and more, would make the
Auspex application itself usable to more than just administrators and power users.

9.3 Cloud Run

Cloud Run is an ideal platform for hosting our services, as we are not concerned
about the latency associated with container cold starts5, and our services only run
on-demand. This keeps the price of running the system to a minimum, and has no
impact on the performance of the services beyond the initial request latency.

However, we discovered that due to the fact that Cloud Run containers only use
an in-memory filesystem, the Reporter service could run out of memory when
scanning very large images (>2GB) due to having to download the images before
scanning them, thereby using a large portion of its memory just for storage. In or-
der to rectify this, we experimented with different values the container memory
limit. Even with 4GB allocated memory, Scanner was still not able to scan Re-
porter’s image, which is based on a TexLive image exceeding 2GB in size. To that
end, we had to increase the memory of the service to 8GB, for which Google stip-
ulates that 2 virtual CPUs (vCPU) are required, up from the 1 vCPU we originally
had configured. This essentially doubled the per-second runtime cost of Scanner,

3https://jinja.palletsprojects.com/en/3.1.x/
4https://getbootstrap.com/docs/3.4/css/
5A service that has no active containers running, and must spin up a container before it can

process requests.

https://jinja.palletsprojects.com/en/3.1.x/
https://getbootstrap.com/docs/3.4/css/

Chapter 9: Discussion 89

but was necessary to support scanning of large images.

If Auspex were to be scaled to support thousands of requests daily, and cost was an
important metric to optimize, we would have to deploy multiple tiers of the scan-
ning service with different specs, each designed to handle images in a specific size
range. We would then need to implement a Scanner gateway service which would
fetch information about each image it receives, decide the machine tier required
to scan that image, and then forward the request to the appropriate scanning ser-
vice. Such a scenario does not seem likely given our employer’s current use case,
but it is important to have a strategy in place if it does become relevant.

9.4 Email Workflow

The email workflow described in Section 7.9 is quite bare-bones, and does not
allow for much manipulation and formatting of the data received from Auspex
before it is sent in the email’s body. Relegating this step to a service such as Google
Cloud Workflows, where workflows are defined in a declarative manner gives us
limited control over the email contents, as we are beholden to a limited YAML-
based syntax.

The step that sends the email could be replaced by a standalone service, perhaps
one hosted on a FaaS service such as Google Cloud Functions6. Performing this
step of the email workflow in a service developed in a general-purpose program-
ming language allowing for imperative programming, would give us more free-
dom to process the data received from Auspex, before sending it by email. This
processing could include actions such as downloading the report and sending it
as an attachment rather than as a hyperlink to a bucket, batch-sending emails,
personalized emails for specific recipients, and more.

9.5 Choice of Database

When we started working on the project implementation we had two primary reas-
ons in mind for selecting Google Firestore as the project’s database solution. First
and foremost, we wanted to learn more about NoSQL databases. Given that we
were working with JSON data, which is composed of key-value pairs, we thought
a key-value database would be the best fit. Secondly, we wanted to use a database
hosted in the cloud with solid client libraries and a good pricing scheme, for which
Firestore was two for two.

6https://cloud.google.com/functions

https://cloud.google.com/functions

Chapter 9: Discussion 90

However, we did not envision that the 1MB document limit would be an issue.
For certain extremely vulnerable images such as vulhub/php:5.4.1-cgi7, with its
over 1350 vulnerabilities, the 1MB document size limit proved too small, even
when dividing vulnerabilities into subcollections with one document per severity.

Given a need to scale Auspex and improve its robustness, a switch to MongoDB8,
which supports documents of up to 16MB [39], would be a high priority. For now,
however, the vast majority of images we scanned did not run into this issue, and
indeed it was exclusively images that are intentionally made to be vulnerable that
ended up hitting the document size limit due to their numerous vulnerabilities.

Another solution would be to migrate to a relation database such as MySQL or
PostgreSQL, where vulnerabilities could be stored in separate tables and re-used
for multiple reports, thereby reducing the overall size of the stored data. This
would be a much larger undertaking, however, as all functions interacting with
the database would need to use SQL queries or an Object-relational mapper to
facilitate the reading and writing the data in a structure fit for a relation database,
as opposed to treating the database as a simple key-value store.

7https://hub.docker.com/layers/vulhub/php/5.4.1-cgi/images/sha256-dc9ef2d0cafcf9583b682e0cbfdbd75ecf9d4689a05c7c30804273f2eecf5c53?
context=explore

8https://www.mongodb.com/atlas/database

https://hub.docker.com/layers/vulhub/php/5.4.1-cgi/images/sha256-dc9ef2d0cafcf9583b682e0cbfdbd75ecf9d4689a05c7c30804273f2eecf5c53?context=explore
https://hub.docker.com/layers/vulhub/php/5.4.1-cgi/images/sha256-dc9ef2d0cafcf9583b682e0cbfdbd75ecf9d4689a05c7c30804273f2eecf5c53?context=explore
https://www.mongodb.com/atlas/database

Chapter 10

Closing Remarks

In this closing chapter we summarize our learning outcome from this project,
conclude the thesis and describe future work that can improve Auspex.

10.1 Learning Outcome

In this chapter we discuss the learning outcome and takeaways from this project.

10.1.1 Project

During the project as a whole we learned how to better work as a team and the im-
portance of communication. We also learned the importance of prioritizing tasks.
In the beginning we had a lot of ideas for features and implementations for Aus-
pex, but we learned along the way that it is better to make one well-made feature
rather than many badly made features. Of course, given enough time there is al-
ways the possibility to something better, but with a strict deadline we saw the
need to limit ourselves.

10.1.2 Teamwork and Communication

During the project we had the unique advantage that all three team members
lived together. This made communication within the team easy and lead to free-
flowing discussions. It also made working together quite easy as we could look at
each others computer screens and offer advice and solutions to each other with
minimal delay. It was however challenging communicating externally with the

91

Chapter 10: Closing Remarks 92

other stakeholders of the project due to being limited to using digital solutions for
communication, but we adapted ourselves to this.

10.1.3 Writing the Thesis

Prior to this project we were already familiar with using Overleaf to write papers.
Still, it is always a challenge to write large papers and ensuring that the content
is of consistent quality, well written and correct.

10.2 Conclusion

The goal of this project was to develop an application that parses the overly ex-
tensive output of container security scanning tools, and produces a report in a
more understandable and presentable format. This sounds straight forward, but
when we started this project we knew very little about either of these topics. For
example, we knew nothing of CVE, their scoring system, what were typical vul-
nerability sources, how they were ranked, or how scanning tools identified them.
Additionally, for it be of any practical use to our employer, we had to learn how
to design the application as cloud native. This naturally revealed another long
list of topics we needed to research, including NoSQL databases, cloud platforms,
and finally the crucial importance of caffeine when writing a thesis. In short, the
learning outcomes from this project has been immense for us, and despite a few
nitpicks, we achieved what we intended at the start of the project.

10.3 Further Work

In this section we go through some of the possibilities for further work and im-
provements for Auspex.

10.3.1 Website

As outlined in Chapter 9, the creation of a website would increase the accessib-
ility of Auspex by a great degree. The code base is ready to accommodate the
presentation of reports in multiple formats, and as such the creation of a website
should be one of the highest priorities when expanding the number of available
presentation formats. As we move forward with this project, this is the primary
new feature we want to introduce.

Chapter 10: Closing Remarks 93

10.3.2 Email Workflow

As discussed in Chapter 9, parts of the email workflow can be replaced by a
standalone service that enables more comprehensive and more richly formatted
emails, as well providing a greater degree of configurability. As we only came up
with this idea at the tail-end of the project, we did not want to try to introduce
new services so late in the development process. We therefore relegated this to
future work, but it is definitely a high priority for us.

10.3.3 Optimizing Service Docker Images

The Reporter service’s Docker image is based on a TeXLive image that exceeds 2
GB in size. It should be investigated whether or the image size can be reduced
by making a custom Docker image with only the bare minimum of software and
libraries required to produce the PDF report.

10.3.4 Other Scanning Tools

Our services have interfaces in place to easily accommodate other scanning tools.
In the event that we discover a better alternative to Snyk, we should be able to
integrate it with minimal additions to the source code.

10.3.5 Supporting Multiple Container Registries

Currently Auspex can only access one private registry per service deployment due
to the way the authentication process is programmed. In the future, we envision
that Scanner service deployments can include a configuration file with specific
registry names and their corresponding authentication information. By allowing
granular control over the authentication method for each registry, Scanner can
support an ever growing number of registries.

10.3.6 Feedback

Some of the feedback we received on our survey we were unable to implement due
to time constraints, as noted in Section 8.1.2. We also would have liked to conduct
another survey on the final version on an Auspex report to receive more feedback
and to further improve it, but there was not enough time to do so. Another survey
could have helped to confirm, or disprove, that our implementation of features as
suggested from the survey feedback, were good.

Bibliography

[1] Telenor at a glance. [Online]. Available: https://www.telenor.com/about/
who-we-are/telenor-at-a-glance/.

[2] Mitt Spor. [Online]. Available: https://www.mittspor.com/.

[3] Snyk. [Online]. Available: https://snyk.io/.

[4] SnykDocker. [Online]. Available: https://snyk.io/docker/.

[5] CVE® Program, About. [Online]. Available: https://www.cve.org/About/
Overview.

[6] Surbiryala, ‘Cloud Computing: History and Overview,’ IEEE, 2019.

[7] Containers and the Cloud: An Easier Way to Deploy Workloads, Mar. 2022.
[Online]. Available: https://www.intel.com/content/www/us/en/cloud-
computing/containers.html.

[8] Docker Inc, Understanding Docker Registry. [Online]. Available: https://
docs.docker.com/registry/introduction/.

[9] N. e. a. Dragoni, ‘Microservices: yesterday, today, and tomorrow,’ Springer,
2017.

[10] Dimitriou et. al., ‘Container Security: Issues, Challenges, and the Road
Ahead,’ IEEE Access, 2019.

[11] CVE Home. [Online]. Available: https://www.cve.org/About/Overview.

[12] FIRST, Common Vulnerability Scoring System version 3.1: Specification Doc-
ument, 2015. [Online]. Available: https://www.first.org/cvss/specification-
document.

[13] Functional Requirements, 2022. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=Functional_requirement&oldid=1066505482.

[14] Non-functional requirement, 2022. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=Non-functional_requirement&oldid=1073196491.

[15] Cloud Native Computing Foundation, CNCF Cloud Native Definition v1.0,
2018. [Online]. Available: https ://github . com/cncf/ toc/blob/main/
DEFINITION.md.

94

https://www.telenor.com/about/who-we-are/telenor-at-a-glance/
https://www.telenor.com/about/who-we-are/telenor-at-a-glance/
https://www.mittspor.com/
https://snyk.io/
https://snyk.io/docker/
https://www.cve.org/About/Overview
https://www.cve.org/About/Overview
https://www.intel.com/content/www/us/en/cloud-computing/containers.html
https://www.intel.com/content/www/us/en/cloud-computing/containers.html
https://docs.docker.com/registry/introduction/
https://docs.docker.com/registry/introduction/
https://www.cve.org/About/Overview
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://en.wikipedia.org/w/index.php?title=Functional_requirement&oldid=1066505482
https://en.wikipedia.org/w/index.php?title=Functional_requirement&oldid=1066505482
https://en.wikipedia.org/w/index.php?title=Non-functional_requirement&oldid=1073196491
https://en.wikipedia.org/w/index.php?title=Non-functional_requirement&oldid=1073196491
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/toc/blob/main/DEFINITION.md

Bibliography 95

[16] Cloud Run Service Level Agreement (SLA), Dec. 2019. [Online]. Available:
Cloud%20Run%20Service%20Level%20Agreement%20(SLA).

[17] Cloud Firestore. [Online]. Available: https://firebase.google.com/docs/
firestore/.

