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Abstract 
Colorectal cancer (CRC) is a disease affecting almost 2 million people each year, and 

about 20% of the patients are diagnosed at advanced stages where treatments have 

poor effect, due to its lack of symptoms at an early stage. To improve survival, new 

treatment targets need to be discovered as well as biomarkers for early detection and 

stratification of subgroups. Understanding the tumor heterogeneity of primary CRC tumor 

can provide important information about the disease, with the potential for future 

treatment targets of the cancer at earlier stages, and thus lower CRC mortality rate. 

Moreover, circulating biomarkers have proven to be usefull with respect to early 

detection, disease monitoring, and risk predicition.  

A protocol for establishing single cell suspension from fresh CRC tumor tissue was 

developed and optimized, where the single cell suspensions established using the 

finalized protocol was shown to have cell number, cell appearance, and cell viability 

compatible with downstream single cell RNA sequencing (scRNA-seq) workflow. 

Fresh CRC tissue samples were collected from three stage I-II patients and one stage IV, 

all who underwent surgery for removal of the primary tumor. Single cell suspensions 

were then established from the primary tumor of these patients, followed by scRNA-seq. 

Analysis of the CRC scRNA-seq data revealed clusters of cells with unique expression of 

cell-type-specific marker genes, in which a total of 18 major cell types were identified: B-

cells, CD4+ effector memory T-cells, CD4+ proliferating T-cells, CD8+ effector memory 

T-cells, dendritic cells/B-cells, fibroblasts, intestinal enterocytes, intestinal epithelial cells 

(unspecified subgroup), intestinal goblet cells, monocytes, mitochondrial gene-expressing 

cells, myeloid cells (unspecified subgroup), plasma B-cells, smooth muscle cells, T-cells 

(unspecified subgroup), unknown cell type, vascular endothelial cells, and vascular 

smooth muscle cells.  

In addition, subtypes of stromal cells (pericytes, cancer-associated fibroblasts, plasma B-

cells, crypt-top fibroblasts, myofibroblasts, and lamina propria fibroblasts), endothelial 

cells (mitochondrial gene-expressing cells, activated tumor-associated endothelial cells 

(TECs), tip TECs, immature TECs, and proliferative endothelial cells), and intestinal 

epithelial cells (mitochondrial gene-expressing cells, secretory progenitor 1, crypt base 

cells/Paneth cells, secretory progenitor 2, enterocytes, plasma B-cells, iron-storing 

epithelial cells, and tuft-2 cells) were also identified in the CRC tumor tissue. In total, the 

identified expressed genes and cell type composition of CRC tumor tissue emphasizes the 

intratumor heterogeneity of CRC.  

Lastly, significantly differentially expressed circulating serum microRNAs (miRNAs) 

between CRC patient groups were identified. A total of 53 significant miRNAs between 

true positive CRC patients with localized disease and false positive CRC patients, 7 

significant miRNAs between true positive CRC patients with metastatic disease and false 

positive CRC patients, and 30 significant miRNAs between true positive CRC patients with 

metastatic disease and localized disease were found.  

Several miRNAs with biomarker potential were identified. Five miRNAs (miR-142-5p, 

miR-16-5p, miR-143-3p, miR-126-5p, and miR-16-2-3p) could be markers of CRC, two 

miRNAs (miR-10a-5p and miR-92b-3p) could be markers of metastatic disease, four 

miRNAs (miR-122-5p, miR-885-3p, miR-375-3p, and miR-192-5p) could differentiate 
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patients with different stages of CRC, while two miRNAs (miR-429 and miR-21-5p) were 

shown to be highly associated with metastatic disease.  
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Sammendrag 
Kolorektal kreft er en sykdom som påvirker nesten 2 millioner mennesker hvert år, og 

omtrent 20% av pasientene blir diagnostisert ved avanserte kreftstadier hvor behandling 

har dårlig effekt, som følge av mangel på symptomer ved tidlig stadium. For å bedre 

overlevelsesraten må nye behandlingsmål og biomarkører oppdages for tidlig påvisning 

og stratifisering av undergrupper. En forståelse av tumorheterogeniteten i primærtumor 

av kolorektalkreft kan gi viktig informasjon om sykdommen, og innehar potensial for 

fremtidige behandlingsmål for kreften på tidlige stadier, noe som dermed kan senke 

dødelighetsraten for kreftformen. Videre har sirkulerende biomarkører vist seg å være 

nyttige med hensyn til tidlig påvisning, sykdomsovervåkning og forutsigelse av risiko.  

En protokoll for etablering av enkeltcellesuspensjon fra ferskt kolorektalt svulstvev ble 

utviklet og optimalisert. Enkeltcellesuspensjonene som ble etablert ved bruk av den 

ferdigstilte protokollen ble vist å ha et celleantall, utseende og andel levedyktige celler 

kompatibelt med RNA-sekvensering av enkeltceller («scRNA-seq») og videre analyse.  

Ferske prøver av kolorektalt svulstvev ble samlet inn fra tre pasienter med stadium I-II 

og en pasient med stadium IV, der alle pasientene gjennomgikk operasjon for fjerning av 

primærtumor. Enkeltcellesuspensjoner ble så etablert av primærtumoren fra disse 

pasientene, etterfulgt av scRNA-seq. En analyse av dataene etter scRNA-seq avslørte 

klynger av celler med et unikt uttrykk av celle-spesifikke markørgener, hvor totalt 18 

hovedcelletyper ble identifisert: B-celler, CD4+ effektor hukommelses T-celler, CD4+ 

prolifererende T-celler, CD8+ effektor hukommelses T-celler, dendrittiske celler/B-celler, 

fibroblaster, tarm-enterocytter, tarmepitelceller (uspesifisert undergruppe), tarm-

begerceller, monocytter, mitokontrielle gen-uttrykkende celler, myeloide celler 

(uspesifisert undergruppe), plasma B-celler, glatte muskelceller, T-celler (uspesifisert 

undergruppe), ukjent celletype, vaskulære endotelceller, og vaskulære glatte 

muskelceller.  

I tillegg ble undergrupper av stromale celler (pericytter, kreft-assosierte fibroblaster, 

plasma B-celler, krypt-topp fibroblaster, myofibroblaster og lamina propria fibroblaster), 

endotelceller (mitokondrielle gen-uttrykkende celler, aktiverte kreft-assosierte 

endotelceller (KECer), tupp KECer, umodne KECer og proliferative endotelceller) og 

tarmepitelceller (mitokondrielle gen-uttrykkende celler, sekreterende forgjengerceller 1, 

krypt-bunn celler/Paneth celler, sekreterende forgjengerceller 2, enterocytter, plasma B-

celler, jern-lagrende epitelceller og tuft-2 celler) identifisert i kolorektalt svulstvev. Totalt 

sett understreker de identifiserte uttrykte genene og celletypesammensetningen i 

kolorektalt svulstvev intratumorheterogeniteten i kolorektalkreft.  

Til slutt ble signifikante differensielt uttrykte sirkulerende mikroRNA (miRNA) i serum 

mellom kolorektal-pasientgrupper identifisert, hvorav 53 var mellom kreftpasienter med 

lokalisert sykdom og kontrollprøver, 7 var mellom kreftpasienter med spredning og 

kontrollprøver, og 30 var mellom kreftpasienter med lokalisert sykdom og spredning.  

Flere potensielle biomarkør-miRNA-er ble identifisert. Fem miRNA-er (miR-142-5p, miR-

16-5p, miR-143-3p, miR-126-5p og miR-16-2-3p) kan fungere som markører for 

kolorektalkreft, to miRNA-er (miR-10a-5p and miR-92b-3p) kan være markører for 

metastatisk sykdom, fire miRNA-er (miR-122-5p, miR-885-3p, miR-375-3p og miR-192-

5p) kan skille pasienter med forskjellige stadier av kolorektalkreft, mens to miRNA-er 

(miR-429 og miR-21-5p) ble vist å være sterkt assosiert med metastatisk sykdom.  
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1.1 Colorectal cancer 

The term “colorectal cancer” includes cancer in both the colon and rectum, where the 

colon and rectum along with the anus make up the large intestine and is a part of the 

gastrointestinal system of the human body (Figure 1.1) [1]. 

 

Figure 1.1: The large intestine (colon, rectum, and anus) as part of the human 
gastrointestinal system. A more detailed structure of the large intestine (box) shows the 
appendix and cesum lying at the start of the organ, continuing upwards into the ascending colon 

located on the right side of the abdomen, bending into the transverse colon, and continuing 
downward into the descending colon at the left abdomen side. The descending colon bends into the 

sigmoid colon, before opening into the rectum and finally anus. Created with BioRender.com. 

1.1.1 Colorectal cancer incidence and risk factors  

Colorectal cancer (CRC) is the third most common cancer in the world, with around 1.9 

million new diagnosed cases in 2020, which in total accounted for about 10.0% of all new 

cancer cases that year [2]. In addition, CRC is the second most frequent cause of cancer 

deaths globally [2]. The disease was responsible for about 935,000 deaths in 2020, 

which that year was equivalent to 9.4% of all cancer deaths [2]. The CRC incidence rates 

vary geographically, and a global pattern of increasing disease incidence with a country’s 

increasing Human Development Index (HDI) has been noticed [2]. Thus, CRC can be 

considered a marker of socioeconomic development [2], and worldwide incidence is 

predicted to increase to 2.5 million new cases in 2035 due to the continuing progress in 

developing countries [3].  

Modifiable environmental risk factors for CRC include high body fat and obesity, heavy 

alcohol intake, cigarette smoking, and consumption of red or processed meat [3], which 

all are associated with socioeconomical development. Epidemiological studies have also 

shown that male sex and increasing age have strong associations with disease incidence 

[3], as CRC incidence rates are about 30% higher in men than in women and the 

majority of cases are diagnosed in patients ages 50 and older [1]. There are also 

hereditary risk factors for CRC such as a positive CRC family history and inherited cancer 

susceptibility genes [3].  

1 Introduction 
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1.1.2 Staging systems for colorectal cancer 

A widely used CRC classification system in clinical settings is the tumor-node-metastasis 

(TNM) staging system defined by the American Joint Committee on Cancer (AJCC) [1, 4], 

whereas Surveillance, Epidemiology, and End Results (SEER) is another staging system 

used for descriptive and statistical analysis of tumor registry data (Table 1.1) [1]. Both 

staging systems describe the degree of tumor invasion in the body (Figure 1.2). 

Table 1.1: Staging systems for colorectal cancer. Two widely used staging systems for 
colorectal cancer are tumor-node-metastasis (TME) and Surveillance, Epidemiology, and End 
Results (SEER). The staging systems describe the degree of tumor invasion in the body. Adapted 
from Ponz de Leon, M. and Di Gregorio, C. [5] and American Cancer Society [1].  

Staging system Description 

 TNM SEER 

(Stage 0) In situ Tumor has not yet begun to invade the colorectal wall. 

Stage I Local Tumor invasion of the submucosa (T1), or further invasion of 

the muscularis propria or subserosa (T2).  

Stage II Regional Tumor invasion through the serosa (T3), or further invasion of 

the abdominal membrane lining and abdominal organs (T4). 

Stage III Metastatic involvement of lymph nodes, either 1-3 nodes (N1) 

or 3+ nodes (N2).  

Stage IV Distant Metastatic involvement of liver, lung, or other organs (M1).  

 

 

Figure 1.2: A visualization of the degree of tumor invasion in the body as described by 
the tumor-node-metastasis staging system in terms of colorectal cancer. Stage I includes 
tumor invasion of the submucosa, stage II includes invasion through the serosa, stage III includes 
metastatic involvement of lymph nodes, and stage IV includes metastatic involvement of distant 
organs. Adapted from National Cancer Institute (NCI) [5] and created with BioRender.com. 

1.1.3 Colorectal cancer prevention, diagnosis, and treatment 

CRC is largely asymptomatic until it reaches an advanced stage, where increasing cancer 

stages corresponds to more complex disease and thus lower survival rate [1, 6]. In total, 
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about 40% of CRC patients are diagnosed at an early stage, 40% are diagnosed with 

regional cancer, and 20% are diagnosed at the late stage with distant metastatic disease 

[6], where the 5-year survival rate is 90%, 71%, and 13%, respectively [1, 6].  

Due to CRCs correlation of mortality with disease stage, preventative measures such as 

screening programs are important for early diagnosis of the disease [1, 3]. Several 

detection methods are available in CRC screening programs, like non-invasive stool tests 

or more invasive endoscopic imaging techniques such as computed tomographic 

colonography (CTC) or colonoscopy [3, 7]. For people at elevated risk for CRC, such as 

those with known hereditary risk factors, regular surveillance by colonoscopy is the 

recommended prevention method [3]. Colonoscopy is also the preferred method for 

diagnosing CRC [3].  

Advancements in pathophysiological understanding have increased the treatment options 

for both local and advanced disease, focusing on individual treatment plans dependent on 

tumor-specific molecular features, tumor location, and patient characteristics [1, 3]. 

Endoscopic treatment or surgical resection is often sufficient to remove early-stage 

cancers, and in most cases no further treatment is needed [1]. For cancer at the regional 

stage that has spread to nearby lymph nodes, surgery is usually preceded or followed by 

chemotherapy to reduce the risk of local recurrence [1, 3]. Advanced CRC with 

metastatic involvement of other organs typically require surgery, chemotherapy, targeted 

therapies, and/or immunotherapy, often as palliative treatment to control the cancer, 

relieve the symptoms, and prolong survival [1, 3]. 

1.1.4 Molecular basis of colorectal cancer 

CRC progression is driven by the continuous acquisition of genetic mutations or 

epigenetic modifications in both tumor suppressor genes and oncogenes, as described in 

the well-established adenoma-carcinoma sequence (Figure 1.3) [8, 9]. This unfolds 

following a CRC molecular pathway such as chromosomal instability (CIN), CpG island 

methylator phenotype (CIMP), or pure microsatellite instability (MSI) [10], where it is 

important to note that the pathways not necessarily are mutually exclusive [11].  

1.1.4.1 Chromosomal instability (CIN) pathway 

The CIN pathway includes inactivation of the tumor suppressor gene adenomatous 

polyposis coli (APC) affecting the Wnt/β-catenin signaling pathway, followed by activation 

of KRAS proto-oncogene GTPase (KRAS) affecting the MAPK cascade (also known as the 

Ras/Raf/MEK/ERK signaling pathway) [9, 10]. Both signaling pathways are involved in 

cell proliferation, differentiation, and apoptosis [12, 13]. Further on, deleted in colorectal 

cancer (DCC) and the tumor suppressor genes SMAD2 and SMAD4 are inactivated [9, 

10]. Inactivation of DCC hinders cell apoptosis, while inactivation of the SMAD-genes 

affects the TGF-β signaling pathway controlling cell proliferation, differentiation, and 

apoptosis [9, 14, 15]. Lastly, inactivation of the tumor suppressor gene TP53 affects the 

p53 pathway, a pathway ensuring the appropriate responses to cellular stress caused by 

DNA damage or hyperproliferative signals [9, 10, 16]. TP53 alterations are considered 

the hallmark of human tumors and is associated with the progression and outcome of 

sporadic CRC [9]. 

1.1.4.2 CpG island methylator phenotype (CIMP) pathway 

CIMP CRC is characterized by a high density of DNA methylation in promoter CpG islands 

of tumor suppressor genes [9, 17], where the hypermethylation ultimately blocks the 

transcription and thus inactivates the gene [9, 18]. The CIMP status in sporadic CRCs can 
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be classified according to the degree of DNA methylation, often distinguished as the 

subgroups CIMP-negative, CIMP-low, and CIMP-high [17].  

1.1.4.3 Microsatellite instability (MSI) pathway 

In the MSI pathway, genetic or epigenetic inactivation of tumor suppressor DNA 

mismatch repair (MMR) genes occurs [9, 10]. This leads to a dysfunctional MMR system 

unable to repair the high frequency of replication errors made in microsatellite areas, 

increasing the mutation rate and potential for malignancy [9, 10]. The MSI status in 

sporadic CRCs is classified by the number of microsatellite panel markers with altered 

size, and is often distinguished as the subgroups microsatellite stable (MSS), MSI-low, 

and MSI-high [11]. 

 

Figure 1.3: The adenoma-carcinoma sequence. It is a well-established multistep genetic 
model first proposed by Fearon, E.R. and Vogelstein, B. [8] to describe colorectal cancer 
progression following the chromosomal instability (CIN), CpG island methylator phenotype (CIMP), 
or microsatellite instability (MSI) pathway. In the CIN pathway, alterations in APC, KRAS, DCC, 
SMAD2/4, and TP53 drives a healthy colon to develop colon cancer in a 10-year progression span. 
Abbreviations: APC, adenomatous polyposis coli; KRAS, KRAS proto-oncogene GTPase; DCC, 
deleted in colorectal cancer; SMAD2/4, Mothers against decapentaplegic homolog 2/4; TP53, 

Tumor protein p53. Adapted from Nguyen, H.T. and Duong, H.Q. [9] and created with 
BioRender.com using “The Multi-Hit Model of Colorectal Cancer”-template by Louise De Herdt. 

1.1.5 Sporadic and hereditary colorectal cancer 

About 70% of all CRC cases occurs sporadically [9]. The cell of origin for sporadic CRC is 

currently assumed to be an intestinal stem cell located at the base of colonic crypts, that 

after acquisition of genetic mutations or epigenetic modifications can rapidly expand to 

occupy the whole crypt and transform it into an aberrant crypt focus (ACF) [3, 19]. In 

turn, the ACF can evolve into a polyp and eventually progress to CRC over an estimated 

10-year period [3]. Regarding CRC molecular pathways, it is estimated that 85% of 

sporadic CRCs exhibit CIN, 15% displays CIMP, and 15% shows MSI [9-11]. Sporadic 

CRCs with MSI status are generally not pure, and they often occur in a CIMP-positive 

context where the MMR gene MLH1 is epigenetic inactivated [9, 10]. 
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The remaining 30% of all CRC cases are due to hereditary risk factors, where roughly 5% 

are hereditary CRCs and 25% are familial CRC [9, 20]. Hereditary CRCs are associated 

with specific highly penetrant inherited mutations, such as in the polyposis syndrome 

familial adenomatous polyposis (FAP) and in the non-polyposis syndrome hereditary non-

polyposis colorectal cancer (HNPCC) also known as Lynch syndrome [9]. As hereditary 

CRCs often occurs 10-15 years earlier than sporadic CRC, people with hereditary CRC 

syndromes tend to experience disease onset at an earlier age [20, 21]. Familial CRC are 

likely due to less penetrant but more common single gene mutations, but the entire 

etiologies are not completely understood [9, 20]. 

1.1.5.1 Hereditary colorectal cancer syndromes  

FAP is a rare hereditary CRC syndrome characterized by the development of hundreds to 

thousands of colonic adenomas, where affected individuals have a 100% lifetime risk of 

CRC if left untreated [20]. A less severe form of the disease is attenuated FAP with a 

lifetime CRC risk of 69% [20]. Both FAP and attenuated FAP result from germline 

mutations in the tumor suppressing gene APC, where the gene mutation location has 

been related to severity of the syndrome [20]. 

Lynch syndrome is the most common hereditary cancer syndrome, accounting for 2-4% 

of all CRCs [20]. It is a result of germline mutations in MMR genes, primarily MLH1 and 

MSH2, and are thus characterized by MSI-high status [20]. Affected individuals can 

develop colonic adenomas with greater frequencies than the general population, and the 

lifetime CRC risk is estimated to be 50-80% [9, 20]. 

1.1.6 Proximal and distal colon tumor location 

CRC may develop either on the right side or left side of the colon, also called the 

proximal and distal colon, respectively [22]. The proximal colon includes the cesum, 

ascending colon, and two thirds of the transverse colon, whereas the distal colon is 

comprised of the last third of the transverse colon, the descending colon, and sigmoid 

colon [22]. About 70% of all CRC cases occur in the left-sided distal colon and 

approximately 10% appears in the proximal colon [22]. Studies have shown that left-

sided CRC occurs predominantly in males and at an early age, while right-sided CRC 

occurs mainly in females and older people [22].  

CRC tumors in different parts of the colon exhibit different molecular characteristics and 

can thus behave differently in terms of disease progression and overall survival, where 

the difference can be attributed to developmental origin, distinct carcinogenic factors, or 

a combination of both [22]. Patients with left-sided CRC tend to have tumors with CIN-

associated gene mutations like APC, KRAS, and TP53 [11, 22]. These tumors 

demonstrate polypoid morphology and are thus easier to detect in early stages of 

carcinogenesis [22]. Right-sided CRC have a flatter morphology that is more difficult to 

discover, where such tumors tend to be MSI-high [22]. In addition, approximately 30-

40% of sporadic proximal CRCs are CIMP-positive, compared to only 3-12% of distal 

CRCs [11]. A study performed by Mangone, L. et al. confirmed that right-sided CRC has 

worse survival than left-sided CRC, even when adjusted for screening status [23]. 

1.2 Intratumor heterogeneity in colorectal cancer 

CRC is a heterogeneous disease where the solid tumor consists of many different cell 

types with distinct genetic and molecular profiles among them (Figure 1.4) [10, 24]. 

These differences within the same tumor type in patients are referred to as intratumor 
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heterogeneity (ITH) [24]. CRC can thus include tumors with different biological 

characteristics and behaviors, making the disease more prone to metastasis, recurrence, 

and drug resistance due to diverging response to treatment [24]. 

 

Figure 1.4: Illustration of intratumor heterogeneity in colorectal cancer. Here exemplified 
with seven distinct cell types. Intratumor heterogeneity is a term used when a solid tumor consists 
of many different cells showing distinct genetic and molecular profiles among them. Adapted from 
Zheng, Z. et al. [24] and created with BioRender.com.  

ITH can be caused by both genetic and epigenetic variability occurring during CRC 

molecular pathways, but can also be due to the tumor microenvironment (TME) [25]. 

TME refers to the cells and their secreted components surrounding a tumor [25]. TME 

constituents can either promote or suppress tumor formation by interacting with tumor 

cells during TME signaling pathways, and can thus be considerably involved in CRC 

progression and metastasis [25].  

1.2.1 Relevance of intratumor heterogeneity in cancer prognosis  

It appears to be a significant correlation between ITH and cancer prognosis, where 

increased ITH is associated with a decrease in cancer survival [24]. This trend has been 

found in various cancers, including CRC [24]. One study found that the 3-year overall 

survival and progression-free survival in metastatic CRC patients exhibiting low ITH were 

66% and 23%, respectively, while patients with high ITH had an overall survival of 18% 

and progression-free survival of 5% [26]. The exact reason for ITH impact on prognosis 

is unclear, and there is still a limited amount of research related to the ITH of CRC in 

general [24]. 

1.2.2 Identification of intratumor heterogeneity in colorectal cancer 

Mapping the ITH in primary CRC tumor is a step on the way to achieve a clearer picture 

of the internal cell type composition of the tumor and its TME, and it might result in a 

better understanding of the molecular basis of early biological processes in CRC 
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development, in addition to determining which factors that can function as better 

prognostic and predictive markers for the disease [24, 27].  

CRC was previously divided into four consensus molecular subtypes (CMS) [28]. This 

classification system was based on clustering bulk transcriptomic data, not accounting for 

the relative contribution of each cell type in the tumor tissue [28]. A study using single 

cell RNA sequencing (scRNA-seq) revealed that the TME-cells had a strong influence on 

the bulk CMS type, and that clusters of tumor epithelial cells derived from scRNA-seq did 

not align with CMS [28]. The previous CMS-classes were in fact signatures of the TME 

and not the intrinsic tumor transcriptome [28].  

Identification of cell type composition in primary CRC tumor and TME can thus be 

achieved by scRNA-seq [29]. ScRNA-seq is a favorable choice for studying cell 

heterogeneity in complex tissues such as cancer tissue, as the method estimates a 

distribution of expression levels for each gene across individual cell populations [30, 31]. 

It is an approach that investigates both the CRC molecular pathway variabilities and the 

makeup of the TME [27].  

1.2.3 Previous research on intratumor heterogeneity in patients with 

colorectal cancer using single-cell RNA sequencing techniques 

A limited number of scRNA-seq studies have been conducted in CRC (Table 1.2). One of 

the first studies was published in 2017 by Li, H. et al. [32], where scRNA-seq was 

conducted on primary tumor cells from 11 CRC patients at stages II-IV [29]. Seven 

distinct cell clusters were obtained and annotated as epithelial cells, fibroblasts, 

endothelial cells, B-cells, T-cells, mast cells, and myeloid cells [32].  

Another early study was performed in 2019 by Dai, W. et al. and involved primary CRC 

cells from one patient at stage III, where analyses performed on the scRNA-seq data 

revealed five distinct cell clusters [33]. This was ultimately a clear sign of heterogeneity, 

where each cluster consisted of specific cell markers with different functions [29].  

A third study investigating the overall ITH in CRC was conducted by Mei, Y. et al. in 2021 

on primary CRC cells from 12 patients at stage I-IV [34]. This study detected eight 

distinct cell clusters annotated as T-cells, B-cells, myeloid cells, mucosal associated 

invariant T-cells (MAIT cells), natural killer (NK) cells, epithelial cells, fibroblasts, and 

erythrocytes [34]. 

Another study from 2021 by Khaliq, A.M. et al. was based on profiling primary CRC tissue 

samples from 16 patients at stages I-IV using scRNA-seq techniques [35]. This resulted 

in clusters of epithelial cells, fibroblasts, endothelial cells, T-cells, B-cells, and myeloid 

cells, which again were subclustered to find cell type subsets [35]. TME cells like cancer-

associated fibroblast (CAF) subsets, CD4+ subsets, CD8+ subsets, NK cells, innate 

lymphoid cells (ILCs), monocyte lineage phenotypes, and tumor-associated macrophages 

(TAMs) were identified [35]. 

Table 1.2: A summarization of studies on intratumor heterogeneity in patients with 
colorectal cancer using single cell RNA sequencing techniques. The findings confirm tumor 

heterogeneity, and highlight different cells present in the colorectal cancer tumor and tumor 
microenvironment. CRC, colorectal cancer; scRNA-seq, single cell RNA sequencing; RCA, reference 
component analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; t-
SNE, t-stochastic neighbor embedding; MAIT, mucosal-associated invariant T-cells; NK, natural 
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killer; CAF, cancer-associated fibroblast; ILC, innate lymphoid cell; TAM, tumor-associated 

macrophage. 

Sample Method Findings References 

Primary tumor 

cells from 11 

CRC patients 

at stages II-IV 

ScRNA-seq and 

clustering by 

RCA 

Obtained seven distinct cell 

clusters (epithelial cells, 

fibroblasts, endothelial cells, B-

cells, T-cells, mast cells, and 

myeloid cells)  

Li, H. et al. 

(2017) [32] 

Primary tumor 

cells from 1 

CRC patient at 

stage III 

ScRNA-seq 

followed by GO 

and KEGG 

pathway 

analyses   

Revealed five distinct cell 

clusters that all consisted of 

specific cell markers with 

different functions 

Dai, W. et al. 

(2019) [33] 

Primary tumor 

cells from 12 

CRC patients 

at stages I-IV  

ScRNA-seq and 

downstream 

Seurat clustering 

analysis 

including t-SNE 

Obtained eight distinct cell 

clusters (T-cells, B-cells, 

myeloid cells, MAIT cells, NK 

cells, epithelial cells, fibroblasts, 

and erythrocytes)  

Mei, Y. et al. 

(2021) [34] 

Primary tumor 

cells from 16 

CRC patients 

at stages I-IV 

ScRNA-seq and 

downstream 

Seurat clustering 

analysis 

including t-SNE 

Revealed several distinct cell 

clusters (epithelial cells, 

fibroblasts, endothelial cells, T-

cells, B-cells, and myeloid cells), 

where different subsets were 

identified (CAFs, CD4+, CD8+, 

NK cells, ILCs, monocyte lineage 

phenotypes, and TAMs) 

Khaliq, A.M. et 

al. (2021) [35] 

 

Other more current studies using scRNA-seq techniques seem to focus on specific cell 

type subsets within the CRC tumor by subclustering the cell types of interest. In a study 

on primary CRC from 2021, Wang, H. et al. found that rare cancer stem cells exist in a 

dormant state and display plasticity towards cancer epithelial cells which exhibit tumor-

initiating features [36]. The same year, Qi, J. et al. found that tumor tissue from CRC 

patients contains tumor specific ILCs, namely ILC1-like and ILC2 subsets [37], while 

Domanska, D. et al. did in a study from 2022 analyze macrophages from colonic 

resections of CRC patients and revealed niche-specific subsets [38].  

1.2.4 Cell types in colorectal cancer tumor and tumor microenvironment 

Previous research conducted on ITH in CRC using scRNA-seq techniques have revealed 

many major cell types present in CRC tumors and TME. These findings can be seen in the 

context of cell types found in normal colorectal tissue and microenvironment, as CRC 

starts to develop from a healthy tissue. 

1.2.4.1 Normal colorectal tissue and microenvironment structure 

As mentioned, the colon and rectum do along with the anus make up the large intestine 

of the human body [1]. The large intestine is lined with a single cell layer of epithelial 

cells, where this layer at millions of places form tube-like invaginations called colonic 

crypts into the underlying tissue layer lamina propria (Figure 1.5) [39]. The lamina 

propria is a layer of connective tissue rich in cells such as fibroblasts, pericytes, 

endothelial cells, and scattered immune cells [40]. The epithelium do along with the 
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lamina propria and muscularis mucosae make up the mucosa, where the muscularis 

mucosae is a thin layer of smooth muscle cells [40]. This means that there is a complex 

microenvironment composed of diverse cell types surrounding the colonic crypt bases  

[40].  

 

Figure 1.5: An overview of normal colorectal tissue and microenvironment structure. The 
epithelial cell layer forms colonic crypts into the underlying tissue, where the epithelium along with 

lamina propria and muscularis mucosae make up the mucosa. Epithelial cells include intestinal 
stem cells, transit-amplifying cells, Paneth cells, goblet cells, enteroendocrine cells, tuft cells, and 
enterocytes. Cells in the lamina propria include fibroblasts, endothelial cells, pericytes, T-cells, B-
cells, natural killer cells, macrophages, dendritic cells, mast cells, and neutrophils. Muscularis 
mucosae cells include smooth muscle cells. Adapted from Zhu, G. et al. [40] and created with 
BioRender.com.  

1.2.4.2 Intestinal stem cells can transform into colorectal cancer stem cells 

Intestinal stem cells (ISCs) reside at the bottom of intestinal crypts, and are interspersed 

with a similar number of Paneth cells in the small intestine and Paneth-like cells in the 

large intestine [40]. This is based on findings in mice, where typical Paneth cells are 

absent from large intestine crypts, and deep crypt secretory cells instead are 

intermingled with ISCs and function as the colon equivalent of Paneth cells [40].  

The crypt-based ISCs give rise to transit-amplifying cells, which are proliferating 

progenitors that can differentiate into various intestinal cell types near the top of the 

crypt and regularly replenish the shedding epithelial cells [40]. Most of the differentiated 

cells moves upwards, while the Paneth cells or Paneth-like cells move back down to the 

ISC compartment [40]. There are believed to exist both actively proliferating ISCs and 
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non- or slowly proliferating reserve ISCs [41]. The active ISCs mediates the normal 

homeostatic turnover of the intestinal epithelium, whereas reserve ISCs fulfill 

regenerative tasks specifically after tissue injury or stress [41]. Previously used 

nomenclature was crypt based columnar cells for active ISCs and +4 cells for reserve 

ISCs [42].  

ISCs in the large intestine displaying tumor-related features due to acquired genetic 

mutations or epigenetic modifications in tumor suppressor genes and oncogenes [3], 

possibly with the influence of signals derived from the TME [43], are defined as colorectal 

cancer stem cells (CSCs) [19]. Mirroring normal ISCs, CSCs can both self-renew and 

generate all the differentiated cells that comprise the tumor, thus giving rise to 

heterogenous tumors [19]. Tumor-related characteristics of CSCs are uncontrolled 

growth, resistance to apoptosis, and increased invasiveness, making the cells play a key 

role in CRC initiation, invasion and progression, as well as therapy resistance [19].  

1.2.4.3 Intestinal epithelial cells  

Proliferating transit-amplifying progenitors derived from ISCs can differentiate into 

various intestinal epithelial cell types such as secretory Paneth cells, goblet cells, 

enteroendocrine cells, and tuft cells, or adsorptive enterocytes [40]. The various 

differentiated cell types of the intestinal epithelium are well defined [42], and together 

they perform several vital physiological functions such as nutrient absorption, energy 

homeostasis, innate immunity, and tissue regeneration [44]. A disruption of these 

functions can lead to impaired health conditions such as CRC [44].  

 

Paneth cells are specialized secretory pyramidal-shaped cells possessing 

dense granules in their cytoplasm, which contains antimicrobial compounds 

and immunomodulating proteins that function to regulate the composition of 

the intestinal flora, being important in immunity and host-defense [45]. 

 

Goblet cells are cup-shaped cells with the primary function of synthesizing 

and secreting a protective layer of mucus [46]. Studies have shown that 

goblet cells can act as antigen importers by taking up antigens and delivering 

them to antigen-presenting cells in the lamina propria via goblet cell-

associated antigen passages (GAPs) [46, 47]. 

 

Enteroendocrine cells are rare hormone-producing cells controlling 

processes related to food intake [48]. The cell type has also been theorized to 

be involved in intestinal immunity due to their expression of microbial 

metabolite receptors, secretion of cytokines upon stimulation, and the fact that 

some of its hormones act directly on immune cells [48]. 

 

Tuft cells are flask-shaped chemosensory cells with brush-like microvilli 

extending from its body [49]. The cells are involved in immune and regulatory 

metabolic networks, monitoring intestinal content and secreting effector 

molecules upon stimulation [49]. Tuft cells are especially associated with 

defense against parasitic infections [49]. 

 

Enterocytes are columnar cells with microvilli forming a brush border on the 

apical surface [50]. They are the most abundant epithelial cell type in the 

large intestine, with the main function of absorbing nutrients from food 

passing through the brush border [50]. The cell type functions as a physical 
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barrier to microbial invasion because of an enzyme surface coat on the brush 

border preventing the uptake of antigens [50]. Enterocytes also operates as 

non-professional antigen presenting cells due to their ability to internalize, 

process, and present antigens directly to T-cells [50].  

1.2.4.4 Intestinal microenvironment cells 

There is a complex microenvironment composed of diverse cell types surrounding the 

colonic crypt bases [40]. This microenvironment can influence intestinal regeneration 

from the stem cell niche by regulating the activity of signaling pathways [51], much in 

the same way the TME formed by both malignant and non-malignant cells in CRC can 

regulate signaling pathways to promote CRC progression and metastasis [25]. 

 

Fibroblasts are flat, spindle-shaped cells producing collagen and ground 

substance for the extracellular matrix, creating the structural framework 

for connective tissue [52]. Cancer-associated fibroblasts (CAFs) can 

in CRC promote the disease progression via multiple mechanisms, such 

as regulating signaling pathways involved in tumor progression [25].  

 

Pericytes and endothelial cells are the main components of blood 

vessels, in which pericytes are mural cells that wrap around the 

endothelial cells forming the inner lining of the vessel wall [53]. The two 

cell types can interact with each other, both being involved in 

angiogenesis and vessel sprouting. Tumor-associated endothelial 

cells (TECs) in the TME have been found to produce growth factor 

receptors to enhance angiogenesis in CRC [25].  

 

Lymphocytes such as T-cells, B-cells and NK cells work together during 

the immune response to detect and remove antigens or infected cells, 

and in general control the immune reaction [54, 55]. Tumor-infiltrating 

lymphocytes (TILs) can in CRC be involved in tumor immune evasion 

as well as tumor recognition, destruction, and elimination [25].  

 

Macrophages are cells developed from monocytes, and they are 

phagocytic antigen presenting cells that can help initiate an immune 

response [56]. The cells can be classified as M1 or M2 subtypes [25]. 

Tumor-associated macrophages (TAMs) are classified as M2 in the 

TME of CRC, and can promote tumor progression by stimulating 

angiogenesis and inhibiting immune responses [25].  

 

Dendritic cells (DCs) also process and present antigens to lymphocytes 

aiming to initiate an immune response [25]. Functional defect DCs are 

often present in CRC, as DC maturation is impaired and results in cells 

with insufficient antigen recognition. Studies on ovarian cancer show that 

infiltration of the TME by normal mature DCs is correlated with a 

favorable prognosis [25]. 

 

Mast cells can upon stimulation by an antigen or allergen release the 

contents of its granules to produce local responses characteristic of an 

allergic reaction [57]. Tumor-infiltrating mast cells (TIMs) have in 

CRC been related to promotion of disease progression and a poor 
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prognosis, although the general consequences of TIMs in a TME have 

varied based on the type and anatomical site of the tumor [58].  

 

Neutrophils are phagocytic cells with cytoplasmic granules that contains 

enzymes which can destroy the ingested pathogen [59]. Tumor-

associated neutrophils (TANs) have with accumulating evidence been 

suggested to support CRC tumor progression, although the cells can also 

be tumor suppressing due to their defensive function against antigens 

[25]. 

 

Smooth muscle cells in the muscularis mucosae are narrow, spindle-

shaped cells which make up the smooth muscle [60]. This muscle tissue 

is also called involuntary muscle, as it contracts slowly and automatically 

to control the wall movement of the gastrointestinal tract and help with 

digestion [61]. Smooth muscle cells are understudied TME partners, but a 

recent study demonstrated that the cell type produces molecules that are 

able to modify epithelium behavior and thus affect tumor formation [62]. 

1.3 MicroRNA in colorectal cancer 

The central dogma of molecular biology states that “DNA makes RNA makes proteins”, 

where the genetic information stored in DNA can be transcribed into RNA and further 

translated into proteins (Figure 1.6) [63]. The gene expression can be regulated by a 

wide range of mechanisms, and as this expression of genes defines the cell type and 

function it is fundamental for cellular and organismal life [64].  

 

Figure 1.6: The central dogma of molecular biology. DNA is copied in a process known as 
replication before the genetic information stored in DNA is expressed by transcription into RNA. 
This is followed by translation into an encoded protein. Created with BioRender.com.  

The human cellular transcriptome is a collection of all the RNA transcripts present in a 

cell, and includes both coding and non-coding molecules [65]. Protein-coding messenger 

RNA (mRNA) has historically been the most frequently studied RNA species, as non-

coding RNA (ncRNA) was thought to be non-functional [65, 66]. It is now clear that 

ncRNA play multiple structural and regulatory roles in the molecular biology of the cell, 

and the species includes various subgroups [66]. 

A subgroup of ncRNA are small ncRNA, which includes microRNA (miRNA) [65]. As the 

name imply, miRNA are short molecules with a length of about 22 nucleotides that 

regulate gene expression at the post-transcriptional level by targeting protein-coding 

mRNA [67]. One miRNA can regulate the expression of many genes, while one gene can 

be regulated by multiple miRNAs [68]. After its discovery in roundworm in 1993 by Lee, 
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R.C. et al. [69], miRNA have been found in most living organisms, where some specific 

molecules have been highly conserved across species [70]. Most mammalian mRNAs are 

also found to be conserved targets of miRNAs [71], and this might illustrate miRNAs 

having a widespread importance and role in a broad range of biological processes. 

1.3.1 MicroRNA biogenesis and post-transcriptional gene silencing 

Production of miRNA starts in the nucleus with gene transcription by RNA polymerase 

into a long primary miRNA (pri-miRNA) with one or more hairpin structures (Figure 1.7) 

[67]. The pri-miRNA sequence is cleaved by a microprocessor complex to form precursor 

miRNA (pre-miRNA), before being exported to the cytoplasm [67]. In the cytoplasm, the 

hairpin stem of the pre-miRNA is cut by a dicer enzyme to produce mature miRNA in a 

duplex [67]. 

One strand of the miRNA duplex can be incorporated into an RNA-induced silencing 

complex (RISC), while the other strand gets degraded [67, 72]. The retained strand is 

used as a template by RISC to bind complementary elements mostly located on the 3’ 

untranslated region (UTR) of target mRNA molecules [67]. The interaction between 

miRNA and mRNA triggers events leading to RNA interference (RNAi) in terms of 

translation inhibition or mRNA destabilization, and ultimately gene silencing [67, 73]. 

 

Figure 1.7: Biogenesis and post-transcriptional gene silencing by miRNA. Production of 
miRNA starts in the nucleus with synthesis of pri-miRNA. The molecule is cleaved into pre-miRNA, 

transported into the cytoplasm, and cleaved again into a miRNA duplex. One strand of the miRNA 
duplex is used as a template by RISC to bind target mRNA, where the miRNA-mRNA interaction 
triggers mRNA destabilization or translation inhibition. Abbreviations: miRNA, microRNA; pri-
miRNA, primary microRNA; pre-miRNA, precursor microRNA; RISC, RNA-induced silencing 
complex; mRNA, messenger RNA. Adapted from Bartel, D.P. [67] and created with BioRender.com. 
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1.3.2 MicroRNAs are dysregulated in colorectal cancer 

Compelling evidence have demonstrated that miRNAs are dysregulated in human cancers 

[74]. Such dysregulation could be caused by several underlying mechanisms, including 

amplification or deletion of miRNA genes, abnormal transcriptional control of miRNAs due 

to dysregulation of key transcription factors, aberrant epigenetic changes, and defects in 

the miRNA biogenesis machinery [74].  

Altered miRNA in CRC tumors is believed to support tumorigenesis by affecting cell 

proliferation, metastasis, angiogenesis, autophagy, apoptosis, and the radiosensitivity of 

cancer cells [75]. Different miRNAs may practically function as either tumor suppressor 

genes or oncogenes under certain circumstances, and their involvement in tumorigenesis 

could be due to their regulation of only a few specific targets despite their multiple 

targets [68].  

1.3.3 MicroRNAs as biomarkers in colorectal cancer 

The current gold standard for diagnosing CRC is colonoscopy, but this procedure is 

invasive, expensive, and carries patient risk [76]. Newer non-invasive CRC detection 

methods include biomarker stool-based and blood-based tests, but current tests have 

relatively poor selectivity and sensitivity and thus produces a high rate of both false 

positives and false negatives [3, 76]. Therefore, there is a need for a more accurate non-

invasive CRC screening procedure [76]. Several biomolecules are being investigated as 

alternative biomarkers to current screening methods, where a considerable amount of 

studies have identified miRNAs as a good biomarker candidate for CRC diagnosis, 

prognosis, and prediction due to their altered expression profiles in cancers [74].  

Even though miRNAs are produced in the nucleus and regulate gene expression in the 

cytoplasm of the cell, they can also be found in the extracellular environment such as 

serum, possibly originating from passive leakage from apoptotic or damaged cells [72]. 

The circulating miRNAs can have a role in intercellular communication and affect gene 

expression in adjacent or distant target cells [72]. Recent studies indicates that the 

combined signatures of specific circulating miRNAs provide high specificity, sensitivity, 

and reproducibility in screening of CRC, where these data can be obtained using a non-

invasive blood-based test approach [72, 77]. 
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The overall aim of this study was to investigate both tissue heterogeneity of primary CRC 

tumor and circulating miRNAs in serum of early- and advanced-stage CRC compared to 

control individuals.  

