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A B S T R A C T

We consider the proximity effect in superconducting heterostructures with intrinsic Rashba
SO-coupling in equilibrium. We first consider the one-dimensional S/F/S-Josephson junction
with SO-coupling investigated by Jacobsen and Linder [1], before connecting two such systems
with a nanowire forming an H-geometry. This allows us to simulate an effective odd-frequency
Josephson junction, just by the use of s-wave superconductors. The goal of this thesis is to
theoretically and numerically investigate how the proximity effect manifests in the density of
states in such a geometry. In particular, we explore how the giant triplet effect seen in the two
parallel S/F/S-Josephson junctions presents itself in the nanowire.

The analytical equations describing our systems are obtained from the quasiclassical theory
of superconductivity, with the spin-orbit field incorporated as an SU(2) gauge field. We
parameterize these equations in the so-called Riccati-parameterization, well suited for numerical
simulations. We present an analytical discussion of the weak proximity limit and a numerical
investigation of the full proximity regime for our systems. Our results show that the effective
Josephson junction behaves qualitatively different from the one-dimensional Josephson junction.
We show that this counter intuitive result is due to the relationships between the initial
symmetries at the midpoints of the parallel junctions, and that this characteristic behaviour is
therefore only marginally affected by an exchange field or spin-orbit coupling in the central
wire. Remarkably, our results also show that the zero-energy peak in the density of states now
can persist throughout the junction for several superconducting coherence lengths.
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S A M M E N D R A G

Vi undersøker proksimitetseffekten i superledende hybridsystemer med iboende Rashba spinn-
bane-kobling i likevekt. Motivert av Josephson-effekten i en 1-dimensional S/F/S-struktur med
spinn-bane-kobling, først undersøkt av av Jacobsen and Linder [1], kobler vi sammen to slike
systemer med en perpendikulær nanotråd. Systemet vårt danner nå en H-geometri. Vi kan
med dette simulere et effekitvt odd-frekvens hybrid system kun ved hjelp av koventionelle
superledere. I denne avhandlingen gransker vi teoretisk og numerisk tilstandstettheten for
et slikt system, med et spesielt fokus på hvordan Josephson-effekten sett i de to parallele
S/F/S-systemene utspiller seg i den sentrale nanotråden.

Det tas utgangspunkt i kvasiklassisk teori for superledning, med spinn-bane-feltet inkludert
som et SU(2)-gaugefelt. For numeriske beregninger introduserer vi Riccati-parameteriseringen.
Vi presenterer en analytisk diskusjon av grensetilfellet hvor materialene i hybridsystemet
påvirker hverandre svakt, samt en numerisk gransking av det fulle regimet. Resulatene viser at
det effektive hybridsystemet ikke oppfører seg kvalitativt likt som den 1-dimensionale S/F/S-
strukturen med spinn-bane-kobling. Vi viser at dette kontraintuitive resultatet er en følge av
symmetrirelasjoner mellom de komponentene opprinnelig tilstede, og at denne karaktersitske
oppførselen kun marginalt blir påvirket av et utvekslingsfelt eller spin-bane-felt. Resultatene
viser også at tilstandstettheten ved energi lik null kan vedvare gjennom den sentrale ledningen
for flere superledende koherenslengder.
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N O TAT I O N A N D U N I T S

Throughout this thesis, we will denote scalars and complex numbers by the font face a. We also
use the standard notation z “ a ` i ¨ b, where z and b are scalars and i is the imaginary unit.
The complex conjugate of z is denoted by z˚.

Furthermore, vectors in three-dimensional space will be denoted as v. The Cartesian unit
vector will be denoted as ex, ey and ez, without the conventional hat. With the short-hand
notation, the nabla operator therefore becomes r “ Bxex ` Byey ` Bzez.

We write the transpose of a matrix as AT and the Hermittian conjugate as A:. Next, we
denote the commutator by rA, Bs´ “ AB ´ BA and the anti-commutator by rA, Bs` “ AB ` BA.
When dealing with 2 ˆ 2 complex matrices in Nambu-space, we will use the notation Â. For
similar matrices in spin space, we use the notation A. We use the standard Pauli matrices s0,
s1, s2 and s3 as the basis vector for spin space

s0 “
ˆ

1 0
0 1

˙
, s1 “

ˆ
0 1
1 0

˙
, s2 “

ˆ
0 ´i
i 0

˙
, s3 “

ˆ
1 0
0 ´1

˙
. (1)

Thereby defining the Pauli vector as s “ s1ex ` s2ey ` s3ez. The basis matrices in Nambu-space
are defined in the same manner as the Pauli matrices in spin space, though denoted by t’s
instead of s’s.

Furthermore, the following 4 ˆ 4-matrices will also be convenient

r̂1 “

¨

˚̊
˝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

˛

‹‹‚, r̂2 “

¨

˚̊
˝

0 0 0 ´i
0 0 ´i 0
0 i 0 0
i 0 0 0

˛

‹‹‚, r̂3 “

¨

˚̊
˝

1 0 0 0
0 1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹‹‚. (2)

Finally, we denote the Heaviside step-function as qptq, while dptq denotes the Kronecker
delta. The Kronecker product b will also be useful. For instance r̂3 can be expressed by the
Kronecker product r̂3 “ t3 b s0. Additionally, if not specified otherwise, p always denotes the
momentum, m always denotes the mass of an electron and e always denotes the charge of an
electron.

In this thesis, we will also use the rationalized natural units convention, that is we normalize
the Planck’s constant h̄, the Boltzamnn’s constant k and the gravitational constant G to unity

h̄ “ k “ 4 “ c “ 1, (3)

where e0 and µ0 denote the vacuum permittivity and permeability respectively. Furthermore,
since c “ 1{?

e0µ0, these constants can also be set to unity e0 “ µ0 “ 1.
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1
I N T R O D U C T I O N

1.1 background and motivation

In 1911, Onnes and his staff discovered that mercury lost electrical resistivity below a critical
temperature Tc just a few degrees over zero Kelvin [2, 3]. At the time, the fundamental theory
to describe this was not known, so little did he know that he had witnessed the birth of
superconductivity. In the years to come, many experiments were done trying to describe and
explore this exotic new phenomenon. One such experiment was conducted by Meissner in 1933
[4]. In this experiment, Meissner cooled down superconducting materials while applying an
external magnetic field. When the temperature was below the critical temperature, he discovered
that the magnetic field inside the sample was (nearly totally) cancelled. This exclusion of the
magnetic field inside a superconducting material below the critical temperature is referred to
as the Meissner effect and is the second property defining a superconductor. The Meissner
effect divides superconductors into two types, conventional low-temperature superconductors
and unconventional high-temperature superconductors. In this thesis, we will focus on the
conventional low-temperature superconductors 1.

Resistance in conductors can originate from several sources, mainly electron-phonon scatter-
ing, electron-impurity scattering and electron-electron scattering. In the case of a conventional
superconductor at low temperature, the electron-phonon scattering contributes the most to
the resistance. As stated, one of the properties of superconductors are the loss of resistance
below a critical temperature, so how does this relate to electron-phonon scattering? The answer
lies within the theoretical description of conventional superconductors, namely the BCS-theory
[8], which we will now give a brief introduction to. Imagine a system consisting of positively
charged ions in a lattice structure below the critical temperature. If an electron now moves
through, it will attract the positively charged ion cores. However, since the mass of the ion cores
are much larger than the electron, the position of the ion cores will remain shifted for some time
after the electron has moved away. Hence, the presence of an electron causes a slight shift in
the local charge distribution, as sketched in figure 1. If now a second electron comes by, it will
experience a positive charge as a result of this shift in the local charge distribution. Therefore,
the second electron, sketched as the leftmost electron in figure 1, now experiences an attractive
Coulomb force. Since this shift of the local charge distribution is caused by another electron, we
say that the two electrons now have an attractive interaction, forming what we call a Cooper-pair.
Consisting of two electrons, this Cooper-pair effectively has an integer value of spin. Therefore,
the Cooper-pair behaves like bosons2, making it possible to get Bose-Einstein-condensation.
In other words, what actually happens is that electrons below this critical temperature start
to pair up in Cooper-pairs, and since Cooper-pairs behave like bosons, the Pauli exclusion
principle does not prevent several Cooper-pairs to be in the ground state. One can also show
that the formation of Cooper-pairs actually protects the electrons from scattering, due to the

1 Typically conventional superconductors have low critical temperatures. In recent years though, one has managed to
drastically increase the critical temperature for conventional superconductors, at the cost of very high pressures [5, 6, 7].

2 Cooper-pairs are not actually bosons, but since the commutation-relations to leading order are bosonic, Cooper-pairs
qualitatively behave as bosons.

3



4 introduction

creation of an energy gap in the energy band structure. Hence, below a critical temperature,
this electron-phonon scattering just vanishes. This was indeed the phenomenon Onnes first
discovered back in 1911.

Figure 1: A illustration of the effective attractive interaction between electrons due to lattice distortions.
The rightmost electron travels through the lattice, leaving behind a distorted lattice. The leftmost electron
is then attracted by the distorted lattice.

However, according to the BCS-theory, the critical temperature may seem a bit mysterious.
What makes the system suddenly behave so drastically different at this critical temperature?
It turns out that this critical temperature has quite a simple physical interpretation. A crucial
point in the explanation above is that the second electron comes by when the local charge
distribution is still shifted. Hence, there is a maximum amount of time the second electron
can wait before coming, to still experience an attractive force. If it waits too long or the lattice
vibrates too fast, the positively charged ion will relax to the initial position, meaning that we no
longer have a shifted local charge distribution. At the same time, the second electron cannot
come too fast either, since the repulsive Coulomb force between the electrons then would win
over the attractive force from the shifted charge distribution. The loss of resistivity is therefore
a delicate balance between competing forces, and the critical temperature corresponds to the
highest temperature in which the outcome of this competition is an attractive force. If we are
above the critical temperature, the lattice vibration will destroy the attractive interaction.

We now move on to the second property of superconductors, the Meissner effect. Math-
ematically, the Meissner effect is described by the London equation, derived by H.London
and F.London [9]. The London equation is motivated by assuming that in a superconducting
material the current density is proportional to the vector field A of a local magnetic field, i.e.
j “ CA where C is a constant. This assumption is quite different from what we will have in a
normal conductor, where the current density is described by Omh’s law, i.e. j “ sE. What the
London brothers did was to show that a superconductor could be well described by choosing
C “ ´1{µ0l2

L, where µ0 is the vacuum permeability and lL is a constant with dimension length
[9]. Combining this with the Maxwell equations we get the so-called London equation

r
2B “ B{l2

L. (4)

Suppose that we have a semi-infinite superconductor in the superconducting state. Solving
the London equation it is straightforward to show that the external magnetic field B decays
exponentially over the characteristic length scale lL, as shown in figure 2a. This characteristic
length scale is called the London penetration depth and its value is typically in the range of
tens of nanometers [10, 11]. In other words, the magnetic field can only survive in a thin layer
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close to the surface, whereas it completely vanishes for most of the sample. This is exactly the
effect Meissner measured.

However, the exclusion of a magnetic field does cost energy, so it is reasonable to think that
at some point a strong magnetic field can destroy the superconductivity. This is indeed the case,
and the strongest magnetic field one can apply before breaking the superconductivity at zero
temperature is called the critical magnetic field H0. At increasing temperatures, it is reasonable
to expect the value of H0 to decrease, since increasing the temperature makes the Cooper-pairs
easier to destroy. Following the work of the London brothers, Landau and Ginzburg showed
that this indeed holds [11, 12]. They found that the critical magnetic field Hc is proportional to
H0p1 ´ pT{Tcq2q, where Tc is the critical temperature as shown in figure 2b [11, 12]. The region
in which the temperature is below the critical temperature and the field is below the critical field
is referred to as the superconducting phase, while the region in which the superconductivity is
destroyed is referred to as the normal phase.

SuperconductorB0

(a) (b)

Figure 2: Properties of type I superconductors. The magnetic field as a function of position is illustrated
in (a), while the temperature dependence of the critical magnetic field with H0 “ 0.014 A/m and Tc “ 4 K
is plotted in (b).

At first sight, the Meissner effect may seem to violate Ampere’s law. After all, a moving
charge surely should give rise to a magnetic field, but in the superconductor we have no
magnetic field while still having a current. The explanation lies in the London penetration
depth. Recall that the London equation does not predict that the external magnetic field drops
to zero immediately after entering the superconductor, it rather falls exponentially. Of course,
the magnetic field will not survive long, but we still have a thin layer in which the magnetic
field is nonzero. If the current flows in this thin layer, Ampere’s law still holds and this is
indeed what happens. The superconducting current only flows in a thin layer close to the
surface, and hence the Meissner effect does not violate Ampere’s law.

We now move on to the field of spintronics. In short, spintronics is the utilization of the
spin of the electron in addition to its charge [13]. For example, if spin up is represented as 1
and spin down as 0, we can use the qubits for a wide variety of applications, such as quantum
communication, computing and sensors as well as quantum dots [14]. Another example is
spin-transfer torque, in which a spin-polarized current is used to change the orientation of
the magnetization in a magnetic material [15]. However, we do not necessarily need to have
an electric current to transport spin. Magnetic insulators are good examples of this, where a
continuous change in the orientation of the electronic spin gives rise to a spin wave [16]. Thus,
the spin is transported as a wave rather than by moving electrons. Finally, topological insulators
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also have received a lot of research due to their interesting properties [17]. These materials
have a gap in the bulk band structure like ordinary insulators, yet the spin-orbit coupling
combined with time-reversal symmetry creates gapless surface or edge states, allowing for
ultra-low dissipation transport of charge and spin at the surface or edge.

The field of superconducting spintronics is the merging of superconductivity and spintronics
[18]. As the name implies, superconducting spintronics inherits both the properties of supercon-
ductivity and the properties of spintronics, leading to intriguing new phenomena. One of these
phenomena is the generation of triplet states. Imagine that we have a convectional superconduc-
tor in contact with a magnetic metal, let us say a ferromagnet. Near the interface, the properties
of the superconductor will leak into the ferromagnet and vice versa, known as the proximity
effect. In a conventional bulk superconductor the Cooper-pair prefers the zero center of mass
momentum singlet state (ÒÓ ´ ÓÒ). However, when the Cooper-pairs enter the ferromagnet,
the situation becomes different. As we soon will discuss in more detail, the energy bands for
spin-up and spin-down get shifted in the presence of an exchange field. This shifting of the
energy bands causes the momentum at the Fermi-energy to shift slightly, resulting in a Cooper-
pair with a nonzero center of mass momentum ˘Q. The singlet state therefore transforms
according to pÒÓ ´ ÓÒq Ñ pÒÓ eiQ¨R´ ÓÒ e´iQ¨Rq “ pÒÓ ´ ÓÒqcospQ ¨ Rq ` ipÒÓ ` ÓÒqsinpQ ¨ Rq,
where R is the center-off-mass position [19]. In other words, the Cooper-pairs change from
being in a singlet state to a mixture of the singlet and triplet state pÒÓ ` ÓÒq, when entering
the ferromagnetic region. This effect is known as singlet-triplet mixing, and the resulting state
is often referred to as the FFLO-state. However, as the Cooper-pairs move further into the
ferromagnetic region, the exchange field h will try to flip spins pointing in the anti-parallel
direction while leaving the others unchanged. Therefore, the exchange field will cause a phase
difference between the electrons forming the Cooper-pair, eventually leaving the two electrons
out of coherence and destroying the Cooper-pair. The length scale at which such unequal-spin
states can survive is of order

?
D{h where D is the diffusion constant and h is the magnitude of

the exchange field [20].
However, we know that the state pÒÓ ` ÓÒq is not the only possible triplet state, we also

have two triplet states with equal spins (ÒÒ and ÓÓ). Unlike the singlet state, the triplet states
are not rotationally invariant. The triplet states transform into each other when rotating the
state in spin-space. Therefore, if we somehow could find a way of rotating the triplet state in
the FFLO-state into one of these states with parallel spins, the exchange field would no longer
lead to incoherence and hence we would expect the Cooper-pairs to survive longer. It is worth
mentioning that such an equal spin triplet state is not only interesting because of their longer
coherence length. They are also interesting from a fundamental point of view, as they can give
rise to interesting effects in a ferromagnetic material such as domain wall motion, spin-transfer
torques and magnetization switching [18].

Mainly, there are two ways of achieving such long-ranged Cooper-pairs in equilibrium.
The first way of achieving this is by having an inhomogeneity in the exchange field (magnetic
inhomogeneities). These magnetic inhomogeneities can originate from having a layered structure
with several ferromagnets, each with a noncolinear alignment of the magnetizations [21, 22, 23],
or from having a single ferromagnet with a local inhomogeneity in the magnetization [24, 25,
26, 27]. The second way of achieving such long-ranged Cooper-pairs is by having spin-orbit
coupling present, as shown by Bergeret and Tokatly [28]. What Bergeret and Tokatly showed
was that having a homogeneous exchange field but finite spin-orbit coupling (SO-coupling),
gives rise to the exact same transport equations as while having a Bloch-domain wall with an
inhomogeneous exchange field. This demonstrates that the singlet-triplet conversion caused by
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SO-coupling can mathematically be described by a Bloch-domain wall with an inhomogeneous
exchange field. Hence, SO-coupling is nothing but another way to mathematically describe a
particular type of magnetic inhomogeneities. We could either have a inhomogeneous exchange
field and zero SO-coupling in the ferromagnet, or we could have a homogeneous exchange
field and a finite SO-coupling (corresponding to a Bloch-domain wall with zero SO-coupling).
In both cases, the long-ranged triplet components are generated. As Bergeret and Tokatly
showed, these long-ranged triplet states can now survive for a much longer length scale of
order

a
D{2pT, where T is the temperature. Furthermore, it has been demonstrated that this

coherence length for the long-ranged triplet component is of the same order as in a normal
metal [24, 19]. Hence, SO-coupling provides a promising way to generate long-ranged triplet
components, and different ways to achieve this intrinsic SO-coupling have received a lot of
research recently[29, 30, 31, 32, 33].

However, in recent years it has also been shown that in an S/F/S-Josephson junction with
SO-coupling, the phase difference f between the superconductors can be used to generate and
isolate these long-ranged triplet components [1]. Jacobsen and Linder found that having a phase
difference of f “ p resulted in a giant peak in the local density of states, the very fingerprint of
triplet states. They also showed that this giant triplet proximity effect can be predicted solely
based on symmetry arguments, making it independent of the specific parameters. Furthermore,
from these symmetry arguments, they could also argue that the observed peak in the density of
states was entirely due to the long-ranged triplet components. What Jacobsen and Linder found
is in stark contrast to the behaviour of an S/F/S-Josephson junction without SO-coupling and a
phase difference of p, in which the proximity effect is suppressed. Hence, the S/F/S-Josephson
junction with SO-coupling offers a promising way to create, control and isolate (equal spin)
triplet Cooper-pairs. In this thesis, we will explore this phenomenon further by connecting two
such systems by a feorrmagnetic nanowire, as suggested by Ouassou [34]. By doing so, we
effectively create a Josephson junction with odd-frequency triplet states as the initial source of
the Cooper-pairs by just using s-wave superconducotors.

1.2 scope and structure

Before we can begin discussing particular systems, we will need some basic theory and tools.
The goal of Chapter 2 - Chapter 4 is to establish the tools needed to describe and determine the
Cooper-pairs in superconducting systems. In Chapter 2 we will introduce some fundamental
concepts crucial to build up a physical intuition of what is going on in superconducting systems.
In short, in sections 2.1 and 2.2 we discuss how the SO-coupling and the presence of interfaces
affect the Cooper-pairs, respectively. We will also discuss the pairing symmetries for Cooper-
pairs in section 2.3. Having a basic understanding of how Cooper-pairs conceptually behaves,
we will in section 2.4 introduce the mathematical framework needed to describe Cooper-pairs,
namely the Green’s functions. Next, we will discuss the quasiclassical approximation, and
how this alters the Green’s functions in section 2.5. In Chapter 3, we extend our theoretical
understanding by including a brief discussion of the BCS-theory. In Chapter 4 we focus on
deriving the equations describing the Green functions in a general material. In the first part of
Chapter 4, section 4.1, we use our established mathematical framework to derive the Usadel
equation from the exact transport equation. Along with appropriate boundary conditions
discussed in section 4.2, the Usadel equation determines the Green’s functions in a general
material. In section 4.3 we have included a brief discussion of the bulk solution in the case of a
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conventional superconductor. In the second part of Chapter 4, section 4.4, we will introduce
a common parameterization for numerical purposes, namely the Riccati-parameterization.
Connecting everything we have learned so far, Chapter 5 focuses on expressing common
physical observables in the established mathematical framework. We first introduce the d-vector
formalism in section 5.1, before considering the density of states, current and the superconduitng
gap in sections 5.2, 5.3 and 5.4 respectively.

While Chapter 2 - Chapter 4 focus on establishing the fundamental theory and equations
determining the Green’s functions for a general heterostructure, Chapter 6 focuses on preparing
these equations for qualitative discussion of a specific type of system. The specific type of
system of our choice is a one-dimensional S/F/S-Josephson junction with SO-coupling, the basic
building block of the system we ultimately want to investigate. To prepare our equations for
qualitative discussion, we first linearize the Usadel equation in section 6.1, followed by invoking
the d-vector formalism in section 6.2 to easier distinguish the short-range and long-range triplet
components. Finally, in section 6.3 we will also insert the relevant SO-coupling and exchange
field. We have also included a short discussion of the dimensionless analogue of the equations
in section 6.4. The resulting equations will become crucial when discussing specific systems in
Chapter 7 and Chapter 8.

In Chapter 7, we reproduce the results for the one-dimensional S/F/S-Josephson junction
with SO-coupling, first presented by Jacobsen and Linder [1]. The goal of this chapter is to
develop a physical intuition of whats going on in the simpler system before dealing with our
more complicated H-geometry. Having developed an understanding of the basic building block,
we finally explore the H-geometry in Chapter 8, which is the main goal of this thesis. Before
presenting the results, we will briefly discuss the experimental set-up and numerical method in
section 8.1 and 8.2 respectively. Thereafter, we present the linearized equations in section 8.3
for a general exchange field. Finally, we discuss the results for the cases in which the central
nanowire is a normal metal and a ferromagnet without and with SO-coupling in section 8.4,
8.5 and 8.6 respectively. To conclude this thesis, we give a summary and outlook in Chapter
9. Additional calculations, as well as the matlab code used to simulate the one-dimensional
S/F/S-Josephson junction with SO-coupling, are included in Appendix A, B and C respectively.



2
F U N D A M E N TA L C O N C E P T S

The goal of this chapter is to introduce some fundamental concepts and theory, as well as to
establish the mathematical framework needed to describe superconductivity. With these tools
at hand, we will be better suited to deal with the equations revealing the precise behaviour of
superconducting systems.

2.1 spin-orbit coupling

Spin-orbit (SO) coupling refers to the phenomena in which the spin of each quasiparticle couples
to its momentum. In general, this is described by a linearized1 single-particle Hamiltonian
[28, 35]

H “ ´p ¨ A{m, (5)

where p is the momentum of the particle, m is the mass and A is the SO-field. The SO-field A

is a 2 ˆ 2 SU(2) vector field. It is an object with both vector structure in real space, and has a
2 ˆ 2 matrix structure in spin-space 2.

There are two types of SO-coupling in solids: symmetry dependent and symmetry indepen-
dent. Symmetry independent SO-coupling exists in all crystals as a result of SO-coupling in
atomic orbitals. This type of SO-coupling is therefore solely material-dependent. On the other
hand, symmetry dependent SO-coupling only exists in materials without inversion symmetry,
meaning standing at an arbitrary point in the material, the system will not look the same if
you invert your view. Mainly, there are two ways of breaking this inversion symmetry in a
material, either by surface-induced asymmetry (Rashba) [36, 37, 38] or bulk-induced asymmetry
(Dresselhaus) [39, 37].

Let us start by discussing surface-induced asymmetry, commonly referred to as Rashba
SO-coupling. Imagine that a quasiparticle hits an interface and enters a new material with a
electric field E. As the electric and magnetic fields are related by a Lorentz-transformation
changing the reference frame, the quasiparticle moving in an electric field will in its own
reference frame experience a magnetic field. This effective magnetic field is proportional to
Be f f » E ˆ p{mc2, and gives rise to a Zeeman-energy term HSO “ µBs ¨ Be f f where µB is the
Bohr-magneton. Defining the Rashba-constant a and writing the electric field as E “ Een, the
Hamiltonian describing Rashba SO-coupling becomes

HR “ ´ a

m
pen ˆ pq ¨ s. (6)

1 Note that we here assume that SO-coupling is linear in momentum. This need not be the case, however, it is sufficient
to describe the basic physics.

2 The vector structure in real space and 2 ˆ 2 matrix structure in spin-space can be more easily seen writing out the
definition Apr, tq ” eApr, tq ` wpr, tqs. Here, wpr, tq is some 3 ˆ 3 matrix that parameterizes the linearized interaction.

9
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Note that the normal-vector en is the direction of the electric field, or generally speaking the
direction in which we have broken inversion symmetry. The broken inversion symmetry in
Rashba SO-coupling therefore is a direct result of the presence of the interface, and its specific
form depends on the geometry of the interface.

As a concrete example, let us consider a nanowire set-up, with the wire lying along the
z-direction surrounded by vacuum. By symmetry arguments the electric field in the nanowire
has to point radially outward in the xy-plane (or inwards, the sign does not matter in the
end). Therefore, when the quasiparticle hits the interface, what it sees is a electric field
E “ 1?

2
Epex ` eyq where E is the strength of the electric field. Consequently, the normal vector

en in eq.6 will in this case be en “ pex ` eyq{
?

2. Furthermore, having a nanowire along the
z-direction, we can ignore momentum along the x- and y-direction. This can be justified by the
restrictions the surrounding vacuum puts on the Green’s functions. As will become clear later
on, both the Green’s functions and its derivative must be zero at the boundary of the nanowire
(for details, see eq.79). Therefore, we can neglect px and py, giving momentum only in the
z-direction p “ pzez. Thus, inserting the derived form of en in eq.6 results in a Hamiltonian
HR “ ´ a

m
?

