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Abstract

This thesis documents the development of a simulated test platform for the Lone

Wolf project. The thesis covers modelling, framework, implementation, simulation

and visualisation. The thesis aims to enable further development of autonomous

navigation in the Lone Wolf project.

The Lone Wolf ATV was modelled in CAD software and exported for use in ROS.

The model of the ATV consists of a base link with joints forking out to the four

wheels. It is simplified from the actual ATV to make joint definition less compli-

cated and to enable simulation of movements, wheel spin and turning in the ROS

environment. Two worlds are generated for the ATV to gather data from and map.

One world is more complex than the other.

A Velodyne VLP-16 LiDAR is implemented to the model file in the ROS envi-

ronment. The sensor is used to gather data and generate a point cloud. It is also

implemented an IMU sensor in the model file, which is used to supplement the odom-

etry of the LiDAR. Simultaneous navigation and mapping is implemented as a ROS

package in order to generate a map. The algorithms uses the gathered point cloud

from the LiDAR, to estimate the path and map, which is published and visualised.

The simulator works as intended and can be used as a test platform for SLAM algo-

rithms. The ATV model gathers data in form of a point cloud, and this data along

with data from the IMU is processed by a SLAM algorithm. Due to the intention

of the project being testing and further development, most of the discussions in the

thesis focuses on possible implementations and functionalities of the simulator.
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Sammendrag

Denne rapporten dokumenterer utviklingen av en simulert testplattform for Lone

Wolf-prosjektet. Rapporten dekker modellering, rammeverk, implementering, simu-

lering og visualisering. Prosjektet har som mål å muliggjøre videreutvikling i Lone

Wolf-prosjektet.

Firhjulingen Lone Wolf ble modellert i en CAD-programvare og eksportert for bruk

i ROS. Modellen av firhjulingen best̊ar av en basislenke med fire ledd som g̊ar ut til

hjulene. Modellen er forenklet fra den faktiske firhjulingen for å gjøre leddkonfig-

urasjonene mindre komplisert og for å muliggjøre simulering av bevegelser, hjulspinn

og svinging i ROS-miljøet. To verdener er generert for forhjulingen å samle data fra

og kartlegge. Den ene verdenen er mer kompleks enn den andre.

En Velodyne VLP-16 LiDAR ble implementert til modellfilen i ROS-miljøet. Sen-

soren brukes til å samle inn data og generere en punktsky. Det er ogs̊a imple-

mentert en IMU-sensor i modellfilen, som brukes til å supplere odometrien til Li-

DARen. Samtidig navigasjon og kartlegging ble implementert som en ROS pakke

for å generere kart. Algoritmen bruker punktskyen fra LiDARen til å estimere en

sti og et kart. Denne dataen publiserer og kan dermed visualiseres.

Simulatoren fungerer etter hensikten og kan brukes som en testplattform for SLAM-

algoritmer. Modellen av firhjulingen samler inn data i form av en punktksy og IMU

data som behandles av en SLAM-algoritme. P̊a grunn av at prosjektet er utviklet

for testing og videreutvikling, fokuserer de fleste diskusjonene i rapporten p̊a mulige

implementeringer og funksjonaliteter til simulatoren.

ii
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Chapter 1

Introduction

1.1 Background

Lone Wolf is a multi-disciplinary student project in Kongsberg Defence & Aerospace.

The aim of the project is to design and build an autonomous all-terrain vehicle

with implemented obstacle avoidance. The project started up in 2019 and has

changed course over the years, from building an autonomous remote weapon station

to designing and building an autonomous ATV. The Lone Wolf ATV is shown in

figure 1.1.

Figure 1.1: Physical Lone Wolf ATV

1
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The ATV is constructed to turn, gear, accelerate and break by computer control.

Object detection has been implemented to assist if unforeseen obstacles are in the

planned path. The saddle has been removed to implement framework for all other

modifications such as remote steering and sensor placements. Figure 1.1 shows the

modifications done to the ATV.

There are several challenges associated with making the ATV fully autonomous.

Being able to test different methods of autonomous navigation and scenarios in

fictional environments will help with the rate of development of the project. If

multiple environments are created, it is possible to test in both simple and more

complex environments in order to find an optimal method of autonomous navigation.

1.2 Requirements

One or more fictional environments should be available for testing autonomous navi-

gation of the ATV both in simple and complex environments. To do this, a model of

the ATV has to be made. The ATV is equipped with several sensors such as LiDAR,

radar, IMU, Cameras and a GPS that can be included and used in the simulation

for best possible autonomous navigation.

The ATV model should gather data in the form of a point cloud in the ROS simulator

with the help of a LiDAR or stereo camera. This point cloud will be processed by

SLAM algorithms and supplemented with different sensor data i.e. IMU-data and

odometry. The map of the environment the SLAM-algorithm estimates should have

adequate quality so the planning of the passable path for autonomous navigation

can be seen through. The SLAM algorithm should be fitting in terms of complexity

and result to continue working on in the Lone Wolf project 2022. The map should

be three dimensional supplemented with other sensor data.

For the original project assignment document see appendix A and for a complete

inventory list see appendix D.
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1.3 Thesis Statement

Testing autonomous navigation is both challenging and time consuming, and there

are a lot of unforeseen obstacles and challenges. In previous years, the summer

students have not had an efficient way of testing autonomous mapping and nav-

igation, with all testing having taken place in the terrain. A simulator that can

gather data in form of a point cloud and generate maps by using SLAM algorithms

enables a simpler way of testing autonomous navigation. With such a simulator, the

students will be able to test autonomous mapping in both simple and more complex

environments.

1.4 Problem Statements

Several problems have to be overcome due to the complexity of the project. This

list summarises the most pertinent to the project.

• A similar model of the Lone Wolf ATV is needed for the simulator to be

accurate.

• Simulated environments are needed to test SLAM algorithms.

• The model needs simulated sensors to gather data to visualise a point cloud.

• Point cloud data needs to be processed by a SLAM algorithm to generate

maps.

• A test platform for autonomous navigation needs to be generated.

• Documentation of the project is crucial for further development and use of the

simulator as a test platform.

1.5 Objectives

Some objectives to solve for the problems stated in the previous section were defined.

These lay the foundation for the work and choices made for this thesis.

• By getting as accurate measurements of the ATV as possible, a representative

model could be implemented in the simulator.
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• Generating worlds in Gazebo makes environments for testing algorithms avail-

able.

• Implementation of the model and sensors in ROS enables gathering of data

that can be used to visualise a point cloud.

• Building a SLAM package that is fed LiDAR data enables generation of maps

based on point cloud data.

• Generation of maps through SLAM algorithms enables the possibility of au-

tonomous navigation in later developments.

• Use of Git allows for version control, and storage of all software. This thesis

works as a documentation of the development. All 3D modelling parts will be

uploaded to the Git repository.

1.6 Report Structure

The report is divided into chapters based on the topics they discuss. This structure

is implemented to make it more simple to read and reference for further development

of the simulator. Each chapter contains its own theory, method, results, discussion

and conclusion. Due to the nature of the project, some of the chapters will reference

previous sections.

The first chapter includes the background of the project, requirements and the thesis

statement. The issue of the project will be presented as well as requirements and a

suggestion for solution. The chapter also contains a list of definition of terms and

abbreviations that appear frequently in the thesis.

The second chapter has an overview of the research and development method used

in this project, along with a HSE and risk assessment.

The third chapter introduces ROS, the robot development framework used for the

simulator. This chapter includes a complete overview of the theoretical workings

of ROS and basic features, as well as packages and essential applications such as

Gazebo and RViz.

The fourth chapter contains all the aspects of modelling the ATV for the simula-

tor. It presents all the modelled parts and discusses the choices made during the

modelling process in order to make implementation to ROS as simple as possible.
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In the fifth chapter, everything related to point clouds are described. The sensors

and software needed to gather data and the methodology of how to visualise the

data is presented.

The sixth chapter introduces the implementation of SLAM. The SLAM algorithms

chosen is explained and discussed, as well as the methodology of integrating SLAM

in the simulator software.

The seventh chapter describes structure and implementation of the model and world

files to the simulator. The results section presents the complete simulator and its

functionality.

The eight chapter describes Docker and the set up of a specific container for NVIDIA

drivers. DockerFile practises are presented and discussed.

The final three chapters present the complete results, discussion and conclusions for

the finalised project. Suggestions for further development of the simulator are also

presented.
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1.7 Definitions

Term Definition

ATV All-Terrain Vehicle

Autonomous Freedom to govern itself

CAE Computer-Aided Engineering

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

CoM Centre of Mass

CPU Central Processing Unit

DoF Degrees of Freedom

ENU East, North, Up coordinate system

GICP Generalised Iterative Closest Point

GPS Global Positioning System

GPU Graphics Processing Unit

GTSAM Georgia Tech Smoothing and Mapping

GUI Graphical User Interface

HSE Health, Safety and Environment

IMU Inertial Measurement Units

KDA Kongsberg Defence & Aerospace

LiDAR Light Detection And Ranging

NDT Normal Distributions Transform

Odometry Estimated change in position and orientation

PCB Printed Circuit Board

PCL Point Cloud Library

Point Cloud Set of data points in space

Pose Position and orientation of all joints in a robot

ROS Robot Operating System

SDF Simulation Descriptive Format

SLAM Simultaneous Localisation And Mapping

Voxel Value on a regular grid in 3D space

XML Extensible Markup Language

Table 1.1: Terms and Definitions



Chapter 2

Method

2.1 Development Method

During the preliminary phase of the project, the task manager platform Jira was

taken into use [1]. The project contains a lot of different separate sections, that

were worked on simultaneously. Jira has therefore been fundamental for keeping

an overview of all the issues that are in progress and finished. An example of an

issue in the agile board in Jira is shown in figure 2.1. Jira allows for the agile

project management method Scrum, that is a management method where the work

is carried out in short cycles called sprints. The sprint length for this project was

set to two weeks, to fit the intervals of the bi-weekly reports and meetings with the

group’s supervisor.

Figure 2.1: Agile Board of the Implementation Issue in Jira

7
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Due to the project being a simulator, it is by nature software heavy. Several pro-

gramming languages are utilised and most of the software has been developed by

several project members simultaneously. To keep the software development agile, a

Git repository was added. The use of Git allows version control of the software and

collaboration within the team. When features were added or issues listed in Jira

were resolved, the changes were committed to the main branch of the repository. A

public Git repository provides a simple distribution of the software for further work

and testing. The final commit of the repository is provided as a zip-file [2].

Microsoft Teams was used for file sharing within the group and to the supervisor.

The use of MS Teams and Git ensured that each member is always up to date with

the latest code or figures. Bi-weekly meetings and communication with the thesis

supervisor were scheduled using Teams. Meetings with the client were scheduled and

held using Skype for Business and Google Meet. LATEX was used as the main word

processing program for writing this thesis. Like MS Teams and Git, this enables the

group to work on the same file simultaneously.

2.2 Research Method

Developing a functioning test simulator for an autonomous vehicle requires several

elements to function together. The group made an effort to divide the different parts

into smaller, more manageable functions. This allowed for specifying the research on

a more narrow topic, and dividing the topics among the group members. Because of

the many element in this project, the research method varies for each topic. There

was made an effort to use reliable and primary sources while gathering research

material. Some of the topics in this project were completely new to the group

members. This means that parts of the research covers the basics of these of the

topics. The remaining research were built upon the knowledge already acquired

from the Electrical Engineering programme at NTNU and the technical student

organisations Ascend and Revolve.
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2.3 HSE and Risk Assessment

A risk and HSE assesment were made during the preliminary project planning [1].

Seeing as this is a software project, there are not any risks tied to equipment or

development method. The most significant risks in this project were related to

the progress and quality, in addition to the client visit at Kongsberg Defence &

Aerospace. All of these concerns have been assessed thoroughly in the preliminary

project. The preliminary assessments have been sufficient and well managed as

none of the risks have negatively impacted the quality or delayed the deadline for

completion of the simulator.



Chapter 3

Robot Operating System

3.1 Introduction

Robot Operating System, ROS for short, is an open-source collaborative collection

of software libraries and tools for making robot development easier [3]. Although the

name states that it is an operating system, this is not accurate. ROS is a distributed

framework of processes that works as a communication infrastructure that sends

and receives information between different software programs. This infrastructure

is described in detail in chapter 3.2.1.

Before ROS, the framework for robotics research had to be developed for each brand

of robot [4]. The aim of the ROS project is to have a simple framework that lays a

standard foundation for robot development and facilitate code reuse so that robotics

research can focus on development of new technology, rather than reinventing the

robotics framework for each new robot. The design of ROS enables simple distribu-

tion of software in addition to enabling independent decisions about implementation

and development.

This chapter describes the functions of ROS 2, including communication infrastruc-

ture and file system. Project essential applications such as Gazebo and RViz along

with libraries an packages used are presented. Finally the directory structure is

presented and discussed along with the choice of ROS version and distribution.

10
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3.2 Theoretical Framework

3.2.1 Communication Infrastructure

Nodes

Nodes are computation processes that allow them to communicate with one another

using topics, services and the parameter server [5]. Nodes operate on a fine scale,

this means that a robot control system usually consists of many nodes. The use of

nodes in a control system reduces the complexity of the code compared to monolithic

systems. They also provide an additional fault tolerance as crashes are isolated to

individual nodes.

Topics

Topics are buses with graph resource names, over which nodes exchange messages [6].

Topics have a publish and subscribe functionality that can have several publishers

and subscribers. Nodes are in general not aware of who they communicate with,

they instead use the functionality that topics provide. Nodes that are interested in

information subscribe to the relevant topic and nodes that generate data publishes

this to the relevant topic. The types of information published to a topic can be vary

considerably and can be user defined.

Services

The publish/ subscribe functionality of topics is a flexible way of communicating

across an intricate system, but the many-to-many one-way model of transporting

information is not appropriate in request and response interactions [7]. This inter-

action is instead done using services. A service is an action a node can take, that

has a defined beginning and end, and will result in a single result. The service is

defined by a pair of messages - one for the request and one for the response.
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Messages

Messages are simple data structures comprised of typed fields [8]. Nodes uses mes-

sages to communicate with each other by publishing them to topics. Messages

support primitive types such as integers, floating points and boolean in addition to

arrays. Messages can also exchange a request and response message.

Parameter Server

A parameter serves is a multi-variate database shared between nodes [9]. This

database is used by nodes to retrieve and store parameters while the program is

running. This database is however not designed for high-performance, and is mostly

used to store static or semi-static parameters. The parameters stored in this server

is globally viewable, this lets the tools easily inspect and modify the state of the

system if necessary.

3.2.2 File Structure

Workspace

A workspace is a directory used to organise a ROS project [10]. This directory

contains at least three sub-directories called build, install and src. The src is a

manually created file that contains the entire project’s packages. The build and

install folders are automatically created within the workspace when you use the

ROS build function colcon in ROS 2. When you build a workspace several setup.*sh

files will appear in the install file. If you source these files, the workspace will overlay

on top of your ROS 2 environment and make it possible to access the packages.

Packages

ROS 2 software is organised into packages that can be consideres as a sort of con-

tainer [11]. Packages make ROS 2 code shareable with others, because it allows

others to easily build it and it is compact enough to be usable by other software.

The contents of a ROS 2 package can vary considerably, but they should have enough
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functionality for it to be reusable by others. The atv pkg and controller pkg folders

that contain configuration, launch and setup files are examples of packages in this

project. Packages are not required to contain nodes, they can just hold datasets as

long as they are a useful component.

ROS 2 packages can be either CMake or Python packages, each of them having

their own minimum required contents [11]. Both types of packages need to have a

package.xml file that contains meta information about the package. CMake packages

also needs to contain a CMakeLists.txt file that describes how the code is built within

the package. Python packages have a setup.py, setup.cfg and <package name> file

in addition to the package.xml file. The setup.py file contains instructions for how

to install the package. The setup.cfg is required when the package has executables

so that the ros2 run command can find them. The <package name> is a directory

with the same name as your package, that the ROS 2 tools use to find you package.

Simulation Description Format

SDFormat is an XML format that describes objects and environments for robot

simulators, control and visualisation [12]. This format is capable of describing all

aspects of robots with links, joints, collision objects, visuals, and plugins. The

format also describes environments with dynamic and static object, terrain, lighting

and physics. This format is capable of running within a simulated world in the

Gazebo physics engine, and allows communication from the controller to the links.