The specific aims related to tissue-investigation were: 

❖ Develop and optimize a protocol for establishing single cell suspension from fresh 

CRC tissue.  

❖ Analyze and evaluate scRNA-seq data of single cell suspensions to identify 

expressed genes and cell type composition in CRC tumor.  

The specific aim related to blood-investigation was: 

❖ Isolate RNA and conduct miRNA-seq from serum samples of CRC patients with 

both localized and metastatic disease and control individuals, to identify 

differentially expressed miRNA between the groups.  

 

  

2 Aims of the study 
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The methodology for this master’s thesis can be found in appendices (Appendix A). 

3 Methodology 
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4.1 Validation of protocol for establishing single cell 

suspension from fresh colorectal cancer tissue  

A protocol for establishing single cell suspension from fresh CRC tissue was finalized and 

evaluated in terms of cell number by cell counting, cell appearance by microscopy, and 

cell viability by flow cytometry. Established single cell suspensions had an average cell 

count of about 3 million cells/mL, where most cells were intact and single with some cell 

clumping and debris (Supplementary Figure 1). Cell viability was estimated to be 68.8% 

(Supplementary Table 1), where cell viability over 60% also was confirmed by the 

Genomics Core Facility (GCF) at the Norwegian University of Science and Technology 

(NTNU). 

4.2 Identified expressed genes and cell type composition in 

colorectal cancer tumor tissue 

The biological material used in this part of the study were CRC single cell suspensions 

established from fresh CRC tissues by using a protocol described in this thesis (Appendix 

A). ScRNA-seq was performed on 4 samples (Table 4.1) followed by a downstream 

analysis workflow using Seurat in R [78]. A total number of 23,440 cells were obtained, 

where separate cluster analyses of each sample found that CRC tissue could be classified 

into 11-13 clusters (Supplementary Figure 2) with respect to their mRNA transcriptomes. 

The different clusters were manually annotated based on their top 10 expressed cell-

type-specific marker genes (Supplementary Table 2-Supplementary Table 9), ultimately 

detecting major cell types in each sample (Figure 4.1).  

Table 4.1: Patient sample characteristics. Three samples from men with stage I-II colorectal 

cancer and one sample from a man with stage IV cancer were used in this study. 50% of the 
patients had right-sided cancer (sample 554 and 559) and 50% had left-sided cancer (sample 556 

and sample 569).  

Sample 

ID Gender 

CEA  

[µg/L] 

CRP  

[mg/L] 

Colorectal cancer staging 

by TNM 

Tumor location 

Tumor  

(T) 

Node  

(N) 

Metastasis  

(M) 

554 Male 9,6 25 pT4a 

N2b 

(9/14) 

Peritoneal 

metastasis 

(M1) 

Right-sided 

proximal colon 

(ileocecal valve) 

556 Male 2,6 <5 cT3-T4 N0 M0 

Left-sided distal 

colon (sigmoid 

colon) 

559 Male 3 <5 pT3 N0 M0 

Right-sided 

proximal colon 

(ileocecal valve) 

569 Male 26,7 <5 pT4a 

N1b 

(2/20) M0 

Left-sided distal 

colon (sigmoid 

colon) 

4 Results 
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Figure 4.1: UMAP plot representation of cell types present in different samples of CRC 
tissue. (A) The major cell types found in sample 554. Abbreviations listed in (D). (B) The major 
cell types found in sample 556. Abbreviations listed in (D). (C) The major cell types found in 

sample 559. Abbreviations listed in (D). (D) The major cell types found in sample 569. 
Abbreviations: CD4_EM_T, CD4+ effector memory T-cell; MT, mitochondrial; CD4_P_T, CD4+ 
proliferating T-cell; CD8_EM_T, CD8+ effector memory cell.  

After performing cell-type annotation for each individual sample, the 4 samples were 

integrated using the integration procedure in Seurat (Appendix A). A new cluster analysis 

was performed in the integrated data, revealing a total of 18 unique clusters (Figure 4.2-

A), with contribution of varying cell numbers from each sample (Table 4.2). The top 10 

cell-type-specific marker genes for each automatically annotated cluster were identified 

(Supplementary Table 10). A heatmap confirmed unique cell-type-specific gene 

expression for the 18 major identified cell types B-cells, CD4+ effector memory T-cells, 

CD4+ proliferating T-cells, CD8+ effector memory T-cells, dendritic cells/B-cells, 

fibroblasts, intestinal enterocytes, intestinal epithelial cells (unspecified subgroup), 

intestinal goblet cells, monocytes, mitochondrial gene-expressing cells, myeloid cells 

(unspecified subgroup), plasma B-cells, smooth muscle cells, T-cells (unspecified 
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subgroup), unknown cell type, vascular endothelial cells, and vascular smooth muscle 

cells (Figure 4.2-B).  

Next, the specific cell types that had similar gene expression of the marker genes were 

grouped into 6 rough cell types: stromal cells, endothelial cells, intestinal epithelial cells, 

and three different subtypes of immune cells (Figure 4.2-C). A group of unknown cells 

were identified that showed similarity in gene expression with both the intestinal 

epithelial cells and different subtypes of immune cells, clustering together in the middle 

of these clusters. Mitochondrial gene-expressing cells displayed similarity with intestinal 

epithelial cells. The rough classification showed that immune cells separated clearly from 

stromal, endothelial, and epithelial cells. Further, stromal cells and endothelial cells were 

clearly separated from each other and from other types of cells.  

 

Figure 4.2: Portrayals of cell types present in CRC tissue. (A) UMAP plot representation of 
CRC tissue with 18 distinct cell types. Abbreviations listed in (C). (B) Heatmap showing the top 5 
cell-type-specific marker genes of each cluster in CRC tissue. Abbreviations listed in (C). (C) UMAP 
plot representation of CRC tissue, where the major cell types have been classified into rough cell 
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type groups. Abbreviations: CD4_EM_T, CD4+ effector memory T-cell; CD4_P_T, CD4+ 

proliferating T-cell; CD8_EM_T, CD8+ effector memory T-cell; MT, mitochondrial. 

Table 4.2: Number of cells in every major cell type for each sample. Intestinal epithelial 

cells (unspecified subgroup), plasma B-cells, mitochondrial gene-expressing cells, and at least one 
type of effector memory T-cell were the cell types found in all four samples. Abbreviations: MT, 
mitochondrial; CD4_EM_T, CD4+ effector memory T-cell; CD8_EM_T, CD8+ effector memory T-
cell; CD4_P_T, CD4+ proliferating T-cell.  

Cell type cluster name 

Number of cells 

Total number of cells 

Sample  

554 

Sample  

556 

Sample  

559 

Sample  

569 

Intestinal epithelial 668 494 633 889 2684 

Plasma B-cell 37 409 817 1002 2265 

MT 498 407 447 828 2180 

CD4_EM_T 447 2927 441   3815 

CD8_EM_T 161 972   1745 2878 

Fibroblast 210 75 388   673 

Vascular endothelial 104   152 174 430 

Myeloid 57   321 78 456 

CD4_P_T 295 198     493 

Dendritic or B-cell   3063   884 3947 

T-cell   143   498 641 

Unknown   387   705 1092 

Vascular smooth muscle     103 446 549 

Smooth muscle 41       41 

B-cell   185     185 

Monocyte   150     150 

Intestinal enterocyte     302   302 

Intestinal goblet cell     659   659 

Total number of cells 2518 9410 4263 7249 23440 

 

The rough cell type groups (stromal cells, endothelial cells, and intestinal epithelial cells) 

were further subclustered and analyzed. The subclusters were manually annotated based 

on their top 10 expressed cell-type-specific marker genes (Supplementary Table 11-

Supplementary Table 16), where some specific marker genes ultimately determined the 

assignment of cluster cell type names (Table 4.3). 

Table 4.3: Cell-type-specific marker genes ultimately determining stromal, endothelial, 

and intestinal epithelial subset cell type names. Abbreviations: CAF, cancer-associated 
fibroblast; CTF, crypt-top fibroblast; LPF, lamina propria fibroblast, MT, mitochondrial; TEC, tumor-
associated endothelial cell; EC, endothelial cell; CBC, crypt base cell.  

Cell type group Annotated cell type cluster 

name 

Cell-type-specific 

marker gene 

References 

Stromal cells Pericyte RGS5 PanglaoDB [79] 

Elmentaite, R. et al. (2021) [80] 

Dasgupta, S. et al. (2021) [81] 

MCAM PanglaoDB [79] 

Elmentaite, R. et al. (2021) [80] 

Kotsiliti, E. (2022)[82]  

NOTCH3 PanglaoDB [79] 

Elmentaite, R. et al. (2021) [80] 

Tefft, J.B. et al. (2022) [83] 

CAF MMP3 Bigaeva, E. et al. (2020) [84] 

Uhlitz, F. et al. (2020) [85] 

MMP11 Bigaeva, E. et al. (2020) [84] 

Uhlitz, F. et al. (2020) [85] 

COL1A1 Uhlitz, F. et al. (2020) [85] 

COL1A2 Uhlitz, F. et al. (2020) [85] 

Plasma B-cell IG-genes PanglaoDB [79] 

CTF PDGFRA Brügger, M.D. et al. (2020) [86] 
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BMP5 Brügger, M.D. et al. (2020) [86] 

Myofibroblast HHIP Elmentaite, R. et al. (2021) [80] 

MYH11 Bigaeva, E. et al. (2020) [84] 

NPNT Elmentaite, R. et al. (2021) [80] 

ACTG2 Bigaeva, E. et al. (2020) [84] 

LPF CCL13 Bigaeva, E. et al. (2020) [84] 

CCL11 PanglaoDB [79] 

Bigaeva, E. et al. (2020) [84] 

ADAMDEC1 Bigaeva, E. et al. (2020) [84] 

CCL2 Bigaeva, E. et al. (2020) [84] 

APOE Bigaeva, E. et al. (2020) [84] 

Endothelial cells Mitochondrial gene-expressing 

cells 

MT-genes HPA [87] 

Activated TEC CCN2 (CTFG) Liu, S.C. et al. (2014) [88] 

CPE Goveia, J. et al. (2020) [89] 

CLU Goveia, J. et al. (2020) [89] 

CCL14 Goveia, J. et al. (2020) [89] 

HLA-DRB1 Goveia, J. et al. (2020) [89] 

HLA-DRA Goveia, J. et al. (2020) [89] 

HLA-DPA1 Goveia, J. et al. (2020) [89] 

Tip TEC SPARC Goveia, J. et al. (2020) [89] 

CD34 Siemerink, M.J. et al. (2012) [90] 

ANGPT2 Goveia, J. et al. (2020) [89] 

Zarkada, G. et al. (2021) [91] 

Immature TEC HSPG2 Goveia, J. et al. (2020) [89] 

JAG1 Goveia, J. et al. (2020) [89] 

Proliferative EC MKI67 Uxa, S. et al. (2021) [92] 

NUSAP1 Han, G. et al. (2018) [93] 

HMGB2 Kalucka, J. et al. (2020) [94] 

STMN1 Kalucka, J. et al. (2020) [94] 

TUBA1B Kalucka, J. et al. (2020) [94] 

Intestinal epithelial cells Mitochondrial gene-expressing 

cell 

MT-genes HPA [87] 

Secretory progenitor 1 SOX4 Fazilaty, H. et al. (2021) [95] 

Gracz, A.D. et al. (2018) [96] 

EPHB3 Sancho, R. et al. (2015) [97] 

FCGBP Habowski, A.N. et al. (2020) [98] 

CBC/Paneth cell LYZ PanglaoDB [79] 

Nakanishi, Y. et al. (2016) [99] 

OLFM4 PanglaoDB [79] 

van der Flier, L.G. et al. (2009) [100] 

Secretory progenitor 2 PLA2G2A Rajagopal, J. et al. (2021) [101] 

DMBT1 Rajagopal, J. et al. (2021) [101] 

C15orf48 Rajagopal, J. et al. (2021) [101] 

PIGR Rajagopal, J. et al. (2021) [101] 

Enterocyte FABP1 PanglaoDB [79] 

KRT20 PanglaoDB [79] 

SLC26A3 PanglaoDB [79] 

Plasma B-cell IG-genes PanglaoDB [79] 

Iron-storing epithelial cell FTH1 Xu, M. et al. (2020) [102] 

Xu, S. et al. (2021) [103] 

FTL Xu, M. et al. (2020) [102] 

Xu, S. et al. (2021) [103] 

Tuft-2 cell SH2D6 Xiong, Z. et al. (2022) [104] 

HPGDS Xiong, Z. et al. (2022) [104] 

SIPB Xiong, Z. et al. (2022) [104] 

 

Subtypes of the cell groups were identified based on the mentioned marker genes (Figure 

4.3), with contribution of varying cell numbers from each sample (Table 4.4). Stromal 

cells were clustered into 6 cell types (pericytes, cancer-associated fibroblasts (CAFs), 

plasma B-cells, crypt-top fibroblasts (CTFs), myofibroblasts, and lamina propria 

fibroblasts (LPFs)) with pericytes being the largest cluster with 303 cells and LPFs the 

smallest with 105 cells.  

Endothelial cells were clustered into 5 cell types (mitochondrial gene-expressing cells, 

activated tumor-associated endothelial cells (TECs), tip TECs, immature TECs, and 

proliferative endothelial cells). Here a clear separation of immature TECs and the other 

clusters were identified, with immature TECs showing more similarities to mitochondrial 

gene-expressing cells than the other endothelial subtypes. The largest subcluster were 
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constituted of 127 mitochondrial gene-expressing cells and the smallest cluster included 

18 proliferative ECs.  

Intestinal epithelial cells were clustered into 8 cell types (mitochondrial gene-expressing 

cells, secretory progenitor 1, crypt base cells (CBCs)/Paneth cells, secretory progenitor 2, 

enterocytes, plasma B-cells, iron-storing epithelial cells, and tuft-2 cells), with 

mitochondrial gene-expressing cells making up the largest cluster of 985 cells, followed 

by 719 secretory progenitor 1 cells and 665 CBC/Paneth cells. Tuft-2 cells comprised the 

smallest cluster with 44 cells and was also the only cell type clearly separated from the 

other intestinal epithelial subtypes.   

 

Figure 4.3: Subset cell types of rough cell type groups present in CRC tissue. (A) UMAP 
plot representation of the subclusters present within the stromal cell type group. Abbreviations 

listed in (C). (B) UMAP plot representation of the subclusters present within the endothelial cell 
type group. Abbreviations listed in (C). (C) UMAP plot representation of the subclusters present 
within the intestinal epithelial cell type group. Abbreviations: CAF, cancer-associated fibroblast; 
CTF, crypt-top fibroblast; LPF, lamina propria fibroblast; MT, mitochondrial; TEC, tumor-associated 
endothelial cell; EC, endothelial cell; CBC, crypt base cell. 

Table 4.4: Number of cells in every subcluster of each rough cell type group. Each sample 
had varying contribution of cell number in each cell type subset cluster. Abbreviations: CAF, 
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cancer-associated fibroblast; CTF, crypt-top fibroblast; LPF, lamina propria fibroblast; TEC, tumor-

associated endothelial cell; EC, endothelial cell; CBC, crypt base cell. 

Cell type 
group 

Cell type cluster 
name 

Number of cells 
Total number 

of cells Sample 
554 

Sample 
556 

Sample 
559 

Sample 
569 

Stromal cells 

Pericyte 43 24 118 118 303 

CAF 92 34 89 67 282 

Plasma B-cell 3 4 118 104 229 

CTF 45 2 73 94 214 

Myofibroblast 42 10 45 33 130 

LPF 26 1 48 30 105 

Total number of cells 251 75 491 446 1263 

Endothelial cells 

Mitochondrial gene-
expressing cells 

32 44 0 51 127 

Activated TEC 28 25 0 50 103 

Tip TEC 30 41 0 32 103 

Immature TEC 12 31 0 36 79 

Proliferative EC 2 11 0 5 18 

Total number of cells 104 152 0 174 430 

Intestinal 
epithelial cells 

Mitochondrial gene-

expressing cells 
158 185 528 114 985 

Secretory progenitor 1 23 79 496 121 719 

CBC/Paneth cell 157 41 240 227 665 

Secretory progenitor 2 174 70 147 160 551 

Enterocyte 125 60 129 65 379 

Plasma B-cell 3 51 46 68 168 

Iron-storing epithelial 
cell 

2 0 7 125 134 

Tuft-2 cell 26 8 1 9 44 

Total number of cells 668 494 1594 889 3645 

Grand total number of cells 1023 721 2085 1509 5338 

 

Heatmaps confirmed unique cell-type-specific gene expression for the 6 identified 

subtypes in stromal cell type group, the 5 identified subtypes in epithelial cell type group, 

and the 8 identified subtypes in intestinal epithelial cell type group (Figure 4.4). In the 

stromal cell type group, CTFs, myofibroblasts, and LPFs ultimately showed the most 

distinct cell-type-specific gene expression profiles with all their top 5 marker genes being 

uniquely and highly expressed. Plasma B-cells had a less distinct expression profile than 

the other stromal cells. 

Proliferative ECs exhibited the most defined gene expression profiles among the 

endothelial subtypes, followed by activated TECs. Both tip TECs and immature TECs 

showed similarity in gene expression, but a higher expression of the genes was found in 

the tip TECs.  

The subtypes of endothelial cells showed expression of many of the same genes, apart 

from plasma B-cells and tuft-2 cells. Tuft-2 cells did not express any of the top 5 cell-

type-specific marker genes found in the other subtypes. The secretory progenitor 2 cells 

had a more distinct profile than the other secretory progenitor cell type, at the same time 

as secretory progenitor 1 cells expressed more MT-genes.  
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Figure 4.4: Heatmaps showing the top 5 cell-type-specific marker genes of each subset 
in the rough cell type groups. (A) Heatmap over the identified clusters in the stromal cell type 
group. Abbreviations listed in (C). (B) Heatmap over the identified clusters in the endothelial cell 

type group. Abbreviations listed in (C). (C) Heatmap over the identified clusters in the intestinal 
epithelial cell type group. Abbreviations: CAF, cancer-associated fibroblast; CTF, crypt-top 
fibroblast; LPF, lamina propria fibroblast; MT, mitochondrial; TEC, tumor-associated endothelial 
cell; EC, endothelial cell; CBC, crypt base cell.  

4.3 Identified differentially expressed circulating miRNAs 

between colorectal cancer patient groups 

The biological material used in this part of the study consisted of serum samples from 

CRC patients. The patients were separated into three main groups, which included false 

positive CRC patients (hereafter referred to as healthy or false positives) (n=21), true 

positive CRC patients with localized disease (n=16), and true positive CRC patients with 

metastatic disease (n=16). The false positives represent individuals seeking medical 

consultation with CRC symptoms that were characterized as healthy. Small RNA-seq were 

performed on 47 samples with high quality of all samples (Supplementary Figure 3). 

Several classes of RNAs were detected (Supplementary Figure 4), where the sequencing 

data revealed a clear enrichment of RNA fragments with 22 nucleotides in length, 

corresponding to miRNAs (Supplementary Figure 5). 



25 

 

A principal component analysis (PCA) of mature miRNA expression found that the 

localized CRC samples were different from the metastatic CRC samples (Figure 4.5-A). 

The local CRC samples had slightly more variation in the PCA than the metastatic 

samples. The PCA analysis also revealed a similarity between healthy samples and the 

two groups of CRC samples, where the healthy samples formed a cluster along PC2 

roughly in the middle of the two CRC sample groups. 

A differential expression analysis was performed to detect differentially expressed miRNA 

between the patient groups. 53 significant miRNAs between local CRC and healthy 

individuals, 7 significant miRNAs between true positive CRC patients with metastatic 

disease and healthy individuals, and 30 significant miRNAs between true positive CRC 

patients with metastatic disease and localized disease were identified (Supplementary 

Table 17-Supplementary Table 19) and visualized by volcano plots (Figure 4.6). In 

general, different sets of significant miRNAs were observed between the three 

comparisons (Figure 4.5-B), where no miRNAs were significant across all comparisons. 

 

Figure 4.5: PCA plot and Venn diagram for serum miRNA in CRC patient groups. (A) PCA 
plot of mature miRNA expression (cpm, log2) in serum of CRC patient groups. Dots represent 
samples and are colored according to patient group. Patients with low miRNA expression (less than 
1 cpm in more than 50% of samples) were excluded from the PCA. Abbreviations: PC, principal 

component; PCA, principal component analysis. (B) Number of differentially expressed miRNAs for 

each comparison. The Venn diagram includes both up- and down-regulated miRNAs. 
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Figure 4.6: Differentially expressed miRNAs for the three comparisons of CRC patient 
groups. The x-axes of the volcano plots show the log2 fold change between the comparison 

indicated in the x-axis text. The y-axes show the inverted Benjamini-Hochberg adjusted p-values. 

Unsupervised clustering of all samples in the three patient groups with respect to their 

differentially expressed miRNAs also demonstrated that the localized CRC samples were 

distinct from the metastatic CRC samples (Figure 4.7). The samples in the two patient 

groups were clustered distinctly into two separate groupings, except for two localized 

CRC samples being included in the group with the metastatic CRC samples. The heatmap 

also revealed a similarity in miRNA expression between the healthy samples and the two 

groups of CRC samples, mostly the metastatic ones. 
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Figure 4.7: Heatmap of miRNA expression in CRC patient groups. Unsupervised clustering of 
samples with respect to the differentially expressed miRNAs. The heatmap includes miRNAs that 
are significant in at least one of the three comparisons. Red color indicates high expression and 
blue color indicates low expression. Groups are indicated at the top. 

A selection of differentially expressed miRNAs identified in the comparisons of all three 

patient groups were further investigated (Table 4.5). Five miRNAs (miR-142-5p, miR-16-

5p, miR-143-3p, miR-126-5p, and miR-16-2-3p) were downregulated in both stages of 

CRC compared to healthy subjects, suggesting these miRNAs could be an indicator of the 

disease. Two miRNAs (miR-10a-5p and miR-92b-3p) were upregulated in CRC patients 

with metastasis compared to both healthy subjects and to patients with localized CRC, 

indicating that these miRNAs could be a marker of metastatic disease. Four miRNAs 

(miR-122-5p, miR-885-3p, miR-375-3p, and miR-192-5p) were downregulated in CRC 

patients with localized disease compared to healthy subjects but upregulated in patients 

with CRC metastasis compared to CRC patients with localized disease. These miRNAs 

could participate in the differentiation between the early and late stages of CRC. The last 

two miRNAs (miR-429 and miR-21-5p) were only found differentially expressed in the 

comparison between metastatic and localized disease, where they were upregulated and 

thus associated with metastatic CRC.  

Table 4.5: A selection of differentially expressed miRNAs between CRC patient groups. 
The first seven miRNAs were differentially expressed between true positive CRC patients with 
metastatic disease and false positive CRC patients (healthy). The next four miRNAs were found in 
comparisons of true positive CRC patients with localized disease and healthy subjects, and true 
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positive CRC patients with metastatic and localized disease. The last two miRNAs were only found 

differentially expressed in the comparison between metastatic and localized disease. 

miRNA Local vs. 

healthy 

Metastatic vs. 

local 

Metastatic vs. 

healthy 

miR-142-5p Downregulated - Downregulated 

miR-16-5p Downregulated - Downregulated 

miR-143-3p Downregulated - Downregulated 

miR-10a-5p - Upregulated Upregulated 

miR-126-5p Downregulated - Downregulated 

miR-16-2-3p Downregulated - Downregulated 

miR-92b-3p - Upregulated Upregulated 

miR-122-5p Downregulated Upregulated - 

miR-885-3p Downregulated Upregulated - 

miR-375-3p Downregulated Upregulated - 

miR-192-5p Downregulated Upregulated - 

miR-429 - Upregulated - 

miR-21-5p - Upregulated - 
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5.1 Investigating tissue of colorectal cancer patients at the 

single cell-level 

An overall aim of this study was to investigate tissue of CRC patients at the single cell-

level, as this can provide a better understanding of expressed genes and cell type 

composition in the disease. ScRNA-seq is a rapidly increasing analysis tool used to gain 

knowledge of heterogeneous complex samples such as cancer tissue, but the method 

requires highly viable single cell suspensions to provide good-quality data, as well as the 

knowledge of novel bioinformatic methods to analyze the data output. In order to 

investigate CRC tissue at the single cell-level, there was a need to both set up a good 

protocol for establishing single cell suspension from fresh CRC tissue and implement a 

functional computing method and annotation approach for processing and analyzing 

scRNA-seq data, before expressed genes and cell type composition could be identified.  

5.1.1 Development and optimization of a protocol for establishing single 

cell suspension from fresh colorectal cancer tissue 

5.1.1.1 Protocol evaluation by microscopy, cell counting, and flow cytometry 

A protocol for establishing single cell suspension from fresh colorectal cancer tissue was 

adapted and developed, where the single cell suspensions were used in the downstream 

scRNA-seq. A high-quality single cell suspension for scRNA-seq is characterized by cell 

viability of at least 70%, as stressed or dead cells can lyse and release ambient RNA 

[105, 106]. Ambient RNA can contribute to cross-contamination and increased 

background noise, something that will compromise the quality of single cell data [105]. 

The mean cell viability of the single cell suspensions was in this study estimated to be 

68.8% using flow cytometry (Supplementary Table 1) and confirmed to be over 60% by 

GCF at NTNU, and this result was assessed to be sufficient. 

A low level of cell debris and clumping also characterizes a high-quality single cell 

suspension [106], and the cell appearance of the single cell solutions were evaluated by 

microscopy (Supplementary Figure 1). Most cells looked intact and single, with some 

cases of cell clumping (often referred to as duplicates) and debris. As the cases of cell 

clumping and debris did not surpass what to be expected when establishing a single cell 

suspension, the appearance of cells were assessed as good. The cell number of the single 

cell solutions were evaluated by cell counting, where an average result of 3,000,000 

cells/mL met the desired criteria of a cell stock concentration of about 700,000-

1,200,000 cells/mL to achieve the targeted number of recovered cells [105, 106]. Based 

on the total protocol evaluation, it was concluded that the developed and optimized 

protocol was satisfactory for establishing a single cell suspension from CRC tissue to be 

used further in downstream scRNA-seq analysis. 

5.1.1.2 Using a protocol for pancreatic tissue as basis for colorectal tissue 

Protocols on establishing viable single cell suspension from solid tissue can vary 

significantly between studies and can also be unique for different tissue types. In this 

thesis, a protocol for converting fresh pancreatic tissue into single cell suspension by 

Bernard, V. et al. [107] (Appendix C) was used as basis. Minimal changes were made to 

the original protocol, and protocol evaluation by cell counting, microscopy, and flow 

5 Discussion on methodology and results 
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cytometry, showed that it worked well with colorectal tissue too. The protocol is believed 

to have worked on another tissue type than described in the publication as it is a general 

protocol in terms of following a best practice workflow for preparing a single cell 

suspension from solid tissue, as presented by Reichard, A. and Asosingh, K. [108] 

(Appendix D), and not containing any tissue-specific steps or special enzymes. 

5.1.1.3 Evaluation of flow cytometry results on cell viability 

As presented in the mean flow cytometry results (Supplementary Table 1), the different 

fluorochromes used in this study gave quite divergent results, ranging from 42.0% live 

cells (calcein green) to 74.3% live cells (live/dead far red) and 90.1% live cells (PI). The 

varying numbers are most likely the result of differences in staining method. Calcein 

green marks live cells, as the nonfluorescent dye is converted to a green-fluorescent 

calcein during intracellular processes in live cells [109]. Live/dead far red discriminates 

between live and dead cells, as the dye reacts with free amines on the cell surface of live 

cells and free amines on both the cell surface and interior of dead cells with compromised 

membranes [110]. PI marks dead cells, as the dye can penetrate the cell membrane of 

dead or dying cells and insert itself between the bases of the cell’s DNA [111].  

Looking at the individual results from which the mean is calculated (Appendix E), there 

was a small variation in the live/dead far red and PI results with a maximum variation of 

6.7% and 5.2%, respectively. For calcein green, the maximum variation between the 

individual results was 37.9% and indicates that this fluorochrome gives the most 

inaccurate results of the three. It could therefore be a possibility to not include the 

calcein green results when calculating a total percentage of live cells in the samples, 

changing the total mean value of live cells from 68.8% to 82.2%. Nevertheless, as none 

of the mean flow cytometry results for the three fluorochromes were consistent with each 

other, all the fluorochromes are presented and used in the result.  

5.1.2 Implementation of a functional computing method and annotation 

approach for processing and analyzing single cell RNA sequencing 

data  

5.1.2.1 Choice of single cell RNA sequencing processing tool 

It has been developed an overwhelming number of methods to use in the computing 

processing and analysis of scRNA-seq data, making it difficult to select the ideal method 

to implement in a specific study. The single cell genomics R toolkit Seurat was used in 

this thesis because of its functionality with common clustering pipelines and popularity 

within the single-cell field.  

5.1.2.2 Adjustment of parameters to create cluster graphs 

As other methods for analyzing scRNA-seq data, Seurat comes with default parameter 

settings [112]. These parameters can be altered to fit a specific study’s use and need, 

but it is important to be aware that changes to some of the parameters can have a 

significant effect on cell clustering [112]. In this study, the parameters of most 

commands (NormalizeData, FindVariableFeatures, ScaleData, RunPCA, 

FindNeighbors, and RunUMAP) were kept at their default setting (Appendix F). 

The resolution parameter in the command FindClusters were customized when creating 

cluster graphs for each sample (554, 556, 559, and 569) and for the rough cell type 

groups of the integrated subsets (stromal cells, endothelial cells, and intestinal epithelial 
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cells). The resolution parameter sets the detail level of the downstream clustering, where 

increased resolution values results in a greater number of clusters [113]. The optimal 

resolution is believed to be 0.4-1.2 for scRNA-seq datasets around 3,000 cells and 

increases for lager datasets [113]. 

To create the cluster graphs for each sample (554, 556, 559, and 569), the resolution 

parameter was eventually set to 0.5. This resulted in sample 554, 556, and 569 being 

separated into a total of 13 clusters and sample 559 being separated into 11 clusters 

(Supplementary Figure 2). Even though the sample cell numbers variated from 2518 to 

9410 (Table 4.2), the resolution parameter was not adjusted up for the larger datasets. 

This was because it was only necessary to get an overview of the major cell types in the 

individual samples, as they later were to be integrated and further subclustered to reveal 

distinct cell type subsets.  

Cluster graphs for each of the rough cell type groups (stromal cells, endothelial cells, and 

intestinal epithelial cells) were created by setting the resolution parameter to 0.2, 0.5, 

and 0.2, leading to the cell type groups being separated into a total of 6, 5, and 8 

clusters, respectively (Figure 4.3). The number of cells were 1263 in stromal subsets, 

430 in endothelial subsets, and 3645 in intestinal epithelial subsets (Table 4.4). Based on 

the cell numbers, the resolution parameter should theoretically be put lower for 

endothelial subsets and higher for intestinal epithelial subsets. When decreasing the 

endothelial resolution parameter to 0.2, the only main difference occurring was the 

merging of one cluster into another. As the “disappearing” cluster seemed to stand out 

from the others, the resolution was put at a higher number where it could be further 

investigated. An increase of the intestinal epithelial resolution parameter to 0.4 resulted 

in an additional 3 clusters, but as the new cluster locations were in the area where it was 

believed to only exist mitochondrial gene-expressing cells, the resolution was put at a 

lower number to remove these extra clusters. 

5.1.2.3 Choice of cell type annotation approach 

Cell type annotation can be conducted automatically or manually [114]. Automated cell 

type annotation is an efficient way to label clusters, where the general principle is based 

on using a computer algorithm to match the gene expression of a cluster to the gene 

expression of a known cell type, and thus assign the cluster that respective label [114]. 

In manual cell type annotation, this matching is done manually with a wider set of 

resources, and the approach can therefore be more slow, labor-intensive, and subjective 

[114]. As not all cell types are known, have well-characterized gene expression and/or 

are found in specific resources, inaccurate or incomplete cluster labeling can occur using 

an automated approach [114], which was the main reason for choosing a manual cell 

type annotation approach in this thesis. 

Cell type annotation can also be reference-based or marker-based [114]. In a reference-

based approach, a gene expression pattern formed by all cell-type-specific marker genes 

in a cluster is compared to the gene expression pattern of known cell types [114]. The 

specific resources used for such an approach are existing manually annotated scRNA-seq 

reference data [114]. A marker-based annotation approach involves matching a cell-

type-specific marker gene in a cluster to an identical marker gene in a known cell type, 

where the resource used for this approach usually is a cell-type-specific marker gene 

database that can be supplemented with findings in literature [114]. 

When manually annotating the cluster graphs of each sample (554, 556, 559, and 569), 

a reference-based approach was mainly used because an overall gene expression pattern 
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similarity was sufficient to identify major cell types, which was the main goal for that part 

of the study. For manual annotation of the clusters of the rough cell type groups (stromal 

cells, endothelial cells, and intestinal epithelial cells), where the idea was to reveal 

distinct cell type subsets and/or rare cell types, a marker-based approach was used 

because of access to a larger number of cell-type-specific marker genes in different 

literature.  

5.1.2.4 Choice of annotation resources 

The resources used for cell type annotation in this thesis was the Human Protein Atlas 

(HPA) [87], Azimuth [115], and PanglaoDB [79], in addition to supplementary literature. 

Both HPA, Azimuth, and PanglaoDB were all thought to be solid web-based resources, as 

HPA contains scRNA-seq reference data from 25 human tissues (including intestinal 

tissue) and peripheral blood mononuclear cells (PBMCs) [87], while Azimuth includes 

reference data sets from different human tissues such as pancreas, fetal development, 

lung, and kidney, in addition to PBMC [115]. PanglaoDB contains 1368 scRNA-seq 

datasets which can be filtered to include tumor/cancer samples and cell lines from only 

human species, in addition to providing a cell type marker database for 178 cell types in 

29 tissues [79]. 

5.1.2.5 General considerations taken during cell type annotation  

Ideally, each cluster should uniquely express canonical cell-type-specific marker genes of 

one cell type [114]. However, a cluster often express marker genes of more than one cell 

type [114]. In such cases, statistical values were used to see which cell-type-specific 

marker genes were most uniquely expressed in the cluster. These marker genes were 

“weighted” when assigning a cell type label. Statistical values were calculated for all top 

10 cell-specific marker genes for each cluster and included the percentage of cells where 

the gene is detected in the cluster (pct.1), the percentage of cells where the gene is 

detected on average in the other clusters (pct.2), and the average log2 fold change 

(avg_log2FC) [116]. It is recommended to “weight” markers with a high pct.1 value and 

large differences in pct.1 and pct.2, and larger fold changes [116]. In cases where the 

cluster contained cells expressing the same amount of marker genes for multiple cell 

types, it was annotated as “unknown”.  

Some clusters showed expression of mitochondrial genes. Mitochondrial genes are 

expressed in most cells and are cell-type specific, and a high expression of mitochondrial 

genes among other cell-type-specific genes within a cluster can indicate poor sample 

quality [117]. This is because lysed cells with intact mitochondria can be registered 

during scRNA-seq analysis, and thus increase the fraction of mitochondrial transcripts 

detected within a cluster [117]. In this study, mitochondrial genes were in a few cases 

found among the top 10 cell-type-specific marker genes of a cluster, but it did not 

significantly affect the annotation of cluster cell types. In addition, each sample (554, 

556, 559, and 569) contained a single or couple of clusters showing upregulation of only 

mitochondrial genes and no other cell-type-specific marker genes. These clusters were 

annotated as mitochondrial gene-expressing cells and were not thought to be an 

indication of poor sample quality, but rather a representation of a cell population of dead 

or dying cells. 
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5.1.3 Identified expressed genes and cell type composition in colorectal 

cancer tumor tissue 

5.1.3.1 Identification of 18 major cell types in colorectal cancer tumor tissue 

ScRNA-seq were performed on 4 CRC samples followed by a downstream clustering 

workflow, leading to the detection of a variety of cell types in each of the samples (Figure 

4.1). After integrating the manually annotated sample datasets, 18 major cell types in 

CRC tissue were identified (Table 4.2). 

Intestinal epithelial cells (unspecified subgroup), plasma B-cells, mitochondrial gene-

expressing cells, and at least one type of effector memory T-cell were the cell types 

found in all four samples. These cells reflect the CRC tissue well, with intestinal epithelial 

cells lining the colorectal tissue, tumor-infiltrating lymphocytes exerting an immune 

response against the tumor cells, and mitochondrial gene-expressing cells representing a 

population of dead or dying cells. Additional cell types found in the samples also 

corresponded to known colorectal tissue and microenvironment structure. The differences 

in identified cell types and cell numbers emphasizes the ITH of CRC, where the solid 

tumors of different patients can consist of many different cell types. 

A rough classification of the major cell types emphasized the similar gene expression 

within stromal cells, endothelial cells, intestinal epithelial cells, and three different 

subtypes of immune cells (Figure 4.2-C). Unknown cells indicated to show similarity in 

gene expression with both the intestinal epithelial cells and different subtypes of immune 

cells, clustering together in the middle of these clusters. The expression of cell-type-

specific genes for many different cell types was why the cells were annotated as 

“unknown” in the first place, and this cell population could represent cells in the middle of 

a dynamic process such as stem cell differentiation. For future work, a trajectory 

inference analysis could be performed using Seurat to allocate the cells to lineages and 

then order them based on pseudotimes within these lineages [118].  

5.1.3.2 Cell group subtypes identified in this study 

A selection of cell type groups (stromal cells, endothelial cells, and intestinal epithelial 

cells) was further subclustered to identify cell subtypes in CRC tissue (Figure 4.3). Of the 

top 10 expressed cell-type-specific marker genes for the different subclusters, some 

specific marker genes ultimately determined the assignment of cluster cell type names 

(Table 4.3). The gene expression profiles of the identified subtypes were visualized in a 

heatmap (Figure 4.4). 

Stromal cells: Cancer-associated fibroblasts, crypt-top fibroblasts, 

myofibroblasts, lamina propria fibroblasts, and plasma B-cells 

The stromal subtypes identified in this study were pericytes, CAFs, CTFs, myofibroblasts, 

and LPFs, in addition to plasma B-cells. The finding of immune plasma B-cells among 

stromal subsets was unexpected, but is not considered accurate, as the cell type did not 

exhibit a defined gene expression profile as the other stromal cells and had several 

mitochondrial genes included in the clusters top 10 cell-type-specific markers 

(Supplementary Table 11).  

The other cell types identified among the stromal cells were different subtypes of 

fibroblasts, apart from pericytes. Pericytes have been shown to differentiate into stromal 

myofibroblasts under pathological conditions [119], something which can explain the 

shared expression of marker genes between pericytes and myofibroblasts. Some cell-
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type-specific markers of pericytes were RGS5 and MCAM. RGS5 is a signature molecule 

of tumor-associated pericytes [81], whereas analyses of human CRC tissues have shown 

increased MCAM expression in pericytes during tumorigenesis [82]. 

The other stromal subgroups seem to exhibit a defined gene expression profile unique for 

the individual cell types, with some shared genes. LPFs are distributed throughout the 

lamina propria and are involved in the structural organization of the extracellular matrix 

[84]. Myofibroblasts are also distributed throughout the lamina propria, but are 

specialized LPFs with contractile activity [84]. CTFs are located at the top of the crypt in 

close proximity to epithelial cells, and incudes differentiation in the nearby epithelial cells 

by secretion of Bmp ligands [86], such as the cell-type-specific BMP5 marker. CAFs are a 

fibroblast subtype exclusive in CRC tissue, secreting a variety of active factors to regulate 

tumor development and metastasis [120].  

Endothelial cells: Mitochondrial gene-expressing cells, activated tumor-

associated endothelial cells, tip tumor-associated endothelial cells, immature 

tumor-associated endothelial cells, and proliferative endothelial cells 

The endothelial subtypes identified in this study were mitochondrial gene-expressing 

cells, activated TECs, tip TECs, immature TECs, and proliferative endothelial cells. The 

mitochondrial gene-expressing cells are thought to be a specific cell population of dead or 

dying cells, most likely endothelial cells that go through apoptosis as part of vessel 

remodeling during angiogenesis [121].  

Tumor angiogenesis typically involves the formation of new blood vessels from pre-

existing vessels in a process called vessel sprouting [122]. During vessel sprouting, tip 

endothelial cells navigate the sprout at the forefront, while proliferating stalk cells 

elongate the sprout [94]. In this study, the proliferative endothelial cells exhibited the 

most defined gene expression profiles among the endothelial subgroups, expressing the 

same cell-type-specific markers as found in proliferative endothelial cells of healthy 

murine liver and spleen tissues (HMGB2, STMN1, TUBA1B) [94].  

Tip TECs and immature TECs both shared some gene expression patterns, but the tip 

cells were ultimately annotated based on the known endothelial tip marker gene CD34 

[90] and cell-type-specific marker genes also found in endothelial tip cells in lung tumor 

(SPARC and ANGPT2) [89].  

Activated TECs were also annotated based on findings in lung tumor, where CPE, CLU, 

and CCL14 were genes expressed in activated post-capillary vein TECs in lung tumor 

tissue. The activated TECs also expressed several genes involved in antigen presentation 

(HLA-DRB1, HLA-DRA, and HLA-DPA1), which supports their known role as non-

professional antigen-presenting cells [123]. 

Intestinal epithelial cells: Mitochondrial gene-expressing cells, secretory 

progenitor 1, crypt-base-cells/Paneth cells, secretory progenitor 2, enterocytes, 

plasma B-cells, iron-storing epithelial cells, and tuft-2 cells 

The intestinal epithelial subgroups identified in this study were mitochondrial gene-

expressing cells, secretory progenitor 1, CBCs/Paneth cells, secretory progenitor 2, 

enterocytes, plasma B-cells, iron-storing epithelial cells, and tuft-2 cells. As enterocytes 

are the most abundant epithelial cell type in the large intestine [50], it was expected to 

be identified in large quantity in the CRC samples, although the cell type only amounted 

379 cells of a total of 3645 intestinal epithelial cells (Table 4.4). 
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The cluster of intestinal mitochondrial gene-expressing cells mostly showed expression 

for mitochondrial genes, but some of the cluster’s top 10 cell-type-specific marker genes 

also included some marker genes for intestinal epithelial cell types (Supplementary Table 

13). The cluster was therefore assessed as a population of dead or dying intestinal 

epithelial cells. 

Based on the low difference in pct.1 and pct.2 values of the expressed genes 

(Supplementary Table 13), most of the intestinal epithelial subgroups express many of 

the same genes. Some clear exceptions were plasma B-cells and tuft-2 cells. The finding 

of immune plasma B-cells among intestinal epithelial subsets was unexpected, but 

increasing evidence suggests that immunoglobulin can be produced by cancer cells such 

as intestinal epithelial cells [124]. This might imply that the cluster annotated as plasma 

B-cells could be immunoglobulin-producing epithelial cancer cells.  

A relatively low number of tuft-2 cells were identified, where the cells had a gene 

expression pattern quite unique for that cluster, enriched for immune-related genes 

[104] and a couple CRC-related genes (CRIP1 and RASSF6). CRIP1 is shown 

overexpressed in CRC tissues and suppress apoptosis [125], while RASSF6 have been 

demonstrated to act as a tumor suppressor in CRC cells [126]. Only a few studies have 

examined tuft cells in humans and their relation to gut disease so far [49], and a more 

specific function of tuft-2 cells in CRC were therefore not found. 