2
ppzs1 ´ pzs2q. Using eq.5 and redefining a{

?
2 Ñ a, we find that the SO-field

describing Rashba SO-coupling AR in a nanowire set-up is given by AR “ p0, 0, aps1 ´ s2qq.
We now focus on the other origin of broken inversion symmetry, namely bulk-induced

asymmetry. This type of SO-coupling is commonly referred to as Dresselhaus SO-coupling.
As the name implies, Dresselhaus SO-coupling originates from a non-centrosymmetric lattice
structure in the bulk of the material. In the original derivation the non-centrosymmetric lattice
structure breaks the twofold degeneracy in the Brillouin zone, giving rise to an SO-coupling
[39]. However, since Dresselhaus derived the SO-coupling from a two-dimensional electron gas
(2DEG), the physical interpretation of Dresselhaus SO-coupling is not easily translated for the
case of thin-film and nanowire structures. However, experiments show that the 2DEG-model
describes well the underlying physics in materials like GaAs, a material commonly used in
semiconductors [40, 41, 42] . It is also worth noticing that the term "bulk" in bulk-induced
asymmetry may be misleading, especially when dealing with nanowire systems. Although the
Dresselhaus contribution to SO-coupling in most cases can be neglected for nanowire systems,
this need not always be the case [43]. This demonstrates the somewhat misleading term "bulk"
for thin-film and nanowire systems. The term "bulk" does not actually refer to having a bulk
region in our system, it refers to the material itself having Dresselhaus SO-coupling if we were
in a bulk region. The Dresselhaus SO-coupling is therefore solely material-dependent, and the
specific mathematical form depends on which crystal direction the quasiparticle propagates.
For example, for (001)-oriented zinc-blende thin-films (corresponding to the z-direction) HD
becomes [39, 37]

HD “ bps2py ´ s1pxq. (7)

Now that we have an understanding of what SO-coupling is and where it comes from, it
remains to invoke the SO-coupling in our mathematical description of the system. It turns out
that (a linearized) SO-coupling is accounted for by simply replacing all derivatives with the
covariant derivative defined by [28, 35]

r¨ fiÑ r̃ ” r ¨ ´rǍ, ¨s´ with Ǎ “
ˆ
A 0
0 ´A

˚
˙

. (8)
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2.2 proximity effect, andreev-reflection and josepshon junctions

Imagine that we have two materials, one s-wave superconducting material and one non-
superconducting material. If these two materials are kept apart, each of them is characterized
by their own properties. But what happens near the interface when these two materials are
brought together? As we have discussed earlier the Cooper-pairs will penetrate into the non-
superconducting material, affecting the characteristic properties of the non-superconducting
material in the vicinity of the interface. In other words, the characteristic properties of the
superconductor have leaked into the non-superconducting material in the vicinity of the
interface. This effect is known as the proximity effect. The leakage of the superconducting
properties can be either weak (referred to as the weak proximity effect), strong (referred to as
the strong proximity effect), or somewhere in between. For analytical calculations, it is useful
to evaluate physical properties in the weak proximity limit, as it allows us to more easily see
the qualitative behavior of our systems. That said, solving our system numerically, we need to
account for the full proximity regime. It is worth mentioning that this also goes the other way
around, the presence of the non-superconducting material will also affect the properties of the
superconducting material at the vicinity of the interface. This is often referred to as the inverse
proximity effect.

Let us discuss the proximity effect (and inverse) in more detail for the case when the
non-superconducting material is a normal metal, that is we will consider a N/S-bilayer. At
the interface, the proximity effect can be explained by Andreev reflection [44, 34, 45]. Let us
discuss this mechanism in more detail. Suppose we have an incoming electron with spin up
and momenta k hitting the N/S-interface from the right, with energy e † D. Having an energy
below the superconducting gap, the incoming electron itself cannot enter the superconductor,
since there are no states available there. Therefore, the electron either has to be reflected as an
electron or Andreev reflected as a hole. In the latter case, what actually happens is that the
incoming electron teams up with an electron with spin down, momenta ´k and energy ´e at
the interface3. The two electrons now form a Cooper-pair which can enter the superconductor.
At the same time, the missing electron at the interface leaves behind a hole travelling in the
opposite direction. Thus, the net effect of this process, as illustrated in figure 3a, is to transfer
two electrons with |e| † D from the normal metal into the superconductor, at the cost of
reflecting a hole back into the normal metal. So how does this manifests in the density of
states in the normal metal? Having the normal metal in contact with a superconductor we
effectively take out two sub-gap electrons from the normal metal, resulting in a minigap in the
density of states Dpeq around e{D0 “ 0 where D0 is the superconducting gap at absolute zero,
as illustrated in figure 4a. The term minigap refers to the fact that the gap occurs for energies
much smaller than the superconducting gap D0.

3 From the condition of the momenta being ´k it follows directly that the energy need to be -e.
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N S
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(b)

SS N
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Figure 3: Illustration of Andreev reflection of a hole (a) and electron (b). The supercurrent in a S/N/S
Josephson junction due to Andreev reflection of electrons and holes is also illustrated (c).

In the above, we discussed how an electron in a normal metal can be transmitted into a
superconductor as a Cooper-pair. However, the process also works the other way around.
Suppose we now instead have an incoming Cooper-pair from the right hitting the N/S-interface.
When the Cooper-pair hits the interface, one of the electrons can combine with a corresponding
hole at the interface, resulting in a reflected electron. The other electron can now be transmitted
to the normal metal, assuming that there are available states there. Hence, one Cooper-pair is
being destroyed due to the Andreev reflected electron, as illustrated in figure 3b. Having the
superconductor in contact with a normal metal, we effectively destroy one Cooper-pair at the
cost of creating an electron, now with energy e † D. In terms of the density of states in the
superconductor, we therefore get induced states within the gap characterizing the bulk of the
superconductor, as shown in figure 4b.

(a) Normal metal (b) Superconductor

Figure 4: Density of states Dpeq in a normal metal (a) and a superconductor (b) for a S/N-bilayer, when
taking into account both the effect S has on N and vice versa. Figures are taken from [46].
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Now that we have seen how the proximity effect in a normal metal N and superconductor S
can be explained by Andreev reflection of holes and electrons respectively, we can immediately
explain how a supercurrent can appear in an S/N/S-Josephson junction. Let us say that we
have an electron with spin up traveling to the right in N as shown in figure 3c. When the
electron hits the interface to the right, a Cooper-pair is transmitted into S while a hole with
spin down is created in N. The hole, which travels to the left in N, will eventually hit the left
interface where it destroys one Cooper-pair in the left superconductor. Hence, we effectively
have transmitted one Cooper-pair from the left superconductor to the right superconductor via
Andreev-reflection.

For nonmagnetic interfaces and materials, the supercurrent going through the junction is
determined by the phase difference f between the two superconductors4 [47, 48]

I “ Icsinpfq. (9)

where Ic is the critical current reached at f “ ˘p{2.
Integrating over the phase difference, we obtain an expression for the free energy of the

system 5 [48]

E » Icp1 ´ cospfqq. (10)

When there are no magnetic elements present, the current is always positive. Looking at the
expression for the free energy, we see that a positive current results in a ground state at f “ 0,
commonly referred to as 0-junctions. However, having magnetic elements present we can get a
negative current, resulting in a ground state at f “ ˘p. These types of Josephson junctions
are commonly referred to as p-junctions [49]. In addition to the 0 and p-junctions, it is also
possible to construct junctions where the ground state occurs for an arbrirary state f P r0, ps,
the so-called f0-junctions [50].

2.3 paring symmetries and spin-state transformations

As discussed in the introduction, Cooper-pairs can be in a singlet or triplet state. The singlet
state is defined as the state with total spin angular momentum s “ 0. The only state that
satisfies this is the state pÒÓ ´ ÓÒq. On the other hand, triplet states are defined as states having
total spin angular momentum s “ 1. Having s “ 1, there are three different allowed quantum
numbers m “ ´1, 0, 1. This gives rise to the triplet states pÓÓq, pÒÓ ` ÓÒq and pÒÒq respectively. In
addition to the spin-symmetry property, Cooper-pairs also exhibits orbital and time symmetry
properties, with the requirement of an antisymmetric total wavefunction.

The combination of the different symmetries for singlet and triplet states are shown in
figure 5. In this figure, even symmetry is represented by purple, while odd symmetry is
represented by green. Starting with the singlet state, we immediately notice that the singlet
state is antisymmetric under the exchange of spins. Therefore the singlet state has a odd
spin symmetry. Moving on to the orbital symmetry, there are mainly three options: s-orbital,
d-orbital and p-orbital. Suppose that the singlet Cooper-pair has a s- or d-orbital. Since both
s- and d-orbitals are even, the time symmetry has to be even to fulfill the antisymmetry of

4 The expression was originally derived for a non-magnetic S/I/S-junction, where I is a insulator. Despite the more
complex underlying physics present in junctions with magnetic elements, like S/F/S, the relation still manage to
describe well the qualitative behaviour in these systems.

5 To not be confused with the electric field.
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the total wavefunction. Superconductors in which the Cooper-pairs have a singlet spin-state
and an s-orbital are called s-wave superconductors, or conventional low-T superconductors.
In the same manner, superconductors in which the Cooper-pairs have a singlet spin state and
a d-orbital are called d-wave superconductors, or unconventional high-T superconductors.
However, there is still one option for the orbital symmetry left, the singlet state can also have a
p-orbital. Due to the fact that a p-orbital has an odd symmetry, the time symmetry now has to
be odd. Moving on to the triplet states, we notice that the spin symmetry now becomes even.
Again, the orbital symmetry can either be even, which is the case for s- and d-orbitals, or odd
which is the case for p-orbitals. An even orbital symmetry results in an odd time symmetry,
while an odd orbital symmetry results in an even time symmetry.

Although it is possible to construct Cooper-pairs in all configurations shown in figure 5,
there are some configurations more common than others. In particular, Cooper-pairs with
a orbital symmetry of p-wave are far less common than Cooper-pairs with a s- or d-wave
orbital symmetry [51]. In addition, Cooper-pairs with a orbital symmetry of d-wave is less
common than the Cooper-pairs with a orbital symmetry of s-wave. The reason why, is that both
Cooper-pairs with a d- and p-wave symmetry are very sensitive to disorder compared to those
with a s-wave symmetry, as they easily get destroyed by impurity scattering [52, 53, 54, 55]. In
general, the effect of the scattering process is to modify the k-vector of the electron. When an
electron moves through a material with a lot of disorder, the k-vector of the electron also gets
more modified due to the larger number of scattering events compared to a material with less
disorder. Looking at the orbital symmetry for the d- and p-wave in figure 5, we immediately
see that the k-vector is more easily scattered out of these symmetries compared to the s-wave
orbital symmetry. The d- and p-wave symmetry is simply less robust in terms of scattering.
Hence, Cooper-pairs with a d- or p-wave symmetry will be more easily destroyed by disorder
compared to a Cooper-pair with s-wave symmetry.

spin Orbital Time

Singlet

Triplet
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+

+

+

-

-

s d

+-
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p

Figure 5: A overview of the different symmetry combinations for singlet and triplet states. Odd symmetry
is represented by green, while the purple represents even symmetry.
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In the above, we discussed the symmetry properties for both singlet and triplet spin
states. Suppose we now have a (singlet) s-wave superconductor in contact with, for example a
ferromagnetic material. In this case, we know that triplet states are generated in the ferromagnet
due to singlet-triplet mixing. Let us now take a closer look at how this happens. For a
ferromagnet with no exchange field, the energy dispersion relation for the spin-up electrons
and spin-down electrons are equal and parabolic. However, when the field is nonzero things
become different. Let us say that the h-field points up, then the Zeeman energy term causes
a shift that lowers the parabola for spin-up represented by red in figure 6. On the contrary,
the parabola gets lifted for spin-down represented by blue. Furthermore, from the BCS-theory
we know that a Cooper-pair (in the singlet state) consist of one electron with spin up Ò and
wave-number k and one electron with spin down Ó and wave-number ´k. Therefore, only
positive k’s are relevant for spin-up, while only negative k’s are relevant for spin-down. Hence,
a Cooper-pair in a finite h-field is described by the energy dispersion relation shown in figure
6, where we have denoted the positive k’s as kÒ and the negative k’s as kÓ. If we now
project this energy band onto the k-space, we clearly see that the Fermi-energy wavenumber
kF becomes shifted to new positions kÒ ` Q{2 and kÓ ´ Q{2. As stated in the introduction
this finite center-of-mass momentum ˘Q causes the singlet state to transform according to
pÒÓ ´ ÓÒq Ñ pÒÓ eiQ¨R´ ÓÒ e´iQ¨Rq “ pÒÓ ´ ÓÒqcospQ ¨ Rq ` ipÒÓ ` ÓÒqsinpQ ¨ Rq. In other words,
the presence of an exchange field h results in a singlet-triplet mixing.

Figure 6: Illustration of how the presence of a finite exchange field h results in a finite center-of-mass
momenta Q
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Now that we understand how the singlet-triplet mixing happens, let us consider how the
different states transforms under rotation in spin space. Suppose we want to express the basis
vectors quantized along the direction q, j in terms of the basis vectors quantized along the
z-axis, where q, j are the polar angle and azimuthal angle respectively. The transformation
relating these two bases reads [56]

Òq,j “ cosp q

2
qe´ij{2 Òz `sinp q

2
qeij{2 Óz,

Óq,j “ ´sinp q

2
qe´ij{2 Òz `cosp q

2
qeij{2 Óz .

(11)

From eq.11 it follows that the singlet-state and triplet state quantized along a general
direction q, j becomes

pÒÓ ´ ÓÒqq,j “ pÒÓ ´ ÓÒqz, (12)

pÒÓ ` ÓÒqq,j “ ´sinpqqre´ijpÒÒqz ´ eijpÓÓqzs ` cospqqpÒÓ ` ÓÒqz. (13)

Looking at eq.12 and eq.13 we clearly see that the singlet state is rotationally invariant in
spin-space while the triplet state is not. This is an essential result because it demonstrates how
the triplet state pÒÓ ` ÓÒq can be transformed into ÒÒ or ÓÓ. For example, if we were to relate
the basis vectors quantized along the y-axis to the z-axis, we notice that the y-axis corresponds
to q “ p{2, j “ p{2. Inserting these angles into eq.13 we find pÒÓ ` ÓÒqq“p{2,j“p{2 “ pÒÓ ` ÓÒ
qy “ ipÒÒ ` ÓÓqz.

The above discussion clearly demonstrates how we can transform the short-ranged singlet
spin state into the long-ranged triplet spin state. Suppose we start with a s-wave superconductor,
meaning that our Cooper-pair is in a singlet spin state and has s-orbital symmetry. Being subject
to an exchange field, this Cooper-pair transforms into one singlet part and one triplet part
according to the singlet-triplet mixing. Although both sates are still being short-ranged due
to the unequal spins. Then, if we have a SO-field A present, the triplet part can be further
rotated in spin-space, giving long-ranged Cooper-pairs with an equal-spin-state. If the SO-field
has a nonzero component along the propagation direction of the system, the criterion for
generating such long-ranged triplet components is a nonzero commutator rA, h ¨ ss´ [28, 35].
In contrast, if the component of the SO-field along the propagation direction of the system
is zero, a commutator rA, rA, h ¨ ss´s´ not parallel to the exchange field h ¨ s generates such
long-ranged triplet components [28, 35].

2.4 green’s functions

Green’s functions are powerful tools in the context of many-body systems. Not only do they
describe the transport properties of the electrons and holes in the system, common physical
quantities like current and density of states can also be expressed by the Green’s functions.
Having found the Green’s function of the system, we therefore have all information we need
for determining common physical quantities. There are several ways of defining the Green’s
functions, for example the Matsubara imaginary-time formalism [57], and the Keldysh real-time
formalism [58]. In this thesis we will use the latter.

In the Keldysh formalism we define a set of three Green’s functions describing the transport
of electrons and holes. These quantum field correlation functions are called the retarded,
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advanced and Keldysh Green’s functions. The Green’s functions describe the correlation
between an electron with spin s and position r1 at a time t1, and another electron with spin s1
and position r2 at a time t2 [59]

GR
ss1 pr1, t1; r2, t2q “ ´ixrYspr1, t1q, Y:

s1 pr2, t2qs`yqpt1 ´ t2q, (14)

GA
ss1 pr1, t1; r2, t2q “ ixrYspr1, t1, q, Y:

s1 pr2, t2qs`yqpt2 ´ t1, q, (15)

GK
ss1 pr1, t1; r2, t2q “ ´ixrYspr1, t1q, Y:

s1 pr2, t2qs´y. (16)

Their anomalous counterparts, which are only present in superconducting systems, are defined
by

FR
ss1 pr1, t1; r2, t2q “ ´ixrYspr1, t1q, Ys1 pr2, t2qs`yqpt1 ´ t2q, (17)

FA
ss1 pr1, t1; r2, t2q “ ixrYspr1, t1q, Ys1 pr2, t2qs`yqpt2 ´ t1q, (18)

FK
ss1 pr1, t1; r2, t2q “ ´ixrYspr1, t1q, Ys1 pr2, t2qs´y. (19)

First, let us focus on the set of Green’s functions defined in eq.14 - eq.16. From eq.14 we see
that the retarded Green’s function GR only becomes nonzero for t1 ° t2. The retarded Green’s
function therefore corresponds to the creation of an electron at pr2, t2q, and then at a later time
the destruction of an electron at pr1, t1q. Since the Fermi-sphere is filled at low temperatures, the
only empty state for the electron to be created at is outside the Fermi-sphere. Hence we have
a particle-like excitation. Furthermore, from eq.15 we see that the advanced Green’s function
GA only is nonzero for t2 ° t1. The advanced Green’s function therefore corresponds to the
destruction of an electron at pr1, t1q and then at a later time the creation of an electron at pr2, t2q.
Again, having filled the Fermi-sphere, the destroyed electron will be inside the Fermi-sphere,
creating a hole. Hence, we have a hole-like like excitation. In conclusion, the retarded Green’s
function describes electrons moving forward in time, while the advanced Green’s function
describes electrons moving backward in time, which is equivalent to holes moving forward in
time.

Finally, we notice from eq.16 that the Keldysh Green’s function GK is the only function
defined without a Heaviside step-function. In addition it is worth noticing that the Keldysh
Green’s function is the only one defined with the commutator, while the two others are
defined with the anti-commutator. Unlike the retarded and advanced components, the Keldysh
component contains information about the nonequilibrium properties of the system.

While the set of Green’s functions in eq.14 - eq.16 are present in all many-body systems, the
anomalous Green’s functions defined in eq.17 - eq.19 only exists in superconducting systems.
Not only do they exist, they are crucial for describing superconducting systems. Recall that the
underlying mechanism for superconductivity are two electrons being paired up in a Cooper-pair.
In terms of field operators, Cooper-pairs correspond to creating an electron at position r1 and
time t1, while creating another electron at position r2 and time t2. This is exactly the type of
correlations the anomalous Green’s functions in eq.17 - eq.19 describe.



18 fundamental concepts

The definition of the Green’s functions and the corresponding anomalous counterparts
are all defined with a general s and s1. If we now introduce the basis-vector Ypr1, t1q “
pYÒpr1, t1q, YÓpr1, t1q, Y:

Òpr1, t1q, Y:
Ópr1, t1qqT , we can account for all combinations of the two

spins, resulting in the following matrices in spin-space

GR “
˜

GR
ÒÒ GR

ÒÓ
GR

ÓÒ GR
ÓÓ

¸
, GA “

˜
GA

ÒÒ GA
ÒÓ

GA
ÓÒ GA

ÓÓ

¸
, GK “

˜
GK

ÒÒ GK
ÒÓ

GK
ÓÒ GK

ÓÓ

¸
, (20)

FR “
˜

FR
ÒÒ FR

ÒÓ
FR

ÓÒ FR
ÓÓ

¸
, FA “

˜
FA

ÒÒ FA
ÒÓ

FA
ÓÒ FA

ÓÓ

¸
, FK “

˜
FK

ÒÒ FK
ÒÓ

FK
ÓÒ FK

ÓÓ

¸
. (21)

These matrices can be combined further to form the following three matrices in Nambu space

ĜR ”
ˆ

GR FR

FR˚ GR˚

˙
, ĜA ”

ˆ
GA FA

FA˚ GA˚

˙
, ĜK ”

ˆ
GK FK

´FK˚ ´GK˚

˙
. (22)

Finally, to fully describe the general system, we can form the full 8 ˆ 8 matrix in Keldysh-
space

Ǧ ”
˜

ĜR ĜK

0 ĜA

¸
. (23)

2.5 quasiclassical approximation

From the definitions of the Green’s functions (eq.14 - eq.19) we see that these functions depend
on two spatial coordinates, r1 and r2, and two time coordinates, t1 and t2. Let us introduce a set
of new center of mass coordinates, R and T, and difference coordinates, r and t. This set of new
coordinates are related to our old coordinates pr1, t1q and pr2, t2q by [59]

r1 ” R ´ r{2, r2 ” R ` r{2, (24)

t1 ” T ´ t{2, t2 ” T ` t{2. (25)

Expressing the Green’s function by these new coordinates ǦpR, T; r, tq, we notice that there
are two ways this function can oscillate; either by variations in the difference coordinates r
and t, or by variations of the center-of-mass coordinates R and T. The first way of oscillation
originates from the two electrons forming the Cooper-pair. Since the electrons are confined close
to the Fermi-surface with |pF| “ pF, these oscillations are over a length scale of lF “ 2p{pF.
The second way of oscillation originates from the material as the electrons move through.
For instance, having a normal metal, the length in which the Cooper-pairs can propagate is
determined by the temperature xT “ pF{mT regardless of which spin state the Cooper-pairs
have. If we instead have a ferromagnet though, the triplet Cooper-pairs with an equal-spin state
who are defined as long-ranged, still have a coherence length determined by the temperature.
Yet the triplet Cooper-pairs with an unequal spin-state, the short-ranged states, now have a
shorter coherence length xF “ pF{mh due to the effect of the exchange field. By the same
mechanism, Cooper-pairs in the singlet spin state will also have a coherence length xF in a
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ferromagnet, as this state also has unequal spins. Finally, for a superconducting material, the
superconducting gap determines the coherence lenght x0 “ pF{mD. In our systems these are all
typically much longer than lF. As we are interested in variations at a longer length scale, we
therefore Fourier-transform ǦpR, T; r, tq with respect to r and t, giving

ǦpR, T; p, eq “
ª

eiete´ip¨rǦpR, T; r, tqdrdt. (26)

Next, we use the quasiclassical approximation. Since all conducting electrons lie close to the
Fermi-surface, we restrict the magnitude of p to be the value at the Fermi-surface pF. However,
we still have to keep the dependence of the direction of the momentum. Introducing the variable
xp “ p2{2m ´ µ, the quasiclassical approximation can be expressed as

ǦpR, T; p, eq « ´ipdpxpq ¨ ǧpR, T; epF
, eq. (27)

Here epF refers to the direction of the momentum at the Fermi-surface, and ǧpR, T; epF
, eq is

called the quasi-classical Green’s function.
Alternatively, one can find ǧpR, T; epF

, eq by integrating over all values of xp

ǧpR, T; epF
, eq “ i

p

ª
dxp ¨ ǦpR, T; p, eq. (28)

The p-factor in the definitions above comes from the normalization condition.
In summary, the quasiclassical Green’s function becomes

ǧ “
ˆ

ĝR ĝK

0 ĝA

˙
, (29)

with

ĝR “
˜

gR fR

´fR˚ ´gR˚

¸
, ĝA “

˜
gA fA

´fA˚ ´gA˚

¸
, ĝK “

˜
gK fK

fK˚ gK˚

¸
. (30)

Note that in the quasiclassical Green’s function it is the retarded and advanced components
rather than the Keldysh-component that have a minus sign in the second row.