Launch Files

In order to start a system with multiple nodes, you can run the ros2 run command

through the terminal in the specific order of the system. This can be tedious and

time consuming, and allows for a large margin of error. Instead of starting the

system node for node, the launch file system in ROS 2 can write a call for any

number of nodes in a specific order and define any number of parameters on the

parameter server [13]. Launch files describes the entire configuration of the system

and starts the nodes at once when you run the command ros2 launch in the terminal.

ROS 2 launch formats can be written using python, XML and YAML. Launch files

can be launched from within other launch files as well. This allows for launching of
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isolated parts of the system and makes the debugging easier. By using launch files

the starting of an application will be tidier, and the user will save a lot of time.

3.2.3 Project-Essential Applications

The following descriptions are fundamental ROS 2 applications to the project.

Gazebo

Gazebo is an open source three-dimensional robotics simulation software [14]. It

consists of a collection of libraries with support for sensor simulation, and actuator

control and can be implemented with ROS 2 using the gazebo ros pkgs package.

Gazebo utilises several high-performance physics engines that enables rendering of

shadows, lighting and texture as well as accurate simulations of perception sensors

such as LiDARs.

RViz

Rviz is a three-dimensional visualisation software tool for robots, sensors, and al-

gorithms [15]. It enables the users to see the robot’s perception of its world, real

or simulated. The purpose of Rviz is to enable the user to visualise the state of

the robot. It uses sensor data to create an accurate depiction of the environment

around the robot.

rqt

rqt is a software that provides a graphical user interface (GUI) with access to various

tools in the form of plugins [16]. This makes the information from the ROS 2

operations easier to break down, and more user-friendly. The package rqt graph

provides a GUI plugin for visualising the ROS computation graph. An example of

this can be seen in figure 3.1.
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Figure 3.1: Example of rqt graph

3.2.4 Project-Essential Packages

The following are ROS 2 packages that are fundamental to the project.

Gazebo Ros Package

The package gazebo ros pkgs includes wrappers, tools and additional API’s for using

ROS 2 with the Gazebo simulator [17]. The gazebo ros api plugin plugin, located

within the gazebo ros package, initialises a ROS 2 node called ”gazebo”. It integrates

the ROS 2 callback scheduler with Gazebo’s internal scheduler to provide the ROS

2 interfaces. This ROS 2 API enables a user to manipulate the properties of the

simulation environment over ROS, as well as spawn and introspect on the state

of models in the environment. A secondary plugin named gazebo ros paths plugin

is available in the gazebo ros package that simply allows Gazebo to find ROS 2

resources, i.e. resolving ROS 2 package path names.

The plugin diff drive controller is a controller for a differential drive wheel system

[18]. This plugin is included in the gazebo ros pkgs. The control is in the form

of a velocity command, that is split and sent to two different joints. Odometry is

computed from the feedback from the robot, and can be published.

Included in this package is another plugin called skid steer drive. This plugin has

all of the same functions as diff drive controller, but it allows for specifying as many

joints as needed. This allows steering four wheels. The plugin takes in multiple

arguments, some of them can be seen in table 3.1.
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Argument Explanation

odometry frame Frame id of the odometry frame

update rate Number of iterations per second

max wheel torque Maximum rotational force

covariance x Covariance in x-direction

covariance y Covariance in y-direction

covariance yaw Covariance in yaw

robot base frame The frame id of the base link

wheel separation Distance between front/back wheels

wheel diameter Diameter of the wheel

publish wheel tf / publish odom tf Publish transformations

left joint Front left wheel

right joint Front right wheel

left joint Back left wheel

right joint Back right wheel

Table 3.1: Arguments in Skid Steer Drive

The plugin for the simulated IMU is also included in gazebo ros pkgs. This plugin

makes it possible to capture IMU data from the simulator and publish it on a topic

with a sensor msgs/msg/Imu message type.

Velodyne

The ROS 2 package Velodyne needs to be installed for the Velodyne VLP-16 LiDAR

to work. The plugin gazebo ros laser controller is included in this package and can

be used to collect a point cloud from a simulated world.

Teleoperation Twist Keyboard

The teleop twist keyboard is a ROS 2 package for steering robots through a keyboard

[19]. This package reads arguments from the keyboard and publishes the information

as a geometry msgs/msg/Twist message type to the cmd vel topic. The message

definition of this message type can be seen in appendix E. Some of the available

actions for this package can be seen in table 3.2.
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Argument Action

u Turn left while driving forward

i Drive straight ahead

o Turn right while driving forward

j Turn left (in place)

k Stop

l Turn right (in place)

m Turn left while backing up

, Back up (straight)

. Turn right while backing up

q/z Increase/decrease max speeds by 10%

w/x Increase/decrease only linear speed by 10%

e/c Increase/decrease only angular speed by 10%

Table 3.2: Teleoperation Twist Keyboard Arguments

tf

The tf package lets the user keep track of multiple coordinate frames over time, and

maintains the relationship between coordinate frames in a tree structure buffered in

time [20]. The user can transform points, vectors, etc between any two coordinate

frames at any desired point in time.

lidarslam ros2

The lidarslam ros2 is a ROS 2 SLAM package where the front end operates with

OpenMP-boosted GICP/NDT scan matching and the back end operates with graph-

based SLAM [21].

LIO-SAM

LIO-SAM is a real-time lidar-intertial odometry package that transforms raw IMU

data from the IMU frame to the LiDAR frame [22]. This package only works with

a 9-axis IMU, which gives roll, pitch and yaw estimation.
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li slam ros2

The li slam ros2 package is a combination of two packages called lidarslam ros2 and

LIO-SAM [23]. The package uses LIO-SAM for IMU composites and the SLAM

algorithms from lidarslam ros2.

3.2.5 Project-Essential Libraries

Point Cloud Library

Standard ROS 2 library for manipulation with point clouds, and is a standalone,

large scale, open project for 2D/3D image and point cloud processing [24]. The li-

brary includes algorithms in registration, filtering, segmentation, and feature extrac-

tion. Tools for visualisation and manipulation with point clouds are also included.

g2o

The g2o is a pose graph optimisation library for graph-based nonlinear error func-

tions [25]. It is the most used library for the pose graph optimisation, and offers

well designed extendable interface which makes it easy to add a new definition of

pose graph optimisation.

Eigen

Eigen is a open-source C++ library for linear algebra, and is a fast and well-suited

library for tasks within heavy numerical computations, to simple vector arithmetic.

The library includes modules for dense and sparse matrix representations, numerical

solvers and transformation representation [26].

GTSAM

GTSAM is short for Georgia Tech Smoothing and Mapping (SAM), and is a C++

library that implements smoothing and mapping in robotics and computer applica-

tions. This includes SLAM [27].
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3.3 Method and Equipment

In order to implement the different nodes, it is important that the topics have the

right names. The publisher node publishes a message to a given topic, which the

subscriber nodes listen to. This is visualised in figure 3.2. In some scenarios, in

order to implement new packages, the topic names need to be changed to match.

Figure 3.2: ROS 2 Graph [28]

In the project several packages are implemented, such as velodyne, li slam ros2 and

teleop twist keyboard. How these are implemented is described their respective chap-

ters, see chapters 5.3.1, 6.3.1 and 7.3.4.

3.3.1 ATV Package

The ATV package is the package for launching the simulator, and is developed from

scratch. This package includes the model and world files for the simulator, but also

the launch file. The launch file, as mentioned in the theory section, launched the

world and model in Gazebo.

After launching this package the data from the ATV’s sensors is available for the

other packages implemented through the ROS 2 framework.
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3.3.2 ROS 2 Packages

Name Description Documentation

gazebo ros pkgs ROS simulation gazebo Open Robotics [29]

teleop twist keyboard Teleoperation Twist Keyboard Open Robotics [19]

lidarslam ros2 LiDAR SLAM ROS 2 package R. Sasaki [21]

LIO-SAM LiDAR-inertial odometry package T. Shan [22]

li slam ros2 LiDAR SLAM ROS 2 package R. Sasaki [23]

ROS 2 binary packages ROS 2 installation option Open Robotics [30]

ROS 2 Foxy full desktop ROS 2 distro and basic packages Open Robotics [31]

Velodyne Velodyne ROS 2 pakcage Open Robotics [32]

Table 3.3: ROS Packages

3.4 Results and Empirical Findings

3.4.1 The Lonewolf Repository

The repository for this project is called is Lonewolf. Inside this repository the build,

install and src folders are located. The build and install folders are automatically

generated the first time the project is built. The src folder contains the integrated

package li slam ros2 and the self-developed atv pkg package. The structure of the

repository is shown in figure 3.3.

Figure 3.3: Lonewolf System Tree
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3.4.2 ATV Package

An overview of the structure of the ATV package is shown in figure 3.4. The

figure shows which layer the different layers the folders are located in, as well as

the inventory of the folders. In the atv pkg there are also three other files named

setup.py, package.xml and setup.cfg, they are not included in the figure since they are

automatically generated when creating a ROS 2 Python package. These files include

installations of python modules, a manifestation of the package and configurations.

Figure 3.4: ATV Package Structure

3.4.3 System Flow

The whole system for the simulator is build upon the ROS 2 framework. The

packages from the Lonewolf repository needs to be launched in order to start the

simulator and the SLAM algorithms. To be able to navigate the ATV the Tele-

operation Twist keyboard needs to be run as well. Simultaneously as the ATV is

navigating, sensor data is gathered from the simulator. This data is fed in to the

SLAM algorithms to generate modified data, which can be visualised in RViz. A

graphical representation of the data flow is visualised in figure 3.5.
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Figure 3.5: System Flow

3.5 Analysis and Discussion

3.5.1 Directory Structure

Many of the files in the lone wolf repository contains paths to models, worlds, meshes

etc. A consequence of this is that it is crucial with a correct directory formation. If

files are placed in the wrong directory, the simulator will not be able to find them.

This results in various error messages and in worst case that the simulator won’t

launch. For that reason it is important to keep the structure and the directories

tidy.

3.5.2 ROS Version and Distribution

The robotics industry has changed a lot since the ROS project was started. Although

the ROS 1 project has had periodical improvements since the beginning, there has

still been a need for a more adapted framework for the modern robotics community.

The ROS 2 project leverages what is great about ROS 1 and has improvements for

what missed. It is also worth mentioning that the ROS 1 project has an end of life



3.6. CHAPTER CONCLUSION 23

in year 2025 so ROS 2 might be a better framework for further development in the

coming years. In addition the group members had more experience with ROS 2 in

their work within aerial robotics prior to the project start.

Since the ROS 2 project is relatively new, there are still some functionalities that are

not developed yet. Available packages were researched before a choice of framework

was made. The conclusion of this research were that the needed packages had been

included to the ROS 2 Foxy distribution. Taking all of these points into account,

the ROS 2 Foxy distribution was chosen to be the framework in this project.

3.6 Chapter Conclusion

The setup of the Robot Operating System framework is successful, and the project is

run entirely through ROS 2 Foxy terminal commands. The different ROS 2 packages

and libraries is implemented, and works as intended. A tidy repository is set up

to maintain an easy and manoeuvrable folder structure. The self-developed ATV

package successfully launches the world and the model in Gazebo. Visualisations in

RViz can be launched by terminal commands.



Chapter 4

3D model

4.1 Introduction

In order to have a functioning simulator for testing the Lone Wolf ATV, an model

needs to be implemented in the ROS environment. The model needs to resemble

the ATV both in looks and driving behaviour.

This chapter gives an overview of the modelling methods and choices made to model

the ATV to the given requirements. The modelling of the individual parts will be

explored in addition to a discussion on the choices made under the duration of the

project.

24
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4.2 Theoretical Framework

4.2.1 Bodies and Components

In Fusion 360, a body defined as any continuous 3D shape. They are physical object

that exist in a component or in the global space [33]. A component refers to what is

called a ”part file”. A component is a part that is capable of motion, and can serve

as a container for design objects [34]. Components work as a organisation tool for

designs, and the easy implementation of a component into other design files allow

design reuse.

4.2.2 Joints

For the ATV to be able to turn and drive by wheel spin in the simulator, joints

have to be defined between the wheels and body of the ATV. A joint allows the

component to translate or rotate along or around the x, y or z axis. When modelling

using a CAD software, there are several types of joints that can be defined between

two components [35]. The three joint types compatible for SDF exportation are

the revolute, slider and rigid joints. Revolute joints have one degree of freedom in

rotational direction around the x, y or z axis. Slider, or prismatic, joints also have

one degree of freedom but in the translational direction. This joint type makes the

components slide along one another in the chosen axis. The rigid, or fixed, joint type

fixes the two components to each other and provides no degrees of freedom. Rigid

groups can be used to constrain multiple bodies to each other instead of creating

multiple rigid joints [33]. This function locks the relative position of the selected

components to one another. The rigid group is treated as a single object when it is

moved or other joints are applied to the components.
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4.3 Method and Equipment

4.3.1 Measurements

The project group travelled to Kongsberg Technology Park to get the specific mea-

surements of the ATV. There has been done alterations on the ATV. The group

focused on getting precise measurements of the additional parts KDA has made

themselves. These measurements can be found in appendix B. The rest of the ATV

is a standard model and its measurements can be collected in a data sheet which

can be found in appendix C.

4.3.2 Modelling Software

In order to model the ATV accurately, a more precise modelling software than

Gazebo was needed. This software has to create a model file that Gazebo and the

ROS environment supports. Fusion 360 was chosen because it allows exportation of

a model to a Gazebo friendly format by implementing a script and following specific

rules [36]. Fusion 360 is a cloud-based 3D modelling, CAD, CAM, CAE, and PCB

software platform for product design and manufacturing [37]. This modelling soft-

ware has various functionalities such as precise modelling, animation and rendering.

The software is free for students. It is also a big advantage that it is a cloud-based

system, since there were multiple people working on the model simultaneously.

4.3.3 Modelling in Fusion 360

The modelling of the ATV was a complex process where the members of the group

had responsibility for modelling the different parts before assembling everything

together. Before modelling in 3D, the parts had to be drawn with the correct

measurements as a 2D sketch. These sketches could then be transformed to a three

dimensional part by using one of the functionalities in Fusion 360, such as the

extrude and revolve tool. Each component was created as an isolated file. After

all the components were completed, they were imported in to the main file and

assembled.
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All the bodies, apart from the wheels, were combined to one larger component. This

was done to simplify the process of integrating the robot in Gazebo. This part is

called the base link of the robot and can be seen in figure 4.1.

Figure 4.1: Base Link of the ATV Model

The joint functionality was utilised to connect the wheels to the base link. This

joint type demands a parent link and a child link. For this model the base link is

the parent and the wheel is the child. This causes that the wheels will be connected

to the base link and that they rotate around a chosen axis. The joint between the

base link and the wheel is shown with a blue circle and arrow in the middle of the

wheel, in figure 4.2.

Figure 4.2: Wheel Joint
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4.3.4 SDF Export

In order to export the ATV model from Fusion 360 to a world file in Gazebo, a script

that can allows exportation in SD Format had to be followed. The ATV i modelled

following a strict set of rules where the links have to be defined as rigid groups for

the script to work. Joints have to be defined between components that belong to

different rigid groups. Fixed, prismatic and revolute joint types are supported. Both

links and joints have to follow a naming convention where links have to be defined

as EXPORT link name and joints as EXPORT joint name. This is done to protect

the structure of the model and avoid broken links when the model is uploaded in

Gazebo. In this project, the entire body of the ATV is defined as a rigid body, from

which all joints fork out from.

4.3.5 Sensor Implementation

The Velodyne VLP-16 LiDAR was implemented directly to the SDF file. There was

already created a SDF model for this sensor that was available online. The IMU has

a simple design since it is almost not visible on the ATV. It is design as a simple

white box. Images of the sensors can be seen in figure 4.3.

(a) LiDAR Velodyne VLP-16 (b) IMU

Figure 4.3: Model of the Sensors
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4.4 Results and Empirical Findings

4.4.1 Complete ATV Design

Parts modelled from measurements

Some of the parts of the ATV had well defined measurements taken from the ATV

itself or from the part specifications. These include the tyres, rims LiDAR mount

and frame as seen in figure 4.4. The frame is modelled completely hollow, just like

the physical one is.

(a) LiDAR Mount (b) Frame

Figure 4.4: Model of Extra ATV Parts

Both front and rear wheels are modelled after the dimensions of the front tyres as

seen in the data sheet in appendix C. Although the rear tyres are originally 5.2 cm

wider than the front tyres, they were made to be the same width as the front tyres

in order to make assembly and exportation to SDF simpler. All four wheels are

therefore identical to the modelled front wheel in figure 4.5.