One cluster was annotated as CBCs/Paneth cells based on the expression of LYZ and 

OLFM4. LYZ is a well-established marker of Paneth cells, encoding the enzyme lysozyme 

found in the granules of the cell [99], while OLFM4 is a gene shown to be highly 

expressed in crypt base cells in the human small intestine and colon [100]. The cluster 

cell type could also have been annotated as Paneth-like cells or deep crypt secretory 

cells, which are other names for the colon equivalent of Paneth cells [40].  

Two different types of secretory progenitor cells were identified and were in this study 

annotated as secretory progenitor 1 and secretory progenitor 2. Secretory progenitor 1 

did not express a particularly unique cell-type-specific marker gene pattern and shared 

several genes with CBC/Paneth cells in addition to expressing many genes related to CRC 

stem cells. Annotation of the cluster as a progenitor cell type was ultimately done based 

on expression of FCGBP, a gene activated in colonic stem cell’s transition to the 

progenitor stage [98]. Secretory progenitor 2 showed a more distinct gene expression 

profile than secretory progenitor 1 at the same time as expressing many genes related to 

CRC stem cells. This cluster was ultimately annotated as a progenitor cell type based on 

PLA2G2A-expression, a marker gene for transit-amplifying cells [101].  

Both secretory progenitors 1 and 2 are most likely transit-amplifying cells originating 

from crypt-based CRC stem cells, which further can differentiate into a tumor intestinal 

epithelial cell. The differences in gene expression profiles can reflect the progenitor cells 

being at different stages in the CRC stem cell’s transition to the progenitor stage or 

further transition into differentiated cells. As secretory progenitor 1 expressed more 

mitochondrial genes than secretory progenitor 2, it could also mean that the cells in that 

cluster are in somewhat of a more “worse shape”. 

The last subgroup identified were iron-storing epithelial cells, annotated after their 

expression of FTH1 and FTL. These two genes together make up the main intracellular 

iron storage protein ferritin [103], and it has been shown that increased ferritin 

expression limits ferroptosis, which is a novel form of regulated cell death [127]. Dietary 
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iron can be absorbed as ferritin, while excess cellular iron can be stored in in intestinal 

epithelial enterocytes [128, 129]. The iron-storing intestinal epithelial cells were not 

further annotated as enterocytes, as the rest of the top 10 cell-type-specific expressed 

marker genes also implied that the cell type could be annotated as enteroendocrine cells 

(Supplementary Table 16). 

5.1.4 Future remarks 

As mentioned, manual cell type annotation can be slow and labor-intensive. The manual 

annotation of roughly 700 genes in this thesis were time-consuming, unfortunately not 

leaving any time to investigate the scRNA-seq results further. For future work it would be 

interesting to perform a trajectory inference analysis on the unknown cell types to 

confirm if this cell population represents cells in the middle of a dynamic process such as 

stem cell differentiation. In addition, the prognostic values for some of the top 10 cell-

type-specific marker genes could be analyzed to detect key genes contributing to CRC 

progression.  

The influence of patient cohort characteristics (Table 4.1) could also be a basis for future 

research. One sample (sample 554) were shown to have peritoneal metastasis, and 

differences between this sample and the others could have been investigated. In 

addition, 50% of the samples were collected from the left-sided distal colon (sample 556 

and sample 569), while the other 50% were retrieved from the right-sided proximal 

colon (sample 554 and sample 559). ITH differences between distal and proximal tumor 

location could be examined. 

5.2 Investigating blood of colorectal cancer patients at the 

microRNA-level 

Another overall aim of this study was to investigate circulating miRNA in serum of CRC 

patients, where the focus was on finding differentially expressed miRNAs between false 

positive CRC patients (healthy), true positive CRC patients with localized disease, and 

true positive CRC patients with metastatic disease. A considerable amount of studies 

have identified miRNA as a good biomarker candidate for CRC diagnosis, prognosis, and 

prediction due to their altered expression profiles in cancer [74]. Identification of 

differentially expressed serum miRNA between cancer patient groups could therefore 

potentially reveal novel miRNA biomarkers for CRC screening.  

5.2.1 Evaluation of fragment length for small RNA reads 

Small RNA reads produced after small RNA-seq were trimmed to filter out other RNA 

species than miRNA during data processing. As seen in the fragment length distribution 

of the trimmed small RNA reads (Supplementary Figure 5), the final length of the RNA 

molecules was mainly found to be at around 22 nucleotides, confirming that miRNAs 

were present. Both shorter and longer fragments were also found. The shorter fragments 

are theorized to include degraded RNA, while the longer fragments were found to be 

other small RNAs such as snoRNAs, tRNAs, and other classes of RNAs (Supplementary 

Figure 4).  

5.2.2 MicroRNA expression profiles in colorectal cancer patient groups 

PCA of mature miRNA expression found that the localized CRC samples were different 

from the metastatic CRC samples, and the analysis also revealed a similarity between 

healthy samples and the two groups of CRC samples (Figure 4.5-A). It was not expected 
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that healthy subjects had expression profiles similar to both local and metastatic CRC. 

One would expect that the expression profiles of both cancer stages would be more like 

each other, and the profile of healthy subjects to be different, as miRNAs has been 

shown to be dysregulated in cancer and thus make subjects exert different miRNA 

profiles. A possible explanation for the pattern occurring in the PCA plot could be the 

choice of control subjects. Control subjects used were false CRC patients, meaning they 

were first believed to have CRC then did not. These individuals could potentially have had 

other underlying conditions or diseases with similar biomarker changes as for CRC. Since 

we expect that many of the miRNA-changes in blood are related to changes in the 

immune system, other conditions could lead to the same miRNAs being altered. The 

subjects could therefore show a degree of similarity to other cancer patients. However, 

we would still expect the control group to resemble more the local CRC group, and not 

the metastatic group. 

5.2.3 Differentially expressed microRNA between the patient groups 

Differentially expressed miRNA between patient groups were detected by conducting a 

differential expression analysis, ultimately distinguishing 53 significant miRNAs between 

true positive CRC patients with localized disease and false positive CRC patients, 7 

significant miRNAs between true positive CRC patients with metastatic disease and false 

positive CRC patients, and 30 significant miRNAs between true positive CRC patients with 

metastatic disease and localized disease (Supplementary Table 17-Supplementary Table 

19). Of these, no miRNAs were differentially expressed between all three groups. 

The lowest amount of differentially expressed miRNAs was found between true positive 

CRC patients with metastatic disease and healthy subjects, where five miRNAs (miR-142-

5p, miR-16-5p, miR-143-3p, miR-126-5p, and miR-16-2-3p) were downregulated and 

two miRNAs were upregulated (miR-10a-5p and miR-92b-3p) (Table 4.5). The five 

downregulated miRNAs were also found downregulated in the comparison between true 

positive CRC patients with localized disease and healthy patients, suggesting the miRNAs 

could indicate CRC. The two upregulated miRNAs were also found upregulated in the 

comparison between true positive CRC patients with metastatic and localized disease, 

which possibly could make them markers of metastatic CRC. It should be noted that 

when not removing lowly expressed miRNAs, metastatic CRC had the highest number of 

differentially expressed miRNAs compared to healthy individuals (data not shown), 

indicating that deeper sequencing could have revealed more robust differentially 

expressed miRNAs for the metastatic group.  

A selection of the 18 differentially expressed miRNAs identified in the comparisons of true 

positive CRC patients with localized disease and healthy patients, and true positive CRC 

patients with metastatic and localized disease (miR-122-5p, miR-885-3p, miR-375-3p, 

and miR-192-5p) were further investigated (Table 4.5). The selected miRNAs were all 

downregulated in the localized versus healthy comparison and upregulated in the 

metastatic versus localized comparison, potentially being able to differentiate patients 

with different stage of CRC.  

Of the 10 miRNAs only found differentially expressed in the comparison between 

metastatic and localized disease, two selected miRNAs (miR-429 and miR-21-5p) were 

upregulated (Table 4.5). The miRNAs have previously been described as highly 

associated with tumor size, distant metastasis, and poor prognosis in CRC [130-132], 

which coincides with the findings in this study of significant upregulation of the miRNAs in 

metastatic CRC compared to localized disease. 
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In this study, a protocol for establishing single cell suspension from fresh CRC tumor 

tissue was developed and optimized. The established single cell suspensions were shown 

to have cell number, cell appearance, and cell viability compatible with downstream 

scRNA-seq workflow.  

ScRNA-seq of primary CRC tumor tissue revealed clusters of cells with unique expression 

of cell-type-specific marker genes, in which a total of 18 major cell types were identified: 

B-cells, CD4+ effector memory T-cells, CD4+ proliferating T-cells, CD8+ effector memory 

T-cells, dendritic cells/B-cells, fibroblasts, intestinal enterocytes, intestinal epithelial cells 

(unspecified subgroup), intestinal goblet cells, monocytes, mitochondrial gene-expressing 

cells, myeloid cells (unspecified subgroup), plasma B-cells, smooth muscle cells, T-cells 

(unspecified subgroup), unknown cell type, vascular endothelial cells, and vascular 

smooth muscle cells. 

A rough classification of the major cell types demonstrated a clear separation of immune 

cells, stromal cells, endothelial cells, and intestinal epithelial cells. An unknown cell type 

was shown to have similar gene expression with both immune- and intestinal epithelial 

cells. Further investigations could be performed to identify the unknown cell type and 

find out if they represent a dynamic cell population such as differentiating stem cells. 

Subtypes of stromal cells (pericytes, CAFs, plasma B-cells, CTFs, myofibroblasts, and 

LPFs), endothelial cells (mitochondrial gene-expressing cells, activated TECs, tip TECs, 

immature TECs, and proliferative ECs), and intestinal epithelial cells (mitochondrial gene-

expressing cells, secretory progenitor 1, CBCs/Paneth cells, secretory progenitor 2, 

enterocytes, plasma B-cells, iron-storing epithelial cells, and tuft-2 cells) were also 

identified in the CRC tumor tissue. The findings of stromal plasma B-cells were suggested 

not to be accurate; the endothelial mitochondrial gene-expressing cells were proposed to 

be dead or dying endothelial cells; intestinal epithelial plasma B-cells were implied to be 

immunoglobulin-producing epithelial cancer cells; and both secretory progenitors 1 and 2 

were suggested to be differentiating transit-amplifying cells originating from crypt-based 

CRC stem cells. In total, the identified expressed genes and cell type composition of CRC 

tumor tissue emphasizes the ITH of CRC.  

Lastly, significantly differentially expressed circulating miRNAs between CRC patient 

groups were identified. A total of 53 significant miRNAs between true positive CRC 

patients with localized disease and false positive CRC patients, 7 significant miRNAs 

between true positive CRC patients with metastatic disease and false positive CRC 

patients, and 30 significant miRNAs between true positive CRC patients with metastatic 

disease and localized disease were found.  

It was demonstrated that the localized CRC samples were distinct from the metastatic 

CRC samples in terms of miRNA expression. Five miRNAs (miR-142-5p, miR-16-5p, miR-

143-3p, miR-126-5p, and miR-16-2-3p) were downregulated in both stages of CRC, 

suggesting these miRNAs could be an indicator of the disease. Two miRNAs (miR-10a-5p 

and miR-92b-3p) were upregulated in CRC patients with metastasis, indicating that these 

miRNAs could be a marker of metastatic disease. Four miRNAs (miR-122-5p, miR-885-

3p, miR-375-3p, and miR-192-5p) were downregulated in localized CRC but upregulated 

in patients with CRC metastasis compared to patients with localized disease, suggesting 

these miRNAs could participate in the differentiation between the early and late stages of 

6 Conclusion 
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CRC. Two miRNAs (miR-429 and miR-21-5p) were only found differentially expressed in 

the comparison between metastatic and localized disease, where they were upregulated 

and thus associated with metastatic CRC. 
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A Methodology 

A.1 Master’s thesis preparation 

Before writing the master’s thesis, preparations were done in terms of putting up a 

planned workflow and ensuring good research ethics were followed during the project.  

A.1.1 The master’s thesis workflow 

A workflow of this master’s thesis was put up to achieve the aims of the study in a good 

and precise manner, consisting of the main parts literature study, experimental 

methodology, and computing methodology (Appendix Figure 1).  

 

Appendix Figure 1: An illustration of the master’s thesis workflow. The workflow was put up 

to achieve the aims of the study in a good and precise manner. Created with Biorender.com. 

A.1.2 Considerations of research ethics 

All medical and health research in Norway involving human biological material needs an 

approval from the Regional Committees for Medical and Health Research Ethics (REC) 

before project start. REC is an organ ensuring research projects are in line with Norway’s 

legislation, and assesses if the project is ethically justifiable to carry out [133]. The 

Health Research Act is a part of Norwegian medical and health research legislation, 

where the purpose of the Act is to promote good and ethically sound research by 

facilitating the protection of the individual’s self-determination, integrity, and privacy 

[134-136]. This is in practice done by collecting a voluntary, informed consent from the 

patient before obtaining human biological material [135].  

Prior to conducting the master’s thesis’ experimental methods, a REC-approval was 

obtained by the master’s thesis’ supervisor Robin Mjelle for the project “Pre-diagnostic 

biomarkers for colorectal cancer” (ref. no 2016/534) and a more recent project change 

related to this master’s thesis (ref. no. 30022) (Appendix B). This included ensuring a 

consent-based sample collection from the CRC patients involved in this study, something 

that was done by Biobank1 during tissue sample collection. 

 



51 

 

A.2 General literature study 

A general literature study was conducted both prior to and during writing of the master’s 

thesis with the main purposes of (I) understanding the basics of relevant topics such as 

CRC, ITH, and miRNA, (II) gaining knowledge of experimental and computing methods 

used for providing relevant research results in terms of the master’s thesis’ aims, and 

(III) help understanding and interpret the final findings. Several databases were used to 

find information (e.g., MEDLINE with PubMed as search interface [137]), and the 

literature considered relevant in terms of purpose (I) and (II) were used as a basis for 

writing the included theoretical background and methodology principles. 

A.3 Experimental and computing methodology 

A.3.1 Applied experimental materials and computing software 

Different technical equipment and instruments (Appendix Table 1), reagents (Appendix 

Table 2), and commercial kits (Appendix Table 3) were used in the experimental part of 

this study, and various software (Appendix Table 4) were used in the computing part. 

Appendix Table 1: Technical equipment and instruments used in the experimental part of 
this study. 

Product name Manufacturer 

CountessTM Automated Cell Counter InvitrogenTM 

Moxi Z Mini Automated Cell Counter ORFLO 

AE30 Binocular Inverted Microscope Motic® 

FACSCantoTM Flow Cytometer BD Biosciences 

New BrunswickTM Innova® 44 Incubator Shaker Eppendorf®  

Centrifuge 5810 R Eppendorf® 

CryoTubeTM Vials  Thermo Scientific 

GFL-1083 Shaking Water Bath GFL 

Protein LoBind Safe-Lock Tube Eppendorf® 

2100 Bioanalyzer Agilent Technologies 

Labchip GX Caliper Life Sciences 

BluePippin Sage Science 

NextSeq 500 sequencing system Illumina 

 

Appendix Table 2: Reagents used in the experimental part of this study. 

Product name Art.nr/Catalogue nr. Manufacturer 

DMEM (Dulbecco’s Modified 

Eagle’s Medium) high glucose 

D6429 Sigma-Aldrich 

HEPES H4034 Sigma-Aldrich 

BSA (Bovine Serum Albumin) A2153 Sigma-Aldrich 

PBS (Phosphate buffered saline) - Pre-made in lab 

LiberaseTM TH Research Grade 5401151001 Roche 

Accutase® solution A6964 Sigma-Aldrich 

RPMI (Roswell Park Memorial 

Institute Medium) 1640 

R8758 Sigma-Aldrich 

FCS/FBS (fetal calf serum/fetal 

bovine serum) 

- Pre-made in lab 
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DMSO (Dimethyl sulfoxide) D8418 Sigma-Aldrich 

 

Appendix Table 3: Commercial kits used in the experimental part of this study. 

Product name Art.nr/Catalogue nr. Manufacturer 

miRNeasy Serum/Plasma Kit 217184 QIAGEN 

NEXTflex sRNA-seq kit v3 5132-05 Bioo Scientific 

QIAquick PCR Purification Kit 28104 QIAGEN 

High sensitivity DNA kit 5067-4626 Agilent Technologies 

KAPA Library Quantification Kit 07960140001 Roche 

 

Appendix Table 4: Software used in the computing part of this study. 

Software name Version 

Seurat 4.1.0 

R 4.1.2 

RStudio 2021.09.1 

bcl2fastq2 conversion software (Illumina) 2.20.0422 

cutadapt 3.7 

bowtie2 2.4.5 

htseq-count 2.0 

 

A.3.2 Protocol development and optimization before establishing single cell 

suspension from fresh colorectal cancer tissue 

A.3.2.1 Collection of fresh colorectal cancer tissue 

The sample collection of fresh CRC tissue was organized and provided by Biobank1 in 

collaboration with the Department of Pathology at St. Olav’s University hospital. These 

samples were used both for protocol development and optimization, and for establishing 

single cell suspension to be used in scRNA-seq analysis. 

A.3.2.2 Protocol development and optimization 

A protocol for converting fresh pancreatic tissue into single cell suspension by Bernard, V. 

et al. [107] (Appendix C) and a workflow for preparing a single cell suspension from solid 

tissue by Reichard, A. and Asosingh, K. [108] (Appendix D), in addition to standard 

protocols for freezing and thawing intact cells, were used as basis for development and 

optimization in terms of establishing single cell suspension from fresh CRC tissue.  

Cell specifications such as number of cells was estimated using CountessTM Automated 

Cell Counter (InvitrogenTM) and Moxi Z Mini Automated Cell Counter (ORFLO), 

appearance of cells was evaluated using AE30 Binocular Inverted Microscope (Motic®), 

and flow cytometry analysis using FACSCantoTM Flow Cytometer (BD Biosciences) and 

fluorochromes Calcein Green, Live/Dead Far Red, and Propidium Iodide (PI) was 

performed for validating changes made to the protocols regarding identifying live and 

dead cells (Appendix E), ensuring cell viability for further analyzes. Cell viability was also 

confirmed by the Genomics Core Facility (GCF) at the Norwegian University of Science 

and Technology (NTNU) [138].  
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A.3.2.3 Establishing single cell suspension from fresh colorectal cancer tissue 

Single cell suspension from fresh CRC tissue was established by following the developed 

and optimized protocol; CRC tissue (approximately 1 cm2) was transported to the 

laboratory on ice in DMEM, HEPES (25 mM), and BSA (1%) in a conical tube (15 mL) 

after surgical resection. The tissue was then rinsed with PBS to remove blood and 

unwanted material. LiberaseTM TM Research Grade (Roche, 5 mg/mL) and Accutase® 

solution (Sigma-Aldrich, 2 mL) was mixed, and 1 mL of the solution was transferred to a 

petri dish followed by the rinsed tissue. The tissue was then minced with a sterile surgical 

scalpel to 0.5 to 1.0 mm fragments, and the mixture was transferred to a conical tube 

(15 mL) containing 1 mL of the Liberase-Accutase solution. Warm tissue digestion was 

done by incubating the tissue fragments at the orbital shaker New BrunswickTM Innova® 

44 Incubator Shaker (Eppendorf®, 37°C, 250 RPM, 20 min), gently pipetting the solution 

every 10 minutes. After the digestion period, the tissue slurry was filtrated through a 70 

µm cell strainer followed by a 40 µm cell strainer. The single cell suspension was 

transferred to a new conical tube (15 mL) and centrifuged using Centrifuge 5810 R 

(Eppendorf®, 4°C, 400 RCF, 5 min). The supernatant was discharged, and the cell pellet 

was resuspended in 1 mL cold RPMI with 20% FCS for downstream cell counting, 

microscopy and freezing of cells.  

A.3.2.4 Freezing single cell suspension 

1 mL of DMSO (20%), RPMI (40%), and FCS (40%) was added to the single cell 

suspension dropwise, and the solution was mixed slowly before being transferred to 

CryoTubeTM Vials (Thermo Scientific). The single cell suspension was then put in a freezer 

(-80°C) for about 48 hours before being transferred and stored at liquid nitrogen.  

A.3.2.5 Thawing single cell suspension 

A cryotube containing single cell suspension was collected from the liquid nitrogen tank 

and thawed at a GFL-1083 laboratory water bath (GFL, 37°C, 10 min). 1 mL RPMI with 

20% FCS was transferred to a conical tube (50 mL), followed by the single cell 

suspension. A double volume of RPMI with 20% FCS relative to its volume in the conical 

tube was then added a total of 5 times (1, 2, 4, 8, and 16 mL), with a pause of 1 min in 

between each round of adding. The solution was then centrifuged using Centrifuge 5810 

R (New Brunswick Scientific, 22°C, 300 g, acceleration 9, brake 5, 5 min). The 

supernatant except 1 mL was discharged, and 10 mL PBS was added. The solution was 

centrifuged again under the same conditions, and the supernatant was discharged. The 

cell pellet was resuspended in 1 mL PBS, and the solution was filtrated through a 40 µm 

cell strainer before being transferred to Protein LoBind Safe-Lock Tubes (Eppendorf®) for 

downstream analysis.  

A.3.3 Single cell RNA sequencing and downstream data analysis 

A.3.3.1 Single cell RNA sequencing of colorectal cancer single cell suspension 

ScRNA-seq was performed on CRC single cell suspensions (n=4) by the Genomics Core 

Facility (GCF) at the Norwegian University of Science and Technology (NTNU) [138] by 

following a standard protocol (principle described in more detail in chapter A.4.2.1). 

A.3.3.2 Processing and analyzing single cell RNA sequencing data 

Pre-processing of raw scRNA-seq output files was conducted by the master’s thesis’ 

supervisor Robin Mjelle at the Bioinformatics Core Facility (BioCore) at NTNU [139] 

(principle described in more detail in chapter A.4.3.1). Further data processing and 
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analysis was performed using Seurat V4.1.0 [78] in R V4.1.2 [140] with RStudio 

V2021.09.1 [141], which in short involved writing scripts for creating cluster graphs for 

each sample, integrating the sample data, and subcluster the integrated data (Appendix 

F). 

A.3.3.2.1 Creating cluster graphs for each sample and manually annotating the clusters 

The pre-processed scRNA-seq data was first normalized, multiplied by a scale factor of 

10,000, and log-transformed using NormalizeData, before identifying the 2,000 most 

variable genes by FindVariableFeatures. Uninteresting sources of variation were 

regressed out using ScaleData. Linear dimensional reduction of the data was then 

performed running a principal component analysis (PCA) using RunPCA. A weighted 

nearest neighbor (WNN) algorithm was employed to create a multidimensional cluster 

graph with FindNeighbors, and the resolution was adjusted with FindClusters. 

Visualization of the cluster graph was done through Uniform Manifold Approximation and 

Projection (UMAP) for non-linear dimension reduction using RunUMAP.  

The top 10 cell-type-specific marker genes for each cluster were found with 

FindAllMarkers, only looking at genes found in a minimum of 25% of the clusters and 

showing at least 0.25-fold (log-scale) difference between the clusters. Manual cell type 

annotation was performed by comparing the gene expression pattern formed by the 

identified cluster cell-type-specific marker genes to the gene expression pattern of known 

cell types found in existing manually annotated scRNA-seq reference data in the Human 

Protein Atlas (HPA) [87], Azimuth [115], and PanglaoDB [79].  

A.3.3.2.2 Integration of sample data to perform a joint analysis of all samples 

Integration of the datasets from all samples were performed by first identifying cells from 

each data set within the same clusters (“anchors”) with FindIntegrationAnchors and 

then combining the results using IntegrateData. An integrated analysis of the data 

assay was then performed by normalizing, scaling, and running PCA followed by UMAP to 

visualize the integrated clusters.  

A.3.3.2.3 Subclustering of the integrated data 

Higher-level cell type groups of interest in the integrated data were clustered again using 

NormalizeData, FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, 

FindClusters, and RunUMAP. The subclusters were manually annotated by comparing the 

top 10 cell-type-specific marker genes to marker genes of known cell types found in 

existing manually annotated scRNA-seq reference data in the Human Protein Atlas (HPA) 

[87], in the cell type marker database-part of PanglaoDB [79], and in additional 

literature.  

A.3.4 Small RNA sequencing of isolated RNA from serum samples of colorectal 

cancer patients 

A.3.4.1 Collection of serum samples from CRC patients  

Serum samples from false positive CRC patients (n=21), true positive CRC patients with 

localized disease (n=16), and true positive CRC patients with metastatic disease (n=16) 

were provided by Biobank1.  

A.3.4.2 Total RNA isolation of serum 

Total RNA was isolated from thawed serum samples (200 µL) using miRNeasy 

Serum/Plasma Kit (QIAGEN). In brief, cell lysate preparation was done by adding QIAzol 
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Lysis Reagent (5 times volume of the sample, 1 ml) to the plasma sample and vortexed 

until lysed. Phenol (equal volume to the starting sample, 200 µL) was then added and 

vortexed additionally. The lysate was separated into aqueous and organic phase by 

centrifugation, and RNA was extracted from the upper aqueous phase. 100% ethanol 

(1.5 volumes to the aqueous phase, approximately 900 µL of ethanol to 600 µL aqueous 

phase) was added and mixed by pipetting. The sample was loaded onto a spin column 

provided by the kit. RNA bound to the spin column membrane, and contaminants were 

washed away using Buffer RWT (700 µL), Buffer RPE (500 µL), and 80% ethanol (500 

µL). The column was finally transferred to a new elution tube, where RNA was eluted 

using RNase-Free Water (14 µL). Isolated RNA was stored at -80°C.  

A.3.4.3 Small RNA sequencing of isolated RNA from serum samples 

Small RNA-seq of isolated RNA from serum samples of CRC patients was performed by 

GCF at NTNU [138] by following a standard protocol; Assessment of RNA quality and 

relative size were conducted by measuring the samples using Eukaryote Total RNA Pico 

assay on the 2100 Bioanalyzer (Agilent Technologies). Isolated miRNA from serum 

generally has lengths of about 22 nucleotides, and the presence of this peak were 

checked on the bioanalyzer trace for quality control (Supplementary Figure 3). RIN 

values were not considered as ribosomal RNA are degraded in serum and plasma.  

Small RNA-seq of 47 samples/libraries were performed using the NEXTflex sRNA-seq kit 

v3 (Bioo Scientific). The adapter-dimer reduction technology incorporated into this kit 

allows low input library preparation. Reducing ligation-associated bias involves the use of 

adapters with randomized bases at the ligation junctions, resulting in greatly decreased 

bias in comparison to standard protocols. In brief, 10.5 µl total RNA extracted from 200 

µl serum, was used as a template for 3' 4N and 5' 4N adenylated adapter ligation, 

followed by reverse transcription-first strand synthesis. In the first ligation step, 10 

calibrator RNAs were mixed with the RNA to control for technical variation during the 

data analysis. The sequences of the calibrators are previously descried by Mjelle, R. et al. 

[142]. By applying these products as a template for second-strand synthesis, double-

stranded cDNA was prepared by PCR amplification (22 cycles). Fragments/libraries were 

run on a Labchip GX (Caliper Life Sciences), for quality control and quantitation. 

Individual libraries were normalized to 25 nM and pooled. The library pool was purified 

with the QIAquick PCR Purification Kit (QIAGEN) according to instructions.  

Automated size selection was performed using the BluePippin (Sage Science), with a 

range of 135-165 bp to select the ~ 152 bp fragment. Following size selection, the pool 

was evaluated on the 2100 Bioanalyzer (Agilent Technologies) using the High Sensitivity 

DNA kit (Agilent Technologies). The pool of libraries was quantified with the KAPA Library 

Quantification Kit (Roche). Libraries were normalized to 2.6 pM subjected to clustering. 

Single read sequencing was performed for 51 cycles on NextSeq 500 (Illumina) high 

output flow cell, according to the manufacturer's instructions. Sequence reads were 

demultiplexed and converted from BCL to fastq file format using bcl2fastq2 conversion 

software V2.20.0422 (Illumina). 

A.3.4.4 Processing and analyzing small RNA sequencing data 

The raw small RNA-seq data was processed by the Bioinformatics Core Facility (BioCore) 

at NTNU [139] by following a protocol previously described by Mjelle, R. et al. [143]. 

Specifically, the adapters and the random nucleotides at both ends were removed using 

cutadapt (v.3.7) followed by alignment to the human genome (hg38) using bowtie2 

(v2.4.5). The aligned reads were counted using htseq-count (v2.0) with the 
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corresponding GFF files from miRBase. An expression matrix for mature miRNAs were 

constructed from the htseq-count output by combining the individual expression data for 

each sample and used for statistical analyses in R. 

Differentially expressed small RNAs between groups were detected using the Limma-

Voom procedure in R. The Limma-Voom procedure for the comparisons is shown below:  

Smallrna.exp.dge <- DGEList(Smallrna.mature,group = 

Smallrna.ss.order$Sample_Group)  

# Smallrna.mature is the data frame with the expression values 

# Smallrna.ss.order is the samplesheet with the groups 

Smallrna.exp.dge <- calcNormFactors(Smallrna.exp.dge) 

keep <- rowSums(edgeR::cpm(Smallrna.exp.dge)>1) >= 

dim(Smallrna.exp.dge)[2]/2 

Smallrna.exp.dge <- Smallrna.exp.dge[keep,] 

Smallrna.exp.dge <- calcNormFactors(Smallrna.exp.dge, method="TMM")  

Smallrna.exp.dge$samples$norm.factors <- 

Smallrna.calibrator.dge$samples$norm.factors 

des <- model.matrix(~0+Smallrna.ss.order$Sample_Group) 

Smallrna.ss.order$ID2==colnames(Smallrna.exp.dge) 

colnames(des) <- c("Falsepositive","LocalCRC","MetastaticCRC") 

v <- voom(Smallrna.exp.dge,design = des,plot = T) 

fit <- lmFit(v, design=des) 

contrasts <- makeContrasts(Local_vs_False=LocalCRC-Falsepositive, 

                           Met_vs_False=MetastaticCRC-Falsepositive, 

                           Met_cs_Local=MetastaticCRC-LocalCRC,                          

                           levels=des) 

fit2 <- contrasts.fit(fit, contrasts=contrasts) 

fit2 <- eBayes(fit2) 

colSums(decideTests(fit2)!=0) 

Local_vs_False.toptable <- 

topTable(fit2,coef="Local_vs_False",sort.by="P",adjust.method="BH",n=Inf) 

Met_vs_False.toptable <- 

topTable(fit2,coef="Met_vs_False",sort.by="P",adjust.method="BH",n=Inf) 

Met_cs_Local.toptable <- 

topTable(fit2,coef="Met_cs_Local",sort.by="P",adjust.method="BH",n=Inf) 

All plots for the sequencing data were generated in R using the libraries ggplot2, 

pheatmap and VennDiagram.  

 



57 

 

A.4 Principles of the experimental and computing methodology 

A.4.1 Principle of flow cytometry 

Flow cytometry is a technology that provides multi-parametric analysis of cells or cell 

populations based on their light scattering or fluorescent characteristics (Appendix Figure 

2) [144]. A flow analysis is conducted by suspending a single cell solution in sheath fluid 

and pressurizing it to make a coaxial flow where cells align in a single file fashion in the 

core of the sheath fluid stream [145]. The stream is then directed into lasers, which 

generates cell-specific light scatter and fluorescent signals that are detected by a 

computer which displays the data as charts [144, 145].  

The light scattering is directly related to morphological properties of the cell, while 

fluorescence emission is proportional to the amount of fluorochrome bound to it [145]. 

Fluorochromes are fluorescent probes used to stain components in a cell [145], where 

examples of such probes are calcein green, live/dead far red, and propidium iodide (PI). 

Some flow cytometers are sorting, meaning they can perform a fluorescence activated 

cell sorting (FACS) analysis, which includes an extra step where a heterogenous sample 

is physically sorted into separate populations for further analysis [145]. 

 

Appendix Figure 2: The main components and underlying working principle of a sorting 

flow cytometer. A single cell solution sample is suspended in a sheath fluid and pressurized to 

make a coaxial flow, where lasers generate cell-specific light scatter and fluorescent signals related 
to cell morphology and bound fluorochrome, respectively. Adapted from Adan, A. et al. [145] and 
created with BioRender.com. 

A.4.2 Principle of RNA sequencing techniques such as single cell RNA 

sequencing and small RNA sequencing 

RNA-seq is a technique that uses high-throughput massive parallel sequencing/next-

generation sequencing (NGS) methods to provide insight to into the transcriptome of a 
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sample by determining the nucleotide sequence in millions of sequence clusters in 

parallel, indicating e.g. gene expression [65]. A widely used NGS platform is provided by 

Illumina and use a sequencing-by-synthesis (SBS) approach (Appendix Figure 3) [65]. 

Here, chemically modified and fluorescently labeled nucleotides bind to immobilized cDNA 

fragments through natural complementarity [146]. Clusters of the same strand are then 

created by clonal amplification to ensure detectable, relative fluorescent signals, making 

it possible for instrument software to identify nucleotides and thus sequence the 

molecule [65, 146]. 

 

Appendix Figure 3: Sample sequencing using a next-generation sequencing (NGS) 
method. Chemically modified and fluorescently labeled nucleotides binds to immobilized sample 
cDNA fragments before clusters of the same strand are created by clonal amplification to provide 

detectable fluorescent signals that can be analyzed. Created with BioRender.com. 

Sequencing-ready libraries must be created before performing NGS [65], and different 

types of RNA-seq tends to differ in terms of library preparation. Something that is 

possible in most library preparation protocols are multiplexing and the use of “spike-ins”. 

Multiplexing is a process where multiple libraries can be pooled together to save 

resources, where unique barcode sequences are added to each library in advance to 

distinguish between them during data analysis [146].”Spike-ins” are positive controls 

that can be added to sequencing-ready libraries at different concentrations, working as a 

quality control tool for separating technical from biological variation and thus further 

improve the accuracy of e.g. gene expression levels [65]. 

A.4.2.1 Principle of single cell RNA sequencing 

Different cells show different patterns of gene expression, which reflects the cells 

different properties, functionalities, and behaviors [147]. Conventional RNA-seq only 

indicates the average expression level for each gene across a large bulk of sample cells 

[30], while the more novel method scRNA-seq estimates a distribution of expression 

levels for each gene across a cell population (Appendix Figure 4) [31]. This ultimately 

makes scRNA-seq data more complex and challenging to analyze compared to 

conventional RNA-seq [30].  
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Appendix Figure 4: A broad comparison of conventional RNA sequencing (RNA-seq) and 
single cell RNA sequencing (scRNA-seq). Conventional RNA-seq only indicates the average 
expression level for each gene across a large bulk of sample cells, while scRNA-seq estimates a 
distribution of expression levels for each gene across a cell population. Adapted from Wellcome 
Sanger Institute [31] and created with BioRender.com. 

Sequencing-ready libraries for scRNA-seq can be prepared using the popular droplet-

based 10X Genomics Chromium scRNA-seq platform [148], which requires the sample 

being in the form of single cell suspension [149]. The sample cells are individually 

encapsulated by Chromium into an oil droplet along with a gel bead, reagents, and 

reverse transcriptase enzymes, forming gel bead in emulsion (GEM) structures (Appendix 

Figure 5) [150]. Each gel bead is coated with oligonucleotides that consists of a 10X cell 

barcode to distinguish the different cells, a unique molecular identifier (UMI) to 

differentiate molecules within the same cell, and specific sequences to capture the 3’ end 

of the cells’ mRNA molecules [148, 150]. 

 

Appendix Figure 5: Gel bead in emulsion (GEM) structures. A GEM consist of oil droplet-
encapsulated cells, oligonucleotide-coated gel beads, reagents, and reverse transcriptase enzyme. 
Adapted from 10X Genomics [150] and created with BioRender.com. 

The GEM reagents ultimately cause a reaction which results in dissolved gel beads and 

cell lysis, ending in the cells’ mRNA molecules being captured and barcoded [150]. 
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Further on in the GEM structures, reverse transcription is performed by the enzymes to 

generate cDNA from the mRNA template [149]. Barcoded cDNA fragments for all the cells 

are then pooled and amplified by PCR, and further downstream NGS are conducted [149, 

150].  

A.4.2.2 Principle of small RNA sequencing  

Small RNA-seq is a technique used for isolating and sequencing small RNA species such 

as miRNAs [151]. Sequencing-ready libraries for small RNA-seq can be prepared 

following protocols compatible with popular Illumina sequencing platform tools, which 

requires the sample being in the form of total RNA [151, 152]. Isolation of miRNAs can 

be accomplished using two-adaptor ligation-based methods to extend their length and 

introduce primer-binding sites for reverse transcription and subsequent amplification 

[153]. In such methods, two adaptors are sequentially ligated to the 5’ and 3’ ends of 

the RNA molecules [153]. The adaptors contain unique sequences used to distinguish the 

different RNA species and thus quantify small RNAs like miRNA, and to discriminate RNA 

molecules deriving from different samples [153]. After adaptor ligation, reverse 

transcriptase is performed on the ligated fragments to generate cDNA, followed by PCR 

amplification and NGS [153].  

A.4.3 Principle of processing and analyzing data from different RNA sequencing 

techniques such as single cell RNA sequencing and small RNA sequencing 

A.4.3.1 Principle of processing and analyzing single cell RNA sequencing data 

ScRNA-seq data consists of several different strings of nucleotide sequences, which all 

includes a cellular barcode, a UMI, and a gene-derived mRNA sequence (Appendix Figure 

6) [116]. The workflow of processing this data is often divided into pre-processing and 

downstream analysis. During pre-processing, a cell x gene matrix of UMI counts is 

generated (Appendix Figure 7) [154]. Technical duplicates sharing the same barcode and 

UMI is collapsed into a single string for counting, whereas biological duplicates originating 

from the same cell but from different mRNA molecules are counted as separate strings 

[116]. The count matrix essentially shows the counts for mRNA molecules originating 

from a gene across all cells [116]. 

 

Appendix Figure 6: A visualization of single cell RNA sequencing (scRNA-seq) data. 
ScRNA-seq data consists of several nucleotide sequence strings which all includes a cellular 
barcode, unique molecular identifier (UMI), and gene sequence. Adapted from Harvard Chan 
Bioinformatics Core (HBC) [116] and created with BioRender.com. 
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Appendix Figure 7: Unique molecular identifier (UMI) count matrix generated from single 
cell RNA sequencing (scRNA-seq) raw data. The UMI count matrix includes different cells for 
each column and different genes for each row. Adapted from Harvard Chan Bioinformatics Core 
(HBC) [116] and created with BioRender.com. 

The count matrix can further be processed consistent with a downstream clustering 

analysis workflow [113]. Clustering is the process of distributing observations similar to 

each other into their own separate clusters [155]. In biological experiments, cells with 

similar gene expression patterns can be clustered and thus correspond to different cell 

types [156]. Several clustering methods have been developed [155], e.g. graph-based 

clustering as implemented in the single cell genomics toolkit Seurat [78]. In short, this 

includes data normalization and scaling, principal component analysis (PCA), and 

constructing a weighted nearest neighbor graph (WNN) to use as input in Uniform 

Manifold Approximation and Projection (UMAP) for cluster visualization [116].  

Linear dimension-reducing PCA can be performed on the most variable genes by 

projecting data points onto principal components (PCs) and giving the cells PC scores 

[116]. PCs are mathematical optimized vectors constructed to maximize the variance 

between data points as much as possible along that line [157]. PCs are orthogonal to 

each other and thus independent, meaning variance explained in the different PCs do not 

overlap and therefore represent information as efficiently as possible [157]. In a data set 

of n cells there would be n PCs, where PC1 represents the largest variation, PC2 the 

second largest variation not covered by PC1, and so forth [116, 157]. A general PC score 

plot will have axes that maximize the variance, and cells with similar gene expression will 

therefore cluster together (Appendix Figure 8) [157]. 

 

Appendix Figure 8: A visualization of dimension reducing principal component analysis 
(PCA). PCA includes data projection onto a principal component (PC) (left), orthogonal PCs 
(middle), and PC score plot (right). Adapted from Programmathically [157] and created with 
BioRender.com.  
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A selection of significant PCs, where clusters of cells with similar gene expression are 

presented, can be used for constructing a multidimensional WNN graph [116]. This is 

done by employing an unsupervised algorithm to assign a cell the cluster most common 

among its k nearest neighbors, where nearer neighbors are weighted and thus contribute 

more than the more distant ones [78, 116]. This allows for more detailed clustering, 

where the resolution can be adjusted to partition the cells into an even greater number of 

clusters [116]. The WNN cell clusters can be visualized using UMAP, a manifold learning 

technique for dimension reduction which uses mathematical algorithms to describe 

nonlinear relationships within a data set and visualize it in a two-dimensional space [116, 

158]. Simplified, UMAP uses a graph layout algorithm to arrange the multidimensional 

WNN graph data in a low-dimensional graph the best way possible (Appendix Figure 9) 

[159]. 

 

Appendix Figure 9: Simplified example of how Uniform Manifold Approximation and 
Projection (UMAP) arranges multidimensional graph data in a low-dimensional graph. A 
3D-figure of a Wooly mammoth (left) is projected by UMAP in 2D (right). The figure is created by 
Coenen, A. and Pearce, A. [159] for Google People + AI research (PAIR) based on open-source 
tools with Apache License 2.0. 

Continuing a scRNA-seq data analysis, cell-type-specific marker genes are identified and 

used for cluster verification and annotation of the visualized cell clusters [113]. Cell-type-

specific marker genes can be defined as genes which are highly expressed primarily in a 

single cell type [160], where such genes are identified by comparing the expressed genes 

of a single cluster to the other clusters [113]. The cell-type-specific marker genes of a 

cluster can ultimately define cellular identity [160], where clusters reflecting known 

markers or marker combinations as described in literature or databases are verified on 

those grounds and can thus be annotated. 

To summarize the standard workflow principle and analysis of scRNA-seq data, the data 

is pre-processed into a UMI count matrix and normalized, highly variable features are 

identified and scaled, linear dimension-reduction by PCA is performed, cells are clustered 

in more detail by employing a WNN algorithm to create a multidimensional WNN graph, 

non-linear dimension-reduction by UMAP is performed to arrange clusters in 2D, and cell-
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type-specific marker genes are found before cell type identities are assigned to the 

different clusters based on marker gene information in literature or databases. In 

addition, it is possible to perform a joint analysis of several scRNA-seq datasets with the 

goal of identifying common cell types across the sets [161]. This can be done by 

integration, where cross-dataset pairs of cells in a matched biological state (“anchors”) 

are used both to correct for technical differences between datasets and to perform 

comparative scRNA-seq analysis [161].  

A.4.3.2 Principle of processing and analyzing small RNA sequencing data 

The processing and analysis of small RNA-seq data to investigate miRNA expression does 

in brief consist of quality assessment, UMI analysis and filtering, reference-based 

alignment, and creation of a UMI count matrix [162]. UMI analysis and filtering involves 

mapping the structure of the entire read, which includes two adaptors, a reverse 

transcription primer, and an UMI [162]. The reads are then retained and trimmed to 

remove the reads that are either too short (<18 bp) or too long (>30 bp) [162]. 

