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ABSTRACT 

Voice conversion (VC) is the process of altering one speaker's words to appear as though a 

different person is speaking them. The speech signal from the first speaker, known as the source 

speaker, should retain its linguistic content in its final converted form, known as the resulting 

voice. Still, it should also be maximally altered in terms of vocal timbre, range, inflection, and so 

on to match the voice of the second speaker, known as the target speaker. This activity can 

synthesize voices in various ways, and it could be a vital component in creating human-sounding 

artificial voices for robots.  

Using a form of a generative adversarial network (GAN) called StarGANv2 originally developed 

by Yinghao Li et al.., this project provides an approach that permits non-parallel many to many 

and cross-gender voice conversion (VC). The model used is called StarGANv2-VC. It is unique 

in that it (1) does not require parallel utterances, transcriptions, or temporal alignment processes 

for speech generator training, and (2) learns many-to-many mappings across several attribute 

domains using a single generator network. Our approach greatly outperforms earlier VC models 

using a combination of adversarial source classifier loss and perceptual loss. This paradigm 

applies to a wide range of speech conversion jobs, including many-to-many, cross-lingual, and 

singing voice conversion. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND 

The purpose of this project is to create a standalone voice conversion application that uses Deep 

Learning, a non-parallel data modeling method, in conjunction with a Star GAN network that 

emphasizes adversarial classifier loss, use of style encoders, F0(fundamental frequency) 

consistency, as well as encoders and decoders. 

Voice conversion is a technique for converting a source speaker's voice to a target speaker's 

voice by keeping some features of the input voice, such as the content of the speech, while 

modifying other aspects, such as style and frequency. Text-to-speech (TTS), speaking assistance, 

speech improvement, pronunciation conversion, and other activities can all be accomplished with 

VC. 

The Gaussian mixture model (GMM) is one of the most widely used techniques today, and it is 

based on statistical models. Non-negative matrix factorization (NMF), neural networks (NNs), 

restricted Boltzmann machines (RBMs), and deep learning are examples of other standard 

statistical models used in speech conversion. 

The VC system is given a collection of utterances recorded from the source and target speakers 

during the training phase (the training utterances). The speech waveform signal is encoded into a 

representation that allows speech attributes to be modified during the speech analysis and 

mapping feature calculation steps. 

Following the mapping features from a new source speaker utterance, the features are 

transformed using the trained conversion function in the conversion phase. From the converted 

features, speech features are computed, then used to synthesize the converted utterance 

waveform. VC approaches can be classified in a variety of ways. Whether they require parallel 

or non-parallel recordings throughout their training period is one thing to consider. Parallel 

recordings are utterances with identical linguistic content that differ only in the feature that must 

be mapped (speaker identity, in the VC case) (Mouchtaris et al., 2004). Another element to 

consider is whether they are text-dependent or text-independent (Ney et al., 2004). Word or 



9 

 

phonetic transcriptions, as well as the recordings, are required in text-based techniques. Parallel 

sentences from both the source and target speakers may be necessary for these methods. Because 

no transcription is available for text-independent techniques, these approaches must first identify 

speech segments with similar content before constructing a conversion function(Sundermann, 

2008). The language used by the source and target speakers is a third aspect to consider. The 

assumption behind language-independent or cross-language VC is that the source and destination 

speakers speak different languages (Sundermann et al., 2003; Türk, 2007) 

Many of the tasks in natural language processing (NLP) include constructing robots that can do 

jobs similar to those performed by humans. We consider language to be profoundly personal and 

cultural at the same time. In this regard, the task of a machine speech generator is one of the 

most astounding NLP techniques - it is essentially a machine speaking like a human. Create a 

device that not only talks like a human but speaks like a specific human to give an extra layer of 

impressiveness. Given a clip of a human voice, use a machine to make vocal samples of the same 

human voice saying different things. This refers explicitly to many-to-many voice conversion, in 

which the model may learn several voices and transfer the speech style between them in any 

combination. 

This report will introduce a many-to-many non-parallel voice conversion model based on a 

variant of a Generative Adversarial Network (GAN) called StarGANv2-VC, which requires no 

parallel utterances transcriptions or time alignment procedures. This area has seen a lot of 

activity in recent years. Practically all of the studies on which we based our research were 

published within the previous year. The background research and related work that went into this 

publication will be described next. 

 

Problem Formulation 

This project aims to convert one person’s (source) voice into another person’s (target) say while 

retaining linguistic information. 

The two main questions about a voice conversion system are 1) “How natural does the 
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converted voice sound?” and 2) “How similar does the converted voice sound to the target voice 

and the source voice?”. Earlier Statistical methods and use of parallel utterances, including Deep 

Learning problems, have been used to solve this problem which also had limitations: 

• The majority of voice conversion models require a large amount of parallel data of 

source-target speakers for model training, which is the main disadvantage because 

collecting pairs of utterances of the same sentences spoken by the source and target 

speakers requires a significant amount of effort. 

•  If there is a considerable acoustic gap between both utterances, it is difficult to align both 

source and target speech data using parallel data. It is necessary to make manual 

corrections for the alignment to work reliably, but it is not guaranteed to be completely 

aligned. 

These are the few among others; hence, using a generative adversarial network (GAN) named 

StarGANv2, we describe an unsupervised non-parallel many-to-many voice conversion (VC) 

technique. Our approach beats earlier VC models using a combination of adversarial source 

classifier loss and perceptual loss and produces natural-sounding speech in terms of naturalness 

and speaker similarity. 

 

1.2 OBJECTIVES 

 We use the StarGANv2 architecture for Voice conversion as introduced by Li et al (Li et al., 

2021) which is a newly developed GAN architecture for picture style transfer, a new technique 

for unsupervised nonparallel many-to-many cross-gender voice conversion, which would be 

achieved by: 

• Applying StarGANv2 to voice conversion, which enables converting from plain speech 

into speech with a diversity of styles 

• Introducing a novel adversarial source classifier loss that significantly improves the 

similarity in terms of speaker identity between the converted speech and target speech 

Application of neural network models for velocity inversion on previously unseen 

seismic observations. 

• Learning from existing data instead of using physical models and formulas. 
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1.3 LIMITATIONS 

The objective of this work was initially aimed at cross-gender and bi-lingual voice conversion 

using Nigerian Pidgin English and British English Language. Still, unfortunately, due to the lack 

of speech data available for the Nigerian Pidgin English, we had to stick to just the British 

English open for this work.  
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CHAPTER 2 

THEORETICAL BACKGROUND 

This chapter discusses the theory of VC. Reading this should provide sufficient background 

information on the subject to enable the reader to follow the remainder of the thesis. To conduct 

VC, we must first encode speech mathematically in a way that allows us to alter the signal's 

properties, as voice conversion is a subset of speech synthesis. 

The advancements in the fields of artificial intelligence (AI), machine learning (ML), and deep 

learning (DL) have widened the scope of these study domains' applications. During the early 

stages of evolution, applications were restricted to a narrow range of fields, such as biometrics, 

image processing, and pattern recognition. However, subsequent improvements covered novel 

application areas on the outskirts of exploration, such as digital speech processing (DSP), natural 

language processing (NLP), and electroencephalography (EEG) signal processing. Although, in 

recent years, sub-domains of DSP have emerged as a critical topic of research for deep learning 

researchers, including voice recognition, speaker recognition, speech synthesis, and speech 

augmentation. Among these, voice synthesis is a promising area of research that involves the 

artificial creation of human speech. (Dhar, 2021) 

The purpose of voice conversion is to alter the features of a source speaker's voice using signal 

processing techniques so that the output can be identified as the voice of a target speaker. During 

the early years of VC research, this topic was extensively researched utilizing statistical 

algorithms such as the Gaussian mixture model (GMM), dynamic kernel partial least squares 

(DKPLS), and non-negative matrix factorization (NMF), among others. However, as the field of 

deep learning has advanced in recent years, VC has emerged as an essential topic of research for 

the DL community. The process of VC involves changing speech parameters such as 

fundamental frequencies (F0), spectral envelope, and formant structures to provide a natural-

sounding speech. VC-based technologies are widely used in various real-time applications, 

including audio assistance devices for people with speech disorders, voice-over for film dubbing, 

and speech-to-singing conversion (Dhar, 2021). It generally employs two stages: training and 

transformation. During the training step, the voice conversion system receives information from 

the source and targets the speaker's voices, and automatically generates voice conversion rules. 
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To do this, training databases from source and target speakers are evaluated acoustically, and a 

mapping between the two speakers' acoustic regions is estimated. The transformation stage uses 

the mapping established during the training stage to change the source voice signal to fit the 

target voice's characteristics. The alteration is accomplished by applying a suite of signal 

processing techniques that alter the vocal tract and prosody features. In other words, a voice 

conversion system adjusts only the features of speech that are reliant on the speaker, such as 

formants, fundamental frequency (F0), intonation, intensity, and duration, while retaining the 

speaker-independent speech content. (Mohammadi and Kain, 2017). 