Figure 4.5: Modelled Front Wheel



4.4. RESULTS AND EMPIRICAL FINDINGS 30

Designed Parts

Some of the parts were designed after more vague measurements than the ones

mentioned in the paragraph above. These parts were designed after pictures and

measurements of the width, height and depth. The top plates and display in figure

4.6 are designed for the purpose of making the ATV look more similar to the physical

one.

(a) Top Plate (b) Display

Figure 4.6: Designed Top Plate and Display

The chassis in figure 4.7 was designed after pictures of similar Can Am ATV models

chassis’ [38]. It was designed to fit the other parts, so that it is narrow enough for

the frame to fit on top of it, and the wheels to fit on the sides of it without being

too wide. Just like the frame in figure 4.4b, it is designed completely hollow.

Figure 4.7: Designed ATV Chassis
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The designed suspension for the model consists of a simple metal pole with two

suspension rods perpendicular to the pole, as seen in figure 4.8. This is done to keep

the implementation of joints between the suspension and wheels less complicated.

Figure 4.8: Designed ATV Suspension

The front and rear body parts in figure 4.9 were designed after measurements of

the height, width and depth of the ATV. In addition to this, ground clearance and

distance between the front and rear body were known. They were designed by

sketching the side view of the ATV and extruding smaller parts varying length with

the widest part at the bottom. The fillet tool was used to make it more similar to

the physical vehicle.

(a) Rear Body (b) Front Body

Figure 4.9: Body Parts

The complete ATV with all the parts assembled can be seen in figure 4.10.

Figure 4.10: Complete ATV Model
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4.4.2 SDF Export

In order to simplify the creation of the ATV model to use in ROS and get a similar

looking model in the simulator, a script to export a SDF file directly from Fusion

360 was used [36]. A strict naming structure of links and joints had to be followed.

The joints had to be either fixed, revolute or prismatic as well to avoid broken links

when the file is uploaded to Gazebo. For simpler integration in Gazebo, all the

links apart from the wheels were combined to the base link of the model. The link

tree in Fusion 360 looks like figure 4.11. Fusion 360 automatically calculates the

moment of inertia matrices and centre of mass of the model based on the material

chosen for each part. Because this model is not complete and misses several parts

from the physical ATV such as the motor, the moment of inertia and CoM was set

manually after the model was exported to SDFormat. This, and how the model was

implemented in the simulator in ROS is presented in chapter 7. The file structure

after exporting the model can be seen in figure 4.12.

Figure 4.11: Part Configuration Tree in Fusion 360
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Figure 4.12: File Structure After Exporting

4.5 Analysis and Discussion

4.5.1 ATV Model

As can be seen from figure 4.10, the model is missing several parts from the actual

ATV, like the motor and red tubing around the body. The aim of the modelling

of the ATV has been to have a model that is similar in terms of looks and physics

and that has the ability to move like a real life ATV. Given the time frame of the

project, the focus has been on creating a model with correct measurements and

joint configuration, rather than spending much time on implementing all the parts

that were not pivotal for exportation to ROS. Had all the parts been implemented

and modelled in Fusion 360, the exported SDF file would have had a more accurate

moment of inertia and centre of mass.

4.5.2 ATV Parts

Chassis

Even after searching up the part number in online part dealers and reaching out

to several Norwegian dealers, the measurements and pictures of the ATV’s chassis

were unattainable. Pictures of chassis’ of similar Can Am ATV models were however

attainable from online part dealers [38]. These pictures were all taken from an angle,

so it was difficult to make a two-dimensional sketch based off of the side view from
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the pictures. The chassis was therefore designed to look like the Can Am Outlander

1000 XT 12 chassis, and made to fit with the other parts of the ATV, such as

the frame and wheels. If the simulator is further developed to include realistic

load-bearing capacities of the ATV, the chassis will have to be remodelled to the

correct specifications. These considerations have not been taken into account in this

project, and the design of the chassis have no impact on the desired functionality of

the simulator.

Wheels

At the first exportation of the model to SDF, the rear wheels were modelled after the

specifications of the rear tyres meaning that the rear and front wheels had different

width. While trying to implement right driving physics in Gazebo, the team ran

into several problems with the wheels not being alike. It was difficult to get the ATV

to drive in a straight line, because the centre of the rear and front wheels would not

be in a completely straight line. The rear wheels were swapped out with the front

wheels for that reason, making all four wheels identical. The original rear wheel

model is included in the Fusion 360 file in the project’s Github repository [2]. They

can be implemented yet again for a more accurate simulation of the ATV’s driving

abilities.

Suspension

Although the ATV has a double A-arm front suspension and torsional trailing arm

rear suspension, the design of the suspension has been kept simple. The designed

suspension consists of a metal pole with two suspension rods perpendicular to the

pole. Implementation of the actual suspension system would have been time con-

suming, and made it challenging to define the joints between the suspension and

wheels. The joint definition would have been too complicated to allow simple devel-

opment of driving behaviour in the simulator.
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4.5.3 Assembly of Base Link Component

All the links, except the wheels and sensors, where combined into one link. This was

done to make the SDF less complicated. By creating one rigid group the process of

altering the inertia and mass centre got less complicated. This decision also made

debugging the SDF much easier. All the links in the base link are static, which

means that making one rigid group instead of multiple rigid joints between them

makes no difference. One argument against this is that all the components in the

base link get the same properties, such as visual material. With the time frame of

the project in mind, the benefits of having a less complicated SDF was prioritised.

4.6 Chapter Conclusion

With the design and modelling choices presented in the results and discussion chap-

ter, the model of the ATV satisfied the aim of having a model that resembles the

physical ATV in terms of looks and driving behaviour. However there are still a lot

of further development one can do to the model to improve the current simulations,

as well as introduce new functionalities.



Chapter 5

Point Cloud

5.1 Introduction

A point cloud is essentially a huge collection of tiny individual points plotted in

space. In this project the point cloud is gathered with a simulated VLP-16 LiDAR.

This data is later fed in to a SLAM-algorithm that creates a map of the environment.

This chapter contains information about the Velodyne VLP-16 LiDAR, how the

point cloud is collected and how it can be viewed in Rviz.

36
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5.2 Theoretical Framework

Point clouds are made up of a multitude of points captured using a 3D laser scanner

[39]. The scanner automatically combines the vertical and horizontal angles created

by the laser bean to calculate a 3D x, y, z coordinate position for each point to

produce a set of 3D coordinate measurements. The measurements often includes its

colour value stored in RGB and intensity. The denser the points, the more detailed

the representation, which allows smaller features and texture details to be more

clearly and precisely defined.

There are two primary tools you can use to capture a point cloud: laser scanners

and photogrammetry [39]. In this project a simulated VLP-16 LiDAR is used. This

LiDAR is already in the Lone Wolf ATV inventory (see appendix D) and collects

all the necessary data for this project.

Light detection and ranging (LiDAR) is a method that measures the distance to an

object by illumintaing the object using an active laser ”pulse”, as can be seen in

figure 5.1 [40]. The distance can then be calculated by

d =
c · t
2

(5.1)

where t is time of flight, c is speed of light in air and d is the distance to the object.

Figure 5.1: Example of How LiDAR Works [41]
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Compared to other sensors, laser detection is more precise, and better suited for

applications with high-speed moving vehicles. The laser sensor generally gives out

2D (x,y) or 3D (x,y,z) point cloud data. These point clouds provides high quality

distance measurements, which works very efficiently for map construction.

The primary purpose of a point cloud is to create a 3D model [42]. In this project

the purpose of the point cloud is to feed it in to the SLAM algorithm to make a map

of the environment around the ATV. This map can then be used for autonomous

driving.

5.2.1 Velodyne VLP-16 Specifications

The Velodyne VLP-16 creates 360◦ 3D images by using 16 laser/detector pairs [43].

The lasers are mounted in a housing that spins from 5 to 20 times a second. As a

result, the scanner can acquire up to 300 000 points per second. More specifications

can be found in table 5.1.

(a) Side View (b) Top View

Figure 5.2: VLP-16 Sensor Coordinate System [44]

Specification Value

Channels 16

Maximum Measurements Range 50 m

Measurement Accuracy ± 3 cm

Field of View (Horizontal) 360 ◦

Angular Resolution (Horizontal) 0.1 ◦-0.4 ◦

Field of View (Vertical) 30 ◦(± 15 ◦)

Angular Resolution (Vertical) 2 ◦

Sample Rate (Adjustable) 5 Hz - 20 Hz

Table 5.1: Velodyne VLP-16 Technical Specification
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5.3 Method and Equipment

5.3.1 Velodyne VLP-16 Specifications in SDF

The specifications of the Velodyne VLP-16 is included in the simulator. The code

for the LiDAR is written directly in the model.sdf. This file can be seen in appendix

G. The listing below shows how the specifications are included.

1 <scan>

2 <horizontal >

3 <samples >170</samples > <!--Horizontal samples -->

4 <resolution >1</resolution >

5 <min_angle > -3.14159</min_angle > <!--Min horizontal angle -->

6 <max_angle >3.14159 </max_angle > <!--Max horizontal angle -->

7 </horizontal >

8 <vertical >

9 <samples >16</samples > <!--Vertical Samples -->

10 <resolution >1</resolution >

11 <min_angle > -0.261799</min_angle > <!--Min vertical angle -->

12 <max_angle >0.261799 </max_angle > <!--Max vertical angle -->

13 </vertical >

14 </scan>

15 <range >

16 <min>0.5</min> <!--Min span in metres -->

17 <max>50</max> <!--Max span in metres -->

18 <resolution >0.001 </resolution >

19 </range >

Listing 5.1: Velodyne VLP-16 Specifications in SDF

5.3.2 PointCloud2

To get a hold of the data the Velodyne VLP-16 produces, a plugin for Velodyne and

ROS 2 is used. This plugin gathers range data from a simulated ray sensor, and

returns results via publishing ROS 2 topic for point clouds. This is coded directly

in the model file, which can be seen in appendix G.

The point cloud data from the LiDAR is gathered in the simulated world. Then
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the data is published as sensor msgs/PointCloud2 message on the topic /points raw

through the /gazebo ros laser controller plugin as shown in figure 5.3.

Figure 5.3: Production of the PointCloud2 Message

The message type sensor msgs/PointCloud2 holds a collection of N-dimensional

points, which may contain additional information such as normals and intensity

[45]. The point data is stored as a binary large object (BLOB). The data may be

organised 2D (image-like) or 1D (unordered).

In this project the point cloud is unordered, which means the data is stored in a

1D array, because the chosen SLAM algorithms doesn’t demand an organised cloud.

The definition of this message type can be found in appendix E.

After collecting the point cloud, it can be visualised in RViz. Using RViz gives an

advantage when setting variables such as range and samples. Getting a live image

of the cloud gives a better understanding of what the different parameters mean.

An example of this is shown in figure 5.4.
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(a) 1875 Horizontal Samples (b) 100 Horizontal Samples

(c) Range 100 (d) Range 10

Figure 5.4: Visualising Point Cloud Data in RViz

5.4 Results and Empirical Findings

The purpose of the point cloud is to feed the gathered data continuously to a SLAM

algorithm to generate maps. This means that the point cloud has to have a satis-

factory quality, with the result that the maps are of a good quality. The parameter

values in table 5.2 are sufficient values. The remaining values regarding the point

cloud is decided by the LiDAR model.

Specification Value

Horizontal samples 170

Vertical samples 16

Minimum range 0.5

Maximum range 50

Table 5.2: Sufficient Values for the Point Cloud

The result of the simulated LiDAR can be seen in figure 5.5. Figure 5.6 shows the

position of the ATV when the point cloud was captured.
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Figure 5.5: Point Cloud in RViz

Figure 5.6: ATV Position When Gathering The Point Cloud Data



5.5. ANALYSIS AND DISCUSSION 43

5.5 Analysis and Discussion

5.5.1 Ease of Implementation

Implementing the LiDAR VLP-16 and gathering the point cloud was very manage-

able. The code for this model was already available on Github and the plugin for the

Velodyne laser was easy to understand. It is also simple to change the parameters.

5.5.2 Number of Samples

The point cloud consists of 170 horizontal and 16 vertical samples. The number of

sampler needed, depends on the use-case of the point cloud and how detailed the

map is required to be. For instance, obstacle avoidance doesn’t require a detailed

map of the surroundings. The algorithm for obstacle avoidance just needs to know

if there is an object nearby that the ATV can crash in. But for other cases, where

the user wants to capture shapes of buildings and surfaces, the point cloud needs to

consist of more samples.

Taking 170 horizontal samples is a minimum regarding the quality of the map.

This value is highly affected of the CPU on the computer the simulator is running

on. 170 horizontal samples functions on a AMD Ryzen 7 4700U, but with a slower

processing unit the simulator begins to lag. The point cloud in this simulator is used

to generate maps for path planning and autonomous driving. 170 horizontal samples

is enough to generate maps and paths with a satisfactory quality, but if these maps

are adequate for autonomous driving needs to be tested in further development.

5.5.3 Range

The VLP-16 LiDAR has range up to 100 metres, but the range of the point cloud is

set to 30 metres. The simulated world is so small that if the range is set to 100, the

LiDAR maps almost the whole terrain before the ATV has started to drive. To test

the SLAM algorithm, described in chapter 6, the ATV has to be able to drive and

map simultaneously. In consequence the range had to be set lower. How short the
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range can be depends on the environment. The LiDAR has to gather enough point

cloud data for the SLAM algorithm to function properly. If the range is set to lower

then 30 metres there is a great chance of that there isn’t any objects near enough

to scan. This can result in that the SLAM algorithms fails to locate the ATV.

5.5.4 3D vs 2D Point Cloud

Creating a three dimensional map demands a 3D LiDAR. Another option for gath-

ering a point cloud is to use a 2D LiDAR to get a two dimensional map. 2D LiDARs

will give out information about the floor plan [46]. If the point cloud data is used

for navigation in a flat environment and the robot is not tall, a 2D LiDAR can be

enough. However, when navigating in a forest or similar environments, there can be

obstacles like hanging tree branches or pipes that the 2D LiDAR won’t detect. In

these cases 3D perception is necessary for detecting all obstacles. 3D LiDARs are

also useful in other applications like terrain classification and segmentation.

5.5.5 Physical and Simulated LiDAR Compared

The project group has compared images of point clouds from a real LiDAR VLP-

16 and the data the simulated one creates. The image in figure 5.7 shows a point

cloud from a physical Velodyne VLP-16 LiDAR and figure 5.5 shows a point cloud

from the simulated LiDAR. With the constrains of the GPU in mind, the simulated

LiDAR in seems to imitate the physical one sufficiently.

Figure 5.7: Point Cloud Crom a Physical Velodyne VLP-16 LiDAR [47]
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5.6 Chapter Conclusion

A point cloud is generated from the simulated worlds. The simulated LiDAR rep-

resents the physical sensor well. The parameters of the LiDAR not decided by the

the model specification, has been set through testing. Finding sufficient values for

the point cloud contributes to better mapping when the SLAM algorithm is im-

plemented. The point cloud seems to capture the environment around the ATV

well.



Chapter 6

Simultaneous Localisation And

Mapping

6.1 Introduction

SLAM is short for simultaneous localisation and mapping, sometimes also called

synchronised localisation and mapping [40]. SLAM is the computational problem

of constructing a map whilst keeping track of the location of the chosen mapping

device. This process makes mobile mapping possible and allows map construction

of large areas more efficiently.

This chapter presents SLAM and the different algorithms tested. For the pose

estimation of the moving vehicle, the Scan-Matcher with NDT algorithm is used.

Graph-based SLAM with GICP algorithm is implemented for the modified map

generation.
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6.2 Theoretical Framework

6.2.1 SLAM

There are many different approaches to SLAM, one of them called LiDAR SLAM.

This approach uses the point clouds from the LiDAR to generate a map. The point

cloud data generation can be read more about in chapter 5.2. Movement is estimated

by matching point clouds, and is then used for localising the vehicle.

There are two types of technology components used to achieve SLAM, the first

one being sensor processing [40]. This is front-end processing that is dependent

on the sensors. The other type is pose-graph optimisation, including the back-end

processing. Pose-graph optimisation is sensor-agnostic, meaning that the method

or format of the data transmission is irrelevant.

The front-end of the process produces an intermediate representation of the sensor

data. This consist of the point detection and tracking/matching as seen in figure

6.1. The back-end of the SLAM process computes an estimate given the represented

sensor data. This is with map estimation.