Reference-based alignment to different mature miRNA-databases can then be performed 

to reveal which specific miRNAs are present in the sample, before finally collapsing the 

UMI reads to generate a count matrix representing the counts for each miRNA that were 

present in the original biological sample prior to amplification [162].   



 

B REC approval 

 



 

 

 

  



 

C Protocol for converting fresh pancreatic tissue into single cell 

suspension 

The following bullet points list a protocol for converting fresh pancreatic tissue into single 

cell suspension as described by Bernard, V. et al. [107], and was used as a basis for 

development and optimization in terms of establishing single cell suspension from fresh 

CRC tissue.  

• Transport tissue (approximately 1 cm2) to the laboratory on ice after surgical 

resection in DMEM, high-glucose, GlutaMAXTM Supplement, HEPES (Thermo Fisher, 

10564011) in 1% bovine serum albumin (Thermo Fisher, B14) in a 15-mL conical 

tube.  

 

• Rinse tissue with PBS to remove blood and other unwanted material. 

 

• Transfer tissue to a 35×12 mm Petri Dish (Thermo Fisher, #150318), and minced 

with sterile surgical scalpel to 0.5-1.0 mm fragments in approximately 1 mL of the 

media. 

 

• Digest tissue using Liberase TH Research Grade and Accutase solution for PDAC 

tissues (Sigma-Aldrich, A6964). For warm digestion with Liberase TH Research 

Grade, tissue fragments are incubated to a final concentration of 10 mg/mL and 

placed on an incubated orbital shaker at 37°C, 225 RPM for 20 minutes and gently 

pipetted every 10 minutes.  

 

• A second digestion is performed by incubating the sample in sterile-filtered 

Accutase solution on a shaker at 37°C, 225 RPM for 30 minutes, with gentle 

pipetting every 10 minutes. 

 

• At the end of the digestion period, the fragments (tissue slurry) were gently 

pipetted and washed to maximize the release of single cells.  

 

• The tissue slurry is passed through a 100-μm cell strainer followed by a 35-μm 

cell strainer.  

 

• The single cell suspension is transferred to a new 15-mL conical tube and 

centrifuged for 5 minutes at 400 RCF at 4°C. 

 

• The supernatant is discarded, and the cell pellet is resuspended in 400 μL of PBS 

for downstream cell viability analysis and cell counting. 

 

  



 

D General workflow for preparing single cell suspension from 

solid tissue 

A general workflow for preparing single cell suspension from solid tissue by Reichard, A. 

and Asosingh, K [108] (Appendix Figure 10) was used as a basis for development and 

optimization in terms of establishing single cell suspension from fresh CRC tissue. 

 

Appendix Figure 10: A general workflow for preparing single cell suspension from solid 
tissue. This workflow was presented by Reichard, A. and Asosingh, K. [108]. 

  



 

E Flow cytometry validation of single cell suspension protocol 

E.1 Results 31 August 2021 

 

Fluorochrome Marks Live cells [%] Dead cells [%] 

Calcein green Live cells 45.2 54.8 

Live/dead far red Dead cells 70.5 29.0 

PI Dead cells 89.7 9.8 

 

  



 

E.2 Results 15 October 2021 

 

Fluorochrome Marks Live cells [%] Dead cells [%] 

Calcein green Live cells 21.4 78.6 

Live/dead far red Dead cells 77.2 22.8 

PI Dead cells 92.9 7.1 

 

  



 

E.3 Results 20 October 2021 

 

Fluorochrome Marks Live cells [%] Dead cells [%] 

Calcein green Live cells 59.3 40.7 

Live/dead far red Dead cells 75.2 24.8 

PI Dead cells 87.7 12.3 

 

 

  



 

F R scripts for processing and analyzing the single cell RNA 

sequencing data 

F.1 Creating cluster graphs for each sample and manually annotating the 

clusters (shown for sample 554) 
# Making packages available 

library(dplyr) # For data manipulation  

library(Seurat) # Single cell genomics toolkit 

library(scater) # Single cell genomics toolkit 

library(patchwork) # For combining complex data plots 

library(ggplot2) # For graph visualization 

library(RColorBrewer) # For graph color theme 

 

# Creating clusters 

filtered_554 <- Read10X_h5(file = "554_filtered_feature_bc_matrix.h5") 

# Data is read and UMI count matrix is returned 

filtered_554.obj <- CreateSeuratObject(counts = filtered_554,project = 

"554",min.cells = 3,min.features = 200,names.field=1) # Creating a 

Seurat object, a container for both data and analysis results 

filtered_554.obj <- NormalizeData(filtered_554.obj,normalization.method 

= "LogNormalize",scale.factor = 10000) # Normalizing data to account 

for differences in sequencing depth 

filtered_554.obj <- FindVariableFeatures(filtered_554.obj, 

selection.method = "vst", nfeatures = 2000) # Identifying the 2000 most 

variable genes (high and low expressed) 

filtered_554.obj <- ScaleData(filtered_554.obj) # Scaling data to 

reflect both high and low expressed genes 

filtered_554.obj <- RunPCA(filtered_554.obj) # Performing linear 

dimensional reduction by PCA 

filtered_554.obj <- FindNeighbors(filtered_554.obj, dims = 1:10) # 

Using WNN algorithm to creating a clustering graph 

filtered_554.obj <- FindClusters(filtered_554.obj, resolution = 0.5) # 

Determining the clusters for various resolutions (1 = many clusters, 

0.5 = fewer clusters) 

filtered_554.obj <- RunUMAP(filtered_554.obj, dims = 1:10) # Performing 

non-linear dimension reduction by UMAP, enabling clustering 

visualization 

 

# Adding a color theme to cluster visualization 

nb.cols <- 13 # Number of wanted colors in palette (equals number of 

clusters) 

mycolors <- colorRampPalette(brewer.pal(9, "Set1"))(nb.cols) # Classic 

color palette Set1 with 9 colors, which is expanded 

 

#Cluster visualization and aesthetic 

DimPlot(filtered_554.obj, label = T, label.size = 3.5) +  

  ggtitle('Sample 554') + 

  scale_color_manual(values=mycolors) +  

  labs(y = "UMAP2", x = "UMAP1", color = "Cluster") + 

  theme(legend.text = element_text(size = 8), legend.title = 

element_text(size = 8)) 

 

# Identifying cell-type-specific marker genes for every cluster 

compared to all remaining cells  

filtered_554.obj.markers <- FindAllMarkers(filtered_554.obj, only.pos = 

TRUE, min.pct = 0.25, logfc.threshold = 0.25) 



 

filtered_554.obj.markers <- filtered_554.obj.markers %>% 

group_by(cluster) %>% slice_max(n = 10, order_by = avg_log2FC) 

filtered_554.obj.markers <- as.data.frame(filtered_554.obj.markers) 

 

# Saving the list of cell-type-specific marker genes (NB! Rename for 

new lists) 

write.table(filtered_554.obj.markers, 

file="filtered_554.obj.markers.res0.5_n10.csv", quote = F, col.names = 

NA) 

 

# Naming cluster cell types based on cell-type-specific marker genes  

filtered_554.obj.labels<- c("CD4_EM_T", 

                            "Intestinal epithelial", 

                            "MT", 

                            "CD4_P_T", 

                            "Intestinal epithelial", 

                            "Fibroblast", 

                            "MT", 

                            "CD8_EM_T", 

                            "Vascular endothelial", 

                            "Myeloid", 

                            "Smooth muscle", 

                            "Plasma B-cell", 

                            "Intestinal epithelial" 

) 

 

# Renaming clusters to new annotated name  

filtered_554.obj.new <- filtered_554.obj # Making copy of object to not 

overwrite old file 

names(filtered_554.obj.labels) <- levels(filtered_554.obj.new) 

filtered_554.obj.new <- RenameIdents(filtered_554.obj.new, 

filtered_554.obj.labels) # Changing cluster names to manually defined 

names 

filtered_554.obj.new@meta.data$Annotated <- 

Idents(filtered_554.obj.new) 

 

# Adding a color theme to cluster visualization 

nb.cols <- 13 # Number of wanted colors in palette (equals number of 

clusters) 

mycolors <- colorRampPalette(brewer.pal(9, "Set1"))(nb.cols) # Classic 

color palette Set1 with 9 colors, which is expanded 

 

# Cluster visualization and aesthetic  

DimPlot(filtered_554.obj.new,label = T, label.size = 3, repel = T) +  

  ggtitle('Sample 554') + 

  scale_color_manual(values=mycolors) +  

  labs(y = "UMAP2", x = "UMAP1", color = "Cell type") + 

  theme(legend.text = element_text(size = 8), legend.title = 

element_text(size = 10)) 

 

# Saving Seurat objects including annotated cluster names 

library(SeuratDisk) 

library(SeuratData) 

SaveH5Seurat(filtered_554.obj.new, filename = "annotated_554_obj") 

 

# Creating table with cell numbers in each cluster 

filtered_554.obj.new_table <- 

table(filtered_554.obj.new@meta.data$Annotated) 



 

write.table(filtered_554.obj.new_table, 

file="cellnumber_in_cluster_554.csv", quote = T, col.names = T, 

row.names = F) 

F.2 Integration of sample data and joint analysis of all samples 
# Making packages available 

library(dplyr) # For data manipulation  

library(Seurat) # Single cell genomics toolkit 

library(scater) # Single cell genomics toolkit 

library(patchwork) # For combining complex data plots 

library(ggplot2) # For graph visualization 

library(RColorBrewer) # For graph color theme 

 

# Finding saved annotated cell data in the sample's Seurat objects 

filtered_554.obj.new@meta.data$Annotated <- 

Idents(filtered_554.obj.new) 

filtered_556.obj.new@meta.data$Annotated <- 

Idents(filtered_556.obj.new) 

filtered_559.obj.new@meta.data$Annotated <- 

Idents(filtered_559.obj.new) 

filtered_569.obj.new@meta.data$Annotated <- 

Idents(filtered_569.obj.new) 

 

# Defining the Seurat objects to integrate 

objects.to.integrate <- (list(filtered_554.obj.new, 

                              filtered_556.obj.new, 

                              filtered_559.obj.new, 

                              filtered_569.obj.new)) 

 

# Performing integration 

anchors <- FindIntegrationAnchors(object.list = objects.to.integrate, 

anchor.features = 2000) # Identifying anchors (cells from each data set 

within the same clusters)  

integrated.samples <- IntegrateData(anchorset = anchors) # Creating an 

integrated data assay based on the anchors 

 

# If running into an error about not enough memory, increase the memory 

limit 

memory.limit() 

memory.limit(24000) 

 

# Sets active assay from RNA to integrated, to use the integrated data 

in downstream analysis 

DefaultAssay(integrated.samples) <- "integrated" 

 

# Performing integrated analysis and creating new clusters for the 

integrated samples 

integrated.samples <- NormalizeData(integrated.samples, 

normalization.method = "LogNormalize", scale.factor = 10000) # 

Normalizing data to account for differences in sequencing depth 

integrated.samples <- ScaleData(integrated.samples) # Scaling data to 

reflect both high and low expressed genes 

integrated.samples <- RunPCA(integrated.samples) # Performing linear 

dimensional reduction by PCA 

integrated.samples <- RunUMAP(integrated.samples, dims = 1:10) # 

Performing non-linear dimension reduction by UMAP, enabling clustering 

visualization 

 



 

# Adding a color theme to cluster visualization 

nb.cols <- 30 # Number of wanted colors in palette (equals number of 

clusters) 

mycolors <- colorRampPalette(brewer.pal(9, "Set1"))(nb.cols) # Classic 

color palette Set1 with 9 colors, which is expanded 

 

# Cluster visualization and aesthetic (had to minimize the legend in 

order to get enough space for labels not to overlap) 

DimPlot(integrated.samples, label = T, label.size = 3.5, repel = T) +  

  ggtitle('Integrated samples') + 

  scale_color_manual(values=mycolors) +  

  labs(y = "UMAP2", x = "UMAP1", color = "Cell type") + 

  theme(legend.text = element_text(size = 8), legend.title = 

element_text(size = 8)) 

 

# Identifying cell-type-specific marker genes for every cluster 

compared to all remaining cells  

integrated.samples.markers <- FindAllMarkers(integrated.samples, 

only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25) 

integrated.samples.markers <- integrated.samples.markers %>% 

group_by(cluster) %>% slice_max(n = 10, order_by = avg_log2FC) 

integrated.samples.markers <- as.data.frame(integrated.samples.markers) 

 

# Saving the list of cell-type-specific marker genes (NB! Rename for 

new lists) 

write.table(integrated.samples.markers, 

file="integrated.samples.markers.n10.csv", col.names = NA) 

 

# Creating heatmap displaying the top 5 cell-type-specific marker genes 

for each cluster 

top5 <- integrated.samples.markers %>% group_by(cluster) %>% top_n(n = 

5, wt = avg_log2FC)  

DoHeatmap(integrated.samples, features = top5$gene, size = 3) +  

  theme(text = element_text(size = 8), legend.key.size = unit(0.35, 

'cm'),) + 

  scale_fill_viridis_c() 

 

### Creating rougher plot ### 

 

# Manually annotating integrated cluster graph for a rougher plot 

integrated.samples.labels<- c("Immune", 

                    "Immune", 

                    "Immune", 

                    "Immune", 

                    "Immune", 

                    "Stromal", 

                    "Intestinal epithelial", 

                    "Intestinal epithelial", 

                    "Intestinal epithelial", 

                    "Immune", 

                    "MT", 

                    "Immune", 

                    "Immune", 

                    "Stromal", 

                    "Immune", 

                    "Unknown", 

                    "Endothelial", 

                    "Stromal" 



 

) 

 

# Renaming clusters to new annotated name  

integrated.samples.new <- integrated.samples # Making copy of object to 

not overwrite old file 

names(integrated.samples.labels) <- levels(integrated.samples.new) 

integrated.samples.new <- RenameIdents(integrated.samples.new, 

integrated.samples.labels) # Changing cluster names to manually defined 

names 

integrated.samples.new@meta.data$Annotated <- 

Idents(integrated.samples.new) 

 

# Adding a color theme to cluster visualization 

nb.cols <- 18 # Number of wanted colors in palette (equals number of 

clusters) 

mycolors <- colorRampPalette(brewer.pal(9, "Set1"))(nb.cols) # Classic 

color palette Set1 with 9 colors, which is expanded 

 

# Cluster visualization and aesthetic  

DimPlot(integrated.samples.new,label = T, label.size = 3.5, repel = T) 

+  

  ggtitle('Rough classification of integrated samples') + 

  scale_color_manual(values=mycolors) +  

  labs(y = "UMAP2", x = "UMAP1", color = "Cell type") + 

  theme(legend.text = element_text(size = 9), legend.title = 

element_text(size = 10)) 

 

F.3 Subclustering the integrated data (shown for stromal subset) 
# Making packages available 

library(dplyr) # For data manipulation  

library(Seurat) # Single cell genomics toolkit 

library(scater) # Single cell genomics toolkit 

library(patchwork) # For combining complex data plots 

library(ggplot2) # For graph visualization 

library(RColorBrewer) # For graph color theme 

 

# Creating a subset variable from the integrated clustering graph 

integrated.samples.stromal <- subset (x = integrated.samples, idents = 

c("Fibroblast", "Smooth muscle", "Vascular smooth muscle")) 

 

# If running into an error about not enough memory, increase the memory 

limit 

memory.limit() 

memory.limit(24000) 

 

# Creating clusters 

integrated.samples.stromal <- NormalizeData(integrated.samples.stromal, 

normalization.method = "LogNormalize", scale.factor = 10000) # 

Normalizing data to account for differences in sequencing depth 

integrated.samples.stromal <- 

FindVariableFeatures(integrated.samples.stromal, selection.method = 

"vst", nfeatures = 2000) # Identifying the 2000 most variable genes 

(high and low expressed) 

integrated.samples.stromal <- ScaleData(integrated.samples.stromal) # 

Scaling data to reflect both high and low expressed genes 



 

integrated.samples.stromal <- RunPCA(integrated.samples.stromal, 

features = VariableFeatures(object = integrated.samples.stromal)) # 

Performing linear dimensional reduction by PCA 

integrated.samples.stromal <- FindNeighbors(integrated.samples.stromal, 

dims = 1:10) # Using WNN algorithm to creating a clustering graph 

integrated.samples.stromal <- FindClusters(integrated.samples.stromal, 

resolution = 0.2) # Determining the clusters for various resolutions (1 

= many clusters, 0.5 = fewer clusters) 

integrated.samples.stromal <- RunUMAP(integrated.samples.stromal, dims 

= 1:10) # Performing non-linear dimension reduction by UMAP, enabling 

clustering visualization 

DimPlot(integrated.samples.stromal, label = T) 

 

# Identifying cell-type-specific marker genes for every cluster 

compared to all remaining cells  

integrated.samples.stromal.markers <- 

FindAllMarkers(integrated.samples.stromal, only.pos = TRUE, min.pct = 

0.25, logfc.threshold = 0.25) 

integrated.samples.stromal.markers <- 

integrated.samples.stromal.markers %>% group_by(cluster) %>% 

slice_max(n = 10, order_by = avg_log2FC) 

integrated.samples.stromal.markers <- 

as.data.frame(integrated.samples.stromal.markers) 

 

# Saving the list of cell-type-specific marker genes (NB! Rename for 

new lists) 

write.table(integrated.samples.stromal.markers, 

file="integrated.samples.markers.stromal.res0.2_n10.csv", quote = F, 

col.names = NA) 

 

# Naming cluster cell types based on cell-type-specific marker genes  

integrated.samples.stromal.labels<- c("Pericyte", 

                            "CAF", 

                            "Plasma B-cell", 

                            "CTF", 

                            "Myofibroblast", 

                            "LPF" 

) 

 

# Renaming clusters to new annotated name  

integrated.samples.stromal.new <- integrated.samples.stromal # Making 

copy of object to not overwrite old file 

names(integrated.samples.stromal.labels) <- 

levels(integrated.samples.stromal.new) 

integrated.samples.stromal.new <- 

RenameIdents(integrated.samples.stromal.new, 

integrated.samples.stromal.labels) # Changing cluster names to manually 

defined names 

integrated.samples.stromal.new@meta.data$Annotated <- 

Idents(integrated.samples.stromal.new) 

 

# Adding a color theme to cluster visualization 

nb.cols <- 6 # Number of wanted colors in palette (equals number of 

clusters) 

mycolors <- colorRampPalette(brewer.pal(9, "Set1"))(nb.cols) # Classic 

color palette Set1 with 9 colors, which is expanded 

 



 

# Cluster visualization and aesthetic (had to minimize the legend in 

order to get enough space for labels not to overlap) 

DimPlot(integrated.samples.stromal.new, label = T, label.size = 3, 

repel = T) +  

  ggtitle('Stromal cell types') + 

  scale_color_manual(values=mycolors) +  

  labs(y = "UMAP2", x = "UMAP1", color = "Cell type") + 

  theme(legend.text = element_text(size = 8), legend.title = 

element_text(size = 10)) 

 

# Creating heatmap displaying the top 5 cell-type-specific marker genes 

for each cluster 

top5 <- integrated.samples.stromal.markers %>% group_by(cluster) %>% 

top_n(n = 5, wt = avg_log2FC)  

DoHeatmap(integrated.samples.stromal.new, features = top5$gene, size = 

3) +  

  theme(text = element_text(size = 8), legend.key.size = unit(0.35, 

'cm'),) + 

  scale_fill_viridis_c() 

 

### Creating tables ### 

 

# Creating table with cell numbers in each cluster 

integrated.samples.stromal_table <- 

table(integrated.samples.stromal.new@meta.data$Annotated) 

write.table(integrated.samples.stromal_table, 

file="integrated.samples.cellnumber.stromal.csv", quote = T, col.names 

= T, row.names = F) 

 

# Creating table with patient-specific cell numbers in each cluster 

integrated.samples.stromal.patient_table <- 

table(integrated.samples.stromal.new@meta.data$orig.ident, 

integrated.samples.stromal.new@meta.data$Annotated) 

write.table(integrated.samples.stromal.patient_table, 

file="integrated.samples.cellnumber.patient.stromal.csv", quote = T, 

col.names = T, row.names = F) 

integrated.samples.stromal.patient_table 

 

### Saving file ### 

 

# Saving Seurat objects including annotated cluster names 

library(SeuratDisk) 

library(SeuratData) 

SaveH5Seurat(integrated.samples.stromal.new, filename = 

"subset_stromal") 

 

 

  



 

G Supplementary section: Validation of protocol for 

establishing single cell suspension from fresh colorectal 

cancer tissue 

 

Supplementary Figure 1: Microscopy results of single cell suspensions established from 
the finalized protocol. The figure shows sample 554 (left), 556 (middle), and 569 (right). The 
microscope used was AE30 Binocular Inverted Microscope (Motic®). 

 

Supplementary Table 1: Mean flow cytometry results of live and dead cells in single cell 
suspensions established from the finalized protocol. The fluorochromes calcein green, 
live/dead far red, and propidium iodide (PI) was used for validating cell viability, which was finally 
estimated to be 68.8%. 

Fluorochrome Marks Live cells [%] Dead cells [%] 

Calcein green Live cells 42.0 58.0 

Live/dead far red Dead cells 74.3 25.7 

PI Dead cells 90.1 9.9 

    

Total mean value - 68.8 31.2 

 

 

  



 

H Supplementary section: Identified expressed genes and cell 

type composition in colorectal cancer tumor 

 

Supplementary Figure 2: Non-annotated cluster graphs of each sample. (A) Sample 554 
was divided into 13 clusters. (B) Sample 556 was divided into 13 clusters. (C) Sample 559 was 
divided into 11 clusters. (D) Sample 569 was divided into 13 clusters. 

 

  



 

Supplementary Table 2: Top 10 expressed cell-type-specific marker genes identified for 

each cluster in sample 554. 

# p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 

1 5.62418482363643e-181 3.08522615872169 0.595 0.063 1.23928912588829e-176 0 LTB 

2 1.49710953842519e-122 2.78940740758436 0.438 0.055 3.29888086791991e-118 0 IL7R 

3 1.77221271115954e-13 2.66730023957074 0.508 0.523 3.90507070904005e-09 0 HSPA1A 

4 2.12641402387697e-230 2.43466735966304 0.785 0.092 4.6855533016129e-226 0 CD2 

5 1.51560395023412e-232 2.3988466921928 0.861 0.123 3.33963330434089e-228 0 PTPRC 

6 1.2679082991677e-162 2.296683083677 0.602 0.083 2.79383593721603e-158 0 IKZF1 

7 2.38299721469041e-156 2.24951578990374 0.658 0.105 5.25093436257031e-152 0 CD52 

8 1.29171098721985e-199 2.22332493193862 0.736 0.09 2.84628516033894e-195 0 CD3D 

9 2.52581092171078e-15 2.21750661298404 0.553 0.601 5.5656243659897e-11 0 JUN 

10 9.64941535333054e-162 2.20829107770014 0.622 0.093 2.12624867310638e-157 0 GIMAP7 

11 3.0956096411117e-229 3.12318808837633 0.935 0.197 6.82117584418963e-225 1 CEACAM7 

12 3.28657458444466e-147 3.05966880721418 0.957 0.47 7.24196709682381e-143 1 FABP1 

13 1.5526763337892e-196 2.75443065542098 0.997 0.392 3.42132230150451e-192 1 CEACAM5 

14 2.23751893511142e-245 2.5346074901471 0.927 0.166 4.93037297351802e-241 1 KRT20 

15 1.77096937334872e-176 2.47776701092213 0.992 0.419 3.9023310141739e-172 1 FXYD3 

16 5.30345682663316e-111 2.3964107120927 0.846 0.317 1.16861671174862e-106 1 CKB 

17 9.55963833513902e-154 2.34488506970412 0.992 0.511 2.10646630714788e-149 1 TFF1 

18 3.45561924216123e-215 2.24607475326304 0.981 0.282 7.61445700010227e-211 1 TSPAN1 

19 6.73321676863832e-156 2.2317740419196 1 0.703 1.48366431496945e-151 1 LGALS3 

20 1.81219932990149e-153 2.20415789995523 0.978 0.432 3.99318122343793e-149 1 PHGR1 

21 1.97462591904534e-79 1.30530437956179 0.859 0.421 4.3510882126164e-75 2 RNF43 

22 2.4764126722612e-87 1.18277379804465 0.997 0.978 5.45677532332756e-83 2 MT-ND3 

23 9.2321544863177e-85 1.16935811627262 1 0.992 2.0343052410601e-80 2 MT-ND1 

24 1.8501865812552e-88 1.15536487455611 1 0.996 4.07688613179582e-84 2 MT-CO3 

25 4.29066584986731e-86 1.11839347780707 0.997 0.999 9.45448220018263e-82 2 MT-CYB 

26 1.75871750115141e-80 1.11312899771949 0.991 0.903 3.87533401378713e-76 2 MTRNR2L10 

27 9.81694884920004e-83 1.09648203805217 0.997 0.998 2.16316467892123e-78 2 MT-CO2 

28 9.99665366789205e-83 1.07905904633876 0.997 0.998 2.20276263572001e-78 2 MT-ATP6 

29 5.33117066088866e-71 1.07604927227496 1 0.984 1.17472345512682e-66 2 MT-ND2 

30 2.49645309455957e-64 1.07383230247887 0.89 0.464 5.500934393862e-60 2 AC103702.2 

31 4.57146092515805e-238 2.55353119308453 0.807 0.076 1.00732141485858e-233 3 CENPF 

32 6.49037768227184e-241 2.16758008491908 0.844 0.085 1.4301547222886e-236 3 MKI67 

33 2.21051168852257e-302 1.5781163332879 0.681 0.014 4.87086250565948e-298 3 ASPM 

34 6.6605712258658e-263 1.55026500853443 0.685 0.028 1.46765686961953e-258 3 TOP2A 

35 8.99228596309485e-190 1.48366717318411 0.824 0.136 1.98145021196795e-185 3 CENPW 

36 4.44078830379983e-106 1.47818861273248 0.824 0.227 9.78527702742292e-102 3 HMGB2 

37 5.52895146748025e-143 1.40220578400333 0.705 0.107 1.21830445585927e-138 3 PTTG1 

38 2.77386413674705e-91 1.37652576486215 0.949 0.509 6.11220962532212e-87 3 H2AFZ 

39 1.30326614317062e-143 1.3624829743715 0.773 0.155 2.87174694647645e-139 3 CKS2 

40 1.53277825517425e-95 1.33439158612204 0.986 0.875 3.37747688527646e-91 3 HMGB1 

41 2.28061028057957e-100 1.51849131859421 0.83 0.26 5.02532475325708e-96 4 LEFTY1 

42 1.37141561374212e-95 1.47362394018694 0.989 0.431 3.02191430488075e-91 4 GPX2 

43 1.57373496839223e-70 1.42689565697899 1 0.631 3.46772500285227e-66 4 TFF3 

44 1.65041623999954e-73 1.38760050675361 0.967 0.397 3.636692184839e-69 4 LCN2 

45 2.40559511896971e-74 1.3705757252153 1 0.507 5.30072884464975e-70 4 PIGR 

46 4.58098410564405e-71 1.19009614915994 0.985 0.439 1.00941984767867e-66 4 TSPAN8 

47 2.51852747308298e-77 1.18808274327458 0.985 0.453 5.54957528693836e-73 4 FAM3D 

48 3.89462207704022e-63 1.10702085880336 0.882 0.413 8.58179974675813e-59 4 SLC12A2 

49 1.33963877473753e-53 1.07716636467253 0.934 0.614 2.95189404013414e-49 4 PRDX5 

50 4.71845204660143e-63 1.07551155272351 0.989 0.532 1.03971090846863e-58 4 TFF1 

51 5.85050632492551e-250 6.56950753995158 0.948 0.107 1.28915906869734e-245 5 CXCL14 

52 0 5.53517335230791 0.99 0.045 0 5 COL1A2 

53 0 5.52379628597157 1 0.041 0 5 COL3A1 

54 0 5.41313732296103 0.995 0.054 0 5 COL1A1 

55 0 5.09225583995372 0.943 0.02 0 5 LUM 

56 0 5.00589037735879 0.967 0.019 0 5 DCN 



 

57 0 4.09259412759228 0.986 0.023 0 5 COL6A3 

58 5.00451555195467e-275 3.9412327375575 1 0.095 1.10274500187321e-270 5 CALD1 

59 1.97419814123932e-279 3.91729136792391 0.714 0.023 4.35014560422084e-275 5 POSTN 

60 2.31643122838028e-181 3.81287414650529 0.995 0.251 5.10425621173594e-177 5 RARRES2 

61 4.49645625663014e-83 1.8350924369051 0.988 0.997 9.90794136148452e-79 6 MT-CO3 

62 2.24082712589458e-76 1.79824142563134 0.988 0.98 4.9376625719087e-72 6 MT-ND3 

63 7.55339166163727e-84 1.772617325482 1 0.997 1.66438985264177e-79 6 MT-ATP6 

64 2.40410087727122e-80 1.76654114233971 1 0.993 5.29743628306714e-76 6 MT-ND1 

65 2.98909528064277e-83 1.75797127166845 1 0.998 6.58647145089635e-79 6 MT-CO2 

66 1.10597201099755e-83 1.74664005491013 1 0.999 2.4370093262331e-79 6 MT-CYB 

67 3.20474004292042e-70 1.73251088337812 0.994 0.986 7.06164468457514e-66 6 MT-ND2 

68 4.68633342235669e-69 1.68587871158287 1 0.996 1.0326335696163e-64 6 MTRNR2L12 

69 7.2344400684334e-71 1.65682605811164 0.988 0.986 1.5941088690793e-66 6 MTRNR2L8 

70 4.94064336327292e-65 1.62173432260377 0.983 0.913 1.08867076509719e-60 6 MTRNR2L1 

71 3.44218740298513e-183 3.68714793793266 0.981 0.133 7.58485994247774e-179 7 CCL5 

72 3.28480638286939e-191 3.46852607356743 0.938 0.104 7.23807086465271e-187 7 GZMA 

73 3.46572817643686e-148 3.38413085010908 0.596 0.04 7.63673203677863e-144 7 CCL4 

74 1.24781302734336e-190 3.0817255007534 0.826 0.067 2.7495560057511e-186 7 NKG7 

75 7.50201739357263e-107 3.0318257245223 0.689 0.101 1.65306953267373e-102 7 TRBC1 

76 1.99434263678509e-95 2.88313853692847 0.547 0.066 4.39453400015594e-91 7 KLRB1 

77 8.64647295258154e-74 2.7844539930634 0.261 0.013 1.90525031510134e-69 7 CCL3 

78 4.74660297398963e-155 2.70424813888789 0.919 0.13 1.04591396531862e-150 7 HCST 

79 3.77838957929055e-111 2.63390737227115 0.54 0.05 8.32568143796672e-107 7 GZMB 

80 1.12651791628644e-136 2.5465055022063 0.938 0.154 2.48228222853718e-132 7 CD3D 

81 4.62852802903209e-168 4.19171470161794 0.769 0.05 1.01989615119722e-163 8 SPARCL1 

82 5.47276988777998e-172 3.90210064994315 0.817 0.054 1.20592484477232e-167 8 MGP 

83 4.48482502997953e-72 3.81102954775149 0.587 0.079 9.88231195355989e-68 8 IGFBP3 

84 1.44299712785697e-98 3.691248800194 0.808 0.12 3.17964417123283e-94 8 COL4A1 

85 4.71860727709083e-111 3.66654502541841 0.962 0.155 1.03974511350696e-106 8 IGFBP7 

86 0 3.52752086314806 0.683 0.002 0 8 PLVAP 

87 6.41148036302605e-232 3.39948944368686 0.74 0.024 1.41276969799279e-227 8 PECAM1 

88 0 3.29773073242898 0.683 0.003 0 8 VWF 

89 1.98512718339088e-83 3.25544433657933 0.702 0.111 4.3742277486018e-79 8 ENG 

90 1.65205270255646e-69 3.10182002455143 0.76 0.176 3.64029813008316e-65 8 HSPG2 

91 0.000303845751964635 3.70690514875596 0.421 0.319 1 9 LYZ 

92 6.77293881195368e-15 3.61448550153361 0.719 0.458 1.49241706721399e-10 9 HLA-DRA 

93 8.33335123660517e-08 3.51889209575511 0.877 0.821 0.00183625394498595 9 FTL 

94 1.31692326389318e-37 3.24923589431748 0.561 0.089 2.90184041198862e-33 9 IFI30 

95 1.94098069374108e-138 3.19423504351715 0.474 0.009 4.27695095865846e-134 9 AIF1 

96 6.06742821435424e-71 3.11157004247905 0.561 0.041 1.33695780703296e-66 9 HLA-DQA1 

97 2.06147250293563e-15 3.05514510665733 0.667 0.362 4.54245466021866e-11 9 HLA-DPB1 

98 1.23014647348348e-09 2.88432677877864 0.614 0.438 2.71062775432085e-05 9 HLA-DPA1 

99 2.96235404670137e-15 2.86328421733317 0.789 0.526 6.52754714190647e-11 9 HLA-DRB1 

100 1.03893741532522e-121 2.83472683731534 0.404 0.007 2.28929859466913e-117 9 TYROBP 

101 0 5.69101385759284 1 0.011 0 10 RGS5 

102 2.52916153136969e-67 4.51566841063079 0.927 0.103 5.57300743437311e-63 10 ACTA2 

103 8.93160778208433e-59 4.01997522620195 1 0.157 1.96807977478228e-54 10 CALD1 

104 0 3.81083514027117 0.951 0.007 0 10 NDUFA4L2 

105 6.96449333534905e-95 3.80278421032092 0.951 0.071 1.53462610644416e-90 10 MGP 

106 1.01832640179329e-97 3.78139909106174 1 0.086 2.24388222635152e-93 10 COL18A1 

107 6.01169806154899e-125 3.76793664787444 0.927 0.049 1.32467766786232e-120 10 CSRP2 

108 8.87231840633864e-53 3.71562799479742 1 0.174 1.95501536083672e-48 10 IGFBP7 

109 2.39661092192699e-56 3.63882916554077 0.902 0.115 5.28093216646613e-52 10 TAGLN 

110 5.80035986471952e-62 3.635622267393 0.976 0.135 1.27810929619095e-57 10 COL4A1 

111 1.07547057026724e-22 10.4236334641031 0.892 0.357 2.36979940158387e-18 11 IGKC 

112 3.49920246603674e-57 9.47748061181547 0.946 0.135 7.71049263391196e-53 11 IGHA1 

113 1.19860221978373e-284 8.71017607146267 0.892 0.01 2.64111999129345e-280 11 IGLC1 

114 4.49454305230831e-100 8.47204270181634 1 0.075 9.90372561576136e-96 11 JCHAIN 

115 6.75877729104437e-09 7.56826705705255 0.351 0.085 0.000148929657608163 11 IGLC3 

116 8.33100976212644e-288 6.36557464354146 0.865 0.008 1.83573800108456e-283 11 IGHA2 



 

117 1.07445808680706e-219 4.45083385286734 1 0.023 2.36756839427936e-215 11 MZB1 

118 3.12659427484684e-40 3.6670017456938 1 0.264 6.88945048462501e-36 11 TXNDC5 

119 3.7673647300859e-152 3.16218799959687 0.324 0.001 8.30138818274428e-148 11 IGKV4-1 

120 1.02472553372565e-21 2.95147064787648 0.946 0.713 2.25798271356447e-17 11 SSR4 

121 0 5.03976428234347 1 0.004 0 12 SH2D6 

122 5.07514222076455e-144 4.6137799672208 0.963 0.029 1.11830758834547e-139 12 LRMP 

123 1.17614457627883e-14 3.31136415980819 0.889 0.454 2.5916345738304e-10 12 ANXA4 

124 1.17617851691095e-27 3.2294880630769 0.741 0.108 2.59170936201328e-23 12 ALOX5AP 

125 2.59558520449655e-20 3.13782145222516 0.815 0.228 5.71937199810816e-16 12 RASSF6 

126 2.65031642575034e-199 3.12506498690171 0.741 0.008 5.83997224414087e-195 12 RGS13 

127 6.73433105033305e-19 3.10805355807732 0.815 0.241 1.48390984694089e-14 12 PBXIP1 

128 3.03083113174324e-23 2.94282203270863 0.963 0.332 6.67843639879623e-19 12 SPTLC2 

129 6.00746375550399e-274 2.93521251711526 0.889 0.008 1.3237446385253e-269 12 BMX 

130 1.85012062124955e-17 2.77658848293739 0.741 0.208 4.07674078892338e-13 12 AZGP1 

 

  



 

Supplementary Table 3: Top 10 expressed cell-type-specific marker genes identified for 

each cluster in sample 556. 

# p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 

1 0 2.68060985034262 0.997 0.237 0 0 HLA-DRA 

2 0 2.59086827466018 0.998 0.449 0 0 CD74 

3 0 2.49439935282923 0.869 0.105 0 0 VPREB3 

4 0 2.10928577028244 0.939 0.191 0 0 HLA-DPA1 

5 0 2.08818832046786 0.853 0.097 0 0 BANK1 

6 0 2.06581053616419 0.898 0.167 0 0 HLA-DPB1 

7 0 2.03203870327499 0.874 0.148 0 0 CD79A 

8 0 1.98825888078197 0.94 0.203 0 0 HLA-DRB1 

9 0 1.95781131388115 0.863 0.113 0 0 MS4A1 

10 0 1.85228138931255 0.864 0.159 0 0 HLA-DQB1 

11 0 1.65735692089061 0.86 0.23 0 1 FYB1 

12 0 1.45095376465311 0.763 0.189 0 1 IL7R 

13 0 1.4058006557987 0.751 0.243 0 1 TRAC 

14 0 1.39103771262654 0.76 0.318 0 1 TRBC2 

15 0 1.38971819865136 0.831 0.207 0 1 CD3D 

16 1.36219070931542e-274 1.37581520518612 0.47 0.136 3.14584322409304e-270 1 TRBC1 

17 6.01072082297892e-276 1.32348524575478 0.52 0.184 1.38811586685875e-271 1 RGCC 

18 0 1.30343781388006 0.604 0.156 0 1 GIMAP7 

19 0 1.2877194640579 0.53 0.133 0 1 GIMAP4 

20 0 1.28304378597285 0.618 0.151 0 1 CD3E 

21 7.61913148713834e-219 1.92360103643632 0.586 0.145 1.75956222563973e-214 2 KLRB1 

22 9.61008883470514e-196 1.79936718651185 0.823 0.347 2.21935391548681e-191 2 ID2 

23 2.21152820414113e-254 1.69078699127808 0.817 0.265 5.10730323464353e-250 2 IL32 

24 3.62132301649817e-186 1.6649772423685 0.714 0.262 8.36308337430087e-182 2 S100A4 

25 1.12006077306469e-128 1.61409462903875 0.332 0.072 2.58666834931561e-124 2 CCL5 

26 8.72058737143457e-117 1.46010478574207 0.728 0.336 2.0139324475591e-112 2 IL7R 

27 3.13292286681646e-212 1.35964116843981 0.782 0.262 7.23517206862592e-208 2 CD2 

28 2.05224889084261e-121 1.30594403734805 0.585 0.21 4.73946358851192e-117 2 TRBC1 

29 7.88682022444861e-138 1.2626910061715 0.775 0.368 1.82138226263416e-133 2 CD3D 

30 9.61538086475461e-84 1.24978943243848 0.467 0.178 2.22057605690643e-79 2 ANXA1 

31 0 4.54033192782763 0.51 0.027 0 3 REG1A 

32 0 4.42775764042412 0.781 0.017 0 3 PHGR1 

33 0 4.14956721047083 0.702 0.009 0 3 FABP1 

34 0 3.99923011833605 0.787 0.024 0 3 IFI27 

35 0 3.91808084596877 0.702 0.007 0 3 ALDOB 

36 0 3.7248508671425 0.721 0.006 0 3 PRAP1 

37 0 3.68995183213192 0.763 0.011 0 3 PIGR 

38 0 3.62151149717741 0.812 0.016 0 3 KRT8 

39 0 3.54012248140992 0.692 0.014 0 3 SELENOP 

40 0 3.53452817003021 0.783 0.02 0 3 LGALS4 

41 4.18348121191798e-180 7.39950825690588 0.907 0.441 9.66133151080339e-176 4 IGHA1 

42 1.33281695391491e-167 6.98799093513937 0.993 0.795 3.0780074733711e-163 4 IGKC 

43 3.5048421267675e-45 6.94394837563628 0.516 0.214 8.09408240755687e-41 4 IGLC2 

44 0 6.9272119375556 0.983 0.329 0 4 JCHAIN 

45 3.00683379163263e-24 6.62089858435451 0.445 0.222 6.9439819583964e-20 4 IGLC3 

46 1.45609997882967e-267 6.54109563370511 0.807 0.139 3.36271729110924e-263 4 IGLC1 

47 0 5.11774248791477 0.667 0.085 0 4 IGHA2 

48 2.14614891993071e-158 4.1812596037785 0.306 0.032 4.95631631568798e-154 4 IGHG3 

49 0 4.15096522241146 0.956 0.075 0 4 MZB1 

50 5.61874214765942e-250 3.79389750444488 0.954 0.487 1.29759231158047e-245 4 SSR4 

51 1.54403809635103e-197 1.96200861391742 1 0.977 3.56580157971308e-193 5 MT-ND3 

52 1.29444885642115e-202 1.93570257550762 1 0.992 2.98940018901901e-198 5 MT-ATP6 

53 1.79010747216233e-185 1.91080134267029 0.998 0.98 4.13407419621169e-181 5 MTRNR2L12 

54 1.79045624340099e-164 1.90837822920049 0.978 0.927 4.13487964851025e-160 5 MTRNR2L8 

55 3.59118408610696e-198 1.88823522279749 1 0.99 8.29348052845542e-194 5 MT-CYB 

56 2.87035156349822e-193 1.82879100772429 1 0.981 6.62878990074279e-189 5 MT-ND4 



 

57 5.78311182853048e-197 1.82452596783699 1 0.99 1.33555184568083e-192 5 MT-CO3 

58 9.94299184059862e-79 1.81041890249067 0.779 0.652 2.29623453566785e-74 5 MTRNR2L1 

59 2.45682192856987e-184 1.78771559871616 0.998 0.975 5.67378456183925e-180 5 MT-ND1 

60 4.432255204103e-143 1.74860937612307 0.961 0.875 1.02358501683555e-138 5 MT-ND5 

61 7.77083432535668e-183 1.51119399871327 1 0.996 1.79459647909787e-178 6 MALAT1 

62 2.74820022818789e-06 1.4586849439434 0.339 0.314 0.0634669360697711 6 CEMIP2 

63 0.000612678308372534 1.39568990580552 0.354 0.386 1 6 TLE4 

64 2.37875533745326e-05 1.36466733399857 0.437 0.503 0.549349757631456 6 NABP1 

65 9.10526822951363e-46 1.33520497694787 0.809 0.812 2.10277064492388e-41 6 HSPH1 

66 5.51460148484173e-08 1.30895471425237 0.488 0.587 0.00127354206690935 6 GLS 

67 0.00942023026560085 1.29215172630996 0.403 0.487 1 6 SLC2A3 

68 0.000432650032832348 1.27555065054038 0.256 0.232 1 6 AAK1 

69 1.78008877718648e-12 1.26526105190562 0.576 0.672 4.11093702203446e-08 6 INTS6 

70 5.61097595632371e-08 1.2443154131842 0.437 0.465 0.0012957987873534 6 RNF213 

71 0 4.86078643481867 0.389 0.007 0 7 GNLY 

72 0 4.36255245188511 0.921 0.073 0 7 CCL5 

73 0 4.1811069266143 0.926 0.017 0 7 NKG7 

74 0 4.05979386113184 0.861 0.02 0 7 GZMA 

75 0 3.5897640457689 0.676 0.049 0 7 CCL4 

76 0 3.1550319566724 0.477 0.017 0 7 IFNG 

77 0 2.81845150060769 0.477 0.005 0 7 GZMB 

78 0 2.65108028670218 0.481 0.003 0 7 GZMH 

79 1.30885489396206e-290 2.52714061812947 0.417 0.017 3.02266949211599e-286 7 GZMK 

80 0 2.32340401172507 0.505 0.005 0 7 KLRD1 

81 4.1957607636471e-60 2.6159873561327 0.783 0.385 9.68968990756661e-56 8 HMGB2 

82 5.35568151920067e-94 2.5558987281434 0.652 0.162 1.2368410900442e-89 8 STMN1 

83 0 2.54888084848703 0.515 0.012 0 8 MKI67 

84 1.41085629305477e-232 2.51579666762663 0.48 0.03 3.25823152318068e-228 8 CENPF 

85 6.54014298476367e-218 2.33589715354948 0.682 0.07 1.51038062090132e-213 8 TCL1A 

86 0 2.19953736694152 0.434 0.012 0 8 TOP2A 

87 2.30175738689482e-115 2.13805514637708 0.727 0.166 5.3156785092949e-111 8 LRMP 

88 0 2.13223416221325 0.621 0.026 0 8 MEF2B 

89 5.78431430722158e-11 2.12602860825316 0.657 0.538 1.33582954610975e-06 8 HIST1H4C 

90 5.52569607761345e-55 2.09399058114953 0.803 0.473 1.27610425216405e-50 8 HMGN2 

91 2.18611214920907e-33 0.540282881206432 0.903 0.343 5.04860739738344e-29 9 VPREB3 

92 9.4440170865305e-14 0.458896649216125 0.903 0.562 2.18100130596335e-09 9 ID3 

93 2.67686592446079e-22 0.451213791941681 0.508 0.187 6.18195416594975e-18 9 LINC01781 

94 1.38083180283826e-12 0.381146218313297 0.978 0.818 3.18889296547467e-08 9 RPL4 

95 2.55189386961392e-11 0.380271173544415 0.908 0.629 5.89334370248638e-07 9 SNHG29 

96 8.68030824889204e-16 0.377468747544686 0.984 0.64 2.00463038699913e-11 9 CD37 

97 4.54110701022547e-13 0.369066586778567 0.984 0.761 1.04872325294147e-08 9 IER5 

98 1.33452256255822e-12 0.366578900341903 1 0.924 3.08194640597195e-08 9 RPS23 

99 9.79841695801189e-17 0.3604792284119 0.638 0.289 2.26284641228327e-12 9 KPNB1 

100 3.11149406165771e-11 0.35766085959229 0.935 0.662 7.18568438599231e-07 9 KLF2 

101 0 5.59591261911334 0.56 0.006 0 10 S100A9 

102 0 5.49429514913931 0.547 0.014 0 10 CXCL8 

103 0 5.07579096133995 0.68 0.012 0 10 LYZ 

104 0 4.72581291608531 0.56 0.008 0 10 IL1B 

105 0 4.63683849898389 0.433 0.003 0 10 S100A8 

106 6.34356541628149e-96 4.53321905134967 0.553 0.084 1.46498299723605e-91 10 TIMP1 

107 3.85415679009295e-239 4.0818754348571 0.673 0.049 8.90078969104066e-235 10 CST3 

108 0 3.88885066307331 0.313 0.004 0 10 C1QA 

109 0 3.77400186572498 0.293 0.002 0 10 C1QB 

110 0 3.72545272727284 0.687 0.022 0 10 TYROBP 

111 2.62480691558013e-13 1.10426941338143 0.483 0.236 6.06172909084075e-09 11 TRBC1 

112 1.13035951000959e-23 1.09181677501155 0.797 0.45 2.61045225241614e-19 11 TRBC2 

113 1.52225253652068e-22 1.03105332380286 0.762 0.395 3.51549000784085e-18 11 TRAC 

114 5.17628922054574e-29 1.02734538435242 0.839 0.394 1.19541223259283e-24 11 CD3D 

115 8.63248572408539e-20 1.01153788072051 0.615 0.29 1.99358625312028e-15 11 GIMAP7 

116 3.85593406567688e-23 0.981101570593643 0.671 0.31 8.90489413127419e-19 11 CD3G 



 

117 2.38655176122053e-21 0.956682488544321 0.629 0.291 5.5115026373627e-17 11 CD3E 

118 7.09205509009402e-23 0.945353547798066 0.804 0.496 1.63783920250631e-18 11 LDHB 

119 1.02851199813105e-16 0.932077699177703 0.608 0.299 2.37524560848385e-12 11 CD2 

120 5.23871728453564e-12 0.894905912170585 0.531 0.285 1.20982936969066e-07 11 RGCC 

121 0 5.92756679797814 0.933 0.011 0 12 IGFBP7 

122 0 5.80471408932699 0.533 0.004 0 12 CXCL14 

123 0 5.04346217151272 0.907 0.009 0 12 CALD1 

124 2.35178740354583e-209 4.5964421129231 0.467 0.013 5.43121782974875e-205 12 CFD 

125 0 4.57398782873211 0.773 0.001 0 12 SPARCL1 

126 0 4.5401340155267 0.653 0.001 0 12 IGFBP5 

127 0 4.52988390497384 0.56 0.002 0 12 DCN 

128 0 4.298902674651 0.493 0.007 0 12 ADAMDEC1 

129 3.0043533402879e-157 4.21871798775975 0.6 0.032 6.93825360406088e-153 12 TAGLN 

130 0 4.19676169593537 0.827 0.009 0 12 A2M 

 

  



 

Supplementary Table 4: Top 10 expressed cell-type-specific marker genes identified for 

each cluster in sample 559. 