2.5.1 Useful relations

As a simple task, we will now derive some useful relations between the components of the
Green’s function. Starting with the definition of ĜR, we use the dagger operator, i.e. the
conjugate transpose, and get the matrix

ĜR:pr1, t1; r2, t2q “

¨

˚̊
˚̋

GR˚
ÒÒ GR˚

ÓÒ FR
ÒÒ FR

ÓÒ
GR˚

ÒÓ GR˚
ÓÓ FR

ÒÓ FR
ÓÓ

FR˚
ÒÒ FR˚

ÓÒ GR
ÒÒ GR

ÓÒ
FR˚

ÒÓ FR˚
ÓÓ GR

ÒÓ GR
ÓÓ

˛

‹‹‹‚. (31)

In the above matrix, each element has the same argument as ĜR:pr1, t1; r2, t2q, even though
this is not written explicitly.
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Looking at the definition in eq.14, we notice that GR˚
ss1 can be written as

GR˚
ÒÒ pr1, t1; r2, t2q “ `ixrYÒpr1, t1q, Y:

Òpr2, t2qs˚̀ yqpt1 ´ t2q
“ `ixrY:

Òpr1, t1q, YÒpr2, t2qs`yqpt1 ´ t2q
“ GA

ÒÒpr2, t2; r1, t1q, (32)

GR˚
ÓÒ pr1, t1; r2, t2q “ `ixrYÓpr1, t1q, Y:

Òpr2, t2qs˚̀ yqpt1 ´ t2q
“ `ixrY:

Ópr1, t1q, YÒpr2, t2qs`yqpt1 ´ t2q
“ GA

ÒÓpr2, t2; r1, t1q, (33)

GR˚
ÒÓ pr1, t1; r2, t2q “ `ixrYÒpr1, t1q, Y:

Ópr2, t2qs˚̀ yqpt1 ´ t2q
“ `ixrY:

Òpr1, t1q, YÓpr2, t2qs˚̀ yqpt1 ´ t2q
“ GA

ÓÒpr2, t2; r1, t1q, (34)

GR˚
ÓÓ pr1, t1; r2, t2q “ `ixrYÓpr1, t1q, Y:

Ópr2, t2qs˚̀ yqpt1 ´ t2q
“ `ixrY:

Ópr1, t1q, YÓpr2, t2qs`yqpt1 ´ t2q
“ GA

ÓÓpr2, t2; r1, t1q. (35)

Similarly, using eq.17 we find the following elements for FR˚
ss1

FR
ÒÒpr1, t1; r2, t2q “ ´ixrYÒpr1, t1q, YÒpr2, t2qs`yqpt1 ´ t2q

“ ´FA
ÒÒpr2, t2; r1, t1q, (36)

FR
ÓÒpr1, t1; r2, t2q “ ´ixrYÓpr1, t1q, YÒpr2, t2qs`yqpt1 ´ t2q

“ ´FA
ÒÓpr2, t2; r1, t1q, (37)

FR
ÒÓpr1, t1; r2, t2q “ ´ixrYÒpr1, t1q, YÓpr2, t2qs`yqpt1 ´ t2q

“ ´FA
ÓÒpr2, t2; r1, t1q, (38)

FR
ÓÓpr1, t1; r2, t2q “ ´ixrYÓpr1, t1q, YÓpr2, t2qs`yqpt1 ´ t2q

“ ´FA
ÓÓpr2, t2; r1, t1q. (39)
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Inserting the above expressions, ĜR: can be expressed by the advanced components as
follows

ĜR:pr1, t1; r2, t2q

“

¨

˚̊
˚̋

GA
ÒÒpr2, t2; r1, t1q GA

ÒÓpr2, t2; r1, t1q ´FA
ÒÒpr2, t2; r1, t1q ´FA

ÒÓpr2, t2; r1, t1q
GA

ÓÒpr2, t2; r1, t1q GA
ÓÓpr2, t2; r1, t1q ´FA

ÓÒpr2, t2; r1, t1q ´FA
ÓÓpr2, t2; r1, t1q

´FA˚
ÒÒ pr2, t2; r1, t1q ´FA˚

ÒÓ pr2, t2; r1, t1q GA˚
ÒÒ pr2, t2; r1, t1q GA˚

ÒÓ pr2, t2; r1, t1q
´FA˚

ÓÒ pr2, t2; r1, t1q ´FA˚
ÓÓ pr2, t2; r1, t1q GA˚

ÓÒ pr2, t2; r1, t1q GA˚
ÓÓ pr2, t2; r1, t1q

˛

‹‹‹‚. (40)

Multiplying the above matrix by pt3 b s0q on both sides, we find a relation between the
retarded and advanced components

ĜApr2, t2; r1, t1q “ pt3 b s0qĜR:pr1, t1; r2, t2qpt3 b s0q. (41)

However, in most cases we are interested in the quasiclassical Green’s function. To see how
the relation in eq.41 transforms in the quasiclassical approximation, we can simply use the
definition in eq.26 and eq.28

ĝApR, T; epF
, eq (42)

“ i
p

ª
dxp

ª
eiete´ip¨rĜApR, T; r, tqdrdt

“ i
p

ª
dxp

ª
eiet ¨ e´ip¨rĜAppr1 ` r2q{2, pt1 ` t2q{2; r2 ´ r1, t2 ´ t1qdrdt

“ i
p

ª
dxp

ª
eiet ¨ e´ip¨rpt3 b s0qĜR:ppr2 ` r1q{2, pt2 ` t1q{2; r1 ´ r2, t1 ´ t2qpt3 b s0qdrdt

“ ´
” i

p

ª
dxp

ª
e´iet ¨ e`ip¨rpt3 b s0qĜRppr2 ` r1q{2, pt2 ` t1q{2; r1 ´ r2, t1 ´ t2qpt3 b s0qdrdt

ı:

“ ´
” i

p

ª
dxp

ª
e´iet ¨ e`ip¨rpt3 b s0qĜRpR, T; ´r, ´tqpt3 b s0qdrdt

ı:

“ ´
” i

p

ª
dxp

ª
e`iet ¨ e´ip¨rpt3 b s0qĜRpR, T; `r, `tqpt3 b s0qdrdt

ı:

“ ´ pt3 b s0qĝR:pR, T; epF
, eqpt3 b s0q. (43)

In the above calculation there are two steps worth noticing. In the third line we have used
that when inserting the relation in eq.41, we also have to interchange the roles of pr1, t1q and
pr2, t2q. However, integrating over all r and t in the sixth line, we can redefine r and t to
their negative counterparts. Therefore, the interchanging of pr1, t1q and pr2, t2q in eq.41, will in
the quasiclassical approximation preserve the roles of the relevant arguments. In short-hand
notation, the relation between the retarded and advanced components of quasiclassical Green’s
function may be written

ĝA “ ´pt3 b s0qĝR:pt3 b s0q. (44)
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Thus far, we have seen how to relate the retarded and advanced Green’s functions. It
turns out that there also exists a relation relating the Keldysh component to the retarded and
advanced Green’s function in equilibrium [59, 60]. The relation in question is the following
ĝK “ pĝRh ´ hĝAq, where h is some distribution function that is not unique. Using the
definitions of the Green’s functions one can show, by similar calculation as above, that one
choice for the distribution function is h “ tanhpbẽk{2q, where ẽk is the quasiparticle energy
measured with respect to the Fermi-level[61]. The relation between the Keldysh, retarded and
advanced components in equilibrium therefore reads

ĝK “ pĝR ´ ĝAqtanhpbẽk{2q. (45)



3
B C S - T H E O RY

Conventional s-wave low-temperature superconductors are well described by the BCS-theory
developed by Bardeen, Cooper and Schrieffer [8]. Even though there are some major assump-
tions that limit the validity of the theory, the BCS-theory does a good job in describing the
underlying physics for conventional s-wave superconductors. In this chapter, we will present
the key-points of the theory.

3.1 the origin of the attractive potential

As stated in the introduction, the Cooper-pairs in a s-wave superconductor is the result of an
attractive interaction between the the two electrons due to the lattice vibrations. Let us now
investigate how this attractive interaction comes about. Our starting point is the Hamiltonian
describing a system in which we both have electron-electron interaction and electron-phonon
interactions. In reciprocal space this Hamiltonian is given by [11]

H “
ÿ

k,s
pek ´ µqc:

kscks `
ÿ

k,k1,q,s,s1
Ṽe f f c:

k`q,sc:
k1´q,s1 ck1,s1 cks. (46)

Here ek is the excitation spectrum of a free electron gas and Ṽe f f “ 2
��gq

��2wq{pw2 ´ w2
qq `

Vcolumbpqq is the effective potential. Note that due to the summations over k, k1, q Ṽe f f is a
function of the phonon frequency w. Also c:

ks and cks are the creation and destruction operators,
respectively.

Let us take a closer look at how Ṽe f f depends on the phonon-frequency w. The effective
potential consists of two terms, the first term originates from the electron-phonon interaction,
while the second term originates from the electron-electron interaction. We start by discussing
the first term. Looking at the expression for Ṽe f f we notice that the first term does contain
a factor 2

��gq
��2. This factor just tells us something about the strength of the electron-phonon

interaction; nevertheless, it is always positive. Therefore, the first term will be proportional
to wq{pw2 ´ w2

qq where wq is some fixed frequency, as sketched in figure 7. We notice that as
|w| Ñ wq́ a negative singularity appears. Furthermore, for frequencies higher than wq the
function is positive, while its negative for frequencies below wq. Moving on to the second term,
we know that this goes like q´2, thus the second term will always be positive.

23
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Figure 7: A qualitative sketch of the first term in Ṽe f f .

The sign of Ṽe f f depends on the balance of the two terms. Let us know investigate when, if
possible, Ṽe f f becomes negative. Since the second term always is positive, the only chance of
getting a negative Ṽe f f is for the first term to be negative and beat the second term in magnitude.
Due to the negative singularities of the first term as |w| Ñ wq́ , the first term will always beat
the positive second term for these frequencies, resulting in a negative potential. Remarkably,
this holds no matter how weak the strength of the electron-phonon interaction is. In contrast if
w is very small the second term beats the first term resulting in a positive effective potential1.
Finally, for large frequencies above wq both terms are positive, so Ṽe f f surely is positive also in
this case. Hence there is a small frequency-window at w À wq where the effective potential
Ṽe f f is negative, i.e. attractive.

This clearly demonstrates the origin of the attractive potential in the BCS-theory being a
delicate balance between the electron-phonon interaction and the electron-electron interaction.
As we have just seen, for this outcome to be an attractive interaction, the frequency need to
be within a small frequency-window w À wq. However, when the frequency are within this
small window, the effective interaction is attractive no matter how weak the strength of the
electron-phonon interaction is. This justifies the physical interpretation of the BCS-theory
given in the introduction. Remember, we have two electrons moving in a lattice of positively
charged ions. As the first electron moves though the lattice, it creates a shift in the local charge
distribution. For the second electron to experience an attractive interaction, it cannot come
too fast nor wait too long. If it waits too long or the lattice vibrates too fast, the positively
charged ion will relax to the initial position, meaning that we no longer have a shifted local
charge distribution. At the same time, the second electron cannot come to fast either, since the
repulsive Coulomb force between the electrons then would win over the attractive force from the
shifted charge distribution. The BCS-theory is therefore limited to describing low-temperature
superconductors. For high temperatures, i.e. high phonon frequency, the effective interaction is
no longer attractive, and the BCS-theory is no longer valid.

1 The magnitude of the electron-phonon interaction typically is much smaller than the electron-electron interaction
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3.2 bcs-hamiltonian

The first assumption made in the BCS-theory is that the electrons only interact with each other
within a thin shell around the Fermi-sphere. Thus, ek, ek1 , ek`q and ek1´q must all lie inside a
thin shell around the Fermi-surface. Let us now see how this assumption affects k1. In figure
8 we have sketched the Fermi-sphere, denoting the thin shell around as stipulated lines. The
green vector denotes k, the red vector denotes k1 and the blue vector denotes q. From this
sketch we see that ek1´q in general lies outside the shell even though ek, ek1 and ek`q lies within
the shell. However, if we where to choose k1 “ ´k also ek1´q lies within the shell. This choice
of k1 also maximize the scattering phase space for attractive interactions. We therefore choose
k1 “ ´k in what follows.

Figure 8: Illustration of the kinematics governing the wave-vectors k and k1 in the BCS-Hamiltonian. The
black line represents the Fermi-sphere, while the stipulated red line represents the thin shell around the
Fermi-sphere where electrons interact.

The second assumption made in the BCS-theory is that s1 “ ´s. This assumption is justified
by the fact that if we where to only have an interaction between two electrons, the spins have to
be opposite to obtain an antisymmetric wavefunction. Having interactions between all electrons
within a thin shell around the Fermi-sphere, as in our case, the antisymmetry of the many-body
wavefunction becomes more complicated. However, it turns out that the choice of s1 “ ´s
works well.

Finally redefining variables k Ñ k1 and k ` q Ñ k, we end up with the standard BCS-
Hamiltonian

H “
ÿ

k,s
pek ´ µqc:

kscks `
ÿ

k,k1
Vkk1 c:

k,Òc:
´k,Óc´k1,Óck1Ò. (47)

Note that in the above equation we have used the fact that the effective potential Ṽe f f is
spin independent and redefined Ṽe f f Ñ Vkk1 {2. If k and k1 lies within a thin shell around the
Fermi-sphere Vkk1 is attractive, otherwise Vkk1 is zero.

3.3 mean-field approximation

The BCS-Hamiltonian in eq.47 cannot be treated exactly. It is therefore useful to approximate
the Hamiltonian. For this purpose we will use the mean-field approximation which now will
be introduced. We start by rewriting c´k,ÓckÒ and c:

k,Òc:
´k,Ó in terms of the average value
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c´k,ÓckÒ “ xc´k,ÓckÒy ` pc´k,ÓckÒ ´ xc´k,ÓckÒyq
” bk ` dbk, (48)

c:
k,Òc:

´k,Ó “ xc:
k,Òc:

´k,Óy ` pc:
k,Òc:

´k,Ó ´ xc:
k,Òc:

´k,Óyq
” b:

k ` db:
k, (49)

where we have defined the statistical averages

bk “ xc´k,ÓckÒy, (50)

b:
k “ xc:

k,Òc:
´k,Óy. (51)

Next, we insert these expressions for c´k,ÓckÒ and c:
k,Òc:

´k,Ó into the BCS-Hamiltonian in
eq.47, and impose the mean-field approximation by ignoring terms of order Opdb2

kq

H “
ÿ

k,s
pek ´ µqc:

kscks `
ÿ

k,k1
Vkk1 c:

k,Òc:
´k,Óc´k1,Óck1Ò

“
ÿ

k,s
pek ´ µqc:

kscks `
ÿ

k,k1
Vkk1 pb:

k ` db:
kqpbk’ ` dbk’q

»
ÿ

k,s
pek ´ µqc:

kscks `
ÿ

k,k1
Vkk1 pb:

kbk’ ` b:
kdbk’ ` db:

kbk’q

“
ÿ

k,s
pek ´ µqc:

kscks `
ÿ

k,k1
Vkk1 pb:

kbk’ ` b:
kc´k’,Óck’Ò ` bk’c

:
k,Òc:

´k,Ó ´ 2b:
kbk’q. (52)

We now proceed by defining the following quantities

Dk “ ´
ÿ

k’
Vkk1 bk’, (53)

D:
k’ “ ´

ÿ

k
Vkk1 b:

k. (54)

Applying the above definitions, the Hamiltonian reads

H “
ÿ

k,s
pek ´ µqc:

kscks ´
ÿ

k
pDkc:

k,Òc:
´k,Ó ` D:

kc´k,ÓckÒq `
ÿ

k
Dkb:

k. (55)

Comparing the above Hamiltonian with the standard BCS-Hamiltonian in eq.47, we notice
that using mean-field approximation we have managed to transform the Hamiltonian from a
many-body problem to a one-particle problem. Admittedly, at the cost of neglecting higher-
order terms in dbk, making the BCS-theory incapable of capturing the effects of higher-order
terms. This is the second assumption that limits the validity of the BCS-theory.
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3.4 the gap equation

In the previous section we managed to reduce the many-body Hamiltonian into a one-particle
Hamiltonian. Nevertheless, looking at eq.55 we notice that the Hamiltonian is not diagnolized.
To diagnoalize the Hamiltonian we introduce some new fermionic operators

ˆ
hk
gk

˙
“

ˆ
uk vk

´vk uk

˙ ˜
ckÒ

c:
´k,Ó

¸
; uk “ cospqkq, vk “ sinpqkq. (56)

Seeking a diagnolized Hamiltonian we want to express the Hamiltonian in terms of coeffi-
cients on the form g:

kgk and h:
khk. In contrast, coefficients that are a mixture of hk and gk, like

h:
kgk, must vanish. We start by focusing on the coefficients that do have to vanish. Inserting our

new fermionic operators into eq.55, and demanding that coefficients on the form h:
kgk have to

vanish, we obtain the following two equations

´2pek ´ µqukvk “ u2
kDk ´ v2

kD:
k, (57)

´2pek ´ µqukvk “ u2
kD:

k ´ v2
kDk. (58)

Adding the above equations and using the relation Dk ` D:
k “ 2RepDkq ” 2D̃k, we obtain the

following equation
´4pek ´ µqukvk “ 2pu2

k ´ v2
kqD̃k. (59)

Redefining the quasi-particle energy with respect to the Fermi level ẽk ” ek ´ µ, as well as
utilizing the mathematical form of uk and vk, the above equation transforms according to

´2ẽkukvk “ pu2
k ´ v2

kqD̃k

´ẽksinp2qkq “ D̃kcospp2qkq

tanp2qkq “ ´ D̃k
ẽk

. (60)

Choosing D̃k to be positive and using the identity sin2p2qkq ` cos2p2qkq “ 1, one can show
that eq.60 results in the following expression for cosp2qkq

cosp2qkq “

$
&

%

´ 1?
1`pD̃k{ẽkq2 ; ẽk ° 0

` 1?
1`pD̃k{ẽkq2 ; ẽk † 0.

(61)

We now move on to the coefficients that do not vanish, namely g:
kgk and h:

khk. Again,
inserting our new fermionic operators into eq.55, the coefficients of g:

kgk and h:
khk respectively

yields the following

pek ´ µqpv2
k ´ u2

kq ` ukvkpDk ` D:
kq, (62)

pek ´ µqpu2
k ´ v2

kq ´ ukvkpDk ` D:
kq. (63)
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Using eq.60 and eq.61 the coefficients for g:
kgk and h:

khk simplifies to
b

ẽk
2 ` D̃2

k and

´
b

ẽk
2 ` D̃2

k respectively.
We are now finally able to write down the diagnolized Hamiltonian in the mean field

approximation

H “
ÿ

k
rpẽk ´ µq ` Dkb:

ks `
ÿ

k
Ekpg:

kgk ´ h:
khkq; Ek “

b
ẽk

2 ` D̃2
k. (64)

Looking at the diagonalized Hamiltonian above, we notice that it consists of two parts, one
representing the ground-state energy and one representing the excitation spectrum for our
new fermionic operators gk and hk. In other words, our new fermionic operators gk and hk
represents nothing but long-lived excitations.

By invoking the mean-field approximation and introducing some new operators, we have
managed to diagnolize the BCS-Hamiltonian. However, we still need to find an equation
determining Dk. We do so by using the definition of Dk in eq.53 along with the definition of bk
in eq.50

Dk “ ´
ÿ

k’
Vkk1 bk’

“ ´
ÿ

k’
Vkk1 xc´k’,Óck’Òy

“ ´
ÿ

k’
Vkk1 xpvk’h

:
k’ ´ uk’g

:
k’qpuk’hk’ ` vk’gk’qy

“ ´
ÿ

k’
Vkk1 uk’vk’pxh:

k’hk’y ` xg:
k’gk’yq

“ ´
ÿ

k’
Vkk1 uk’vk’

´ 1
e´bEk1 ` 1

´ 1
ebEk1 ` 1

¯

“ ´
ÿ

k’
Vkk1 uk’vk’tanhpbEk1 {2q. (65)

Using eq.60 and eq.61 we can relate uk and vk to Dk and ẽk

Dk “ ´
ÿ

k’
Vkk1

1
2

sinp2qk’qtanhpbEk1 {2q

“ ´
ÿ

k’
Vkk1

1
2

D̃k’{ẽk’b
1 ` pD̃k’{ẽk’q2

tanhpbEk1 {2q

“ ´
ÿ

k’
Vkk1

D̃k’
2Ek1

tanhpbEk1 {2q. (66)

Where we in the second line have utilized the particle-hole symmetry by choosing the ` sign of
cosp2qk’q in eq.61.

The above equation is referred to as the BCS-gap equation. The physical interpretation of
Dk is that it is a gap in the excitation spectrum. To see this let us plot the excitation spectrum
for the new fermionic operators gk and hk given by ˘Ek. We start by setting Dk “ 0, then
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Ek “ |ẽk| and ´Ek “ ´|ẽk|. Remembering that ẽk represent the excitation spectrum for a
free electron gas, we expect the standard parabolic dispersion relation. However, since we are
only interested in k’s around the Fermi-wavevector, we can linearize the dispersion relation
around kF, thus giving a linear dispersion relation for large k’s. Taking the absolute value we
obtain the dispersion relation for Ek and ´Ek represented by the blue and green stipulated
lines respectively in figure 9. If we now include a finite gap Dk ‰ 0 on the Fermi-surface the
dispersion relations now reads ˘Ek “ ˘

b
ẽ2

k ` D̃2
k. Thus, the dispersion relation for Ek is raised

with respect to the k-axis, represented by the blue line in figure 9. Similarly, the dispersion
relation for ´Ek get lowered with respect to the k-axis, represented by the green line in figure
9. Hence, the presence of a finite Dk results in a gap of 2Dk in the excitation spectrum. As
there are no energy eigenvalues inside this gap, the gap protects electrons from scattering, thus
giving zero resistance.

Figure 9: Illustration of the physical meaning of the superconducting gap Dk. As the gap goes from a zero
value, shown by stipulated lines, to a nonzero value, shown by full lines, a gap of 2Dk opens up in the
excitation spectrum.
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4
U S A D E L

The goal of this chapter is to derive the equations determining the Green’s function in a general
material. In the first part of this chapter, we focus on deriving these equations. We will start
by deriving the Usadel equation for a general material from the exact transport equation.
Moreover, since we are interested in describing systems in equilibrium, the Usadel equation
simplifies. Next, a discussion of appropriate boundary conditions follows. In the second part
of this chapter we introduce a useful parameterization for numeric simulations, the so-called
Riccati-parameterization. Riccati-parameterizing the Usadel equation, along with appropriate
boundary conditions, provides us with the tools needed for numerical simulations.

4.1 usadel equation

Suppose we have a material in which electromagnetic fields, superconducting properties,
ferromagnetic properties, SO-coupling, spin-flip scattering and impurity scattering all can be
present. The exact transport equation for such a material is [62, 61]

p
m

trRǦ ´ irǍ, s‚́ u “ iret3 b s0 ´ D̂ ` h ¨ ŝ ´ Vs f s ¨ ŝ ´ ej ´ Vimp, Ǧs‚́

` 1
4m

trrRǍ, Ǧs‚̀ ` rǍ,rRǦs‚̀ u ´ i
2m

rǍ2, Ǧs‚́ .
(67)

Here ‚ is the bullet-product1, s “ spR, Tq is the spin field of the magnetic impurities and j is
the scalar electromagnetic background field. Moreover, the matrices Ǎ, D̂ and ŝ are defined as

D̂ “

¨

˚̊
˝

0 0 0 D
0 0 ´D 0
0 D˚ 0 0

´D˚ 0 0 0

˛

‹‹‚, Ǎ “
ˆ
A 0
0 ´A

˚
˙

, ŝ “
ˆ

s 0
0 s˚

˙
. (68)

As a first step to simplify the above equation, we use the quasiclassical approximation. That
is, in our type of systems, the length L typically is much longer than the wavelength lF of the
electrons forming the Cooper-pair. Hence, to leading order the transport equation is given by
the terms of lowest order in the smallness parameter h ” lF{L. Furthermore, we notice that
r̃R “ prR ´ iǍq „ 1{L and p „ pF „ 1{lF.

Looking at eq.67 we see that the left-hand side goes like 1{mlFL. Hence, in terms of the
smallness parameter h, the left-hand side goes like h{ml2

F. Furthermore, the last three terms on
the right-hand side all go like 1{mL2, or equivalently as h2{ml2

F. The three last terms in eq.67
can therefore be discarded when evaluating to leading order in h.

1 A ‚ B ” expt 1
2 pBA

e BB
T ´ BA

T BB
e quexpt 1

2 prA
Rr

B
p ´ rA

p r
B
RquApR, p, e, TqBpR, p, e, Tq; where rA

R means differention with
respect to R only affecting function A etc. [62]

31
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Next, we expand the gradient in the definition of the bullet product in terms of h. Looking
at the definition of the bullet product, we realize that only the energy and time derivatives
remain, leaving us with what we define as the ring-product ˝ 2. Thus, keeping only the zero’th
order reduces the bullet product to a ring product. Moreover, since Ǎ is time-independent, we
can replace the left hand side with the covariant derivative r̃, where we have dropped the
subscript R. Finally, letting p{m Ñ vF and Ǧ Ñ ǧ, we arrive at an equation referred to as the
Eilenberger equation

vF ¨ r̃ǧ “ iret3 b s0 ´ D̂ ` h ¨ ŝ ´ Vs f s ¨ ŝ ´ ej ´ Vimp, ǧs˝́ . (69)

4.1.1 Diffusive limit

We now take into account impurity scattering in the material. Due to the relatively high
concentration of nonmagnetic impurities in the diffusive limit, and hence a high frequency
of random scattering events, the Green’s function becomes nearly isotropic. We can therefore
approximate the Green’s function to a first-order expansion in spherical harmonics [59]

ǧpR, T; epF
, eq u ǧspR, T; eq ` epF

¨ ǧppR, T; eq. (70)

Here ǧs is the isotropic (in momentum space) s-wave component of the Green’s function,
while ǧp denote the non-isotropic p-wave component. To take into account the direction of
momentum, the p-wave component is multiplied by epF

.
Furthermore, evaluating in the diffusive limit, we can express the impurity potential and

spin-flip potential by introducing the momentum relaxation time t0 and the spin relaxation
time ts [59]

Vimp u ´ i
2t0

xǧy, Vs f s ¨ ŝ u ´ i
2ts

pt3 b s0qxǧypt3 b s0q. (71)

Defining v0 ” 1{2t0 and vs ” 1{2ts and using that xǧy “ xǧsy ` xepF
¨ ǧpy “ ǧs, the potentials

simplify to

Vimp u ´iv0ǧs, Vs f s ¨ ŝ u ´ivspt3 b s0qǧspt3 b s0q. (72)

If we now insert eq.72 into eq.69, rewrite vF “ vFepF
and finally average over the Fermi-

surface, we get the following equation3

1
3

vF ¨ r̃ǧp “ iret3 b s0 ´ D̂ ` h ¨ ŝ ` ivspt3 b s0qǧspt3 b s0q ´ ef, ǧss˝́ . (73)

The equation above depends both on ǧs and ǧp. To decompose the equation, we need an
expression that relates the two components. The normalization condition ǧ ˝ ǧ “ 1 provides
such a relation [62, 59]

ǧp “ ´t0vFǧs ˝ r̃ǧs. (74)

2 A ˝ B ” expt 1
2 pBA

e BB
T ´ BA

T BB
e quApR, p, e, TqBpR, p, e, Tq

3 Notice that the impurity scattering term vanishes since rǧs, ǧss˝́ “ 0.



4.1 usadel equation 33

Defining the diffusion coefficient D ” 1
3 v2

Ft0 and inserting 74 into 73, we arrive at the
well-known Usadel equation

iDr̃ ¨ pǧs ˝ r̃ǧsq “ ret3 b s0 ´ D̂ ` h ¨ ŝ ` ivspt3 b s0qǧspt3 b s0q ´ ej, ǧss˝́ . (75)

In the same manner as the exact transport equation, the Usadel equation describes the
transport of electrons and holes in a general system. However, having used the quasiclassical
approximation and the diffusive limit, we have managed to significantly simplify the exact
transport equation. Not only have we managed to reduce the bullet-product to a ring-product,
we have also managed to decouple the s- and p-wave components of the Green’s function.
Having determined the s-wave component of the Green’s function using eq.75, we can always
find the p-component by using the relation in eq.74. For further details and discussion of
the derivations of the Eilenberger and Usadel equations, we refer to [59, 62, 61]. It is also
worth noticing that the only place the SO-field enters in the Usadel equation is in the covariant
derivative, instead of separate commutator terms as in the exact transport equation.