Figure 6.1: SLAM Processing Flow
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6.2.2 Scan-Matcher

The scanmatcher package is an incremental laser scan registration tool, with the

goal of finding the relative pose or transform between two positions where the

scans were taken. The package allows to match scans between consecutive sen-

sor msgs/msgs/PointCloud2 messages, and publish the estimated position of the

laser as a geometry msgs/Pose or a tf transform [48]. To see the definition of the

message types, see appendix E. Scan-Matcher uses NDT algorithms to estimate the

position.

Normal Distributions Transform Algorithm (NDT)

NDT algorithm is a registration algorithm that uses standard optimisation tech-

niques applied to statistical models of three dimensional points to determine the

most probable registration between two point clouds [49]. The idea is to represent

the point cloud as a set of normal distributions. The surface constituted by the

point cloud is divided into voxels, and projected into the normal distributions. The

score calculation, average vector and covariance matrix is computed for each source

point cloud. This is visualised in figure 6.2.

Figure 6.2: Process of Basic Normal Distribution Transform [50]

The first step in the NDT algorithm is called initialisation. Here the space occupied

by the laser scan is subdivided into a grid of voxels. Each voxel is then assigned

a portion of points. The voxel grid is a geometry type in 3D that is defined on

a regular 3D grid, whereas the voxel can be thought of as the 3D counterpart to
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the pixel in 2D. From each voxel a normal distribution, that locally models the

probability of measuring a point x⃗, is computed. The location of x⃗ is generated by

drawing from the distribution [51]. Drawing a sample from a distribution means

observing a realisation of a random variable which has assigned that distribution to

possible outcomes [52].

The second step of the NDT is called the ”Matching” step. Here, a normal distribu-

tion function for each voxel is generated using space subdivision (dividing a space

into a non-overlapping region). These distributions describes the clouds dispersion,

but does not model the pieces accurately. The normal distribution can only locally

model the points within the voxel, and does not always capture broader features.

Each point in the model cloud is searched for the voxel that verifies this distribution.

The third and last step in the NDT is the transformation determination. In order

to define the transformation, a cost function must be defined. The function is based

on cloud intensity and the best estimation corresponds to the maximum intensity

value of the image. The transformation is considered optimal at the maximum sum

of normal distributions for all points with parameters 1. This sum is called trans-

formation score, and is defined in equation 6.1.

Score(Trans) =
∑
i

exp(
−(u′

i − qti)Σ
−1
i (u′

i − qi))

2
) (6.1)

Equation 6.1: Cost Function [49]

Trans : Transformation (combining translation and rotation)

qi : The average of the corresponding voxel∑
i : The covariance matrix of the normal distribution corresponding to point u′

i

after applying NDT on the first scan.

u′
i : the point ui mapped into the coordinate frame of the reference cloud according

to the transformation Trans.

Finally, a nonlinear optimisation is performed to determine the transformation pa-

rameters.
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6.2.3 Graph SLAM

A graph-based SLAM constructs a graph representation of the pose estimation prob-

lem and is an intuitive way to address the SLAM problem [53]. Solving the graph-

based formulation involves the construction of a graph whose nodes represent robot

poses or landmarks at a certain time stamp T.

The first step of the pose graph creation is to receive the robots movement. The

transformation for the movement either comes from odometry measurements be-

tween sequential robot positions or are determined by aligning the observations

acquired at the two robot locations. From the covariance and transformation, the

edge or odometry edge for the graph can be created. The edges between two nodes

represents a spatial constraint, that relates the two robot poses. The constraint

consist in a probability distribution over the relative transformations between the

two poses.

Summarily, the algorithm constructs a graph out of raw sensor measurements, where

each node represents a robot position and a measurement acquired at that position.

After the graph is constructed, the problem is to find a configuration of the nodes

that is consistent with the measurements. The graph is optimised by algorithms,

either GICP or NDT. This results in the most likely position of all the nodes in the

graph. This graph is called a pose graph, and the nodes represents the trajectory.

An example of this can be seen in figure 6.3.

Figure 6.3: Graph-Diagram of the SLAM System
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The graph-based SLAM is therefore decoupled into two tasks: construct the graph

from raw measurements (graph construction) and determine the most likely config-

uration of the poses, given the edges of the graph (graph optimisation).

Loop Closure Creation

Loop closing happens when the robot reenters a known area after travelling for

along time in a previously unknown region, and the algorithm seeks for matches of

the current scan with the past measurements [53]. If the algorithm find matches

between the current scan and the observation from a previous node, a new edge is

added to the graph.

To determine which poses that overlaps, Dijkstra projection can be used. Dijkstra

concatenate covariance and transformations along the minimum uncertainty path,

which is selected based on the determinant of the covariance matrix [54]. By using

the minimum uncertainty selection it is guaranteed that the algorithm will get from

pose a to target bi. The concatenation of covariance is done based on the following

equations.

Pa+b = JaPaJ
T
a + JbPbJ

T
b (6.2)

Ja =


1 0 −xsinθ − ycosθ

0 1 xcosθ − ysinθ

0 0 1

 , Jb =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (6.3)

where Pa and Pb is the accumulated covariance and additional covariance. Ja use

the parameters from transformation (x, y, θ)a and Jb from (x, y, θ)b.

After the generation of overlapping nodes is done, the potential pair needs to be

tested by an registration algorithm. In order to avoid errors, the loop closure edges

are grouped into groups based on their topological distance from each other. The

inconsistent groups are deleted from the system after validation.
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Generalised Iterative Closest Point (GICP)

Generalised ICP algorithms uses 3D point information to calculate point correspon-

dences, distributions, and to perform the registration [55]. The generalised ICP

algorithm deals with the iterative computation of the transformation. This ap-

proach is shown to be more robust to incorrect correspondences, and makes it easier

to tune the maximum match distance parameter present in most variants of ICP.

It maintains the speed and simplicity of ICP, and allow for the addition of outlier

terms, measurement noise, and other probabilistic techniques to increase robustness.

The ICP algorithm finds the transformation between a point cloud and the refer-

ence point cloud. A visualisation of this can be seen in figure 6.4. This is done by

minimising the difference between two point clouds, and finding and applying the

rotation and translation. The algorithm is therefore often used to reconstruct 3D

surfaces from scans, to achieve optimal path planning and localising robots, etc.

Figure 6.4: ICP Algorithm [56]

6.2.4 Difference Between GICP and NDT

The main difference between the GICP and the NDT algorithm is mostly how they

measure the distance to a point [57]. The GICP algorithm measures the nearest

distribution-to-distribution point, while the NDT algorithm uses voxel-based point-

to-distribution. This is visualised in figure 6.5.
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The NDT uses a collection of the points in a voxel to determine the distance, while

the GICP uses the closest point. Figure 6.5 shows the correspondence models for

distance calculation with GICP and NDT algorithms. The red circle indicate a

source point and the blue circles indicate target points.

(a) GICP (b) NDT

Figure 6.5: Correspondece Models for Distance Calculation [57]

6.3 Method and Equipment

6.3.1 LiDAR SLAM ROS 2 Package

The li slam ros2 package was cloned from repository on Github [23], and directly

implemented in the atv pkg. This package depends on multiple libraries. Eigen,

PCL, g2o and GTSAM needs to be installed inside the Lonewolf repository. See

section 3.2.5 for more info about the different libraries. To connect the atv pkg and

the li slam ros2 package, the topic names needed to match. In order to visualise

how the topics communicated, the ROS rqt graph feature were used.

The li slam ros2 package is mainly based on the lidarslam ros2 package, but is

combined with the LIO-SAM package IMU composite method. This results in a

combination between the Scan-Matcher front-end and Graph-Based algorithms from

the lidarslam ros2, with the IMU composite method from the LIO-SAM package.
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Mathematical Calculations

The mathematical calculations for the different processes are computed by the sup-

port of the imported Eigen and PCL libraries. These libraries can be read more

about in section 3.2.5 and 3.2.5

IMU Composite Method

The IMU composite method is a IMU preintegration method that corrects the odom

data. The plugin takes the odometry from the Scan-Matcher and the IMU data from

the IMU plugin, and summarise hundreds of inertial measurements into a single

relative motion constraint. This is done with the support of the GTSAM library,

which is described in section 3.2.5. The constraint is then sent back to the Scan-

Matcher through the preintegrated odom topic. The IMU preintegration flow is

shown in figure 6.6.

Figure 6.6: IMU Preintegration Flow

Scan-Matcher

The Scan-Matcher takes in two topics, cloud deskewed and preintegrated odom. The

deskewed point cloud message comes from the Velodyne LiDAR, and is the raw point

cloud assisted with data from the IMU sensor. The odometry message comes from

the IMU preintegration. From this data the NDT algorithm estimates the pose, and

finds the transform between the scans. The Scan-Matcher plugin then gives out the

odom, path, map and map array topics, visualised in figure 6.7. The pose is sent to

graph-based slam through the sub-map included in the map array topic.
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Figure 6.7: Scan-Matcher Process Flow

Graph-Based

The graph-based SLAM use the data from the scan-matcher to make modified data,

see figure 6.8. The plugin takes in the map array topic from the Scan-Matcher, and

uses the GICP algorithm to calculate the point correspondences, which then results

in a correction of the data. The correction results in a modified map, path and map

array. This correction and optimisation is done using the g2o optimising algorithm,

described in section 3.2.5.

Figure 6.8: Graph-based SLAM Process Flow
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6.3.2 SLAM in RViz

To visualise the map and path generated by the slam algorithms, RViz is used. The

message types in this project are supported by RViz, such that they can easily be

added to the program. Some of the available topics are map, modified map, modified

path and path, which is visualised in figure 6.9.

Figure 6.9: RViz Process Flow

6.4 Results and Empirical Findings

The purpose of the SLAM algorithms, is to use the point cloud gathered by the

velodyne LiDAR to successfully generate a proper map. When running the atv pkg,

li slam ros2 package and RViz, the generated data from the SLAM algorithms is

visualised. Figure 6.10 is an example of the generated map and path after navigating

in the Texas world.

Figure 6.10: SLAM Map
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As described in section 5.5.3, the range on the Velodyne LiDAR can be changed.

Alternating the range of the Velodyne LiDAR affects the quality of the generated

maps. With range 30, the environment was mapped sufficiently, while with range

10, the environment was mapped poorly. Figure 6.11 shows the generated maps

with the different ranges.

(a) Range 30 (b) Range 10

Figure 6.11: Visualising SLAM in RViz

The graph-based part of the li slam ros2 package can be run on two different al-

gorithms, the NDT and the GICP. Figure 6.12 a) shows the generated map while

using the NDT as the registration algorithm. Figure 6.12 b) show the generated

map while using the GICP as the registration algorithm.

(a) NDT (b) GICP

Figure 6.12: Graph-Based SLAM with Different Algorithms

After confirming that the simulator produces maps of sufficient quality with a hori-

zontal ground plane, a ramp with an elevated plane was implemented. As shown in

figure 6.13 the ATV mapped the ramp and elevated plane without any deviations

in the quality.
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Figure 6.13: Map of Ramp and Elevated Plane

6.5 Analysis and Discussion

6.5.1 SLAM Package

The SLAM package has to be compatible with ROS 2 Foxy, since the entire project

is built upon this framework. The SLAM algorithm is also required to make a

three dimensional map from data gathered with a 3D LiDAR. These requirements

is worked out through meetings with KDA. The data used to generate the map

through SLAM needs to be supplemented by other sensor data. A package that fits

these criteria is the lidarslam ros2 package made by Ryohei Sasaki [21].

After looking into the data flow and rqt graph it is discovered that the SLAM

package does not include IMU data. This is caused by a bug in the package. As

a result of this the lidarslam ros2 package is replaced with a LiDAR package that

implements the IMU composite method 6.3.1. This package, li slam ros2, uses the

same algorithms and works the same as the lidarslam ros2 package, but includes

the correction stage of the IMU.
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6.5.2 Scan-Matcher

The scan-matcher algorithm manages to work just by using the LiDAR scan data,

but becomes more efficiently if it is supplemented with other sensor data. An exam-

ple of this is to add the position data. By adding a guess for the current position of

the ATV when a new scan message arrives, the process will be more efficient. The

IMU is therefor implemented. As explained in the previous section 6.5.1, this also

solved the multiple sensor input criteria.

6.5.3 NDT Algortihm

As mentioned, the Scan-Matcher uses the NDT algorithm for the scan matching.

The PCL do have this algorithm implemented, but it is not optimal. Therefor, the

ndt omp ros2 repository is used instead. In this repository the algorithm is modified

to be structural system and engineering friendly and multi-threaded. It can also run

up to 10 times faster than its original version in PCL.

6.5.4 SLAM Algorithms for Back-End

For the back-end process of the slam, the graph-based slam is used. The package

li slam ros2 supports running two different registration algorithms for the back-end,

GICP and NDT. When driving the same path two times in the simulator, the NDT

algorithm generates a rather big drift in the modified output, and generates two

gazebos, see figure 6.5. When the same scenario is tested with the GICP algo-

rithm, the modified output does not suffer any significant drift, or generation of two

gazebos.

This may happen due to scans not obtaining enough points for the normal distri-

butions in the voxel. When the voxel size is small, it can only capture a few input

points in one scanning, and there is only a few voxels having the normal distribution

value.
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6.5.5 Range

When testing with different ranges for the point cloud sampling, there is significantly

better results with higher range. As shown in figure 6.11, when simulating with the

range 10, the SLAM results in a weaker map. This is due to the algorithms not

getting enough range to obtain the necessary points, which results in the SLAM

algorithm struggling to localise the ATV. When simulating with range 30, the SLAM

generates a map with higher quality. This is because with a higher range the LiDAR

gathers more points, and the SLAM is therefor are able to map a bigger part of the

area quicker.

6.6 Chapter Conclusion

The implementation of SLAM in the simulator works as intended. The SLAM pack-

age was implemented with Scan-Matcher and graph-based SLAM and the visualised

map is of sufficient quality. To fulfil the criteria about supplemented sensor data a

similar SLAM package is implemented. Different algorithms for the back-end pro-

cessing is tested, which results in NDT being used for front-end while GICP for

back-end. The map, path, and modified data gets published on topics, which can

be visualised in RViz.



Chapter 7

Simulator in Gazebo

7.1 Introduction

A simulation program is used to simulate a real-life situation. The program cre-

ates a virtual version, that can be used for the purpose of testing or experiments.

The requirements for the simulator given by the client is that the world had to be

simulated in a ROS environment. The simulation program used in this project is

Gazebo. As mentioned in chapter 3, Gazebo is a an open source three-dimensional

robotics simulation software that is integrated in ROS 2.

This chapter gives an overview of the world file generated and the implementation

of the 3D model of the ATV. The plugins used are also presented. The physics

parameters of the model and worlds generated are discussed.

61
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7.2 Theoretical Framework

7.2.1 World File

The world description file contains a description of all the elements that are used

in a simulation. This includes robots, lights, sensors, and static objects. This file is

formatted using SDF, and has a .world extension. This file is read by the Gazebo

server (gzserver) to generate a world. Gazebo world files are written in XML, which

can be generated and modified using a text editor.

The world file consist mainly of model declarations. A model can be a robot, sensor,

static figure of the world (e.g. simple tree) or a manipulable object. As an example,

the following declaration will create a simple tree:

1 <model name='tree_simple '>

2 <static >1</static >

3 <link name='link'>

4 <pose frame=''>0 0 0.1 0 -0 0</pose>

5 <collision name='collision_trunk '>

6 <pose frame=''>0 0 2 0 -0 0</pose>

7 <geometry >

8 <cylinder >

9 <radius >0.25</radius >

10 <length >4</length >

11 </cylinder >

12 </geometry >

13 </collision >

14 <\link>

15 <pose frame=''>49.5772894431 -0.301033806291 0 0 -0 0</pose>

16 </model >

Listing 7.1: Simple Tree

A set of attributes are associated with each models. These attributes describe the

model’s position and orientation and it is possible to compose models with them.

The position and orientation is defined by the pose, ⟨poseframe⟩ 0 0 0 0 0 0 ⟨/pose⟩,
where the first three numbers are the position in x,y and z coordinates, and the three

last numbers are the orientation in Euler angles.
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Canonical World File Layout

A world file can consist of many various components. In this paragraph a standard

layout for the world file and some of the basic components are shown.

XML meta-data is placed at the beginning of the world file as can be seen in the

listing below.

1 <?xml version="1.0"?>

2 <sdf version="1.5">

3 <world name="default">

4 ..

Listing 7.2: XML Meta-Data in World Files

The world file allows for setting global parameters. An example of this is setting

the gravity for an environment that can be seen in the listing below.