# p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 

1 3.27279356045382e-291 6.60098555736931 0.661 0.109 7.17461804322686e-287 0 IGLC1 

2 1.53903270170647e-96 6.39581876765836 0.64 0.329 3.37386748868093e-92 0 IGLC2 

3 7.51319861984412e-92 6.15688730969689 0.574 0.264 1.64704340144223e-87 0 IGLC3 

4 2.04308986321155e-248 5.72684279176455 0.907 0.524 4.47886159813237e-244 0 IGHA1 

5 0 5.35800633755047 0.944 0.27 0 0 JCHAIN 

6 4.96274622537544e-195 5.21818890807649 0.963 0.817 1.0879332275268e-190 0 IGKC 

7 2.27924412271541e-61 5.19678596837726 0.348 0.124 4.99655896581673e-57 0 IGHM 

8 6.80976654728699e-133 4.86435761016627 0.332 0.05 1.49283702249625e-128 0 IGHG1 

9 3.64165383354862e-245 4.69430627231346 0.508 0.061 7.98323353390529e-241 0 IGHA2 

10 1.02690615503764e-127 4.53696740747397 0.296 0.038 2.25118367307352e-123 0 IGHGP 

11 8.45647133587756e-81 2.34629924612855 0.413 0.126 1.85382764625108e-76 1 SPINK4 

12 3.47890859909101e-89 2.03875781504901 0.429 0.127 7.62646343092731e-85 1 MUC2 

13 1.27861013130613e-45 1.72416614520468 0.52 0.272 2.80296912984929e-41 1 TFF3 

14 6.85216247267218e-48 1.52403536739896 0.293 0.097 1.5021310572592e-43 1 CENPF 

15 2.38516016571438e-148 1.50785944652827 0.668 0.204 5.22874811527907e-144 1 MUC5B 

16 1.26337133649175e-107 1.33074000384305 0.651 0.261 2.76956264385722e-103 1 MUC4 

17 1.1793643331267e-99 1.28240002270413 0.759 0.411 2.58540249108036e-95 1 PLCG2 

18 6.21725087600778e-57 1.23561842956877 0.297 0.087 1.36294573703843e-52 1 MKI67 

19 4.07832624576349e-31 1.20956944231921 0.357 0.175 8.94050679596272e-27 1 FCGBP 

20 7.49604531409012e-109 1.1588302960149 0.801 0.359 1.64328305375484e-104 1 ELF3 

21 9.76038953703872e-33 1.58387579991926 0.667 0.441 2.13967259430963e-28 2 PLCG2 

22 4.28776829318216e-178 1.56907170886976 1 0.996 9.39964565231394e-174 2 MT-CO3 

23 3.05905978490007e-164 1.44247910017437 1 0.997 6.70607086045794e-160 2 MT-CO1 

24 1.80947175310265e-164 1.39325712941633 1 0.996 3.96672397715163e-160 2 MT-ATP6 

25 2.15912529091105e-149 1.38968387095572 1 0.987 4.73323446273521e-145 2 MT-ND4 

26 1.01975316983632e-143 1.37278993460958 1 0.996 2.23550289891518e-139 2 MT-CO2 

27 2.51329172329212e-119 1.35093088619647 0.946 0.627 5.50963811580098e-115 2 MT-ATP8 

28 4.26340916981771e-131 1.32407314348535 0.998 0.984 9.34624558207439e-127 2 MT-ND1 

29 2.13656935129857e-133 1.31246270810655 0.996 0.945 4.68378733191672e-129 2 MT-ND5 

30 1.02290956450975e-143 1.31030784259925 1 0.994 2.24242234731827e-139 2 MT-CYB 

31 2.28210712977651e-192 3.72219478624801 0.363 0.023 5.00283524989606e-188 3 CCL5 

32 0 3.55345532101006 0.782 0.02 0 3 CD3D 

33 5.88216658465962e-223 3.43827976735308 0.331 0.009 1.28948855868908e-218 3 GZMA 

34 0 3.42237225215721 0.667 0.038 0 3 LTB 

35 0 3.36453331267556 0.937 0.102 0 3 PTPRC 

36 0 3.33773172457631 0.624 0.013 0 3 TRBC1 

37 0 3.22173860284988 0.701 0.059 0 3 IL7R 

38 0 3.17888875758043 0.696 0.024 0 3 TRBC2 

39 2.42961800987984e-269 3.17776579027863 0.88 0.23 5.32620860125859e-265 3 IL32 

40 0 3.08246264658006 0.78 0.022 0 3 CD2 

41 0 5.61807829336865 0.753 0.077 0 4 CXCL14 

42 0 4.05593579341891 0.832 0.069 0 4 RARRES2 

43 0 3.99893139830672 0.727 0.05 0 4 DCN 

44 0 3.97208031697499 0.698 0.037 0 4 IGFBP5 

45 0 3.95447071040266 0.693 0.05 0 4 LUM 

46 0 3.83288773928033 0.897 0.066 0 4 COL3A1 

47 1.12311281529621e-63 3.6295522144754 0.317 0.068 2.46208791369235e-59 4 MMP3 

48 0 3.54360685381649 0.804 0.048 0 4 COL6A3 

49 1.13079171931585e-257 3.51020446170978 0.544 0.042 2.47892160708421e-253 4 CFD 

50 0 3.44402958453815 0.874 0.062 0 4 COL1A2 

51 2.41345240012903e-176 1.89035365316428 0.518 0.054 5.29077035156286e-172 5 CLCA4 

52 3.23650518205033e-224 1.86052475829163 0.842 0.129 7.09506666009074e-220 5 CEACAM7 

53 8.10327455008263e-138 1.82932927131762 1 0.981 1.77639984686911e-133 5 MT-ND2 

54 9.92701139152279e-127 1.76922278880512 0.912 0.355 2.17619943724963e-122 5 DST 

55 5.61909803500391e-215 1.69005487627411 0.691 0.084 1.23181867123356e-210 5 SLC26A3 

56 6.93257088730435e-144 1.64026963673828 1 0.978 1.51975818991486e-139 5 MT-ND3 



 

57 2.96334654712362e-185 1.6211388097152 0.755 0.136 6.49624830060441e-181 5 MYO15B 

58 1.53664887584439e-172 1.56538975120653 0.924 0.226 3.36864166562607e-168 5 FABP1 

59 5.23152421052707e-134 1.55871791773043 1 0.984 1.14685473743174e-129 5 MT-ND1 

60 6.83315282605976e-108 1.53267990967804 0.936 0.4 1.49796376252882e-103 5 MUC12 

61 1.13955718982919e-88 4.87142393193958 0.265 0.028 2.49813727154355e-84 6 S100A9 

62 4.15897952635343e-196 4.56207739431076 0.62 0.089 9.11731491767199e-192 6 HLA-DRA 

63 1.45127284647628e-53 4.04816379642534 0.408 0.132 3.18148033404531e-49 6 LYZ 

64 5.56271287917085e-156 3.71189759519068 0.558 0.09 1.21945791737183e-151 6 HLA-DPA1 

65 1.37230823441201e-63 3.38187560546866 0.651 0.364 3.00837411147802e-59 6 CD74 

66 3.16244838692481e-179 3.37785474472533 0.511 0.057 6.93271935381657e-175 6 HLA-DPB1 

67 8.02017998908802e-129 3.35496175340124 0.511 0.091 1.75818385720787e-124 6 HLA-DRB1 

68 1.98005621021018e-261 3.27162295307875 0.47 0.021 4.34067922402277e-257 6 TYROBP 

69 5.10749662697469e-41 3.2519103315583 0.807 0.735 1.11966541056539e-36 6 FTL 

70 1.06533677926459e-259 3.22547906640453 0.386 0.009 2.33543128750383e-255 6 AIF1 

71 1.34607078315324e-51 3.26066418924025 0.347 0.081 2.95085637082853e-47 7 REG1A 

72 6.90674068817487e-185 2.74131871344537 0.911 0.207 1.5140956936617e-180 7 AGR2 

73 1.44114079261467e-109 2.4018063822148 0.571 0.114 3.15926884556988e-105 7 OLFM4 

74 1.35848228067739e-72 2.35130185151091 0.782 0.274 2.97806485570097e-68 7 TFF3 

75 3.28589133270457e-141 2.16886835751418 0.911 0.277 7.20333097955496e-137 7 LCN2 

76 1.21051943834993e-274 2.14823648987452 0.917 0.138 2.65370071275071e-270 7 GPX2 

77 4.49010790447258e-127 2.09400193585773 0.997 0.67 9.84321454818478e-123 7 RPL7 

78 3.3831975735178e-140 1.99765675389333 1 0.792 7.41664572066572e-136 7 RPL8 

79 2.16907647290172e-187 1.98444478203359 0.855 0.172 4.75504944389514e-183 7 TSPAN8 

80 1.19252437764331e-160 1.92816349778645 0.934 0.289 2.61425194066966e-156 7 EPCAM 

81 1.60082486261514e-240 3.85150087199341 0.967 0.228 3.50932826382491e-236 8 FABP1 

82 9.5528133403378e-261 3.60307079838886 0.838 0.12 2.09416774046885e-256 8 TFF1 

83 1.13222011243123e-307 3.3017384493785 0.927 0.128 2.48205293047174e-303 8 CEACAM7 

84 4.49609740694892e-174 3.23749148034369 0.98 0.372 9.85634473551343e-170 8 PHGR1 

85 3.30395778342737e-270 3.16598329789645 0.715 0.071 7.24293625282947e-266 8 CA4 

86 1.17610972684121e-155 2.91421406926094 0.5 0.058 2.57826774318131e-151 8 CLCA4 

87 1.29356009598658e-152 2.73938491095718 0.828 0.231 2.83574244242178e-148 8 KRT19 

88 1.15945218205048e-246 2.64213815516193 0.623 0.055 2.54175107349106e-242 8 GUCA2A 

89 6.62094629871755e-255 2.58919181554374 0.907 0.164 1.45144384760486e-250 8 TSPAN1 

90 6.73650467784766e-168 2.5310886180799 0.99 0.431 1.47677655547776e-163 8 PIGR 

91 3.76662082524655e-278 3.99105607112786 0.822 0.053 8.25718617310548e-274 9 SPARCL1 

92 7.49488378070406e-197 3.94195269284317 0.941 0.122 1.64302842240594e-192 9 COL4A1 

93 0 3.78115061258363 0.724 0.004 0 9 PLVAP 

94 5.07109741553979e-228 3.77537747064915 0.855 0.084 1.11168597543463e-223 9 HSPG2 

95 0 3.66894846056619 0.737 0.022 0 9 FLT1 

96 2.97865954294688e-168 3.39402501898374 0.868 0.119 6.52981745004815e-164 9 COL4A2 

97 1.42246118347612e-192 3.30711332026341 0.612 0.041 3.11831940641636e-188 9 IGFBP3 

98 0 3.1600210868687 0.671 0.003 0 9 VWF 

99 0 3.0709871298822 0.711 0.012 0 9 EGFL7 

100 6.72798488862514e-178 3.05428228071389 0.73 0.076 1.4749088472844e-173 9 PECAM1 

101 0 4.8369887204908 0.971 0.042 0 10 RGS5 

102 1.20223304190756e-243 3.94498156102456 1 0.074 2.63553527446975e-239 10 THY1 

103 7.71607297326423e-187 3.92397798995082 1 0.109 1.69151751719898e-182 10 SPARC 

104 6.44791012083174e-118 3.88102043919942 1 0.198 1.41351085668873e-113 10 IGFBP7 

105 3.6618109177621e-186 3.87018084423442 1 0.104 8.02742189391808e-182 10 COL1A1 

106 2.06106071674322e-97 3.83034977684422 0.99 0.244 4.51825730324448e-93 10 TIMP1 

107 1.27536469169729e-138 3.8147721484056 1 0.161 2.7958544771388e-134 10 CALD1 

108 6.07379084164904e-227 3.71617687242145 0.883 0.056 1.3314964283063e-222 10 ACTA2 

109 1.09765006297722e-164 3.54074131456172 0.99 0.115 2.40626846805866e-160 10 COL1A2 

110 4.93691021976395e-153 3.44430296105421 1 0.13 1.08226945837665e-148 10 COL4A1 

 

  



 

Supplementary Table 5: Top 10 expressed cell-type-specific marker genes identified for 

each cluster in sample 569. 

# p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 

1 3.69845546794461e-277 2.42202799453728 0.524 0.139 8.47316147706109e-273 0 CCL5 

2 0 2.31485373264953 0.701 0.15 0 0 IL7R 

3 0 2.13181448395676 0.646 0.143 0 0 KLRB1 

4 0 1.84359661994783 0.837 0.483 0 0 ID2 

5 0 1.82575965113149 0.743 0.166 0 0 CD3D 

6 0 1.80940287250568 0.628 0.149 0 0 FYB1 

7 0 1.74411975944706 0.583 0.123 0 0 CD3G 

8 0 1.74249451836812 0.644 0.169 0 0 TRAC 

9 1.10134908016706e-105 1.7409806082735 0.604 0.432 2.52319074266275e-101 0 HSPA6 

10 1.77636102170315e-215 1.70411288510131 0.446 0.115 4.06964310072192e-211 0 TRBC1 

11 4.28674042411181e-243 5.05291062563666 0.974 0.797 9.82092231164016e-239 1 IGKC 

12 1.96429605339114e-58 4.7703442384498 0.506 0.256 4.50020225831911e-54 1 IGLC3 

13 0 4.75552687656364 0.989 0.367 0 1 JCHAIN 

14 1.18379004969854e-92 4.69294366427064 0.614 0.287 2.71206300385936e-88 1 IGLC2 

15 0 4.65381945816148 0.82 0.114 0 1 IGLC1 

16 0 3.55486639003508 0.985 0.602 0 1 IGHA1 

17 0 3.47490852150996 0.785 0.126 0 1 IGHA2 

18 0 3.33351405240659 0.983 0.1 0 1 MZB1 

19 0 3.18951008626119 0.995 0.476 0 1 SSR4 

20 0 2.68068920094942 0.91 0.059 0 1 DERL3 

21 0 3.4261179680075 0.842 0.111 0 2 HLA-DRA 

22 0 2.8341604274593 0.638 0.02 0 2 MS4A1 

23 0 2.81865826515616 0.873 0.379 0 2 CD74 

24 0 2.64119549063172 0.781 0.117 0 2 HLA-DRB1 

25 0 2.52193455699643 0.771 0.143 0 2 HLA-DPA1 

26 0 2.46049575504762 0.693 0.074 0 2 HLA-DPB1 

27 0 2.3256137487311 0.48 0.023 0 2 VPREB3 

28 0 2.306928432709 0.527 0.024 0 2 BANK1 

29 0 2.30107936705159 0.594 0.047 0 2 HLA-DQA1 

30 0 2.16560045820026 0.764 0.218 0 2 CD37 

31 0 3.10678889513413 1 0.955 0 3 MT-ND1 

32 0 2.89985313621228 1 0.988 0 3 MT-CO2 

33 0 2.87869433098043 1 0.984 0 3 MT-CO1 

34 0 2.86648293859409 1 0.914 0 3 MT-ND2 

35 0 2.7946230480393 1 0.974 0 3 MT-CYB 

36 0 2.79040784797322 1 0.987 0 3 MT-CO3 

37 0 2.76034072860961 1 0.988 0 3 MT-ATP6 

38 0 2.73115834632255 1 0.966 0 3 MT-ND4 

39 0 2.70297477905349 1 0.937 0 3 MT-ND3 

40 0 2.49103844026744 0.999 0.819 0 3 MT-ND5 

41 2.61987475609e-23 1.7715503572636 0.641 0.656 6.0021330662022e-19 4 IGHA1 

42 3.68507434343296e-15 1.62330889884155 0.309 0.207 8.44250532080491e-11 4 IGHA2 

43 2.18728815500947e-59 1.43257394319635 0.738 0.675 5.0110771631267e-55 4 BTG2 

44 3.79771689338233e-12 1.2717881933535 0.36 0.301 8.70056940273893e-08 4 XBP1 

45 8.07037135999439e-19 1.21356738807732 0.641 0.664 1.84892207857471e-14 4 PPP1R15A 

46 1.8905263887957e-59 1.14352542143469 0.912 0.908 4.33119595673094e-55 4 JUN 

47 6.01458304388783e-06 1.13136045667182 0.455 0.522 0.13779409753547 4 SLC38A2 

48 5.4257103132001e-10 1.13062558384867 0.487 0.532 1.24303023275414e-05 4 SQSTM1 

49 6.98204647768284e-131 1.02147060711676 0.99 0.986 1.59958684803714e-126 4 MALAT1 

50 4.03007241447224e-06 1.00423149199688 0.414 0.436 0.0923289590155589 4 GLS 

51 1.8677519560451e-112 2.1178326758641 0.4 0.085 4.27901973129932e-108 5 GZMA 

52 1.91267610158149e-151 1.94923877400971 0.833 0.351 4.3819409487232e-147 5 S100A4 

53 7.37927289468048e-197 1.92484549985437 0.853 0.264 1.6905914201713e-192 5 CD3D 

54 9.83175328113683e-128 1.81263684097843 0.723 0.269 2.25245467670845e-123 5 IL32 

55 9.75941667231411e-145 1.67717932067299 0.709 0.213 2.23588235962716e-140 5 TRBC2 

56 1.13408509525699e-98 1.61902649672846 0.345 0.075 2.59818895323377e-94 5 TNFRSF18 



 

57 4.55425751515854e-162 1.61871703664122 0.747 0.216 1.04338039672282e-157 5 CD2 

58 1.20560512458306e-163 1.57922454881957 0.735 0.197 2.76204134041979e-159 5 CD3G 

59 3.00992574658503e-148 1.57624467322777 0.982 0.738 6.8957398854263e-144 5 ACTB 

60 1.33127011693184e-172 1.55739394260556 0.55 0.104 3.04993983789085e-168 5 CD7 

61 0 5.75387122284433 0.536 0.025 0 6 CXCL14 

62 0 4.99771874897158 0.966 0.034 0 6 CALD1 

63 0 4.73342454291607 0.834 0.01 0 6 COL3A1 

64 0 4.6269424062033 0.679 0.031 0 6 TAGLN 

65 0 4.59861755284853 0.957 0.067 0 6 IGFBP7 

66 0 4.49985012570223 0.821 0.008 0 6 COL1A2 

67 0 4.27881068908153 0.641 0.012 0 6 IGFBP5 

68 0 4.168594695869 0.735 0.026 0 6 COL1A1 

69 0 4.06754826915085 0.87 0.195 0 6 TIMP1 

70 0 3.94561760749581 0.8 0.02 0 6 RARRES2 

71 0 5.38296243668694 0.858 0.099 0 7 REG1A 

72 2.12180021184324e-261 3.85408339067748 1 0.22 4.86104428533286e-257 7 PIGR 

73 1.43986316137661e-303 3.56220234959523 0.815 0.087 3.2987265027138e-299 7 OLFM4 

74 0 3.44428110359823 0.992 0.127 0 7 AGR2 

75 0 3.39195731183029 0.937 0.093 0 7 LCN2 

76 0 3.37140518945827 0.898 0.065 0 7 PLA2G2A 

77 2.22727526490461e-237 3.14186911070667 0.378 0.018 5.10268763189646e-233 7 REG1B 

78 1.14183283802135e-106 3.12112524273844 0.276 0.025 2.61593903190691e-102 7 SPINK4 

79 0 3.09423414911327 0.866 0.042 0 7 DMBT1 

80 0 3.04587383990203 0.972 0.129 0 7 TSPAN8 

81 0 4.45668931023878 0.996 0.128 0 8 CEACAM5 

82 0 4.38611796941067 1 0.113 0 8 TFF3 

83 0 3.88089424119844 1 0.148 0 8 EPCAM 

84 0 3.44096974482297 1 0.095 0 8 FXYD3 

85 3.94753134263385e-192 3.24842279533981 0.902 0.168 9.04379430597416e-188 8 FABP1 

86 0 3.16695972497928 0.893 0.086 0 8 OLFM4 

87 6.43706786500119e-282 3.09508205133233 1 0.181 1.47473224787177e-277 8 KRT18 

88 5.72457844760198e-252 3.04916592841363 1 0.196 1.31150092234561e-247 8 LGALS4 

89 4.01650315288399e-179 3.03717353648918 0.996 0.338 9.20180872325721e-175 8 LGALS3 

90 2.68597732600692e-279 2.97760623800907 1 0.174 6.15357405388185e-275 8 KRT8 

91 5.39651830061471e-117 2.59424065556283 1 0.988 1.23634234267083e-112 9 MT-CO3 

92 2.16395668114822e-171 1.96993743336948 0.711 0.109 4.95762475651058e-167 9 SOX9 

93 2.06191898822449e-75 1.96790215692163 0.63 0.178 4.72385640202231e-71 9 FABP1 

94 3.60887279742928e-149 1.92371656829978 0.872 0.187 8.26792757891048e-145 9 ELF3 

95 4.04600123959654e-94 1.92189957690839 1 0.985 9.26938883991567e-90 9 MT-CO1 

96 7.25705164403624e-120 1.91755541671925 0.553 0.092 1.6625905316487e-115 9 L1TD1 

97 4.47673114048828e-114 1.82514969221868 0.779 0.183 1.02561910428586e-109 9 KRT8 

98 1.20826222921696e-88 1.81505764761426 0.996 0.989 2.76812876713605e-84 9 MT-CO2 

99 9.81636296268287e-90 1.80434289819684 1 0.989 2.24892875475065e-85 9 MT-ATP6 

100 4.1322980297237e-45 1.73363347601427 0.511 0.165 9.46709478609699e-41 9 PHGR1 

101 0 4.24670977795145 0.81 0.005 0 10 PLVAP 

102 0 4.15058043929982 0.833 0.038 0 10 SPARCL1 

103 0 4.11628358713694 0.856 0.05 0 10 COL4A1 

104 1.37223241973028e-196 3.67746126174229 0.466 0.029 3.14378447360207e-192 10 IGFBP3 

105 0 3.54163163968784 0.816 0.062 0 10 HSPG2 

106 2.50582537242331e-272 3.52534535210959 0.954 0.101 5.7408459282218e-268 10 IGFBP7 

107 0 3.50923783934769 0.667 0.006 0 10 FLT1 

108 0 3.48910919359771 0.649 0.002 0 10 VWF 

109 0 3.45165578679891 0.782 0.053 0 10 PECAM1 

110 2.41793276496162e-123 3.43797766771435 0.81 0.19 5.53948396452708e-119 10 IFI27 

111 5.46471627328334e-58 3.94405050485821 0.622 0.183 1.25196649820921e-53 11 FABP1 

112 6.63108190337395e-118 3.78553002558854 0.776 0.163 1.51918086406297e-113 11 PHGR1 

113 2.76113004195759e-143 3.73528185483757 0.929 0.208 6.32574892612484e-139 11 LGALS4 

114 7.89158139094768e-120 3.71879498331139 0.564 0.075 1.80796129666611e-115 11 MT1G 

115 1.77896431219096e-134 3.40795036989836 0.782 0.141 4.07560723922949e-130 11 C15orf48 

116 8.85921233256028e-152 3.18694024344957 0.846 0.143 2.02964554538956e-147 11 TSPAN8 



 

117 2.3516205798388e-82 3.17671550663108 0.878 0.349 5.3875627484107e-78 11 LGALS3 

118 1.04879571986356e-98 3.08500820512489 0.628 0.118 2.40279099420742e-94 11 MT1E 

119 1.55268454671998e-68 2.913783766842 0.712 0.241 3.55720029653549e-64 11 SRI 

120 6.66712491811698e-93 2.88333180981766 0.724 0.171 1.5274383187406e-88 11 CD24 

121 5.2050356560073e-210 5.34337961883621 0.949 0.067 1.19247366879127e-205 12 LYZ 

122 3.75306759032581e-71 5.17628154808414 0.41 0.034 8.59827784943642e-67 12 APOE 

123 0 4.47311654182207 0.564 0.002 0 12 C1QA 

124 0 4.16734823395167 0.885 0.009 0 12 AIF1 

125 3.12803924061788e-90 4.154806521134 0.962 0.19 7.16633790025557e-86 12 HLA-DRB1 

126 0 4.08390995044552 0.577 0.001 0 12 C1QB 

127 7.50676234851828e-90 4.0660627485096 0.974 0.192 1.71979925404554e-85 12 HLA-DRA 

128 7.03776991621344e-86 3.9889734747873 0.974 0.211 1.6123530878045e-81 12 HLA-DPA1 

129 4.76235878618326e-129 3.92296794622902 0.91 0.105 1.09105639791459e-124 12 HLA-DQA1 

130 1.28535582733298e-26 3.84460199962382 0.692 0.28 2.94475020041985e-22 12 CTSD 

 

  



 

Supplementary Table 6: Manually annotated clusters in sample 554 based on its top 10 cell-type-specific marker genes. 

# cluster gene Human Protein Atlas (HPA) Azimuth Panglaodb.se Supplementary literature or other comment Annotated cell type 

1 0 LTB NK-cells & T-cells - Immune response (mainly)       

CD4+ effector memory T-cell 

2 0 IL7R Non-specific - Transcription regulation (mainly) CD4+ effector memory T-cell (lung)     

3 0 HSPA1A Epithelial cell types - Mixed function (mainly)       

4 0 CD2 Non-specific - Transcription regulation (mainly) CD4+ effector memory T-cell (lung)     

5 0 PTPRC Non-specific - Transcription regulation (mainly) CD4+ effector memory T-cell (lung)     

6 0 IKZF1 Plasmacytoid DCs - Unknown function (mainly)       

7 0 CD52 B-cells - Immune response (mainly)       

8 0 CD3D NK-cells & T-cells - Immune response (mainly) CD4+ effector memory T-cell (lung)     

9 0 JUN Non-specific - Mitochondria (mainly)       

10 0 GIMAP7 NK-cells & T-cells - Immune response (mainly)       

11 1 CEACAM7 Intestinal epithelial cells - Unknown function (mainly)       

Intestinal epithelial cell 

12 1 FABP1 Enterocytes - Digestion (mainly)       

13 1 CEACAM5 Intestinal epithelial cells - Unknown function (mainly)       

14 1 KRT20 Intestinal epithelial cells - Unknown function (mainly)       

15 1 FXYD3 Intestinal epithelial cells - Unknown function (mainly)       

16 1 CKB Intestinal epithelial cells - Unknown function (mainly)       

17 1 TFF1 Pancreatic endocrine cells - Mixed function (mainly)       

18 1 TSPAN1 Intestinal epithelial cells - Unknown function (mainly)       

19 1 LGALS3 Intestinal epithelial cells - Unknown function (mainly) Intestinal epithelial cell (fetal development)     

20 1 PHGR1 Enterocytes - Digestion (mainly)       

21 2 RNF43 Intestinal epithelial cells - Unknown function (mainly)       

Mitochondrial gene-expressing cell 

22 2 MT-ND3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

23 2 MT-ND1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

24 2 MT-CO3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

25 2 MT-CYB Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

26 2 MTRNR2L10 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

27 2 MT-CO2 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

28 2 MT-ATP6 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

29 2 MT-ND2 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

30 2 AC103702.2 Not found       

31 3 CENPF Non-specific - Cell cycle regulation (mainly) 
CD4+ proliferating T-cell (PBMC) 
CD4+ proliferating T-cell (lung)     

CD4+ proliferating T-cell 

32 3 MKI67 Non-specific - Cell cycle regulation (mainly) CD4+ proliferating T-cell (PBMC)     

33 3 ASPM Non-specific - Cell cycle regulation (mainly) CD4+ proliferating T-cell (PBMC)     

34 3 TOP2A Non-specific - Cell cycle regulation (mainly) 
CD4+ proliferating T-cell (PBMC) 
CD4+ proliferating T-cell (lung)     

35 3 CENPW Non-specific - Cell cycle regulation (mainly)       

36 3 HMGB2 Non-specific - Cell cycle regulation (mainly) CD4+ proliferating T-cell (lung)     

37 3 PTTG1 Non-specific - Cell cycle regulation (mainly) CD4+ proliferating T-cell (PBMC)     

38 3 H2AFZ Non-specific - Transcription regulation (mainly) Proliferating Macrophage (lung)     

39 3 CKS2 Non-specific - Mitochondria (mainly)       

40 3 HMGB1 Non-specific - Cell cycle regulation (mainly)       

41 4 LEFTY1 Intestinal epithelial cells - Unknown function (mainly)       
Intestinal epithelial cell 

42 4 GPX2 Intestinal epithelial cells - Unknown function (mainly)       



 

43 4 TFF3 Mucus-secreting cells - Mucin production (mainly)     
Classical marker of goblet cell  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

44 4 LCN2 Respiratory epithelial cells - Mucosal defense (mainly) Mucous cell or goblet cell (lung)     

45 4 PIGR Intestinal epithelial cells - Unknown function (mainly)       

46 4 TSPAN8 Enterocytes - Digestion (mainly)       

47 4 FAM3D Intestinal epithelial cells - Unknown function (mainly) Goblet cell (lung)     

48 4 SLC12A2 Mucus-secreting cells - Mucin production (mainly)     

Significantly expressed in human intestinal stem 
cells  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

49 4 PRDX5 Respiratory epithelial cells - Mucosal defense (mainly)       

50 4 TFF1 Pancreatic endocrine cells - Mixed function (mainly)       

51 5 CXCL14 Fibroblasts - ECM organization (mainly) Intestine-Stromal cells (fetal development)     

Fibroblast 

52 5 COL1A2 Fibroblasts - ECM organization (mainly) 
Stromal cells (fetal development) 
Myofibroblast (lung)     

53 5 COL3A1 Fibroblasts - ECM organization (mainly) 

Stromal cells (fetal development) 
Smooth muscle cells (fetal development) 
Myofibroblast (lung)     

54 5 COL1A1 Fibroblasts - ECM organization (mainly) 

Stromal cells (fetal development) 
Smooth muscle cells (fetal development) 
Myofibroblast (lung)     

55 5 LUM Fibroblasts - ECM organization (mainly) 
Stormal cells (bone marrow) 
Fibroblast (lung)     

56 5 DCN Fibroblasts - ECM organization (mainly) 
Stromal cells (fetal development) 
Fibroblast (lung)     

57 5 COL6A3 Fibroblasts - ECM organization (mainly) 
Smooth muscle cells (fetal development) 
Myofibroblast (lung)     

58 5 CALD1 Smooth muscle cells - ECM organization (mainly) 

Smooth muscle cells (fetal development) 
Smooth muscle cells (lung) 
Myofibroblast (lung)     

59 5 POSTN Adipocytes & Endothelial cells - Angiogenesis (mainly) 
Stromal cells (fetal development) 
Myofibroblast (lung)     

60 5 RARRES2 Hepatocytes - Metabolism (mainly) Alveolar fibroblast (lung)     

61 6 MT-CO3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

Mitochondrial gene-expressing cell 

62 6 MT-ND3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

63 6 MT-ATP6 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

64 6 MT-ND1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

65 6 MT-CO2 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

66 6 MT-CYB Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

67 6 MT-ND2 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

68 6 MTRNR2L12 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

69 6 MTRNR2L8 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

70 6 MTRNR2L1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

71 7 CCL5 NK-cells & T-cells - Immune response (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ central memory t-cell (PBMC) 
NK-cell (lung)   

Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/s41467-019-12464-3) 

CD8+ effector memory T-cell 

72 7 GZMA NK-cells & T-cells - Immune response (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ T-cell (lung)     

73 7 CCL4 NK-cells & T-cells - Immune response (mainly) 
CD8+ effector T-cell (bone marrow) 
NK proliferating cells (bone marrow)   

Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/s41467-019-12464-3) 



 

74 7 NKG7 NK-cells & T-cells - Immune response (mainly) 

CD4+ cytotoxic T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
NK-cell (PBMC) 
NK-cell (lung) 
CD8+ T-cell (lung) 
CD8+ effector memory T-cell (lung)   

Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/s41467-019-12464-3) 

75 7 TRBC1 NK-cells & T-cells - Immune response (mainly)       

76 7 KLRB1 NK-cells & T-cells - Immune response (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD8+ central memory T-cell (PBMC) 
NK-cell (PBMC) 
CD4+ effector T-cell (bone marrow) 
CD8+ effector T-cell (bone marrow)     

77 7 CCL3 Macrophages - Innate immune response (mainly) CD8+ effector T-cell (bone marrow)   
Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/s41467-019-12464-3) 

78 7 HCST NK-cells & T-cells - Immune response (mainly) CD8+ T-cell (PBMC)     

79 7 GZMB NK-cells & T-cells - Immune response (mainly) 

NK-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
NK-cell (lung) 
CD8+ T-cell (lung)   

Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/s41467-019-12464-3) 

80 7 CD3D NK-cells & T-cells - Immune response (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD8+ proliferating T-cell (PBMC) 
NK-cell (PBMC) 
CD4+ effector memory T-cell (lung) 
CD8+ T-cell (lung)     

81 8 SPARCL1 Adipocytes & Endothelial cells - Angiogenesis (mainly) 
Bronchial vessel (lung) 
Stromal cell (bone marrow)     

Vascular endothelial cell 

82 8 MGP Glandular cells - Unknown function (mainly)       

83 8 IGFBP3 Fibroblasts - ECM organization (mainly) Stellate cells (fetal development)     

84 8 COL4A1 Smooth muscle cells - ECM organization (mainly) 
Vascular endothelial cell (fetal development) 
Pericyte (lung)     

85 8 IGFBP7 Smooth muscle cells - ECM organization (mainly) 
Vascular endothelial cell (fetal development) 
Lymphatic vessel (lung)     

86 8 PLVAP Adipocytes & Endothelial cells - Angiogenesis (mainly) Intestine-Vascular endothelial cells (fetal development)      

87 8 PECAM1 Adipocytes & Endothelial cells - Angiogenesis (mainly) Capillary endothelial cell (lung)     

88 8 VWF Adipocytes & Endothelial cells - Angiogenesis (mainly) 

Lymphatic or vascular endothelial cells (fetal 
development) 
Bronchial vessel endothelial cell (lung)     

89 8 ENG Adipocytes & Endothelial cells - Angiogenesis (mainly) Endocardial cells (fetal development)     

90 8 HSPG2 Granulosa cells - Unknown function (mainly) 
Vascular endothelial cells (fetal development) 
Endocardial cells (fetal development)     

91 9 LYZ Monocytes & Neutrophils - Innate immune response (mainly) 

Monocyte (PBMC) 
CD14+ monocyte (PBMC) 
Stomach-Goblet cells (fetal development)     

Myeloid cell 92 9 HLA-DRA Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development) 
Myeloid dendritic cell (lung)     

93 9 FTL Macrophages - Innate immune response (mainly) 
Myeloid cell (fetal development) 
Neutrophil (kidney)     

94 9 IFI30 Monocytes & Neutrophils - Innate immune response (mainly) Dendritic cell (bone marrow)     

95 9 AIF1 Monocytes & Neutrophils - Innate immune response (mainly) 

Monocyte (PBMC) 
CD16+ monocyte (PBMC) 
CD16+ monocyte (lung)     



 

96 9 HLA-DQA1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
B-cell (PBMC) 
Stomach-Myeloid cells (fetal development) 
Dendritic cell (lung) 
Myeloid dendritic cell (lung)     

97 9 HLA-DPB1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development) 
Myeloid dendritic cell (lung)     

98 9 HLA-DPA1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Myeloid dendritic cell (lung)     

99 9 HLA-DRB1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development)     

100 9 TYROBP Macrophages - Innate immune response (mainly) 

Monocyte (PBMC) 
NK-cell (PBMC)  
Dendritic cell (lung)     

101 10 RGS5 Smooth muscle cells - ECM organization (mainly)       

Smooth muscle cell 

102 10 ACTA2 Smooth muscle cells - ECM organization (mainly)       

103 10 CALD1 Smooth muscle cells - ECM organization (mainly)       

104 10 NDUFA4L2 Smooth muscle cells - ECM organization (mainly)       

105 10 MGP Glandular cells - Unknown function (mainly)       

106 10 COL18A1 Smooth muscle cells - ECM organization (mainly)       

107 10 CSRP2 Fibroblasts - ECM organization (mainly)       

108 10 IGFBP7 Smooth muscle cells - ECM organization (mainly)       

109 10 TAGLN Smooth muscle cells - ECM organization (mainly)       

110 10 COL4A1 Smooth muscle cells - ECM organization (mainly)       

111 11 IGKC Plasma cells - Humoral immune response (mainly)       

Plasma B-cell 

112 11 IGHA1 Plasma cells - Humoral immune response (mainly)       

113 11 IGLC1 Alveolar cells - Smell perception (mainly)       

114 11 JCHAIN Plasma cells - Humoral immune response (mainly)       

115 11 IGLC3 Plasma cells - Humoral immune response (mainly)       

116 11 IGHA2 Plasma cells - Humoral immune response (mainly)       

117 11 MZB1 Plasma cells - Humoral immune response (mainly)       

118 11 TXNDC5 Plasma cells - Humoral immune response (mainly)       

119 11 IGKV4-1 Plasma cells - Humoral immune response (mainly)       

120 11 SSR4 Plasma cells - Humoral immune response (mainly)       

121 12 SH2D6 Proximal tubular cells - Tubular reabsorption (mainly)   Cholangiocytes - Intestinal epithelial cell   

Intestinal epithelial cell 

122 12 LRMP Non-specific - Transcription regulation (mainly)   Cholangiocytes - Intestinal epithelial cell   

123 12 ANXA4 Pancreas - Digestion (mainly)   Cholangiocytes - Intestinal epithelial cell   

124 12 ALOX5AP Macrophages - Innate immune response (mainly)   Cholangiocytes or dendritic cells   

125 12 RASSF6 Intestinal epithelial cells - Unknown function (mainly)   Cholangiocytes - Intestinal epithelial cell   

126 12 RGS13 Granulocytes - Receptor signaling (mainly) Myeloid cell (lung)     

127 12 PBXIP1 Non-specific - Transcription regulation (mainly)       

128 12 SPTLC2 Smooth muscle cells - Unknown function (mainly)   Cholangiocytes - Intestinal epithelial cell   

129 12 BMX Adipocytes & Endothelial cells - Angiogenesis (mainly) Artery (lung) Cholangiocytes - Intestinal epithelial cell   

130 12 AZGP1 Glandular cells - Unknown function (mainly)       



 

Supplementary Table 7: Manually annotated clusters in sample 556 based on its top 10 cell-type-specific marker genes. 