A typical framework for voice conversion consists of three steps:  

1) analysis of speech,  

2)  feature mapping, and 

3)  reconstruction of speech  

which we refer to as the analysis-mapping-reconstruction pipeline. 

Section 2.1 provides an overview of how speech works and how it is analyzed, followed by the 

feature mapping and reconstruction. When we understand how speech is physically produced, we 

can see how this information leads to the approach of voice conversion. 

2.1 SPEECH PRODUCTION 

Speech is a fundamentally human mode of communication. The development of computing 

systems capable of processing speech in a variety of ways is an exciting and critical task. Speech 

recognition and text-to-speech systems, for example, have garnered extensive interest due to 

their critical uses in enabling accessibility for disabled users, as well as in human-computer 

interface design and security systems. Specific systems, such as speaker identification systems, 

are primarily concerned with the timbral quality of speech, while others, such as singing voice 

synthesis, are equally concerned with intelligibility and naturalness. 

It is necessary to consult the three forms of information conveyed by human speech: 

• segmental data (relative to the quality of the voice);  

• supra-segmental data (related to prosody), 

•  linguistic data (expressed by the series of phonemes uttered). 
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When a single utterance is considered, voice quality might be regarded as stable or slowly 

changing, whereas phonemes very fast over time. To collect all of the necessary information 

from a time-varying voice signal, it is required to divide it into short segments (frames) that can 

be considered stationary in themselves. The shorter a frame is, the more stationary its contents 

become. 

Nonetheless, there is a natural limit to the frame size imposed by the third sort of speech 

information, prosody. 

To do voice conversion, speech analysis/synthesis is required. The objective is to extract speech 

elements that allow for a significant change of speech's acoustic qualities. This is seen in Figure 

2.1. 

 

 

 

Figure 2. 1: Training and conversion phase of a typical voice conversion system (Dhar, 

2021) 

 

2.1.1 SPEECH ANALYSIS 

The purpose of speech analysis is to deconstruct speech signals into some intermediate 

representation that may be used to manipulate or modify speech's acoustic features effectively. 

Numerous beneficial intermediate representation strategies have been investigated initially for 

speech communication and speech synthesis. They are pretty helpful for voice conversion. The 

approaches can be broadly classified into Signal-Based representations and Model-Based 

Representations. 

i. Signal-Based representations: 



15 

 

Signal-based analysis/synthesis techniques mimic the speech signal without making 

limiting assumptions (such as the independence of the source signal and filter); as a 

result, they typically produce higher-quality results. The disadvantage is that they are less 

adaptable to change (Mohammadi and Kain, 2017). Signal-based representation 

techniques include Pitch Synchronous Over-Lap and Add (PSOLA). It divides a speech 

signal into overlapping speech segments, each representing one of the speech signal's 

subsequent pitch periods. We can reconstitute the voice signal of a particular intonation 

by overlapping and combining these speech segments with varied pitch durations. 

PSOLA's analysis and reconstruction do not introduce substantial artifacts because it 

works directly on the time domain speech signal. While the PSOLA technique is 

excellent for changing the fundamental frequency of voice sounds, it has significant 

drawbacks. Unvoiced speech signals, for example, are not periodic, making time-domain 

signal manipulation difficult.(Moulines and Charpentier, 1990) 

Also, HNMs (harmonic plus noise models) assume that the speech signal can be broken 

down into harmonics (sinusoids with frequencies relevant to pitch). HNMs produce high-

quality speech, but they are less adaptable for adjustment than source-filter models, 

owing to the complexity of dealing with phase. (Stylianou, 1996) 

 

ii. Model-Based Representations 

The model-based technique is based on the assumption that a model with time-varying 

parameters may mathematically represent the input signal. The source-filter model is a 

common illustration. Because source-filter models are more adaptable, VC may be 

advantageous. The source-filter model is used in this thesis. Speech is seen as a mix of an 

excitation signal (or source signal) and a filter when utilizing a source-filter model 

(Mohammadi and Kain, 2017). The filter symbolizes the vocal tract, while the source 

signal depicts air coming out of the vocal cords. Because the source signal and the filter 

are regarded as separate entities, we can adjust them separately. The filter is viewed as a 

time-varying filter since the vocal tract is continually changing with the position of the 

articulators. 

Either a voiced or an unvoiced excitation signal can be used. An impulse train can be 

used to mimic a voiced excitation signal, with the space between the pulses varying with 
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the speaker's fundamental frequency. On the other hand, the unvoiced signal can be 

described as noise. In reality, sounds are not only characterized as purely voiced or 

unvoiced but also as a blend of both. This simplification, on the other hand, is beneficial 

for providing fundamental knowledge of one of the ways the source signal in the source-

filter model might be modeled. By attenuating certain frequencies and accentuating 

others in the excitation signal's spectrum, the filter molds the source signal (much as the 

vocal tract "shapes" the air). The output signal's spectrum changes as a result of this 

filtering, with a new spectral envelope and formant structure. As we've seen, the source-

filter paradigm attempts to mimic the acoustic production of speech. 

All-pole and log-spectrum filters are the most often utilized filter models. All-pole 

models are implemented with linear predictive coding (LPC), and log-spectrum filters are 

implemented with mel-log spectrum approximation (MLSA)(Imai et al., 1983). The 

figure below shows the representation of a source-filter model of speech production. 

 

 

Figure 2. 2: A source-filter representation of speech production (Doshi, 2021). 

2.1.2 SPEECH FEATURE EXTRACTION AND MAPPING 

We construct vocoding parameters from speech analysis that typically include spectral and 

prosodic components to represent the input speech. The vocoding settings encode the speech in 

such a way that it may be reconstructed later on after transmission. The vocoding parameters are 

further turned into speech features, which we refer to as feature extraction, to improve the 

efficacy of voice conversion by modifying the acoustic qualities. 

With regards to the spectral component, feature extraction seeks to derive low-dimensional 

representations from the high-dimensional raw spectra. In general, spectral properties are capable 

of accurately representing a speaker's uniqueness. Not only must the feature suit the spectral 
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envelope well, but it must also be reversible. They should exhibit good interpolation features that 

enable them to be easily modified. (Sisman et al., 2020) 

 The magnitude spectrum can be shifted to the Mel or Bark frequency scales for perceptually 

significant voice conversion. Additionally, it can be translated to the cepstral domain using a 

finite number of coefficients through the log-magnitude Discrete Cosine Transform. The 

correlation between the cepstral coefficients is lower. Thus, the magnitude spectrum of a high 

dimension is turned into a representation of a standard dimension feature. Mel-cepstral 

coefficients (MCEP), linear predictive cepstral coefficients (LPCC), and line spectral frequencies 

are some of the most frequently used speech features (LSF). Typically, We extract the features 

from these frames and end up with a feature vector for each frame. The mel frequency cepstral 

coefficients (MFCC) (Gupta et al., 2013) and the STRAIGHT spectrogram are two features that 

can be used (Zhang et al., 2009). These are the ones that are put to the test in this thesis. 

In a typical voice conversion pipeline, feature mapping is used to modify speech features from 

the source to the target speaker. While spectral mapping aims to alter the timbre of the voice, 

prosody conversion aims to alter prosody characteristics such as fundamental frequency, 

intonation, and duration. Until now, spectral mapping has remained at the core of a large number 

of voice conversion experiments. (Sisman et al., 2020). 