[18] Key Terms - Bucket. [Online]. Available: https://cloud.google.com/storage/
docs/key-terms#buckets.

[19] Snyk CLI. [Online]. Available: https://docs.snyk.io/snyk-cli.

[20] TeX Live, Oct. 2021. [Online]. Available: https ://en.wikipedia .org/w/
index.php?title=TeX_Live&oldid=1052664309.

[21] Matplotlib - Visualization with Python. [Online]. Available: https://matplotlib.
org/.

[22] J. Fennema, PyLaTeX, 2015. [Online]. Available: https://jeltef.github.io/
PyLaTeX/current/#.

[23] Janani, Agile Methodology, Jun. 2021. [Online]. Available: https://www.
atatus.com/glossary/agile-methodology/.

[24] S. K. Pal, Software Engineering | Classical Waterfall Model, Mar. 2022. [On-
line]. Available: https://www.geeksforgeeks.org/software-engineering-
classical-waterfall-model/.

[25] S. Jena, Lean Software Development (LSD), Oct. 2021. [Online]. Available:
https://www.geeksforgeeks.org/lean-software-development-lsd/.

[26] M. Rehkopf, Kanban vs. scrum: which agile are you? [Online]. Available:
https://www.atlassian.com/agile/kanban/kanban-vs-scrum.

[27] MkDocs. [Online]. Available: https://www.mkdocs.org/.

[28] G. van Rossum, B. Warsaw and N. Coghlan, PEP 8 – Style Guide for Python
Code, Jul. 2001. [Online]. Available: https://peps.python.org/pep-0008/.

[29] The Chromium Projects, Memory safety. [Online]. Available: https://www.
chromium.org/Home/chromium-security/memory-safety/.

[30] G. Thomas, A proactive approach to more secure code, Jul. 2019. [Online].
Available: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-
approach-to-more-secure-code/.

[31] I. Cunningham & Cunningham, ‘Ten Years Of Test Driven Development,’
Jun. 2014. [Online]. Available: https://wiki.c2.com/?TenYearsOfTestDrivenDevelopment.

[32] Kent Beck, A Brief History of Test Frameworks, Aug. 2007. [Online]. Avail-
able: https :// shebanator. com/2007/08/21/a - brief - history - of - test -
frameworks/.

[33] JetBrains s.r.o., Python Developers Survey 2020 Results, 2020. [Online]. Avail-
able: https://www.jetbrains.com/lp/python-developers-survey-2020/.

[34] Google Cloud, Firestore Service Level Agreement (SLA), Jan. 2020. [Online].
Available: https://cloud.google.com/firestore/sla.

Cloud%20Run%20Service%20Level%20Agreement%20(SLA)
https://firebase.google.com/docs/firestore/
https://firebase.google.com/docs/firestore/
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.snyk.io/snyk-cli
https://en.wikipedia.org/w/index.php?title=TeX_Live&oldid=1052664309
https://en.wikipedia.org/w/index.php?title=TeX_Live&oldid=1052664309
https://matplotlib.org/
https://matplotlib.org/
https://jeltef.github.io/PyLaTeX/current/#
https://jeltef.github.io/PyLaTeX/current/#
https://www.atatus.com/glossary/agile-methodology/
https://www.atatus.com/glossary/agile-methodology/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/lean-software-development-lsd/
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://www.mkdocs.org/
https://peps.python.org/pep-0008/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://wiki.c2.com/?TenYearsOfTestDrivenDevelopment
https://shebanator.com/2007/08/21/a-brief-history-of-test-frameworks/
https://shebanator.com/2007/08/21/a-brief-history-of-test-frameworks/
https://www.jetbrains.com/lp/python-developers-survey-2020/
https://cloud.google.com/firestore/sla

Bibliography 96

[35] Google Cloud, Cloud Storage Service Level Agreement (SLA), Nov. 2021. [On-
line]. Available: https://cloud.google.com/storage/sla.

[36] Google Cloud, Workflows Service Level Agreement (SLA), Dec. 2021. [On-
line]. Available: https://cloud.google.com/workflows/sla.

[37] Google Cloud, Authentication overview, May 2022. [Online]. Available: https:
//cloud.google.com/docs/authentication.

[38] Google Cloud, Identity and Access Management (IAM). [Online]. Available:
https://cloud.google.com/iam.

[39] MongoDB Inc., MongoDB Limits and Thresholds. [Online]. Available: https:
//www.mongodb.com/docs/manual/reference/limits/#mongodb-limit-
BSON-Document-Size.

https://cloud.google.com/storage/sla
https://cloud.google.com/workflows/sla
https://cloud.google.com/docs/authentication
https://cloud.google.com/docs/authentication
https://cloud.google.com/iam
https://www.mongodb.com/docs/manual/reference/limits/#mongodb-limit-BSON-Document-Size
https://www.mongodb.com/docs/manual/reference/limits/#mongodb-limit-BSON-Document-Size
https://www.mongodb.com/docs/manual/reference/limits/#mongodb-limit-BSON-Document-Size

Appendix A

Additional Material

97

Sensitivity: Open

Sikkerhet i Containers
Bakgrunn
Stadig flere IoT enheter blir tilkoblet nettet for å kunne gi brukerne enkel tilgang til å styre og
kontrollere disse. Disse enhetene lages av mange ulike leverandører, alt fra små til store
multinasjonale selskaper. For mange forbrukere er det en lav terskel for å installere og bruke
disse enhetene og muligheten for at persondata kommer på avveie er økende. For å kunne sikre
persondata er en avhengig av at tilbyderne forholder seg til GDPR (General Data Protection
Regulation) og også gir brukerne mulighet til å kontrollere sine egne data uten at det gir en risiko
for at data kan gå tapt eller misbrukt på noen måte.

Brukerdata lagres ofte i skyen og i mange tilfeller brukes løsninger fra Amazon, Google,
Microsoft og andre leverandører av skytjenester. I et tenkt oppsett vil kanskje løsningen være
basert på Containers som er organisert av en Orchestration løsning. Dette kan f.eks. være Docker
Containers og Kubernetes Orchestration løsning. Enheten vil da kommunisere med denne
skyløsningen over internett, enten gjennom WiFi, kablet eller mobil tilkobling. I en del tilfeller
krever disse enhetene en egen gateway som kommuniserer med skyløsningen.

For ulike enheter vil protokoller som brukes kunne være Zigbee, Z-Wave, WiFi, eller Bluetooth
mellom enheter og gateway, MQTT eller proprietære protokoller mot skyløsningen. I tillegg vil
apper kommunisere mot skyløsningen basert på http eller websocket-baserte protokoller.

Oppgave 2 (Sikkerhet i Containers):
Oppgaven blir å vurdere sikkerheten rundt Containers og Orchestration løsninger. Dette gjøres
ved å sette opp en enkel løsning som bruker et minimum av 2 Containers. Det enkleste vil være å
sette opp en web-front som bruker en database og at disse kjører i hver sin Container. Det finnes
ulike eksempel på nettet av løsninger som gjør dette, f.eks.:
https://wkrzywiec.medium.com/how-to-run-database-backend-and-frontend-in-a-single-click-
with-docker-compose-4bcda66f6de

Når denne løsningen er oppe og kjører blir oppgavens neste steg å vurdere sikkerheten på
løsningen. Dette gjøre ved å ta utgangspunkt i Docker Bench Security og kube-bench. Etter å ha
kjørt disse må en vurdere resultatet og komme med et forslag til hvordan en kan bruke dette for
å:

1. Forbedre sikkerheten i den oppsatte løsningen
2. Gjøre kontinuerlige vurdering av løsningen etter hvert som en videreutvikler denne

I Telenor har vi fokus på personvern og sikkerhet, og mange av løsningene som finnes på
markedet kan være tvilsomme med hensyn til dette. Målet med oppgaven er å se på hvilke
verktøy en kan bruke for å evaluere sikkerhet for de gitte komponentene i et IoT system og
komme fram til et forslag om hvilke kriterier en bør sette for et IoT system som en ønsker å
tilby til Telenor sine kunder.

3

Sensitivity: Open

I dette arbeidet er det en fordel å sette opp en risikoanalyse og bruke dette som benchmark på
hvor bra evalueringen fungerer.

Oppgavens mål blir å sette seg inn i hvordan Docker Bench Security og kube-bench
fungerer og så bruke resultatet fra dette til å komme med en anbefaling hvordan disse kan
brukes på en effektiv måte for å bedre sikkerheten i løsninger der en har flere Containers. Finnes
det andre verktøy som kan bidra til å forbedre sikkerheten enda mer og som kan anbefales?

Kontaktperson: Eirik Stephansen, Tech Lead IoT, Telenor Mobil
92220222, eirik.stephansen@telenor.no

4

Project Plan - Bachelor Thesis
Peder Hovdan Andresen

Patrick Eilert Krosby

Anders Christoffer Westby

31. January 2022

1

Table of Contents
1 Background and Goals 4

1.1 Background 4
1.2 Project Goals 4

2 Scope 5
2.1 Subject Area 5
2.2 Task description 5

2.2.1 Requirements for Cloud Application 6
2.3 Limitations 7

3 Project Organization 7
3.1 Roles and responsibilities 7
3.2 Workflow and Group Rules 8

3.2.1 Communication channels 9
3.2.2 Group rules 10

4 Planning, execution and reporting 11
4.1 Main Project Sections 11
4.2 Development Model 11
4.3 Method and Approach 13
4.4 Status Meetings and Decision Points 14

5 Quality Control 14
5.1 Documentation, Standards and Source Code 14

5.1.1 Software Documentation 15
5.1.2 Standards 15
5.1.3 Version Control 16

5.2 Inspections and Testing 16
5.2.1 Formatting 17
5.2.2 Static analysis 17
5.2.3 Tests 17
5.2.4 Deployment 17

5.3 Risk Analysis 18

6 Project Activities 21
References 22

2

1 Background and Goals

1.1 Background

Telenor1, one of the leading telecommunication companies in Norway, has a great focus on

security. They deliver a wide range of security products and solutions to both private

consumers and businesses. A large part of these solutions are cloud based solutions using

providers such as AmazonWebServices (AWS)2,Google Cloud Platform (GCP)3 or Microsoft

Azure4, and organized in containers, typically created using Docker, and orchestrated using

container orchestration solutions such as Kubernetes.

To evaluate and ensure satisfactory security levels for components running in these

container solutions it is necessary to use tools such as Docker Bench Security5 and

kube-bench.6 The purpose of these tools is to run and scan a provided container image and

return the result. The information provided can often be difficult to parse and understand,

especially for personnel without technical knowledge.

1.2 Project Goals

The goals of the project will be to deliver a bachelor thesis describing and reflecting on our

work, the process and decisions, as well as our recommendations for which scanning tool to

use for container security evaluation. As a part of this we will also develop our own product,

a tool to parse logs from container security scanners and generate readable and

understandable reports from these scans. The reports generated can be used internally to

make security decisions across different levels of competency. The goal of the tool will be to

make it available to Telenor so they can integrate it, or adapt it, for their own workflows.

6 https://github.com/aquasecurity/kube-bench
5 https://github.com/docker/docker-bench-security
4 https://azure.microsoft.com/en-us/
3 https://cloud.google.com/
2 https://aws.amazon.com/
1 https://www.telenor.no/om/

3

2 Scope

2.1 Subject Area

For this project we will branch across multiple subject areas, such as:

● Software Development
○ Developing an application for parsing information, deploying this on GCP and

integrating it into a workflow.

● DevOps
○ Developing, delivering and operating an application, automating and

optimizing processes.

● Cloud Operations
○ Integrating our application into a workflow and hosting it on a cloud service,

including processing and storage of logs and reports.