# cluster gene Human Protein Atlas (HPA) Azimuth Panglaodb.se Supplementary literature or other comment Annotated cell type 

1 0 HLA-DRA Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (PBMC) 
Antigen-presenting cells (fetal development) 
Myeloid dendritic cell (lung) 

Dendritic cell 
B-cell   

Dendritic cell or B-cell 

2 0 CD74 Macrophages - Immune response (mainly) 

B-cell (PBMC) 
Dendritic cell (PBMC) 
Antigen-presenting cells (fetal development)     

3 0 VPREB3 B-cells - Immune response (mainly) B-cell (lung) B-cell   

4 0 HLA-DPA1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Myeloid dendritic cell (lung) 

Dendritic cell 
B-cell   

5 0 BANK1 B-cells - Immune response (mainly) 

B-cell (PBMC) 
B-cell (lung) 
B-cell (kidney) B-cell   

6 0 HLA-DPB1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development) 
Myeloid dendritic cell (lung) 

Dendritic cell 
B-cell   

7 0 CD79A B-cells - Immune response (mainly) 
B-cell (PBMC) 
B-cell (lung) B-cell   

8 0 HLA-DRB1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development) 

Dendritic cell 
B-cell   

9 0 MS4A1 B-cells - Immune response (mainly) 
B-cell (PBMC 
B-cell (lung) B-cell   

10 0 HLA-DQB1 Macrophages - Immune response (mainly) 
Dendritic cell (PBMC) 
Myeloid dendritic cell (lung) 

Dendritic cell 
B-cell   

11 1 FYB1 Non-specific - Mitochondria (mainly) CD4+ effector memory T-cell (PBMC)     

CD4+ effector memory T-cell 

12 1 IL7R Non-specific - Transcription regulation (mainly) 
CD8+ central memory T-cell (PBMC) 
CD4+ effector memory T-cell (lung)     

13 1 TRAC NK-cells & T-cells - Immune response (mainly) 
CD4+ effector memory T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC)     

14 1 TRBC2 Non-specific - Mitochondria (mainly)       

15 1 CD3D NK-cells & T-cells - Immune response (mainly) 
CD4+ effector memory T-cell (PBMC) 
CD8+ proliferating T-cell (PBMC)     

16 1 TRBC1 NK-cells & T-cells - Immune response (mainly)       

17 1 RGCC Non-specific - Mitochondria (mainly) Epithelial cell (pancreas)     

18 1 GIMAP7 NK-cells & T-cells - Immune response (mainly)       

19 1 GIMAP4 NK-cells & T-cells - Immune response (mainly)     
Membrane-expressed CD4+ T-helper cells  
(https://doi.org/10.1155/2010/268589) 

20 1 CD3E T-cells - T-cell receptor (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD4+ effector memory T-cell (lung) 
CD8+ T-cell (PBMC) 
CD8+ T-cell (lung) 
NK-cell (PBMC) 
NK-cell (lung)     

21 2 KLRB1 NK-cells & T-cells - Immune response (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD8+ central memory T-cell (PBMC) 
NK-cell (PBMC) 
CD4+ effector T-cell (bone marrow) 
CD8+ effector T-cell (bone marrow)     

CD8+ effector memory T-cell 



 

22 2 ID2 Monocytes - Immune response regulation (mainly) CD8+ naive T-cell (PBMC)     

23 2 IL32 Pancreas - Digestion (mainly) 

CD4+ T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
CD8+ effector memory cell (lung)     

24 2 S100A4 Monocytes & Neutrophils - Innate immune response (mainly) 

CD4+ cytotoxic T-cell (PBMC) 
CD4+ central memory T-cell (PBMC) 
CD4+ effector memory T-cell (PBMC) 
NK-cell (PBMC)     

25 2 CCL5 NK-cells & T-cells - Immune response (mainly) 

CD4+ T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ central memory T-cell (PBMC) 
NK-cell (lung)   

Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/s41467-019-12464-3) 

26 2 IL7R Non-specific - Transcription regulation (mainly) 
CD8+ central memory T-cell (PBMC) 
CD4+ effector memory T-cell (lung)     

27 2 CD2 Non-specific - Transcription regulation (mainly) 

CD8+ effector memory T-cell (PBMC) 
CD4+ effector memory T-cell (lung) 
CD8+ T-cell (lung) 
NK-cell (lung)     

28 2 TRBC1 NK-cells & T-cells - Immune response (mainly)       

29 2 CD3D NK-cells & T-cells - Immune response (mainly) 
CD4+ effector memory T-cell (PBMC) 
CD8+ proliferating T-cell (PBMC)     

30 2 ANXA1 Epithelial cell types - Mixed function (mainly) CD8+ central memory T-cell (PBMC)     

31 3 REG1A Pancreas - Digestion (mainly)       

Intestinal epithelial cell 

32 3 PHGR1 Enterocytes - Digestion (mainly)   Epithelial cells   

33 3 FABP1 Enterocytes - Digestion (mainly)   Epithelial cells   

34 3 IFI27 Pancreatic endocrine cells - Mixed function (mainly) Endothelial cell (motor cortex) 
Endothelial cells 
Epithelial cells   

35 3 ALDOB Proximal tubular cells - Tubular reabsorption (mainly)   Hepatocytes   

36 3 PRAP1 Enterocytes - Digestion (mainly)   
Epithelial cells 
Enterocytes   

37 3 PIGR Intestinal epithelial cells - Unknown function (mainly)   Epithelial cells   

38 3 KRT8 Pancreatic endocrine cells - Mixed function (mainly)   Epithelial cells   

39 3 SELENOP Macrophages - Innate immune response (mainly)   
Epithelial cells 
Hepatocytes    

40 3 LGALS4 Intestinal epithelial cells - Unknown function (mainly)   Epithelial cells    

41 4 IGHA1 Plasma cells - Humoral immune response (mainly)       

Plasma B-cell 

42 4 IGKC Plasma cells - Humoral immune response (mainly)       

43 4 IGLC2 Plasma cells - Humoral immune response (mainly)       

44 4 JCHAIN Plasma cells - Humoral immune response (mainly)       

45 4 IGLC3 Plasma cells - Humoral immune response (mainly)       

46 4 IGLC1 Alveolar cells - Smell perception (mainly)       

47 4 IGHA2 Plasma cells - Humoral immune response (mainly)       

48 4 IGHG3 Plasma cells - Humoral immune response (mainly)       

49 4 MZB1 Plasma cells - Humoral immune response (mainly)       

50 4 SSR4 Plasma cells - Humoral immune response (mainly)       

51 5 MT-ND3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

Mitochondrial gene-expressing cell 

52 5 MT-ATP6 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

53 5 MTRNR2L12 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

54 5 MTRNR2L8 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

55 5 MT-CYB Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 



 

56 5 MT-ND4 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

57 5 MT-CO3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

58 5 MTRNR2L1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

59 5 MT-ND1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

60 5 MT-ND5 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

61 6 MALAT1     Unknown   

Unknown cell type 

62 6 CEMIP2 Non-specific - Transcription regulation (mainly)       

63 6 TLE4 Spermatids - Unknown function (mainly)   Germ cells    

64 6 NABP1 Alveolar cells - Smell perception (mainly)   Germ cells    

65 6 HSPH1 Epithelial cell types - Mixed function (mainly)   Germ cells   

66 6 GLS Proximal tubular cells - Tubular reabsorption (mainly)       

67 6 SLC2A3 Adipocytes & Endothelial cells - Angiogenesis (mainly)   
Endothelial cells 
Fibroblasts   

68 6 AAK1 Photoreceptor cells - Phototransduction (mainly)   
T-cells 
NK-cells   

69 6 INTS6 Non-specific - Mitochondria (mainly)   
Germ cells 
Unknown   

70 6 RNF213 NK-cells & T-cells - Immune response (mainly)   

Unknown 
T-cells 
NK-cells    

71 7 GNLY NK-cells & T-cells - Immune response (mainly) 

NK-cells (PBMC) 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ effector memory cell (PBMC) 
NK-cell (lung)     

CD8+ effector memory T-cell 

72 7 CCL5 NK-cells & T-cells - Immune response (mainly) 

CD4+ T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ central memory T-cell (PBMC)  
NK-cell (Azimuth lung)   

Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/s41467-019-12464-3) 

73 7 NKG7 NK-cells & T-cells - Immune response (mainly) 

CD4+ cytotoxic T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
NK-cell (PBMC) 
NK-cell (lung) 
CD8+ T-cell (lung) 
CD8+ effector memory T-cell (lung)   

Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/s41467-019-12464-3) 

74 7 GZMA NK-cells & T-cells - Immune response (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ T-cell (lung)     

75 7 CCL4 NK-cells & T-cells - Immune response (mainly) 
CD8+ effector T-cell (bone marrow) 
NK proliferating cells (bone marrow)   

Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/s41467-019-12464-3) 

76 7 IFNG Non-specific - Mitochondria (mainly) CD8+ effector T-cell (bone marrow)     

77 7 GZMB NK-cells & T-cells - Immune response (mainly) 

NK-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
NK-cell (lung) 
CD8+ T-cell (lung)   

Differentiates CD8+ from CD4+ 
(https://doi.org/10.1038/s41467-019-12464-3) 

78 7 GZMH NK-cells & T-cells - Immune response (mainly) 

CD8+ effector memory T-cell (PBMC) 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ T-cell (lung)     

79 7 GZMK Non-specific - Transcription regulation (mainly) 

CD4+ T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
NK-cell (PBMC)     

80 7 KLRD1 NK-cells & T-cells - Immune response (mainly) 

NK-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
NK-cell (lung)     



 

81 8 HMGB2 Non-specific - Cell cycle regulation (mainly) CD4+ proliferating T-cell (lung)     

CD4+ proliferating T-cell 

82 8 STMN1 Non-specific - Cell cycle regulation (mainly) 
NK proliferating cell (PBMC)  
Proliferating macrophage (lung)     

83 8 MKI67 Non-specific - Cell cycle regulation (mainly) CD4+ proliferating T-cell (PBMC)     

84 8 CENPF Non-specific - Cell cycle regulation (mainly) 
CD4+ proliferating T-cell (PBMC  
CD4+ proligerating T-cell (lung)     

85 8 TCL1A B-cells - Immune response (mainly) Naive B-cell (PBMC)     

86 8 TOP2A Non-specific - Cell cycle regulation (mainly) 
CD4+ proliferating T-cell (PBMC) 
CD4+ proliferating T-cell (lung)     

87 8 LRMP Non-specific - Transcription regulation (mainly)   Cholangiocytes - Intestinal epithelial cell   

88 8 MEF2B Plasma cells - Humoral immune response (mainly)       

89 8 HIST1H4C Non-specific - Transcription regulation (mainly)       

90 8 HMGN2 Non-specific - Cell cycle regulation (mainly)       

91 9 VPREB3 B-cells - Immune response (mainly) B-cell (lung)     

B-cell 

92 9 ID3 Adipocytes & Endothelial cells - Angiogenesis (mainly)       

93 9 LINC01781 Not found B memory cell (PBMC) B-cells   

94 9 RPL4 Non-specific - Translation (mainly)       

95 9 SNHG29 Not found       

96 9 CD37 B-cells - Immune response (mainly) Naive B-cell (PBMC)     

97 9 IER5 Non-specific - Mitochondria (mainly)       

98 9 RPS23 Non-specific - Translation (mainly)       

99 9 KPNB1 Plasma cells - Humoral immune response (mainly)       

100 9 KLF2 Fibroblasts - ECM organization (mainly)       

101 10 S100A9 Monocytes & Neutrophils - Innate immune response (mainly) 

CD14+ monocyte (PBMC  
CD14+ monocyte (lung) 
Neutrophil (kidney)     

Monocyte 

102 10 CXCL8 Epithelial cell types - Mixed function (mainly) Classical monocyte (lung)     

103 10 LYZ Monocytes & Neutrophils - Innate immune response (mainly) 

Monocyte (PBMC) 
CD14+ monocyte (PBMC) 
Stomach-Goblet cells (fetal development)     

104 10 IL1B Macrophages - Immune response (mainly) 
CD14+ monocyte (PBMC) 
Classical monocyte (lung)     

105 10 S100A8 Monocytes & Neutrophils - Innate immune response (mainly) 

CD14+ monocyte (PBMC  
CD14+ monocyte (lung)  
Classical monocyte (lung)     

106 10 TIMP1 Fibroblasts - ECM organization (mainly)       

107 10 CST3 Macrophages - Immune response (mainly)       

108 10 C1QA Macrophages - Innate immune response (mainly) Macrophage (lung)     

109 10 C1QB Macrophages - Innate immune response (mainly) Macrophage (lung)     

110 10 TYROBP Macrophages - Innate immune response (mainly) 

Monocyte (PBMC) 
NK-cell (PBMC)  
Dendritic cell (lung)     

111 11 TRBC1 NK-cells & T-cells - Immune response (mainly)       

T-cell 

112 11 TRBC2 Non-specific - Mitochondria (mainly)       

113 11 TRAC NK-cells & T-cells - Immune response (mainly) 

CD4+ T-cell (PBMC) 
CD8+ central memory T-cell (PBMC) 
CD8+ effector memoryT-cell (PBMC) 
CD8+ proliferating T-cell (PBMC)     

114 11 CD3D NK-cells & T-cells - Immune response (mainly) 
CD4+ effector memory T-cell (PBMC) 
CD4+ effector memory T-cell (lung)     



 

CD8+ proliferating T-cell (PBMC 
CD8+ proliferating T-cell (lung) 

115 11 GIMAP7 NK-cells & T-cells - Immune response (mainly)       

116 11 CD3G NK-cells & T-cells - Immune response (mainly) 
CD4+ effector memory cell (PBMC) 
CD8+ proliferating T-cell (PBMC)     

117 11 CD3E T-cells - T-cell receptor (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD8+ T-cell (PBMC) 
NK-cell (PBMC) 
CD4+ effector memory T-cell (lung) 
CD8+ effector memory T-cell (lung)     

118 11 LDHB Non-specific - Basic cellular processes (mainly) 
CD4+ central memory T-cell (PBMC) 
CD8+ central memory T-cell (PBMC)     

119 11 CD2 Non-specific - Transcription regulation (mainly) 

CD8+ effector memory T-cell (PBMC) 
CD4+ effector memory T-cell (lung) 
CD8+ T-cell (lung) 
NK-cell (lung)     

120 11 RGCC Non-specific - Mitochondria (mainly) 
Endothelial cell (pancreas) 
Endothelial cell (lung)     

121 12 IGFBP7 Smooth muscle cells - ECM organization (mainly) 

Lymphatic or vascular endothelial cells (fetal 
development) 
Lymphatic or vascular endothelial cells (lung)   

Expressed in cancer-associated fibroblasts and 
tumor vessels  
(https://doi.org/10.1038/onc.2014.18) 

Fibroblast 

122 12 CXCL14 Fibroblasts - ECM organization (mainly) Intestine-Stromal cells (fetal development)     

123 12 CALD1 Smooth muscle cells - ECM organization (mainly) 

Smooth muscle cell (fetal development) 
Myofibroblast (lung) 
Pericyte (lung) 
Smooth muscle cell (lung)     

124 12 CFD Fibroblasts - ECM organization (mainly) Fibroblast (Azimuth lung)     

125 12 SPARCL1 Adipocytes & Endothelial cells - Angiogenesis (mainly) Bronchial epithelial vessel (lung)     

126 12 IGFBP5 Smooth muscle cells - ECM organization (mainly)       

127 12 DCN Fibroblasts - ECM organization (mainly) 
Stromal cell (fetal development) 
Fibroblast (lung)     

128 12 ADAMDEC1 Macrophages - Innate immune response (mainly)       

129 12 TAGLN Smooth muscle cells - ECM organization (mainly) 

Intestine-Smooth muscle cells (fetal 
development) 
Vascular smooth muscle cell (lung)     

130 12 A2M Adipocytes & Endothelial cells - Angiogenesis (mainly) Fibroblast (lung)     



 

Supplementary Table 8: Manually annotated clusters in sample 559 based on its top 10 cell-type-specific marker genes. 

# cluster gene Human Protein Atlas (HPA) Azimuth Panglaodb.se Supplementary literature or other comment Annotated cell type 

1 0 IGLC1 Alveolar cells - Smell perception (mainly)       

Plasma B-cell 

2 0 IGLC2 Plasma cells - Humoral immune response (mainly)       

3 0 IGLC3 Plasma cells - Humoral immune response (mainly)       

4 0 IGHA1 Plasma cells - Humoral immune response (mainly)       

5 0 JCHAIN Plasma cells - Humoral immune response (mainly)       

6 0 IGKC Plasma cells - Humoral immune response (mainly)       

7 0 IGHM Plasma cells - Humoral immune response (mainly)       

8 0 IGHG1 Plasma cells - Humoral immune response (mainly)       

9 0 IGHA2 Plasma cells - Humoral immune response (mainly)       

10 0 IGHGP Not found Plasma cells (kidney)     

11 1 SPINK4 Mucus-secreting cells - Mucin production (mainly)       

Intestinal goblet cell 

12 1 MUC2 Mucus-secreting cells - Mucin production (mainly)     
Classical marker of goblet cell  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

13 1 TFF3 Mucus-secreting cells - Mucin production (mainly)     
Classical marker of goblet cell  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

14 1 CENPF Non-specific - Cell cycle regulation (mainly)       

15 1 MUC5B Intestinal epithelial cells - Unknown function (mainly)     
Classical marker of goblet cell  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

16 1 MUC4 Respiratory epithelial cells - Mucosal defense (mainly)     
Classical marker of goblet cell  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

17 1 PLCG2 Non-specific - Mitochondria (mainly)       

18 1 MKI67 Non-specific - Cell cycle regulation (mainly)       

19 1 FCGBP Mucus-secreting cells - Mucin production (mainly)       

20 1 ELF3 Respiratory epithelial cells - Mucosal defense (mainly)       

21 2 PLCG2 Non-specific - Mitochondria (mainly)     Mitochondrial gene 

Mitochondrial gene-expressing cell 

22 2 MT-CO3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

23 2 MT-CO1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

24 2 MT-ATP6 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

25 2 MT-ND4 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

26 2 MT-CO2 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

27 2 MT-ATP8 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

28 2 MT-ND1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

29 2 MT-ND5 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

30 2 MT-CYB Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

31 3 CCL5 NK-cells & T-cells - Immune response (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ central memory T-cell (PBMC) 
NK-cell (lung)   

Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/onc.2014.18) 

CD4+ effector memory T-cell 32 3 CD3D NK-cells & T-cells - Immune response (mainly) 
CD4+ effector memory T-cell (PBMC) 
CD8+ proliferating T-cell (PBMC)     

33 3 GZMA NK-cells & T-cells - Immune response (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ T-cell (lung)     

34 3 LTB NK-cells & T-cells - Immune response (mainly) 

CD4+ central T-cell (PBMC) 
CD4+ effector memory T-cell (PBMC) 
CD8+ central memory T-cell (PBMC)     



 

35 3 PTPRC Non-specific - Transcription regulation (mainly) CD4+ effector memory T-cell (lung)     

36 3 TRBC1 NK-cells & T-cells - Immune response (mainly)       

37 3 IL7R Non-specific - Transcription regulation (mainly) 
CD8+ central memory T-cell (PBMC) 
CD4+ effector memory T-cell (lung)     

38 3 TRBC2 Non-specific - Mitochondria (mainly)       

39 3 IL32 Pancreas - Digestion (mainly) 

CD4+ cytotoxic T-cell (PBMC) 
CD4+ central memory T-cell (PBMC) 
CD4+ effector memory T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC)     

40 3 CD2 Non-specific - Transcription regulation (mainly) 

CD8+ effector memory T-cell (PBMC)  
CD4+ effector memory T-cell (lung) 
CD8+ T-cell (lung) 
NK-cell (lung)     

41 4 CXCL14 Fibroblasts - ECM organization (mainly) Intestine-Stromal cells (fetal development)     

Fibroblast 

42 4 RARRES2 Hepatocytes - Metabolism (mainly) Alveolar fibroblast (lung)     

43 4 DCN Fibroblasts - ECM organization (mainly) 
Stromal cells (fetal development) 
Fibroblast (lung)     

44 4 IGFBP5 Smooth muscle cells - ECM organization (mainly)       

45 4 LUM Fibroblasts - ECM organization (mainly) 
Stromal cells (bone marrow) 
Fibroblast (lung)     

46 4 COL3A1 Fibroblasts - ECM organization (mainly) 

Stromal cells (fetal development) 
Smooth muscle cells (fetal development) 
Myofibroblast (lung)     

47 4 MMP3 Fibroblasts - ECM organization (mainly)       

48 4 COL6A3 Fibroblasts - ECM organization (mainly) 
Smooth muscle cells (fetal development) 
Myofibroblast (lung)     

49 4 CFD Fibroblasts - ECM organization (mainly) Fibroblast (lung)     

50 4 COL1A2 Fibroblasts - ECM organization (mainly) 
Stromal cells (fetal development) 
Myofibroblast (lung)     

51 5 CLCA4 Intestinal epithelial cells - Unknown function (mainly)       

Intestinal epithelial cell 

52 5 CEACAM7 Intestinal epithelial cells - Unknown function (mainly)       

53 5 MT-ND2 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

54 5 DST Epithelial cell types - Mixed function (mainly)       

55 5 SLC26A3 Intestinal epithelial cells - Unknown function (mainly)       

56 5 MT-ND3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

57 5 MYO15B Intestinal epithelial cells - Unknown function (mainly)       

58 5 FABP1 Enterocytes - Digestion (mainly)     
Marker of colon enterocyte  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

59 5 MT-ND1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

60 5 MUC12 Intestinal epithelial cells - Unknown function (mainly)       

61 6 S100A9 Monocytes & Neutrophils - Innate immune response (mainly) 

CD14+ monocyte (PBMC) 
CD14+ monocyte (lung) 
Neutrophil (kidney)     

Myeloid cell 

62 6 HLA-DRA Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development) 
Myeloid dendritic cell (lung)     

63 6 LYZ Monocytes & Neutrophils - Innate immune response (mainly) 

Monocyte (PBMC) 
CD14+ monocyte (PBMC) 
Stomach-Goblet cells (fetal development)     



 

64 6 HLA-DPA1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Myeloid dendritic cell (lung)     

65 6 CD74 Macrophages - Immune response (mainly) 

B-cell (PBMC) 
Dendritic cell (PBMC) 
Antigen-presenting cells (fetal development)     

66 6 HLA-DPB1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development) 
Myeloid dendritic cell (lung)     

67 6 HLA-DRB1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development)     

68 6 TYROBP Macrophages - Innate immune response (mainly) 

Monocyte (PBMC) 
NK-cell (PBMC) 
Dendritic cell (lung)     

69 6 FTL Macrophages - Innate immune response (mainly) 
Myeloid cell (fetal development) 
Neutrophil (kidney)     

70 6 AIF1 Monocytes & Neutrophils - Innate immune response (mainly) 

Monocyte (PBMC) 
CD16+ monocyte (PBMC) 
CD16+ monocyte (lung)     

71 7 REG1A Pancreas - Digestion (mainly)       

Intestinal epithelial cell 

72 7 AGR2 Mucus-secreting cells - Mucin production (mainly)     
Marker of crypt-resident goblet cells  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

73 7 OLFM4 Intestinal epithelial cells - Unknown function (mainly)     
Marker of intestinal stem cells  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

74 7 TFF3 Mucus-secreting cells - Mucin production (mainly)     
Classical marker of goblet cell  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

75 7 LCN2 Respiratory epithelial cells - Mucosal defense (mainly) 
Mucous cell (lung) 
Goblet cell (lung)     

76 7 GPX2 Intestinal epithelial cells - Unknown function (mainly)       

77 7 RPL7 Non-specific - Translation (mainly)       

78 7 RPL8 Non-specific - Translation (mainly)       

79 7 TSPAN8 Enterocytes - Digestion (mainly)       

80 7 EPCAM Intestinal epithelial cells - Unknown function (mainly)       

81 8 FABP1 Enterocytes - Digestion (mainly)     
Marker of colon enterocyte  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

Intestinal enterocyte cell 

82 8 TFF1 Pancreatic endocrine cells - Mixed function (mainly)       

83 8 CEACAM7 Intestinal epithelial cells - Unknown function (mainly)       

84 8 PHGR1 Enterocytes - Digestion (mainly)       

85 8 CA4 Intestinal epithelial cells - Unknown function (mainly)       

86 8 CLCA4 Intestinal epithelial cells - Unknown function (mainly) Basal cell (lung)   
Marker of colon enterocyte  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

87 8 KRT19 Respiratory epithelial cells - Mucosal defense (mainly) 
Stomach-Squamos epithelial cells (fetal development) 
Basal cells (lung)     

88 8 GUCA2A Enterocytes - Digestion (mainly)       

89 8 TSPAN1 Intestinal epithelial cells - Unknown function (mainly)       

90 8 PIGR Intestinal epithelial cells - Unknown function (mainly)       

91 9 SPARCL1 Adipocytes & Endothelial cells - Angiogenesis (mainly) Bronchial epithelial vessel (lung)     

Vascular endothelial cell  
92 9 COL4A1 Smooth muscle cells - ECM organization (mainly) 

Vascular endothelial cell (fetal development) 
Pericyte (lung)     

93 9 PLVAP Adipocytes & Endothelial cells - Angiogenesis (mainly) Intestine-Vascular endothelial cells (fetal development)      



 

94 9 HSPG2 Granulosa cells - Unknown function (mainly) 
Vascular endothelial cells (fetal development) 
Endocardial cells (fetal development)     

95 9 FLT1 Syncytiotrophoblasts - Pregnancy hormone signaling (mainly) Vascular endothelial cell (fetal development)      

96 9 COL4A2 Smooth muscle cells - ECM organization (mainly) 
Vascular endothelial cell (fetal development) 
Pericyte (lung)     

97 9 IGFBP3 Fibroblasts - ECM organization (mainly) Stellate cells (fetal development)     

98 9 VWF Adipocytes & Endothelial cells - Angiogenesis (mainly) 
Lymphatic or vascular endothelial cells (fetal development) 
Bronchial vessel endothelial cell (lung)     

99 9 EGFL7 Adipocytes & Endothelial cells - Angiogenesis (mainly) 
Hematopoietic stem and progenitor cell (PBMC) 
Peritubular capillary endothelial cell (kidney)     

100 9 PECAM1 Adipocytes & Endothelial cells - Angiogenesis (mainly) Capillary endothelial cell (lung)     

101 10 RGS5 Smooth muscle cells - ECM organization (mainly) 

Sympathoblasts (fetal development) 
Chromaffin cells (fetal development) 
Smooth muscle cells (fetal development) 
Vascular smooth muscle cell (kidney)     

Vascular smooth muscle cell 

102 10 THY1 Fibroblasts - ECM organization (mainly) Vascular smooth muscle cell (Azimuth lung)     

103 10 SPARC Fibroblasts - ECM organization (mainly)       

104 10 IGFBP7 Smooth muscle cells - ECM organization (mainly) 
Vascular or lymphatic endothelial cells (fetal development) 
Lymphatic vessel cells (lung)     

105 10 COL1A1 Fibroblasts - ECM organization (mainly) 

Stromal cells (fetal development) 
Smooth muscle cells (fetal development) 
Myofibroblast (lung)     

106 10 TIMP1 Fibroblasts - ECM organization (mainly)       

107 10 CALD1 Smooth muscle cells - ECM organization (mainly) 

Smooth muscle cells (fetal development 
Smooth muscle cells (lung) 
Myofibroblast (lung)     

108 10 ACTA2 Smooth muscle cells - ECM organization (mainly) 

Intestine-Smooth muscle cell (fetal development) 
Smooth muscle cell (lung) 
Vascular associated smooth muscle cell (lung)     

109 10 COL1A2 Fibroblasts - ECM organization (mainly) 
Stromal cells (fetal development) 
Myofibroblast (lung)     

110 10 COL4A1 Smooth muscle cells - ECM organization (mainly) 
Vascular endothelial cell (fetal development) 
Pericyte (lung)     



 

Supplementary Table 9: Manually annotated clusters in sample 569 based on its top 10 cell-type-specific marker genes. 

# cluster gene Human Protein Atlas (HPA) Azimuth Panglaodb.se Supplementary literature or other comment Annotated cell type 

1 0 CCL5 NK-cells & T-cells - Immune response (mainly) 

CD4+ T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ central memory T-cell (PBMC) 
NK-cell (lung)   

Differentiates CD8+ from CD4+  
(https://doi.org/10.1038/s41467-019-12464-3) 

CD8+ effector memory T-cell 

2 0 IL7R Non-specific - Transcription regulation (mainly) 
CD8+ central memory T-cell (PBMC) 
CD4+ effector memory T-cell (lung)     

3 0 KLRB1 NK-cells & T-cells - Immune response (mainly) 

CD4+ effector memory T-cell (PBMC) 
CD8+ central memory T-cell (PBMC) 
NK-cell (PBMC) 
CD4+ T-cell (bone marrow) 
CD8+ effector T-cell (bone marrow)     

4 0 ID2 Monocytes - Immune response regulation (mainly) CD8+ naive T-cell (PBMC)     

5 0 CD3D NK-cells & T-cells - Immune response (mainly) 
CD4+ effector memory T-cell (PBMC) 
CD8+ proliferating T-cell (PBMC)     

6 0 FYB1 Non-specific - Mitochondria (mainly) CD4+ effector memory T-cell (PBMC)     

7 0 CD3G NK-cells & T-cells - Immune response (mainly) 
CD4+ effector memory cell (PBMC) 
CD8+ proliferating T-cell (PBMC)     

8 0 TRAC NK-cells & T-cells - Immune response (mainly) 

CD4+ central memory T-cell (PBMC) 
CD4+ effector memory T-cell (PBMC) 
CD4+ proliferating T-cell (PBMC) 
CD8+ central memory T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
CD8+ proliferating T-cell (PBMC)     

9 0 HSPA6 Epithelial cell types - Mixed function (mainly)       

10 0 TRBC1 NK-cells & T-cells - Immune response (mainly)       

11 1 IGKC Plasma cells - Humoral immune response (mainly)       

Plasma B-cell 

12 1 IGLC3 Plasma cells - Humoral immune response (mainly)       

13 1 JCHAIN Plasma cells - Humoral immune response (mainly)       

14 1 IGLC2 Plasma cells - Humoral immune response (mainly)       

15 1 IGLC1 Alveolar cells - Smell perception (mainly)       

16 1 IGHA1 Plasma cells - Humoral immune response (mainly)       

17 1 IGHA2 Plasma cells - Humoral immune response (mainly)       

18 1 MZB1 Plasma cells - Humoral immune response (mainly)       

19 1 SSR4 Plasma cells - Humoral immune response (mainly)       

20 1 DERL3 Plasma cells - Humoral immune response (mainly)       

21 2 HLA-DRA Macrophages - Immune response (mainly) 

Dendritic cell (PBMC)  
Myeloid cells 
Antigen-presenting cells (fetal development) 
Myeloid dendritic cell (lung)     

Dendritic cell or B-cell 

22 2 MS4A1 B-cells - Immune response (mainly) 
B-cell (PBMC 
B-cell (lung) B-cell   

23 2 CD74 Macrophages - Immune response (mainly) 

B-cell (PBMC) 
Dendritic cell (PBMC) 
Antigen-presenting cells (fetal development)     

24 2 HLA-DRB1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development) 

Dendritic cell 
B-cell   

25 2 HLA-DPA1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Myeloid dendritic cell (lung) 

Dendritic cell 
B-cell   

26 2 HLA-DPB1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development) 
Myeloid dendritic cell (lung) 

Dendritic cell 
B-cell   

27 2 VPREB3 B-cells - Immune response (mainly) B-cell (lung) B-cell   

28 2 BANK1 B-cells - Immune response (mainly) 

B-cell (PBMC) 
B-cell (lung) 
B-cell (kidney) B-cell   



 

29 2 HLA-DQA1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
B-cell (PBMC) 
Stomach-Myeloid cells (fetal development) 
Dendritic cell (lung) 
Myeloid dendritic cell (lung)     

30 2 CD37 B-cells - Immune response (mainly) Naive B-cell (PBMC)     

31 3 MT-ND1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

Mitochondrial gene-expressing cell 

32 3 MT-CO2 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

33 3 MT-CO1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

34 3 MT-ND2 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

35 3 MT-CYB Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

36 3 MT-CO3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

37 3 MT-ATP6 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

38 3 MT-ND4 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

39 3 MT-ND3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

40 3 MT-ND5 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

41 4 IGHA1 Plasma cells - Humoral immune response (mainly) 
Plasma cell (PBMC) 
Plasma cell (kidney)     

Unknown cell type 

42 4 IGHA2 Plasma cells - Humoral immune response (mainly) 
Plasmablast (PBMC) 
Memory B-cell (PBMC)     

43 4 BTG2 Non-specific - Mitochondria (mainly)       

44 4 XBP1 Glandular cells - Unknown function (mainly) Plasma cells (lung)     

45 4 PPP1R15A Non-specific - Mitochondria (mainly)       

46 4 JUN Non-specific - Mitochondria (mainly) Ductal cells (fetal development)     

47 4 SLC38A2 Non-specific - Mitochondria (mainly)       

48 4 SQSTM1 Epithelial cell types - Mixed function (mainly)       

49 4 MALAT1     Unknown   

50 4 GLS Proximal tubular cells - Tubular reabsorption (mainly)       

51 5 GZMA NK-cells & T-cells - Immune response (mainly) 

CD4+ effector memory T-cell 
CD4+ cytotoxic T-cell (PBMC) 
CD8+ T-cell (lung)     

T-cell 

52 5 S100A4 Monocytes & Neutrophils - Innate immune response (mainly) 

CD4+ cytotoxic (PBMC) 
CD4+ central memory (PBMC) 
CD4+ effector memory T-cell (PBMC) 
NK-cell (PBMC)     

53 5 CD3D NK-cells & T-cells - Immune response (mainly) 
CD4+ effector memory T-cell (PBMC) 
CD8+ proliferating T-cell (PBMC)     

54 5 IL32 Pancreas - Digestion (mainly) 

CD4+ T-cell (PBMC) 
CD8+ effector memory T-cell (PBMC) 
CD8+ effector memory cell (lung)     

55 5 TRBC2 Non-specific - Mitochondria (mainly)       

56 5 TNFRSF18 Non-specific - Transcription regulation (mainly)       

57 5 CD2 Non-specific - Transcription regulation (mainly) CD4+ effector memory T-cell (lung)     

58 5 CD3G NK-cells & T-cells - Immune response (mainly) 
CD4+ effector memory cell (PBMC) 
CD8+ proliferating T-cell (PBMC)     

59 5 ACTB Monocytes - Immune response regulation (mainly)       

60 5 CD7 NK-cells & T-cells - Immune response (mainly)       

61 6 CXCL14 Fibroblasts - ECM organization (mainly) Intestine-Stromal cells (fetal development)     

Vascular smooth muscle cell 

62 6 CALD1 Smooth muscle cells - ECM organization (mainly) 

Smooth muscle cells (fetal development) 
Smooth muscle cells (lung) 
Myofibroblast (lung)     

63 6 COL3A1 Fibroblasts - ECM organization (mainly) 

Stromal cells (fetal development) 
Smooth muscle cells (fetal development) 
Myofibroblast (lung)     

64 6 TAGLN Smooth muscle cells - ECM organization (mainly) 
Intestine-Smooth muscle cells (fetal development) 
Vascular smooth muscle cell (lung)     

65 6 IGFBP7 Smooth muscle cells - ECM organization (mainly) 
Lymphatic or vascular endothelial cells (fetal development) 
Lymphatic or vascular endothelial cells (lung)   

Is expressed in cancer-associated fibroblasts and tumor vessels  
(https://doi.org/10.1038/onc.2014.18) 

66 6 COL1A2 Fibroblasts - ECM organization (mainly) 
Stromal cells (fetal development) 
Myofibroblast (lung)     



 

67 6 IGFBP5 Smooth muscle cells - ECM organization (mainly)       

68 6 COL1A1 Fibroblasts - ECM organization (mainly) 

Stromal cells (fetal development) 
Smooth muscle cells (fetal development) 
Myofibroblast (lung)     

69 6 TIMP1 Fibroblasts - ECM organization (mainly)       

70 6 RARRES2 Hepatocytes - Metabolism (mainly) Alveolar fibroblast (lung)     

71 7 REG1A Pancreas - Digestion (mainly)       

Intestinal epithelial cell 

72 7 PIGR Intestinal epithelial cells - Unknown function (mainly)   Cholangiocytes or epithelial cells   

73 7 OLFM4 Intestinal epithelial cells - Unknown function (mainly)     
Marker of intestinal stem cells  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

74 7 AGR2 Mucus-secreting cells - Mucin production (mainly) 
Goblet cells (fetal development 
Goblet cells (lung)   

Marker of crypt-resident goblet cells  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

75 7 LCN2 Respiratory epithelial cells - Mucosal defense (mainly) 
Mucous cell (lung) 
Goblet cell (lung)     

76 7 PLA2G2A Fibroblasts - ECM organization (mainly) Epicardial fat cells (fetal development)     

77 7 REG1B Pancreas - Digestion (mainly)       

78 7 SPINK4 Mucus-secreting cells - Mucin production (mainly)       

79 7 DMBT1 Enterocytes - Digestion (mainly) Stomach-MUC13/DMBT1 positive cells (fetal development)     

80 7 TSPAN8 Enterocytes - Digestion (mainly) Basal cell (lung)     

81 8 CEACAM5 Intestinal epithelial cells - Unknown function (mainly)       

Intestinal epithelial cell 

82 8 TFF3 Mucus-secreting cells - Mucin production (mainly) Lymphatic vessel (lung)   
Classical marker of goblet cell  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

83 8 EPCAM Intestinal epithelial cells - Unknown function (mainly) 
Hematopoeitic stem and progenitor cell (bone marrow) 
Late erythroid (bone marrow)     

84 8 FXYD3 Intestinal epithelial cells - Unknown function (mainly)       

85 8 FABP1 Enterocytes - Digestion (mainly)   Cholangiocytes or epithelial cells   

86 8 OLFM4 Intestinal epithelial cells - Unknown function (mainly)     
Marker of intestinal stem cells  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

87 8 KRT18 Pancreas - Digestion (mainly)       

88 8 LGALS4 Intestinal epithelial cells - Unknown function (mainly)   Cholangiocytes or epithelial cells   

89 8 LGALS3 Intestinal epithelial cells - Unknown function (mainly) Intestinal epithelial cell (fetal development)     

90 8 KRT8 Pancreatic endocrine cells - Mixed function (mainly)   Cholangiocytes or epithelial cells   

91 9 MT-CO3 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

Intestinal epithelial cell 

92 9 SOX9 Squamous epithelial cells - Cornification (mainly)       

93 9 FABP1 Enterocytes - Digestion (mainly)   Cholangiocytes or epithelial cells   

94 9 ELF3 Respiratory epithelial cells - Mucosal defense (mainly) 
Stomach-Goblet cells (fetal development) 
Squamous epithelial cells (fetal development)     

95 9 MT-CO1 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

96 9 L1TD1 Cytotrophoblasts - Unknown function (mainly)       

97 9 KRT8 Pancreatic endocrine cells - Mixed function (mainly)   Cholangiocytes or epithelial cells   

98 9 MT-CO2 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

99 9 MT-ATP6 Cardiomyocytes - Muscle contraction (mainly)     Mitochondrial gene 

100 9 PHGR1 Enterocytes - Digestion (mainly) Stomach-MUC13/DMBT1 positive cells (fetal development)     

101 10 PLVAP Adipocytes & Endothelial cells - Angiogenesis (mainly) Intestine-Vascular endothelial cells (fetal development)      

Vascular endothelial cell 

102 10 SPARCL1 Adipocytes & Endothelial cells - Angiogenesis (mainly) Bronchial epithelial vessel (lung)     

103 10 COL4A1 Smooth muscle cells - ECM organization (mainly) 
Vascular endothelial cell (fetal development) 
Pericyte (lung)     

104 10 IGFBP3 Fibroblasts - ECM organization (mainly) Stellate cells (fetal development)     

105 10 HSPG2 Granulosa cells - Unknown function (mainly) 
Vascular endothelial cells (fetal development) 
Endocardial cells (fetal development)     

106 10 IGFBP7 Smooth muscle cells - ECM organization (mainly) 
Vascular endothelial cell (fetal development) 
Lymphatic vessel (lung)     

107 10 FLT1 Syncytiotrophoblasts - Pregnancy hormone signaling (mainly) Vascular endothelial cell (fetal development)      

108 10 VWF Adipocytes & Endothelial cells - Angiogenesis (mainly) 
Lymphatic or vascular endothelial cells (fetal development) 
Bronchial vessel endothelial cell (lung)     

109 10 PECAM1 Adipocytes & Endothelial cells - Angiogenesis (mainly) Capillary endothelial cell (lung)     

110 10 IFI27 Pancreatic endocrine cells - Mixed function (mainly) Endothelial cell (motor cortex) Endothelial cells, choangiocytes or epithelial cells   



 

111 11 FABP1 Enterocytes - Digestion (mainly)     
Marker of colon enterocyte  
(https://doi.org/10.1016/j.jcmgh.2022.02.007) 

Intestinal epithelial cell 

112 11 PHGR1 Enterocytes - Digestion (mainly) Stomach-MUC13/DMBT1 positive cells (fetal development) Cholangiocytes or epithelial cells   

113 11 LGALS4 Intestinal epithelial cells - Unknown function (mainly)   Cholangiocytes or epithelial cells   

114 11 MT1G Proximal tubular cells - Tubular reabsorption (mainly)       

115 11 C15orf48 Pancreatic endocrine cells - Mixed function (mainly) Classical monocyte (lung)     

116 11 TSPAN8 Enterocytes - Digestion (mainly) Basal cell (lung)     

117 11 LGALS3 Intestinal epithelial cells - Unknown function (mainly) Intestinal epithelial cell (fetal development)     

118 11 MT1E Proximal tubular cells - Tubular reabsorption (mainly)       

119 11 SRI Intestinal epithelial cells - Unknown function (mainly)       

120 11 CD24 Mammary glandular cells - Lactation (mainly)       

121 12 LYZ Monocytes & Neutrophils - Innate immune response (mainly) 

Monocyte (PBMC) 
CD14+ monocyte (PBMC) 
Stomach-Goblet cells (fetal development) Dendritic cells or monocytes   

Myeloid cell 

122 12 APOE Smooth muscle cells - Unknown function (mainly)       

123 12 C1QA Macrophages - Innate immune response (mainly) Macrophage (lung) Dendritic cells   

124 12 AIF1 Monocytes & Neutrophils - Innate immune response (mainly) 

Monocyte (PBMC) 
CD16+ monocyte (PBMC) 
CD16+ monocyte (lung) Dendritic cells   

125 12 HLA-DRB1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development) Dendritic cells   

126 12 C1QB Macrophages - Innate immune response (mainly) Macrophage (lung) Dendritic cells   

127 12 HLA-DRA Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Antigen-presenting cells (fetal development) 
Myeloid dendritic cell (lung) Dendritic cells   

128 12 HLA-DPA1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
Myeloid cells (fetal development) 
Myeloid dendritic cell (lung) Dendritic cells    

129 12 HLA-DQA1 Macrophages - Immune response (mainly) 

Dendritic cell (PBMC) 
B-cell (PBMC) 
Stomach-Myeloid cells (fetal development) 
Dendritic cell (lung) 
Myeloid dendritic cell (lung) Dendritic cells    

130 12 CTSD Macrophages - Innate immune response (mainly) CD14+ monocyte (PBMC) Dendritic cells   



 

Supplementary Table 10: Top 10 expressed cell-type-specific marker genes identified for 

each cluster in the integrated dataset. 