2.1.3 SPEECH RECONSTRUCTION 

Speech reconstruction can be thought of as an inverse function of speech analysis, in which 

updated parameters are used to build an audible speech signal. It works in conjunction with 

speech analysis. After amplitude modification, a Griffin-Lim algorithm is utilized to reconstruct 

a speech signal from a modified short-time Fourier transform (Griffin and Lim, 1983). Because 

the speech reconstruction process affects the output speech quality, speech reconstruction is also 

a critical area of research in voice conversion. 

2.2 VOICE CONVERSION 

As discussed earlier in Chapter 1, Voice conversion could be regarded as a subfield within the 

broader area of voice transformation; It concerns transforming different aspects of a speech 

signal without changing its linguistic properties. 
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The entire voice conversion process in a typical VC system is often divided into two phases: 

training and conversion. The training phase involves conditioning the model on the speech 

features retrieved during the feature analysis stage and learning the feature mapping. During the 

conversion step, the trained model makes use of the knowledge gained during the training phase 

to adapt the source speakers' voices to sound like the target speakers' voices. 

The VC systems are primarily classified into two categories: those that use Speech-to-Speech 

(STS) and those that use Text-to-Speech (TTS). 

Additionally, VC models are classified into various types based on their approach to voice 

conversion. Parallel VC, non-parallel VC, VC based on mono-lingual speech data, VC based on 

cross-lingual speech data, intra-gender VC, cross-gender VC, one-to-one VC, and many-to-many 

VC are all examples. 

Parallel and non-parallel VC systems are classified according to the linguistic content of the 

voice datasets used to train the VC modules. The training data for parallel VC systems consists 

of samples with identical linguistic contents (e.g., the same spoken words) from different 

speakers that are time-aligned (Mouchtaris et al., 2004). As a result of the frame-wise alignment 

of the linguistic contents, the speech feature mapping component can readily transfer the vocal 

features of source speakers to the vocal features of target speakers. In contrast, in non-parallel 

VC systems, training data consists of samples with misaligned source and target speaker 

linguistic contents.(Dhar, 2021) As a result of this misalignment, it becomes more difficult to 

map the vocal characteristics of the source speakers to the vocal characteristics of the target 

speakers than it is with parallel VC systems. 
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Figure 2. 3: Representation of the Parallel/Non-parallel Voice Conversion framework 

(Dhar, 2021) 

Secondly, voice conversion techniques can be classified according to whether or not they require 

speech transcriptions. Thirdly, they can be classified according to their ability to convert across 

languages. 

Additionally, voice conversion systems vary in their degree of reliance on the source and target 

speakers (s). As a result, they can be classified further into one-to-one systems, many-to-one 

systems, and many-to-many systems, among others, based on how they map sounds. A one-to-

one system converts just between two speaker identities, whereas a many-to-one system can train 

on several sources to convert the speech signal to a single target voice (Mohammadi and Kain, 

2017). The requirement for parallel data, transcripts, language consistency, and the appearance of 

the mapping between source and target speakers all have a significant impact on the system's 

usability. Additionally, because parallel- and transcribed data may be unavailable, the system's 

characteristics dictate the amount of effort required to acquire and preprocess data for the 

system. 

VC systems are also classified as intra-gender VC systems or cross-gender VC systems, 

depending on the gender of the speakers involved in the voice conversion process. Male and 

female speakers have different Mel-scaled power spectrograms, Mel-frequency cepstral 

coefficients (MFCCs), power spectrogram chroma, spectral contrast, and tonal centroid 

properties. This implies that the speaker's gender has a significant part in the voice conversion 

process.(Dhar, 2021) Intra-gender VC occurs when both the source and target speakers are of the 

same gender, whereas cross-gender VC occurs when both the source and target speakers are of 

the opposite gender. Due to the closeness of gender-dependent speech patterns, intra-gender VC 

allows for a more straightforward mapping of speech features than cross-gender VC. Cross-

gender VC models, on the other hand, are more robust because they may be utilized for both 

intra- and cross-gender voice conversion (Dhar, 2021) 

The other category which is the TTS based VC method is categorized into two; ASR module-

independent TTS-based VC systems and ASR module-dependent TTS-based VC systems. TTS-

based VC systems based on the ASR module are combined with TTS synthesis models that have 
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been pre-trained. Using TTS systems allows speech to adhere to the linguistic content. In models 

that use the transfer learning technique, attention mechanisms are used to share the knowledge 

and decoder architecture of the TTS synthesis model with the speech-to-speech conversion based 

encoder-decoder model. In TTS-based VC systems that rely on ASR modules, an additional ASR 

module is used. The ASR module takes the content of the source speakers' speech and utilizes 

the TTS synthesis model to create target speakers' speech from the content of the source 

speakers' speech. (Dhar, 2021) 

This thesis applies the method of a non-parallel many to many, cross-gender voice conversion 

(VC) using Generative adversarial networks (GAN) which is discussed further in the sections 

below. 

2.3 ARTIFICIAL NEURAL NETWORKS (ANN) 

In recent years, advancements in machine learning methodologies and hardware have enabled 

the use of artificial neural networks (ANNs) to handle complex problems very quickly (LeCun et 

al., 2015). Additionally, ANNs have been demonstrated to be effective in the setting of voice 

conversion. A pioneering example is (Narendranath et al., 1995), which employed an ANN to 

change the formant frequencies of many speakers and synthesized speech using a formant 

vocoder. 

Recent attempts to convert speech to text using ANNs have utilized feed-forward topologies. A 

feedforward neural network is a straightforward acyclic architecture in which information goes 

from the input nodes to the hidden nodes and then to the output nodes. Each neuron has a distinct 

activation function, such as the sigmoid function, and the network as a whole is trained using 

backpropagation (Haykin et al., 2001). Desai et al. (Desai et al., 2010) first extracted features 

from the speech input and utilized them for training a four-layer feedforward network mapping 

the signal between speakers. Additionally, voice conversion using autoencoders has been 

proposed. 

An autoencoder is a sort of neural network that has been trained to replicate its input by first 

encoding the data to a sparse representation and then reconstructing the original input from the 

encoded data. As a result, the model is compelled to learn the data's most beneficial properties. 

(Goodfellow et al., 2016) Mohammadi and Kain (Mohammadi and Kain, 2014) employed the 
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compact representation obtained from source data as mapping characteristics in applying this 

type of architecture for voice conversion. They then trained a deep feedforward architecture to 

map the speech signal between different speakers. Additionally, voice conversion has been 

proposed using recurrent neural networks. Recurrent neural networks are a subclass of ANNs 

that are distinguished by their ability to evaluate fresh input in the context of past input, implying 

that they have memory. They contain a loop in this sense, as old input is fed back into the 

network with fresh input, affecting the output in the process (Jain and Medsker, 1999). Sun et al. 

(Sun et al., 2015) used a recurrent architecture to model both the long- and short-term temporal 

dependencies between a source and target voice. 

As seen in the preceding paragraphs, numerous ways to voice conversion with ANNs exist. 

However, because this work will focus on GANs for voice conversion, the concepts stated above 

will not be discussed. 

2.4 DEEP LEARNING 

As indicated previously in Section 2.3, approaches for voice conversion using artificial neural 

networks have been presented. Additionally, the rise of deep learning has resulted in a significant 

improvement in the performance of these methods. There has been recent works in non-parallel 

voice conversion based on deep neural network models which are broadly classified into TTS-

based approaches which have been discussed above, auto-encoder-based approach as described 

in (Ding and Gutierrez-Osuna, 2019; Qian et al., 2020, 2019) aims to encode speaker-

independent information from input audio by using correct constraints to train models. To 

remove speaker-dependent information, this method necessitates carefully established 

constraints, and the converted speech quality is determined by how much linguistic information 

can be extracted from the latent space, and GAN-based approaches (Li et al., 2021).  

Additionally, previous research has demonstrated the viability of employing GANs for voice 

conversion. This work employs the method of GANs for non-parallel intragender voice 

conversion for the same language, i.e., monolingual; it is discussed in the following sections. 
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2.5 GENERATIVE ADVERSARIAL NETWORKS (GAN) 

Ian J. Goodfellow and colleagues introduced Generative Adversarial Networks (GANs) in 2014 

(Goodfellow et al., 2014). In machine learning, GANs are used to conduct unsupervised learning 

tasks. It is composed of two models that detect and learn patterns in input data automatically. 