1 <param : Global >

2 <gravity >0.0 0.0 -9.8</gravity >

3 </param : Global >

Listing 7.3: Global Parameters in World Files

A robot needs a ground plane to be placed on. This can be included as shown in

the listing below.

1 <model : GroundPlane >

2 <id>ground1 </id>

3 </model : GroundPlane >

Listing 7.4: Ground plane in World Files

Objects, such as trees and robots, can be included in the world as shown in the

listing below. The object needs to be in SDF format.

1 <model name='tree_simple '>

2 ....

3 </model >

Listing 7.5: Objects in World Files
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To end a world file the two lines shown in the listing below needs to be written.

1 </world >

2 </sdf>

Listing 7.6: Objects in World Files

Coordinate Systems and Units

In the gazebo software the ENU coordinate system, with x in east direction, y in

north direction, and z in upwards direction. This results in most models being de-

signed upright along the z-axis and pointing along the positive x-axis. As mentioned

in the previous section, the first three numbers are x, y and z coordinates while the

last numbers indicates the objects orientation given by the Euler angles; roll, pitch

and yaw.

7.2.2 Model File

A model file uses the same SDF format as world files, but should only contain a

single ⟨model⟩ ... ⟨/model⟩. The purpose of these files is to facilitate model reuse,

and simplify world files. Once a model file is generated it can be launched in the

world using the launch file. In addition to the component introduced in this section,

plugins are also a part of the model file. The implementation of plugins are presented

in section 7.2.3.

Components of SDF models

The link element contains the physical properties for a defined body of the model.

This can be a wheel, or a link in a joint chain. Each link might contain collision,

visual and intertial elements. It is important to try to reduce the number of links,

to reduce the complexity and increase the performance and stability. How the link

element is written in the model file is shown in the listing below.

1 <link name="model">

2 <inertial > .... <\inertial >

3 <collision > .... <\collision >

4 <visual > .... <\visual >

5 <\link>

Listing 7.7: Links in Model Files
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A collision element encapsulates a geometry and is used for collision checking. How

to include this in the model file is shown in the listing below.

1 <collision >

2 <geometry > .... <\geometry >

3 <\collision >

Listing 7.8: Collision Element in Model Files

A visual element visualise parts of a link. This can be done by the geometry and

material element. In the geometry element, meshes can be included using an ⟨/uri⟩
tag that describes where the meshes are located. How to use the visual element is

shown in the listing below.

1 <visual >

2 <geometry > .... <\geometry >

3 <material > .... <\material >

4 <\visual >

Listing 7.9: Visual Element in Model Files

The inertial element describes the dynamic properties of the link, such as mass and

rotational inertia matrix. How to include the inertial element is shown in the listing

below.

1 <inertial >

2 <mass> .... <\mass>

3 <inertia > .... <\inertia >

4 <\inertial >

Listing 7.10: Inertial in Model Files

A joint connects two links. A relationship is established were one is the ’parent’

and the other is the ’child’. This joint relationship can establish parameters such as

rotation, joint limits and pose. How the joint element is included in a model file is

shown in the listing below.

1 <joint >

2 <parent > .... <\parent >

3 <child > .... <\child >

4 <pose> .... <\pose>

5 <axis> .... <\axis>

6 <\joint >

Listing 7.11: Joints in Model Files
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7.2.3 Plugins

A plugin is a shared library, often created by a third party. Plugins provides a

simple and convenient mechanism to interface with Gazebo, and can be used to

include functionalities such as sensor and steering of a robot. They can either be

loaded through the command line, or specified in an SDF file as shown below.

1 <plugin name=' .... ' filename=' .... '>

2 <ros>

3 <namespace > .... </namespace >

4 <argument > .... </argument >

5 </ros>

6 <frame_name > .... </frame_name >

7 <output_type > .... </output_type >

8 </plugin >

Listing 7.12: Plugins in Model Files

Plugins specified in the command line are loaded first, then plugins specified in the

SDF files are loaded. Some plugins are loaded by the server, such as plugins that

affect physics properties, while other plugins are loaded by the graphical client to

facilitate custom GUI generation. They can control almost any aspect of Gazebo,

and are self-contained routines that are easily shared and can be inserted or removed

from a running system.

There are six different types of plugins, where each type is managed by a different

component of Gazebo. These are; world, model, sensor, system, visual and GUI.

When the plugin is compiled as a shared library, the plugin can be attached to a

world or a model in SD format.
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7.3 Method and Equipment

7.3.1 World Files

According to the assignment, the ATV has to have a world fit for driving and

navigation. This means that the world must contain a ground plane to drive on and

objects to detect. The simulator has two worlds with different complexity, that can

be used for testing. The worlds can be opened in Gazebo by navigating to the folder

the world file is located in, and typing gazebo world name.world in the terminal.

Forest World

The first world is called forest.world. This world was downloaded from Github from

a repository called mrs gazebo common recources [58]. The repository is developed

by the Multi-robot Systems (MRS) group at Czech Techical University in Prague.

Texas World

The second world was created in Gazebo by inserting a ground plane and several

models of unique objects. The models are a part of Gazebo’s default model list,

which is available by downloading Gazebo. This world is more complex because of

the unique objects such as buildings, different trees and a ramp. The ramp makes

it possible to drive uphill and test functionalities in upwards direction.

7.3.2 Model File

The model file is in SD format and was exported from the model in Fusion 360

via the SDFusion add-on. The file contains specifications of links and joints. The

open-source sensor code was added directly to the model file. An overview of the

items in the SDF of the model can be found in appendix F.
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IMU Sensor in Model File

The IMU sensor is dependent on a plugin already included in the gazebo ros pkgs.

For the sensor configuration, see appendix G. The IMU data is published to the topic

imu correct through the plugin imu plugin as shown in figure 7.1. The correct part

of imu corret refers to the IMU being in the coordinate frame the SLAM algorithms

requires.

Figure 7.1: IMU Plugin

How the LiDAR Velodyne VLP-16 is included is described in chapter 5.

Physics

The SDFusion add-on for Fusion 360 didn’t export the physics of the ATV correctly.

This made it necessary to change the physics parameters. The mass, moment of

inertia and friction elements were set by testing how the ATV was behaving while

steering it. The chosen physics parameters can be seen in the model.sdf for the ATV

in appendix G.

7.3.3 Implementation of ATV

Each world has its own respective launch file. These files have been created to spawn

the ATV automatically inside the worlds. The launch files takes in the respective

world file and the ATV package atv pkg. When the launch files are run, they execute

the process of first opening the world and then spawning the robot inside of it.
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7.3.4 Implementation of Steering

In order to be able to drive and steer the ATV, the teleop twist keyboard package

needs to be installed and run. As mentioned under 3.2.4, this package takes in

keyboard commands through teleop twist keyboard plugin and publishes the infor-

mation to the cmd vel topic. This topic is used to send navigation commands to

the skid steer drive plugin as seen in figure 7.2.

Figure 7.2: Topic and Plugins for Steering the ATV

7.4 Results and Empirical Findings

7.4.1 Model in SD Format

The ATV viewed in figure 7.3 is a result of the model file in SDF format. The

ATV is a functioning ROS robot with controllable joints and sensors. The SDF that

generated this model can be seen in appendix G.

Figure 7.3: Model of the ATV in SDF Format
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7.4.2 Worlds

Forest World

The forest world is a simple environment that consists of a ground plane and 500

identical trees. An image of the world can be seen in 7.4.

Figure 7.4: Forest World in Gazebo

Texas World

The Texas world consists of a ground plane, four different buildings, a play ground,

trees, a gazebo, a ramp for driving in a higher plane and a water tower. An image

of this world can be viewed in 7.5.

Figure 7.5: Texas World in Gazebo
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7.5 Analysis and Discussion

The physics parameters were chosen by testing the steering abilities of the ATV.

This resulted in incorrect physics compared to the ATV this model was made to

imitate. Even though the physics of the model is different from the ATV, the ATV

behaves well and more realistically when driving and turning with the chosen values

than the correct values. This is probably because the model is more simple with

less parts than the ATV actually has.

The IMU sensor code has integrated noise for making it more realistic. Some of the

noise values has been altered after the sensor code was implemented to the model

file. This was done to avoid too much drift in the IMU values, since the SLAM

algorithm complain when the IMU has a large drift.

The Forest world consists of 500 identical trees. This makes the environment similar

looking, regardless of where the ATV is located. A consequence of this is that it

can make testing algorithms confusing because all the landmarks are identical. It

can be hard to affirm that the real position of the ATV is continuous with the

generated maps. The forest world works well with testing base functionalities of the

algorithms and sensors, such as testing if the plugins work and that the algorithms

actually generated maps.

The Texas world is more complex because all the elements, excluding the trees, are

nonidentical. This solves the problem that the forest world gives. It is easier to

see that the generated maps are correct in relation to the position of the ATV. In

addition it is an advantage that this world enables testing of algorithms in various

heights, since the physical ATV is most likely going to be tested in a terrain with

height differences.
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7.6 Chapter Conclusion

The simulator in Gazebo is a working test platform for SLAM algorithms. It consists

of two worlds with different complexity and an ATV robot. The ATV is steerable

through keyboards which makes navigation easy. The model of the ATV is not

identical to ATV it is suppose to imitate, but a fair representation of it, since it is

made for testing SLAM algorithms and not physical properties.



Chapter 8

Docker

8.1 Introduction

Docker is an open platform that enables a developer to separate their applications

from their infrastructure and run it in an isolated environment that is called a

container. This chapter describes the set up of a Docker container for developing the

simulator in a standardised environment and the development practices for Docker

are introduced and discussed. The container set up is targeted towards NVIDIA

drivers, but are available for all machines.

73



8.2. THEORETICAL FRAMEWORK 74

8.2 Theoretical Framework

8.2.1 Containers

Containers package all code and dependencies together, this means that the de-

pendencies does not need to be installed on the host machine [59]. Containers are

shareable, meaning that several developers can be within one container and everyone

that shares a container will have the same experience. Containers run as isolated

processes in user space, several containers can therefore be run at the same time.

When developing within a container, an image is pulled from DockerHub. Docker

images has everything needed to containerise an application, and have all code,

configuration files, libraries and environment variables included [60]. When the

image runs, a container is started. In order to build a tailored Docker image, the

image needs to be built from a DockerFile. A Docker image consists of read-only

layers stacked on top of each other. Each of the layers represent an instruction from

the DockerFile [61]. Figure 8.1 shows how DockerFiles, images and containers are

connected.

Figure 8.1: Structure of Docker Containers [62]

8.2.2 DockerFiles

A DockerFile is a text file that contains all commands needed to build an image

[61]. Dockerfiles follow a strict format and rules so that Docker can automatically

build the image by following the instructions in order. Some of the most important

instructions are the FROM, COPY, RUN and CMD instructions, with each instruc-

tion creating a new layer. The FROM instruction in the DockerFile allows creation

of a layer from an existing image. The listing below pulls the Ubuntu 20.04 image
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and uses it as a parent image.

1 FROM Ubuntu:20 .04

Listing 8.1: FROM instruction in DockerFiles

The COPY instruction copies new files or directories from the Docker client’s current

directive to the file-system of the container [61]. The RUN instruction executes any

commands in a new layer and commit the results [63]. The resulting new image will

be used for the next instruction in the DockerFile. The CMD instruction specifies

what command to run and provide defaults for the container.

8.2.3 Multi-Stage Builds

Multi-stage builds allows several layers from existing images to build a tailored image

[64]. When utilising multi-stage builds, the build stages needs to be named. Build

stages are by default not named, and they are referred to by their integer number

that starts from 0 with the first FROM instruction. By naming the build stages,

the previous stage can be used as a new stage. This means the previous stage can

be referred to by using the FROM directive.

8.2.4 Container Runtime

The container runtime is the container engine that is responsible for running con-

tainers on the host operating system [65]. It is the container runtimes that loads

container images from a repository, isolates system resources for use of a container

and manages the container lifecycle. By default, Docker does not add GPU devices

to the containers runtime. By implementing the NVIDIA Container Runtime, the

container runtime will be aware of the GPU and the GPU-accelerated application,

along with its dependencies, will be wrapped into a single package [66].

8.2.5 Docker File System

The entire Docker file system is contained within the .devcontainer folder, where

the files ”DockerFile”, ”devcontainer.json” and ”docker-compose.yaml” contain all
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the instructions for setting up and entering the container. The entire folder tree can

be viewed in figure 8.2. The DockerFile has already been discussed, and the two

following are discussed below.

Figure 8.2: .devcontainer Folder Tree

The ”devcontainer.json” file instructs VSCode on how to create or access a develop-

ment container [67]. The file contains a path to the DockerFile and sets the context

of what should be run within the container. With the context set to one level up,

the parent folder the ”.devcontainer” folder lies in, will be opened in the container.

In this project, the development container will open the Lonewolf folder. The listing

below shows the contents of the devcontainer.json file.

1 // Sets the run context to one level up instead of the .

devcontainer folder

2 "context": "..",

3 // The 'dockerFile ' property links to the DockerFile that is used

4 "dockerFile": "DockerFile",

Listing 8.2: Contents of devcontainer file

The ”docker-compose.yaml” file defines networks, services and volumes for Docker

applications [68]. Compose manages the entire lifecycle of the application by com-

mands from the developer. Compose can for instance start, stop and rebuild services

and view the status of running services.
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8.3 Method and Equipment

8.3.1 Installation of Dependencies

This project requires a fair amount of dependencies in order to build and run the

software. When developing software outside of a container on a computer with

Ubuntu OS, dependencies are usually installed on the local computer with com-

mands in the terminal. These commands can also be used when developing within

a container, but it is easier to add all the dependencies in the DockerFile. This way

the container is ready to run all software after the image is built.

The DockerFile is based on the althack/ros2:foxy-gazebo-nvidia image that allows

running ROS 2 and Gazebo on NVIDIA drivers [69]. The image uses an Ubuntu

20.04 Docker image as parent image in the multi-stage build. The five build stages

in the DockerFile are shown in the listing below.

1 FROM Ubuntu:20 .04 AS base

2 # install ROS 2 Foxy

3

4 FROM base AS dev

5 # install dependencies

6

7 FROM dev AS full

8 # install full release of ROS 2 Foxy

9

10 FROM full AS gazebo

11 # install Gazebo

12

13 FROM gazebo AS gazebo -nvidia

14 #Expose the NVIDIA drivers and set NVIDIA Container Runtime

Listing 8.3: Multi-stage builds in the DockerFile

8.3.2 Setting Up the Container

To utilise the GPU of a NVIDIA machine, Docker needs to be installed by follow-

ing the NVIDIA Docker installation guide [70]. The NVIDIA Container Runtime
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is integrated by having the code lines in the listing below at the bottom of the

DockerFile.

1 ENV NVIDIA_VISIBLE_DEVICES all

2 ENV NVIDIA_DRIVER_CAPABILITIES graphics ,utility ,compute

Listing 8.4: Setting NVIDIA Runtime in the DockerFile

To start developing within the container, the ”Remote Containers” extension in

VSCode is used. The Add Development Container Configuration Files extension is

used to create the .devcontainer folder and the ”devcontainer.json” file. The Reopen

in Container extension opens the repository within the container.

8.4 Results and Empirical Findings

One is inside the container when the signature in the terminal is a root user like

figure 8.3 below. The container is not accessed if the signature next to the cursor is

the one set up by the local user. One can develop as usual within the container as

one would outside of it.

Figure 8.3: Terminal Within the Docker Container

8.5 Analysis and Discussion

8.5.1 Keeping the DockerFile Small

Most DockerFiles start from a parent image, and the Docker image for this project

is no exception. One of the best practices for writing DockerFiles is to keep the

image small. This can be done by using multi-stage builds and starting with an

appropriate base image. The DockerFile currently uses multi-stage builds, but uses

a generic Ubuntu image as base. If the DockerFile is set up using a ROS 2 Foxy

for NVIDIA image as a base image, the ROS distribution and dependencies do not
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need to be installed again each time the DockerFile is changed. This results in

shorter build time. Although the that would be the best practice, the DockerFile

uses a generic image in this project to allow for installation of dependencies at the

appropriate stage in the multi-stage build of the image.

8.5.2 Launching Simulations

As of now, the simulation and visualisation in Gazebo and RViz can not be launched

locally through the Docker container. To set this up, scripts that allows this needs

to be programmed and integrated in the Docker set up. There is documentation

on launching simulations from a container, but most of it is application specific

and intended for ROS 1 distribution containers. The existing documentation and

software could be pieced together to launch this project’s simulations, but it is not

done due to time constraints.