4.1.2 Equilibrium, dimensionality and ideal materials

The Usadel equation as it stands in eq.75 holds for a time-dependent ǧs. However, if the system
is in equilibrium, the Green’s function ǧs will become time independent. In this limit the Usadel
equation simplifies further. First, we notice that ej is just a scalar, so it clearly commutes with
ǧs. Therefore the term ej in the commutator vanishes. Furthermore, since the Green’s function
ǧs is time-independent, the ring-product reduces to just normal matrix multiplication. This
follows directly from the definition of the ring product. Finally, we know that the components
of ǧs are not all independent, and in equilibrium are related by eq.44 and eq.45. We therefore
do not have to solve the Usadel equation for all three components, if we know for instance ĝR

s
we also know ĝA

s and ĝK
s . In summary, the Usadel equation in equilibrium becomes

iDr̃ ¨ pĝR
s ¨ r̃ĝR

s q “ ret3 b s0 ´ D̂ ` h ¨ ŝ ` ivspt3 b s0qǧspt3 b s0q, ĝR
s s´. (76)

The equation above is a three-dimensional equation. However, the systems we are going
to evaluate in the end are one-dimensional, since one-dimensional systems can be solved
directly numerically4. The underlying physics in one-dimensional systems is also easier to
grasp, making such systems well suited for qualitative discussion. Mainly, there are two ways
to achieve such one-dimensional systems, either by having thin films or nanowires. In both
cases, spatial confinement makes the system one-dimensional. In the following, we will discuss
these two ways in the case of propagation direction along z, assuming the SO-coupling to be of
Rashba-type.

The first way of constructing such a system is by having a finite extent in the z-direction,
while the system is so large along the x and y-direction that it can be treated as translation
invariant in the xy-plane. Geometrically, this type of set-up corresponds to a thin film with the
layering direction in z. Since the system is translation invariant in the xy-plane, the broken-
inversion symmetry vector en in eq.6 is pointing in z-direction. Inserting en “ ez in eq.6 we

4 For a discussion of how one could solve three dimensional systems numerically we refer to the finite element method
developed by Amundsen [63]
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end up with the Hamiltonian H “ ´ a
2m p´py ¨ s1 ` px ¨ s2q. Looking at this Hamiltonian we

notice that it only contains py and px. Remembering the general definition of SO-coupling in
eq.5, the SO-field A therefore can only contain a x and y-component. Furthermore, since the
system is so large along the x and y-directions, the Green’s function only changes along the
z-direction, making the system one dimensional. Hence, constructing our system in such way
that the system is invariant in xy-plane, causes the component Az “ 0.

The other way to achieve a one-dimensional system with propagation direction along z,
is by making it infinitesimal along the x and y-directions. Geometrically, this type of set-up
corresponds to a nanowire along the z-direction, surrounded by vacuum at the radial boundaries.
In this case, the broken inversion symmetry vector en in eq.6 becomes en “ pex ` eyq{

?
2.

Inserting this into eq.6, we obtain the Hamiltonian H “ ´ a
2m

`
pz ¨ s1 ´ pz ¨ s2 ` ppy ´ pxq ¨ s3˘

.
Comparing with the general definition in eq.5, we now get a SO-field A with components along
all directions. Though utilizing that both the Green’s function and its derivative must be zero at
the radial boundaries 5, we can neglect px and py, giving a one dimensional system along the
z-direction. Notably, constructing our system in this way we have allowed for a nonzero Az, in
contrast to the first method. This leads to a different criteria for generating long-ranged triplet
components compared to the thin film case where Az is zero.

In the above discussion, we have assumed the SO-coupling to be of Rashba-type. Even
though the mathematical details in the derivation would differ if we instead had assumed
the SO-coupling to be of Dresselhaus-type, the bottom line is still the same. To construct a
one-dimensional system along the k-direction (k being x, y or z), we could either make the
system finite in the k-direction and translation invariant in the other two directions, leading to
Ak “ 0. Alternatively, we could construct the system in such a way that we still have a finite
extent in the k-direction, while the other two directions become infinitesimal, leading to a finite
Ak. Either way, the gradient in eq.76 simplifies to the partial derivative in the k-direction. In
this thesis we will construct our system in the second way, i.e. a nanowire set-up, allowing for
a finite Ak.

For simplicity, we also assume an ideal system; i.e. no spin-flip scattering. In the following,
we will also drop the subscript s, as well as the superscript R, since we only solve for the
isotropic s-wave component of the retarded Green’s function. Therefore, whenever we refer to
ĝ in the rest of the thesis we implicitly mean the isotropic s-wave component of the retarded
Green’s function. In conclusion, the one-dimensional Usadel equation in equilibrium reads

iDB̃kpĝB̃kĝq “ ret3 b s0 ´ D̂ ` h ¨ ŝ, ĝs´. (77)

4.2 kupriyanov–lukichev boundary conditions

In the previous section we found an equation describing the Green’s function in a general
material in equilibrium. Although, to be able to solve the equation for a specific heterostructure,
we have to impose some appropriate boundary conditions. For this purpose, we will use the
Kupriyanov–Lukichev boundary conditions [64].

Suppose that we have a heterostructure along the k-direction (k “ x, y or z), with a material
interface at k “ 0. For simplicity, we assume the interfaces to be not spin-active. Our system can
therefore be described by spin-independent boundary conditions. The material to the left of the
interface is referred to as the region with n “ 1, while the material to the right is referred to as

5 The latter follows from the boundary-condition at vacuum-regions, for details see eq.79
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the region with n “ 2. Moreover, the material to the left of the interface has a length L1, while
the material to the right of the interface has a length L2. For such an interface, we can use the
standard spin-independent Kupriyanov–Lukichev boundary conditions [64]. At the material
interface, the boundary condition reads

ĝnB̃kĝn “ 1
2

1
Lnxn

rĝ1, ĝ2s´ ” 1
2

Wnrĝ1, ĝ2s´. (78)

Here ĝn refers to the Green’s function in region n with length Ln. Furthermore, we have
introduced the ratio xn “ RB{Rn, where Rn is the bulk resistance of the material in region n
and RB is the barrier resistance of the interface. Finally, the notation can be further simplified
by defining the interface parameter Wn “ 1{Lnxn.

At vacuum interfaces, it is reasonable to assume the barrier resistance to become in-
finitely large, causing the interface parameter Wn to drop to zero. At these interfaces, the
Kupriyanov–Lukichev boundary condition therefore simplifies to

B̃kĝ1

ˇ̌
ˇ´L1

“ 0, B̃kĝ2

ˇ̌
ˇ
L2

“ 0. (79)

4.3 bulk solution

The Usadel equation in eq.77, along with the Kupriyanov–Lukichev boundary conditions, do
hold for a general system in equilibrium in which electromagnetic fields, superconducting
properties, ferromagnetic properties and SO-coupling all can be present. However, there is one
case worth highlighting, namely the bulk superconductor with a phase fn and magnitude D.
Without going into detail, one can show that the retarded Green’s function in this particular
case reads [29, 61]

ĝbulk “
ˆ

c ¨ s0 s ¨ is2eifn

s ¨ is2e´ifn ´c ¨ s0

˙
, (80)

where s “ sinhpQq and c “ coshpQq, with Q “ atanhpD{eq.

4.4 riccati-parameterization

Thus far we have expressed the Green’s functions ĝ by the normal component g and the
anomalous part f. However, this way of expressing ĝ gives an infinite range of variation in ĝ.
This infinite range of variation is a big disadvantage in terms of numerical simulations. It would
therefore be beneficial to parameterize the Green’s function in such a way that we generate
a infinite range of variation in ĝ, from a finite range of variation in some unknown quantity.
Seeking such a parameterization there are two conditions that must be fulfilled, namely the
symmetry and normalization of the Green’s function ĝ. One parameterization that fulfills these
requirements is the so-called Riccati-parameterization [29, 65]

f “ 2Ng, f̃ “ 2Ñg̃,

g “ Np1 ` gg̃q, g̃ “ Ñp1 ` g̃gq.
(81)
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Here we have introduced the 2 ˆ 2 matrices g and g̃, as well as the matrices N “ r1 ´ gg̃s´1

and Ñ “ r1 ´ g̃gs´1. Also the tilde conjugate is defined as taking the complex conjugate and
letting e Ñ ´e. Before we proceed we notice that the definition of N can be rewritten according
to 1 ` Ngg̃ “ N. Similarly, for Ñ we find 1 ` Ñg̃g “ Ñ. In addition, we also have the identities
Ng “ gÑ and Ñg̃ “ g̃N [29]. These relations will turn out useful later on.

From the definition in eq.81 we immediately notice the numerical advantage of this parame-
terizatoin. When g̃ Ñ 0 then ĝ Ñ 1, and when g̃ Ñ 1 then ĝ Ñ 8. Hence a finite variation in g̃
results in a infinite variation in ĝ, exactly what we aimed for.

As stated, there are certain properties any parameterization of the Green’s function has to
fulfill. Let us now verify that the Riccati-parameterization indeed fulfills the required properties.
Starting with the symmetry property, we recall that in the quasiclassical approximation we
have expressed the Green’s function by the Fourier transform with respect to r and t according
to eq.26. Hence, when evaluating quantities such as fpR, `eq˚, the energy dependence simply
changes according to e Ñ ´e when performing the complex conjugate. However, this is nothing
but the definition of the tilde conjugate. The quasiclassical retarded Green’s function therefore
reads

ĝ “
˜

gpR, `eq fpR, `eq
´fpR, ´eq˚ ´gpR, ´eq˚

¸

“
˜

g f
´f̃ ´g̃

¸
. (82)

If we now insert the Riccati-parameterization in eq.81, we get the following expression for
the retarded Green’s function ĝ

ĝ “
ˆ

Np1 ` gg̃q 2Ng
´2Ñg̃ ´Ñp1 ` g̃gq

˙

“
ˆ

N 0
0 ´Ñ

˙ ˆ
1 ` gg̃ 2g

2g̃ 1 ` g̃g

˙
. (83)

Comparing the Riccati-parameterized retarded Green’s function above with the general
retarded Green’s function in eq.82, we see that the Riccati-parameterization indeed fulfills the
required symmetry.

It now remains to verify that the Riccati-parameterization fulfills the normalization condition
ĝĝ “ 1. Using the general ĝ in eq.82, the normalization condition yields the following equations

gg ´ ff̃ “ 1, (84)

gf ´ fg̃ “ 0, (85)

´f̃g ` g̃f̃ “ 0, (86)

´f̃f ` g̃g̃ “ 1. (87)

Inserting the Riccati-parameterization, it is straightforward to see that the above equations
are fulfilled. Hence, the Riccati-parameterization indeed fulfills the the normalization condition
ĝĝ “ 1.
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4.4.1 Parameterized Usadel equation

Having established a suitable parameterization for the Green’s function, namely the Riccati-
parameterization, we now focus on rewriting the Usadel equation in eq.77 in terms of this
parameterization. Since the equation is a differential equation, we need the derivatives of N
and Ñ. By the definition of N we get

BkN “ Bkp1 ´ gg̃q´1{2

“ ´ 1
p1 ´ gg̃q2 Bkpp1 ´ gg̃qq

“ ´ 1
p1 ´ gg̃q r´gpBkg̃q ´ pBkgqg̃s 1

p1 ´ gg̃q
“ NrgpBkg̃q ` pBkgqg̃sN. (88)

Similarly, for Ñ we find

BkÑ “ ÑrpBkg̃qg ` g̃pBkgqsÑ. (89)

Let us start by parameterizing the left-hand side of the Usadel equation. Using the definition
of the covariant derivative in eq.8 we have

ĝB̃kĝ “ ĝBk ĝ ´ iĝrǍk, ĝs´, (90)

B̃kpĝB̃kĝq “ BkpĝBkĝq ´ irǍk, ĝBkĝs´ ´ iBkpĝrǍk, ĝs´q ´ rǍ, ĝrǍ, ĝs´s´
“ BkpĝBkĝq ´ irǍk, ĝBkĝs´ ´ iBkpĝǍkĝ ´ ĝĝǍkq
´ rǍ, ĝǍĝs´ ` rǍ, ĝĝǍs´. (91)

The last equation can be further simplified by utilizing the fact that the components of Ǎ
are constant, i.e. iBkǍk “ 0, as well as the normalization condition ĝĝ “ 1. Hence, we have the
following

B̃kpĝB̃kĝq “ BkpĝBkĝq ´ irǍk, ĝBkĝs´ ´ iBkpĝǍkĝq ´ rǍ, ĝǍĝs´. (92)

The above equation shows all the terms we need to evaluate for the left-hand side of the
Usadel equation. We now begin to evaluate each of these terms. However, to avoid getting lost
in mathematical manipulation, we will state only the final result and not all intermediate steps.
Furthermore, since not all components of ĝ are independent, we only need to parameterize
the (1,1) and (1,2) components in each term. The equations coming from the (2,1) and (2,2)
components can be found simply by taking the tilde conjugate of the equations we find using
the (1,1) and (1,2) components.

Starting with Bkĝ we find

Bkĝp1,1q “ 2NrgpBkg̃q ` pBkgqg̃sN, (93)

Bkĝp1,2q “ 2NgpBkg̃qNg ` 2NpBkgqrg̃gÑ ` 1s. (94)
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After matrix multiplication with ĝ this yields the following components for ĝBkĝ

ĝBkĝp1,1q “ 2NrpBkgqg̃ ´ gpBkg̃qsN, (95)

ĝBkĝp1,2q “ 2NrpBkgq ´ gpBkg̃qgsÑ. (96)

Finally, taking the derivative of ĝBkĝ we get the first term in eq.92, with the following compo-
nents

BkpĝBkĝqp1,1q “ ´2NgrpB2
k g̃q ` 2pBkg̃qNgpBkg̃qsN, (97)

BkpĝBkĝqp1,2q “ 2NrpB2
k gq ` 2pBkgqg̃NpBkgqsÑ

´ 2NgrpB2
k g̃q ` 2pBkg̃qNgpBkg̃qsgÑ. (98)

We now proceed to the second term rǍk, ĝBkĝs´. By similar calculations, we find

rǍk, ĝBkĝsp1,1q
´ “ 2AkNrpBkgqg̃ ´ gpBkg̃qsN

´ 2NrpBkgqg̃ ´ gpBkg̃qsNAkp1 ´ gg̃qN, (99)

rǍk, ĝBkĝsp1,2q
´ “ 2Np1 ´ gg̃qAkNrpBkgq ´ gpBkg̃qgsÑ

` 2NrpBkgq ´ gpBkg̃qgsÑA
˚
k p1 ´ gg̃qÑ. (100)

Now, moving on to the third term, calculation yields

BkpĝǍkĝqp1,1q “ 2NrgpBkg̃q ` pBkgqg̃sNAkp1 ` gg̃qN

` 2Np1 ` gg̃qAkNrgpBkg̃q ` pBkgqg̃sN
` 4NrgpBkg̃qg ` pBkgqsÑA

˚
k g̃N

` 4NA
˚
k ÑrpBkg̃q ` g̃pBkgqg̃sN, (101)

BkpĝǍkĝqp1,2q “ 4NrgpBkg̃q ` pBkgqg̃sNAkgÑ

` 2Np1 ` gg̃qAkNrgpBkg̃qg ` pBkgqsÑ
` 2NrgpBkg̃qg ` pBkgqsÑA

˚
k p1 ` gg̃qÑ

` 4NgA˚
k ÑrpBkg̃qg ` g̃pBkgqsÑ. (102)

Finally, we calculate the last term rǍ, ĝǍĝs´, whose components are

rǍ, ĝǍĝsp1,1q
´ “ 4ANrA ` gA˚g̃sN ´ 2rA2, Ns´

´ 4NrA ` gA˚g̃sNA, (103)

rǍ, ĝǍĝsp1,2q
´ “ 4ANrAg ` gA˚sÑ ` 4NrAg ` gA˚sÑA

˚

´ 4ANgA˚ ´ 2AANg ´ 2NgA˚
A

˚. (104)

Having found all terms belonging to the left-hand side of eq.77, we now focus on the
right-hand side. We notice that it contains the 4 ˆ 4-matrices et3 b s0, D̂ and h ¨ ŝ. On the other
hand, the Riccati-paramterization expresses ĝ as a 2 ˆ 2-matrix. Therefore, we need to express
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these 4 ˆ 4-matrices as 2 ˆ 2-matrices. Since s0 is just the identity matrix, the matrix et3 b s0

simply reduces to et3 in the 2 ˆ 2-matrix version. Moreover, from the definition of D̂ and h ¨ ŝ
we notice that these 4 ˆ 4-matrices can be expressed as the following 2 ˆ 2-matrices

D̂ “
ˆ

0 Dis2

D˚is2 0

˙
, h ¨ ŝ “

ˆ
h ¨ s 0

0 h ¨ s˚

˙
. (105)

Altogether, rewriting the Usadel equation in terms of 2 ˆ 2-matrices we get the following

iDB̃kpĝB̃kĝq “ ret3 ´
ˆ

0 Dis2

D˚is2 0

˙
`

ˆ
h ¨ s 0

0 h ¨ s˚

˙
, ĝs´. (106)

If we now insert the Riccati-parameterization, the terms on the right-hand side reads

ret3, ĝs´ “ e

ˆ
0 4Ng

Ñg̃ 0

˙
, (107)

« ˆ
0 Dis2

D˚is2 0

˙
, ĝ

�

´

“
ˆ ´2pDis2Ñg̃ ` NgD˚is2q ´Dis2Ñp1 ` g̃gq ´ Np1 ` gg̃qDis2

D˚is2Np1 ` gg̃q ` Ñp1 ` g̃gqD˚is2 2pD˚is2Ng ` Ñg̃Dis2q

˙
, (108)

« ˆ
h ¨ s 0

0 h ¨ s˚

˙
, ĝ

�

´
“

ˆ
0 2h ¨ sNg ´ 2Ngh ¨ s˚

2Ñg̃h ¨ s ´ 2h ¨ s˚Ñg̃ 0

˙
. (109)

We have now parameterized both the left-hand side and the right-hand side of eq.77, giving
a fully parameterized Usadel equation in eq.106. That is, we have managed to rewrite the
Usadel equation into a 2 ˆ 2-matrix equation, whose (1,1) and (1,2)-components describe the
system. The equations are still quite complicated to solve though. After all, the (1,1) and
(1,2)-components of the parameterized Usadel equation give rise to two coupled second-order
differential equations, both including B2

k g̃ and B2
k g. Luckily we can isolate B2

k g by considering
the following trick. Multiplying the equation for B̃kpĝB̃kĝqp1,1q with N´1gÑ from the right, we
get an equation for B2

k g̃ which is present in both components (see eq.97 and eq.98). If we now
insert our newfound equation for B2

k g̃ into B̃kpĝB̃kĝqp1,2q, all terms involving B2
k g̃ and Bkg̃ will

cancel, giving an equation only including B2
k g. Executing the described procedure, we arrive at

the equation

iD2NrpB2
k gq ` 2pBkgqg̃NpBkgqs

“ iD
!

4iN
“
pBkgqÑpg̃Akg ` A

˚
k q ` pAk ` gA˚

k g̃qNpBkgq
‰

` 2N
“
AAg ´ gA˚

A
˚‰

` 4NpAggA˚qÑpg̃Ag ` A
˚q

)

` 2NipgD˚s2g ´ Dsq ` 4Nge ` 2h ¨ sNg ´ 2Ngh ¨ s˚.

(110)
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The above equation can be simplified further by multiplying by ´iN´1{2 from the left6

DrpB2
k gq ` 2pBkgqg̃NpBkgqs

“ 2iD
“
pBkgqÑpg̃Akg ` A

˚
k q ` pAk ` gA˚

k g̃qNpBkgq
‰

` D
“
AAg ´ gA˚

A
˚‰

` 2DpAg ` gA˚qÑpg̃Ag ` A
˚q

` pgD˚s2g ´ Ds2q ´ 2ige ´ ih ¨ psg ´ gs˚q.

(111)

We have now finally arrived at an equation for the 2 ˆ 2-matrix g. The equation for g̃ is
found by simply taking the tilde conjugate of the above equation.

4.4.2 Parameterized Kupriyanov–Lukichev boundary conditions

In the previous section, we expressed the Usadel equation in terms of g and g̃ for a region n. It
now remains to Riccati-parameterize the Kupriyanov–Lukichev boundary conditions. Let us
first focus on the boundary condition at the material interface, as defined in eq.78. Using the
definition of the covariant derivative in eq.8, with only components along the k-direction, the
Kupriyanov–Lukichev boundary condition reads

ĝnBkĝn “ 1
2

Wnrĝ1, ĝ2s´ ` iĝnrǍk, ĝns´. (112)

Looking at the above equation, we first notice that the left-hand side has already been
calculated in eq.95 and eq.96. Thus, only the right-hand side remains to be considered.

Utilizing the definition of the Riccati-parameterization in eq.81 with the appropriate sub-
scripts, the first term rĝ1, ĝ2s´ yields

rĝ1, ĝ2sp1,1q
´ “ 1

2
Wn

“
4N1p1 ´ g1g̃2qN2 ´ 4N2p1 ´ g2g̃1q

‰
N1, (113)

rĝ1, ĝ2sp1,2q
´ “ 1

2
Wn

“
4N1p1 ´ g1g̃2qg2Ñ2 ´ 4N2p1 ´ g2g̃1qg1Ñ1

‰
. (114)

Similarly, for ĝnrǍk, ĝns´ we find

ĝnrǍk, ĝnsp1,1q
´ “ 4NnrAk ` gnA

˚
k g̃nsNn ´ 2Nnp1 ´ gng̃nqAkNn

´ 2NnAkp1 ´ gng̃nqNn, (115)

ĝnrǍk, ĝnsp1,2q
´ “ 2Nnp1 ` gng̃nqAkgnÑn ` 2NngnA

˚
k p1 ` g̃ngnqÑn. (116)

Altogether, the Kupriyanov–Lukichev boundary condition in eq.112 gives rise to the follow-
ing equations for the (1,1) and (1,2)-components

6 h¨s is a scalar, so we are allowed to interchange the order of h¨s and N
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NnrpBkgnqg̃n ´ gnpBkg̃nqsNn “ Wn
“
N1p1 ´ g1g̃2qN2 ´ N2p1 ´ g2g̃1q

‰
N1

` 2iNnrAk ` gnA
˚
k g̃nsNn

´ iNnp1 ´ gng̃nqAkNn

´ iNnAkp1 ´ gng̃nqNn, (117)

NnrpBkgnq ´ gnpBkg̃nqgnsÑn “ Wn
“
N1p1 ´ g1g̃2qg2Ñ2 ´ N2p1 ´ g2g̃1qg1Ñ1

‰

` iNnp1 ` gng̃nqAkgnÑn

` iNngnA
˚
k p1 ` g̃ngnqÑn. (118)

Looking at the two equations above, we notice that we can isolate Bkgn by doing a similar
procedure as earlier when discussing the Usadel equation. If we multiply the first equation with
N´1

n gnÑn from the right, thereafter subtract the resulting equation from the second equation,
we have managed to isolate Bkgn. Performing the described procedure, the equation for Bkgn
reads

NnpBkgnq “ WnN1p1 ´ g1g̃2qN2pg2 ´ gnq
` WnN2p1 ´ g2g̃1qN1pgn ´ g1q
` iNngnA

˚
k ` iNnAkgn.

(119)

The equation above holds for a general region n, in which n “ 1 refers to the left region
while n “ 2 refers to the right region. If we now insert for n “ 1 we notice that the second
term in eq.119 vanishes, enabling us to divide with N´1

1 from the left. Similarly, inserting for
n “ 2 the first term in eq.119 vanishes, enabling us to divide with N´1

2 from the left. Thus, the
equations for n “ 1 and n “ 2 simplify to

Bkg1 “ W1p1 ´ g1g̃2qN2pg2 ´ g1q ` ig1A
˚
k ` iAkg1, (120)

Bkg2 “ W2p1 ´ g2g̃1qN1pg2 ´ g1q ` ig2A
˚
k ` iAkg2. (121)

Now that we have Riccati-parameterized the boundary condition at the material interface, it
is straight-forward to parameterize the vacuum interfaces. Recalling the expression for Bkĝn
found in eq.93 and eq.94, and doing the same mathematical procedure as above, the boundary
conditions at the vacuum interfaces in eq.79 simply becomes

Bkg1

ˇ̌
ˇ´L1

“ ig1A
˚
k ` iAkg1, Bkg2

ˇ̌
ˇ
L2

“ ig2A
˚
k ` iAkg2. (122)

As before, the equations for g̃1 and g̃2 are found by taking the tilde conjugate of eq,120,
eq.121 and eq.122.

4.4.3 The bulk solution in the Riccati-parameterization

Having expressed the Usadel equation, as well as the appropriate boundary conditions in terms
of the Riccati-parameterization, it is useful to relate the well-known bulk solution in eq.80 to
this parameterization. Looking at the general definition of the Riccati-parameterization in eq.83,
we notice the elements of the retarded Green’s function are products of g and g̃, making it
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hard to read-out expressions for g and g̃ by direct comparison. Fortunately, we notice that we
can express g and g̃ in terms of the matrix elements of eq.83, e.g. g “ 2Ng{p1 ` Np1 ` gg̃qq.
Comparing these matrix elements with the bulk solution in eq.80, we find the following
expressions for g and g̃ in a bulk superconductor

g “ s ¨ is2eifn {p1 ` c ¨ s0q, g̃ “ ´s ¨ is2e´ifn {p1 ` c ¨ s0q. (123)

Here fn is the phase of the superconductor in region n and 1 is the 2 ˆ 2 identity matrix.
Moreover, recall that s “ sinhpQq, c “ coshpQq and Q “ atanhpD{eq, as defined previously.

4.4.4 Summary

We started out this chapter by wanting to find the equations that describe spin and charge
transport in general heterostructures. Seeking such equations led to the well-known Usadel
equation in the diffusive limit, accompanied by the Kupriyanov–Lukichev boundary conditions.
Expressing the Green’s function ĝ in terms of the Riccati-parameterization, we were able to
rewrite the equations in a more suitable manner for numerical simulations. Before we proceed,
let us summarize the main results of what we have found so far.

Accompanied by the Kupriyanov–Lukichev boundary conditions, the Green’s function gn
in region n is determined by the equation

DrpB2
k gnq ` 2pBkgnqg̃nNnpBkgnqs

“ 2iD
“
pBkgnqÑnpg̃nAkgn ` A

˚
k q ` pAk ` gnA

˚
k g̃nqNnpBkgnq

‰

` D
“
AAgn ´ gnA

˚
A

˚‰

` 2DpAgn ` gnA
˚qÑnpg̃nAgn ` A

˚q
` pgnD˚s2gn ´ Ds2q ´ 2igne ´ ih ¨ psgn ´ gns˚q.

(124)

At material interfaces these boundary conditions read

Bkg1 “ W1p1 ´ g1g̃2qN2pg2 ´ g1q ` ig1A
˚
k ` iAkg1, (125)

Bkg2 “ W2p1 ´ g2g̃1qN1pg2 ´ g1q ` ig2A
˚
k ` iAkg2. (126)

Here n “ 1 denotes the region to the left of the interface and n “ 2 denotes the region to the
right.