The two models are referred to as Generator and Discriminator, respectively. They compete to 

investigate, capture, and duplicate the variations included in a dataset. GANs can be used to 

generate new instances that could have been plausibly drawn from the original dataset. 

In GANs, a Generator is a neural network that generates fictitious data for training on the 

discriminator. It acquires the ability to fabricate credible data. The generated examples/instances 

are used to train the discriminator on negative examples. It generates a sample from a fixed-

length random vector that contains noise. The Generator's primary objective is to convince the 

discriminator that its output is genuine. By assessing the weight's impact on the output, the 

backpropagation method is utilized to modify each weight in the proper direction. It is also used 

to obtain gradients, which can be used to modify the generator weights. 

The Discriminator is a neural network that distinguishes genuine data from the Generator's bogus 

data. When the discriminator is trained, it is connected to two loss functions. The discriminator 

disregards the generator loss during discriminator training and focuses exclusively on the 

discriminator loss. 

While training the discriminator, it classifies both real and generated data. The discriminator loss 

penalizes the discriminator for misclassifying either actual or fraudulent data instances as real. 

The discriminator network's weights are updated by backpropagation from the discriminator loss. 
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Figure 2. 4: Typical architecture of a Generative Adversarial Network, illustrating the link 

between the generator and the discriminator (Goodfellow et al., 2014). 

 

While GANs are effective for picture production, they have also been used successfully for a 

variety of speech processing applications in recent years (Kaneko et al., 2017a, 2017b). A non-

parallel VC technique based on a GAN variant termed cycle-consistent GAN (Cycle-GAN) was 

recently published (Kaneko and Kameoka, 2017), which was originally presented as a method 

for translating images utilizing unpaired training examples (Yi et al., 2017; Zhu et al., 2017). 

This method, which we refer to as CycleGAN-VC, is designed to learn the mapping G of 

acoustic features between one attribute X and another Y, as well as its inverse mapping F and a 

discriminator D for distinguishing the acoustic features of converted speech from those of real 

speech, via a training loss that combines an adversarial and a cycle consistency loss. While this 

method has been demonstrated to perform pretty well, it has a significant restriction in that it 

only learns one-to-one mappings. It is desirable to obtain many-to-many mappings in a variety of 

VC application settings. 

Another approach, termed StarGAN, that enables non-parallel many-to-many voice conversion 

(VC), was introduced lately (Kameoka et al., 2018), which was an extension of CycleGAN-VC. 

It utilizes a variant of a generative adversarial network (GAN) to accomplish this. This method, 

which we refer to as StarGAN-VC, is notable in that it (1) does not require parallel utterances, 

transcriptions, or time alignment procedures for speech generator training, (2) simultaneously 
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learns many-to-many mappings across multiple attribute domains using a single generator 

network, (3) generates converted speech signals quickly enough for real-time implementations, 

and (4) requires only a few minutes of training examples to generate reasonably converted 

speech signals (Kameoka et al., 2018). This method produced higher sound quality and speaker 

similarity in the speaker identity conversion task which brings us to the method used in this 

thesis. 

This thesis uses an unsupervised non-parallel many-to-many voice conversion (VC) method 

called StarGANv2 which is in relation to the work by Li et al (Li et al., 2021)using GANs, which 

was just recently introduced and is discussed further in the section below: 

2.6 STARGANv2-VC 

StarGANv2 is a subtype of generative adversarial networks that has been mostly utilized for 

style transfer from image to image. It provides an unsupervised non-parallel many-to-many voice 

conversion (VC) approach based on a generative adversarial network (GAN) in this paper (Li et 

al., 2021).  By combining adversarial source classifier loss and perceptual loss, this model beats 

earlier VC models significantly. It is generalizable to a variety of voice conversion problems, 

including any-to-many conversion, cross-lingual conversion, and singing conversion. 

Additionally, this framework may transform basic reading speech to stylistic speech, such as 

emotional and falsetto speech, via a style encoder. This framework generates natural-sounding 

speech and exceeds the prior state-of-the-art method, AUTO-VC (Qian et al., 2019) and 

StarGAN-VC (Kameoka et al., 2018), in terms of both naturalness and speaker similarity.  

StarGANv2 enables the conversion of plain speech to speech with a variety of styles, introduces 

a novel adversarial source classifier loss that significantly improves the similarity of converted 

and target speech in terms of speaker identity, and is the first voice conversion framework that 

we are aware of that employs perceptual losses via both automatic speech recognition (ASR) and 

fundamental frequency (F0) extraction networks.  

StarGANv2 employs a single discriminator and generator to generate varied images in each 

domain using either the style encoder or the mapping network's domain-specific style vectors. To 

accomplish F0-consistent conversion, we applied the same architecture to voice conversion, 
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regarded each speaker as a separate domain, and incorporated a pre-trained joint detection and 

classification (JDC) F0 extraction network (Kum and Nam, 2019). 

A summary of this framework is presented in greater detail below. 

• Generator: The generator G transforms an input mel-spectrogram into G (𝑋𝑠𝑟, ℎ𝑠𝑡𝑦, 

ℎ𝑓0), which reflects the style in ℎ𝑠𝑡𝑦, which is provided by either the mapping network or 

the style encoder, and the fundamental frequency in ℎ𝑓0, which is provided by the 

convolution layers in the F0 extraction network F (Li et al., 2021). 

• F0 network: The network used to extract F0, F is a to extract the purpose of extracting 

the fundamental frequency from an input mel-spectrogram. Convolutional layers precede 

the BLSTM units in the JDC network. As input features, we use solely the convolutional 

output 𝑠𝑡𝑦𝑙𝑒𝑑for X ∈ 𝒳 (Li et al., 2021) 

• Mapping network: The mapping network M generates a style vector ℎ𝑀 = 𝑀(𝑧, 𝑦) in a 

domain 𝑦 ∈  𝒴 with a random latent code 𝑧 ∈ 𝒵. The latent coding is drawn from a 

Gaussian distribution to generate a variety of style representations across domains. The 

style vector representation is shared across all domains until the final layer, at which 

point the common representation is subjected to a domain-specific projection (Li et al., 

2021).  

• Discriminators: In the paper (Choi et al., 2020), the discriminator D has shared layers 

that learn the common properties between genuine and fake samples across domains, 

followed by a domain-specific binary classifier that classifies if a sample is real in each 

domain 𝑦 ∈  𝒴. However, because the domain-specific classifier only has one neural 

layer, it may miss out on critical domain-specific features like a speaker's pronunciations. 

To solve this issue, we construct an additional classifier C that learns the original domain 

of transformed samples and has the same architecture as D. The classifier can provide 

feedback regarding attributes invariant to the generator but distinctive of the original 

domain, which the generator should enhance to generate a more similar sample in the 

target domain (Li et al., 2021), by learning what features evade the input domain even 

after conversion. 

The figure below represents the StarGANv2 framework as discussed above; 
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Figure 2. 5: StarGANv2-VC  with style encoder. 𝑿𝒔𝒓𝒄 is the source input, 𝑿𝒓𝒆𝒇 is the 

reference input that contains the style information, and 𝑿̂ represents the converted mel-

spectrogram (Li et al., 2021) 

 

2.7 STARGANV2-VC TRAINING 

The purpose of StarGANv2-VC is to discover a mapping 𝐺: 𝒳𝑦𝑠𝑟𝑐
→ 𝒳𝑦𝑡𝑟𝑔

 that transforms a 

sample 𝑿 ∈ 𝒳𝑦𝑠𝑟𝑐
 from the source domain 𝑦𝑠𝑟𝑐  ∈  𝒴 to a sample 𝑿̂  ∈ 𝒳𝑦𝑡𝑟𝑔

 in the target 

domain 𝑦𝑡𝑟𝑔  ∈  𝒴 without using parallel data (Li et al., 2021) 

As related to the work by Li et al(Li et al., 2021), We randomly choose a target domain 𝑦𝑡𝑟𝑔  ∈

 𝒴 and a style code 𝑠 ∈  𝑆𝑦𝑡𝑟𝑔
 during training using either a mapping network with 𝑠 =

𝑀(𝑧, 𝒴𝑡𝑟𝑔)  and a latent code 𝑧 ∈ 𝒵, or a style encoder with 𝑠 = 𝑆(𝑿𝒓𝒆𝒇,𝒴𝑡𝑟𝑔) and a reference 

input. We train our model using the following loss functions given a mel-spectrogram 𝑿 ∈

𝒳𝑦𝑠𝑟𝑐
, a source domain 𝑦𝑠𝑟𝑐  ∈  𝒴, and a target domain 𝑦𝑡𝑟𝑔  ∈  𝒴. 