8.6 Chapter Conclusion

The Docker imaged developed in this project lays the foundation for further devel-

opment in the ROS 2 Foxy distribution within containers. The container structure

still needs advancements in order to use it for further development of the simulator.



Chapter 9

Results and Empirical Findings

9.1 Technical Design

The finished result of this project is an operative testing platform for testing different

SLAM algorithms. A point cloud is gathered with a 3D LiDAR and processed with

a SLAM algorithm which is supplemented with data from an IMU sensor. This

results in a three dimensional map of the environment around the ATV which can

later be used for autonomous navigation.

The user interface of the simulator can be viewed in figure 9.1. The interface consists

of RViz (bottom left), which is used to visualise a map, Gazebo (right), which is

used to view a world and the model, and the package teleop twist keyboard (top left),

which is included for controlling the ATV. Having all of these applications open at

the same time lets the user steer the ATV while seeing the generation of the map

in near real time.

The simulator is made adaptable, which makes it easy to change which slam package

to run. It is also made in such a way that it is easy to include new algorithms, worlds,

sensors and models.
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Figure 9.1: Simulator User Interface

Changing the parameters of the different features must be done in the source code.

Most of the parameters of interest are in the SDF of the ATV model. This code is

tidy and it should be easy to understand where to set the different parameters.

9.2 Deployment

The simulator is available by cloning the code from the lonewolf Github reposi-

tory and following the instructions in the user manual. The repository is linked in

reference [2] and user manual can be found in appendix H.



Chapter 10

Analysis and Discussion

10.1 Development Within Containers

When several people work on developing the same software, situations where the

software works on one computer but not the other might occur. This can result in

time consuming troubleshooting to resolve build and dependency issues. Developing

within containers solves this issue because it isolates the application so that everyone

that uses the container have the same experience. Had the team started development

from within the containers right away, these troubleshooting sessions would probably

have been fever and more spaced out. Containers also make the deployment of the

application more simple as the developers know exactly how the application behaves

within the container.

Although a Docker container has been set up for development from a NVIDIA

machine, it was not set up for development from the personal laptops of the team.

This was not prioritised at the start of the project, and the NVIDIA container was

not set up until far into the project. Setting up this container to run smoothly is

time consuming and calls for a lot of troubleshooting. For that reason, the team

made a decision to prioritise other aspects of the project rather than setting up a

container for everyone to develop from as well.
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10.2 Future Development

10.2.1 ATV Model

Extended functionality of the simulator could be developed by implementing more

of the ATV’s characteristics. The physical ATV has an integrated electrical system

with turning from a gear positioned where the handle bars normally are. This

could be implemented in the simulator to achieve a more realistic resolution of

the ATV’s turning abilities. By replacing the skid steer drive plugin with another

turning functionality, the ATV model can behave more like the Lone Wolf ATV.

As most combustion vehicles, the ATV does not have linear acceleration. This is not

taken into consideration in the simulator due to the lack of an acceleration model

to implement. This could be implemented by gathering data from the ATV and

making a mathematical model to add into the SDF model of the ATV.

10.2.2 Communication Between ATV and Simulator

The simulator could be used as a ”mission control” station for testing the actual

ATV if communication between the simulator and ATV is set up. If the data sent

from the ATV is implemented into the simulator framework, one could launch the

data from the ATV the same way as the simulator, and view it in real-time. This

would allow the operator to view and assess the quality of the data, and possibly

kill the operation entirely in case of an unsafe situation.

10.2.3 Autonomous Navigation

The maps generated through SLAM algorithms can be used for autonomous nav-

igation. This can be done in many ways. One of the options is to use the ROS

2 Navigation Stack with with 2D costmaps, since the 3D point cloud map can

be converted to a 2D costmap [71]. The result of this is that the ATV will be

able to navigate autonomously through both known and unknown environments.

The most commonly used packages for localisation are the nav2 amsl package and
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the slam toolbox. Both of these packages publish the map to odometry coordinate

transformation which is necessary for a robot to localise on a map. There are many

packages and tutorials available online for this type of navigation.

Another option is to use the 3D point cloud map directly for navigation. Steve

Macenski is the project leader of the NAV2 stack [72]. Macenski has developed the

spatio-temporal voxel layer, which is new voxel layer leveraging modern 3D graphics

tools to modernise navigation environmental representations. The voxel grid ROS

2 package provides an implementation of an efficient 3D voxel grid.

Another alternative is to build a navigation package with the desired navigation

and control algorithms. This would be the most time consuming choice, but would

result in a bigger level of adaption and personalising.

10.2.4 Realistic World

To test the ATV in a more realistic environment, a complex world with terrain

should be implemented. A possibility here is to model a ground plane with uneven

terrain i Fusion 360, and convert it to SDF. After the model has been imported to

the simulator, different models could be implemented to simulate the desired testing

environment.

A more complex world, which is modelled to emulate the actual test environment for

the real ATV, could be generated. Correct height maps can be ordered online of the

desired area, to achieve a ground plane similar to the terrain. After uploading the

height map, different models of the environment, such as trees, rocks and buildings,

could be implemented to match the actual test site. With these adaptions the

simulator would be an more optimal test platform, since the SLAM algorithms

could be tested in an more similar environment.



Chapter 11

Conclusions

To sum up this project, conclusions will now be drawn. The system design came

out as intended, with a clean and functioning file structure.

Two environments are available for testing autonomous navigation. In the model

design, all parts were sufficiently modelled and successfully connected. The simu-

lated ATV is equipped with multiple sensors from the ATV inventory list and it is

possible to implement the remaining sensors.

An ATV model that gathers data in form of a point cloud with a 3D LiDAR has been

made. Fitting SLAM algorithms in terms of complexity are tested. It is possible to

continue development with the already included algorithms or implement new ones.

The SLAM package is fully operational and able to generate a three dimensional

map using the data from the point cloud, supplemented with IMU and odometry

data. The generated maps have adequate quality for planning a passable path for

autonomous navigation.

The ATV can be navigated through the simulator by commands from the keyboard.

The entire simulator is operational in ROS 2 and available for further development.

A functioning platform that enables testing of autonomous navigation has been

developed.
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Oppgaveforslag bacheloroppgave elektroingeniør 

(BIELEKTRO) i Trondheim, vårsemester 2022 
 

Navn bedrift: 
Kongsberg Defence & Aerospace 

Kontaktperson: Roger Werner Laug 

Epost: roger.werner.laug@kongsberg.com 

Telefon/mobil: 98220530 

Tittel på oppgave: 
ROS simulert verden for ATV og finne optimal SLAM algoritme for generert punktsky 

Hvilke studieretninger passer oppgaven for? 
(kryss av for alle aktuelle retninger; flervalg er 
mulig): 

Automatisering og robotikk x 

Elektronikk og sensorsystemer  

Elkraft og bærekraftig energi  

Er oppgaven reservert for noen bestemte 
studenter?   
I så fall skriv navnene på studentene til høyre. 

 
Eline Marie Håve, Cecile Nikolaisen, Sigrid Mellemseter 
 
 

Er dette en lukket oppgave? 
Dvs. at sluttrapporten ikke kan publiseres senere 
fordi den inneholder sensitiv informasjon. 

 
[   ]  ja        [x]  nei        [   ] ikke enda bestemt 

Kort beskrivelse av oppgaven med problemstilling. 
 
Lone Wolf er vårt årlige sommerprosjekt for studenter i Kongsberg Defence & Aerospace (KDA), Division Land 
Systems (DLS) der vi utforsker teknologier for fremtiden. Denne Bacheloroppgaven passer godt inn i utviklingen til 
sommerprosjektet for 2022, der studentene skal blant annet finne en farbar vei og navigere autonomt med vår ATV.  
 
Fra tidligere er Lone Wolf ATV’en konstruert til å kunne svinge, gire, akselerere og bremse slik at den skal kunne 
kontrolleres fra en datamaskin. Det er tidligere implementert objekt gjenkjenning som et hjelpemiddel hvis det 
dukker opp uforutsette hinder i den planlagte ruten. Det er mange utfordringer å ta tak i og for å kunne prøve ut 
flere metoder og scenarioer ønsker vi å få laget en eller flere fiktive omgivelser for ATV’en i ROS simulator slik at man 
kan teste autonom navigasjon både i enkle og mer kompliserte omgivelser. For å gjøre dette må det lages en modell 
av vår ATV. Det er inkludert en del sensorer på ATV’en som LIDAR, radar, IMU, kameraer og GPS, som kan inkluderes 
og benyttes i simulering for best mulig autonom navigasjon. 
 
Det ønskelig at ATV-modellen skal innhente data i form av en punktsky i ROS simulatoren ved hjelp av LIDAR eller 
stereo-kamera. Denne punktskyen skal prosesseres av en valgfri SLAM-algoritme og supplert med annen sensor data 
som for eksempel IMU-data og odometri. Kartet av omgivelsene som SLAM-algoritmen estimerer bør ha tilstrekkelig 
kvalitet slik at planlegging av farbar vei for autonom navigasjon kan gjennomføres. Det er interessant å finne en 
passende algoritme basert på kompleksitet og resultat som vi kan videreføre i Lone Wolf prosjektet 2022. En 
avveining er om kartet bør være i 3D eller 2D supplert med andre hjelpemidler som for eksempel objekt 
gjenkjenning. 
 
Oppgaven som studentene ønsker å utdype innen dette feltet er relativt åpent, men KDA ønsker å påvirke deler av 
oppgaven underveis, for eksempel hvordan den simulerte verden skal se ut eller hvor rask algoritmen må være. 
Dersom det er behov for utstyr skal KDA være behjelpelig med det (begrenset av tilgjengelighet og kostnad). KDA har 
hatt et møte med studentene og de virker interessert i oppgaven. 
https://www.kongsberg.com/no/careers/summer-jobs/lone-wolf/ 

 
 

Institutt for elektroniske systemer 
Institutt for elkraftteknikk 
Institutt for teknisk kybernetikk 
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Part Measurements (mm) Remarks
Frame, height 570
Frame, width (total) 645 The widest part of the frame
Frame, width (tail) 305 The width of the tail of the frame
Frame, ground clearance 295 From the ground to the lowest part

of the frame
Frame length 685 Length of the main frame (without

the extra parts)
Frame, square tube size 40 The size of the square tube used to

build the frame
Gear, diameter 175
Gear, circumference 550
LIDAR mount, length 250 Length from the base line to the top

of the triangle
LIDAR mount, width 410 Length of the baseline of the triangle
LIDAR mount, height (front ) 35 Length of the front pillars the mount

is attached to
LIDAR mount, height (back) 10 Length of the back pillar the mount

is attached to
LIDAR mount stand, height 109 Height of the cylindrical mounting on

the plate
LIDAR mount, thickness 5 Thickness of the plate

Table 1: Physical measurements of the attachments to the ATV

1



Figure 1: Simple 3D-model of the frame

Figure 2: Simple 3D-model of the frame: top view

Figure 3: Simple 3D-model of the frame: side view

2



Figure 4: Simple 3D-model of the LIDAR mount

Figure 5: Simple 3D-model of the LIDAR mount, top view

Figure 6: Simple 3D-model of the LIDAR mount, side view

3



Figure 7: Simple 3D-model of the gear

Figure 8: Simple 3D-model of the gear, top view

4
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©2017 Bombardier Recreational Products Inc (BRP). All rights reserved. ™, ® and the BRP logo are registered trademarks of BRP or its affiliates. Products are 
distributed in the U.S.A. by BRP US Inc. *Base model dry weight shown. ‡Visco-Lok is a trademark of GKN Viscodrive GmbH. †All other trademarks are the property 
of their respective owners. Because of our ongoing commitment to product quality and innovation, BRP reserves the right at anytime to discontinue or change 

specifications, price, design, features, models or equipment without incurring any obligation. Ride responsibly. BRP highly recommends that all ATV drivers take a training course. For safety 
and training information, see your dealer or, in U.S.A. call the ATV Safety Institute at 1 (800) 887-2887. In Canada, call the Canadian Safety Council at 1 (613) 739-1535 ext 227. ATVs can be 
hazardous to operate. For your safety: the operator and passenger should wear a helmet, eye protection and other protective clothing. Always remember that riding and alcohol / drugs 
don’t mix. Never ride on paved surfaces or public roads. Never engage in stunt driving. Avoid excessive speeds and be particularly careful on difficult terrain. ATVs with engine sizes of 
greater than 90cc are recommended for use only by those age 16 and older. Never carry passengers on any ATV not specifically designated for such use. 

TIRES / WHEELS
Front Tires ITP Terracross 26 x 8 x 14 in. 

(66 x 20.3 x 35.6 cm)
Rear Tires ITP Terracross 26 x 10 x 14 in.  

(66 x 25.4 x 35.6 cm)
Wheels 14-in. cast-aluminum

DIMENSIONS / CAPACITIES
L x W x H 94 x 46 x 53 in.  

(238.8 x 116.8 x 135 cm) 
Wheelbase 59 in. (149.9 cm)

Ground Clearance 11 in. (27.9 cm)

Seat Height 34.5 in. (87.7 cm)
Engine / Dry Weight* 650 / 795 lb (361 kg) 

850 / 821 lb (372 kg) 
1000R / 840 lb (381 kg) 

Rack Capacity Front: 100 lb (45 kg) 
Rear: 200 lb (90 kg)

Storage Capacity Rear: 5.7 gal (21.4 L)

Towing Capacity 1,300 lb (590 kg)

Fuel Capacity 5.4 gal (20.5 L)

ENGINES 650 850 1000R
Type 62 hp, Rotax 649.6 cc 

V-twin, liquid cooled
78 hp, Rotax 854 cc 
V-twin, liquid cooled

89 hp, Rotax 976 cc 
V-twin, liquid cooled

Fuel Delivery System Electronic Fuel Injection (EFI)
Transmission CVT, P / R / N / H / L, standard engine braking
Drive Train Selectable 2WD / 4WD with Visco-Lok‡ QE auto-locking front differential
Power Steering Tri-Mode Dynamic Power Steering (DPS)

SUSPENSIONS
Front Suspension Double A-arm

9 in. (22.9 cm) travel

Front Shocks Oil

Rear Suspension Torsional Trailing arm Independent (TTI)
9.3 in. (23.6 cm) travel

Rear Shocks Oil

BRAKES
Front Dual 214 mm ventilated disc brakes with hydraulic twin-piston calipers

Rear Single 214 mm ventilated disc brake with hydraulic twin-piston caliper

HIGHLIGHTS 
• Rotax® V-twin engine options
• Continuously Variable Transmission (CVT)  

with engine braking
• Tri-Mode Dynamic Power Steering (DPS™)
• 3,000-lb (1,361 kg) WARN† winch  

with roller fairlead
• Heavy-duty front and rear bumpers
• 14-in. cast-aluminum wheels
• 26-in. ITP† Terracross radial tires
• Painted plastics for premium look
• Handlebar wind deflectors
• Convertible Rack System (CRS)  

with LinQ™ system 
• Dynamic passenger comfort ergonomics
• Multiposition passenger handgrips

• Raised floorboards
• 5.7-gal (21.4 L) water-resistant  

rear compartment
• 625-W magneto

20
18OuTlANder™ MAX XT™

Brushed Aluminum & Can-Am Red / 650 / 850 / 1000R 
Intense Red / 650 / 850 / 1000R 
Mossy Oak† Break-Up Country Camo† / 650 / 850

FEATURES
Gauge Multifunction Digital:  

Speedometer, tachometer (bar graph RPM, bottom 
bar numerical RPM), odometer, trip & hour meters, 
diagnostic center, gear position, engine hour meter, 

4 x 4 indicator, temperature and engine lights,  
fuel gauge, clock

Instrumentation  Lighter type DC outlet in console, standard connector 
in the back (15-A) 

Lighting 230 W from twin 60-W projectors and  
dual 55-W reflectors with tail light / brake light

Seat Convertible Rack System (CRS)

Winch 3,000-lb (1,361 kg) WARN winch with roller fairlead Anti-theft System RF Digitally Encoded Security System (D.E.S.S.™)

Protection Heavy-duty front & rear bumpers,  
handlebar wind deflectors

WARRANTY
Factory 6-months limited warranty
Extended Up to 36 months B.E.S.T. coverage
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Beskrivelse Merke Modell Ekstra info

RTK GNSS receiver Emlid Reach RS+

HDMI capture card Magwell USB Capture HDMI

RS232 to USB cable 3 stk

USB 3.0 Hub Sandstrøm

VectorNav INU Vector Nav VN-300-DEV

LIDAR Velodyne 80-VLP-16-A

AC2600 WIFI router Netgear Nighthawk X4S

AC1200 WIFI router TP-Link Archer C1200

Battery charger LIPO/PB SKYRC B6AC+ v2
Kan lade alle typer oppladbare batterier. 
Bruker modulære kabler for tilkobling.