This means we will need to acquaint ourselves with tools, software and processes, such as

● Docker and Kubernetes

● Security tools

● Container security

● GCP

2.2 Task description

In order to create a product that satisfies our employer’s requirements, we have to create a

cloud application consisting of several different microservices that can scan container

images and produce PDF reports. These reports can be for either a single container image

or a set of container images.

Firstly, we need a REST API service that exposes this functionality through HTTP endpoints.

Furthermore, we need to create an application that can perform container scanning and

produce formatted log files that can be parsed by other programs and stored in a database.

Finally, we need an application that can use the aforementioned logs to produce human

readable reports in a PDF format that contains the most relevant information from the scans,

presented in a way that people without an IT background can understand.

4

To begin working on the aforementioned services, we will get acquainted with different

container security scanning tools that can be used to evaluate security vulnerabilities in

container images. We will then need to create a service that uses this scanning application

and expose its functionality through an endpoint in our REST API.

Furthermore, we will need to create another service that can host the report generator itself.

This will require the most work out of everything in the project, and will require the majority of

our time to implement due to the considerations of the project requirements, both functional

and non-functional. We will need to run tests such as A/B testing in order to evaluate the

optimal report format for people without IT backgrounds, as this can provide us with valuable

feedback to improve how we present the information in the report.

2.2.1 Requirements for Cloud Application

Functional Requirements
● Create a cloud application that can run vulnerability scanning on container images

and output a JSON-formatted report.

● Create a cloud application that can transform JSON-formatted reports into

human-readable PDF reports detailing vulnerabilities for a given container.

● Set up a cloud-based service exposed through a REST API using the two previously

mentioned applications, that can be integrated in a CI/CD pipeline to automatically

generate human-readable reports in a PDF format detailing vulnerabilities for a given

container image or a set of container images.

Non functional requirements
● Streamline the process of scanning a given container image or images and sharing

findings.

● Easier to retrieve log data from security scans.

● Reports that are understandable by people without any technical background.

Preliminary List of Scanner Candidates:
● Docker bench

● Kube-bench

5

● Snyk7

● GitHub Actions (Dependabot, etc.)

● GitLab CI/CD

Preliminary Metrics for Testing:
● Number of vulnerabilities found

● Scan duration

● Amount of metadata for each scan

● Amount of metadata for each vulnerability

● Number of languages / platforms supported

2.3 Limitations

The scope of this thesis will be limited to the aspects of container security that can be

discerned from analyzing container images in a non-runtime environment. Thus, while our

analysis is limited to the CVE program’s list of identified vulnerabilities, this list is constantly

updated and added to by a dedicated and professional community. However, there are

certain vulnerabilities that our analysis will not include, such as vulnerabilities in the software

itself, the system and -network, architecture, and how persistent data is stored. This means

that our analysis will not be addressing the handling of personal data under GDPR, nor will it

evaluate other privacy related issues.

3 Project Organization

3.1 Roles and responsibilities

Team members
● Team Lead - Patrick E. Krosby

● Lead Developer - Peder H. Andresen

● Secretary - Anders C. Westby

Other parties
● Project Advisor: Jia-Chun Lin, NTNU

7 https://snyk.io/

6

● Telenor Norge via: Eirik Stephansen, Telenor

3.2 Workflow and Group Rules

Time tracking
All members of the team will use the time tracking tool Clockify8 to log their work hours. All

time spent on the project by each individual team member needs to be logged with a small

description of what work has been done.

Kanban board
The team will utilize a Trello9 board to keep track of the tasks that are being worked on, what

needs to be done and what tasks have been completed. The structure of our Trello board will

serve to mimic a kanban board, which is highly relevant to our chosen development

methodology (Agile). In order to efficiently organize sprints, we need a Kanban board to

keep track of the various tasks that require our attention. New tasks will be added

continuously and all members of the team will need to keep themselves updated on changes

and updates.

Meetings and minutes of meeting
The team will have weekly meetings with the project advisor on Wednesdays from 13:00 to

13:30. Before each meeting with our advisor we will hand in a weekly status report via email

outlining the work that has been done, issues encountered and plans for the following week

using the predefined template located in the shared Google Drive folder.

We will have continuous contact and communication with our employer and set up meetings

as necessary. The goal of these meetings will be to keep our employer updated on our

progress as well as clarifying any question that may arise from our work.

Minutes of meetings will be kept for all meetings with both advisor and employer starting

from week 4.

Notes
We will use the note taking and knowledge organization tool Obsidian10 to write notes and

document our knowledge in a structured way. Obsidian automatically structures documents

10 http://obsidian.md
9 https://trello.com/
8 https://clockify.me/

7

in a graph (see Graph Theory), which enables us to see how they relate to each other. This

allows us to write short notes and documents, which can then be sorted and structured

based on their relationships, be it direct references or common tags.

Documentation
For documenting our work and writing our thesis we will use Overleaf, an online LaTex

editor,11 to generate documents typeset with LaTeX. This allows us to write the thesis

collaboratively and ensures everyone is working on the same version of the thesis.

Furthermore, writing the thesis in LaTeX ensures consistent typesetting across the entire

document, as well as providing numerous tools to produce high quality figures.

For writing and storing other documentation such as minutes of meeting and weekly status

reports we will write these documents in Google Docs and use a shared Google Drive folder

only accessible by the team members to store them in.

Expenses
We do not foresee any notable expenses related to the project.There may be costs

associated with using cloud services but Telenor has offered to incorporate us into their GCP

plan. As such, any cost for the team related to GCP will be minimal and mostly related to

early testing and exploration for ourselves. Any cost incurred using other software or

services will be minimal and if necessary the cost will be split equally among the team

members. Any travel expenses incurred will be covered by the team members individually.

3.2.1 Communication channels

Slack
Our employer wanted to use the chat application Slack12 as our primary channel of

communication. To that end, we have set up a Slack workspace where we can conduct

continual text-based communication with him. He has signaled to us that he will attempt to

answer any questions we have as soon as possible, and that we should bring any inquiry to

him.

Microsoft Teams

12 https://slack.com/
11 https://www.overleaf.com/

8

For the weekly meetings with our advisor, we came to a mutual agreement to use Microsoft

Teams due to its world class video conferencing functionality. Furthermore, our Teams team

will also serve as a place to send text messages and upload files that are relevant for our

advisor.

Email
For other communication purposes, we will use email, as this is an ubiquitous line of

communication that nearly everyone can be reached through. Formal inquiries to other

parties will be conducted via email whenever possible.

In-person meetings
We are in a unique situation where all 3 members of the team live together, and as such we

can hold in-person meetings whenever the need arises at a short notice. We will attempt to

work collaboratively in person to the maximum extent possible.

3.2.2 Group rules

Meetings
Attendance for all meetings is mandatory. All team members are expected to show up for the

meetings prepared and ready.

Workload
As outlined in the course description, each team member is expected to work 25- 30 hours

each week.

Group Work
All team members will utilize the team's Kanban board to inform themselves of which tasks

need to be worked on at any time. Most work will be done collaboratively.

All team members are expected to contribute equally and to log their time using clockify

during or after each work session with a short description.

Absence
If a team member falls ill or is otherwise unable to attend meetings or work activities the rest

of the team shall be notified. Work tasks and activities will be distributed among other team

members as necessary.

9

Violation of rules
Violation of any rules will result in a strike against the offending team member.

All team members should strive to not receive any strikes against them and contribute to a

good working environment.

4 Planning, execution and reporting

4.1 Development Model

There were multiple development models that we discussed using for this project. Among

these were the Waterfall model, and the Agile methodologies of Lean, Scrum and Kanban.

Choosing the right development model for us and this project boiled down to the question;

What are our goals and how do we achieve those? We wanted to use a development model

that allowed us to iterate frequently and fast, as well as quickly and continuously respond to

adjustments or changes in scope or requirements. This immediately rules out the very rigid

Waterfall methodology as it makes it difficult to readjust to scope or requirements changing

during the project.

The Agile methodology and approach focuses on continuous development, iteration and

testing when developing software [1], which suits our needs. Now our choice is between

Lean, Scrum and Kanban.

Lean focuses on delivering only what is needed and eliminating waste by employing a

strategy of producing a minimum viable prototype (MVP) and reiterating on feedback.[2] We

could use the Lean model because we are intending to deliver a product to the customer in

the form of an application. However, we dont believe it takes into account the whole process

of the project. Lean is very focused on only the necessities of development, eliminating

meetings and documentation demands.[3] This aspect does not work well with producing a

well-reflected bachelor thesis.

Scrum is organized in 2-3 week long sprints, where each sprint defines a set of features that

must be produced.[1] Sprints then result in a delivery of the product to the customer. Scrum

does however fall into the trap of the Waterfall model and being rigid in terms that the sprints

10

require the features and tasks to be defined before the start of the sprint. This does not work

well with the frequent changes of requirements and scope that we expect.

Kanban on the other hand acknowledges that the 2-3 week sprints are too long and doesn’t

allow for reprioritization and changing of tasks during the sprints. The Kanban method

approaches the agile workflow in a different way, utilizing a Kanban board for organizing

tasks and priorities. The process is continuous and allows for changes to happen at any

time.

For our purposes, we have found that an agile development model suits what we are trying

to achieve, and more specifically the Kanban methodology. This allows for a continuous

workflow where we can respond to changes quickly without being locked in to a predefined

process, and ability to go back and reiterate on previous iterations based on feedback. This

methodology also allows for exploring different subjects and technologies that may change

the scope or requirements. We will use Trello as our Kanban board to track our work tasks,

and a Gantt chart to monitor progress, keeping track of milestones and making sure we are

on schedule. We will not apply a pure Kanban methodology, also utilizing informal sprints.

At the center of Kanban, is the Kanban board. We will use Trello for our purposes. Tasks that

are created will start in the “To do” category, moved to the “Doing” category when being

actively worked on, and to the “Done” category when completed. Tasks will be assigned a

deadline date if applicable. Tasks that are deemed to be of a lower priority will be moved to a

separate category named “Backlog”. We will only begin working on those tasks once the

higher priority tasks have been completed. Usually the Kanban methodology requires that

you limit the number of tasks that are in the “Doing”-category. We will not enforce any strict

limit for this as there are multiple tasks that may need to be done in parallel, but strive to

keep this at a sensible limit.

A valuable tool we will use in parallel is our Gantt chart. We will consult this chart weekly to

make sure we are meeting our deadlines, achieving milestones and are on track.

We will utilize sprints from the agile methodology, but not as strict as the Scrum

methodology. We will organize our work in 2 week sprints, where we allow for changes in

tasks and approach to accommodate changes in scope and requirements. After each sprint

period we will conduct our sprint review with our advisor as part of our weekly meetings.

Every second meeting is then a sprint review. A new sprint will then start after this meeting.

11

4.2 Method and Approach

1. A client that contacts the REST API and requests it to scan a container image or

retrieve a specific scan report.

2. A REST API hosted on Google Cloud Functions that provides a limited number of

endpoints for interacting with the microservices within the architecture.

3. Scanner is a Docker container based on the Python3.10 image, and it has Snyk and

Docker installed. The container runs an application that can pull Docker images and

scan them using Snyk, which is a vulnerability scanning tool. We will use Snyk to

scan container images for vulnerabilities. The scan results are returned as a JSON

encoded string in the response payload.

4. Container Registry that is used to store all container images used by Telenor.

5. Report Generator is a Docker container based on the texlive/texlive image. It runs a

Python application to transform one or more scan logs produced by Scanner into a

human-readable PDF report.

6. Report storage is a Cloud Storage bucket where all PDF reports will be stored.

7. Logger is a simple cloud function that takes a JSON-encoded scan log generated by

the Scanner, and stores it in a NoSQL database (Firebase in this case).

8. Scan Metadata Storage stores metadata for each scan log, such as image name,

time of scan vulnerability score and id of the scan. The metadata is stored in a

Firestore database.

9. Raw Json Log Storage is a Cloud Storage bucket where the raw logs from scans are

stored.