# p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 

1 5.5577360104809e-35 0.996435946114834 0.935 0.68 1.11154720209618e-31 B-cell KLF2 

2 3.94592222935048e-37 0.900613230895783 0.865 0.387 7.89184445870095e-34 B-cell MS4A1 

3 1.59403104172259e-50 0.846955564355128 0.978 0.569 3.18806208344518e-47 B-cell HLA-DPA1 

4 2.29881789388497e-31 0.839810267465021 0.87 0.46 4.59763578776993e-28 B-cell CD79A 

5 2.4398546266429e-31 0.795144627645023 0.973 0.803 4.8797092532858e-28 B-cell HSPD1 

6 1.24198572779814e-29 0.764971051050715 0.973 0.847 2.48397145559629e-26 B-cell DUSP1 

7 2.33488277991728e-22 0.759813039730757 0.93 0.763 4.66976555983456e-19 B-cell ID3 

8 1.53848022757692e-46 0.711566478652121 0.897 0.375 3.07696045515384e-43 B-cell VPREB3 

9 3.49179055420791e-26 0.666711641239115 0.946 0.652 6.98358110841582e-23 B-cell CD52 

10 9.13132644853588e-58 0.65021593469735 0.93 0.436 1.82626528970718e-54 B-cell PHACTR1 

11 0 1.86554296924995 0.97 0.571 0 CD4_EM_T IL7R 

12 0 1.60693656955151 0.998 0.61 0 CD4_EM_T KLRB1 

13 0 1.5469605959572 0.97 0.575 0 CD4_EM_T CD3D 

14 0 1.53820521554124 0.938 0.602 0 CD4_EM_T TRAC 

15 0 1.53807753905134 0.834 0.527 0 CD4_EM_T TRBC2 

16 0 1.43139737021653 0.945 0.585 0 CD4_EM_T CD3G 

17 0 1.38952867874797 0.796 0.515 0 CD4_EM_T TRBC1 

18 0 1.36904420934468 0.983 0.812 0 CD4_EM_T FOS 

19 0 1.31234992150082 0.868 0.52 0 CD4_EM_T GIMAP7 

20 0 1.21752943051763 0.958 0.598 0 CD4_EM_T SRGN 

21 9.23352809196374e-123 1.94246350623607 0.822 0.42 1.84670561839275e-119 CD4_P_T MKI67 

22 3.08990918033407e-119 1.69569388873018 0.824 0.341 6.17981836066813e-116 CD4_P_T CENPF 

23 3.08504797459573e-157 1.65618019054618 0.923 0.439 6.17009594919147e-154 CD4_P_T STMN1 

24 2.23146206882805e-126 1.64365747659448 0.824 0.413 4.46292413765611e-123 CD4_P_T TOP2A 

25 6.56534944553024e-105 1.62429166436307 0.899 0.504 1.31306988910605e-101 CD4_P_T HMGB2 

26 1.27163261130236e-124 1.6177781455562 0.978 0.636 2.54326522260473e-121 CD4_P_T CEACAM5 

27 3.0182258352702e-109 1.49707698762823 0.955 0.614 6.0364516705404e-106 CD4_P_T EPCAM 

28 9.80078366842919e-105 1.44766234361236 0.963 0.697 1.96015673368584e-101 CD4_P_T H2AFZ 

29 1.59614031540028e-109 1.36218758933709 0.917 0.523 3.19228063080057e-106 CD4_P_T TUBB 

30 6.11735704237928e-69 1.34288107462466 0.724 0.201 1.22347140847586e-65 CD4_P_T ASPM 

31 0 3.02467482007889 0.71 0.636 0 CD8_EM_T CCL5 

32 4.18342004100914e-86 2.18834440214203 0.48 0.509 8.36684008201828e-83 CD8_EM_T CCL4 

33 0 1.88007394355982 0.775 0.659 0 CD8_EM_T KLRB1 

34 3.04423053193186e-34 1.81313503152468 0.483 0.568 6.08846106386372e-31 CD8_EM_T IFNG 

35 9.69446919488298e-97 1.81256422906357 0.508 0.574 1.9388938389766e-93 CD8_EM_T GZMA 

36 0 1.68187260683061 0.837 0.612 0 CD8_EM_T CD3D 

37 0 1.63096354325159 0.783 0.616 0 CD8_EM_T IL7R 

38 0 1.59497756047185 0.741 0.642 0 CD8_EM_T CD2 

39 4.04868489608353e-197 1.58672660403432 0.609 0.554 8.09736979216705e-194 CD8_EM_T TRBC1 

40 0 1.5084744510053 0.726 0.632 0 CD8_EM_T CD3G 

41 0 2.96587367445765 0.963 0.424 0 Dendritic or B-cell HLA-DRA 

42 0 2.55904014181327 0.847 0.299 0 Dendritic or B-cell MS4A1 

43 0 2.36036407812434 0.932 0.395 0 Dendritic or B-cell HLA-DRB1 

44 0 2.11824812593022 0.92 0.501 0 Dendritic or B-cell HLA-DPA1 

45 0 1.99826190387037 0.872 0.405 0 Dendritic or B-cell HLA-DPB1 

46 0 1.95469265649303 0.877 0.643 0 Dendritic or B-cell KLF2 

47 0 1.91370144609718 0.778 0.299 0 Dendritic or B-cell VPREB3 

48 0 1.88075266096785 0.813 0.393 0 Dendritic or B-cell CD79A 

49 0 1.79379022320489 0.824 0.462 0 Dendritic or B-cell HLA-DQA1 

50 0 1.40188337482887 0.783 0.479 0 Dendritic or B-cell HLA-DQB1 

51 0 4.81070367924788 0.939 0.44 0 Fibroblast CXCL14 

52 0 4.10986701227108 0.958 0.385 0 Fibroblast COL3A1 

53 0 4.03359393452223 0.987 0.39 0 Fibroblast CALD1 

54 0 3.9866866862772 0.952 0.326 0 Fibroblast COL1A2 

55 0 3.77688833034442 0.97 0.344 0 Fibroblast RARRES2 

56 3.40929491818435e-166 3.74973490569558 0.814 0.386 6.8185898363687e-163 Fibroblast LUM 

57 1.08076907765694e-237 3.74262073607613 0.877 0.281 2.16153815531387e-234 Fibroblast IGFBP5 

58 0 3.71753604642614 0.982 0.439 0 Fibroblast IGFBP7 

59 0 3.69808689840023 0.935 0.405 0 Fibroblast COL1A1 

60 5.22326635295981e-182 3.58495819755064 0.826 0.242 1.04465327059196e-178 Fibroblast DCN 

61 2.53300143300428e-166 3.77650588053881 0.987 0.661 5.06600286600856e-163 Intestinal enterocyte FABP1 

62 3.63883798273329e-158 3.31323429058953 0.98 0.516 7.27767596546659e-155 Intestinal enterocyte PHGR1 



 

63 2.02504351040697e-160 3.03464242314781 0.99 0.604 4.05008702081394e-157 Intestinal enterocyte KRT19 

64 6.86087540058614e-135 2.76845599546363 0.934 0.406 1.37217508011723e-131 Intestinal enterocyte KRT20 

65 3.43681404888244e-156 2.73274323337295 0.997 0.586 6.87362809776488e-153 Intestinal enterocyte KRT8 

66 1.0535378941605e-148 2.65529878833842 0.99 0.715 2.10707578832099e-145 Intestinal enterocyte LGALS3 

67 6.09913100367696e-149 2.63552470785492 0.997 0.803 1.21982620073539e-145 Intestinal enterocyte S100A6 

68 1.53837780650731e-140 2.62433210146743 0.98 0.639 3.07675561301461e-137 Intestinal enterocyte CEACAM5 

69 1.2226847729111e-135 2.52424888438844 0.94 0.43 2.44536954582219e-132 Intestinal enterocyte TSPAN1 

70 1.14426947563516e-141 2.46323011091727 0.99 0.63 2.28853895127032e-138 Intestinal enterocyte PIGR 

71 0 3.25171560953615 0.959 0.592 0 Intestinal epithelial PIGR 

72 0 3.12872452734832 0.863 0.639 0 Intestinal epithelial FABP1 

73 0 3.12727062412888 0.918 0.583 0 Intestinal epithelial EPCAM 

74 0 3.12698366920457 0.958 0.628 0 Intestinal epithelial LGALS4 

75 0 3.11231934739894 0.897 0.61 0 Intestinal epithelial CEACAM5 

76 0 2.92841028015244 0.916 0.577 0 Intestinal epithelial AGR2 

77 0 2.92835908338668 0.812 0.567 0 Intestinal epithelial TFF3 

78 0 2.90616051766875 0.911 0.573 0 Intestinal epithelial TSPAN8 

79 0 2.85687136420903 0.78 0.601 0 Intestinal epithelial OLFM4 

80 0 2.72537733788794 0.932 0.547 0 Intestinal epithelial KRT8 

81 1.92027650602407e-12 2.15912661010369 0.411 0.285 3.84055301204814e-09 Intestinal goblet SPINK4 

82 1.55438695347356e-08 2.03190509407752 0.432 0.336 3.10877390694711e-05 Intestinal goblet MUC2 

83 2.73329355554356e-208 1.73800881438483 0.958 0.555 5.46658711108712e-205 Intestinal goblet ELF3 

84 7.42199490669518e-219 1.71996386090657 1 0.996 1.48439898133904e-215 Intestinal goblet MT-CO3 

85 1.77645019139611e-76 1.62104982012098 0.798 0.59 3.55290038279221e-73 Intestinal goblet TFF3 

86 4.2806002304405e-170 1.53027916430263 0.941 0.625 8.56120046088099e-167 Intestinal goblet PIGR 

87 2.51064108980983e-194 1.52359063520726 0.995 0.989 5.02128217961967e-191 Intestinal goblet MT-ND4 

88 1.90470307802877e-192 1.48407528992806 0.998 0.995 3.80940615605754e-189 Intestinal goblet MT-CO1 

89 1.54840556343501e-133 1.45933781743717 0.876 0.469 3.09681112687001e-130 Intestinal goblet KRT18 

90 2.58027783195161e-191 1.44655503905425 1 0.996 5.16055566390321e-188 Intestinal goblet MT-CO2 

91 3.12671880277615e-52 4.72139276757755 0.86 0.334 6.2534376055523e-49 Monocyte LYZ 

92 3.95569297438669e-41 4.59600743635357 0.86 0.332 7.91138594877338e-38 Monocyte APOE 

93 4.79407846051166e-11 3.95565702626364 0.647 0.283 9.58815692102333e-08 Monocyte CXCL8 

94 1.29921161171567e-53 3.73631733237577 0.86 0.264 2.59842322343133e-50 Monocyte C1QA 

95 6.04628513278047e-36 3.67174241672702 0.747 0.194 1.20925702655609e-32 Monocyte C1QB 

96 1.43728788722754e-45 3.656286261915 0.833 0.249 2.87457577445507e-42 Monocyte S100A9 

97 3.87667076028938e-32 3.49808609166163 0.753 0.289 7.75334152057876e-29 Monocyte AIF1 

98 1.74845042461976e-63 3.35601407672422 0.927 0.436 3.49690084923952e-60 Monocyte FCER1G 

99 4.07497227159806e-33 3.31047714030176 0.787 0.381 8.14994454319611e-30 Monocyte TYROBP 

100 8.28642436859483e-13 3.28488744880362 0.653 0.094 1.65728487371897e-09 Monocyte IL1B 

101 0 2.51017142649539 1 0.983 0 MT MT-ND1 

102 0 2.37905182409657 1 0.964 0 MT MT-ND2 

103 0 2.36631932872781 1 0.996 0 MT MT-CO3 

104 0 2.32967929128179 1 0.996 0 MT MT-CO2 

105 0 2.24431378621784 1 0.994 0 MT MT-CO1 

106 0 2.23838812901709 1 0.988 0 MT MT-ND4 

107 0 1.31239728064642 0.907 0.532 0 MT ELF3 

108 0 1.02170731566387 0.776 0.463 0 MT AC103702.2 

109 1.1124259993099e-265 0.955162509827864 0.882 0.725 2.2248519986198e-262 MT SOX4 

110 6.63227240337852e-265 0.916514899390364 0.702 0.445 1.3264544806757e-261 MT MUC4 

111 6.65714406040975e-21 4.06358417034459 0.588 0.332 1.33142881208195e-17 Myeloid LYZ 

112 1.23005474645413e-104 3.32840417688972 0.868 0.516 2.46010949290827e-101 Myeloid HLA-DQA1 

113 0.000183988940907665 3.17104672653129 0.336 0.161 0.36797788181533 Myeloid SPP1 

114 9.4182742397084e-80 3.16112095507646 0.82 0.479 1.88365484794168e-76 Myeloid HLA-DRB1 

115 1.11973374698121e-28 3.15568810157338 0.485 0.263 2.23946749396242e-25 Myeloid C1QA 

116 9.79684744656628e-101 3.10560878330259 0.899 0.565 1.95936948931326e-97 Myeloid HLA-DPA1 

117 1.04448525623566e-69 3.09173341320345 0.781 0.478 2.08897051247131e-66 Myeloid HLA-DPB1 

118 2.43160033857019e-106 3.06347365799398 0.886 0.507 4.86320067714037e-103 Myeloid HLA-DRA 

119 4.46216142433095e-34 2.90825243240973 0.594 0.286 8.9243228486619e-31 Myeloid AIF1 

120 1.38277895809276e-26 2.80626503581838 0.816 0.645 2.76555791618553e-23 Myeloid CTSD 

121 1.00318725714639e-83 5.75579055775936 0.68 0.668 2.00637451429279e-80 Plasma B-cell IGLC2 

122 0 5.72994893687575 0.985 0.913 0 Plasma B-cell IGKC 

123 0 5.58935838228394 0.994 0.741 0 Plasma B-cell JCHAIN 

124 1.63962384895331e-31 5.5885964720522 0.612 0.639 3.27924769790662e-28 Plasma B-cell IGLC3 

125 0 5.53911875377749 0.873 0.441 0 Plasma B-cell IGLC1 

126 0 5.15754195743015 0.992 0.86 0 Plasma B-cell IGHA1 

127 0 4.69422498199663 0.903 0.653 0 Plasma B-cell IGHA2 

128 1.2051911834963e-09 4.20036478284454 0.42 0.461 2.41038236699261e-06 Plasma B-cell IGHG1 

129 1.30731774944494e-13 3.72056069358559 0.279 0.414 2.61463549888988e-10 Plasma B-cell IGHGP 



 

130 0 3.70205587188969 0.988 0.567 0 Plasma B-cell MZB1 

131 1.10109967700586e-29 4.96278550685082 1 0.153 2.20219935401172e-26 Smooth muscle RGS5 

132 1.10881968002976e-27 4.58097586995537 1 0.454 2.21763936005952e-24 Smooth muscle IGFBP7 

133 1.45233716862105e-27 4.20535612449817 1 0.406 2.9046743372421e-24 Smooth muscle CALD1 

134 6.15108326762987e-28 4.113067374549 1 0.495 1.23021665352597e-24 Smooth muscle MGP 

135 1.43379378720324e-27 3.98226937487447 1 0.483 2.86758757440649e-24 Smooth muscle ACTA2 

136 2.19335176592187e-24 3.81648588889668 0.976 0.415 4.38670353184374e-21 Smooth muscle TAGLN 

137 8.60933184885635e-28 3.63403251452961 1 0.353 1.72186636977127e-24 Smooth muscle MYL9 

138 7.72554472538298e-25 3.52574963901268 0.976 0.342 1.5451089450766e-21 Smooth muscle COL4A1 

139 2.36033680817845e-27 3.51807275446319 1 0.45 4.72067361635691e-24 Smooth muscle C11orf96 

140 8.55974475598098e-28 3.46886134563415 1 0.49 1.7119489511962e-24 Smooth muscle ADIRF 

141 2.86482610300301e-11 1.89150971834611 0.49 0.568 5.72965220600602e-08 T-cell GZMA 

142 9.03783569719231e-161 1.83671762253201 0.875 0.633 1.80756713943846e-157 T-cell CD3D 

143 5.60133470888849e-139 1.78316248498142 0.871 0.646 1.1202669417777e-135 T-cell S100A4 

144 0.00936650785605324 1.69136526079055 0.331 0.511 1 T-cell IL17A 

145 5.91249239387696e-106 1.62445771664907 0.786 0.65 1.18249847877539e-102 T-cell CD2 

146 3.27227561899048e-94 1.56329796523075 0.746 0.572 6.54455123798097e-91 T-cell TRBC2 

147 2.25704161563916e-50 1.54858505560029 0.621 0.559 4.51408323127833e-47 T-cell TRBC1 

148 3.28644920878662e-97 1.52735109331089 0.777 0.64 6.57289841757324e-94 T-cell CD3G 

149 1.64089069133169e-127 1.52695191763789 0.847 0.651 3.28178138266339e-124 T-cell TRAC 

150 2.36560378611126e-42 1.45961094129109 0.548 0.467 4.73120757222251e-39 T-cell CD7 

151 7.22113849916778e-09 1.54176251722609 0.748 0.879 1.44422769983356e-05 Unknown IGHA1 

152 3.10199510073198e-22 1.11727945558532 0.39 0.401 6.20399020146397e-19 Unknown IGHGP 

153 9.44256258531742e-05 1.05755302892704 0.475 0.55 0.188851251706348 Unknown XBP1 

154 5.85030369611448e-31 1.00060462049001 0.31 0.604 1.1700607392229e-27 Unknown CCDC144A 

155 5.86683417080393e-07 0.976482825361853 0.251 0.353 0.00117336683416079 Unknown IGHG2 

156 7.02518907634328e-10 0.962968539061084 0.416 0.459 1.40503781526866e-06 Unknown IGHG1 

157 3.52718732273558e-07 0.909380778469833 0.377 0.476 0.000705437464547115 Unknown IGHG3 

158 0.00449281262785531 0.886989091864964 0.539 0.631 1 Unknown RRBP1 

159 1.82185636678404e-06 0.82817188374692 0.451 0.526 0.00364371273356808 Unknown JSRP1 

160 2.84547334999246e-17 0.787724399446066 0.657 0.895 5.69094669998492e-14 Unknown HSPB1 

161 9.64115859732082e-194 4.16386100316324 0.847 0.343 1.92823171946416e-190 Vascular endothelial PLVAP 

162 2.004295783419e-162 4.15117393549922 0.863 0.545 4.008591566838e-159 Vascular endothelial SPARCL1 

163 9.0303541465262e-211 3.94719843306475 0.914 0.333 1.80607082930524e-207 Vascular endothelial COL4A1 

164 1.9973155887113e-179 3.4730216300525 0.874 0.481 3.9946311774226e-176 Vascular endothelial HSPG2 

165 1.25257296522927e-218 3.47050241861554 0.96 0.445 2.50514593045855e-215 Vascular endothelial IGFBP7 

166 8.93194549802638e-175 3.43531574404722 0.907 0.471 1.78638909960528e-171 Vascular endothelial IFI27 

167 1.1255750166463e-157 3.37011818035176 0.833 0.365 2.2511500332926e-154 Vascular endothelial PECAM1 

168 1.69604897539334e-92 3.32881246672951 0.73 0.454 3.39209795078668e-89 Vascular endothelial FLT1 

169 2.9491165293433e-51 3.21562377102103 0.635 0.454 5.8982330586866e-48 Vascular endothelial IGFBP3 

170 1.00744085557873e-152 3.15986049890305 0.83 0.395 2.01488171115746e-149 Vascular endothelial COL4A2 

171 1.24252136329454e-305 4.28938264763799 0.965 0.442 2.48504272658907e-302 Vascular smooth muscle IGFBP7 

172 0 4.15907804071485 0.973 0.394 0 Vascular smooth muscle CALD1 

173 5.24760633009876e-39 4.03559430052531 0.508 0.453 1.04952126601975e-35 Vascular smooth muscle CXCL14 

174 8.13806220366876e-173 4.01212213622026 0.738 0.409 1.62761244073375e-169 Vascular smooth muscle TAGLN 

175 5.59767825187436e-146 3.86281701093029 0.459 0.148 1.11953565037487e-142 Vascular smooth muscle RGS5 

176 1.00439123949978e-244 3.79838953809464 0.863 0.39 2.00878247899957e-241 Vascular smooth muscle COL3A1 

177 2.89515603565704e-248 3.67212507168441 0.852 0.331 5.79031207131408e-245 Vascular smooth muscle COL1A2 

178 1.0076248639121e-180 3.63403927743572 0.765 0.443 2.01524972782419e-177 Vascular smooth muscle C11orf96 

179 4.02832550606806e-119 3.61895486818913 0.67 0.479 8.05665101213612e-116 Vascular smooth muscle ACTA2 

180 8.45234049797074e-228 3.60975390539386 0.893 0.589 1.69046809959415e-224 Vascular smooth muscle TIMP1 

 

  



 

Supplementary Table 11: Top 10 expressed cell-type-specific marker genes identified for 

each cluster in the stromal cell type group of the integrated dataset. 

# p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 

1 8.24803802898859e-73 3.31482708954221 0.848 0.485 1.64960760579772e-69 0 RGS5 

2 4.38889999365778e-07 2.8464152149164 0.548 0.418 0.000877779998731557 0 CCL19 

3 2.09353139288206e-75 2.79817651513196 0.805 0.399 4.18706278576411e-72 0 NDUFA4L2 

4 1.69364750164853e-95 2.61630961262554 0.977 0.704 3.38729500329705e-92 0 MGP 

5 4.2393236575153e-80 2.55551952750451 0.921 0.58 8.4786473150306e-77 0 ADIRF 

6 7.13089747362669e-72 2.46731309353597 0.894 0.62 1.42617949472534e-68 0 CRIP1 

7 6.79086925489374e-87 2.26081487646343 0.901 0.613 1.35817385097875e-83 0 MCAM 

8 3.78375767697376e-93 2.17725319162662 0.884 0.405 7.56751535394751e-90 0 NOTCH3 

9 1.03518691977802e-61 2.03851448076243 0.858 0.584 2.07037383955605e-58 0 CSRP2 

10 2.30846157851043e-71 1.94961832784958 0.947 0.686 4.61692315702086e-68 0 SOD3 

11 3.99199667522722e-16 2.2871838165971 0.667 0.417 7.98399335045444e-13 1 MMP3 

12 2.90552210604396e-89 2.26640404605111 0.915 0.483 5.81104421208792e-86 1 CTHRC1 

13 8.48503677074342e-80 1.9263087545181 0.982 0.513 1.69700735414868e-76 1 LUM 

14 8.92098198396217e-43 1.85535021438247 0.73 0.327 1.78419639679243e-39 1 APOD 

15 5.33022261161277e-35 1.85479897001601 0.812 0.491 1.06604452232255e-31 1 MMP11 

16 3.80235678490056e-34 1.77221930603538 0.975 0.841 7.60471356980113e-31 1 COL1A1 

17 2.55502455085869e-75 1.57688486170167 0.837 0.311 5.11004910171737e-72 1 GREM1 

18 7.80705044427652e-70 1.49077005413075 0.989 0.58 1.5614100888553e-66 1 DCN 

19 2.32492066177109e-40 1.46933248744092 0.993 0.885 4.64984132354218e-37 1 COL1A2 

20 9.53799433213864e-46 1.36920055332138 0.734 0.314 1.90759886642773e-42 1 C3 

21 2.44108102989048e-09 4.386779664977 0.76 0.914 4.88216205978096e-06 2 IGKC 

22 1.14756456738752e-05 4.30181978568145 0.432 0.672 0.0229512913477503 2 IGLC3 

23 5.724359342951e-07 2.71666648028644 0.384 0.295 0.0011448718685902 2 IGHG1 

24 0.00293997626760181 2.66269977452309 0.568 0.617 1 2 IGHA2 

25 1.1186633911676e-11 2.30683639775677 0.157 0.396 2.23732678233519e-08 2 IGHM 

26 4.6705856000254e-07 2.19683079340044 0.341 0.603 0.000934117120005079 2 IGLC2 

27 5.54549325285951e-31 1.78427279490718 0.996 0.993 1.1090986505719e-27 2 MT-ND1 

28 1.4642581837222e-32 1.73814433260441 1 1 2.92851636744439e-29 2 MT-CO3 

29 7.72895791902292e-39 1.70281242005084 0.991 0.982 1.54579158380458e-35 2 MT-ND2 

30 4.97355737855063e-06 1.68156009316208 0.41 0.374 0.00994711475710126 2 PIGR 

31 4.69472538318075e-89 2.70048817148626 0.972 0.538 9.38945076636151e-86 3 F3 

32 3.81811809219812e-80 2.62358950521226 0.897 0.477 7.63623618439624e-77 3 ALKAL2 

33 1.66302412754921e-75 2.43178662915539 1 0.7 3.32604825509842e-72 3 CXCL14 

34 6.20059572585592e-72 2.39197801650368 0.85 0.345 1.24011914517118e-68 3 HSD17B2 

35 7.13825706416449e-68 2.379020468481 0.874 0.376 1.4276514128329e-64 3 NRG1 

36 6.29746068994379e-78 2.37288167636241 0.776 0.203 1.25949213798876e-74 3 PAPPA2 

37 5.97459049529668e-94 2.35964885225114 0.991 0.509 1.19491809905934e-90 3 PDGFRA 

38 1.29504162203197e-72 2.28504804151887 0.958 0.621 2.59008324406395e-69 3 PLAT 

39 3.84921301724526e-73 2.16044324358139 0.85 0.403 7.69842603449052e-70 3 PDGFD 

40 8.54577896555905e-69 2.11865651112858 0.864 0.485 1.70915579311181e-65 3 BMP5 

41 1.15430340422757e-75 4.0928043964449 0.969 0.357 2.30860680845514e-72 4 HHIP 

42 1.77427189963444e-61 3.08879490088283 1 0.574 3.54854379926888e-58 4 MYH11 

43 4.11975553756243e-57 2.54164046946809 0.923 0.5 8.23951107512486e-54 4 NPNT 

44 6.31439668153984e-43 2.36288171671209 0.885 0.534 1.26287933630797e-39 4 ACTG2 

45 6.82491170144655e-53 2.19524237727431 0.992 0.715 1.36498234028931e-49 4 MYLK 

46 5.057568022086e-52 2.03837229780226 1 0.817 1.0115136044172e-48 4 LPP 

47 1.92269611550291e-28 2.01016177391155 0.738 0.381 3.84539223100583e-25 4 MFAP5 

48 1.58760463472037e-07 1.94843666113894 0.215 0.368 0.000317520926944075 4 IGHM 

49 5.20649677477352e-52 1.92486022756019 0.915 0.513 1.0412993549547e-48 4 PLN 

50 4.10002778748364e-34 1.80668172771251 0.962 0.779 8.20005557496727e-31 4 FLNA 

51 2.97327947719934e-51 4.7260691453686 0.914 0.312 5.94655895439868e-48 5 CCL13 

52 2.78314997222092e-30 4.13667213281186 0.8 0.277 5.56629994444185e-27 5 CCL11 

53 1.06896458903868e-52 3.71775659430517 0.962 0.409 2.13792917807736e-49 5 TFPI2 

54 6.95086028949104e-53 3.14315381421059 0.981 0.527 1.39017205789821e-49 5 ADAMDEC1 

55 5.59932523781442e-49 2.71784928206614 0.99 0.581 1.11986504756288e-45 5 CFD 

56 7.80306974745108e-42 2.52142201940211 0.905 0.368 1.56061394949022e-38 5 ADH1B 



 

57 5.69419402919265e-32 2.38298309999147 0.895 0.524 1.13883880583853e-28 5 CCL2 

58 3.9211177682823e-31 2.25612901054906 0.886 0.357 7.8422355365646e-28 5 PTGDS 

59 5.2991906253375e-24 2.18449263524503 0.886 0.683 1.0598381250675e-20 5 APOE 

60 5.46485381120368e-49 2.16385381981828 0.905 0.324 1.09297076224074e-45 5 HAPLN1 

 

  



 

Supplementary Table 12: Top 10 expressed cell-type-specific marker genes identified for 

each cluster in the endothelial cell type group of the integrated dataset. 

# p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 

1 0.0014196053140049 2.57011544191584 0.819 0.894 1 0 IGKC 

2 3.79772087555401e-07 1.6020391631515 0.331 0.158 0.000759544175110802 0 TPM2 

3 4.57784921855912e-27 1.58797825513627 1 0.993 9.15569843711823e-24 0 MT-CO3 

4 3.4917551980183e-22 1.50486685153108 1 0.99 6.9835103960366e-19 0 MT-CO1 

5 1.50303146193707e-25 1.50010858833375 0.992 0.983 3.00606292387413e-22 0 MT-ND1 

6 9.93674790605183e-24 1.4357276977966 1 0.993 1.98734958121037e-20 0 MT-CO2 

7 2.34688138338737e-20 1.34623234052102 1 0.98 4.69376276677474e-17 0 MT-ND4 

8 3.1920127068034e-16 1.3252460259707 0.976 0.974 6.38402541360679e-13 0 MT-ND2 

9 6.00763917357249e-10 1.19034877786501 0.236 0.541 1.2015278347145e-06 0 DCN 

10 3.12074340358068e-05 1.18418490811233 0.362 0.248 0.0624148680716137 0 CARMN 

11 3.30116408377947e-29 2.54979142764621 0.922 0.694 6.60232816755893e-26 1 CLDN5 

12 3.13608849863858e-17 2.36207964763267 0.825 0.557 6.27217699727717e-14 1 CCN2 

13 3.0816992637859e-20 2.31117876770238 0.699 0.407 6.1633985275718e-17 1 CPE 

14 6.0339611300138e-29 2.18721636727916 0.913 0.682 1.20679222600276e-25 1 HLA-DRB1 

15 1.09165212188921e-14 2.13069619255594 0.893 0.761 2.18330424377842e-11 1 FABP5 

16 1.19773995409232e-22 1.89886896694449 0.845 0.654 2.39547990818464e-19 1 HLA-DRA 

17 4.42456730788519e-16 1.88007327142296 0.728 0.587 8.84913461577039e-13 1 CLU 

18 1.1004938926674e-28 1.86981914632694 0.903 0.618 2.20098778533479e-25 1 HLA-DPA1 

19 1.59832476844682e-15 1.80405869544043 0.854 0.682 3.19664953689364e-12 1 ENPP2 

20 8.88302700922494e-12 1.76319491103381 0.689 0.535 1.77660540184499e-08 1 CCL14 

21 2.07552895665929e-27 1.56671253847362 1 0.777 4.15105791331858e-24 2 SPARC 

22 1.83279695258219e-18 1.37123613437634 0.864 0.468 3.66559390516439e-15 2 H19 

23 1.20585384714544e-20 1.28005956982624 0.981 0.716 2.41170769429087e-17 2 PODXL 

24 5.56203844684617e-21 1.22347122797722 1 0.798 1.11240768936923e-17 2 PLVAP 

25 1.62954755235938e-20 1.19324632935 0.981 0.645 3.25909510471876e-17 2 CD34 

26 3.07482546772592e-17 1.18668728070343 0.903 0.627 6.14965093545185e-14 2 CCND1 

27 1.4311291708734e-05 1.14585941116866 0.505 0.196 0.028622583417468 2 SPP1 

28 1.19598368232448e-06 1.14013903554302 0.592 0.306 0.00239196736464896 2 ANGPT2 

29 1.25624020177924e-15 1.1192786780391 0.932 0.59 2.51248040355848e-12 2 PLPP3 

30 3.78984662899739e-11 1.09171510583024 0.796 0.446 7.57969325799477e-08 2 IGFBP5 

31 1.24496850153544e-06 0.644570614152526 0.937 0.909 0.00248993700307087 3 COL4A1 

32 3.99189446113472e-05 0.611158070234288 0.962 0.954 0.0798378892226945 3 NEAT1 

33 0.000946668834510617 0.604916980257373 0.62 0.467 1 3 F2RL3 

34 0.000411001516878506 0.572960663720036 0.911 0.866 0.822003033757012 3 HSPG2 

35 0.000224025122069471 0.526802944189715 0.506 0.365 0.448050244138943 3 HOXA9 

36 3.55514744410875e-06 0.502240517151131 0.582 0.399 0.0071102948882175 3 RBMS3 

37 0.00436643282568136 0.47039056683852 0.532 0.376 1 3 EBF1 

38 1.68301002038838e-06 0.468691872493644 0.595 0.416 0.00336602004077677 3 GJC1 

39 0.00973325412797188 0.46705903772647 0.671 0.57 1 3 JAG1 

40 0.00214442133347931 0.455225389604451 0.582 0.487 1 3 HES4 

41 1.37462702501357e-09 3.23142320925507 0.889 0.214 2.74925405002715e-06 4 CENPF 

42 1.39872499943461e-11 3.00202371451517 0.944 0.311 2.79744999886921e-08 4 MKI67 

43 3.63260790135205e-10 2.70749112679098 0.889 0.114 7.26521580270411e-07 4 NUSAP1 

44 2.23549213482038e-09 2.51046768504307 0.889 0.51 4.47098426964076e-06 4 ASPM 

45 7.19867172539703e-09 2.20054934337488 0.944 0.561 1.43973434507941e-05 4 HIST1H4C 

46 1.21345622234018e-10 2.18401453211948 0.944 0.575 2.42691244468037e-07 4 PRC1 

47 1.34492706218981e-08 2.16088544007969 0.944 0.566 2.68985412437962e-05 4 HMGB2 

48 1.31984364782801e-08 2.14658657437917 1 0.49 2.63968729565602e-05 4 STMN1 

49 3.27815060569296e-08 2.06966206062393 1 0.621 6.55630121138591e-05 4 TUBA1B 

50 1.79108472354077e-11 2.05153678574389 0.944 0.456 3.58216944708153e-08 4 PCLAF 

 

  



 

Supplementary Table 13: Top 10 expressed cell-type-specific marker genes identified for 

each cluster in the intestinal epithelial cell type group of the integrated dataset. 

# p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 

1 7.0140748725894e-202 1.16013661975799 0.999 0.962 1.40281497451788e-198 0 MT-ND2 

2 2.98792218981081e-220 1.12723407494992 0.999 0.972 5.97584437962161e-217 0 MT-ND1 

3 6.33077037011465e-238 0.99323573004407 1 0.979 1.26615407402293e-234 0 MT-CO1 

4 4.09645838695878e-230 0.972587637010815 1 0.983 8.19291677391755e-227 0 MT-CO2 

5 3.9260671748685e-50 0.825672148559514 0.798 0.738 7.85213434973701e-47 0 CDHR5 

6 6.11007774568966e-175 0.800362690489388 0.999 0.968 1.22201554913793e-171 0 MT-ND4 

7 2.16908075390735e-144 0.720239384762326 1 0.986 4.33816150781471e-141 0 MT-CO3 

8 5.33364669285221e-43 0.692516838469648 0.798 0.67 1.06672933857044e-39 0 DST 

9 2.31355752469972e-34 0.671187747695864 0.655 0.374 4.62711504939943e-31 0 SLC26A3 

10 3.4614135920201e-34 0.631242861919084 0.949 0.845 6.92282718404019e-31 0 SLC26A2 

11 4.0243992417063e-05 1.06680605201054 0.414 0.506 0.0804879848341259 1 CENPF 

12 1.45443126642983e-98 0.800212672546545 1 0.987 2.90886253285967e-95 1 MT-CO3 

13 4.54712226150745e-18 0.723080859891552 0.924 0.917 9.09424452301491e-15 1 SOX4 

14 7.81834223689281e-68 0.64061856375736 0.971 0.888 1.56366844737856e-64 1 L1TD1 

15 0.000254807499942834 0.62566287373202 0.623 0.69 0.509614999885668 1 KCNQ1OT1 

16 1.69399679302418e-72 0.619162985723849 0.996 0.972 3.38799358604836e-69 1 MT-ND4 

17 1.09671474896562e-22 0.569305865427715 0.837 0.773 2.19342949793124e-19 1 EPHB3 

18 1.34480241279498e-50 0.52635080365432 0.997 0.975 2.68960482558997e-47 1 MT-ND1 

19 7.6232314443144e-23 0.524044636896557 0.363 0.557 1.52464628886288e-19 1 HELLS 

20 1.82820188278875e-08 0.485095448199464 0.453 0.65 3.6564037655775e-05 1 FCGBP 

21 9.27174453599014e-173 2.32658447108361 0.994 0.774 1.85434890719803e-169 2 TFF3 

22 2.57681907605976e-242 2.13879947821619 0.965 0.613 5.15363815211952e-239 2 LYZ 

23 1.1523470320181e-256 1.9029778393954 0.944 0.624 2.3046940640362e-253 2 RETNLB 

24 6.99572308461009e-250 1.78633933153877 0.989 0.885 1.39914461692202e-246 2 L1TD1 

25 1.01974862015834e-153 1.66299261882368 0.956 0.796 2.03949724031669e-150 2 OLFM4 

26 1.66943935236559e-227 1.58439711683888 0.982 0.739 3.33887870473118e-224 2 IFITM3 

27 1.79359361372699e-159 1.55827859958669 0.868 0.496 3.58718722745398e-156 2 WFDC2 

28 7.97374148802964e-198 1.50917421499884 0.991 0.736 1.59474829760593e-194 2 SLC12A2 

29 2.25835259359832e-189 1.50079630273694 0.991 0.885 4.51670518719664e-186 2 PRDX5 

30 2.62991379503629e-190 1.4813479163233 0.989 0.786 5.25982759007258e-187 2 H2AFZ 

31 1.95441224610809e-193 2.23094443598597 0.984 0.678 3.90882449221617e-190 3 PLA2G2A 

32 7.41456293699114e-210 2.23002698339765 0.98 0.687 1.48291258739823e-206 3 DMBT1 

33 2.13664455133617e-236 1.71736360214932 0.995 0.791 4.27328910267235e-233 3 ADH1C 

34 1.14086793236769e-138 1.71349747637607 0.978 0.753 2.28173586473538e-135 3 LCN2 

35 1.48962870585832e-183 1.59269832563763 0.998 0.808 2.97925741171664e-180 3 C15orf48 

36 4.46241154928361e-161 1.56386953264866 0.947 0.716 8.92482309856722e-158 3 LEFTY1 

37 3.59637076668718e-189 1.55022344327148 1 0.951 7.19274153337437e-186 3 PIGR 

38 3.23303004740047e-172 1.45524219368941 0.998 0.814 6.46606009480095e-169 3 FABP5 

39 4.17773989561861e-71 1.4297285299865 0.947 0.803 8.35547979123722e-68 3 OLFM4 

40 1.94343572644078e-143 1.35417516040092 0.998 0.917 3.88687145288157e-140 3 TSPAN8 

41 5.99452989698332e-160 2.13798915492581 0.992 0.783 1.19890597939666e-156 4 TSPAN1 

42 5.72451637141937e-142 2.13524654640551 0.984 0.615 1.14490327428387e-138 4 CEACAM6 

43 6.94086625849962e-106 2.0500263713898 0.979 0.87 1.38817325169992e-102 4 FABP1 

44 1.13659133376146e-141 2.02841007801822 0.995 0.608 2.27318266752292e-138 4 KRT20 

45 5.43006798864358e-96 1.82632590515942 0.989 0.851 1.08601359772872e-92 4 KRT19 

46 3.26662412900609e-122 1.78112709002261 1 0.885 6.53324825801218e-119 4 CEACAM5 

47 1.67201884137235e-99 1.75850628961413 0.902 0.445 3.34403768274469e-96 4 TFF1 

48 4.10400396451828e-100 1.71225815592373 0.989 0.857 8.20800792903655e-97 4 FXYD3 

49 1.23436737068251e-92 1.68945258109313 0.887 0.399 2.46873474136501e-89 4 SLC26A3 

50 1.41969081321586e-111 1.62018960133643 1 0.944 2.83938162643171e-108 4 LGALS3 

51 1.86453138659332e-27 5.08158264095771 0.964 0.916 3.72906277318665e-24 5 IGKC 

52 6.84287548413577e-18 4.80873591960323 0.929 0.919 1.36857509682715e-14 5 IGHA1 

53 2.60430919611414e-17 4.78334379992724 0.798 0.747 5.20861839222828e-14 5 JCHAIN 

54 2.7481022545345e-09 3.87111392328699 0.69 0.679 5.49620450906899e-06 5 IGHA2 

55 0.008961341547791 2.55073075447726 0.411 0.416 1 5 IGHGP 

56 1.01021580003044e-45 2.37984623296974 0.774 0.444 2.02043160006089e-42 5 VIM 



 

57 0.000381594177580489 2.08712436961251 0.494 0.463 0.763188355160978 5 MZB1 

58 1.03774134684106e-44 1.94508891807715 0.923 0.777 2.07548269368212e-41 5 FOSB 

59 9.0901375639629e-05 1.89707822132773 0.625 0.683 0.181802751279258 5 CCL5 

60 3.40376571896291e-18 1.76927383411058 0.857 0.84 6.80753143792581e-15 5 DUSP1 

61 6.05787510117936e-10 3.03444885573123 0.604 0.741 1.21157502023587e-06 6 MT1G 

62 3.27245016415381e-13 2.60969602677009 0.672 0.83 6.54490032830762e-10 6 MT2A 

63 1.22501436773456e-11 2.39797039260907 0.679 0.859 2.45002873546912e-08 6 MT1E 

64 1.63822429600196e-27 2.26955757275624 0.791 0.844 3.27644859200392e-24 6 FABP5 

65 5.48540046655935e-22 2.17670813290563 0.746 0.855 1.09708009331187e-18 6 SRI 

66 3.46984928301415e-68 2.16243694344893 1 0.967 6.9396985660283e-65 6 FTH1 

67 3.12353701397008e-11 2.15100995776168 0.672 0.827 6.24707402794015e-08 6 ADH1C 

68 9.49929288920015e-31 2.10823967867565 0.813 0.838 1.89985857784003e-27 6 C15orf48 

69 5.00783436057358e-60 1.95635043931564 0.985 0.963 1.00156687211472e-56 6 FTL 

70 2.41591009508127e-25 1.89310594977768 0.836 0.877 4.83182019016254e-22 6 PHGR1 

71 1.39483510092813e-35 5.19152999923548 1 0.305 2.78967020185626e-32 7 SH2D6 

72 4.78610321045835e-38 4.70267513880045 0.977 0.323 9.5722064209167e-35 7 HPGDS 

73 2.53398938158483e-27 4.2597431443216 0.955 0.461 5.06797876316966e-24 7 LRMP 

74 1.05748702907353e-26 3.52912193226618 0.932 0.357 2.11497405814705e-23 7 PSTPIP2 

75 2.74976893194468e-20 3.09169572988634 0.909 0.616 5.49953786388936e-17 7 AZGP1 

76 8.86219162416844e-21 3.06992644100085 0.886 0.538 1.77243832483369e-17 7 SPIB 

77 2.29662423271188e-20 2.75611357823398 0.795 0.162 4.59324846542376e-17 7 HCK 

78 4.44586708515955e-23 2.73477646716412 0.886 0.306 8.89173417031911e-20 7 ANXA13 

79 4.56911676881362e-23 2.60797312979722 0.955 0.623 9.13823353762723e-20 7 CRIP1 

80 6.80222190310728e-12 2.50056307739035 0.773 0.573 1.36044438062146e-08 7 RASSF6 

 

  



 

Supplementary Table 14: Manually annotated clusters in stromal cell type group based on its top 10 cell-type-specific marker genes. 