Multimeter 2 stk.

DC/DC 12V/24V omformer DC1224 35A

Playstation controller PS Dualshock  4

Motorsykkel batteri Biltema

Bil batteri Biltema

Kobber belagt breadboard

Coax capture card Bosch VIP-X1XF-E

Video camera RICOM 5mm 1-2.2 1/1.8" 2 stk.

Relay card 2 rele, 24V DC

Motorcontroller card Polulu 0J10613 2 stk.

Raspberry Pi 16 GB minne 2 stk.

Ethernet to USB

Drone control Cube Pixhawk 2

Camera interface card 3 camera Leopard Imaging LI-JTX1-MIPI-ADPT Rev1.2 Works with Jetson TX1

Camera interface card 6 camera Leopard Imaging LI-JTX1-MIPI-ADPT 6CAM V1.0 Works with Jetson TX1

Memory card reader USB

Jetson TX2 Nvidia

Linear motor controller programming tool EM-236A Interface Unit

4G antenna 2 stk.

Digital scale Hook style 40 KG

4g modem USB D-link

Digital Caliper
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Message type Content Explenation

geometry_msgs/msg/PoseStamped Pose with reference coordinate frame and timestamp
Header header Frame id and time stamp.
Pose pose Pose including position and orientation.

geometry_msgs/TransformStamped[ ] Expresses a transform from coordinate frame header.frame_id to the coordinate frame child_frame_id
std_msgs/Header header Frame id and time stamp.
string child_frame_id Frame id of the child frame.
Transform transform Translation and rotation of the frame.

geometry_msgs/msg/Twist Expresses velocity in free space broken into its linear and angular parts.
Vector3 linear Linear velocity.
Vector3 angular Angular velocity.

lidarslam_msgs/msg/MapArray An array of maps
std_msgs/Header header Frame id and time stamp.
lidarslam_msgs/SubMap[ ] submaps List of submaps.
int8 cloud_coordinate Local or global cloud_coordinate.
int8 LOCAL=0 Local cloud_coordinate.
int8 GLOBAL=1 Global cloud_coordinate.

lidarslam_msgs/msg/SubMap An array of submaps
std_msgs/Header header Frame id and time stamp.
float64 distance The distance the robot has travelled.
geometry_msgs/Pose pose The robots pose when the data was collected.
sensor_msgs/PointCloud2 cloud Actual point data, size is (row_step*height).

nav_msgs/msg/Path An array of poses that represents a Path for a robot to follow
Header header Frame id and time stamp.
geometry_msgs/PoseStamped[ ] Array of poses.

nav_msgs/Odometry Represents an estimate of a position and velocity in free space
std_msgs/Header header Frame id and time stamp.
string child_frame_id Frame id the pose points to. The twist is in this coordinate frame.
geometry_msgs/PoseWithCovariance pose Estimated pose that is typically relative to a fixed world frame.
geometry_msgs/TwistWithCovariance twist Estimated linear and angular velocity relative to child_frame_id.

sensor_msgs/msg/Imu This is a message to hold data from an IMU (Inertial Measurement Unit)
Header header Frame id and time stamp.
geometry_msgs/Quaternion orientation Orienation expressed in x,y,z,w.
float64[9] orientation_covariance Row major about x, y, z axes.
geometry_msgs/Vector3 angular_velocity Angular velocity expressed in x, y, z.
float64[9] angular_velocity_covariance Row major about x, y, z axes.
geometry_msgs/Vector3 linear_acceleration Linear acceleration expressed in x, y, z.
float64[9] linear_acceleration_covariance Row major x, y z.

sensor_msgs/msg/PointCloud2 Holds a collection of N-dimensional points
Header header Time of sensor data acquisition, and the coordinate frame ID.
uint32 height 2D structure of the point cloud.
uint32 width 2D structure of the point cloud.
PointField[ ] fields Describes the channels and their layout in the binary data blob.
bool is_bigendian Is this data bigendian?
uint32 point_step Length of a point in bytes.
uint32 row_step Length of a row in bytes.
uint8[ ] data Actual point data, size is (row_step*height).
bool is_dense True if there are no invalid points.

tf2_msgs/msg/TFMessage Array of transforms
geometry_msgs/TransformStamped[ ] transforms Array of transforms
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Item Function Description
base_link Link The base of the robot
rigid_left_front_wheel Link Front left wheel
rigid_right_front_wheel Link Front right wheel
rigid_left_back_wheel Link Back left wheel
rigid_right_back_wheel Link Back right wheel
velodyne Link Velodyne VLP-16 Lidar
imu Link IMU
rev_left_front_wheel Revolute joint Joint between left front wheel and base link
rev_right_front_wheel Revolute joint Joint between right front wheel and base link
rev_left_back_wheel Revolute joint Joint between left back wheel and base link
rev_right_back_wheel Revolute joint Joint between right back wheel and base link
lidar_joint Fixed joint Joint between LIDAR and base link
imu_joint Fixed joint Joint between IMU and base link
veldoyne-VLP16 Sensor Velodyne VLP-16 Lidar Sensor
my_imu Sensor IMU sensor
skid_steer_drive Plugin Plugin for steering the robot
gazebo_ros_laser_controller Plugin Plugin for Velodyne VLP-16 LIDAR
imu_plugin Plugin Plugin for the IMU sensor
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localhost:4649/?mode=xml 1/11

<?xml version="1.0" ?>

<sdf version="1.6">

  <model name="atvkda">

    <pose>0 0 0.35 0 -0 0</pose>

  <!-- ******* Base Link *******   -->

    <link name="base_link">

      <self_collide>false</self_collide>

      <pose frame="">-0.5509772858698141 -0.35921503762573787 

0.4691281110478071 0.0 -0.0 0.0</pose>

      <inertial>

        <pose frame="">0.0 0.0 0.0 0 0 0</pose>

        <mass>30</mass>

        <inertia>

          <ixx>1</ixx>

          <ixy>1</ixy>

          <ixz>1</ixz>

          <iyy>1</iyy>

          <iyz>1</iyz>

          <izz>1</izz>

        </inertia>

      </inertial>

      <collision name="base_link_collision">

        <geometry>

          <mesh>

            <uri>model://atvkda/meshes/CAD/rigid_body.stl</uri>

            <scale>0.001 0.001 0.001</scale>

          </mesh>

        </geometry>

      </collision>

      <visual name="base_link_visual">

        <geometry>

          <mesh>

            <uri>model://atvkda/meshes/CAD/rigid_body.stl</uri>

            <scale>0.001 0.001 0.001</scale>

          </mesh>

        </geometry>

        <material>

          <ambient>0.1 0.1 0.1 1</ambient>

          <diffuse>0.1 0.1 0.1 1</diffuse>

          <specular>1.5 1.5 1.5 1</specular>

          <emissive>0.05 0.05 0.05 1</emissive>

        </material>

      </visual>

    </link>

  <!-- *******Left Front Wheel *******   -->

    <link name="rigid_left_front_wheel">

      <self_collide>false</self_collide>

      <pose frame="">0.149313570651654 0.10837677345109908 

-0.0027835333140371534 0.0 -0.0 0.0</pose>

      <inertial>

        <pose frame="">0.0 0.0 0.0 0 0 0</pose>

        <mass>5</mass>

        <inertia>

          <ixx>0.0125</ixx>

          <ixy>0</ixy>

          <ixz>0.0</ixz>

          <iyy>0.0125</iyy>

          <iyz>0.0</iyz>
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          <izz>0.05</izz>

        </inertia>

      </inertial>

      <collision name="rigid_left_front_wheel_collision">

        <geometry>

          <mesh>

            <uri>model://atvkda/meshes/CAD/rigid_left_front_wheel.stl</uri>

            <scale>0.001 0.001 0.001</scale>

          </mesh>

        </geometry>

        <surface>

          <friction>

            <ode>

              <mu>0.6</mu>

              <mu2></mu2>

              <slip1>0.001</slip1>

              <slip2>0.001</slip2>

            </ode>

          </friction>

          <contact>

            <ode>

              <soft_cfm>0</soft_cfm>

              <soft_erp>0.2</soft_erp>

              <kp>1e+13</kp>

              <kd>1</kd>

              <max_vel>0.01</max_vel>

              <min_depth>0.5</min_depth>

            </ode>

          </contact>

        </surface>

      </collision>

      <visual name="rigid_left_front_wheel_visual">

        <geometry>

          <mesh>

            <uri>model://atvkda/meshes/CAD/rigid_left_front_wheel.stl</uri>

            <scale>0.001 0.001 0.001</scale>

          </mesh>

        </geometry>

        <material>

          <ambient>0.01 0.01 0.01 1</ambient>

          <diffuse>0.1 0.1 0.1 1</diffuse>

          <specular>1.5 1.5 1.5 1</specular>

          <emissive>0.001 0.001 0.001 1</emissive>

        </material>

      </visual>

    </link>

  <!-- ******* Right Front Wheel *******  -->

    <link name="rigid_right_front_wheels">

      <self_collide>false</self_collide>

      <pose frame="">0.14931385014328322 -0.7921332073751959 

-0.0027817838858620993 0.0 -0.0 0.0</pose>

      <inertial>

        <pose frame="">0.0 0.0 0.0 0 0 0</pose>

        <mass>5</mass>

        <inertia>

          <ixx>0.0125</ixx>

          <ixy>0</ixy>

          <ixz>0.0</ixz>

          <iyy>0.0125</iyy>
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          <iyz>0.0</iyz>

          <izz>0.05</izz>

        </inertia>

      </inertial>

      <collision name="rigid_right_front_wheels_collision">

        <geometry>

          <mesh>

            <uri>model://atvkda/meshes/CAD/rigid_right_front_wheels.stl</uri>

            <scale>0.001 0.001 0.001</scale>

          </mesh>

        </geometry>

        <surface>

          <friction>

            <ode>

              <mu>0.6</mu>

              <mu2></mu2>

              <slip1>0.001</slip1>

              <slip2>0.001</slip2>

            </ode>

          </friction>

          <contact>

            <ode>

              <soft_cfm>0</soft_cfm>

              <soft_erp>0.2</soft_erp>

              <kp>1e+13</kp>

              <kd>1</kd>

              <max_vel>0.01</max_vel>

              <min_depth>0.5</min_depth>

            </ode>

          </contact>

        </surface>

      </collision>

      <visual name="rigid_right_front_wheels_visual">

        <geometry>

          <mesh>

            <uri>model://atvkda/meshes/CAD/rigid_right_front_wheels.stl</uri>

            <scale>0.001 0.001 0.001</scale>

          </mesh>

        </geometry>

        <material>

          <ambient>0.01 0.01 0.01 1</ambient>

          <diffuse>0.1 0.1 0.1 1</diffuse>

          <specular>1.5 1.5 1.5 1</specular>

          <emissive>0.001 0.001 0.001 1</emissive>

        </material>

      </visual>

    </link>

  <!-- ******* Left Back Wheel *******   -->

    <link name="rigid_left_back_wheel">

      <self_collide>false</self_collide>

      <pose frame="">-1.3496864291871955 0.10837677345106926 

-0.0033596523819218326 0.0 -0.0 0.0</pose>

      <inertial>

        <pose frame="">0.0 0.0 0.0 0 0 0</pose>

        <mass>5</mass>

        <inertia>

          <ixx>0.0125</ixx>

          <ixy>0</ixy>

          <ixz>0.0</ixz>
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          <iyy>0.0125</iyy>

          <iyz>0.0</iyz>

          <izz>0.05</izz>

        </inertia>

      </inertial>

      <collision name="rigid_left_back_wheel_collision">

        <geometry>

          <mesh>

            <uri>model://atvkda/meshes/CAD/rigid_left_back_wheel.stl</uri>

            <scale>0.001 0.001 0.001</scale>

          </mesh>

        </geometry>

        <surface>

          <friction>

            <ode>

              <mu>0.6</mu>

              <mu2></mu2>

              <slip1>0.001</slip1>

              <slip2>0.001</slip2>

            </ode>

          </friction>

          <contact>

            <ode>

              <soft_cfm>0</soft_cfm>

              <soft_erp>0.2</soft_erp>

              <kp>1e+13</kp>

              <kd>1</kd>

              <max_vel>0.01</max_vel>

              <min_depth>0.5</min_depth>

            </ode>

          </contact>

        </surface>

      </collision>

      <visual name="rigid_left_back_wheel_visual">

        <geometry>

          <mesh>

            <uri>model://atvkda/meshes/CAD/rigid_left_back_wheel.stl</uri>

            <scale>0.001 0.001 0.001</scale>

          </mesh>

        </geometry>

        <material>

          <ambient>0.01 0.01 0.01 1</ambient>

          <diffuse>0.1 0.1 0.1 1</diffuse>

          <specular>1.5 1.5 1.5 1</specular>

          <emissive>0.001 0.001 0.001 1</emissive>

        </material>

      </visual>

    </link>

  <!-- ******* Right Back Wheel *******   -->

    <link name="rigid_right_back_wheel">

      <self_collide>false</self_collide>

      <pose frame="">-1.3496861498881583 -0.792133207375183 

-0.003357902953795265 0.0 -0.0 0.0</pose>

      <inertial>

        <pose frame="">0.0 0.0 0.0 0 0 0</pose>

        <mass>5</mass>

        <inertia>

          <ixx>0.0125</ixx>

          <ixy>0</ixy>
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          <ixz>0.0</ixz>

          <iyy>0.0125</iyy>

          <iyz>0.0</iyz>

          <izz>0.05</izz>

        </inertia>

      </inertial>

      <collision name="rigid_right_back_wheel_collision">

        <geometry>

          <mesh>

            <uri>model://atvkda/meshes/CAD/rigid_right_back_wheel.stl</uri>

            <scale>0.001 0.001 0.001</scale>

          </mesh>

        </geometry>

        <surface>

          <friction>

            <ode>

              <mu>0.6</mu>

              <mu2></mu2>

              <slip1>0.001</slip1>

              <slip2>0.001</slip2>

            </ode>

          </friction>

          <contact>

            <ode>

              <soft_cfm>0</soft_cfm>

              <soft_erp>0.2</soft_erp>

              <kp>1e+13</kp>

              <kd>1</kd>

              <max_vel>0.01</max_vel>

              <min_depth>0.5</min_depth>

            </ode>

          </contact>

        </surface>

      </collision>

      <visual name="rigid_right_back_wheel_visual">

        <geometry>

          <mesh>

            <uri>model://atvkda/meshes/CAD/rigid_right_back_wheel.stl</uri>

            <scale>0.001 0.001 0.001</scale>

          </mesh>

        </geometry>

        <material>

          <ambient>0.01 0.01 0.01 1</ambient>

          <diffuse>0.1 0.1 0.1 1</diffuse>

          <specular>1.5 1.5 1.5 1</specular>

          <emissive>0.001 0.001 0.001 1</emissive>

        </material>

      </visual>

    </link>

  <!-- ******* LIDAR *******   -->

    <link name='velodyne'>

      <pose frame=''>0.235 -0.34 0.85933 0 0 0</pose>

      <inertial>

        <pose frame='map'>0 0 0 0 0 0</pose>

        <mass>0.2</mass>

        <inertia>

          <ixx>0.01</ixx>

          <ixy>0.01</ixy>

          <ixz>0.01</ixz>
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          <iyy>0.01</iyy>