• Adversarial Loss: The generator takes an input melspectrogram X and a style vector s 

and uses the adversarial loss to learn how to generate a new melspectrogram G(X, s). 

ℒ𝑎𝑑𝑣 = 𝔼𝒙,𝑦𝒔𝒓𝒄
[𝑙𝑜𝑔𝐷(𝑿, 𝑦𝒔𝒓𝒄)] + 𝔼𝒙,𝑦𝒕𝒓𝒈,𝑠 [log (1 − 𝐷(𝐺(𝑿, 𝑠), 𝑦𝑡𝑟𝑔))]     (1) 

Where 𝐷(.  , 𝑦) = output of real/fake classifier for the domain 𝑦 ∈  𝒴. 
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• Adversarial source classifier loss: With the source classifier C, we combine an 

adversarial loss function. 

ℒ𝑎𝑑𝑣𝑐𝑙𝑠 = 𝔼𝒙,𝑦𝒕𝒓𝒈,𝑠[𝐶𝐸(𝐶(𝐺(𝑿, 𝑠), 𝑦𝑡𝑟𝑔))]    (2) 

Where 𝐶𝐸(. ) =cross-entropy loss function. 

• Style reconstruction loss: The style reconstruction loss is used to ensure that the 

generated samples may be used to rebuild the style code. 

ℒ𝑠𝑡𝑦 = 𝔼𝒙,𝑦𝒕𝒓𝒈,𝑠[∥ 𝑠 − 𝑆(𝐺(𝑿, 𝑠), 𝑦𝑡𝑟𝑔) ∥1]       (3)    

• Style diversification loss: To force the generator to generate multiple samples with 

varied style codes, the style diversification loss is maximized. We maximize MAE of the 

F0 features between samples created with different style codes in addition to the mean 

absolute error (MAE) between generated samples.(Li et al., 2021) 

ℒ𝑑𝑠 = 𝔼𝒙,𝑠1𝑠2,𝑦𝒕𝒓𝒈
[∥ (𝐺(𝑿, 𝑠𝟏) − 𝐺(𝑿, 𝑠𝟐)) ∥1]

+ 𝔼𝒙,𝑠1𝑠2,𝑦𝒕𝒓𝒈
[∥ 𝐹𝑐𝑜𝑛𝑣(𝐺(𝑿, 𝑠𝟏)) − 𝐹𝒄𝒐𝒏𝒗(𝐺(𝑿, 𝑠𝟐))) ∥1]       (4) 

Where 𝑠1, 𝑠2 ∈ 𝑆𝑦𝑡𝑟𝑔
= two randomly sampled style codes from domain 𝑦𝑡𝑟𝑔  ∈  𝒴. 

 𝐹𝑐𝑜𝑛𝑣(. ) = output of convolutional layers of F0 network F. 

• F0 consistency loss: To obtain F0-consistent findings, we combine an F0-consistent loss 

with the F0 network's normalized F0 curve. F(X) returns the absolute F0 value in Hertz 

for each frame of an input mel-spectrogram X. (Li et al., 2021)Due to the fact that the 

average F0 of male and female speakers is different, we normalize the absolute F0 values 

F(X) by their temporal mean, denoted by: 𝐹̂(𝑿) =
𝐹(𝑿)

∥𝐹(𝑿)∥𝟏
 (Li et al., 2021). The F0 

consistent loss is given as: 

ℒ𝑓0 = 𝔼𝒙,𝑠[∥ 𝐹̂(𝑿) − 𝐹̂(𝐺(𝑿, 𝑠)) ∥1]                      (5) 

• Speech consistency loss: To ensure that the converted speech has the same linguistic 

content as the source, we utilize a speech consistency loss based on convolutional 

features extracted from a pretrained joint CTC-attention VGG-BLSTM network(Kim et 

al., 2017) available in Espnet toolbox (Watanabe et al., 2018). As in (Polyak et al., 2020), 

we use the output of the intermediate layer preceding the LSTM layers as the linguistic 

feature signified by ℎ𝑎𝑠𝑟(. ). The term "speech consistency loss" refers to 

ℒ𝑎𝑠𝑟 = 𝔼𝒙,𝑠[∥ ℎ𝑎𝑠𝑟(𝑿) − ℎ𝑎𝑠𝑟(𝐺(𝑿, 𝑠)) ∥1]   (Li et al. , 2021)              (6) 
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• Norm consistency loss: We apply the norm consistency loss to retain the generated 

samples' speech/silence intervals. The absolute column-sum norm is defined as follows 

for a mel-spectrogram X with N mels and T frames at the 𝑡𝑡ℎ frame: ∥ 𝑿. , 𝑡 ∥=

∑ |𝑿𝑛,𝑡|𝑁
𝑛=1 , where 𝑡 ∈ {1, … , 𝑇} =frame index. (Li et al., 2021)The norm consistency loss 

is then given by: ℒ𝑛𝑜𝑟𝑚 = 𝔼𝒙,𝑠 [
1

𝑇
∑ |∥ 𝑿. , 𝑡 ∥ −∥ 𝐺(𝑿, 𝑠)). , 𝑡 ∥|𝑇

𝑡=1 ]                            (7) 

• Cycle consistency loss: Finally, we applied the cycle consistency loss to preserve all 

other features of the input. 

ℒ𝑐𝑦𝑐 = 𝔼𝒙,𝒚𝒔𝒓𝒄,𝑦𝑡𝑟𝑔,𝑠[∥ 𝑿 − 𝐺(𝐺(𝑿, 𝑠), 𝑠̃) ∥1]                  (8)       

Where 𝑠̃ = 𝑆(𝑿, 𝑦𝑠𝑟𝑐) = the estimated style code of the input in the source domain 

𝑦𝑠𝑟𝑐  ∈  𝒴. 

• Summary of objectives: The following summarizes our whole generator objective 

functions. 

min
𝐺,𝑆,𝑀

ℒ𝑎𝑑𝑣 + 𝜆𝑎𝑑𝑣𝑐𝑙𝑠ℒ𝑎𝑑𝑣𝑐𝑙𝑠 + 𝜆𝑠𝑡𝑦ℒ𝑠𝑡𝑦 − 𝜆𝑑𝑠ℒ𝑑𝑠 + 𝜆𝑓0ℒ𝑓0 + 𝜆𝑎𝑠𝑟ℒ𝑎𝑠𝑟 + 𝜆𝑛𝑜𝑟𝑚ℒ𝑛𝑜𝑟𝑚

+ 𝜆𝑐𝑦𝑐ℒ𝑐𝑦𝑐                                                                               (9) 

Where 𝜆𝑎𝑑𝑣𝑐𝑙𝑠, 𝜆𝑠𝑡𝑦, 𝜆𝑑𝑠, 𝜆𝑓0, 𝜆𝑎𝑠𝑟 , 𝜆𝑛𝑜𝑟𝑚 𝑎𝑛𝑑 𝜆𝑐𝑦𝑐 = hyperparameters for each term. The 

full objective of the discriminators is given as:  

min
𝐶,𝐷

−ℒ𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠ℒ𝑐𝑙𝑠                                                         (10) 

Where 𝜆𝑐𝑙𝑠 = hyperparameter for source classifier loss, ℒ𝑐𝑙𝑠 which is given as: 

ℒ𝑐𝑙𝑠 = 𝔼𝒙,𝑦𝒔𝒓𝒄,𝑠[𝐶𝐸(𝐶(𝐺(𝑿, 𝑠), 𝑦𝑠𝑟𝑐))]                           (11) 

2.8 SPECTOGRAMS AND CEPSTRAL COEFFICIENTS 

Mel-Frequency Cepstral Coefficients are the intermediate form that the model explored in this 

research utilizes to represent the spoken signal (MFCCs). This is a notion linked to spectrograms. 