12

4.3 Status Meetings and Decision Points

● Weekly meetings with the advisor every Wednesday at 1pm. Prior to these meetings

we will hand in a weekly status report outlining our work, plans and any problems we

may have encountered. These meetings will be used to get feedback.

● Meetings with the employer will be scheduled as needed to show progress. We will

keep continuous contact via Slack to ask questions and share progress.

● As a part of our agile approach and ability to work together physically in most work

sessions, we will make continuous decisions based on inter-team discussions, as

well as discussions with our advisor and employer.

5 Quality Control

5.1 Documentation, Standards and Source Code

All work and relevant findings shall be documented and sources regularly added and

updated. All code written should follow common coding standards and comment should be

added for all code.

The main documents that we expect to write are:

● Project plan

● Technical documentation (mkdocs hosted on gitlab)

● User manual for the product

● Tutorial

● Bachelor thesis

● Minutes of meeting

● Weekly Status Reports for advisor

13

5.1.1 Software Documentation

In order to provide a user manual, as well as documentation for future developers, we will

use the software MkDocs13 to create a static website hosted on GitLab serving

documentation that is both written by us and automatically generated from our source code.

The user manual portion of the documentation will be hand-written by the team, and will

feature guides and tutorials on how the application works and how to use it.

Furthermore, developer documentation will include hand-written sections as well as

auto-generated API documentation for the various parts of the project source code.

5.1.2 Standards

Citations
Our citation style of choice for the bachelor thesis itself will be the IEEE citation standard14

due to the technical nature of our product, as well as being recommended by our supervisor.

Python
For docstrings in our source code we will follow the Numpydoc standard. We have chosen

this standard due to its readability, structure and compatibility with type hints. Other types of

source code documentation in Python files will automatically be formatted by the Python

code formatter Black, which has a single canonical style that cannot be modified.

Additionally, we will strive to have close to 100% type coverage of our Python code through

the use of type annotations. Good type annotations will help us uncover errors stemming

from Python’s dynamic type system. Furthermore, it helps new developers more quickly

understand our code, as each function and variable will have clearly defined types rather

than being opaque and untyped. An additional benefit of this is that we can compile

performance sensitive modules to C extensions using Mypyc15 if we have full type coverage

Go
All source code and documentation written in Go will be automatically formatted with Gofmt.

We will use the coding practices outlined in Effective Go16 as a guideline for writing code in

16 ​​https://go.dev/doc/effective_go
15 https://github.com/mypyc/mypyc

14 https://www.ieee.org/content/dam/ieee-org/ieee/web/org/conferences/style_references_manual.pdf
13 https://www.mkdocs.org

14

Go. Due to Go’s static type system, we will not have to worry about providing extra type

annotations for our code like with Python.

5.1.3 Version Control

The full extent of our source code will continually be published in an online Git repository

hosted on NTNU’s GitLab solution in a group shared by all members of the bachelor

project17.

Git will serve as both a version control tool for working collaboratively, as well as serving as

an online backup of our source code. Git has become the de facto standard version control

system for developers over the years, and has an adoption rate of upwards of 90% in this

group18. Its relevance to our future jobs, its adoption rate, and the existence of a GitLab

solution hosted by NTNU are all reasons we picked Git as our version control system.

When implementing features, we will make use of Git branches. A team member creates a

branch from the master branch, implements their change, then submits a pull request that is

accepted by one of the other group members. Should the need arise, we can enable multiple

sign-off to accept pull requests, but in usual circumstances we will only require a single

group member to accept the pull request.

5.2 Inspections and Testing

We will continually run our code through a CI/CD pipeline that performs formatting, static

analysis, and testing. Pull requests must pass the checks implemented by our pipeline

before they can be merged into the master branch. We will use GitLab CI/CD to set up the

pipeline.

5.2.1 Formatting

As outlined in section 5.1.2 we will make use of automated code formatting tools, which

includes the formatters Black for Python and gofmt for Go. These formatters ensure our

code is formatted with a consistent style regardless of the author that contributed it. Having a

consistent style is important both for code readability and for producing informative diffs. If

two authors format their code differently, a diff message will not produce an output that

18 https://en.wikipedia.org/wiki/Git#Adoption
17 https://gitlab.stud.idi.ntnu.no/containers-bachelor

15

clearly shows the difference between two versions of the same file. Running a formatter

post-commit will help mitigate this issue.

5.2.2 Static analysis

As part of the Continuous Integration part of our pipeline, we will run static analysis tools like

Pylint to find common logical errors produced by developers, such as unbound variables and

missing return statements.

Furthermore, we will make use of mypy to lint the soundness of the types in our code. As

stated in section 5.1.2, we will strive to have 100% type coverage, which will improve the

analysis mypy is able to provide, as type hints are the main heuristic used by mypy.

5.2.3 Tests

We will strive to have 100% test coverage of all code running in containers (this excludes

code running in Cloud Functions). For Python code, we will write our tests with the testing

framework Pytest in mind, while for Go we will write tests using the builtin `testing` package.

In order to achieve maximum test coverage, we will make use of the Pytest plugin pytest-cov

to map out the modules in most urgent need of more robust tests.

For a commit to pass the testing phase of the CI/CD pipeline, no tests are allowed to fail. In

the initial development phase, we will deem it acceptable to mark certain tests to be skipped

for convenience. However for final deployment, all tests must pass before code can be

merged with the master branch.

5.2.4 Deployment

Once our software architecture is ready to be deployed on Google Cloud Platform, we will

have to integrate a deployment phase to our CI/CD pipeline. After all checks have passed,

new versions of our software should be automatically deployed to Google Cloud Platform by

the CI/CD pipeline.

5.3 Risk Analysis

This is a simple risk analysis of the project and what we deem are the most likely risks to

occur throughout the project and development period. For each risk there is a short

16

description followed by an evaluation of the likelihood of the risk occurring and the impact of

the risk on the project. Likelihood and impact will be assigned with a score of 1 through 5,

with 1-2 being low, insignificant or trivial, 3-4 being a medium risk and 5 being high,

meaning critical or severe. Each risk should have an action to counteract the likelihood and

reduce the impact of the risk.

No. Description Likelihood Impact Action

1 Losing data or access to

data that is necessary to

complete the project.

1 5 Use multiple backup

solutions. Host local Git

repository in a Google

Drive folder.

2 Team member falls ill and

is unable to work.

2 3 Ensure work is done in

a timely manner, so

that the impact of the

temporary loss of a

team member is

minimized.

3 Significant changes in the

scope of the project (scope

creep)

2 3 React to changes in the

next sprint.

4 Feature not working as

intended.

2 3 Create Proof of

Concept (POC) as

soon as possible during

a sprint.

5 Payment for Google Cloud

Platform not completed in

time for deployment

1 3 Consistent

communication with

employer to ensure

inclusion in Telenor’s

GCP deal.

6 Intermediate deadlines are

not met

1 3 Use sprints to work

towards intermediary

deadlines.

17

7 Thesis is not ready for final

delivery

1 5 Meet intermediary

deadlines in order to

stay on schedule.

8 Final product not ready for

final deadline.

2 5 Verify progress weekly

with Gantt chart to stay

on schedule.

All identified project risks are plotted in the heat diagram below, identified by the risk number.

For each risk the values for likelihood and impact are multiplied and the resulting value

signifies the total risk.

● Red (18-25): Critical risk

○ The impact of the risk will cause severe damage to the progress of the

project. Will require significant counteraction to mitigate and reduce likelihood

and impact.

● Yellow (8-17): Medium risk

○ The risk is notable and may cause damage, slow or alter progress. Requires

counteractions to mitigate.

● Green (1-7): Trivial or low risk

○ The risk is insignificant or trivial and can easily be mitigated. The likelihood is

low and the impact will only be a slight hindrance to progress.

We used an ordinal ranking system to calculate the risk for each of the aforementioned

scenarios. The assigned values for each scenarios’ likelihood and impact are based on our

own experiences after 3 years of study and teamwork. The calculation is done by multiplying

likelihood and impact, resulting in a final risk score. The distribution of which can be found in

the below matrix.

As we can see in the heatmap when all our risks are plotted, there are no risks that are in

the category critical and only one that is medium. Risk number 8 is related to not meeting

our deadlines. To counteract this risk we will utilize our Gantt chart to make sure we are on

schedule and that we are meeting intermediate milestones and deadlines. Risks related to

loss of data are counteracted by hosting information and documents in online, private

repositories.

18

5

4

3

2 2, 3, 4 8

1 5, 6 1, 7

1 2 3 4 5

IMPACT

19

6 Project Activities
Gantt- chart

20

References

[1] Atatus, “Agile Methodology: Definition, Stages, Types, and Benefits.”, June. 1, 2021.

[Online]. Available: https://www.atatus.com/glossary/agile-methodology/ . [Accessed Jan. 30,

2022.]

[2] GeeksforGeeks, “Lean Software Development (LSD)”. Oct. 13, 2021. [Online]. Available:

https://www.geeksforgeeks.org/lean-software-development-lsd/ . [Accessed Jan. 30, 2022]

[3] GeeksforGeeks, “Difference Between Lean Development Model and Agile Development

Model”. Aug. 19, 2021. [Online]. Available:

https://www.geeksforgeeks.org/difference-between-lean-development-model-and-agile-devel

opment-model/?ref=rp . [Accessed Jan. 30, 2022]

21

Anderscw's workspace Created with Clockify 1

Summary report
01/01/2022 - 31/12/2022

Total: 1663:46:09

Project

Bachelor Thesis 1663:46:09 100.00%

Project Duration

Bachelor Thesis 1663:46:09

Chapter A: Additional Material 130

A.1 Early Report Example

docker.io/vulhub/php

Auspex

April 25, 2022

1 Trend
Mean CVSSv3 score trend for the 101 most recent reports

Jan Feb Mar Apr May Jun Jul
Image Creation Time

0

2

4

6

8

10

CV
SS

v3
 M

ea
n

Sc
or

e

CVSSv3 Mean Score Over Time
Score

Figure 1: CVSSv3 Mean Score Over Time

1

2022-04-25 docker.io/vulhub/php

2 Statistics

Median CVSS Mean CVSS CVSS Stdev Max CVSS L M H C # Vulns

6.50 6.53 1.84 9.80 88 659 469 159 1375

Where: L = Low (0.1 - 3.9), M = Medium, (4.0 - 6.9), H = High (7.0 - 8.9), C = Critical (9.0 - 10.0)

3 Top 5 Most Critical Vulnerabilities

Vulnerability CVSS ID CVSS Score Severity Upgradable

NULL Pointer Dereference CVE-2017-7614 9.80 Critical False

Out-of-Bounds CVE-2014-9939 9.80 Critical False

Out-of-bounds Write CVE-2018-12699 9.80 Critical False

Out-of-bounds Write CVE-2019-12900 9.80 Critical False

Out-of-bounds Write CVE-2019-3822 9.80 Critical False

4 Top 5 Most Critical Upgradable Vulnerabilities

Vulnerability CVSS ID CVSS Score Severity Upgradable

Out-of-bounds Write CVE-2019-3822 9.80 Critical True

Integer Overflow or Wraparound CVE-2016-7167 9.80 Critical True

Out-of-Bounds CVE-2018-16839 9.80 Critical True

Out-of-bounds Write CVE-2019-5482 9.80 Critical True

Out-of-bounds Write CVE-2019-18218 9.80 Critical True

Page 2 of 4

2022-04-25 docker.io/vulhub/php

5 Distribution of Vulnerabilities by Severity

6.4%
(88)

47.9%
(659)

34.1%
(469)

11.6%
(159)

Severity
Low
Medium
High
Critical

Figure 2: Distribution of Vulnerabilities by Severity

Page 3 of 4

2022-04-25 docker.io/vulhub/php

6 Age of Unpatched Vulnerabilities
The age of unpatched vulnerabilities found and their corresponding CVSSv3 scores.

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Publication Time

0

2

4

6

8

10

CV
SS

v3
 S

co
re

Vulnerability Age

Figure 3: Age of Unpatched Vulnerabilities

Page 4 of 4

Chapter A: Additional Material 135

A.2 Example of a Single Report

2022-05-16 auspex/scanner

CVSSv3 Scoring System
The following intervals are used to define the severity of a vulnerability. Scoring interval is based on the
CVSSv3 scoring system, rating vulnerabilities from 0.0 to 10.0 and ranking them by severity, ’Low’ to
’Critical’ according to their score.