          <iyz>-0.01</iyz>

          <izz>0.01</izz>

        </inertia>

      </inertial>

      <collision name='base_footprint_collision_1'>

        <pose frame=''>0 0 0 0 0 0</pose>

        <geometry>

          <cylinder>

            <length>0.0717</length>

            <radius>0.0516</radius>

          </cylinder>

        </geometry>

        <surface>

          <contact>

          <ode/>

          </contact>

          <friction>

          <ode/>

          <torsional>

            <ode/>

          </torsional>

          </friction>

          <bounce/>

        </surface>

        <max_contacts>10</max_contacts>

      </collision>

      <visual name='base_footprint_visual_1'>

        <pose frame=''>0 0 0 0 0 0</pose>

        <geometry>

          <mesh>

          <scale>1 1 1</scale>

          <uri>model://velodyne_VLP16/meshes/VLP16_base_1.dae</uri>

          </mesh>

        </geometry>

        <material>

          <script>

          <uri>__default__</uri>

          <name>__default__</name>

          </script>

        </material>

      </visual>

      <visual name='base_footprint_visual_2'>

        <pose frame=''>0 0 0 0 0 0</pose>

        <geometry>

          <mesh>

            <scale>1 1 1</scale>

            <uri>model://velodyne_VLP16/meshes/VLP16_base_2.dae</uri>

          </mesh>

        </geometry>

        <material>

          <script>

            <uri>__default__</uri>

            <name>__default__</name>

          </script>

        </material>

      </visual>

      <visual name='base_footprint_visual_3'>

        <pose frame=''>0 0 0 0 0 0</pose>

        <geometry>
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          <mesh>

            <scale>1 1 1</scale>

            <uri>model://velodyne_VLP16/meshes/VLP16_scan.dae</uri>

          </mesh>

        </geometry>

        <material>

          <script>

            <uri>__default__</uri>

            <name>__default__</name>

          </script>

        </material>

      </visual>

      <sensor name='velodyne-VLP16' type='ray'>

        <visualize>0</visualize>

        <update_rate>10</update_rate>

        <ray>

          <scan>

            <horizontal>

              <samples>170</samples>

              <resolution>1</resolution>

              <min_angle>-3.14159</min_angle>

              <max_angle>3.14159</max_angle>

            </horizontal>

            <vertical>

              <samples>16</samples>

              <resolution>1</resolution>

              <min_angle>-0.261799</min_angle>

              <max_angle>0.261799</max_angle>

            </vertical>

          </scan>

          <range>

            <min>0.5</min>

            <max>50</max>

            <resolution>0.001</resolution>

          </range>

          <noise>

            <type>gaussian</type>

            <mean>0</mean>

            <stddev>0</stddev>

          </noise>

        </ray>

        <plugin name='gazebo_ros_laser_controller' 

filename='libgazebo_ros_velodyne_laser.so'>

          <ros>

            <namespace></namespace>

            <argument>~/out:=points_raw</argument>

          </ros>

          <frame_name>velodyne</frame_name>

          <min_range>0.5</min_range>

          <max_range>50</max_range>

          <gaussian_noise>0.008</gaussian_noise>

          <robotNamespace></robotNamespace>

          <organize_cloud>false</organize_cloud>

          

          <output_type>sensor_msgs/PointCloud2</output_type> 

        </plugin>

        <pose frame=''>0 0 0 0 0 0</pose>

      </sensor>

      <gravity>0</gravity>

      <self_collide>0</self_collide>
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      <kinematic>0</kinematic>

    </link>

  <!-- ******* IMU *******  --> 

    <link name="imu">

      <pose frame=''>-0.55 -0.34 0.465 0 0 0</pose>

      <inertial>

        <mass>0.1</mass>

        <inertia>

          <ixx>0.01</ixx>

          <ixy>0.01</ixy>

          <ixz>0.01</ixz>

          <iyy>0.01</iyy>

          <iyz>-0.01</iyz>

          <izz>0.01</izz>

        </inertia>

      </inertial>

      <collision name="imu_collision">

        <pose frame=''>0 0 0 0 0 0 </pose>

        <geometry>

          <box>

            <size> 0.05 0.05 0.01 </size>

          </box>

        </geometry>

      </collision>

      <visual name="imu_visual">

        <geometry>

          <box>

            <size> 0.05 0.05 0.01 </size>

          </box>

        </geometry>

      </visual>

    

      <sensor name="my_imu" type="imu">

        <imu>

        <angular_velocity>

        <x>

          <noise type="gaussian">

          <mean>0.0</mean>

          <stddev>2e-4</stddev>

          <bias_mean>0.0000075</bias_mean>

          <bias_stddev>0.0000008</bias_stddev>

          </noise>

        </x>

        <y>

          <noise type="gaussian">

          <mean>0.0</mean>

          <stddev>2e-4</stddev>

          <bias_mean>0.0000075</bias_mean>

          <bias_stddev>0.0000008</bias_stddev>

          </noise>

        </y>

        <z>

          <noise type="gaussian">

          <mean>0.0</mean>

          <stddev>2e-4</stddev>

          <bias_mean>0.0000075</bias_mean>

          <bias_stddev>0.0000008</bias_stddev>

          </noise>

        </z>
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        </angular_velocity>

        <linear_acceleration>

        <x>

          <noise type="gaussian">

          <mean>0.0</mean>

          <stddev>1.7e-2</stddev>

          <bias_mean>0.00001</bias_mean>

          <bias_stddev>0.00001</bias_stddev>

          </noise>

        </x>

        <y>

          <noise type="gaussian">

          <mean>0.0</mean>

          <stddev>1.7e-2</stddev>

          <bias_mean>0.00001</bias_mean>

          <bias_stddev>0.00001</bias_stddev>

          </noise>

        </y>

        <z>

          <noise type="gaussian">

          <mean>0.0</mean>

          <stddev>1.7e-2</stddev>

          <bias_mean>0.00001</bias_mean>

          <bias_stddev>0.00001</bias_stddev>

          </noise>

        </z>

        </linear_acceleration>

        </imu>

        <always_on>true</always_on>

        <update_rate>30</update_rate>

        <plugin name="imu_plugin" filename="libgazebo_ros_imu_sensor.so">

          <ros>

            <namespace></namespace>

            <argument>~/out:=imu_correct</argument>

          </ros>

          <frame_name>map</frame_name>

        </plugin>

      </sensor>

      <gravity>0</gravity>

      <self_collide>0</self_collide>

      <kinematic>0</kinematic>

    </link>  

  <!-- *******Joints *******  -->

    <joint name="imu_joint" type="fixed">

          <parent>base_link</parent>

          <child>imu</child>

          <pose>>0 0 0 0 0 0</pose>

      </joint>

    <joint name="lidar_joint" type="fixed">

          <parent>base_link</parent>

          <child>velodyne</child>

          <pose>>0 0 0 0 0 0</pose>

      </joint>

    <joint name="rev_right_back_wheel" type="revolute">

      <parent>base_link</parent>

      <child>rigid_right_back_wheel</child>

      <pose frame="">0 0 0 0 0 0</pose>
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      <axis>

        <xyz>0 1 0</xyz>

        <use_parent_model_frame>0</use_parent_model_frame>

      </axis>

    </joint>

    <joint name="rev_left_back_wheel" type="revolute">

      <parent>base_link</parent>

      <child>rigid_left_back_wheel</child>

      <pose frame="">0 0 0 0 0 0</pose>

      <axis>

        <xyz>0 1 0</xyz>

        <use_parent_model_frame>0</use_parent_model_frame>

      </axis>

    </joint>

    <joint name="rev_left_front_wheel" type="revolute">

      <parent>base_link</parent>

      <child>rigid_left_front_wheel</child>

      <pose frame="">0 0 0 0 0 0</pose>

      <axis>

        <xyz>0 1 0</xyz>

        <use_parent_model_frame>0</use_parent_model_frame>

      </axis>

    </joint>

    <joint name="rev_right_front_wheel" type="revolute">

      <parent>base_link</parent>

      <child>rigid_right_front_wheels</child>

      <pose frame="">0 0 0 0 0 0</pose>

      <axis>

        <xyz>0 1 0</xyz>

        <use_parent_model_frame>0</use_parent_model_frame>

      </axis>

    </joint>

  <!-- ******* Plugin for steering the ATV *******  -->

    

    <plugin name='skid_steer_drive' filename='libgazebo_ros_diff_drive.so'>

      <ros>

        <namespace>  </namespace>

      </ros>

      <update_rate>30</update_rate>

      <num_wheel_pairs> 2 </num_wheel_pairs>

      <left_joint>rev_left_front_wheel</left_joint>

      <right_joint>rev_right_front_wheel</right_joint>

      <wheel_separation>0.914</wheel_separation>

      <wheel_diameter>0.694622</wheel_diameter>

      <left_joint>rev_left_back_wheel</left_joint>

      <right_joint>rev_right_back_wheel</right_joint>

      <wheel_separation>0.914</wheel_separation>

      <wheel_diameter>0.694622</wheel_diameter>

      <max_wheel_torque>100</max_wheel_torque>

      <max_wheel_acceleration>100</max_wheel_acceleration>  

      

      <publish_odom>false</publish_odom>

      <publish_odom_tf>true</publish_odom_tf>
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      <publish_wheel_tf>true</publish_wheel_tf>

      

      <odometry_topic>odom</odometry_topic>

      <odometry_frame>odom</odometry_frame>

      <robot_base_frame>base_link</robot_base_frame>

    </plugin>

  </model>

</sdf>
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Appendix H

User Manual

H.1 Introduction

This user manual provides a detailed description of how to launch and use the

simulator of the Lone Wolf ATV. ROS 2 Foxy with Ubuntu 20.04 and required

packages specified on the equipment section should be installed.
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H.2 Equipment

The applications and libraries needed to build and launch the simulator is described

in table H.1 below.

Name Description

Ceres-Solver C++ library for modelling and optimisation

Gazebo 3D robotics simulation software

GTSAM C++ sensor fusion library

G2O Pose graph optimisation library

PC with Ubuntu 20.04 or newer Necessary for running ROS 2

RViz Robotics visualisation software

ROS Foxy full desktop ROS 2 full distro

ros-foxy-gazebo-pkgs ROS simulation in Gazebo

ros-foxy-ros2-control Controls framework for ROS 2

ros-foxy-ros2-controllers Controls framework for ROS 2

ros-foxy-teleop-twist-keyboard Teleoperation twis keyboard

ros-foxy-velodyne Velodyne VLP-16 package

Table H.1: Equipment for running the simulator

H.3 Create a ROS 2 Workspace

Create a ROS 2 workspace and clone the repository by typing these commands in

the terminal line.

1 $ source opt/ros/foxy/setup.bash

2 $ mkdir ~/ ros2_ws/src

3 $ cd ~/ ros2_ws/src

4 $ git clone git@github.com:sigridmellemseter/lonewolf.git

5 $ cd ~/ ros2_ws

6 $ colcon build

Copy the models from the folder gazemodels and place them in /.gazebo/models/.

This can be done by writing the following in the terminal.

1 $ cp -r lonewolf/gazebomodels /. ~/. gazebo/models/
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H.4 Launching the Simulations

Open a terminal and write the following.

1 $ source opt/ros/foxy/setup.bash

2 $ cd ~/ ros2_ws

3 $ source install/setup.bash

4 $ ros2 launch atv_pkg texasworld.launch.py

You should now see the ATV and the world in Gazebo.

Steering the ATV

To steer the ATV, these commands have to be run in the terminal.

1 $ source opt/ros/foxy/setup.bash

2 $ ros2 run teleop_twist_keyboard teleop_twist_keyboard

The Teleoperation Twist Keyboard takes in the arguments in table H.2 for steering

the ATV in Gazebo.

Argument Action

u Turn left while driving forward

i Drive straight ahead

o Turn right while driving forward

j Turn left (in place)

k Stop

l Turn right (in place)

m Turn left while backing up

, Back up (straight)

. Turn right while backing up

q/z Increase/decrease max speeds by 10%

w/x Increase/decrease only linear speed by 10%

e/c Increase/decrease only angular speed by 10%

Table H.2: Teleoperation Twist Keyboard Arguments
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How to View the Point Cloud in RViz2

While the simulator is running, open a new terminal window and run rviz2.

1 $ source opt/ros/foxy/setup.bash

2 $ rviz2

In rviz2 you have to define the correct frame. Write ”velodyne” as the Fixed Frame

under Global Options. Now you have to add the PointCloud2 in RViz.

• Click ”Add” in the bottom left corner

• Choose ”By Topic”

• Choose ”PointCloud2” under /point raq

Now you should see the point cloud in rviz. To get a better visual choose the Style

”Flat Squares”, Size (m) to 0.03 and set Color Transformer to ”AxisColor”

Launching SLAM

While the simulator is running, open a new terminal and write the following.

1 $ source opt/ros/foxy/setup.bash

2 $ cd ~/ ros2_ws

3 $ source install/setup.bash

4 $ ros2 launch scanmatcher lio_bigloop.launch.py

You can now view the generated maps in RViz2:

• Open RViz2 as described above

• Set the fixed frame to ”map”

• Add the topics ”/map”, ”/path”, ”/modified map” and ”/modified path”

To see the data more clearly, you can choose the following styles:

• /map: Flat Squares, Size (m) 0.03, Color Transformer to AxisColor

• /path: Color White

• /modified map: Flat Squares, Size (m) 0.03, Color Transformer to FlatColor

• /modified path: Color green
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H.5 Open ROS 2 in Container

If you don’t have a PC with operating system Ubuntu 20.04 or newer, you can set

up development from a Docker container. If you are new to Ubuntu/Linux, or don’t

already have any other specific plan on how you want to set up development with

docker, we recommend you set up the Docker container this way.

Firstly, you need to install a Docker version that is compatible with your operating

system. If you are using Ubuntu, remember to add Docker to the admin group so

you don’t have to add ”sudo” before every Docker command. After adding docker

to the admin group, remember to reboot for the change to take effect.

The second step is to clone the repository and open it in VSCode with these com-

mands:

1 $ git clone git@github.com:sigridmellemseter/lonewolf.git

2 $ code lonewolf

In VSCode, download the extension ”Remote-Containers”. To open the container

in VSCode press CTRL+SHIFT+P and search for Remote-Containers: Reopen in

Container. The image should now start building. This might take a while. After

the build is complete, you can start to develop the simulator as if ROS 2 Foxy is

installed on Ubuntu 20.04.
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ROS Simulated World For ATV With SLAM
Department of Engineering Cybernetics
Eline Marie Håve Sigrid Mellemseter Cecilie Nikolaisen

Abstract
This poster summarises the bachelor assignment
concerning a ROS simulated world for an au-
tonomous ATV. The ATV is modelled in CAD
software, and implemented in a Gazebo world.
The ATV gathers data for a point cloud, which
is used to generate a map and path with SLAM
algorithms.

Simulator

The simulator in Gazebo is a test platform for SLAM
algorithms. It consists of two worlds with different
complexity and an ATV robot. The ATV is steer-
able through keyboard commands. The model of
the ATV is a fair representation of the Lone Wolf
ATV.

Model

The ATV model consists of a base link with joints
forking out to the four wheels. It was modelled by
following a strict naming and joint definition struc-
ture to allow exportation to simulation descriptive
format (SDF). This format is capable of running
within a simulated world in the Gazebo physics en-
gine. The SDF includes the sensors Velodyne VLP-
16 LiDAR and IMU.

Figure 1:ATV Model

Figure 2:System Architecture

ROS

ROS 2 was chosen as the framework for the simu-
lator, and different ROS packages and libraries are
implemented. An overview of the ROS architecture
is visualised in figure 2.

Point Cloud

A point cloud is generated from the simulated
worlds. The simulated LiDAR represents the phys-
ical sensor well. Finding sufficient values for the
point cloud contributes to better mapping when the
SLAM algorithm is implemented.

Specification Value
Horizontal samples 170
Vertical samples 16
Minimum range 0.5
Maximum range 50

Table 1:Sufficient Values for the Point Cloud

SLAM

The li_slam_ros2 package is implemented with
Scan-Matcher and Graph-Based SLAM as the
sensor-processing and pose-graph optimisation. Dif-
ferent algorithms for the back-end processing are
tested, which results in NDT being used for front-
end while GICP for back-end. The map, path, and
modified data is published on topics, which can be
visualised in RViz.

Figure 3:Mapping and Localisation

Conclusion & Future Work

The system design works as intended, with a clean
and functioning file structure, meaning that the fol-
lowing key conclusions can be drawn:
• All parts of the ATV are sufficiently modelled

and successfully connected. Some adjustments
are needed for a correct representation of joints
and physics.

• The ATV navigates in the simulator through
keyboard commands. The entire simulator is
operational in ROS 2 and available for further
development.

• The simulated LiDAR seems to simulate the
physical sensor well, and captures the
environment around the ATV.

• The SLAM package is fully operational and able
to generate a map using the data from the point
cloud. The point cloud data is supplemented with
IMU data to achieve sufficient map quality.

A few suggestions for future development of the
project:
• A more realistic model of the ATV and it’s test

environment.
• Implementation of the NAV2 stack for

autonomous navigation.
• Setting up communication within the physical

ATV and the simulator.

References
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Nikolaisen. ROS Simulated World for ATV
With SLAM 2022
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