In the special case of having a vacuum-region adjacent to a material, the boundary conditions
simplify according to

Bkg1

ˇ̌
ˇ´L1

“ ig1A
˚
k ` iAkg1, Bkg2

ˇ̌
ˇ
L2

“ ig2A
˚
k ` iAkg2, (127)

where L1 and L2 denote the position of the vacuum interface.
As emphasized earlier, by taking the tilde conjugate of the relevant boundary conditions,

we obtain the boundary condition for g̃n.
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D - V E C T O R F O R M A L I S M A N D P H Y S I C A L O B S E RVA B L E S

In the previous chapters, we have developed a solid understanding of the underlying physics
governing superconducting systems. We have introduced the fundamental concepts, as well as
established the mathematical framework needed to describe Cooper-pairs. We also derived the
equations determining the Green’s function in a general system. In this chapter, we will connect
what we have learned so far by expressing common physical quantities in terms of the Green’s
function. We start by introducing the d-vector formalism, which will be useful when discussing
physical quantities. Then, we will express the current, density of states and superconducting
gap, respectively, in terms of the Green’s function.

5.1 d-vector formalism

Thus far, we have expressed the Green’s function by its normal component g and anomalous
component f. To better see the interplay between the singlet and triplet components, we
introduce the d-vector formalism [66]

f “ pfs ` d ¨ sqis2. (128)

Here fs is the singlet component, which is a scalar quantity, i.e. rotationally invariant, and
d “ pdx, dy, dzq is the triplet component, which is a Cartesian vector.

Alternatively, we can also express the matrix g in terms of the d-vector formalism, giving

2Ng “
ˆ

idy ´ dx dz ` fs
dz ´ fs idy ` dx

˙
. (129)

Before we proceed, let us get some intuition about the triplet component. If we have an
exchange field h pointing in the eh direction, we know that the triplet component can be either
a long-ranged triplet component (LRTC) or a short-range triplet component (SRTC), depending
on how the spins of the Cooper-pair are oriented with respect to the direction of the exchange
field h. Having spins parallel to the direction of the exchange field the Cooper-pair is defined
as an LRTC, whereas spins perpendicular to the exchange field produce an SRTC. Naively,
one might think that the LRTC is the one with d||h and the SRTC is the one with d K h.
However, looking at the definition of fR in eq.128, we notice that d is multiplied by s2. In a
two-dimensional plane, this matrix represents nothing than a q “ p{2-rotation. Thus, if we
start out with a triplet component d||h, the triplet component becomes rotated by an angle
“ p{2 and consequently ends up being perpendicular to h. Therefore, the SRTC is defined as
d|| “ d ¨ eh, while the LRTC is defined as dK “ |d ˆ eh|.

43
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5.2 density of states

The local density of states for particles with spin s and energy e at position z is defined by the
following [67]

Nspe, zq “ N0Retgsspe, zqu. (130)

Here N0 is the local density of states per spin at the Fermi level when the material is in its
normal state1.

The definition as it stands is spin-dependent. In materials where the exchange field is not
too strong, it is sufficient to describe the system by a spin-independent local density of states
N “ pNÒ ` NÓq{2. For convenience, we will focus on the normalized local density of states
D “ N{N0. Therefore, the equation for the normalized spin-independent local density of states
becomes

Dpe, zq “ 1
2

ReTrtgpe, zqu. (131)

Expressing the Green’s function by the Ricatti-parameterization, the density of states be-
comes

Dpe, zq “ 1
2

ReTrtNp1 ` gg̃qu. (132)

Although the density of states defined above is a local quantity, we will often refer to it as
Dpeq without specifying the position. In such a case, the position is taken to be in the middle of
the material of interest.

5.2.1 Density of states in the weak proximity limit

Before we proceed, let us consider how the weak proximity effect affects the density of states
in a non-superconducting material. Remembering that the bulk of a non-superconducting
material is characterized by g

0
“ 1 and f0 “ 0, we can write the retarded Green’s function of

the non-superconducting material in the weak proximity limit as a correction to the bulk case

ĝ “ ĝ0 ` f̂ ` ĝ2. (133)

where ĝ0 “ diagp1, ´1q is the solution for the bulk of a non-superconducting material, f̂ is the
first order correction and ĝ2 is the second order correction.

Using the normalization condition ĝ2 “ 1, we get the following equation

pĝ0f̂ ` f̂ĝ0q ` pĝ0ĝ2 ` ĝ2ĝ0q ` f̂2 ` pĝ2f̂ ` f̂ĝ2q ` ĝ2
2 “ 0. (134)

Neglecting terms higher than second order, the two last terms drop out. Also, demanding
the first and second-order terms to separately fulfill the equation, we are left with two equations

pĝ0f̂ ` f̂ĝ0q “ 0, (135)

pĝ0ĝ2 ` ĝ2ĝ0q ` f̂2 “ 0. (136)
1 Although N0 in general depends on the energy e, it is fair to treat N0 as a constant value measured at the Fermi level

when using the quasiclassical approximation.
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Recalling that ĝ0 is diagonal, we see from the first-order equation that f̂ must be antidiagonal.
From the general structure of the retarded Green’s function in eq.30 we can write

f̂ “
ˆ

0 f
´f˚ 0

˙
. (137)

Or, equivalently, using the tilde conjugate

f̂ “
ˆ

0 f
´f̃ 0

˙
. (138)

Calculating f̂2 and inserting this into the second-order equation yields

0 “
ˆ

1 0
0 ´1

˙
ĝ2 ` ĝ2

ˆ
1 0
0 ´1

˙
`

ˆ´ff̃ 0
0 ´f̃f

˙
. (139)

The only way for the above equation to hold is by having ĝ2 diagonal. Again, using the
general structure of the retarded Green’s function we have

ĝ2 “
˜

g 0
0 ´g̃

¸
. (140)

Solving for g in the second-order equation, we then find g “ 1
2 ff̃. Going back to the total

retarded Green’s function, we have now found

ĝ “
ˆ

1 0
0 ´1

˙
`

ˆ
0 f

´f̃ 0

˙
`

˜
g 0
0 ´g̃

¸

“
ˆ

1 0
0 ´1

˙
`

ˆ
0 f

´f̃ 0

˙
`

ˆ 1
2 ff̃ 0
0 ´ 1

2 f̃f

˙
. (141)

We are now finally ready to express the linearized density of states. Recalling the general
definition of the density of states in eq.131, we simply get

Dpe, zq “ 1
2

ReTr
!

1 ` 1
2

ff̃
)

. (142)

The above expression for the linearized density of states is written in terms of the anomalous
Green’s function f. Equivalently, we can also express the density of states in the d-vector
formalism, where the expression for zero energy becomes2

Dpe “ 0q “ 1 ` 1
2

|d|2 ´ 1
2

|fs|2 (143)

2 Choosing to evaluate the density of states at zero energy, the tilde conjugate simply becomes the complex conjugate.



46 d-vector formalism and physical observables

The expression above shows an important feature of the density of states. From the linearized
expression, we clearly see that having triplet components d present results in an enhancement
of the density of states, while the singlet part fs reduces the density of states. In the case
of a normal metal, where both the singlet and triplet parts are zero, the density of states is
featureless with a constant value of 1. On the other hand, if we have an s-wave superconductor,
the singlet part has a finite value while the triplet parts are zero, resulting in a gap in the
density of states at e “ 0. We can therefore determine if the system is dominated by singlet or
triplet parts by measuring the density of states. A peak around e “ 0 corresponds to a system
dominated by the triplet component, while a gap corresponds to a system dominated by the
singlet component.

5.3 current

We now move on to discuss the current in terms of the Green’s functions. The dimensionless
transport equation for the system can be written as

iB̃zpǧB̃zǧq ´ rH, ǧs´ “ 0. (144)

Using the relation rǧ, Hs´ “ iBtǧ, and multiplying both sides with the constant electrical
conductivity s, we get the following equation

iB̃zpsǧB̃zǧq ` iBtǧ “ 0. (145)

If we now define the current density matrix as ǰ “ rv “ sǧB̃zǧ [27, 68], meaning that r “ sǧ,
the above equation can be written as

B̃z ǰ ` Btr “ 0. (146)

This is nothing but the continuity equation in one dimension, telling that our definition of the
current density matrix indeed conserves the current matrix as it should.

Let us now take a closer look at our definition of the current density matrix. Remembering
the matrix structure of the Green’s function ǧ in eq.29, it is reasonable to expect the current
density matrix ǰ to have the same matrix structure. Hence, we do have

ǰ “
˜

ĵR ĵK

0 ĵA

¸
. (147)

However, as the equation stands, it is a matrix equation. To get expressions for e.g. charge-
and spincurrent density, we have to rewrite the current density matrix into expressions for the
scalar current densities.

Let us first look at the charge current density. As a general expression for the charge current
density should be able to account for both the equilibrium and nonequilibrium-cases, we have
to use the Keldysh component. Furthermore, the upper diagonal element of the Keldysh
component represents electrons with a charge ´e, while the lower diagonal element represents
holes with a charge `e. To account for this sign difference in the charge, we therefore multiply
the Keldysh component by r̂3, and then take the trace. Moreover, we are interested in all
energies, so we integrate over the quasiparticle energy e. To normalize the expression, we
divide by a factor of 2 ¨ 2e2. The first factor comes from the trace, while the second factor
appears as a result of the integration over quasiparticle energies with charge 2e2. Finally, to
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obtain the charge current density we multiply by a factor of e. Doing the above steps, the charge
current density reads

je “ 1
4e

ª
deTrtr̂3 ĵKu. (148)

Moving on to the spin current density [30, 27], we follow a similar procedure as outlined
for the charge current density. The only difference is that we now have to extract the spin
information from ĵK. We do so by multiplying ĵK by the a matrix containing the Pauli vector
along unit vector en, ŝn “ diagpen ¨ s, en ¨ s˚q. Therefore r̂3 ĵK in the charge current density
modifies to r̂3ŝnĵK in the case of spin current density. Besides, due to the two possible values
for spin, we divide the normalization factor by an extra factor of 2. Finally, being interested
in the spin current density we do not multiply with a factor of e at the end. The resulting
expression for spin-current density polarized along unit vector en becomes

jS,n “ 1
8e2

ª
deTrtr̂3ŝnĵKu. (149)

In the above, we have expressed the current density by the Green’s function. To obtain an
expression for the current itself, we only need to multiply ǰ by the cross-sectional area A. In
that case, the electrical conductivity transforms into sA “ psALq{L “ GL where L is the length
of the system and G is the conductance. Hence, the definition of the current matrix in terms of
the Green’s function becomes

Ǐ “ GLǧB̃zǧ. (150)

Since the current Ǐ has the same matrix structure as ǰ, the charge and spin currents in eq.148
and eq.149 simply modifies to

Ie “ 1
4e

ª
deTrtr̂3ÎKu, (151)

IS,n “ 1
8e2

ª
deTrtr̂3ŝnÎKu. (152)

As we have seen earlier, the triplet state has one long-ranged component (LRTC) and one
short-ranged component (SRTC). Therefore, it is useful to decompose the spincurrent IS,n above
into a spincurrent for each of these components. Recalling that the LRTC is defined as having
spins parallel to the exchange field, we extract the LRTC from eq.152 by choosing a unit vector
en parallel to exchange field h. Whereas for the SRTC, whose spins are perpendicular to the
exchange field, we choose a unit vector en perpendicular to the exchange field h3. The singlet
spin current will always be zero due to the fact that this state has a spin quantum number equal
to zero.

Before we proceed, let us take a closer look at the magnitude of the spincurrent to get a
better understanding of the origin of the two polarization components. The spin-expectation
vector of a triplet Cooper-pair is defined as xSy “ id ˆ d̃, where d “ dLRTC ` dSRTC is the (total)
triplet component in the d-vector formalism and d̃ “ dp´eq˚[27, 30]. Writing out the spin
expectation vector of the total proximity-induced superconducting state, we obtain

3 Note that this is just the general definitions of the LRTC and SRTC.
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xSytot “ ipdLRTC ` dSRTCq ˆ pd̃LRTC ` d̃SRTCq
“ xSyLRTC ` xSySRTC ` ipdLRTC ˆ d̃SRTC ` d̃LRTC ˆ dSRTCq. (153)

From the above, we see that the spin expectation vector of the total proximity-induced
superconducting state xSytot splits into three parts: two terms entirely due to the LRTC and
SRTC, xSyLRTC and xSySRTC respectively, and one interference term between the LRTC and
STRC xSyint “ ipdLRTC ˆ d̃SRTC ` d̃LRTC ˆ dSRTCq. To unravel the physical meaning of the
different terms, let us choose a pure Rashba SO-coupling and an exchange field in the yz-plane
h “ hyey ` hzez. This choice produces

dLRTC “ pg1, ´g2hz{h, g2hy{hq, dSRTC “ p0, dSRTChy, dSRTChzq{h. (154)

where g1, g2 and dSRTC are complex scalars that describe the LRTC and SRTC respectively. Also
note that when dSRTC||h then dLRTC ¨ h “ 0 as expected4.

We first focus on the two terms entirely due to the SRTC and LRTC. Inserting the specific
form of the triplet components, we obtain

xSySRTC “ idSRTC ˆ d̃SRTC

“ ipdSRTC ¨ d̃SRTChyhz ´ dSRTC ¨ d̃SRTChzhyq{h2

“ 0, (155)
xSyLRTC “ idLRTC ˆ d̃LRTC

“ ´ipg̃2 ¨ g1 ´ g2 ¨ g̃1qphyey ` hzezq{h. (156)

From the above, we notice that the term entirely due to the SRTC vanishes, while the term
entirely due to the LRTC is nonzero and points along h. In other words, the spin-expectation
vector of the LRTC points along h as expected.

Let us now take a closer look at the interference term. Suppose the interference term can
written as xSyint “ xSyex ` xSymix, where the exchange term xSyex and mixing term xSymix
jet to be determined. Inserting the specific expressions for the two triplet components, the
interference term now reads

xSyint “ ipdLRTC ˆ d̃SRTC ` d̃LRTC ˆ dSRTCq
“ ´ipd̃SRTCg2 ´ dSRTC g̃2qex ´ ipd̃SRTCg1 ´ dSRTC g̃1qpeyhz ´ ezhyq{h
” xSyex ` xSymix. (157)

From the above, we immediately notice that the exchange term xSyex is independent of the
direction of the exchange field h, whereas the polarization direction of the mixing term changes
as the direction of h changes. Although both terms are perpendicular to the exchange field h.

Going back to the spincurrent in eq.152, we can now discuss the two polarization components.
The only spin-expectation value parallel with h is the term originating entirely from the LRTC,
i.e. xSyLRTC. In other words, xSyLRTC is the only term that contributes to the parallel component
of the critical spincurrent IC

S,||. If we instead now focus on the perpendicular component of

4 This is nothing but the definition of the LRTC and SRTC in the d-vector formalism.
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the critical spincurrent IC
S,K, we know that there are two spin-expectation values pointing

perpendicular to h, namely xSyex and xSymix. Consequently, the magnitude of the perpendicular
component of the critical spincurrent IC

S,K can be decomposed as

|IC
S,K| “

b
pIC

S,exq2 ` pIC
S,mixq2. (158)

The two contributions IC
S,ex and IC

S,mix, as well as the magnitude of the parallel component
of the critical spin-current IC

S,||, were presented in [30], which we show in figure 10. From
the figure we notice that while the mixing term qualitatively has the same behaviour as the
parallel component, i.e. a sinusoidal form vanishing at f “ 0 and f “ p, the exchange term is
finite even at f “ 0 where no net charge flows. Hence, the exchange term can be interpreted
as a superconductivity-induced torque acting on the magnetization, which is present even in
the absence of any charge current. On the other hand, the mixing term represents the spin
polarization that originates from interference between the LRTC and SRTC carried by the charge
current, while the parallel component originates from pure LRTC carried by the charge current.
The mixing term and parallel component therefore has qualitatively the same behaviour as the
charge current, i.e. sinusoidal behaviour, which we clearly see in figure 10.

Figure 10: The different polarization components of the normalized critical current for a S/N/F/N/S-
Josephson junction plotted as a function of the phase difference j between the superconductors. The
length of the ferromagnet is denoted LF, while a superconducting coherence length of xS “ 25 nm is used.
Note that in our notation we have reserved j to the azimuthal angle, using f instead to denote the phase
difference. Moreover, IS0 in the figure is just a normalization constant comparable to the prefactor in
eq.150. Figure is taken from [30].

5.4 the gap-equation

We finally complete this section by expressing the superconducting gap by the Green’s function.
Our starting point is the general definition [61]

Dpr1q “ lxYÓpr1, t1qYÒpr1, t1qy. (159)

Looking at the definition of the anomalous Keldysh Green’s function FK
ss1 pr1, t1; r1, t1q in

eq.19 and using the fermionic anticommutation relation, we notice that we can express the
expectation value above in two different ways
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FK
ÓÒpr1, t1; r1, t1q “ ´ixrYÓpr1, t1q, YÒpr1, t1qs´y

“ ´ixpYÓpr1, t1qYÒpr1, t1q ´ YÒpr1, t1qYÓpr1, t1qqy
“ ´2ixpYÓpr1, t1qYÒpr1, t1qy, (160)

FK
ÒÓpr1, t1; r1, t1q “ ´ixrYÒpr1, t1q, YÓpr1, t1qs´y

“ ´ixpYÒpr1, t1qYÓpr1, t1q ´ YÓpr1, t1qYÒpr1, t1qqy
“ `2ixpYÓpr1, t1qYÒpr1, t1qy. (161)

Hence, the superconducting gap can be expressed as

Dpr1q “ ´i
l

4

´
FK

ÒÓpr1, t1; r1, t1q ´ FK
ÓÒpr1, t1; r1, t1q

¯
. (162)

Looking at the above equation, we notice that the first term is nothing but the (1,4)-element
of the 4 ˆ 4-matrix ĜK, while the second term corresponds to the (2,3)-element. These elements
can be extracted from ĜK by doing the following

FK
ÒÓpr1, t1; r1, t1q ´ FK

ÓÒpr1, t1; r1, t1q “ Tr

#
1
2

pr̂1 ´ ir̂2qr̂3ĜK
+

, (163)

giving the following expression for the superconducting gap

Dpr1q “ ´i
l

4
Tr

#
1
2

pr̂1 ´ ir̂2qr̂3ĜK
+

. (164)

The above expression can be further rewritten by taking the quasiclassical approximation as
defined in eq.26 and eq.28, along with a general rewriting of the momentum integral5

Dpr1q “ ´i
l

4
Tr

#
1
2

pr̂1 ´ ir̂2qr̂3ĜKpr1, t1; r1, t1q
+

“ ´i
l

4
Tr

#
1
2

pr̂1 ´ ir̂2qr̂3 1
p2pq4 lim

rÑ0
tÑ0

ª
dpe`ir¨p

ª
dee´ietĜKpR, T; p, eq

+

“ ´i
l

4
Tr

#
1
2

pr̂1 ´ ir̂2qr̂3 N0
2p

ª
de

ª depF

4p

p

i
ĝKpR, T; epF , eq

+
. (165)

Finally, we can approximate the Green’s function to first order in spherical harmonics as
shown in eq.70.The integration over the direction of the momentum at the Fermi-surface

≥
depF

therefore vanishes, resulting in the so-called gap equation

DpRq “ ´1
8

N0lTr

#
1
2

pr̂1 ´ ir̂2qr̂3
ª

deĝKpR, T, eq
+

(166)

5 ≥ dp
p2p3q Ñ N0

≥
dxp

deF
p4pq , where N0 is the density of states at the Fermi-energy.
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L I N E A R I Z E D E Q UAT I O N S

In Chapter 4 we set up the machinery for describing general heterostructures. However, looking
at eq.124 we notice that it is still a nonlinear equation in terms of gn and Bkgn. To gain some
physical insight into what to expect, we will in this chapter linearize the Usadel equation
and insert the relevant parameters for a particular system. The system of our choice will
be an S/F/S-Josephson junction, where we are interested in describing the Green’s function
in the ferromagnetic region. To avoid being overwhelmed by equations, we will choose our
system to lie in the z-direction. For this specific system we will insert the relevant form of
SO-coupling, invoke the d-vector formalism, and finally discuss our choice of the exchange
field h. The qualitative discussion of a corresponding S/F/S-Josephson junction laying in the
x or y-direction will indeed be qualitatively similar, with only minor differences in terms of
subscripts.

6.1 usadel equation in the weak proximity limit

Mathematically, the equations for gn and g̃n are linearized by imposing the weak proximity limit.
Recall that the weak proximity limit means that we assume the properties of the superconductor
to have a small (but finite) impact on the ferromagnet close to the interface. Therefore, the
weak proximity limit is defined as g » 1 and |f| †† 1 in the ferromagnet. In terms of the
Riccati-parameterization, this reads

Nn » 1, gn †† 1. (167)

Inserting the definition above into eq.124, as well as only keeping first-order terms of
Bkgn and gn, we obtain the following linearized Usadel equation for propagation along the
z-direction

DpB2
z gnq “ 2iDrpBzgnqAz̊ ` AzpBzgnqs

` DrAAgn ` gnA
˚
A

˚ ` 2AgnA
˚s

´ 2igne ´ ih ¨ psgn ´ gns˚q.

(168)

Here, we have chosen a general exchange field h “ hxex ` hyey ` hzez. Moreover, as emphasized
earlier, the linearized equation for g̃n can be found from the equation above by taking the tilde
conjugate.

51
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6.2 usadel equation with d-vector formalism

As a first step to more clearly see the interplay between the singlet and triplet components, we
now invoke the d-vector formalism in the linearized Usadel equation as written in eq.168. In
the weak proximity limit, the d-vector formalism in eq.129 reads

g “ 1
2

ˆ
idy ´ dx dz ` fs
dz ´ fs idy ` dx

˙
. (169)

Furthermore, as we derived in section 2.1, a nanowire setup along the z-direction results in
a Rashba SO-coupling AR “ p0, 0, aps1 ´ s2qq. Choosing our material in such a way that we can
neglect the Dresselhaus contribution, the SO-field is purely of Rashba type. In addition, it is
worth noticing that our particular choice of SO-field fulfills

AA “ AzAz “ 2a

ˆ
1 0
0 1

˙
“ Az̊ Az̊ “ A

˚
A

˚, (170)

which simplifies the two first terms in the second row in eq.168.
Altogether, inserting the d-vector formalism and the specific form of SO-coupling into

eq.168, we end up with a 2 ˆ 2-matrix equation that has a structure similar to the definition
of the d-vector in eq. 169. Isolating the different components is simply a matter of adding or
subtracting the desired matrix elements. Doing so results in the following equations

i
2

DB2
z dx “ 2iDaBzdz ` 2iDa2pdx ` dyq ` edx ` hxfs, (171)

i
2

DB2
z dy “ 2iDaBzdz ` 2iDa2pdx ` dyq ` edy ` hyfs, (172)

i
2

DB2
z dz “ ´2iDaBzpdx ` dyq ` 4iDa2dz ` edz ` hzfs, (173)

i
2

DB2
z fs “ efs ` h ¨ d. (174)

6.3 choice of exchange field

Inserting the d-vector formalism, we were able to more clearly see the interplay between
the different components of the d-vector. However, we still cannot easily see the interplay
between the SRTC d|| and LRTC dK. For this purpose, we will now discuss and specify the
exchange-field h.

Having a finite component Az, we recall that the criterion for generating LRTC is a nonzero
commutator rA, h ¨ ss´. Calculating the commutator, it is straightforward to show that both
an exchange field in e.g. the xy and yz-plane produce a nonzero commutator (with some
exceptions for the former case). Let us choose an exchange field in the yz-plane as sketched in
figure 11.
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Figure 11: Illustration of how the long-ranged and short-ranged triplet components in the d-vector
formalism relates to an exchange field h in the yz-plane. The SRTC lies parallel to h, while the two LRTC
dK,1 (blue) and dK,2 (pink) lies perpendicular to h.

Having an exchange field in the yz-plane, we can write h “ hpsinpqqey ` cospqqezq “ heh,
as illustrated in figure 11. Thus, the SRTC d|| becomes d|| “ d ¨ eh “ dysinpqq ` dzcospqq. To
find the LRTC dK we can use a geometric approach. From the definition of dK “ |d ˆ eh| we
know that this component must be perpendicular to eh. Instead of calculating the cross-product
directly, we can find the unit vector perpendicular to eh, let us call this eh,K, and then find
dK by taking the dot product with eh,K. From figure 11 we see that there are two options for
eh,K, the vector has to lie either in the yz-plane or entirely along the x-axis. In the following,
we will refer to the perpendicular component generated from eh,K lying in the yz-plane as
dK,1 “ dK, while the other case is referred to as simply dK,2 “ dx. Looking at figure 11 we see
that dK “ ´dzsinpqq ` dycospqq, while dx “ dx. We stress that both dK and dx are defined as
LRTC. Finally, we notice that we can rewrite dy and dz in terms of d|| and dK. In summary, the
equations we have to disposal are as follows

d|| “ dysinpqq ` dzcospqq, (175)

dK “ ´dzsinpqq ` dycospqq, (176)

dy “ d||sinpqq ` dKcospqq, (177)

dz “ d||cospqq ´ dKsinpqq. (178)

Inserting the above set of equations into eq.171 - eq.174, we find the following equations for
the system

i
2

DB2
z dx “ 2iDaBzd||cospqq ´ 2iDaBzdKsinpqq

` 2iDa2d||sinpqq ` 2iDa2dKcospqq
` re ` 2iDa2sdx,

(179)

i
2

DB2
z d|| “ ´2iDaBzdK ´ 2iDaBzdxcospqq

` 2iDa2dxsinpqq ´ iDa2dKsinp2qq
` re ` 2iDa2p1 ` cos2pqqqsd|| ` hfs,

(180)
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i
2

DB2
z dK “ 2iDaBzdxsinpqq ` 2iDaBzd||

` 2iDa2dxcospqq ´ iDa2d||sinp2qq
` re ` 2iDa2p1 ` sin2pqqqsdK,

(181)

i
2

DB2
z fs “ efs ` hd||. (182)

Looking at the above set of equations, we clearly see the effect of having a ferromagnet with
SO-coupling in contact with a superconductor. When the Cooper-pairs enter the ferromagnet,
these are all in a singlet state. Hence, the only nonzero component is fs. However, according
to eq.182, having an exchange field present in the ferromagnet generates an SRTC. When the
SRTC is generated, the presence of SO-coupling can then generate LRTC according to eq.180.