A spectrogram is a representation of an audio signal in the frequency domain created by 

performing a Fourier transform on overlapping windowed time segments (Smith, 2007). 

Additionally, the amplitude is converted to decibels and the frequency axis to log scale and then 

transferred to the Mel scale to create a Mel-spectrogram. The Mel scale is used to establish a 

more precise link between the spectrogram and human perception of sound. Additionally, the 

Mel scale emphasizes lower frequencies since they communicate more information about speech 

than higher frequencies, which are dominated by noise. 



29 

 

The form of a human's vocal tract, which comprises the lips, throat, and tongue, for example, 

filters the sounds created by the human. This form is manifested in the power spectrum's spectral 

envelope, and by precisely representing the envelope, we may deduce the phoneme produced by 

the human. The MFCCs can be obtained as the amplitudes of the resulting cepstrum by treating 

the log power spectrum on a Mel frequency scale (for a windowed time segment) as a signal and 

applying the discrete cosine transform to it (Koolagudi et al., 2012). These are advantageous for 

speech analysis in a variety of ways since they contain information on the formants, phonemes, 

spectral envelope, and other aspects of the speech signal. They are frequently used to parametrize 

speech and as machine learning training features (On et al., 2006).  

2.9 VOCODERS 

A vocoder can be used to generate an audio signal from a Mel spectrogram or a collection of 

cepstral coefficients. Griffin-Lim and the WaveNet neural vocoder are both algorithms capable 

of performing this task. To evaluate the results of the voice conversion subjectively, one may 

wish to listen to synthetic speech generated from the converted cepstral coefficients. 

To accomplish this, the transformed speech will be synthesized using the Parallel WaveGan 

(Yamamoto et al., 2020) Vocoder for this work which is a distillation-free, fast, and small-

footprint waveform generation method using a generative adversarial network. 
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CHAPTER 3 

METHODOLOGY 

This chapter discusses how the theory presented in Chapter 2 can be implemented, as well as the 

many system versions that were tested. The work presented in this thesis was accomplished 

through the use of a variety of frameworks and technologies. 

The many tools that were employed and the rationale behind their selection will be discussed 

below. As noted in Chapter 2, VC entails multiple distinct processes, both in terms of training 

and conversion. Different technologies were utilized for various components.  

In order to carry out this voice conversion task, different tools and deep learning networks were 

used as well as the dataset for the ASR and F0 models and the Speech Corpus used which would 

be discussed in the sections below. 

3.1 TOOLS USED 

This work was mainly based on machine learning architecture which was performed using 

various deep learning libraries via the Ubuntu Debian Linux Distribution software, which is an 

open-source and free software with better computing speed and greater memory and can be used 

both remotely and in desktop environments. The Ubuntu software can be used with several 

environments and operating systems, but for this work, We used the Jupyter environment on 

Anaconda and used Python as the programming language due to its simplicity. Some of the deep 

learning libraries attached to this work are as follows: 

• PyTorch: PyTorch is a highly optimized tensor library designed for GPUs and CPUs in 

Deep Learning applications. It is a Python-based open-source machine learning package 

developed mainly by the Facebook AI Research team. It is a popular machine learning 

library, alongside TensorFlow and Keras. PyTorch is a Python package that uses the 

torch library to perform tensor computations on Graphics Processing Units. Currently, it 

is the most widely used library in the field of deep learning and artificial intelligence 

research.  

• Librosa: Librosa is a Python program that facilitates music and audio analysis. It enables 

the development of music information retrieval systems by providing the required 
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building elements. Since this work deals with voice samples, It was important to use 

librosa to analyse and also convert sound samples from different versions for example, 

.flac to .wav files. 

• Numpy: Numpy is a Python library for scientific computing. It performs effectively with 

high-dimensional data, which necessitates the usage of Keras. 

• Kaldi: Kaldi is a freely available, open-source toolset for conducting research on voice 

recognition. Kaldi provides a speech recognition system based on finite-state transducers 

(using the open-source OpenFst), as well as full documentation and scripts for 

constructing complete recognition systems. Kaldi is built in C++, and its core library 

allows modeling of any phonetic context sizes, as well as acoustic modeling with 

subspace Gaussian mixture models (SGMM) and regular Gaussian mixture models, as 

well as all commonly used linear and affine transforms. (Povey et al., 2011) . 

3.2 SPEECH CORPUS 

The Speech Corpus used for the experiments in this work was the CSTR VCTK Corpus (i.e., 

English Multi-Speaker Corpus for CSTR (Centre for Speech Technology) Voice Cloning 

Toolkit) contains voice data from 110 English speakers with a range of accents. Each speaker 

reads around 400 sentences from a newspaper, the rainbow passage (“The Rainbow Passage | 

IDEA,” 2011), and the elicitation paragraph for the speech accent archive. With permission from 

Herald & Times Group, the newspaper texts were taken from Herald Glasgow. Each speaker is 

presented with a unique selection of newspaper articles chosen using a greedy algorithm that 

maximizes contextual and phonetic coverage. The paper describes the details of the text selection 

algorithms by, all speakers are given the identical rainbow passage and elicitation text. 

International Dialects of English Archive, has the rainbow passage. The elicitation paragraph is 

identical to that of the speech accent archive (http://accent.gmu.edu). All speech data was 

captured in a semi-anechoic environment at the University of Edinburgh using a comparable 

recording setup: an omnidirectional microphone (DPA 4035) and a small diaphragm condenser 

microphone with a wide dynamic range (Sennheiser MKH 800). (However, two speakers, p280 

and p315, experienced technical difficulties with the MKH 800 audio recordings. Each recording 

was converted to 16 bits, downsampled to 48 kHz, then end-pointed manually. This corpus was 

originally intended for use in HMM-based text-to-speech synthesis systems, more specifically 
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for speaker-adaptive HMM-based speech synthesis systems that employ average voice models 

trained on numerous speakers and speaker adaption technologies. Additionally, this corpus is 

well-suited for neural network-based multi-speaker text-to-speech systems and neural waveform 

modeling.  

3.3 DATA PREPROCESSING 

In order to carry out the voice conversion process, The data and audio files have to be 

preprocessed before being fed into the StarGAN architecture. The processes carried out were as 

follows: 

1. Loading the Audio files: The Input data which is used as the baseline model, consists of 

audio files of spoken speech in .wav format. The files were read and loaded into a Numpy 

2D array which consisted of a sequence of numbers, each representing a measurement of 

the intensity or amplitude of the sound at a particular moment in time (Doshi, 2021). The 

number of such measurements is determined by the sampling rate, which is 48KHz. 

2. Conversion to the uniform sample rate, channels, and duration: Because our deep 

learning models assume that all of our input items are the same size, we now execute some 

data cleaning operations to standardize the dimensions of our audio data (Doshi, 2021). 

We resample the audio to 24KHz to ensure that each component is sampled at the same 

rate. All objects are converted to the same number of channels. Additionally, all elements 

must be transformed to the same audio duration. This is accomplished by padding shorter 

sequences and truncating larger sequences. 

3. Data Augmentation of raw audio: Additionally, we used data augmentation approaches 

to increase the variety of our input data and assist the model in generalizing to a broader 

range of inputs. This also included randomly Time Shifting our audio left or right by a 

small percentage, as well as adjusting the pitch or speed of the audio by a little amount. 

4. Conversion to Mel Spectrograms: This raw audio is now converted to Mel 

Spectrograms which captures the nature of the audio as an image by decomposing it into 

the set of frequencies that are included in it. 

5. Conversion to MFCC: The Mel Spectrograms were converted to MFCCs since it 

produces a compressed representation of the Mel Spectrogram by extracting only the most 
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essential frequency coefficients, which correspond to the frequency ranges at which 

humans speak. 

Following the conversion of the original raw audio file to Mel Spectrogram (or MFCC) pictures, 

data cleaning and augmentation are performed. 