Low Medium High Critical

0.1 - 3.9 4.0 - 6.9 7.0 - 8.9 9.0 - 10.0

Table 2: CVSSv3 Severity Intervals

1 Image Information

Image Created Tags Digest

auspex/scanner 2022-05-09 15:58:04 latest 0ba27ca7

2 Statistics
The statistics is based on the scanned image(s) and denotes the Median, Mean and Standard deviation
(Stdev) score of all vulnerabilities found. Additionally it showcases the single highest score of a vulnerability
for this scan. ’L’, ’M’, ’H’ and ’C’ denote the severity categories, with the corresponding number of vulner-
abilities for each category. ’#Vulns’ denotes the total number of vulnerabilities found.

Where: L = Low (0.1 - 3.9), M = Medium, (4.0 - 6.9), H = High (7.0 - 8.9), C = Critical (9.0 - 10.0)

Median CVSS Mean CVSS CVSS Stdev Max CVSS L M H C # Vulns
6.50 6.49 1.73 9.80 58 211 200 37 506

Page 1 of 6

2022-05-16 auspex/scanner

3 CVSSv3 Mean Score Trend
Mean CVSSv3 score trend for the 85 most recent reports. Each data point in blue represents a previous scan.
The current scan is represented by a green dot. The red line is the trend and shows whether the security
state is improving or worsening over time.

Feb Mar Apr May
Image Creation Time

0

2

4

6

8

10

CV
SS

v3
 M

ea
n

Sc
or

e

CVSSv3 Mean Score Over Time
Previous Reports
Current Report

Figure 1: CVSSv3 Mean Score Over Time

Page 2 of 6

2022-05-16 auspex/scanner

4 Most Critical Vulnerabilities
Lists the found vulnerabilities with highest CVSS scores. The CVSS ID is a hyperlink to official documen-
tation for that vulnerability. ’Upgradeable’ denotes whether the found vulnerability has a known fix ie. a
new version of a package or library.

Vulnerability CVSS ID CVSS Score Severity Upgradable
Use After Free CVE-2021-33574 9.80 Critical False
Buffer Overflow CVE-2022-23219 9.80 Critical False
Buffer Overflow CVE-2022-23218 9.80 Critical False
Out-of-Bounds CVE-2019-1010022 9.80 Critical False
Use After Free CVE-2021-33574 9.80 Critical False

5 Most Critical Upgradable Vulnerabilities
Lists the found vulnerabilities with highest CVSS scores. The CVSS ID is a hyperlink to official documen-
tation for that vulnerability. ’Upgradeable’ denotes whether the found vulnerability has a known fix ie. a
new version of a package or library. Only vulnerabilities that are upgradable are listed.

Vulnerability CVSS ID CVSS Score Severity Upgradable
CVE-2022-1271 CVE-2022-1271 3.90 Low True

Page 3 of 6

2022-05-16 auspex/scanner

6 Distribution of Vulnerabilities by Severity
The pie chart shows the distribution of vulnerabilities by severity. Severities are grouped by colour, as
described by the legend. Each slice of the pie denotes the percentage of the total, and sum of vulnerabilities
for each severity.

11.5%
(58)

41.7%
(211)

39.5%
(200)

7.3%
(37)

Severity
Low
Medium
High
Critical

Figure 2: Distribution of Vulnerabilities by Severity

Page 4 of 6

2022-05-16 auspex/scanner

7 Age of Unpatched Vulnerabilities
The age of unpatched vulnerabilities found and their corresponding CVSS scores. Each dot represents a
vulnerability and is color coded, following the same style as the pie chart. The age of a vulnerability is based
on its publication time.

2006 2008 2010 2012 2014 2016 2018 2020 2022
Publication Time

0

2

4

6

8

10

CV
SS

v3
 S

co
re

Vulnerability Age

Figure 3: Age of Unpatched Vulnerabilities

8 Exploitable Vulnerabilities
No exploitable vulnerabilities found.

9 Distribution of Exploitable Vulnerabilities by Severity
No vulnerabilities found.

Page 5 of 6

2022-05-16 auspex/scanner

10 All Critical Vulnerabilities
Lists all discovered critical vulnerabilities. ’Upgradeable’ denotes whether the found vulnerability has a
known fix ie. a new version of a package or library. Year represents the publication year of the vulnerability.

Vulnerability CVSS ID CVSS Score Severity Upgradable Year
Use After Free CVE-2021-33574 9.80 Critical False 2021
Buffer Overflow CVE-2022-23219 9.80 Critical False 2022
Buffer Overflow CVE-2022-23218 9.80 Critical False 2022
Out-of-Bounds CVE-2019-1010022 9.80 Critical False 2019
Use After Free CVE-2021-33574 9.80 Critical False 2021
Buffer Overflow CVE-2022-23219 9.80 Critical False 2022
Buffer Overflow CVE-2022-23218 9.80 Critical False 2022
Out-of-Bounds CVE-2019-1010022 9.80 Critical False 2019
CVE-2019-9893 CVE-2019-9893 9.80 Critical False 2019
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Use After Free CVE-2020-11656 9.80 Critical False 2020
Use After Free CVE-2020-11656 9.80 Critical False 2020
Use After Free CVE-2020-11656 9.80 Critical False 2020
CVE-2005-2541 CVE-2005-2541 9.80 Critical False 2005
Integer Overflow or Wraparound CVE-2021-35942 9.10 Critical False 2021
Integer Overflow or Wraparound CVE-2021-35942 9.10 Critical False 2021

Page 6 of 6

Chapter A: Additional Material 142

A.3 Example of a Aggregate Report

2022-05-16 Aggregate Report

CVSSv3 Scoring System
The following intervals are used to define the severity of a vulnerability. Scoring interval is based on the
CVSSv3 scoring system, rating vulnerabilities from 0.0 to 10.0 and ranking them by severity, ’Low’ to
’Critical’ according to their score.

Low Medium High Critical

0.1 - 3.9 4.0 - 6.9 7.0 - 8.9 9.0 - 10.0

Table 2: CVSSv3 Severity Intervals

1 Images in This Report

Image Created Tags Digest

auspex/reporter 2022-05-09 16:01:08 latest e614e96b

auspex/scanner 2022-05-09 15:58:04 latest 0ba27ca7

2 Statistics
The statistics is based on the scanned image(s) and denotes the Median, Mean and Standard deviation
(Stdev) score of all vulnerabilities found. Additionally it showcases the single highest score of a vulnerability
for this scan. ’L’, ’M’, ’H’ and ’C’ denote the severity categories, with the corresponding number of vulner-
abilities for each category. ’#Vulns’ denotes the total number of vulnerabilities found.

Where: L = Low (0.1 - 3.9), M = Medium, (4.0 - 6.9), H = High (7.0 - 8.9), C = Critical (9.0 - 10.0)

Image Median CVSS Mean CVSS CVSS Stdev Max CVSS L M H C # Vulns
auspex/reporter 6.50 6.56 1.63 9.80 26 161 146 15 348
auspex/scanner 6.50 6.49 1.73 9.80 58 211 200 37 506

Page 1 of 7

2022-05-16 Aggregate Report

3 CVSSv3 Mean Score Trend
Mean CVSSv3 score trend for the 41 most recent reports. Each data point in blue represents a previous scan.
The current scan is represented by a green dot. The red line is the trend and shows whether the security
state is improving or worsening over time.

May May
Image Creation Time

0

2

4

6

8

10

CV
SS

v3
 M

ea
n

Sc
or

e

CVSSv3 Mean Score Over Time
Previous Reports
Current Report

Figure 1: CVSSv3 Mean Score Over Time

Page 2 of 7

2022-05-16 Aggregate Report

4 Most Critical Vulnerabilities by Image
Lists the found vulnerabilities with highest CVSS scores. The CVSS ID is a hyperlink to official documen-
tation for that vulnerability. ’Upgradeable’ denotes whether the found vulnerability has a known fix ie. a
new version of a package or library.

Image Vulnerability CVSS ID CVSS Score Severity Upgradable
auspex/reporter Out-of-Bounds CVE-2019-1010022 9.80 Critical False
auspex/reporter Out-of-Bounds CVE-2019-1010022 9.80 Critical False
auspex/reporter Out-of-bounds Write CVE-2020-25412 9.80 Critical False
auspex/reporter Out-of-bounds Write CVE-2020-25412 9.80 Critical False
auspex/reporter Out-of-bounds Write CVE-2017-17479 9.80 Critical False
auspex/scanner Use After Free CVE-2021-33574 9.80 Critical False
auspex/scanner Buffer Overflow CVE-2022-23219 9.80 Critical False
auspex/scanner Buffer Overflow CVE-2022-23218 9.80 Critical False
auspex/scanner Out-of-Bounds CVE-2019-1010022 9.80 Critical False
auspex/scanner Use After Free CVE-2021-33574 9.80 Critical False

5 Most Critical Upgradable Vulnerabilities by Image
Lists the found vulnerabilities with highest CVSS scores. The CVSS ID is a hyperlink to official documen-
tation for that vulnerability. ’Upgradeable’ denotes whether the found vulnerability has a known fix ie. a
new version of a package or library. Only vulnerabilities that are upgradable are listed.

Image Vulnerability CVSS ID CVSS Score Severity Upgradable
auspex/reporter Uncontrolled Search Path Element CVE-2022-24765 7.80 High True
auspex/scanner CVE-2022-1271 CVE-2022-1271 3.90 Low True

Page 3 of 7

2022-05-16 Aggregate Report

6 Distribution of Vulnerabilities by Severity
The pie chart shows the distribution of vulnerabilities by severity. Severities are grouped by colour, as
described by the legend. Each slice of the pie denotes the percentage of the total, and sum of vulnerabilities
for each severity.

9.8%
(84)

43.6%
(372)

40.5%
(346)

6.1%
(52)

Severity
Low
Medium
High
Critical

Figure 2: Distribution of Vulnerabilities by Severity

Page 4 of 7

2022-05-16 Aggregate Report

7 Age of Unpatched Vulnerabilities
The age of unpatched vulnerabilities found and their corresponding CVSS scores. Each dot represents a
vulnerability and is color coded, following the same style as the pie chart. The age of a vulnerability is based
on its publication time.

2006 2008 2010 2012 2014 2016 2018 2020 2022
Publication Time

0

2

4

6

8

10

CV
SS

v3
 S

co
re

Vulnerability Age

Figure 3: Age of Unpatched Vulnerabilities

8 Exploitable Vulnerabilities
No exploitable vulnerabilities found.

9 Distribution of Exploitable Vulnerabilities by Severity
No vulnerabilities found.

Page 5 of 7

2022-05-16 Aggregate Report

10 All Critical Vulnerabilities
Lists all discovered critical vulnerabilities. ’Upgradeable’ denotes whether the found vulnerability has a
known fix ie. a new version of a package or library. Year represents the publication year of the vulnerability.