It is also worth emphasizing that even though a nonzero commutator is the criterion for
generating LRTC, this quantity alone does not tell the whole story. The reason is that the
commutator does not tell us anything about which choice of h generates the triplet components
that are most easily seen in experiments. To illustrate this, suppose that we have two different
h fields, both giving a nonzero commutator. However, when inserting these particular choices
into the linearized equations, we find that in one of the cases the ratio between the imaginary
part of the quasiparticle energies at zero-energy, ImteKp0qu{Imte||p0qu, goes to zero while in
the other case it diverges. Hence, in the former case we have ImteKp0qu ! Imte||p0qu, while
in the latter case we have ImteKp0qu " Imte||p0qu. As a large imaginary energy part tends
to destabilize and destroy Cooper-pairs, this can be seen directly from eq.26, Cooper-pairs
with a large imaginary part are also harder to see experimentally. Therefore, when the ratio
ImteKp0qu{Imte||p0qu Ñ 0 the LRTC is more energetically favorable than the SRTC. In contrast,
if the ratio ImteKp0qu{Imte||p0qu Ñ 8, it is SRTC that is the most energetically favourable. This
will of course drastically affect for which choice of h we will most easily measure the triplet
component. After all, it does not really help to generate a triplet component if this state is also
so energetically unfavorable and unstable that it becomes hard to measure.

Although, the ratio ImteKp0qu{Imte||p0qu in general will affect for which orientations of the
exchange field we expect to most easily see the LRTC, we notice from eq.179 - eq.182 that for a
exchange field in the yz-plane the ratio reads ImteKp0qu{Imte||p0qu “ p1 ` sin2pqqq{p1 ` cos2pqqq.
This varies only between a minimum value 1{2 and a maximum value 2. Thus, in our particular
case, we do not expect the stability between the LRTC and SRTC to matter. Although we notify
that this ratio may become important in other cases.

6.4 dimensionless equations

Finally, for numerical simulations, it is useful to find a dimensionless analogue of eq.179 -
eq.182. We do so simply by introducing the Thouless energy eT “ D{L2 and the dimensionless
position z1 “ z{L. Using these definitions, it is straight forward to rewrite eq.179 - eq.182 into a
dimensionless form. For qualitative discussions, making the equations dimensionless do not
matter, the physics remains the same. However, doing numerical simulations it is convenient to
make the equations dimensionless to simply reduce the number of parameters. In the numerical
simulations presented in this thesis, we therefore use the dimensionless equations rather than
the dimensionfull equations as stated in the previous section.
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In previous chapters, we have presented the underlying theory and derived the equations
describing general heterostructures. We have also linearized the equations for a system with
Rashba SO-coupling and exchange field in the yz-plane, to better understand the underlying
physics. However, the systems in mind are still rather general. We have not said anything about
the specific strength of the Rashba SO-coupling, the specific orientation of the exchange field or
the geometry of the set-up. In this chapter, we will discuss the S/F/S-Josephson junction with
SO-coupling and phase difference f investigated by Jacobsen and Linder [1], the very building
block for the more complicated H-geometry.

7.1 experimental set-up

The physical system of interest is shown in figure 12. The trilayer consists of two s-wave
superconductors, with phases fL and fR. Thus, the phase difference reads f “ fL ´ fR. The
two superconductors have the same magnitude D. Furthermore, we scale all energies and
exchange fields to D. The two superconductors are then connected by a ferromagnetic nanowire
of length L along the z-axis. We choose the left interface to be at a position z “ 0, which
means that the ferromagnetic nanowire goes from z “ 0 to z “ L. We assume a pure Rashba
SO-coupling A “ AR “ p0, 0, aps1 ´ s2qq in the ferromagnetic wire, as derived in section 2.1.
Finally, we have chosen an exchange field in the yz-plane h “ hpsinpqqey ` cospqqezq “ heh,
with q governing the proportion of in- and out-of-plane components of the field.

S F S

Figure 12: A sketch of the experimental set-up. Two superconductors S with phase fL and fR are
connected by a ferromagnetic nanowire F. The ferromagnet has a length L, an exchange field h and a
SO-field A.

55
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7.2 numerical method

In this section, we will summarize the most important key-points from the numerical method
used to solve our system. For more details see the main-file attached in Appendix C.

The numerical method goes as follows. For the first energy, we calculate the bulk solution
in the two superconductors according to eq.123, which enters the boundary conditions. Next,
we set the initial guess for our solution. Whether the bulk solution in the superconductors
or the normal metal solution (i.e. g “ g̃ “ 0) is most suitable depends on the parameters for
which we solve. If we expect the density of states to resemble the behavior seen in a normal
metal, we use the normal metal solution g “ g̃ “ 0 as an initial guess. If instead we expect the
solution in the superconductor to be a better fit for the density of states, the bulk solution in the
superconductor tends to be the most numerically stable1. In our case, choosing g “ g̃ “ 0 as
our initial guess in the ferromagnet tends to be the most numerically stable. We emphasize
that this initial guess is used only for the first energy which we solve for. Next, we solve the
differential equation eq.124, with the Kupriyanov–Lukichev boundary conditions in eq.125
and eq.126, by using the bvp6c-matlab solver implemented by Hale and Moore [69]. As stated
at the end of the previous chapter, for numerical convenience, we will use the dimensionless
analogue of these equations. Having found the solution of g and g̃ for a given energy, we
use this solution as an initial guess for the next energy. By doing so, we improve numerical
efficiency and stability. The above procedure is repeated until all energies are iterated through.
If we also iterate through different choices of phases, we update the initial guess for all energies
and positions with the current solution before moving on to the next phase.

There are some remarks about the numerical method described above worth highlighting.
When we iterate through the energies, it is beneficial to start with the highest energy. Starting
with the highest energy, our first initial guess (which is the normal metal solution in our case)
will be a better guess for the correct solution. Thus, starting with the highest energy improves
the numerical efficiency and stability. As the density of states rapidly falls off for energies
much larger than the superconducting gap, it is sufficient to set the highest energy to 1.3D. For
numerical convergence, it is also beneficial to add a small imaginary part to the energy, which
models the inelastic scattering. For simplicity, we will choose the Fermi-level µ “ 0, in which
the density of states becomes symmetric with respect to energy. Therefore, it is sufficient to only
solve for positive energies. With these choices around 200 ´ 300 energy points are sufficient for
the bvp6c-matlab solver.

Finally, we emphasize that we assume a bulk solution in the superconducting region, thus
not solving the system fully self-consistently. This is a valid assumption as long as we choose
the interface parameter between the superconductor and the ferromagnet to be small. For small
values of the interface parameter, i.e. small transparency across the interface, the effect of the
ferromagnet on the superconductor is minimal, thus we can assume a constant solution in the
superconductor equal to the solution of the bulk.

1 Although we should be able to solve our equations numerically regardless of our initial guess, choosing an initial guess
not too far away from the correct solution will improve the numerical efficiency and stability. If we choose a really bad
initial guess, the numerical solver may not converge to a solution.



7.3 results 57

7.3 results

In figure 13a we have plotted the density of states for a field along the y-axis, h “ 10Dey, and
a pure Rashba spin-orbit coupling of strength a “ 0.4{L, where L “ 15 nm is the length of
the ferromagnet. In the same figure, we have also shown the results for an S/N/S and S/F/S
junction without SO-coupling. From this figure we clearly see that the density of states is
strongly enhanced at a phase difference f “ fL ´ fR “ p, giving what the authors call the
giant proximity effect. As we know from section 5.2.1 the density of states in the limit of weak
proximity can be used to determine if we have singlet or triplet states present. Triplet states
result in a peak in the density of states whereas the singlet state produces a gap. Therefore,
the peak in the density of states at f “ p tells us that the system is dominated by triplet
components. Moreover, as we will see, the peak is entirely due to the triplet states, here the
LRTC.

(a) (b)

Figure 13: Reproduction of result first presented in [1]. Figure (a) shows the density of states Dpeq for a
S/F/S-Josephson junction with phase difference f. In the ferromagnet an exchange filed h “ 10Dey is
chosen and the strength of the SO-coupling is a “ 0.4. The density of states is evaluated in the middle of
the junction. Furthermore, the standard S/N/S and S/F/S junctions without SO-coupling are included.
In (b) we have shown the spatial dependence of the density of states for the special case of f “ p.

This result was presented by Jacobsen and Linder [1], and is in stark contrast to the
presupposed behavior for any S/F/S-Josephson junction with a phase difference of f “ p. To
understand why let us calculate the Green’s function in the S/F/S-Josephson junction. For
now, the ferromagnet is assumed to be without SO-coupling. Thus, the relevant components
of the Green’s function present are the singlet component and SRTC. Assuming the two
superconductors to be s-wave superconductors, the singlet state has an s-wave symmetry.
Moving on to induced triplet states, we will assume that also these have an s-wave symmetry.
This assumption is justified by the fact that in the diffusive limit we approximate the Green
function to first-order expansion in spherical harmonics; see eq.70. Looking at the linearized



58 the basic building block : s/f/s-josephson junction

eq.180 and eq.182 we notice that if we define the quantity f˘ ” d|| ˘ fs, eq.180 and eq.182
can be combined to form one single equation. Similarly, the linearized Kupriyanov–Lukichev
boundary conditions, as derived in eq.221/eq.225 and eq.223/eq.227 in Appendix A, reduces to
one equation for each of the two interfaces. Thus, the quantity f˘ is determined by

i
2

DB2
z f˘ ` e˘f˘ “ 0, (183)

xLBzf˘
ˇ̌
ˇ
z“0

“ ¯fBCSeifL , xLBzf˘
ˇ̌
ˇ
z“L

“ ˘fBCSeifR , (184)

where e˘ ” e ˘ h and fBCS “ s ¨ is2 according to the bulk solution in eq.80.
Solving the above set of equations and defining k˘ “

a
2ie˘{D, one finds that f˘ in the

middle of the ferromagnet reads 2

f˘ “ ˘fBCS
´xLk˘sinpk˘Lqcospk˘L{2q

`
eifR ` eifL

˘
. (185)

Looking at the above solution, we notice that if f “ 0, f˘ becomes nonzero. Hence, in this
case f˘ is symmetric with respect to the middle of the ferromagnet. Since f˘ is just a linear
combination of d|| and fs, these components must also be symmetric. If we now instead were
to choose f “ p things become different. In this case, f˘ becomes zero. Thus, for a phase
difference f “ p, f˘ becomes antisymmetric with respect to the middle of the ferromagnet,
meaning that also d|| and fs are antisymmetric. In other words, for a phase difference f “ p
one has expected the SRTC component to vanish in the middle of the ferromagnet, as well
as the singlet, leading to a featureless density of states. As these symmetry properties of the
singlet and SRTC components hold both in the case of a ferromagnet without SO-coupling, as
well as in the case of just a normal metal (when the SRTC is just zero always), one might think
that these symmetry properties also should hold for the long-ranged triplet component when
including SO-coupling. Thus, up till now, one has expected both the triplet components to be
antisymmetric with respect to the middle of the junction for any S/F/S-Josephson junction with
phase difference f “ p, as sketched in figure 14.

-

-

+

+

,

,

F (SOC)S S

(LRTC)

(SRTC)

(SRTC)
(LRTC)

SOC

no SOC

Figure 14: Symmetries properties for the different components in an S/F/S-Josephson junction with
SO-coupling(SOC). Pink denotes the singlet component fs, green denotes SRTC d|| and blue denotes
the LRTC dK. The blue stipulated line shows the presupposed symmetry of the LRTC dK based on the
behavior without SO-coupling, while the blue line shows the actual symmetry property with SO-coupling.

2 A full calculation is given in the Appendix B.
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In figure 13a we see that the presupposed behavior indeed fits well with the S/N/S-
Josephson junction and S/F/S-Josephson junction without SO-coupling. At f “ p the density
of states is a constant equal to 1. However, when SO-coupling is included, things become
different. Instead of a featureless density of states, we get a giant proximity effect at f “ p. This
surprising result can be understood by looking at the linearized equations derived in section
6.3. Having a field entirely along the (positive) y-axis corresponds to an angle of q “ p{2 in
eq.175 - eq.176 and eq.179 - eq.182. This produces the following short-ranged and long-ranged
triplet components

SRTC: d|| in ey

LRTC: dK in ez

dx in ex

,
/.

/-
h “ hey, (186)

determined by the linearized equations

i
2

DB2
z dx “ ´2iDaBzdK ` 2iDa2d|| ` re ` 2iDa2sdx, (187)

i
2

DB2
z d|| “ ´2iDaBzdK ` 2iDa2dx ` re ` 2iDa2sd|| ` hfs, (188)

i
2

DB2
z dK “ 2iDaBzdx ` 2iDaBzd|| ` re ` 4iDa2sdK, (189)

i
2

DB2
z fs “ efs ` hd||. (190)

Knowing that fs, and hence B2
z fs, is a symmetric function for phase difference f “ 0 we

see from the last equation that also d|| must be symmetric for f “ 0. In the case of a phase
difference of f “ p, then both fs and d|| becomes antisymmetric. We now focus on the equation
for B2

z d||. Letting z Ñ ´z, the left-hand side is still antisymmetric, meaning that all terms on
the right-hand side must be antisymmetric. We already know that the two last terms on the
right-hand side are antisymmetric, so these two terms fulfill the requirement of antisymmetry
as they should. Looking at the first term ´2iDaBzdK on the right-hand side we notice that this
term contains a first-order partial derivative with respect to z. Therefore, when z Ñ ´z, dK
must be symmetric for this term to be antisymmetric. Furthermore, the second term on the
right-hand side ,2iDa2dx, contains no partial derivatives, resulting in dx being antisymmetric
to fulfill the symmetry requirement. In other words, we have shown based on the linearized
equations that the perpendicular triplet component dK is symmetric with respect to the middle
of the junction for a phase difference of f “ p. This is the opposite of what we found by
direct inspection of the solution of the Green’s function in eq.185, in the case of no SO-coupling.
Looking at figure 13a, we see that a symmetric triplet component dK fits well with the numerical
results. Having a triplet component dK present in the middle of the junction will result in a
peak in the density of states, which is exactly what we see in the figure. Furthermore, since
the singlet component vanishes in the middle of the junction, this peak is entirely due to the
long-ranged triplet component LRTC.

In the argumentation above, we have used a specific choice of SO-coupling and exchange
field. One can therefore question the general validity of the giant proximity effect in an S/F/S-
Josephson junction with SO-coupling. However, the key requirement in the argumentation
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above is that we have a first-order derivative coupled to the exchange field in the corresponding
direction. Looking at the general Riccati-parameterized Usadel eq.124 this is exactly what
we have. The giant proximity effect is therefore not dependent on the specific choice of the
SO-coupling or exchange field. As long as we have a component along the direction of the
partial derivative, the argument above holds.

Another important question is how the giant proximity effect depends on the distance from
the interfaces. After all, the density of states plotted in figure 13a is evaluated in the middle of
the ferromagnet. Plotting the spatial dependence of the density of states for a phase difference
of f “ p, see figure 13b, we see that the giant proximity effect is independent of the distance
from the interfaces. The peak originating from the LRTC persists throughout the system and
barely changes. In other words, the spin-triplet polarized state generated by the SO-coupling
persists throughout the junction. If we increase the length of the ferromagnet, we expect the
magnitude to decrease, yet remain constant throughout the ferromagnet. Checking for different
lengths we indeed find that the latter holds (plots not included). Furthermore, when plotting
the zero-energy density of states as a function of the length of the ferromagnet L in figure 15,
we clearly see that the magnitude decreases rapidly, becoming featureless with a value of 1 at
55 nm. As the LRTC has a coherence length comparable to the coherence length of the singlet
state in a normal metal, which typically is in the range 60 - 100 nm [70], the displayed behavior
is indeed as expected.

Figure 15: The zero-energy density of states Dp0q as a function of the length of the ferromagnet L. The
ferromagnet has an exchange field h “ 10Dey and the strength of the SO-coupling is a “ 0.4. Moreover,
the phase difference between the superconductors is f “ p

To summarize, what Jacobsen and Linder showed was that having SO-coupling present in
an S/F/S-Josephson junction with a phase difference f, in fact generates a pure spin triplet
state3 which can persist throughout the ferromagnet. This pure spin triplet state manifests as a
giant peak in the density of states, giving what the authors call the giant proximity effect. This
giant proximity effect is in stark contrast to what one finds when SO-coupling is not present.
Being solely based on symmetry arguments, this effect is independent of the specific system
parameters. The S/F/S-Josephson junction with SO-coupling investigated by Jacobsen and
Linder indeed offers a promising way to generate, control and isolate LRTC.

3 Having assumed the induced triplet states to have an s-wave symmetry, they have to be odd in frequency to fulfill the
antisymmetry of the total wavefunction according to figure 5
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Now that we have a basic understanding of how the one-dimensional S/F/S-Josephson junction
with SO-coupling behaves, we will explore the new H-geometry suggested by Ouassou [34],
where two such junctions are connected by a perpendicular nanowire, thereby creating an
effective odd-frequency Josephson junction. We first discuss the experimental set-up of the
system we want to simulate, as well as a brief discussion of the numerical method used. We
also present the linearized equations, before discussing our results. The results are presented
for the case in which the nanowire is a normal metal and a ferromagnet without and with
SO-coupling.

8.1 experimental set-up

F

SS

SS

F

Figure 16: A sketch of our experimental set-up for the
H-geometry. The two parallel S/F/S-Josephson junctions
explored previously are connected by a perpendicular
nanowire of length L1. In general, we allow for nonzero
fields h1 and A

1 in the central nanowire.

The geometrical set-up for the H-
geometry is shown in figure 16. The
two parallel S/F/S-Josephson junctions
are assumed to lie along the z-axis, with
an exchange field h “ 10Dey and length
L “ 15 nm. Furthermore, a Rashba SO-
coupling strength a “ 0.4{L is chosen.
Hence, the two parallel S/F/S-Josephson
junctions are nothing but what we ex-
plored in the previous chapter, with the
same SO-field and exchange field. Fur-
thermore, we denote the phase difference
of the S/F/S-Josephson junction to the left
by f1 “ f21 ´ f11, while f2 “ f22 ´ f12
denotes the phase difference of the S/F/S-
Josephson junction to the right. All su-
perconductors are assumed to have the
same magnitude D, and we use a super-
conducting coherence length of x “ 30.
Therefore, the Thouless energy when solv-
ing in the two parallel systems becomes
eT “ D{L2 “ px{Lq2 “ 4. For the inter-
faces with the superconductors we have
chosen an interface parameter xn “ RB{Rn “ 3.

To complete the H-geometry, the two parallel S/F/S-Josephson junctions are connected
by a nanowire of length L1 lying in the y-direction. We will consider both a normal and a
ferromagnetic wire. When the nanowire is ferromagnetic, we choose a SO-field A

1 along
the y-direction. Having a broken inversion symmetry vector en “ pex ` ezq{

?
2, the SO-

field reads A
1 “ p0, a1p´s1 ` s3q, 0q. We have chosen a SO-coupling strength a1 “ 0.4{L1.

61
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Moreover, we allow for a general exchange field h1 “ h1
xex ` h1

yey ` h1
zez “ h1sinpq1qcospj1qex `

h1sinpq1qsinpj1qey ` h1cospq1qez, where q1 denotes the polar angle and j1 denotes the azimuthal
angle. Furthermore, the strength of the exchange field is denoted h1. As for the two parallel
S/F/S-Josephson junctions, we will use x “ 30 in the Thouless energy eT “ D{L12 “ px{L1q2

when solving for the central nanowire. We will also assume the interfaces with the parallel
S/F/S-Josephson junctions to have an interface parameter xn “ RB{Rn “ 3.

8.2 numerical method

In this section, we summarize the non-trivial key-points of the numerical method used to
simulate the system. Assuming the central nanowire to have a minimal effect on the two
parallel S/F/S-Josephson junctions, we can solve the two parallel S/F/S-Josephson junctions
independently. That is, to solve the two parallel S/F/S-Josephson junctions, we use the same
method as outlined in the previous chapter. As in the previous chapter, we assume the
superconductors to have the bulk solution encountered earlier in eq.123, with in general four
different phases. Then we solve in the central nanowire with the respective fields, still with
the same method as in the two parallel S/F/S-Josephson junctions, but now using the Green’s
function in the middle of the two parallel S/F/S-Josephson junctions as input in the new
Kupriyanov–Lukichev boundary conditions for the central nanowire. For simplicity, we connect
the central nanowire in the middle of the two parallel S/F/S-Josephson junctions. Since we
only solve in one direction each time, we can still use the one-dimensional Usadel equation,
even though the geometry is two-dimensional. Finally, in the central nanowire we again scale
the energy and exchange fields to the superconducting gap D.

8.3 analytical foundation

Before we present the results, we will in this section present the linearized equations for the
case of an exchange field h1 in xy- and xz-plane separately. The linearized equations in the
yz-plane become qualitatively similar to what we find in the xy-case. The only difference is
that we need to interchange the role of z and y in the equations. Therefore, we will not list the
equations.

We start by considering a field in the xy-plane, i.e. h1 “ h1pcospj1qex ` sinpj1qeyq, where the
SRTC’ d1

|| and LRTC’ d1
K are defined as

d1
|| “ d1

xcospj1q ` d1
ysinpj1q,

d1
K “ ´d1

xsinpj1q ` d1
ycospj1q.

(191)

Along with the relevant form of the SO-field A
1, an exchange field in the xy-plane produces

the following linearized equations

i
2

DB2
yd1

z “ 2iDa1Byd1
||sinpj1q ` 2iDa1Byd1

Kcospj1q
` 2iDa12d1

||cospj1q ´ 2iDa12d1
Ksinpj1q

` re ` 2iDa12sd1
z,

(192)
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i
2

DB2
yd1

|| “ 2iDa1Byd1
K ´ 2iDa1Byd1

zsinpj1q
` 2iDa12d1

zcospj1q ` iDa12d1
Ksinp2j1q

` re ` 2iDa12p1 ` sin2pj1qqsd1
|| ` h1f1

s,

(193)

i
2

DB2
yd1

K “ ´2iDa1Byd1
zcospj1q ´ 2iDa1Byd1

||

´ 2iDa12d1
zsinpj1q ` iDa12d1

||sinp2j1q
` re ` 2iDa12p1 ` cos2pj1qqsd1

K,

(194)

i
2

DB2
yf1

s “ ef1
s ` h1d1

||. (195)

On the other hand, having an exchange field in the xz-plane, i.e. h1 “ h1psinpq1qex `
cospq1qezq, the SRTC’ d1

|| and LRTC’ d1
K reads

d1
|| “ d1

xsinpq1q ` d1
zcospq1q,

d1
K “ ´d1

zsinpq1q ` d1
xcospq1q.

(196)

Upon insertion, the linearized equations for an exchange field in the xz-plane becomes

i
2

DB2
yd1

y “ ´2iDa1Byd1
||pcospq1q ` sinpq1qq

´ 2iDa1Byd1
Kpcospq1q ` sinpq1qq

` re ` 4iDa12sd1
y,

(197)

i
2

DB2
yd1

|| “ 2iDa1Byd1
ypcospq1q ` sinpq1qq

` 2iDa12d1
Kcosp2q1q

` re ` 2iDa12p1 ` sinp2q1qqsd1
|| ` h1f1

s,

(198)

i
2

DB2
yd1

K “ 2iDa1Byd1
ypcospq1q ´ sinpq1qq

` 2iDa12d1
||cosp2q1q

` re ` 2iDa12p1 ´ sinp2q1qqsd1
K,

(199)

i
2

DB2
yf1

s “ ef1
s ` h1d1

||. (200)
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8.4 normal metal

We start by analyzing the simplest case, namely the case where all fields in the central nanowire
are zero, hence having a normal metal here.

8.4.1 Results

Having a normal metal in the central nanowire, we expect the density of states to qualitatively
reflect the giant triplet effect seen in the two parallel S/F/S-Josephson junctions, for lengths
within the coherence length of singlet states in a normal metal. After all, having a normal
metal, we have no SO-fields or exchange fields that can redefine or affect the Cooper-pairs.
The magnitude may differ due to the assumption of weak proximity. Nevertheless, the density
of states should reflect the qualitative behavior of the giant triplet effect. Plotting the density
of states for a normal metal of length L1 “ 15 nm, we see from figure 17a that the density of
states indeed reflects the giant triplet effect encountered in the two-parallel S/F/S-Josephson
junctions. Remarkably, we also see that the magnitude of the peak in the density of states
remains quite similar to what we find in the giant triplet effect. At first glance, this seems
odd. After all, we assume weak proximity and therefore do not expect all triplet components
to penetrate into the normal metal. However, the normal metal gets a contribution both from
the S/F/S-Josephson junction to the left and a similar contribution (in the case of equal phase
difference) from the S/F/S-Josephson junction to the right. Hence, even though the interfaces
with the normal metal effectively lowers the amount of long-ranged triplet components we
expect to see in the normal metal, the fact that we have two contributions raises the amount
again. Therefore, it is reasonable to expect the peak in the density of states in the normal metal
to be of the same magnitude as in the two parallel S/F/S-Josephson junctions.

Plotting the spatial dependency of the density of states for f1 “ f2 “ p, as shown in the top
right corner of figure 17a, we see that the peak at zero energy also remains constant throughout
the normal metal. This fits well with what we expect. Knowing that the LRTC dz in the giant
triplet effect is constant throughout the parallel S/F/S-junctions, there is no reason to expect
the situation to become otherwise in the normal metal.

For other choices of f1 and f2, we might get a mixture of different components present, yet
when these enter the normal metal, there are no fields present that can destroy the Cooper-
pairs. Hence, we expect the components to be constant throughout the normal metal for other
choices of f1 and f2 as well. For instance, plotting the spatial dependency of the components
normalized to d1

z for f1 “ f2 “ p{2 in figure 17b we indeed see that the components remains
constant, in stark contrast to what one finds in the two parallel S/F/S-Josephson junctions.
Furthermore, even when choosing f1 “ f2 “ p{2, the dz component dominates. This clearly
shows that by having a normal metal in the central nanowire, we effectively have created a
"vessel" where the Cooper-pairs can propagate unaffected when the normal metal has a length
within the coherence length of singlet states.



8.4 normal metal 65

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.6 0.8 10 0.4

00.20.40.60.811.20.20.60.8100.4

Figure 17: Figure (a) show the density of states Dpeq evaluated in the middle of the central nanowire
N’ with length L1 “ 15 nm, for a phase difference f1 and f2 in the S/F/S-Josephson junction to the left
and right respectively. In addition, the spatial dependency for the density of states for the special case
f1 “ f2 “ p is shown in the top right corner. Figure (b) shows the ratios of the different components of
the d-vector at f1 “ f2 “ p{2.