# cluster gene Human Protein Atlas (HPA) Panglaodb.se Supplementary literature or other comment Annotated cell type 

1 0 RGS5 Smooth muscle cells - ECM organization (mainly) 
Canonical marker for smooth muscle cell 
Canonical marker for pericyte 

Marker gene for pericyte 
(https://doi.org/10.1038/s41586-021-03852-1) 
Signature molecule of tumor-associated pericytes 
(https://doi.org/10.1038/s41418-021-00801-3) 

Pericyte 

2 0 CCL19 Smooth muscle cells - ECM organization (mainly)     

3 0 NDUFA4L2 Smooth muscle cells - ECM organization (mainly) Marker for pericyte   

4 0 MGP Glandular cells - Unknown function (mainly)     

5 0 ADIRF Enterocytes - Digestion (mainly)     

6 0 CRIP1 Alveolar cells - Smell perception (mainly)     

7 0 MCAM Smooth muscle cells - ECM organization (mainly) Canonical marker for pericyte 

Marker gene for pericyte 
(https://doi.org/10.1038/s41586-021-03852-1) 
Increased expression in fibroblasts and pericytes during tumorigenesis, 
and confirmed as a prognostic factor to poor overall survival 
(https://doi.org/10.1038/s41575-021-00573-8) 

8 0 NOTCH3 Smooth muscle cells - ECM organization (mainly) 
Canonical marker for smooth muscle cell 
Canonical marker for pericyte 

Marker gene for pericyte 
(https://doi.org/10.1038/s41586-021-03852-1) 
Expressed in pericytes 
(https://doi.org/10.1152/ajpcell.00320.2021) 

9 0 CSRP2 Fibroblasts - ECM organization (mainly)     

10 0 SOD3 Fibroblasts - ECM organization (mainly) Canonical marker for smooth muscle cell   

11 1 MMP3 Fibroblasts - ECM organization (mainly) Canonical marker for fibroblast 

Marker gene for cancer-associated fibroblasts 
(https://doi.org/10.1093/hmg/ddaa130) 
(https://doi.org/10.1101/2020.01.10.901579) 

Cancer-associated fibroblast (CAF) 

12 1 CTHRC1 Fibroblasts - ECM organization (mainly) Canonical marker for fibroblast   

13 1 LUM Fibroblasts - ECM organization (mainly) Canonical marker for fibroblast   

14 1 APOD Fibroblasts - ECM organization (mainly)     

15 1 MMP11 Stromal cells - Cell proliferation (mainly)   

Marker gene for cancer-associated fibroblasts 
(https://doi.org/10.1093/hmg/ddaa130) 
(https://doi.org/10.1101/2020.01.10.901579) 

16 1 COL1A1 Fibroblasts - ECM organization (mainly) Canonical marker for fibroblast 
Marker gene for cancer-associated fibroblasts 
(https://doi.org/10.1101/2020.01.10.901579) 

17 1 GREM1 Granulosa cells - Unknown function (mainly) Canonical marker for fibroblast   

18 1 DCN Fibroblasts - ECM organization (mainly) Canonical marker for fibroblast   

19 1 COL1A2 Fibroblasts - ECM organization (mainly) Canonical marker for fibroblast 
Marker gene for cancer-associated fibroblasts 
(https://doi.org/10.1101/2020.01.10.901579) 

20 1 C3 Hepatocytes - Hemostasis (mainly)     

21 2 IGKC Plasma cells - Humoral immune response (mainly)     

Plasma B-cell 

22 2 IGLC3 Plasma cells - Humoral immune response (mainly) Canonical marker for plasma B-cell   

23 2 IGHG1 Plasma cells - Humoral immune response (mainly) Canonical marker for plasma B-cell   

24 2 IGHA2 Plasma cells - Humoral immune response (mainly) Canonical marker for plasma B-cell   

25 2 IGHM Plasma cells - Humoral immune response (mainly) Canonical marker for plasma B-cell   

26 2 IGLC2 Plasma cells - Humoral immune response (mainly) Canonical marker for plasma B-cell   



 

27 2 MT-ND1 Cardiomyocytes - Muscle contraction (mainly)   Mitochondrial derived 

28 2 MT-CO3 Cardiomyocytes - Muscle contraction (mainly)   Mitochondrial derived 

29 2 MT-ND2 Cardiomyocytes - Muscle contraction (mainly)   Mitochondrial derived 

30 2 PIGR Intestinal epithelial cells - Unknown function (mainly)     

31 3 F3 Pancreatic endocrine cells - Mixed function (mainly)     

Crypt-top fibroblast (CTF) 

32 3 ALKAL2 Granulosa cells - Unknown function (mainly)     

33 3 CXCL14 Fibroblasts - ECM organization (mainly) Canonical marker for fibroblast   

34 3 HSD17B2 Enterocytes - Digestion (mainly)     

35 3 NRG1 Neurons & Oligodendrocytes - Neuronal signaling (mainly)     

36 3 PAPPA2 Intestinal endocrine cells - Hormone signaling (mainly)     

37 3 PDGFRA Stromal cells - Cell proliferation (mainly) Canonical marker for fibroblast 

Marker of cancer-associated fibroblasts  
(https://doi.org/10.1038/s41417-021-00318-4) 
Marker of crypt-associated colonic fibroblast-population 
(https://doi.org/10.1371/journal.pbio.3001032) 

38 3 PLAT Epithelial cell types - Mixed function (mainly)     

39 3 PDGFD Neurons & Oligodendrocytes - Synaptic function (mainly) Canonical marker for smooth muscle cell   

40 3 BMP5 Fibroblasts - ECM organization (mainly)   
Secreted by crypt-top fibroblasts  
(https://doi.org/10.1371/journal.pbio.3001032) 

41 4 HHIP Oligodendrocytes - Myelin sheath organization (mainly) 
Canonical marker for smooth muscle cell 
Canonical marker for fibroblast 

Marker gene for myofibroblast 
(https://doi.org/10.1038/s41586-021-03852-1) 

Myofibroblast 

42 4 MYH11 Smooth muscle cells - ECM organization (mainly) Canonical marker for smooth muscle cell 
Marker gene for myofibroblast 
(https://doi.org/10.1093/hmg/ddaa130) 

43 4 NPNT Alveolar cells - Smell perception (mainly)   
Marker gene for myofibroblast 
(https://doi.org/10.1038/s41586-021-03852-1) 

44 4 ACTG2 Smooth muscle cells - ECM organization (mainly) Canonical marker for smooth muscle cell 
Marker gene for myofibroblast 
(https://doi.org/10.1093/hmg/ddaa130) 

45 4 MYLK Smooth muscle cells - ECM organization (mainly) Canonical marker for smooth muscle cell   

46 4 LPP Spermatids - Spermatogenesis (mainly)     

47 4 MFAP5 Fibroblasts - ECM organization (mainly) 
Canonical marker for smooth muscle cell 
Marker for fibroblast   

48 4 IGHM Plasma cells - Humoral immune response (mainly)     

49 4 PLN Cardiomyocytes - Muscle contraction (mainly) Canonical marker for smooth muscle cell   

50 4 FLNA Smooth muscle cells - ECM organization (mainly)     

51 5 CCL13 Macrophages - Immune response (mainly)   
Marker gene for lamina propria fibroblast 
(https://doi.org/10.1093/hmg/ddaa130) 

Lamina propria fibroblast (LPF) 

52 5 CCL11 Fibroblasts - ECM organization (mainly) Canonical marker for fibroblast 
Marker gene for lamina propria fibroblast 
(https://doi.org/10.1093/hmg/ddaa130) 

53 5 TFPI2 Syncytiotrophoblasts - Pregnancy hormone signaling (mainly)     

54 5 ADAMDEC1 Macrophages - Innate immune response (mainly) Canonical marker for smooth muscle cell 
Marker gene for lamina propria fibroblast 
(https://doi.org/10.1093/hmg/ddaa130) 

55 5 CFD Fibroblasts - ECM organization (mainly)     

56 5 ADH1B Hepatocytes - Metabolism (mainly)     

57 5 CCL2 Smooth muscle cells - ECM organization (mainly) Canonical marker for macrophage 
Marker gene for lamina propria fibroblast 
(https://doi.org/10.1093/hmg/ddaa130) 



 

58 5 PTGDS Non-specific - Transcription (mainly)     

59 5 APOE Smooth muscle cells - Unknown function (mainly)   
Marker gene for lamina propria fibrolast 
(https://doi.org/10.1093/hmg/ddaa130) 

60 5 HAPLN1 Fibroblasts - ECM organization (mainly)     



 

Supplementary Table 15: Manually annotated clusters in endothelial cell type group based on its top 10 cell-type-specific marker genes. 

# cluster gene Human Protein Atlas (HPA) Panglaodb.se Supplementary literature or other comment Annotated cell type 

1 0 IGKC Plasma cells - Humoral immune response (mainly)     

Mitochondrial gene-expressing cell 

2 0 TPM2 Smooth muscle cells - ECM organization (mainly)     

3 0 MT-CO3 Cardiomyocytes - Muscle contraction (mainly)   Mitochondrial derived 

4 0 MT-CO1 Cardiomyocytes - Muscle contraction (mainly)   Mitochondrial derived 

5 0 MT-ND1 Cardiomyocytes - Muscle contraction (mainly)   Mitochondrial derived 

6 0 MT-CO2 Cardiomyocytes - Muscle contraction (mainly)   Mitochondrial derived 

7 0 MT-ND4 Cardiomyocytes - Muscle contraction (mainly)   Mitochondrial derived 

8 0 MT-ND2 Cardiomyocytes - Muscle contraction (mainly)   Mitochondrial derived 

9 0 DCN Fibroblasts - ECM organization (mainly)     

10 0 CARMN Not found     

11 1 CLDN5 Adipocytes & Endothelial cells - Angiogenesis (mainly) Canonical marker for endothelial cell 
Tip-like endothelial cell marker gene 
(https://doi.org/10.1007/s12079-019-00511-z) 

 Activated TEC 

12 1 CCN2 Fibroblasts - ECM organization (mainly)   

Expressed in endothelial cells, and it increases 
vascular angiogenesis 
(https://doi.org/10.1038/cddis.2014.453) 

13 1 CPE Smooth muscle cells - ECM organization (mainly)   

Expressed by activated postcapillary vein tumor-
associated endothelial cells 
(https://doi.org/10.1016/j.ccell.2019.12.001) 

14 1 HLA-DRB1 Macrophages - Immune response (mainly)   

Expressed by capillary endothelial cells, gene 
involved in antigen presentation 
(https://doi.org/10.1016/j.ccell.2019.12.001) 

15 1 FABP5 Squamous epithelial cells - Cornification (mainly)     

16 1 HLA-DRA Macrophages - Immune response (mainly)   

Expressed by capillary endothelial cells, gene 
involved in antigen presentation 
(https://doi.org/10.1016/j.ccell.2019.12.001) 

17 1 CLU Erythroid cells - Oxygen transport (mainly)   

Expressed by activated postcapillary vein tumor-
associated endothelial cells 
(https://doi.org/10.1016/j.ccell.2019.12.001) 

18 1 HLA-DPA1 Macrophages - Immune response (mainly)   

Expressed by capillary endothelial cells, gene 
involved in antigen presentation 
(https://doi.org/10.1016/j.ccell.2019.12.001) 

19 1 ENPP2 Oligodendrocytes - Myelin sheath organization (mainly)     

20 1 CCL14 Adipocytes & Endothelial cells - Angiogenesis (mainly) Canonical marker for endothelial cell 

Expressed by activated postcapillary vein tumor-
associated endothelial cells 
(https://doi.org/10.1016/j.ccell.2019.12.001) 

21 2 SPARC Fibroblasts - ECM organization (mainly) Canonical marker for endothelial cell 
Up-regulated in colorectal cancer endothelial cells 
(https://doi.org/10.3934/mbe.2021360) 

Tip TEC 



 

Marker gene of tip endothelial cells 
(https://doi.org/10.1016/j.ccell.2019.12.001) 

22 2 H19 Not found     

23 2 PODXL Endometrium - Transcription (mainly) Canonical marker for endothelial cell   

24 2 PLVAP Adipocytes & Endothelial cells - Angiogenesis (mainly) Canonical marker for endothelial cell 
Marker gene of immature endothelial cell 
(https://doi.org/10.1016/j.ccell.2019.12.001) 

25 2 CD34 Adipocytes & Endothelial cells - Angiogenesis (mainly) Canonical marker for endothelial cell 

Up-regulated in tumor endothelial cell 
(https://doi.org/10.3389/fcell.2020.00766) 
Marker of endothelial tip cell 
(https://doi.org/10.1007/s10456-011-9251-z) 

26 2 CCND1 Pancreas - Digestion (mainly)     

27 2 SPP1 Macrophages - Innate immune response (mainly)     

28 2 ANGPT2 Smooth muscle cells - ECM organization (mainly)   

Marker gene of tumor-associated endothelial cells 
(https://doi.org/10.3390/ijms19051272) 
Marker gene of tip EC 
(https://doi.org/10.1016/j.ccell.2019.12.001) 
(https://doi.org/10.1016/j.devcel.2021.06.021) 

29 2 PLPP3 Fibroblasts - ECM organization (mainly)     

30 2 IGFBP5 Smooth muscle cells - ECM organization (mainly)   

Up-regulated in colorectal cancer endothelial cells 
(https://doi.org/10.3934/mbe.2021360) 
Marker gene of immature tumor-associated 
endothelial cell 
(https://doi.org/10.1038/s41467-021-21346-6) 

31 3 COL4A1 Smooth muscle cells - ECM organization (mainly)   

Hub gene of colon tumor-associated endothelial 
cell  
(https://doi.org/10.3934/mbe.2021360) 
Marker gene of tip endothelial cell 
(https://doi.org/10.1016/j.ccell.2019.12.001) 
Marker gene of tip-like endothelial cell 
(https://doi.org/10.1007/s12079-019-00511-z) 

Immature TEC 

32 3 NEAT1 Not found     

33 3 F2RL3 Myeloid cells - Hemostasis (mainly)     

34 3 HSPG2 Granulosa cells - Unknown function (mainly) Canonical marker for endothelial cell 

Marker gene of immature endothelial cell 
(https://doi.org/10.1016/j.ccell.2019.12.001) 
Marker gene of tip-like endothelial cell 
(https://doi.org/10.1007/s12079-019-00511-z) 

35 3 HOXA9 Proximal tubular cells - Tubular reabsorption (mainly)     

36 3 RBMS3 Neurons & Oligodendrocytes - Synaptic function (mainly)     

37 3 EBF1 Fibroblasts - ECM organization (mainly)     

38 3 GJC1 Smooth muscle cells - ECM organization (mainly)     

39 3 JAG1 Squamous epithelial cells - Cornification (mainly)   
Expressed by tumor-associated endothelial cells 
(https://doi.org/10.3389/fcell.2020.00766) 



 

Marker gene of immature endothelial cell 
(https://doi.org/10.1016/j.ccell.2019.12.001) 

40 3 HES4 Smooth muscle cells - ECM organization (mainly)     

41 4 CENPF Non-specific - Cell cycle regulation (mainly)     

Proliferative EC 

42 4 MKI67 Non-specific - Cell cycle regulation (mainly)   
Marker of proliferative cancer cell 
(https://doi.org/10.1038/s41418-021-00823-x) 

43 4 NUSAP1 Non-specific - Cell cycle regulation (mainly)   
Promotes cell-proliferation 
(https://doi.org/10.1016/j.yexcr.2018.03.039) 

44 4 ASPM Non-specific - Cell cycle regulation (mainly)     

45 4 HIST1H4C Non-specific - Transcription regulation (mainly)     

46 4 PRC1 Non-specific - Cell cycle regulation (mainly)     

47 4 HMGB2 Non-specific - Cell cycle regulation (mainly)   

Marker gene of proliferative endothelial cell in liver 
and spleen 
(https://doi.org/10.1016/j.cell.2020.01.015) 

48 4 STMN1 Non-specific - Cell cycle regulation (mainly)   

Marker gene of proliferative endothelial cell in liver 
and spleen 
(https://doi.org/10.1016/j.cell.2020.01.015) 

49 4 TUBA1B Non-specific - Cell cycle regulation (mainly)   

Marker gene of proliferative endothelial cell in liver 
and spleen 
(https://doi.org/10.1016/j.cell.2020.01.015) 

50 4 PCLAF Non-specific - Cell cycle regulation (mainly)     



 

Supplementary Table 16: Manually annotated clusters in intestinal epithelial cell type group based on its top 10 cell-type-specific marker 
genes. 

# cluster gene Human Protein Atlas Panglaodb.se Supplementary literature or other comment Annotated cell type 

1 0 MT-ND2 Cardiomyocytes - Muscle contraction (mainly)     

Mitochondrial derived 

2 0 MT-ND1 Cardiomyocytes - Muscle contraction (mainly)     

3 0 MT-CO1 Cardiomyocytes - Muscle contraction (mainly)     

4 0 MT-CO2 Cardiomyocytes - Muscle contraction (mainly)     

5 0 CDHR5 Enterocytes - Digestion (mainly)     

6 0 MT-ND4 Cardiomyocytes - Muscle contraction (mainly)     

7 0 MT-CO3 Cardiomyocytes - Muscle contraction (mainly)     

8 0 DST Epithelial cell types - Mixed function (mainly)     

9 0 SLC26A3 Intestinal epithelial cells - Unknown function (mainly)     

10 0 SLC26A2 Intestinal epithelial cells - Unknown function (mainly)     

11 1 CENPF Non-specific - Cell cycle regulation (mainly)   
Associated with stem cell characteristics 
(https://www.doi.org/10.4240/wjgs.v12.i11.442) 

Secretory progenitor 1 

12 1 MT-CO3 Cardiomyocytes - Muscle contraction (mainly)     

13 1 SOX4 Granulosa cells - Unknown function (mainly)   

Expressed in stem cell and enterocyte progenitors 
(https://doi.org/10.1016/j.celrep.2021.109484) 
Promotes secretory progenitor differentiation 
(https://www.doi.org/10.1053/j.gastro.2018.07.023) 

14 1 L1TD1 Cytotrophoblasts - Unknown function (mainly)   

Colorectal cancer stem cell-related gene  
(https://doi.org/10.3390/biomedicines9020179) 
Embryonic stem cell factor  
(https://doi.org/10.1186/s12885-019-5952-2) 

15 1 KCNQ1OT1 Not found   

Expressed in tumor cells,  
promoting colorectal cancer development 
(https://doi.org/10.3389/fcell.2021.653808) 

16 1 MT-ND4 Cardiomyocytes - Muscle contraction (mainly)     

17 1 EPHB3 Intestinal epithelial cells - Unknown function (mainly)   

Expressed in cells at the crypt base, 
associated with other intestinal stem cell markers 
(https://www.doi.org/10.3390/biom10040602) 
Expressed in stem cells in the crypt base of small intestine  
(https://www.doi.org/10.1111/j.1469-7580.2008.00925.x)  
Expressed by paneth cell progenitors  
(https://www.doi.org/10.15252/embr.201540188) 

18 1 MT-ND1 Cardiomyocytes - Muscle contraction (mainly)     

19 1 HELLS Non-specific - Cell cycle regulation (mainly)   
Upregulated in colorectal cancer 
(https://www.doi.org/10.2147/OTT.S223668) 

20 1 FCGBP Mucus-secreting cells - Mucin production (mainly)   
Expressed in colonic stem cell's transition to the progenitor stage  
(https://doi.org/10.1038/s42003-020-01181-z) 

21 2 TFF3 Mucus-secreting cells - Mucin production (mainly) Canonical marker for goblet cell   

Crypt base columnar cell (CBC) and 
paneth cell 22 2 LYZ Monocytes & Neutrophils - Innate immune response (mainly) Canonical marker for paneth 

Marker gene of paneth cell  
(https://doi.org/10.1016/j.celrep.2016.08.054) 

23 2 RETNLB Mucus-secreting cells - Mucin production (mainly) Marker for paneth cell   



 

24 2 L1TD1 Cytotrophoblasts - Unknown function (mainly)   

Colorectal cancer stem cell-related gene  
(https://doi.org/10.3390/biomedicines9020179) 
Embryonic stem cell factor  
(https://doi.org/10.1186/s12885-019-5952-2) 

25 2 OLFM4 Intestinal epithelial cells - Unknown function (mainly) Canonical marker for crypt cell 
Expressed in colorectal crypt base cells 
(https://doi.org/10.1053/j.gastro.2009.05.035) 

26 2 IFITM3 Fibroblasts - ECM organization (mainly)     

27 2 WFDC2 Respiratory epithelial cells - Mucosal defense (mainly)     

28 2 SLC12A2 Mucus-secreting cells - Mucin production (mainly) Canonical marker for crypt cell   

29 2 PRDX5 Respiratory epithelial cells - Mucosal defense (mainly)     

30 2 H2AFZ Non-specific - Transcription regulation (mainly)     

31 3 PLA2G2A Fibroblasts - ECM organization (mainly)   

Marker gene for transit amplifying cells, 
and marker gene for Paneth cells 
(https://patentscope.wipo.int/search/en/detail.jsf?docId=US317630596) 
Expressed in paneth-like cells in the colon  
(https://doi.org/10.1016/j.stem.2016.05.023) 

Secretory progenitor 2 

32 3 DMBT1 Enterocytes - Digestion (mainly)   
Enteroendocrine progenitor marker gene  
(https://patentscope.wipo.int/search/en/detail.jsf?docId=US317630596) 

33 3 ADH1C Pancreas - Digestion (mainly)     

34 3 LCN2 Respiratory epithelial cells - Mucosal defense (mainly)     

35 3 C15orf48 Pancreatic endocrine cells - Mixed function (mainly)   

Expressed in stem cell, enterocyte, tuft cell, goblet cell, and 
enteroendocrine cell 
(https://patentscope.wipo.int/search/en/detail.jsf?docId=US317630596) 

36 3 LEFTY1 Intestinal epithelial cells - Unknown function (mainly)   
Expressed in stem cell  
(https://patentscope.wipo.int/search/en/detail.jsf?docId=US317630596) 

37 3 PIGR Intestinal epithelial cells - Unknown function (mainly)   
Expressed in enteroendocrine progenitor, enterocyte, and goblet cell 
(https://patentscope.wipo.int/search/en/detail.jsf?docId=US317630596) 

38 3 FABP5 Squamous epithelial cells - Cornification (mainly)   
Expressed in enteroendocrine  
(https://patentscope.wipo.int/search/en/detail.jsf?docId=US317630596)  

39 3 OLFM4 Intestinal epithelial cells - Unknown function (mainly) Canonical marker of crypt cell 

Marker gene for intestinal crypt base cell 
(https://doi.org/10.1053/j.gastro.2009.05.035) 
Canonical stem cell marker gene  
(https://patentscope.wipo.int/search/en/detail.jsf?docId=US317630596)  

40 3 TSPAN8 Enterocytes - Digestion (mainly)   
Expressed in enterocyte, stem cell, and goblet cell 
(https://patentscope.wipo.int/search/en/detail.jsf?docId=US317630596) 

41 4 TSPAN1 Intestinal epithelial cells - Unknown function (mainly)     

Enterocyte 

42 4 CEACAM6 Intestinal epithelial cells - Unknown function (mainly)     

43 4 FABP1 Enterocytes - Digestion (mainly) Canonical marker for enterocyte   

44 4 KRT20 Intestinal epithelial cells - Unknown function (mainly) Canonical marker for enterocyte   

45 4 KRT19 Respiratory epithelial cells - Mucosal defense (mainly)     

46 4 CEACAM5 Intestinal epithelial cells - Unknown function (mainly)     

47 4 TFF1 Pancreatic endocrine cells - Mixed function (mainly)     

48 4 FXYD3 Intestinal epithelial cells - Unknown function (mainly)     

49 4 SLC26A3 Intestinal epithelial cells - Unknown function (mainly) Canonical marker for enterocyte   

50 4 LGALS3 Intestinal epithelial cells - Unknown function (mainly)     



 

51 5 IGKC Plasma cells - Humoral immune response (mainly)     

Plasma B-cell 

52 5 IGHA1 Plasma cells - Humoral immune response (mainly)     

53 5 JCHAIN Plasma cells - Humoral immune response (mainly)     

54 5 IGHA2 Plasma cells - Humoral immune response (mainly)     

55 5 IGHGP Not found     

56 5 VIM Macrophages - Immune response (mainly)     

57 5 MZB1 Plasma cells - Humoral immune response (mainly)     

58 5 FOSB Non-specific - Mitochondria (mainly)     

59 5 CCL5 NK-cells & T-cells - Immune response (mainly)     

60 5 DUSP1 Macrophages - Immune response (mainly)     

61 6 MT1G Proximal tubular cells - Tubular reabsorption (mainly)   

Metallothionein are expressed during oxidative stress responses  
in enteroendocrine cells and endothelial cells 
(https://doi.org/10.1101/721662) 

Iron-storing epithelial cell 

62 6 MT2A Adipocytes & Endothelial cells - Angiogenesis (mainly)   

Metallothionein are expressed during oxidative stress responses  
in enteroendocrine cells and endothelial cells 
(https://doi.org/10.1101/721662) 

63 6 MT1E Proximal tubular cells - Tubular reabsorption (mainly)   

Metallothionein are expressed during oxidative stress responses  
in enteroendocrine cells and endothelial cells 
(https://doi.org/10.1101/721662) 

64 6 FABP5 Squamous epithelial cells - Cornification (mainly) 

Canonical marker for 
enteroendocrine cell 
Canonical marker for M cells 

Marker for enteroendocrine cells 
(https://patentscope.wipo.int/search/en/detail.jsf?docId=US317630596) 
Expressed in enteroendocrine cells 
(https://www.doi.org/10.1210/me.2014-1194)  

65 6 SRI Intestinal epithelial cells - Unknown function (mainly)     

66 6 FTH1 Monocytes - Immune response regulation (mainly)   

One of two subunits of the iron storage ferritin protein,  
which is expressed by colorectal epithelial cells 
(https://doi.org/10.1038/s41419-020-2299-1) 
(https://doi.org/10.1038/s41419-021-03559-1) 

67 6 ADH1C Pancreas - Digestion (mainly)     

68 6 C15orf48 Pancreatic endocrine cells - Mixed function (mainly)   

Expressed in stem cell, enterocyte, tuft cell, goblet cell, and 
enteroendocrine 
(https://patentscope.wipo.int/search/en/detail.jsf?docId=US317630596) 

69 6 FTL Macrophages - Innate immune response (mainly)   

One of two subunits of the iron storage ferritin protein,  
which is expressed by colorectal epithelial cells 
(https://doi.org/10.1038/s41419-020-2299-1) 
(https://doi.org/10.1038/s41419-021-03559-1) 

70 6 PHGR1 Enterocytes - Digestion (mainly) Marker for enterocyte   

71 7 SH2D6 Proximal tubular cells - Tubular reabsorption (mainly)   
Signature marker for CD45+ tuft-2 cells  
(https://doi.org/10.1016/j.immuni.2022.03.001) 

Tuft-2 
72 7 HPGDS Granulocytes - Receptor signaling (mainly)   

Mainly expressed in CD45+ tuft-2 cells 
(https://doi.org/10.1016/j.immuni.2022.03.001) 

73 7 LRMP Non-specific - Transcription regulation (mainly) Canonical marker for tuft cell 
Marker gene for tuft cell 
(https://www.doi.org/10.1038/s41598-019-52049-0) 

74 7 PSTPIP2 Myeloid cells - Hemostasis (mainly)     

75 7 AZGP1 Glandular cells - Unknown function (mainly)     



 

76 7 SPIB Plasmacytoid DCs - Unknown function (mainly)   

Involved in tuft-2 cell development 
(https://doi.org/10.1016/j.immuni.2022.03.001) 
 
Required for M cell differentiation  
(https://doi.org/10.1038/mi.2016.68) 
(https://www.doi.org/10.1038/ni.2352) 

77 7 HCK Monocytes & Neutrophils - Innate immune response (mainly)     

78 7 ANXA13 Mucus-secreting cells - Mucin production (mainly)     

79 7 CRIP1 Alveolar cells - Smell perception (mainly)   
Associated with cancer  
(https://doi.org/10.1016/j.lfs.2018.05.054) 

80 7 RASSF6 Intestinal epithelial cells - Unknown function (mainly)   
Associated with colorectal cancer 
(https://www.doi.org/10.18632/oncotarget.7852) 



 

I Supplementary section: Identified differentially expressed 

circulating miRNAs between colorectal cancer patient groups 

 

Supplementary Figure 3: Sequencing quality statistics. Assessment of RNA quality and 
relative size were conducted by measuring the samples on a 2100 Bioanalyzer. The plot is 
representative of all 47 samples.  

 

 

Supplementary Figure 4: RNA distribution plot of the sequencing libraries. The plot shows 
the relative abundance of the major classes of RNAs detected in the sequencing libraries. 

 



 

 

Supplementary Figure 5: Length distribution of the sequence reads after adapter and 
quality trimming in 47 samples. (A) Each tile represents a read, where the intensity of each tile 
depicts the number of reads. Each sample is listed on the x-axis, while the y-axis shows the 

fragment lengths. (B) Each line represents a sample, where the fragment length is shown on the 
x-axis and RPM is shown on the y-axis. (C) Cumulative graphs of mapped reads. Fragment length 
is depicted on the x-axis and the cumulative RPM is shown on the y-axis. Abbreviations: nt, 
nucleotides; RPM, reads per million mapped reads. 

 

Supplementary Table 17: Differentially expressed miRNAs for true positive CRC patients 
with localized disease versus false positive CRC patients (healthy). 

miRNA logFC AveExpr t P.Value adj.P.Val B 

hsa-miR-30a-5p -1,596596089 11,10190101 -7,114034271 3,34278E-09 8,75691E-07 10,92319798 

hsa-miR-484 1,068278498 10,95168084 7,015345406 4,7983E-09 8,75691E-07 10,57766389 

hsa-miR-126-5p -1,225022842 9,046003843 -5,701198121 5,76678E-07 6,78168E-05 6,01384864 

hsa-miR-122-5p -2,621624982 14,61508189 -5,630650163 7,43197E-07 6,78168E-05 5,668734635 

hsa-miR-342-3p -1,063749702 10,05995758 -5,414044673 1,61317E-06 9,72317E-05 5,024543288 

hsa-miR-125a-5p -1,176987769 11,98978333 -5,38504196 1,78869E-06 9,72317E-05 4,882770939 

hsa-miR-150-5p -1,492751876 11,26420134 -5,373343165 1,86472E-06 9,72317E-05 4,859149111 

hsa-miR-142-5p -0,856045718 12,28061237 -5,304409873 2,38204E-06 0,000107034 4,593590174 

hsa-let-7c-5p -1,199612809 8,985287488 -5,275486604 2,63919E-06 0,000107034 4,583531 

hsa-miR-10b-5p -1,250397023 12,21465319 -5,159747814 3,97215E-06 0,000144983 4,10954825 

hsa-miR-29a-3p -1,288731592 10,73818744 -5,076970651 5,31361E-06 0,000176315 3,880644448 

hsa-miR-101-3p -0,847234268 10,32161997 -4,970046631 7,723E-06 0,000234908 3,53103366 

hsa-miR-146b-5p -1,025483113 9,80802919 -4,872208473 1,0852E-05 0,000304689 3,223467216 

hsa-miR-27b-3p -1,03647021 11,33471254 -4,731416003 1,76401E-05 0,000459902 2,717712077 

hsa-miR-375-3p -1,940138677 10,26476405 -4,626807812 2,52329E-05 0,000597395 2,443485858 

hsa-miR-143-3p -1,066141986 12,26428624 -4,615915175 2,61872E-05 0,000597395 2,301150124 

hsa-miR-30a-3p -2,0261264 5,809094095 -4,468319717 4,31736E-05 0,000926962 1,770840195 

hsa-miR-584-5p 1,057063145 8,711311846 4,441422236 4,72622E-05 0,000958372 1,88111541 



 

hsa-miR-29c-3p -1,156042368 7,015478138 -4,359652268 6,2149E-05 0,001193916 1,673017613 

hsa-miR-1249-3p -1,973526992 6,168566659 -4,239705325 9,2542E-05 0,001673925 1,14247178 

hsa-miR-16-5p -0,569929532 14,7414419 -4,227614634 9,6308E-05 0,001673925 0,961969718 

hsa-miR-483-3p -3,00079154 6,404134527 -4,160463887 0,000120092 0,001992428 0,838468371 

hsa-miR-1-3p -2,023105077 7,913374618 -4,09713723 0,000147682 0,002265995 0,884610663 

hsa-miR-192-5p -1,371054703 9,180609279 -4,094412789 0,000148997 0,002265995 0,819528046 

hsa-miR-1228-3p -3,182280296 3,990660622 -4,081643889 0,000155315 0,002267594 0,116973658 

hsa-miR-99a-5p -1,017695046 10,04454709 -3,975803616 0,000218664 0,003069702 0,395275774 

hsa-miR-30e-5p -0,511201191 13,20882657 -3,923128228 0,00025887 0,003499541 0,090876175 

hsa-miR-423-5p 0,555770493 14,42809973 3,890535415 0,000287225 0,003744185 -0,060018329 

hsa-miR-125b-5p -0,939298896 10,17125742 -3,801555336 0,000380707 0,004791655 -0,13051478 

hsa-miR-885-3p -3,449441685 2,102083348 -3,688778295 0,000541746 0,006557052 -0,930124647 

hsa-miR-95-3p -2,256857886 4,115791539 -3,679890272 0,0005569 0,006557052 -0,717431463 

hsa-miR-206 -3,634517428 3,112465394 -3,573067846 0,000773907 0,008827371 -0,971006823 

hsa-miR-629-5p 0,795141253 8,08871325 3,470264678 0,00105745 0,011696042 -0,937671203 

hsa-miR-148a-3p -0,650294823 11,41034787 -3,442956113 0,001147993 0,012274673 -1,218108591 

hsa-miR-3613-5p -0,605191386 9,305116332 -3,434633015 0,001177023 0,012274673 -1,134041029 

hsa-miR-433-3p 3,062761522 3,79921006 3,413058322 0,001255559 0,012729974 -1,213731751 

hsa-miR-126-3p -0,719133622 13,16483187 -3,384921227 0,001365482 0,013470296 -1,465107525 

hsa-miR-215-5p -2,035513872 5,858001738 -3,367038283 0,001440028 0,01383185 -1,128812377 

hsa-miR-16-2-3p -0,46322482 10,61792793 -3,261123654 0,001966921 0,018408364 -1,685462316 

hsa-miR-125a-3p 2,414850684 3,778931583 3,185843066 0,002447041 0,022329245 -1,726240222 

hsa-miR-6803-3p -1,176893196 7,137953939 -3,16776175 0,002577787 0,022948591 -1,612672787 

hsa-miR-106b-5p -0,821860666 7,649102505 -3,120732613 0,002949297 0,025630792 -1,817682849 

hsa-miR-410-3p 2,374426856 2,532897633 3,102436142 0,003106977 0,026373178 -1,955262239 

hsa-miR-150-3p -1,391743708 4,918311469 -3,092655807 0,003194476 0,026499626 -1,804308784 

hsa-miR-589-5p 1,611823171 5,002666887 3,042056353 0,003685249 0,029891461 -1,893878327 

hsa-miR-144-3p -0,816187261 8,670425702 -3,023991315 0,003876942 0,030762688 -2,171291847 

hsa-miR-323a-3p 1,709939127 5,848623727 3,001976861 0,00412314 0,032020126 -1,965197921 

hsa-miR-122-3p -2,766496698 3,072619853 -2,993108999 0,004226377 0,032138078 -2,197255307 

hsa-miR-185-3p 2,311229079 2,352847101 2,949384996 0,004771607 0,035543606 -2,272734764 

hsa-miR-1284 2,296867895 3,148564437 2,933093534 0,004991006 0,036434343 -2,265042655 

hsa-miR-134-5p 2,577295914 2,872928941 2,906936407 0,005362989 0,038382175 -2,324453501 

hsa-miR-323b-3p 1,823149249 6,189608397 2,860883521 0,006081159 0,042685061 -2,317137658 

hsa-miR-5010-5p 1,981828426 3,631422281 2,848840671 0,006283147 0,04327073 -2,398088028 

 

Supplementary Table 18: Differentially expressed miRNAs for true positive CRC patients 
with metastatic disease versus false positive CRC patients (healthy).  

miRNA logFC AveExpr t P.Value adj.P.Val 

hsa-miR-142-5p -0,758121654 12,28061237 -4,647375395 2,35229E-05 0,008585875 

hsa-miR-16-5p -0,527298842 14,7414419 -3,867055797 0,000309483 0,04489124 

hsa-miR-143-3p -0,861242486 12,26428624 -3,704878692 0,000515296 0,04489124 

hsa-miR-10a-5p 1,301945804 12,2467303 3,674827669 0,000565713 0,04489124 

hsa-miR-126-5p -0,768854748 9,046003843 -3,592101585 0,000730086 0,04489124 

hsa-miR-16-2-3p -0,519897748 10,61792793 -3,588612082 0,000737938 0,04489124 

hsa-miR-92b-3p 0,930361924 7,797164534 3,532367658 0,000876186 0,045686867 

 

Supplementary Table 19: Differentially expressed miRNAs for true positive CRC patients 
with metastatic disease versus localized disease. 

miRNA logFC AveExpr t P.Value adj.P.Val B 

hsa-miR-375-3p 2,86503989 10,26476405 6,749822412 1,26906E-08 4,63207E-06 9,607767602 

hsa-miR-484 -0,968992088 10,95168084 -6,06716186 1,5344E-07 2,80029E-05 7,265515729 



 

hsa-miR-10a-5p 2,081024981 12,2467303 5,528308441 1,07266E-06 0,000130507 5,396306017 

hsa-miR-1228-3p 4,051003354 3,990660622 5,334588305 2,14011E-06 0,000156845 2,937167011 

hsa-miR-192-5p 1,830449954 9,180609279 5,333477988 2,14856E-06 0,000156845 4,777281961 

hsa-miR-122-5p 2,55578042 14,61508189 5,281995364 2,57904E-06 0,000156891 4,513796403 

hsa-miR-483-3p 3,414206586 6,404134527 4,695920592 1,99243E-05 0,001038908 2,172741694 

hsa-miR-29a-3p 1,206293588 10,73818744 4,551485239 3,2597E-05 0,001487237 2,202567045 

hsa-miR-200a-3p 3,465997337 4,866574171 4,494627868 3,95093E-05 0,001530252 1,331509038 

hsa-miR-95-3p 2,808628418 4,115791539 4,477032544 4,19247E-05 0,001530252 0,901745275 

hsa-miR-141-3p 4,208288498 2,224073379 4,430977061 4,89497E-05 0,001624242 0,551131259 

hsa-miR-200b-5p 4,150171764 1,738451866 4,34535686 6,51837E-05 0,001946062 0,31774572 

hsa-miR-1249-3p 2,094002549 6,168566659 4,326917505 6,93118E-05 0,001946062 1,278252597 

hsa-miR-194-5p 1,405051065 8,569272577 4,245047167 9,09241E-05 0,002370521 1,31682598 

hsa-miR-30a-5p 1,001619429 11,10190101 4,20739491 0,000102941 0,002504901 1,116525756 

hsa-miR-210-3p 1,800614636 5,295307845 4,184081001 0,000111141 0,002535394 0,72339533 

hsa-miR-6803-3p 1,537335453 7,137953939 3,993748352 0,000206399 0,004033432 0,587617442 

hsa-miR-885-3p 3,817229233 2,102083348 3,985694286 0,000211819 0,004033432 -0,498003928 

hsa-miR-27b-3p 0,913507616 11,33471254 3,982325318 0,000214127 0,004033432 0,41578504 

hsa-let-7c-5p 0,960124114 8,985287488 3,972481989 0,00022101 0,004033432 0,493589685 

hsa-miR-92b-3p 1,109425308 7,797164534 3,954870876 0,000233862 0,004064738 0,479599265 

hsa-miR-125a-5p 0,888810795 11,98978333 3,868876534 0,000307699 0,005105009 0,053046362 

hsa-miR-429 3,691249769 2,83812068 3,840085619 0,000337101 0,005349652 -0,602891449 

hsa-miR-3605-5p -2,749120112 2,243448026 -3,300179381 0,001754349 0,026680728 -1,756628496 

hsa-miR-410-3p -2,638457106 2,532897633 -3,27286162 0,001900603 0,027748801 -1,744064304 

hsa-miR-1228-5p 2,279605731 4,037448717 3,214985921 0,00224937 0,031577696 -1,743031044 

hsa-miR-1306-5p 0,917897482 7,163214442 3,173312791 0,002536964 0,033480689 -1,590939879 

hsa-miR-21-5p 0,664671736 15,09252068 3,169033287 0,002568382 0,033480689 -2,06321988 

hsa-miR-185-3p -2,555249814 2,352847101 -3,103911577 0,003093974 0,0389414 -2,090584402 

hsa-miR-99a-5p 0,82263466 10,04454709 3,053824647 0,003565181 0,043376369 -2,108862202 
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