Image Vulnerability CVSS ID CVSS Score Severity Upgradable Year
Image Out-of-Bounds CVE-2019-1010022 9.80 Critical False 2019
Image Out-of-Bounds CVE-2019-1010022 9.80 Critical False 2019
Image Out-of-bounds Write CVE-2020-25412 9.80 Critical False 2020
Image Out-of-bounds Write CVE-2020-25412 9.80 Critical False 2020
Image Out-of-bounds Write CVE-2017-17479 9.80 Critical False 2017
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image CVE-2005-2541 CVE-2005-2541 9.80 Critical False 2005
Image Out-of-bounds Read CVE-2017-9117 9.80 Critical False 2017
Image Out-of-bounds Read CVE-2017-9117 9.80 Critical False 2017
Image Use After Free CVE-2021-33574 9.80 Critical False 2021
Image Buffer Overflow CVE-2022-23219 9.80 Critical False 2022
Image Buffer Overflow CVE-2022-23218 9.80 Critical False 2022
Image Out-of-Bounds CVE-2019-1010022 9.80 Critical False 2019
Image Use After Free CVE-2021-33574 9.80 Critical False 2021
Image Buffer Overflow CVE-2022-23219 9.80 Critical False 2022
Image Buffer Overflow CVE-2022-23218 9.80 Critical False 2022
Image Out-of-Bounds CVE-2019-1010022 9.80 Critical False 2019
Image CVE-2019-9893 CVE-2019-9893 9.80 Critical False 2019
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022

Continued on Next Page

Page 6 of 7

2022-05-16 Aggregate Report

Image Vulnerability CVSS ID CVSS Score Severity Upgradable Year
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image CVE-2020-27619 CVE-2020-27619 9.80 Critical False 2020
Image Arbitrary Command Injection CVE-2015-20107 9.80 Critical False 2022
Image Use After Free CVE-2020-11656 9.80 Critical False 2020
Image Use After Free CVE-2020-11656 9.80 Critical False 2020
Image Use After Free CVE-2020-11656 9.80 Critical False 2020
Image CVE-2005-2541 CVE-2005-2541 9.80 Critical False 2005
Image Integer Overflow or Wraparound CVE-2021-35942 9.10 Critical False 2021
Image Integer Overflow or Wraparound CVE-2021-35942 9.10 Critical False 2021

Page 7 of 7

Chapter A: Additional Material 150

A.4 Auspex Survey

1.

Mark only one oval.

Yes

No

Auspex survey
This survey is conducted as part of a bachelor thesis at NTNU Gjøvik in the course
DCSG2900.
The task is given by Telenor.

The purpose of this survey is to gather feedback on a report generated from a container
vulnerability scan. The scan is performed using Snyk, a container image scan tool, and the
output data is used to generate a human-readable document with key information about
the findings of the scan.

Description of the report sections:

1. The trend diagram shows a trend line for CVSS mean score of previous scans to give an
insight of whether the security is improving or worsening over time.

2. Statistics gives additional important information about the scan and the score denoting
how vulnerable the scanned container image is.

3. The table for top 5 most critical vulnerabilities shows the most critical vulnerabilities.

4. The table for top 5 most critical upgradeable vulnerabilities shows the most critical
vulnerabilities that can be upgraded, and thus remove that specific vulnerability.

5. The pie chart shows the distribution and number of found vulnerabilities, and their
corresponding severity level.

6. The scatter plot show the age distribution of vulnerabilities, how long ago they were
found/published and their CVSS score.

If you have any question, please contact: anderscw@stud.ntnu.no
Information about the bachelor course: https://www.ntnu.no/studier/emner/DCSG2900
/2021#tab=omEmnet

*Required

Are you a developer? *

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

1 of 10 20/05/2022, 11:09

Full
Example
Report

The full report can be viewed at: https://drive.google.com/file/d
/1YNKD9XNRN88ZGUyQe-vKP6iRGJltWGw_/view?usp=sharing

However, each relevant section of the document is shown above their corresponding
question, so there is no need to keep the document open during the survey.

1. Trend

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

2 of 10 20/05/2022, 11:09

2.

Mark only one oval.

Low

1 2 3 4 5

High

3.

2.Statistics

To what degree does the trend diagram give you and overview of the security
trend over time?

Does the trend line help you better understand the security trend over time?

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

3 of 10 20/05/2022, 11:09

4.

Mark only one oval.

Low

1 2 3 4 5

High

5.

4. Top 5 Most Critical Vulnerabilities

To what degree does the statistics highlight the important information of a scan?

Is there any other information or statistics you would like to see? Is there anything
you feel is unnecessary?

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

4 of 10 20/05/2022, 11:09

6.

Mark only one oval.

Low

1 2 3 4 5

High

7.

5. Top 5 Most Critical Upgradeable Vulnerabilities

To what degree does the "Top 5 Most Critical Vulnerabilities"-table help you
understand what the 5 most critical vulnerabilities are?

Is there anything you feel is missing or unclear?

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

5 of 10 20/05/2022, 11:09

8.

Mark only one oval.

Low

1 2 3 4 5

High

9.

5. Pie Chart

To what degree does the "Top 5 Most Critical Upgradeable Vulnerabilities" -table
help you understand what the 5 most critical upgradeable vulnerabilities are?

Is there anything you feel is missing or unclear?

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

6 of 10 20/05/2022, 11:09

10.

Mark only one oval.

Low

1 2 3 4 5

High

To what degree does the pie chart give you an overview of the found
vulnerabilities and their distribution?

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

7 of 10 20/05/2022, 11:09

11.

6. Scatter Plot

Is there anything you feel is missing or unclear?

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

8 of 10 20/05/2022, 11:09

12.

Mark only one oval.

Low

1 2 3 4 5

High

13.

14.

15.

Feedback

To what degree does the scatter plot help you understand the age of detected
vulnerabilities?

Any other thoughts on the scatter plot?

Is there any information or specific sections you feel is missing?

Do you have any other feedback or suggestions?

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

9 of 10 20/05/2022, 11:09

This content is neither created nor endorsed by Google.

 Forms

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

10 of 10 20/05/2022, 11:09

Chapter A: Additional Material 161

A.5 Auspex Survey Result

Are you a developer?

3 responses

Full Example Report

1. Trend

To what degree does the trend diagram give you and overview of the
security trend over time?

3 responses

Auspex survey
3 responses

Publish analytics

Copy

Yes

No
66.7%

33.3%

Copy

1 2 3 4 5
0

1

2

3

0 (0%) 0 (0%) 0 (0%)

3 (100%)

0 (0%)

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

1 of 6 20/05/2022, 11:14

Does the trend line help you better understand the security trend over time?

3 responses

yes

somewhat. the jitter/scattered nature of the data is more interesting from an analysis PoV than
the trend though

Yes

2.Statistics

To what degree does the statistics highlight the important information of
a scan?

3 responses

Is there any other information or statistics you would like to see? Is there anything you
feel is unnecessary?

3 responses

Maybe show percentage clearer, and values /diff from previous period

recency/cvss area chart

Short explanation of CVSS

4. Top 5 Most Critical Vulnerabilities

Copy

1 2 3 4 5
0

1

2

3

0 (0%) 0 (0%)

3 (100%)

0 (0%) 0 (0%)

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

2 of 6 20/05/2022, 11:14

To what degree does the "Top 5 Most Critical Vulnerabilities"-table help
you understand what the 5 most critical vulnerabilities are?

3 responses

Is there anything you feel is missing or unclear?

3 responses

better legends/descriptions

cluster the data by type. in most codebases the top vulnerabilities will have the same
title/main type

Maybe a link to each vulnerability so you can click to read more

5. Top 5 Most Critical Upgradeable Vulnerabilities

Copy

1 2 3 4 5
0

1

2

0 (0%) 0 (0%)

1 (33.3%)

2 (66.7%)

0 (0%)

4
Count: 2

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

3 of 6 20/05/2022, 11:14

To what degree does the "Top 5 Most Critical Upgradeable Vulnerabilities"
-table help you understand what the 5 most critical upgradeable
vulnerabilities are?

3 responses

Is there anything you feel is missing or unclear?

3 responses

need better explanations

refine upgradeable to patchable without breaking change

CVSS ID gives little value

5. Pie Chart

Copy

1 2 3 4 5
0

1

2

3

0 (0%) 0 (0%)

3 (100%)

0 (0%) 0 (0%)

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

4 of 6 20/05/2022, 11:14

To what degree does the pie chart give you an overview of the found
vulnerabilities and their distribution?

3 responses

Is there anything you feel is missing or unclear?

1 response

second pie with only vulns with known exploits please

6. Scatter Plot

To what degree does the scatter plot help you understand the age of
detected vulnerabilities?

3 responses

Copy

1 2 3 4 5
0

1

2

0 (0%) 0 (0%) 0 (0%)

2 (66.7%)

1 (33.3%)

Copy

1 2 3 4 5
0

1

2

0 (0%) 0 (0%)

2 (66.7%)

1 (33.3%)

0 (0%)

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

5 of 6 20/05/2022, 11:14

Any other thoughts on the scatter plot?

3 responses

need description on what timing means

at the risk of making the report time-based, making the graph be years since current date will
make it more digestable

Maybe to much data?

Feedback

Is there any information or specific sections you feel is missing?

0 responses

No responses yet for this question.

Do you have any other feedback or suggestions?

1 response

write descriptions in a "for dummies" level so very easy to understand

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

 Forms

Auspex survey https://docs.google.com/forms/d/1hGLUEBBIFy4i3Nn5sc8tzqx4RCY...

6 of 6 20/05/2022, 11:14

Appendix B

Schemas

168

Chapter B: Schemas 169

B.1 POST /reports Response Schema

This is the schema for responses from the POST /reports endpoint. Its "reports"
value is an array of multiple reports, and "aggregate" is an instance of a report
representing the aggregate report for all reports contained in the "reports" array.

See Section B.3 for just the report schema.

{
"reports": [

{
"id": "string",
"image": {

"imageSizeBytes": "string",
"layerId": "string",
"mediaType": "string",
"tag": [

"string"
],
"timeCreatedMs": "2022-05-18T10:20:43.895Z",
"timeUploadedMs": "2022-05-18T10:20:43.895Z",
"digest": "string",
"image": ""

},
"timestamp": "2022-05-18T10:20:43.895Z",
"cvss": {

"mean": 0,
"median": 0,
"stdev": 0,
"min": 0,
"max": 0

},
"vulnerabilities": {

"critical": 0,
"high": 0,
"medium": 0,
"low": 0

},
"report_url": "string",
"aggregate": false,
"schema_version": "1",
"historical": false,
"updated": "2022-05-18T10:20:43.895Z",
"upgrade_paths": [

"string"
],
"dockerfile_instructions": [

"string"
]

}
],
"aggregate": {

"id": "string",

Chapter B: Schemas 170

"image": {
"imageSizeBytes": "string",
"layerId": "string",
"mediaType": "string",
"tag": [

"string"
],
"timeCreatedMs": "2022-05-18T10:20:43.895Z",
"timeUploadedMs": "2022-05-18T10:20:43.895Z",
"digest": "string",
"image": ""

},
"timestamp": "2022-05-18T10:20:43.895Z",
"cvss": {

"mean": 0,
"median": 0,
"stdev": 0,
"min": 0,
"max": 0

},
"vulnerabilities": {

"critical": 0,
"high": 0,
"medium": 0,
"low": 0

},
"report_url": "string",
"aggregate": true,
"schema_version": "1",
"historical": false,
"updated": "2022-05-18T10:20:43.895Z",
"upgrade_paths": [

"string"
],
"dockerfile_instructions": [

"string"
]

},
"message": "",
"failed": [

{
"scan_id": "string",
"error": "string"

}
]

}

Chapter B: Schemas 171

B.2 Scan Metadata Schema

This is the schema for the JSON representation of scan metadata that is passed
between and also returned by the different microservices.

{
"image": {

"imageSizeBytes": "string",
"layerId": "string",
"mediaType": "string",
"tag": [

"string"
],
"timeCreatedMs": "2022-05-20T08:20:40.777Z",
"timeUploadedMs": "2022-05-20T08:20:40.777Z",
"digest": "string",
"image": ""

},
"backend": "string",
"id": "string",
"timestamp": "2022-05-20T08:20:40.777Z",
"url": "string",
"blob": "string",
"bucket": "string"

}

Chapter B: Schemas 172

B.3 Report Metadata Schema

This is the schema for the JSON representation of report metadata returned by
the Reporter service.