In the above discussion, we stressed that the length of the normal metal must be within the
coherence length of singlet states in a normal metal. Even though there are no fields in the
normal metal that can affect the Cooper-pairs, they surely cannot survive forever. Increasing the
length, one would therefore expect the peak at zero energy in the density of states to decrease
in magnitude, similar to what we saw in the one-dimensional S/F/S-Josephson junction in
figure 15. In figure 18 we have plotted the the zero-energy density of states as a function of
the length L1 of the normal metal, while having f1 “ f2 “ p. Remarkably, we now find that
the zero-energy density of states remains of the same magnitude for lengths up to L1 “ 60 nm.
Furthermore, even at L1 “ 240 nm, the zero-energy density of states has not become featureless.
Hence, by just connecting two parallel one-dimensional S/F/S-Josephson junctions, thereby
creating an effective odd-frequency Josephson junction, the zero-energy peak in the density of
states now can persist throughout the junction for several superconducting coherence lengths.
In other words, the d1

z component can now survive for lengths far above the expected coherence
length. This unexpected behavior has also been observed in other long Josephson junctions
with odd-frequency triplet correlations [71, 72, 73].
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Figure 18: The zero-energy density of states Dp0q as a function of the length L1 of the central nanowire N1.
Here phase differences are set to f1 “ f2 “ p, and the density of states is again evaluated in the middle
of the nanowire.

It is worth mentioning that in figure 17a we only considered equal phase differences f1 “ f2
in the two parallel S/F/S-Josephson junctions. One might question if the displayed behavior
also should hold for unequal phase differences f1 ‰ f2 . Realizing that we indeed have the
displayed behavior for each of the two parallel S/F/S-Josephson junctions, we surely would
expect the same qualitative behavior in the normal metal if we choose unequal phase differences.
The magnitude will differ because we do not get equal contributions from the two parallel
S/F/S-Josephson junctions, yet the magnitude should be somewhere between the minimized
value at f1 “ f2 “ 0 and the maximized value at f1 “ f2 “ p. Furthermore, we will again
expect the same length dependency of the zero-energy density of states regardless of the
phase differences, as encountered in figure 18. Checking for a selection of unequal phase
differences we indeed see that this holds (plots not included). Finally, in the case of unequal
phase differences, the spatial dependency will not remain constant throughout the normal
metal, because we have two different inputs on each side. Even so, we see the same qualitative
behavior as discussed above (plots not included).

8.5 ferromagnet without so-coupling

We now proceed by including an exchange field h1 in the central nanowire according to figure
16, in which the central nanowire becomes a ferromagnet without SO-coupling. Including an
exchange field in the central nanowire, the short-ranged and long-ranged triplet components
here may be defined differently from those in the two parallel S/F/S-Josephson junctions.
This may lead to different behavior than in the normal metal case. However, not including
SO-coupling in the central ferromagnet, we would expect no generation of a LRTC’ d1

K from a
potential SRTC’ d1

|| (or vice versa). In the following, we will discuss the limiting cases of an
exchange field entirely along the x- y- and z-axes.
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8.5.1 Symmetries

In the previous chapter, we saw that the different components of the d-vector in a one-
dimensional S/F/S-Josephson junction with SO-coupling and phase difference f, had specific
symmetry properties for the two special cases f “ 0 and f “ p. Now that we have two parallel
S/F/S-Josephson junctions with phase differences f1 and f2 respectively, the components of
the d-vector in the central ferromagnet will get a contribution from the left-hand side and
right-hand side. In other words, for the special cases where f1{2 “ 0 and f1{2 “ p, the initial
symmetries of the components of the d-vector in the central ferromagnet are known. However,
when entering the central ferromagnet, the definition of the SRTC’ and LRTC’ in terms of the
d-vector may change. It is therefore useful to relate the definitions of the new SRTC’ and LRTC’
in the central ferromagnet to the known symmetries at f1{2 “ 0 and f1{2 “ p in the two parallel
S/F/S-Josephson junctions.

First let us consider the case in which the exchange field points along the x-axis, i.e. h1 “ h1ex.
This would correspond to setting j1 “ 0 in eq.191, and produces the following short-range and
long-ranged triplet components

SRTC’: d1
|| in ex

LRTC’: d1
K in ey

d1
z in ez

,
/.

/-
h1 “ h1ex. (201)

Remembering that in the parallel S/F/S-Josephson junctions the SRTC and LRTC are defined by
eq.186, we immediately notice that the LRTC dK in the two parallel S/F/S-Josephson junctions
becomes the LRTC’ d1

z in the central ferromagnet. Nevertheless, the d1
z component is still a

long-ranged triplet component because it is perpendicular the exchange field. Thus, the initial
symmetries for a phase difference of f1{2 “ 0 and f1{2 “ p reads

h’ = h’ex f1{2 “ 0 f1{2 “ p

d1
|| symmetric antisymmetric

d1
K symmetric antisymmetric

d1
z antisymmetric symmetric

f1
s symmetric antisymmetric

Table 1: Symmetry properties for the initial d-vector components when having an exchange field along the
x-direction. In the case of equal phase differences, the two parallel S/F/S-Josephson junctions contribute
with equal symmetry properties. For unequal phase differences, the symmetry properties will be a
combination of the two, yet we can still say something about which components are present in the middle
of the central ferromagnet.

We now move on to the case in which the exchange field points in the y-direction, h1 “ h1ey.
This would correspond to setting j1 “ p{2 in eq.191, and produces the following short-ranged
and long-ranged triplet components

SRTC’: d1
|| in ey

LRTC’: d1
K in ex

d1
z in ez

,
/.

/-
h1 “ h1ey. (202)
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From the above, we immediately notice that in this particular case the SRTC’ and LRTC’ in the
central ferromagnet are defined the same way as in our two parallel S/F/S-Josephson junctions,
if we just interchange the role of d1

K and d1
z. As both these components are LRTC’, and just a

matter of how we choose to isolate the two, this interchanging does not matter for the physics
governing the system. Moreover, the initial symmetries when having an exchange field along
the y-direction now become

h’ = h’ey f1{2 “ 0 f1{2 “ p

d1
|| symmetric antisymmetric

d1
K symmetric antisymmetric

d1
z antisymmetric symmetric

f1
s symmetric antisymmetric

Table 2: Symmetry properties for the initial d-vector components when having an exchange field along
the y-direction.

Finally, we consider the case where the exchange field points in the z-direction, h1 “ h1ez. This
would correspond to setting q1 “ 0 in eq.196, and produces the following short-ranged and
long-ranged triplet components

SRTC’: d1
|| in ez

LRTC’: d1
K in ex

d1
y in ey

,
//.

//-
h1 “ h1ez. (203)

Looking at the above definitions, we notice that the LRTC dK in the parallel S/F/S-Josephson
junctions become the SRTC’ d1

|| in the central ferromagnet. Furthermore, the dx component
becomes the d1

K in the central ferromagnet, yet this is still defined as an LRTC’. Thus, we have
the following initial symmetries

h’ = h’ez f1{2 “ 0 f1{2 “ p

d1
|| antisymmetric symmetric

d1
K symmetric antisymmetric

d1
y symmetric antisymmetric

f1
s symmetric antisymmetric

Table 3: Symmetry properties for the initial d-vector components when having an exchange field along
the y-direction.

Looking at the table above, we notice that the SRTC’ does not have the same symmetry property
as the singlet component for both f1{2 “ 0 and f1{2 “ p. This is in stark contrast to what we
saw when having an exchange field in the x- and y-direction1, where the SRTC’ has the same
symmetry property as the singlet component for both phase differences. Therefore, we may
expect qualitatively different behavior when the field points along the z-direction.

1 and any standard one-dimensional S/F/S-Josephson junction for that matter
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8.5.2 Results

Exchange field along the x- and y-direction

Let us first consider the case in which f1 “ f2 “ p. From table 1 and table 2, we see that the
only nonzero component present is d1

z. Therefore, we expect a peak in the density of states to
appear, similar to the one seen in the normal metal case. As in the normal metal case, we do
expect the peak to be of the same magnitude as in the two parallel S/F/S-Josephson junctions,
due to two contributions. Decreasing the phase differences, yet choosing them equal to each
other, we would expect a smaller amount of the LRTC dK to be generated in the two parallel
S/F/S-Josephson junctions, thus expecting the peak in the density of states to decrease. Plotting
the density of states, for instance, for a field along the x-direction in figure 19, we indeed see
such behavior. The density of states for a field along the y-direction behaves qualitatively similar
(plots not included).

Figure 19: Density of states Dpeq evaluated in the middle of the central nanowire F1, for a phase difference
f1 and f2 in the S/F/S-Josephson junction to the left and right respectively. The central nanowire F1 has
an exchange field h1 “ 2Dex and a length L1 “ 15 nm, and does not exhibits SO-coupling.

Looking at the figure above, it is worth noticing that our effective Josephson junction does
display qualitatively different behavior from the one-dimensional S/F/S-Josephson junction.
For instance, if we choose f1 “ f2 “ p we do not get the same density of states as if we choose
f1 “ f2 “ 0, due to the different initial symmetries. Although, the effective phase difference
f1 ” f1 ´ f2 in both cases is 0. This is qualitatively different from the one-dimensional
S/F/S-Josephson junction.

From figure 19 it is also worth noticing that choosing f1 “ f2 tends to maximize the density
of states. For instance, suppose f1 “ f2 “ p{2. We can destroy this symmetric distribution by
moving 0.25p of the phase difference from f1 to f2, giving f1 “ 0.25p and f2 “ 0.75p. Looking
at figure 19 we notice that the peak in the density of states decreases. We could also move
the hole phase difference, giving f1 “ 0 and f2 “ p. Again, we see from the figure that the
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density of states decreases even more. Hence, if we try to induce an effective phase difference in
our system by choosing f1 ‰ f2 (giving f1 “ f1 ´ f2 ‰ 0), the density of states is suppressed.
We again notice the qualitative different behavior from the one-dimensional S/F/S-Josephson
junction.

Let us now discuss how changing the length of the central ferromagnet affects the density
of states. For the special case f1 “ f2 “ p, we know that the only component present is d1

z.
Thus increasing the length, we expect the zero-energy density of states to behave similarly to
the normal metal case. However, one might wonder if this would also hold for other choices
of f1 and f2. Having an exchange field entering the Usadel equation may cause the ratios
between the different components of the d-vector to change. Thus, even though the density of
states itself displays a behavior qualitatively similar to the normal metal case when the phase
differences f1 and f2 are varied, the ratios between the different components may not. In
contrast to the normal metal case, a change in the relative magnitudes of the components of
the d-vector would be of importance when we have an exchange field present, due to different
coherence lengths. One could also argue that the ratios between the different components
should be different when having an exchange field in the x- and y-direction. Recall, when
solving the linearized equations for the different components in eq.171 - eq.174, the exchange
field enters the equations differently in the two cases.

However, we recall that even when choosing f1 “ f2 “ p{2 in the normal metal case, the
singlet component is marginal. Since the exchange field only couples to the singlet component,
we will not expect the exchange field to be of large importance for the ratios of the different
components when comparing an exchange field along the x- and y-direction. Moreover, we
would also still expect the same behavior of the ratios as we saw in the normal metal case,
that is, a dominant d1

z component, by the same reasoning. Plotting the spatial dependence
of the different components at zero-energy for f1 “ f2 “ p{2, while having a field in the
x-direction, we see from figure 20a that the latter holds. As in the normal metal case, the
component d1

z still dominates. Thus, we would still expect the zero-energy density of states to
persist for several superconducting coherence lengths as in the normal metal case. Plotting the
zero-energy density of states as a function of the length L1 in figure 20b we indeed see that this
holds. Checking the spatial dependency of the different components while having a field in the
y-direction, the ratios become identical (plot not included) as expected. Hence, we indeed get
the same behavior of the zero-energy density of states as seen in figure 20b.
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Figure 20: The different components of the d-vector evaluated at zero-energy in the case of f1 “ f2 “ p{2
for a ferromagnetic nanowire F1 without SO-coupling (a). The ferromagnet has an exchange field h1 “ 2Dex
and a length L1 “ 15. All components are normalized to d1

z. Figure (b) shows the corresponding zero-
energy density Dp0q as a function of the length L1. In both cases, the quantities are evaluated in the middle
of F1.

Exchange field along the z-direction

Let us first consider the special case when f1 “ f2 “ p. Due to the symmetries in table 3, the
only nonzero component initially present in the central ferromagnet is the SRTC’ d1

||. When we
have an exchange field present, we know that a short-ranged triplet component can be generated
from a singlet component due to singlet-triplet mixing. This effect also works the other way
around, a singlet component can also be generated from a short-ranged triplet component
when having an exchange field present. As the Cooper-pairs enter the central ferromagnet the
exchange field starts to rotate these Cooper-pairs into singlet states. When the Cooper-pairs
move further through the central ferromagnet, this effect decreases the amount of Cooper-pairs
being SRTC’ and increases the amount of Cooper-pairs being in the singlet state. Eventually,
all Cooper-pairs are rotated into the singlet state2. Hence, for small lengths, we would expect
the system to be dominated by the SRTC’, while for larger lengths the singlet component is
expected to dominate. Plotting the density of states for lengths between 5 nm and 60 nm in
figure 21, we clearly see this trend. For small lengths, we see a peak in the density of states,
while what resembles a minigap appears for larger lengths. The zero-energy suppression in the
density of states is still so marginal that it hardly can be called a minigap, yet for simplicity, we
will refer to such zero-energy suppression in the density of states as minigap. Hence, when we
have an exchange field in the z-direction, we can switch between a peak and a minigap in the
density of states just by increasing the length of the central ferromagnet. This is qualitatively

2 This singlet state could in theory be rotated back to SRTC’, yet in practice when the Cooper-pairs have propagated a
distance closer and closer to the coherence length the fewer Cooper-pairs we have to rotate. Therefore, the coherence
length eventually cancels out this oscillation between the two components
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different behavior from what we have seen for an exchange field along the x- and y-direction,
where the peak at zero-energy in the density of states can persist throughout the junction for
several superconducting coherence lengths.

We also emphasize the difference in the length scale in which the variation in the density
of states occurs. In stark contrast to the previous cases, having an exchange field along the
z-direction, the density of states becomes featureless at a length of 60 nm, that is, twice the
superconducting coherence length. This difference in the relevant length scale for the two cases
surely originates from which components are present. For an exchange field in the x- and
y-direction the peak originates from the LRTC’ d1

z, yet having a field in the z-direction it is the
SRTC’ d1

|| and singlet component that governs the qualitative behaviour. As we know, the LRTC’
surely has a larger coherence length than the SRTC’ and singlet component.

Figure 21: Density of states Dpeq at f1 “ f2 “ p evaluated in the middle of the central nanowire F1 with a
length L1. The central nanowire F1 has an exchange field h1 “ 2Dez, and does not exhibit SO-coupling.

Having seen that the density of states changes from having a peak at short lengths to a
minigap at longer lengths, let us now discuss how varying the phase differences f1 and f2
affects the density of states for the lengths L1 “ 5 nm and L1 “ 15 nm, respectively. Starting with
a length of L1 “ 5 nm, we know that the system is dominated by the SRTC’ d1

|| at f1 “ f2 “ p,
yet this is nothing but the dz component in the two parallel S/F/S-systems. Thus, by decreasing
the phase differences, we again expect this component to decrease, thereby expecting the same
behavior as seen in the x- and y-case. After all, at such short lengths, whether we have SRTC’ or
LRTC’ present does not matter for the density of states. From figure 22a we indeed see such a
behavior. If we now increase the length to L1 “ 15 nm, we know that the exchange field rotates
the SRTC’ into singlet states. Although, when decreasing the phase differences, we know that
the amount of d1

|| present initially also decreases. Having simply less d1
|| to rotate, we expect to

see a reduction in the minigap. Looking at figure 22b we indeed see such a behavior.
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Figure 22: Density of states Dpeq evaluated in the middle of the central nanowire F1, for a phase difference
f1 and f2 in the S/F/S-Josephson junction to the left and right respectively. We have considered a
nanowire of length L1 “ 5 nm (a) and L1 “ 15 (b). Furthermore, the nanowire has an exchange field
h1 “ 2Dez, and does not exhibits SO-coupling.

Looking at the figures above, we again notice that the effective Josephson junction displays
qualitatively different behavior from the one-dimensional S/F/S-Josephson junction. That is,
choosing f1 “ f2 “ 0 does not result in the same density of states as f1 “ f2 “ p, although the
effective phase difference f1 “ f1 ´ f2 in both cases is zero. Furthermore, we again notice that
choosing f1 ‰ f2, thus inducing an effective phase difference f1, tends to suppress the density
of states.

We also notice that the minigap we see in figure 22b behaves qualitatively different from
the minigap seen in the one-dimensional S/N/S-Josephson junction (see figure 13a). While the
one-dimensional S/N/S-Josephson junction has a minigap appearing at f “ 0 and disappearing
at f “ p, the minigap now appears at f1 “ f2 “ p and disappears at f1 “ f2 “ 0. This
may seem a bit odd at first glance. However, remember that in the one-dimensional S/N/S-
Josephson junction, the singlet component originates from the superconductors themselves. In
contrast, the singlet component present in our effective Josephson junction originates from the
d1

|| component. Therefore, the singlet component present in our effective Josephson junction
has the same symmetry properties as d1

||, which in the case of an exchange field along the
z-direction is opposite to those originating from the superconductors.
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8.6 ferromagnet with so-coupling

In the above, we saw the effect of including an exchange field in the central nanowire. We now
proceed by finally including a SO-field, thus allowing for a generation of LRTC’ from an SRTC’
and vice versa. As we saw previously, the density of states behaves identically for an exchange
field in the x- and y-direction. Including a SO-field, we might get different behavior in these
two cases, due to having a misalignment/alignment between the h-field and SO-field.

8.6.1 Results

Exchange field along the x- and y-direction

Let us start by considering an exchange field in the x-direction, i.e. h1 “ h1ex. As we saw earlier,
such a field produces the SRTC’ and LRTC’ as written in eq.201, whose relative proportions are
determined by the equations

i
2

DB2
yd1

z “ 2iDa1Byd1
K ` 2iDa12d1

|| ` re ` 2iDa12sd1
z, (204)

i
2

DB2
yd1

|| “ 2iDa1Byd1
K ` 2iDa12d1

z ` re ` 2iDa12sd1
|| ` h1f1

s, (205)

i
2

DB2
yd1

K “ ´2iDa1Byd1
z ´ 2iDa1Byd1

|| ` re ` 4iDa12sd1
K, (206)

i
2

DB2
yf1

s “ ef1
s ` h1d1

||. (207)

We start by discussing the case in which f1 “ f2 “ p. For such a choice, we recall from
table 1 that the only component present initially is d1

z. Without SO-coupling, this component
cannot be rotated into other triplet states. However, if we now turn on SO-coupling, we see
from eq.206 that a symmetric d1

z generates an antisymmetric d1
K. Furthermore, the component

d1
z can also be rotated back to the SRTC’ d1

||, which now must be symmetric according to eq.205.
Thus, turning on SO-coupling we go from only having the d1

z component present, to also having
the d1

K and d1
|| components present. Yet, since the component d1

K is antisymmetric, this surely
must vanish in the middle of the junction. Hence, the only component that we actually see in
the density of states is the SRTC’ d1

||. At f1 “ f2 “ p we therefore expect to see a reduction in
the peak, simply because we "lose" some of the Cooper-pairs to the antisymmetric d1

K. Looking
at figure 23 we surely see such a reduction of the peak in the density of states at f1 “ f2 “ p.

One might question if now having SO-coupling present in the system would result in
qualitatively different behavior for other choices of f1 and f2. However, from our discussion
of the ferromagnet without SO-coupling, we remember that the system was dominated by the
LRTC’ d1

z1 for other choices as well. Hence, even when varying the phase differences we do
start with a d1

z1 component (and not an SRTC’), thus still expecting the peak to decrease when
turning on SO-coupling. Checking for other other choices of f1 and f2, we indeed see such
behavior (plots not included).



8.6 ferromagnet with so-coupling 75

Figure 23: A comparison between the density of states Dpeq evaluated in the middle of a ferromagnetic
nanowire F1 with an exchange field h1 “ 2Dex and length L1 “ 15 nm, without and with SO-coupling
(SOC). Phase differences are set to f1 “ f2 “ p.

Moving on to an exchange field in the y-direction, i.e. h1 “ h1ey, the SRTC’ and LRTC’
are defined by eq.202. The relative proportions of these components are determined by the
equations

i
2

DB2
yd1

z “ 2iDa1Byd1
|| ´ 2iDa12d1

K ` re ` 2iDa12sd1
x, (208)

i
2

DB2
yd1

|| “ 2iDa1Byd1
K ´ 2iDa1Byd1

z ` re ` 4iDa12sd1
|| ` h1f1

s, (209)

i
2

DB2
yd1

K “ ´2iDa1Byd1
|| ´ 2iDa12d1

z ` re ` 2iDa12sd1
K, (210)

i
2

DB2
yf1

s “ ef1
s ` h1d1

||. (211)

Let us again consider the case in which f1 “ f2 “ p. Having an exchange field along
the y-direction, the component present initially still is d1

z1 due to the symmetries in table 2.
If we turn on SO-coupling in the system, a symmetric d1

z generates a symmetric d1
K and an

antisymmetric d1
|| according to eq.210 and eq.209 respectively. Hence, as in the previous case,

the latter component vanishes in the middle of the ferromagnet, resulting in a qualitative
similar behavior as we saw in figure 23 (plot not included). For other choices of f1 and f2, we
indeed find a similar behavior, that is, a reduction of the peak in the density of states (plots not
included).

It is interesting to note that despite the misalignment/alignment of the exchange field and
SO-field when having a h1 field along the x/y-direction, the density of states displays the same
behavior regardless of how we choose f1 and f2. This might be due to the relatively short
length. Having a length of 15 nm, whether the triplet component is an SRTC’ or an LRTC’ does
not matter for the density of states. Yet, if we increase the length, we may expect a different
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behavior when having an exchange field along the x- and y-direction. Let us now discuss the
zero-energy density of states at f1 “ f2 “ p in the two cases.

Starting with an exchange field along the x-direction, the triplet components present in
the middle of the central ferromagnet are the LRTC’ d1

z and SRTC’ d1
||. Thus, the total triplet

component vector becomes d1
tot “ |d1

z ˆ d̃1
||| „ ey. That is, the total triplet component d1

tot is
perpendicular to the exchange field, thereby still being defined as a long-ranged. We would
therefore expect to see the same behavior of the zero-energy density of states when increasing
the length as seen without SO-coupling in figure 20b. Looking at figure 24 we indeed see such
behavior.

Moving on to the case when the exchange field points along the y-direction, the components
present becomes the LRTC’ d1

z and LRTC’ d1
K. Even so, these components still points in the z- and

x-direction respectively, again resulting in a total triplet component vector d1
tot “ |d1

z ˆ d̃1
K| „ ey.

However, having a field along the y-direction, the total triplet component d1
tot is now defined

as short-ranged. In contrast to the previous case, we would therefore expect the zero-energy
density of states to fall more rapidly when increasing the length of central ferromagnet. Looking
at figure 24 we clearly see such behavior.

Figure 24: The zero-energy density of states Dp0q as a function of the length L1 of a ferromagnetic nanowire
F1 with SO-coupling. Here phase differences are set to f1 “ f2 “ p and the density of states is again
evaluated in the middle of the central nanowire F1. Purple shows the behavior for the case of an exchange
filed h1 “ 2Dex, while pink shows the behavior for h1 “ 2Dey. In addition, a geometrical illustration of
the different components in the two cases are shown.

An important key-point in the argumentation above is that we do consider the total triplet
component vector and not just the generated triplet component. If we had just considered
the generated triplet component, the opposite behavior would be expected. Recall that the
generated component in the case of an exchange field along the x-direction is defined as an
SRTC’, whereas if the exchange field along the y-direction, the generated component is defined
as an LRTC’. Thus, if we had just considered the triplet components separately, one would rather
expect the zero-energy density of states to fall more rapidly for a field along the x-direction
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than the y-direction. This demonstrates that we need to consider the interplay between the two
components, and not just the separate components.

Exchange field along the z-direction

Thus far, we have seen that the effect of including a SO-field for an exchange field in the x- and
y-direction, simply is to reduce the peak in the density of states. To conclude this section, we
now discuss the case in which the exchange field lies along the z-direction, i.e. h1 “ h1ez. Then
the SRTC’ and LRTC’ are defined by eq.203, whose relative proportions are determined by the
equations

i
2

DB2
yd1

y “ ´2iDa1Byd1
|| ´ 2iDa1Byd1

K ` re ` 4iDa12sd1
y, (212)

i
2

DB2
yd1

|| “ `2iDa1Byd1
y ` 2iDa12d1

K ` re ` 2iDa12sd1
|| ` h1f1

s, (213)

i
2

DB2
yd1

K “ 2iDa1Byd1
y ` 2iDa12d1

|| ` re ` 2iDa12sd1
K, (214)

i
2

DB2
yf1

s “ ef1
s ` h1d1

||. (215)

Let us first consider the case f1 “ f1 “ p, in which the only component present initially is
the SRTC’ d1

||. As in the previous cases, when including SO-coupling we see from the linearized
equations above that the component d1

|| is rotated both into a symmetric d1
K and a antisymmetric

d1
y. For a length of L1 “ 5 nm, where we can neglect the rotation to singlet states, this will result

in a decrease of the peak, similar to what we saw in the x- and y-case. In figure 25a we clearly
see this behavior. However, for a length of L1 “ 15 nm, a reduction in the d1

|| component also
means fewer Cooper-pairs available to rotate to singlet states, thereby expecting the minigap to
be reduced. Looking at figure 25b we clearly see such behavior. We expect this to hold for other
phase differences as well. Remember, without SO-coupling, we saw in figure 22 that the density
of states went from a peak to a minigap when increasing the length. The only component which
can be rotated to a singlet state is the SRTC’ d1

||, thus we know that we start with dominant
d1

|| regardless of how we choose f1 and f2. Therefore, we expect qualitatively similar behavior
for other phase differences as well. We have found that this indeed holds (plots not included).
There is one special case we have to be careful with though, namely, when having f1 “ f1 “ 0.
We might question if including SO-coupling can amplify the marginal peak we saw when not
having SO-coupling. However, we do not find this to be the case. Thus, even for a field in the
z-direction, including SO-coupling results in a suppression of the characteristic behavior we
saw without SO-coupling.
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Figure 25: A comparison between the density of states Dpeq evaluated in the middle of a ferromagnetic
nanowire with an exchange field h1 “ 2Dez, without and with SO-coupling (SOC). In (a) the nanowire
has a length L1 “ 5 nm, while in (b) we have chosen a length of L1 “ 15 nm. Phase differences are set to
f1 “ f2 “ p.