This provides us with the features of our input and the labels for our target. This data is now 

prepared for incorporation into our deep learning model. 

3.4 TRAINING OF THE ASR MODEL 

The deep learning architecture use for training the ASR (Automatic Speech Recognition) 

consisted of a Convolutional Neural Network (CNN) plus RNN-based (Recurrent Neural 

Network) architecture that uses the CTC loss algorithm to separate each character of the words in 

the speech. The model consisted of a few blocks: 

• A convolutional network composed of a few Residual CNN layers that process the input 

spectrogram images and generate feature maps from them (Doshi, 2021) 

 

 

Figure 3. 1: Mapping of the Spectrogram images using CNN Network (Doshi, 2021) 

• A recurrent network composed of several bidirectional LSTM layers that process the 

feature maps in a succession of separate timesteps or 'frames' that correspond to the 

desired sequence of output characters. (An LSTM is a highly frequent sort of recurrent 
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layer; the abbreviation stands for Long Short Term Memory.) In other words, it translates 

the continuous feature maps that represent the audio to a discrete representation. 

 

 

Figure 3. 2: Processing frames from the feature maps using the RNN network (Doshi, 2021) 

• A softmax linear layer that utilizes the LSTM outputs to generate character probabilities 

for each timestep of the output. 

• Additionally, linear layers exist between convolutional and recurrent networks and aid in 

reshaping the outputs of one network into the inputs of the other. 

Our objective is to map those timesteps, or 'frames,' to specific characters in our target transcript, 

but we are unsure of the appropriate number of frames, the location of each frame's boundaries, 

or how to match the audio with each letter in the text transcript as the audio and spectrogram 

images are not segmented in advance to provide us with this data. This creates an issue and 

makes good ASR training more difficult. To address the issue, we used the CTC Algorithm to 

train it further and align the sequences following the previous phases. This is covered in further 

detail further down. 
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3.5 CTC ALGORITHM 

CTC is used to align the input and output sequences when the input is continuous, and the output 

is discrete, and there are no obvious element boundaries to map the input to the output sequence 

elements (Doshi, 2021). 

What makes this unique is that it achieves this alignment automatically, rather than needing you 

to manually include it in the labeled training data. 

As described previously, the convolutional network's output feature maps are divided into 

distinct frames and fed into the recurrent network. Each frame represents a different timestep in 

the original audio wave. However, when you create the model, you choose the number of frames 

and the time of each frame as hyperparameters. The recurrent network, followed by the linear 

classifier, then predicts probability values for each character in the vocabulary for each frame 

(Doshi, 2021). 

The CTC algorithm's task is to take these character probabilities and derive the correct character 

sequence. 

To assist it in dealing with alignment issues and repeated characters, it incorporates the concept 

of a 'blank' pseudo-character (denoted by "-") into the vocabulary. As a result, the network's 

output of character probabilities includes the possibility of a blank character in each frame 

(Doshi, 2021). 

The CTC algorithm works in two (2) modes: 

• CTC Loss (During Training): It starts with a ground truth target transcript and attempts 

to train the network in such a way that the likelihood of producing that right transcript is 

maximized. The Loss is calculated as the likelihood of the network correctly anticipating 

the sequence. To accomplish this, the algorithm generates a list of all potential sequences 

predicted by the network and then chooses the subset that corresponds to the target 

transcript.  

A detailed explanation of its sequences is illustrated in the figure below: 
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Figure 3. 3: CTC Loss Algorithm (Doshi, 2021) 

With these limitations in place, the algorithm now has a set of valid character sequences 

that result in the right target transcript. 

It then calculates the overall likelihood of generating all of those valid sequences using 

the individual character probabilities for each frame. The network's purpose is to discover 

how to optimize that probability and so minimize the likelihood of generating any 

erroneous sequence (Doshi, 2021) 

Because a neural network is designed to minimize loss, the CTC Loss is defined strictly 

as the negative log probability of all valid sequences (Doshi, 2021). As the network 

minimizes this loss during training, it adjusts all of its weights to generate the proper 

sequence. 

• CTC Decoding (During Inference): Here, we lack a reference transcript and must guess 

the most likely sequence of characters. A detailed explanation of this process is shown in 

the figure below:  
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Figure 3. 4: CTC Decoding Algorithm (Doshi, 2021).  

3.6 WORD ERROR RATE (WER) 

Word Error Rate (WER) (Wikipedia, 2020) is a metric used to determine the degree of similarity 

between a reference text and a prediction. It is calculated as the ratio of each pair's numerator and 

denominator. 

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
=

𝑆 + 𝐷 + 𝐼

𝑆 + 𝐷 + 𝐶
 

Where; 

• S = number of substitutions; 

• D = number of deletions; 

• I = number of insertions; 

• C = number of correct words; 

• N = number of words in the reference (N = S+D+C) 
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CHAPTER FOUR 

EXPERIMENTS AND RESULTS 

This chapter discusses how the experiments, hardware, tools, data preprocessing, and 

hyperparameters were carried out. Finally, we discuss the result obtained from running the 

experiments. 

4.1 EXPERIMENTAL PLAN 

These experiments involve the training and testing using the StarGANv2 framework on 

randomly selected 20 speakers from the VCTK dataset, which comprises English speakers with 

various accents. The framework was trained on two randomly chosen speakers in four (4) 

different ways, as shown in the table with different accents and emotions. The ASR and F0  

(which is from a JDC network) for this work were trained using the TIMIT dataset (Garofolo, 

John S. et al., 1993) which is made up of recordings of 630 speakers of eight (8) dialects of 

American English. The dataset was resampled to 24kHz and split randomly according to an 

80%/10%/10% of train/Val/test partition. The data used for the experiments and how they were 

represented is shown in the table below: 

GROUP ID GENDER ACCENT

P232 M English 

P248 F Indian

P228 F English 

P263 M Scottish

P279 M English 

P329 F American

P376 M Indian

P295 F Irish

DATA 1

DATA 2

DATA 3

DATA 4  

Table 4. 1: Speaker Information of Data used for experiments. 

4.2 EXPERIMENTAL SETUP 

This section presents the setup used to conduct experiments. This includes the hardware, 

software, data prepossessing techniques used for model training and evaluation to ensure that our 

work is reproducible. 
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4.2.1 HARDWARE, SOFTWARE, AND ENVIRONMENT 

Due to the computational requirements needed to perform subsequent development and testing of 

different models viably, I used a dedicated computer with the following specifications:  

• Windows 10 PC 

• Intel® Core™ i5-8250U CPU @ 1.60GHz 1.80GHz 

• 64-bit Operating System, x64-based processor 

• Installed memory of 8GB RAM 

• TensorFlow GPU 1.13 

• NVIDIA Driver 

• CUDA Version 10.2 

• Ubuntu 18.04 Unix Software 

4.2.2 TRAINING DETAILS FOR THE EXPERIMENT 

The StarGANv2 model trained our model for 150 epochs, a batch size of 5 with a save frequency 

of 2. For the preprocessing parameters, we set the sample rate to 24kHz. The spectrogram 

parameters were also under the preprocessing parameters: window length- 1200, hop length of 

300, and number of FFT (fast Fourier transforms) to be 2048. I set the loss parameters as 𝜆𝑠𝑡𝑦 =

1, 𝜆𝑐𝑦𝑐 = 5, 𝜆𝑑𝑠 = 1, 𝜆𝑛𝑜𝑟𝑚 = 1, 𝜆𝑎𝑠𝑟 = 10, 𝜆𝑓0 = 5, 𝜆𝑎𝑑𝑣𝑐𝑙𝑠 = 0.5, which were all classified 

for the generator losses while the loss at the discriminator was given as 𝜆𝑐𝑙𝑠 = 0.1. The source 

classifier joins the training process after 50 epochs. The optimizer used for this training 

configuration was the AdamW optimizer (Loshchilov and Hutter, 2019) with a learning rate (LR) 

of 0.0001. All these configurations for the training are saved to a YAML file used as input 

during the conversion processes. The F0 model was trained with pitch contours given by World 

Vocoder (Morise et al., 2016) for 100 epochs, while the ASR model was trained at phoneme 

level for 80 epochs with a CER of 16.7%. The conversion was also carried out using the 

StarGAN-VC framework for a fair comparison.  