{
"id": "string",
"image": {

"imageSizeBytes": "string",
"layerId": "string",
"mediaType": "string",
"tag": [

"string"
],
"timeCreatedMs": "2022-05-20T08:23:32.225Z",
"timeUploadedMs": "2022-05-20T08:23:32.225Z",
"digest": "string",
"image": ""

},
"timestamp": "2022-05-20T08:23:32.225Z",
"cvss": {

"mean": 0,
"median": 0,
"stdev": 0,
"min": 0,
"max": 0

},
"vulnerabilities": {

"critical": 0,
"high": 0,
"medium": 0,
"low": 0

},
"report_url": "string",
"aggregate": false,
"schema_version": "1",
"historical": false,
"updated": "2022-05-20T08:23:32.225Z",
"upgrade_paths": [

"string"
],
"dockerfile_instructions": [

"string"
]

}

Chapter B: Schemas 173

B.4 Reporter Query Parameter Schema

The following is the OpenAPI definition for the query parameters available for the
GET /reports endpoint of Reporter and API Gateway.

{
"/reports":{

"get":{
"summary":"Get Reports",
"description":"Fetch reports from the database.",
"operationId":"get_reports_reports_get",
"parameters":[

{
"required":false,
"schema":{

"title":"Image",
"type":"string",
"default":""

},
"name":"image",
"in":"query"

},
{

"required":false,
"schema":{

"title":"Aggregate",
"type":"boolean",
"default":false

},
"name":"aggregate",
"in":"query"

},
{

"required":false,
"schema":{

"title":"Ge",
"anyOf":[

{
"maximum":10,
"minimum":0,
"type":"number"

},
{

"maximum":10,
"minimum":0,
"type":"integer"

}
]

},
"name":"ge",
"in":"query"

},
{

Chapter B: Schemas 174

"required":false,
"schema":{

"title":"Le",
"anyOf":[

{
"maximum":10,
"minimum":0,
"type":"number"

},
{

"maximum":10,
"minimum":0,
"type":"integer"

}
]

},
"name":"le",
"in":"query"

},
{

"required":false,
"schema":{

"allOf":[
{

"$ref":"#/components/schemas/CVSSField"
}

],
"default":"mean"

},
"name":"field",
"in":"query"

},
{

"required":false,
"schema":{

"title":"Limit",
"exclusiveMinimum":0,
"type":"integer"

},
"name":"limit",
"in":"query"

},
{

"required":false,
"schema":{

"allOf":[
{

"$ref":"#/components/schemas/OrderOption"
}

],
"default":"newest"

},
"name":"order",
"in":"query"

Chapter B: Schemas 175

}
]

}
}

}

Appendix C

Minutes of Meeting

176

Date(25.02.2022) - Title
Place: Online - Teams

Participants
● Kelly
● All team members

Agenda (short)
● Information
● Clarification of task description
● Project plan
● References and time keeping

Summary

Firstly we were informed that we should upload our future weekly status report on teams in
the designated folder instead of sending them by email.

The next discussion was about clarifying our understanding about the project task and how
our task is not about GDPR as one might be led to believe by the background section in the
project description document, but rather about the security aspect. Our team and another
both have Telenor as our employer and both tasks share the same background description.
Their task is rather about concerns around GDPR laws and customer information while ours
is about evaluating security in container applications. We are not supposed to deal with live
system or user data regarding GDPR.

Kelly would like us to make a Gantt chart to show our projected schedule for the project
period and to use this to continually evaluate our progress. Our next deadline is january 31st
when we need to deliver our finished project plan. Kelly would like us to send it to her as
soon as possible, uploading it on Teams.

Regarding our question about references, Kelly explained how we should use references
and footnotes. We can use footnotes with a link to the source for example gitlab.com. If we
use or quote external content or information we should use references. References should
follow IEEE format, using reference numbers.

Regarding questions on timekeeping we only need to log the time as a whole. It is not
necessary to separate the tasks with tags. Kelly was unsure if the timekeeping/ logging is a
mandatory task of the project, but this was clarified by us that it is needed and expected.
Information about these requirements can be found on Blackboard under ‘Dokumenter’ as
well as the information page for the bachelor course.

As we stand now we are currently on track for the project plan and should be able to
complete it soon. We will go through the finished project plan in the next meeting together.
Next meeting is wednesday february 2nd at 1pm

Date: 02.02.2022
Place: Online -Teams

Participants
● Kelly
● All team members

Agenda (short)
● Feedback on project plan
● Look at requirement, functional and non-functional
● Section 4.2 in project plan , suggestions for diagram
● Wordlist
● Project plan approved

Summary

Project plan is well written according to Kelly and includes the necessary sections and
explanations. To view her comments we need to download the document as a PDF.
Reiterates that the project plan is more for us to use as a guideline during the project. The
project plan should be included as part of the thesis, in the appendix.

Going through the project plan and comments, what we should improve, as well as other
suggestions that Kelly has for us.

We should have more non-functional requirements. Kelly suggests checking out rqtest.com
on the subject for inspiration for non- functional requirements. The exact link for this is in
Kelly's comments on the project plan. We should focus on requirements that can be met and
evaluated by us.

Section 4.2 in the project plan could use some clarification for the diagram outlining the
structure of our application. We had numbered each element and listed the explanation for
these. Kellys suggestion was that we don't need to number and explain simple things in the
diagram such as the pdf and json icon. We should however improve how we represent the
output from the analyzer, not as 2 separate objects, one for the raw json and one for the pdf
generation. We should rather represent this in another way to show that both the raw json
log and the pdf generation come from the same information. Some of our explanations also
need some improvements to clarify how our pdf reports are generated and what tools are
used

We also agreed that we should have a wordlist in our thesis for certain terms to make sure
that these terms are unambiguous and that the reader will understand them and our use of
these terms

Project plan is approved as it stands and we just need to update it based on Kelly's
comments to improve the quality.

Date: 16.02.2022
Place: Online (Teams)

Participants
● Kelly
● All team members

Agenda (short)
- POC
- Changing cloud platform?
- Make a sketch for scan report
- Scheduling reports

Summary
Going through what we have done with Kelly and showcasing our POC and some
functionality.

During a presentation with Telenor on the 15th we learned that the different teams use
mostly Azure and some use GCP, and that there is an overarching goal of migrating mostly
to Azure with a sub-goal of having a multicloud. This might mean we need to change from
GCP to Azure due to Teleor migrating to Azure, but this will be further discussed on
Thursday with Eirik. Kelly thinks we should stick with GCP due to us having started using it
already and have made some cloud functions and code implementations.
May consider providing an adaptation that can target both Azure and GCP but this is
currently out of scope.

Going through how we modelled the output of a Snyk scan in the application with further
implementation details.

Something we lack a clear picture of is how the reports that will be made should look and
how we convey the information found. We came to an agreement that we should make a
sketch of how a scan report should look, both a single scan and summary report of multiple
scans. The sketch can be made in multiple iterations until we are happy with it, and then we
can start the actual modelling and coding using the sketch as a template.

One of the thoughts we have for the application is that the scans could be scheduled, for
example daily, to scan and generate reports automatically without user input so that every
day can be started with a fresh report of all container instances. We need to decide on how
frequently this should be done so as to not generate reports with no new information.
Caching previous scans if no new vulnerabilities are found may be the answer.

Date:23.02.2022
Place: Teams (Online)

Participants
● Kelly
● All team members

Agenda (short)
- Decision regarding cloud platform
- Report function
- Application

Summary

Explained some of the results and decisions from our meeting with Eirik last thursday. We
will continue with GCP and look into Azure if we are able to in the given timeframe.

Talked about our plan for the report functionality and how we present this information.Some
additional features are required for the report function to work properly.
Talking about how we structure the report, one report per container and a larger summary for
many containers. Additionally we also have made a quick sketch on how we think a report
should look.

As it stands now the application works. We can send data and store it in firestore. A POST
request sends the entire payload as a json document and stores this in a collection.
We do however need a new collection that parses and stores the output of logs that can then
be used for the pdf report so some additional functionality is required.

Thesis writing course is next week and Kelly will also help us with this subject.

Date 02.03.2022
Place: Teams (online

Participants
● Kelly
● All team members

Agenda (short)
- Learnings from Telenor
- Working on matplotlib
- Thesis writing course

Summary

Talked about the last meeting with telenor (24th February) showcasing their backend for Mitt
Spor and what we learned. Was very insightful and gave us some insight into how we should
look at structuring our services on GCP. We also received access to the Mitt Spor
developments container registry so we can use this to test our report generator later on.

Worked on learning about matplotlib, creating and generating pdf documents in the latex
format automatically from a POST request to the service.

We need to make a finished product of the report, call it version 1, that we can send for
evaluation to Telenor and receive some feedback on formatting and information that is
presented

Sebastien, backend expert at Telenor and developer on Mitt Spor,, offered to look at some
of the outputs that we generate from a container scan and tell us what information is relevant
or not as he has experience using kube-bench and snyk.

Plan next is to make an example report that we can give to Eirik and he can give us
feedback on what is needed or not which will be very helpful for us.

Showcasing that we are able to produce a simple pdf document for now. On another note
Kelly thinks it would be a good idea to make our database query-able so it's possible to
search for specific documents. We’ll keep that in mind.

Kelly wants to offer a course for thesis writing and thus the next meeting will be a course on
thesis writing.

Date 23.03.22
Place: Online (Teams)

Participants
● Kelly
● All team members

Agenda (short)
- Had meeting with Eirik
- Have implemented a queryable database
- Questionnaire

Summary
We had a meeting earlier in the day with Eirik and received some feedback on our report
layout which we shared with Kelly.
The thesis writing is going okay and we are making progress, but it is difficult.

We have a queryable database in place as Kelly asked for previously, but there are some
limitations in Firestore in regards to composite queries that we need to work around. It is not
feasible to make composite indexes for every single field and combo of fields that could
possibly be queried. What we think is a better solution is to limit the query to search for a
specific image and then query it client-side.
What we have working now is querying using http queries. This method is not necessarily
very user friendly, but the reports themselves will be. We don’t think this method will be used
often, but that the main purpose of these reports is to generate them automatically on a
schedule.

We should try to get some feedback from Telenor on what they think about the querying
method for reports and the database.
Lastly Kelly suggested we should prepare a questionnaire that we can present to Telenor to
assess the quality of the report and receive feedback on the layout and information
presented. We will aim to have a draft of this ready before next Wednesday's meeting so
Kelly can give us feedback on the questions.

Date 06.04.2022
Place: Online (Teams

Participants
● Kelly
● All team members

Agenda (short)
- Survey
- Nicer frontpage,update the glossary, small fixes
- Additions to chapter 2
- Non-functional requirements

Summary
First of all, regarding the survey, Kelly has a good point when she says we should try to look
at reducing the amount of text before each section, and put it at the start instead, so that the
taker of the survey cdan read everything first and then answer the questions. We will update
this.

Kelly thinks we should try to make a nicer frontpage, which we agree on. We will make an
effort for this before we hand in the final version.
We should go through and add all abbreviations to the glossary, and describe the
abbreviation in the text to make sure the reader can understand most things.

Just some small things that we should fix. Amongst these are: Delete citation for the origin of
the auspex name. We must cite Snyk when we first introduce it, and give a better
explanation for matplotlib and pylatex.

Some things we should add to chapter 2.
We should explain what GCP is, either as a separate section, or as part of another sections
where that would make sense. Perhaps there are some tools that we use that need to be
introduced and explained if they are relevant to understanding everything. If so, they should
be added to chapter 2. Otherwise they can be added to either implementation or the
development process chapter.