In the above, we only considered the limiting cases for an exchange field entirely along the
x-, y- and z-direction. One might question if the density of states behaves differently if we rotate
the field in the different planes. Remember, if we rotate the field we also redefine the SRTC’ and
LRTC’, which now while having SO-coupling present may cause the density of states to behave
differently. We also saw the linearized equations for the xz-plane become qualitatively different
than what we found for the two other planes. Even so, in all cases, the density of states simply
changed continuously between the two limiting cases. Therefore, we have chosen not to include
these results in the thesis, as they do not lead to any qualitatively new behavior.
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S U M M A RY A N D O U T L O O K

In this thesis, we have explored the proximity effect in an effective odd-frequency triplet
Josephson junction. The effective Josephson junction is constructed by connecting two one-
dimensional S/F/S-Josephson junctions with SO-coupling by a perpendicular nanowire. We
have considered the cases where the nanowire is a normal metal and a ferromagnet with and
without SO-coupling. In particular, we have focused on how the giant triplet effect seen in the
two parallel one-dimensional S/F/S-Josephson junctions with SO-coupling manifests in the
central nanowire. Our results showed that the effective Josephson junction behaves qualitatively
different from the one-dimensional Josephson junction. The effective Josephson junction is now
governed by the relationships between the initial symmetries at the midpoints of the parallel
junctions. Notably, we saw that the component defined as the long-ranged triplet component in
the two parallel Josephson junctions, dominates in the central nanowire even for other phase
differences than the special case of f1 “ f2 “ p. Remarkably, when the nanowire was a normal
metal, we also saw that the zero-energy density of states could persist throughout the normal
metal for several superconducting coherence lengths. Notably, this also holds when including
an exchange field along both the x- and y-direction, regardless of how we choose the phase
differences. In particular, it is interesting to notice what this result entails for f1 “ f2 “ p{2,
where the (charge) current is maximized in the two parallel systems. By simply connecting
two parallel S/F/S-Josephson junctions, we can allow for much larger lengths in the central
nanowire while still having the maximized current of the same magnitude. For an exchange
field in the z-direction though, the interplay between the short-ranged triplet component and
the singlet component manifests in the density of states as a transition from a peak to what
resembles a minigap. Finally, we also discussed the effect of including SO-coupling in the
system. Regardless of the orientation of the exchange field, including SO-coupling simply
suppresses the characteristic behavior we saw without SO-coupling. However, including SO-
coupling the zero-energy density of states now decays significantly faster when the field points
along the y-direction than the x-direction, due to the orientation of the total triplet component
in the two cases.

In conclusion, we have shown that simply by connecting two parallel S/F/S-Josephson
junctions, thereby effectively creating an odd-frequency triplet Josephson junction, the system
behaves qualitatively different from the one-dimensional Josephson junction. Furthermore, the
zero-energy density of states now persists throughout the nanowire for several superconducting
coherence lengths. Remarkably, the distinct feature between the proportions of the components
seen at f1{2 “ p in the two parallel junctions now also holds for other phase differences as well.

The results presented in this thesis were obtained by assuming that the central nanowire
affects the two parallel S/F/S-Josephson junctions minimally. Thus, we solved the two parallel
S/F/S-Josephson junctions independently of the central nanowire, only taking into account
the effect the two parallel S/F/S-Josephson junctions have on the central nanowire. Therefore,
we used the standard Kupriyanov–Lukichev boundary conditions in the central nanowire as
well, with the Green’s functions in the center of the two parallel S/F/S-Josephson junctions
as input for the boundary conditions. This assumption is assumed to be valid as long as the
exchange field in the central nanowire is not too strong. However, it could be interesting to
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generalize the method to take into account the effect the central nanowire has on the two
parallel S/F/S-Josephson junctions, thus solving the system self-consistently at these interfaces.
Solving the system self-consistently, we can also allow for stronger fields in the central nanowire
than explored in this thesis.

To obtain a self-consistent solution, some issues need to be addressed, which we will now
briefly discuss. The first obstacle originates from the mathematical description of the system,
namely the boundary conditions. The standard Kupriyanov–Lukichev boundary conditions
presented in this thesis are one-dimensional, and based on Andreev-reflection and continuity of
the Green’s functions at the interface. If we want to account for a third material, though, the
Andreev-reflection taking place at the interface now becomes more complicated. To account for
the interplay between all three materials we could use the three-terminal boundary conditions
derived by Titov [74], also explored by Karminskaya et. al. [75]. The boundary conditions
derived by Titov hold for a three-terminal heterostructure,i.e. structures where we have three
outer contact points, yet we can still use their mathematical form to describe how the three
materials affect each other at such interfaces. In figure 26 we have sketched a general three-
terminal junction. Here, we have a horizontal wire lying along the x-direction, represented
by the blue wire, connected to a perpendicular wire at x0, represented by the green wire.
The Green’s function in the blue wire is denoted ĝ, while ĝc denotes the Green’s function in
the green wire. The tunnel barrier that separates the horizontal and perpendicular wires is
represented by the gray region in figure 26. This barrier has a normal vector pointing along the
y-direction, and a transparency described by the coefficient a “ TB{lB, where TB is the barrier
transmission probability per channel and lB is the effective length of the barrier. The effective
length of the barrier lB is of the order of the mean free path in the horizontal material that lies
along the x-direction.

Figure 26: A sketch of a three-terminal junction. A wire along the x-direction (blue) is connected to a wire
along the y-direction (green) at x0. The Green’s function in the blue wire is denoted ĝ, while ĝc denotes
the Green’s function in the green wire. The barrier between the two wires is shown as a gray region, and
the coefficient a describes the transparency of the barrier.

The fundamental idea behind the boundary conditions developed by Titov is current con-
servation at the three-terminal junction. Mathematically, this is accounted for by having a
discontinuity in the derivative of the Green’s function along the tunnel barrier. For the het-
erostructure sketched in figure 26 the discontinuity would be along the y-direction. Additionally,
having a tunnel barrier placed between the two wires as shown in figure 26, the Green’s function
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itself also has to be continuous along the x-direction. Hence, the boundary conditions for the
retarded Green’s function describing such a three-terminal heterostructure reads[74]

dr Îsx0 “ pĝB̃kĝq` ´ pĝB̃kĝq´ “ a

2
rĝc, ĝ´s´, (216)

drĝsx0 “ ĝ` ´ ĝ´ “ 0. (217)

Here

dr f pxqsx0 “ lim
dÑ0

r f px0 ` dq ´ f px0 ´ dqs “ f` ´ f´

refers to the change of the function f on an infinitesimal value d in the x-direction. We denote
the value of the function f at position x0 ` d as f px0 ` dq “ f`, while f px0 ´ dq “ f´ denotes
the value of the function f at position x0 ´ d.

Having found some new boundary conditions accounting for all three materials at the
three-terminal junctions we have in our system, it remains to discuss a numerical method
for solving this system self-consistently. This method must preserve both the discontinuity
of the derivative in eq.216, and the continuity of the Green’s function itself in eq.217, at the
three-terminal junctions. Furthermore, the bvp6c-solver in matlab requires two and only two
boundary conditions in each region. One way could simply be to split the ferromagnet in
the parallel S/F/S-Josephson junction into two, thus solving an S/F/F/S-F-S/F/F/S system
instead of an S/F/S-F-S/F/S, as sketched in figure 27. To preserve both the continuity of
the Green’s function and the discontinuity of the derivative at the three-terminal junction in
c and d, the following procedure may be executed. For a given energy, we first solve in F21
and F22 with the standard Kupriyanov–Lukichev boundary condition at e and f respectively,
and eq.216 as the boundary condition at c and d. Then we solve in F11 and F12, still with
Kupriyanov–Lukichev boundary condition at interface a and b, yet at c and d we now use eq.217
as the boundary condition. Finally, we solve for the central ferromagnet F, now with eq.216
as the boundary condition at both c and d. To acquire a self-consistent solution, we repeat
the described procedure with the previous solution as the initial guess, until the maximum
difference between the previous solution and the new calculated solution is below a chosen
tolerance. When the solution meets the tolerance, we move on to the next energy. By doing
so, we ensure that the solutions we find in the different regions all take into account the
effect of each other. Hence, the described procedure solves the system self-consistently in the
three-terminal junctions, thus also accounting for the effect the central nanowire has on the
two parallel Josephson junctions. We do stress that in the described procedure we have not
solved the system self-consistently with respect to the superconductors, i.e. we still assume the
superconductor to have a bulk solution and do not take into account the effect the ferromagnet
has on the superconductor. Yet, as we are interested in what happens in the central nanowire,
the effects of solving the system also self-consistently at the interfaces with the superconductors
are expected to be negligible.
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Figure 27: A sketch of the experimental set-up discussed in the suggested numerical procedure. The
ferromagnets in two parallel S/F/S-Josephson junctions are divided in two, resulting in an S/F/F/S-
Josephson junction. As previously these two parallel S/F/F/S-Josephson junctions are connected with a
nanowire.

In the above, we have presented a suggested way to solve the system self-consistently.
We have discussed a promising candidate for appropriate boundary conditions, as well as
a suggested numerical procedure. For future work, we believe it would fruitful to solve
the system also self-consistently, due to the exotic new phenomena multiterminal structures
exhibit[63, 76, 77].
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AL I N E A R I Z E D K U P R I YA N O V – L U K I C H E V B O U N D A RY C O N D I T I O N S
W I T H D - V E C T O R F O R M A L I S M

Close to the critical temperature and while having D †† e, we can also linearize the Kupriyanov–Lukichev
boundary conditions. Using the general definition of weak proximity effect as stated in eq. 167
the boundary conditions at the material-interface in eq.125 and eq.126, simply reduces to:

Bkg1 “ W1pg2 ´ g1q ` ig1A
˚
k ` iAkg1 (218)

Bkg2 “ W2pg2 ´ g1q ` ig2A
˚
k ` iAkg2 (219)

If we now insert the d-vector formalism, the first equation transforms to:

Bzdx,1 “ W1pdx,2 ´ dx,1q ` 2adz,1 (220)
Bzdy,1 “ W1pdy,2 ´ dy,1q ` 2adz,1 (221)
Bzdz,1 “ W1pdz,2 ´ dz,1q ´ 2apdx,1 ` dy,1q (222)
Bzfs,1 “ W1pfs,2 ´ fs,1q (223)

While the second equation transforms to:

Bzdx,2 “ W2pdx,2 ´ dx,1q ` 2adz,2 (224)
Bzdy,2 “ W2pdy,2 ´ dy,1q ` 2ady,2 (225)
Bzdz,2 “ W2pdz,2 ´ dz,1q ´ 2apdy,2 ` dx,2q (226)
Bzfs,2 “ W2pfs,2 ´ fs,1q (227)
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90 linearized kupriyanov–lukichev boundary conditions with d-vector formalism



BS O L U T I O N O F T H E S I N G L E T A N D S H O RT- R A N G E D T R I P L E T
C O M P O N E N T F O R F E R R O M A G N E T I N T H E W E A K P R O X I M I T Y L I M I T

Having a ferromagnet without SO-coupling and a exchange field h “ hez along the z-direction,
the linearized Usadel equations reduces to

i
2

DB2
z d|| “ ed|| ` hfs, (228)

i
2

DB2
z fs “ efs ` hd||. (229)

Looking at the above equations we notice that we can combine them by doing the following

i
2

DB2
z pd|| ˘ fsq “ epd|| ˘ fsq ` hpd|| ˘ fsq

“ epd|| ˘ fsq ˘ hpd|| ˘ fsq (230)

Defining f˘ ” d|| ˘ fs and e˘ ” e ˘ h, the above equation reads

DB2
z f˘ ` 2ie˘f˘ “ 0. (231)

Assuming we are close to the critical temperature and as well as having D †† e, we can
also use linearized the Kupriyanov–Lukichev boundary conditions. For z “ 0 these boundary
conditions reads

xLBzfs “ fs ´ fBCSeifL , (232)
xLBzd|| “ d||. (233)

While for z “ L the boundary conditions becomes

xLBzfs “ fBCSeifR ´ fs, (234)
xLBzd|| “ ´d||. (235)

where fBCS is the magnitude of the BCS-bulk solution:Furthermore, fL and fR denotes the
phase of the left and right superconductor respectively.

Again, using the definition of f˘ “ d|| ˘ fs, as well as assuming f˘ ! fBCS, the boundary
conditions reduces to

xLBzf˘
ˇ̌
z“0 “ ¯fBCSeifL , (236)

xLBzf˘
ˇ̌
z“L “ ˘fBCSeifR . (237)

Looking at eq.231 we can write a general solution to this equation as
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92 solution of the singlet and short-ranged triplet component for ferromagnet in the weak proximity limit

f˘ “ Ae
?

2ie˘{Dzi ` Be´
?

2ie˘{Dzi

“ Aek˘zi ` Be´k˘zi (238)

Inserting the above form of f˘ into the boundary conditions in eq.236 and 237 yields

A ´ B “ ¯fBCS
ixLk˘

eifL , (239)

Aek˘Li ` Be´k˘Li “ ¯fBCS
ixLk˘

p´eifR q (240)

To isolate the coefficient A we multiply eq.239 with e´k˘Li and subtract the resulting
equation from eq.240. Similarly, to isolate the coefficient B we multiply eq.239 with ek˘Li and
subtract the resulting equation from eq.240. Doing so, we obtain the following expressions for
the coefficient A and B

A “ ˘fBCS
ixLk˘2isinpk˘Lq

`
eifR ` eifL e´k˘Li˘, (241)

B “ ˘fBCS
ixLk˘2isinpk˘Lq

`
eifR ` eifL ek˘Li˘. (242)

Having determined the coefficients A and B we have now found the solution of f˘ in our
system. In particular, choosing z “ L{2, the solution in the middle of the ferromagnet simplifies
to

f˘ “ ˘fBCS
´xLk˘sinpk˘Lqcospk˘L{2q

`
eifR ` eifL

˘
. (243)



CM AT L A B - C O D E F O R S O LV I N G A O N E - D I M E N S I O N A L T R I L AY E R D
H E T E R O S T R U C T U R E

1 %main-file for solving a superconductor/material/superconductor structure along
the z-direction.

2
3 clear global
4
5 %Thouless energy
6 global Eth
7
8 global epsilon
9 global NumbersE

10 global ii
11
12 %interface parameters for the left and right interfaces (=Rn/RB)
13 global ratioL
14 global ratioR
15
16 %lengths
17 global L_vec
18 global L
19
20 %magnitudes and phases for the superconductors
21 global Delta_L
22 global phi_L
23
24 global Delta_R
25 global phi_R
26
27 %SO-strength
28 global Alpha
29
30 %SO- and exchange field
31 global Ax
32 global Ay
33 global Az
34 global hx
35 global hy
36 global hz
37
38 %define global matrices
39 global sigmax
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94 matlab-code for solving a one-dimensional trilayerd heterostructure

40 global sigmay
41 global sigmaz
42
43 % bulk solution in superconductor to the left
44 global g1sL
45 global g2sL
46 global g3sL
47 global g4sL
48 global gt1sL
49 global gt2sL
50 global gt3sL
51 global gt4sL
52
53 % bulk solution in superconductor to the right
54 global g1sR
55 global g2sR
56 global g3sR
57 global g4sR
58 global gt1sR
59 global gt2sR
60 global gt3sR
61 global gt4sR
62
63 %matrix-elements of: gamma (g), partial derivative of gamma (dg), gamma tilde (gt)

and partial derivative of gamma tilde (dgt)
64 global g1
65 global g2
66 global g3
67 global g4
68 global dg1
69 global dg2
70 global dg3
71 global dg4
72 global gt1
73 global gt2
74 global gt3
75 global gt4
76 global dgt1
77 global dgt2
78 global dgt3
79 global dgt4
80
81 %elements of initial guess
82 global g1_init
83 global g2_init
84 global g3_init
85 global g4_init
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86 global dg1_init
87 global dg2_init
88 global dg3_init
89 global dg4_init
90 global gt1_init
91 global gt2_init
92 global gt3_init
93 global gt4_init
94 global dgt1_init
95 global dgt2_init
96 global dgt3_init
97 global dgt4_init
98
99 %density of states and d-vector components

100 global DoS
101 global dx
102 global dy
103 global dz
104 global fs
105
106 %predefine gamma-elements (100 positions used always):
107 g1 = zeros(NumbersE, 100);
108 g2 = zeros(NumbersE, 100);
109 g3 = zeros(NumbersE, 100);
110 g4 = zeros(NumbersE, 100);
111 dg1 = zeros(NumbersE, 100);
112 dg2 = zeros(NumbersE, 100);
113 dg3 = zeros(NumbersE, 100);
114 dg4 = zeros(NumbersE, 100);
115 gt1 = zeros(NumbersE, 100);
116 gt2 = zeros(NumbersE, 100);
117 gt3 = zeros(NumbersE, 100);
118 gt4 = zeros(NumbersE, 100);
119 dgt1 = zeros(NumbersE, 100);
120 dgt2 = zeros(NumbersE, 100);
121 dgt3 = zeros(NumbersE, 100);
122 dgt4 = zeros(NumbersE, 100);
123
124 %predefine initial guesses:
125 g1_init = zeros(NumbersE, 100);
126 g2_init = zeros(NumbersE, 100);
127 g3_init = zeros(NumbersE, 100);
128 g4_init = zeros(NumbersE, 100);
129 dg1_init = zeros(NumbersE, 100);
130 dg2_init = zeros(NumbersE, 100);
131 dg3_init = zeros(NumbersE, 100);
132 dg4_init = zeros(NumbersE, 100);
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133 gt1_init = zeros(NumbersE, 100);
134 gt2_init = zeros(NumbersE, 100);
135 gt3_init = zeros(NumbersE, 100);
136 gt4_init = zeros(NumbersE, 100);
137 dgt1_init = zeros(NumbersE, 100);
138 dgt2_init = zeros(NumbersE, 100);
139 dgt3_init = zeros(NumbersE, 100);
140 dgt4_init = zeros(NumbersE, 100);
141
142 %predefine DoS and d-vector components
143 DoS = zeros(NumbersE, 100);
144 dx = zeros(NumbersE, 100);
145 dy = zeros(NumbersE, 100);
146 dz = zeros(NumbersE, 100);
147 fs = zeros(NumbersE, 100);
148
149 %system parameters
150 ratioL = 1/3;
151 ratioR = ratioL;
152
153 Delta_L = 1;
154 Delta_R = 1;
155
156 phi_L = 0;
157 phi_R_vec = [-0.25*pi];
158
159 Alpha = 0.4;
160 xi = 30;
161
162 hx = 0;
163 hy = 10*Delta_L;
164 hz = 0;
165
166 %define length, position and energy vectors
167 L_vec = [15];
168 position = linspace(0,1,100);
169 DoS_as_func_of_lenght = [];
170
171 NumbersE = 300;
172 inelastic = 1*1e-03;
173 Emin = 2*inelastic;
174 Emax = 1.3*Delta_L;
175
176 %a small imaginary part is added to the energy for numerical stability
177 e1 = linspace(Emin, Emin + 0.25, 125) + inelastic*1i;
178 e2 = linspace(Emin + 0.2505, 0.9, 50) + inelastic*1i;
179 e3 = linspace(0.905, Emax, 125) + inelastic*1i;
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180
181 epsilon_vec = [e1, e2, e3];
182
183 %define matrices
184 sigmax = [0, 1; 1, 0];
185 sigmay = [0, -1i; 1i, 0];
186 sigmaz = [1, 0; 0, -1];
187
188
189 for m = 1:length(L_vec)
190 L = L_vec(m);
191 display(L)
192 Eth = (xi/L)^2;
193 Ax = 0;
194 Ay = 0;
195 Az = Alpha*sigmax/L - Alpha*sigmay/L;
196
197 if Az == 0
198 Az_hat = 0;
199 else
200 Az_hat = blkdiag(Az,-conj(Az));
201 end
202
203 for n = 1:length(phi_R_vec)
204 phi_R = phi_R_vec(n);
205 display(phi_R)
206 %start with largest energy for a more efficient code
207 for i = NumbersE:-1:1
208 epsilon = epsilon_vec(i);
209 display(epsilon)
210 ii = i;
211
212 theta_s = atanh(1/epsilon);
213 s = sinh(theta_s);
214 c = cosh(theta_s);
215
216 %solution bulk in superconductors:
217 g1sL = 0;
218 g2sL = s*exp(1i*phi_L)/(1+c);
219 g3sL = -s*exp(1i*phi_L)/(1+c);
220 g4sL = 0;
221 gt1sL = 0;
222 gt2sL = -s*exp(-1i*phi_L)/(1+c);
223 gt3sL = s*exp(-1i*phi_L)/(1+c);
224 gt4sL = 0;
225
226 g1sR = 0;
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227 g2sR = s*exp(1i*(phi_R))/(1+c);
228 g3sR = -s*exp(1i*(phi_R))/(1+c);
229 g4sR = 0;
230 gt1sR = 0;
231 gt2sR = -s*exp(-1i*(phi_R))/(1+c);
232 gt3sR = s*exp(-1i*(phi_R))/(1+c);
233 gt4sR = 0;
234
235 %initial guess for first energy for the two parallel junctons
236 %to help the matlab-solver to start near the correct solution we use

all gammas's set to zero as in a normal metal
237 if i == NumbersE && n==1
238 g1_init(i, :) = 0*g1sL;
239 g2_init(i, :) = 0*g2sL;
240 g3_init(i, :) = 0*g3sL;
241 g4_init(i, :) = 0*g4sL;
242 dg1_init(i, :) = 0;
243 dg2_init(i, :) = 0;
244 dg3_init(i, :) = 0;
245 dg4_init(i, :) = 0;
246 gt1_init(i, :) = 0*gt1sL;
247 gt2_init(i, :) = 0*gt2sL;
248 gt3_init(i, :) = 0*gt3sL;
249 gt4_init(i, :) = 0*gt4sL;
250 dgt1_init(i, :) = 0;
251 dgt2_init(i, :) = 0;
252 dgt3_init(i, :) = 0;
253 dgt4_init(i, :) = 0;
254 else
255 0;
256 end
257
258 %solve for gamma
259 [g1(i, :), g2(i, :), g3(i, :), g4(i, :), dg1(i, :), dg2(i, :), dg3(i,

:), dg4(i, :), gt1(i, :), gt2(i, :), gt3(i, :), gt4(i, :), dgt1(i,
:), dgt2(i, :), dgt3(i, :), dgt4(i, :)] =
solve_usadel_gamma_trilayer();

260
261 %use previous solution as initial guess for next energy in central

nanowire guess
262 if i~= 1
263 g1_init(i - 1, :) = g1(i, :);
264 g2_init(i - 1, :) = g2(i, :);
265 g3_init(i - 1, :) = g3(i, :);
266 g4_init(i - 1, :) = g4(i, :);
267 dg1_init(i - 1, :) = dg1(i, :);
268 dg2_init(i - 1, :) = dg2(i, :);
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269 dg3_init(i - 1, :) = dg3(i, :);
270 dg4_init(i - 1, :) = dg4(i, :);
271 gt1_init(i - 1, :) = gt1(i, :);
272 gt2_init(i - 1, :) = gt2(i, :);
273 gt3_init(i - 1, :) = gt3(i, :);
274 gt4_init(i - 1, :) = gt4(i, :);
275 dgt1_init(i - 1, :) = dgt1(i, :);
276 dgt2_init(i - 1, :) = dgt2(i, :);
277 dgt3_init(i - 1, :) = dgt3(i, :);
278 dgt4_init(i - 1, :) = dgt4(i, :);
279 end
280
281 %iterate thorough positions
282 for j=1:length(position)
283 %gamma matrix
284 g = [g1(i,j), g2(i,j); g3(i,j), g4(i,j)];
285 %derivative gamma
286 dg = [dg1(i,j), dg2(i,j); dg3(i,j), dg4(i,j)];
287 %gamma tilde matrix
288 gt = [gt1(i,j), gt2(i,j); gt3(i,j), gt4(i,j)];
289 %derivative gamma tilde
290 dgt = [dgt1(i,j), dgt2(i,j); dgt3(i,j), dgt4(i,j)];
291
292 %normalization matrices
293 N = inv(eye(2) - g*gt);
294 Nt = inv(eye(2) - gt*g);
295 retarded = N*(eye(2) + g*gt);
296 %square = retarded*retarded
297 DoS(i,j) = (1/2)*real(trace(retarded));
298
299 %decompose the compoenents
300 ggf = 2*N*g; %green f= N*gamma matrix
301 dx(i,j) = (ggf(2,2) - ggf(1,1))/2;
302 dy(i,j) = (ggf(2,2) + ggf(1,1))/2i;
303 dz(i,j) = (ggf(1,2) + ggf(2,1))/2;
304 fs(i,j) = (ggf(1,2) - ggf(2,1))/2;
305 end
306 end
307
308 %before moving on to the next phase, we update the initial guess for all

energies and positions
309 if n~= length(phi_R_vec)
310 g1_init(:, :) = g1(:, :);
311 g2_init(:, :) = g2(:, :);
312 g3_init(:, :) = g3(:, :);
313 g4_init(:, :) = g4(:, :);
314 dg1_init(:, :) = dg1(:, :);
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315 dg2_init(:, :) = dg2(:, :);
316 dg3_init(:, :) = dg3(:, :);
317 dg4_init(:, :) = dg4(:, :);
318 gt1_init(:, :) = gt1(:, :);
319 gt2_init(:, :) = gt2(:, :);
320 gt3_init(:, :) = gt3(:, :);
321 gt4_init(:, :) = gt4(:, :);
322 dgt1_init(:, :) = dgt1(:, :);
323 dgt2_init(:, :) = dgt2(:, :);
324 dgt3_init(:, :) = dgt3(:, :);
325 dgt4_init(:, :) = dgt4(:, :);
326
327 end
328 %the zero-energy denisty of states evaluated in the middle of the junction

for a given lenght L
329 DoS_as_func_of_lenght(end+1) = DoS(1,50);
330 end
331 save main_trilayer
332 end
333 save main_trilayer
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