4.2.3 IMPLEMENTATION AND CONVERSION DETAILS USING THE STARGANv2 

FRAMEWORK 

Before the conversion process, we first had to prepare the data from the VCTK Corpus for each 

of the data to generate a directory for the speaker set for each procedure, i.e., Data1, Data2, 
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Data3, and Data4. I imported the audio files in .wav format for each speaker in a set and 

generated the validation and train list text files to be also used for the training configuration. The 

process of the conversion took the following steps 

• I then loaded the python packages used for this conversion, including torchaudio, librosa, 

yaml, munch, and the models from the ASR and F0, respectively. 

• The speakers were then defined, which included two (2) speakers for each dataset that 

was to be used for the conversion, one male and female. We created a separate file for the 

data experiment. 

• The speakers were converted to the melspectrogram, which is used as the source for the 

conversion 

• The process for the mels and wave tensor was defined as the model to be built that 

included the mapping network and style encoder. 

• We defined the speaker dictionary and also loaded the audio by using librosa at a sample 

rate of 24KHz 

• The models were after that loaded, which included the F0 model from the JDC network, 

Vocoder using a pretrained parallel WaveGAN model, and the starganv2 model that 

involved a pretrained model and the configuration file stored in YAML, which was 

trained earlier while preparing the data. 

• The input wave was then set by selecting the speaker as a reference and the particular 

audio and .wav path. In this case, we used the 23rd recording/audio of the speaker to be 

used as input. 

• Finally, we then converted using the mapping network and the style network. 

4.2.4 IMPLEMENTATION AND COVERSION DETAILS USING THE STARGAN 

FRAMEWORK 

This framework was used to compare the two networks and hence was tested on just Data1 to 

determine which framework performs better. Unlike the StarGAN network, this process didn’t 

involve the F0 network from JDC or the CTC ASR network. The procedure involved the 

following: 

• Preprocessing of the Data using the Mel Cepstral Coefficients (MCEP) at a sample rate of 

16kHz 
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• Training of the model where the batch size of 32, generator loss and discriminator loss of 

0.0001, source and target speakers to be converted and no. of iterations of 200,000 was 

defined and loading of the audio/ wave path with librosa 

• Finally, the conversion process and no. of .wav number for each speaker are specified. 

Also, no speakers for the speaker dictionary from where the two(2) speakers to be used 

for conversion are selected. The no. of speakers was set to 10 in this case, and the wav-

path for each speaker was the 8th recording. 

4.3 EVALUATIONS 

The experiment for the StarGANv2 procedure took about 10 mins to give results and seconds for 

the conversion itself, while that of the StarGAN network took about 2hours to complete the 

conversion procedure. 

In this work, objective and subjective evaluation metrics were utilized to assess the quality and 

similarity of the converted speech. 

The objective criteria are determined automatically and are based on calculations on features 

derived from the evaluated speech. They benefit from repeatability, i.e., they always generate the 

same result given the same data, and they are inexpensive to run on a computer. However, as 

explained below, they are frequently unable to adequately replicate the perspective of a human 

listening to the same speech, and there are no valid objective metrics available for specific 

questions, such as grading the speech quality. 

On the other hand, subjective criteria are based on the opinions of human listeners (subjects), 

making them more realistic as people use voice converter technology.  

4.3.1 SUBJECTIVE METRICS 

I randomly selected two speakers, one used as source and the other target speakers, which 

happens to be one male and one female, all from the 20 speakers trained. Both source and ground 

truth samples were chosen to have at least 5-second long audios so that there is enough 

information to judge the similarity and naturalness. I asked ten friends of mine, two from the 

same department, four from the music department, and four random people to judge /rate each 

audio clip on a scale of 1 to 5, where one indicates completely distorted and unnatural, 5 means 

no distortion and completely natural. I asked the subjects to rate from 1 to 5 how likely it was 
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that the speakers of each pair of audio clips could have been the same person, ignoring distortion, 

speed, and tone of speech, where one means completely different speakers and 5 represents the 

same person. The subjects didn’t know if an audio clip was the ground truth or if it had been 

converted. The ratings which were not conclusive were excluded and thereby ended up with 

eight ratings for the analysis. All the raters were officially English speakers who were also 

students in NTNU. Since the StarGAN network was only tested on Data1 and Data2, we only 

show the results for Data2 and Data2 for both methods. The results are shown in the table below.  

DATA Method Type MOS

M 4.61

F 4.4

StarGANv2-VC M2F 4.3

StarGAN-VC M2F 2.15

F 4.5

M 4.45

StarGANv2-VC M2F 4.4

StarGAN-VC M2F 2.35

Ground Truth

DATA 1

DATA 2

Ground Truth

 

Table 4. 2: Mean Opinion score (MOS) for Data1 with Subjective metrics. 

 

4.3.2 OBJECTIVE METRICS 

I evaluated the result objectively by predicting the mean opinion score (pMOS) using MOSNET 

(Lo et al., 2019), which was computed using the python 3.6 environments. All the audios were 

saved in a file and loaded as a root directory to create the results as Mosnet raw txt by using the 

CNN_BLSTM model to build the MOSNET model and training using Cuda and applying librosa 

to extract the .wav file. I also reported the Character error rate (CER) using the ASR model 

discussed earlier for intelligibility. The results are shown below: 
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DATA Method pMOS CER 

DATA 1 

Ground Truth 
M-4.64  

20.04% F-4.52 

StarGANv2-VC 4.54 21.36% 

StarGAN-VC 2.10 50% 

DATA 2 

Ground Truth 
F-4.70 

18.07% 
M-4.40 

StarGANv2-VC 4.65 19.34% 

StarGAN-VC 2.27 47% 

Table 4. 3: Results showing the PMOS and CER using the objective metrics. 

 

4.4 RESULTS 

The results presented above from the experiments show that our method (StarGANv2-VC) 

outperforms the StarGAN-VC model in terms of naturalness and similarity. The accuracy of the 

speaker recognition model on the converted samples using our framework is much higher than 

the converted samples using the StarGAN-VC, and the predicted MOS (pMOS) of the converted 

pieces is significantly higher than that of StarGAN-VC. Finally, CER on the audio clips 

converted using our model is significantly lower than those converted using StarGAN-VC. 

The framework is generalizable to a variety of voice conversion tasks with audios. The 

Melspectrogram of the samples converted vs. Ground truth is shown below, and the waveforms 

for Data1. 
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(a) 

 

(b) 

Figure 4. 1: Waveform of Audio signal for (a) Original audio of file before conversion for 

speaker P376 in Data 4 and (b) Converted audio of converted sample with P376 in Data 4 

as source speaker.  
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(a) 

 

(b) 

Figure 4. 2: MelSpectrogram of Audio signal for (a) Original audio of file before 

conversion for speaker P376 in Data 4 and (b) Converted audio of converted sample with 

P376 in Data 4 as source speaker. 
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CHAPTER 5 

5.0 DISCUSSION AND CONCLUSION 

In this work, I presented an unsupervised framework with StarGANv2 for conversion with 

adversarial classifier and perpetual losses and F0 network and the Parallel WaveGAN Vocoder 

to achieve state-of-the-art nonparallel, cross-gender many-to-many voice conversion with 

outstanding performance in terms of naturalness and similarity. 

This framework was also used to convert stylistic speech such as falsetto speech or emotional 

acting from plain reading source speech. It generalizes to several voice conversion tasks, such as 

any-to-many, cross-lingual, and singing conversion without the need for explicit training. 

Based on the experiments carried out, this model seems to achieve a higher MOS score for 

conversion with regards to the previous model used for conversion, i.e., StarGAN-VC and is also 

faster in terms of training, it sounds more natural, and its similarity to the source speaker is far 

better and genuine.  

5.1 FUTURE WORK 

This work can be applied to cross-lingual voice conversion and to non-recognized languages like 

the Nigerian Pidgin and Nigerian Igbo language, which is a more robust work and contains lots 

of variety. Also, future work can include improving the quality of the converted samples with the 

StarGANv2 framework.  
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