Figure 3.1, application overview, should be given a better name and otherwise be updated to
show the entrypoint better. Naming of the components should also be updated to be more
consistent with other figures.
The introduction to chapter 3.1 should be rewritten to be more precise.

The nonfunctional requirements we have written down so far don’t need to be so specific.
We should rather change the title to something non specific, focusing on what the

requirement will achieve instead, such as availability, reliability , etc. Then we can provide a
more specific description or explanation below. The reason for this, as Kelly rightly suggest,
is that for example our time requirements may change when deployed on GCP and
depending on how much data is scanned.
Remove the survey requirement or change it to something related to readability or
user-friendliness instead. Something rather related to the readability of a generated report.

Figure 4.1 needs a better caption, and some of the names should be more concrete to make
both them and the figure easier to understand.

No meeting next week due to easter.

Date 20.04.22
Place: Online (Teams)

Participants
● Kelly
● Peder, Anders
● Absent: Patrick

Agenda (short)
- Querying scans and reports
- Trend diagram and suggestions
- Email workflow for reports
- Handing in thesis for more feedback in may
- Get the survey out

Summary

Worked on querying the report database, but explained that this is not a main use case. We
have added some basic querying on mean score and timestamp.

We have worked on the trend diagram requested by both Eirik and Sebastien at Telenor
which showcases the mean score over time for an image, or alternatively for an aggregate
scan showcasing the mean score of an aggregate scan ie. the mean score of all the images
scanned. For this demonstration we showcased the diagram with mock data as a proof of
concept, where each blue dot represents a mean score from a scan for an image throughout
its different versions. The red trend line is added to showcase if the score is increasing or
decreasing over time.
Kelly had some input to make the descriptions of the diagram better. The X-axis caption
should be changed and be explanatory, perhaps to “images evolve over time (2022)”.
In addition a description to emphasise what the diagram is showing and the significance of
the scores on the y-axis should be added

As for the dataset we will be using to populate our database with scan data and reports, we
are able to access Telenors MittSpor container registry and scan these containers, about 11.
We can then scan single images, and the whole container registry to create single and
aggregate reports.

Kelly suggests that we use some of the snippets of actual reports to showcase and explain
in our thesis, as well as add an example of a complete report in the appendix..

Kelly raised a question about how we want to deliver a report. The solution we are leaning
towards is to have a scheduled workflow on GCP to deliver reports via email, preferably on a
weekly, or perhaps daily, schedule.

We should be able to tie everything together very soon, all the services to create a
generated report.

Kelly would expect a more complete thesis to be handed to her a week before delivery, 13th
may , so she can give feedback and we are able to revise before final delivery at noon May
20th.
Everything should be complete by the 20th and after this we should focus on the
presentation in early June, including how we want to present the application. The
presentation might be a good use case for a website.

The scheduling of scans is the primary use case for the application and manual scans is a
secondary use case, meaning we are not facilitating a nice user experience with GUI or a
website as of now. Google cloud scheduler can be used to schedule the scans and
generation of reports. The scheduler basically sends an HTTP request to our API.

The survey and an example report needs to be handed out very soon. The missing part is
the example report which we should be able to complete within a week. We will not be able
to facilitate technical testing of the application as there is simply not enough time. The focus
is primarily on the generated reports as that is in fact the most important end product and the
inner workings of the application is not necessarily that important.
We will contact Eirik to help facilitate distribution of the survey and give them a full week to
fill out the survey. We hope for a minimum of 5 results. We should however ask Eirik how
many people are involved in his department and other personnel to get an idea of how many
would read the reports and look at them in a real world scenario.

Date 27.04.22
Place: Online (Teams)

Participants
● Kelly
● All team members

Agenda (short)
- Example report

- Trend diagram
- Statistics
- Top 5
- CVSS id
- Scatter plot (vuln age)

- Survey

Summary
The survey as it stands is okay and we will get some decent information from the questions.

The example report could use more extensive explanations for the figures and tables in
general. In general could have a better explanation for the scoring and intervals we are
using, which is the CVSS scoring system. This could perhaps be added to the top of the
document.

The trend diagram should highlight that this is the score of the same image over time.
Additionally, the current scan should be highlighted on the diagram, perhaps as a dot in a
different colour to the other data points.

Kelly suggested it could be useful to have a section with some information about the image
being scanned, such as name, date of current version, versionnumber etc.

It would be better to make it clear that statistics and all other sections following are for the
current scan. For the statistics section we should evaluate if the mean, median and
standard deviation fields are necessary. We should add an explanation of each field
anyways.

When it comes to the top 5 tables we need to make it clear that its sorted by CVSS
score, and the vulnerabilities are ranked as critical. Top 5 in itself is quite arbitrary in terms of
why we are choosing to show only 5, but we don’t think in a real world environment there
will be many more critical vulnerabilities than 5. We also have a version with all critical
vulnerabilities listed at the end of the document.

Kelly had a very good suggestion to try to add a hyperlink for the CVSS id in all tables so
that one can read more about that particular vulnerability should one want to.

As stated before, we should make it clear if a figure or table is for the current scanned image
or not. This also goes for the pie chart showing the vulnerability distribution, make it clear
that it is for this current scanned image.

The scatter plot itself is fine, but could use some extra information. We could perhaps have a
table critical and high vulnerabilities sorted by oldest to newest. The purpose of the scatter
plot is to show that there are long standing vulnerabilities.
We should add an explanation of the colour gradient used in the scatter plot and what
significance the colour has.

We will try to update the example report according to feedback from Kelly and update the
survey and example, and send a new version to Telenor. We can probably omit the first
question “are you a dev?” as there is not much value to it probably. Finally focus on getting
as many respondents as possible to the survey as the deadline is may 6th.

Date 04.05.22
Place: Online (Teams)

Participants
● Kelly
● All team members

Agenda (short)
- Planning
- Deployment
- Survey shared
- Plan going forward

Summary
Had an internal meeting within the team about a plan for what needs to be done. Should be
able to deliver chapter 1,2,3 for review by the end of this week.

We have deployed the project fully on gcloud and set up a CI/CD pipeline. Apart from some
minor issues, everything seems to work and deploy correctly.

Survey sent out and shared with Telenor
Not expecting too many respondents due to only being shared with relevant teams. This is
Eiriks team at Telenor and the team for Mitt Spor in Poland. We should ask exactly how
many are involved.

Once the survey results are in we will look at them and improve, We think its best to look at
everything together, in addition to Kellys feedback from last week and make the
corresponding changes and improvements.

Kelly is available at campus Gjøvik if needed.

We should have a few chapters for Kelly to review at the end of the week.

Date: 17.02.2022 - Telenor
Place: Online(Teams)

Participants
● Eirik Stephansen - Telenor
● All team members

Agenda (short)
- Skyplattform
- Mangler noen rettigheter på GCP
- Demonstrasjon

Summary
Det store spørsmålet som dukket opp under presentasjonen på tirsdag var valg av
skyplattform. Telenor har en multicloud tilnærming som betyr at de baserer seg på flere
forskjellige skyplattformer. Blant annet bruker Infrastruktur teamet Azure, mens andre bruker
GCP mm. Det kan tenkes at de helhetlig velger å flytte til Azure. For oss ble vi enige om at vi
i fellesskap skal fortsette å bruke GCP i og med at vi har startet å bruke det allerede.
Eirik foreslo at han kunne sette opp et møte med sjef for backend for å forklare litt hvordan
Telenor jobber på den fronten, og kan antagelig komme med noen innspill til oss rundt
oppgaven og arbeidet.
Vi kan legge til støtte for Azure og GCP. Noe av det vi har hittil er GCP spesifikt, men kan
tilpasses. Kan være positivt for læring å bli kjent med flere plattformer og deres
funksjonalitet.

Vi mangler tilgang til lagring i GCP gjennom Telenor sin plan da vi manglet noen rettigheter.
Eirik fikset det med en gang etter litt troubleshooting og vi har nå det vi behøver av
rettigheter for å bruke Firestore og Firebase.

En liten gjennomgang med Eirik over hva vi har gjort hvor vi blant annet viser frem hvordan
vi har tenkt den helhetlige strukturen på applikasjonen skal se ut.
Vi demonstrere også lagringstrukturen, hvordan vi lagrer output fra en scan med metadata
og rå json. Videre gjennomgår vi modelleringen av en Snyk scan og noe av informasjonen vi
kan hente fra en slik scan, blant annet utregning av score, hvilke sårbarheter som er mest
kritiske og som går igjen oftest. Vi demonstrerer en POST av en scan til cloud function
som lagrer json resultatet.

Planen er å sette opp en nytt møte neste uke for flere spørsmål

Date: 23.03.22 - Telenor
Place: Online (Google Meet)

Participants
● Eirik Stephansen
● All team members

Agenda (short)
- Showing the example report sketch
- Feedback
- New meeting monday

Summary
The meeting started with us showing two examples of how we think a report should look like,
using a sketch made in diagrams.net and a pdf-document generated using pylatex.
We were not able to generate the actual pie chart and scatter plot that we wanted to show,
but instead used the sketch to show our intention.

Eirik remarked that he would like to see a diagram showing the trend over time to compare
previous scans with the current. This will be helpful to gauge whether security is improving or
not over time. We agree that it should show trends over time for score.

Showing firestore and what we are currently storing.Of the data that we are storing we could
use cvss mean score to show trend over time, comparing previous scans to a new scan.

Eirik suggest we could ask Sebastien for some feedback as well and was happy to set up a
meeting on monday the 28th at 1030

Date 30.03.22 - Telenor
Place: Google Meets

Participants
● Sebastien Renauld (Telenor)
● All team members

Agenda (short)
- Metrics and trends
- Missing params
- UpgradePath
- Exploitability and old vulns

Summary
We currently have a working pipeline for the application where we can trigger scans.

What metrics are we storing and planning to show?
Eirik mentioned in the last meeting that he would like to have trends to show if score is
increasing or decreasing over time.
Sebastien would like to see trends on both the severity of vulnerabilities and the
exploitability, meaning whether or not a vulnerability has been exploited or not.

One issue we have is that we are not logging the age of an image. Sebastien suggests using
the container build date to keep track of this.

Is there anything missing?
Sebastien thinks we already have the basics completed in regards to what data we are
storing. We are already storing all the scoring parameters and grouping them.
He would like a filter for whether a severity is exploitable or not as this is useful information
to keep track of and be aware of.

‘UpgradePath’ is a must have as this helps showing how a vulnerability can be fixed, and
how to fix it. He also suggested that we should use the param ‘upgradeable’ which is more
reliable, rather than ‘isPatchable’ which doesn’t work
‘References’ is also a useful param that we should store. This was omitted to save space but
we will reintroduce this as by Sebastiens suggestion as he thinks its useful to have.

Other useful information is ‘packageFixedInVersion’, showing in which version a package
was fixed, and ‘DockerFileInstruction’, showing the exact command to upgrade a vulnerable
package. The instructions only use the apt package manager, which is not relevant if you are
using another distribution that doesn't have apt.

The key thing is to find a reliable way to know if something can be patched or if there are any
immediate fixes.

Something else that we should be aware of according to Sebastien is theoretical versus
actual exploitability, meaning whether or not there is an actual exploit for a given
vulnerability.

Another suggestion is to find for how long an old high or critical vulnerability has been out. If
it's more than ~ 3 months old, the exploit usually has been exploited and there might very
well be ready made scripts that can be used by ill meaning individuals. We should try to sort
this out and be able to look at a glance.

Seb will see if he has more containers that we can scan that might have more vulnerabilities
to give us more data and understanding.

To summarise the capabilities. We can trigger a scan automatically and we can possibly
trigger through a workflow with some work. To trigger on events such as updated image or
new images would be useful for a pipeline, and on a schedule. This can be achieved using
webhooks

