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Summary

Methods from linear control theory have a considerable share in the state-of-the-art
toolbox for control systems engineers when designing autopilots for conventional
passenger aircraft. Linear controllers have well-established safety certificates lean-
ing on gain and phase margins of the closed-loop dynamics. Passenger comfort fur-
ther restricts the operational regime to regions where the aircraft’s dynamics are
approximately linear. Similar controller designs are part of the flight-control algo-
rithms onboard small unmanned aerial vehicles (UAVs), for which we have seen in-
creasing use over the past two decades. However, operators often can accept higher
risks for low-cost UAVs. Initial experiments have shown that industry-standard
linear controllers do not match the agile flight and performance in comparison to
manual control of a skilled human pilot. The hypothesis that suitably designed
nonlinear controllers can close the performance gap and therefore widen the flight
envelope has been the driving motivation for the work described in this thesis.

The text briefly revisits preliminary concepts concerning kinetics and actuation
of standard UAVs before continuing with the main contributions in nonlinear flight
control. The work results can be summarized as:

A Geometric Attitude Controller with hybrid proportional feedback to track
roll and pitch angle references is the subject of the first contribution. We avoid
the gimbal lock problem of Euler angles and the unwinding phenomenon of quater-
nions by designing the control laws directly on the unit two-sphere. The resulting
control law steers the attitude dynamics in the direction of the shortest path on
the two-sphere towards the reference. With dynamic model inversion, the designed
control law achieves almost semi-global exponential stability for time-varying atti-
tude reference signals and almost global asymptotic stability of constant references.
A hybrid extension to the proportional feedback results in stronger stability prop-
erties with global asymptotic stability regardless of the angular rates and global
exponential stability if an additional angular rate condition is satisfied. Simulation
studies and experimental results verify the efficacy of this approach.

In a second contribution, we exploit the designed geometric controller and use
nonlinear model predictive controller (NMPC) to track roll, pitch and airspeed
references. The NMPC generates suitable references for the geometric controller
and adds constraint satisfaction and optimal performance.

In a third contribution, different NMPCs are designed with direct access to the
actuators of the UAV. As for the geometric controller, the dynamic model of the
NMPC uses the Special Orthogonal Group of order Three as attitude representation
to avoid the outlined issues of alternative attitude representation and to decrease
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Summary

the nonlinearity of kinematic equations. In contrast to most other aerospace appli-
cations using NMPC, the designed controllers are not designed for guidance control
with kinematic models and control-augmentation through a low-level proportional-
integral-derivative (PID) controller, but include the full nonlinear kinematic and
dynamic equations to control the low-level dynamics of the UAV. To the best of
my knowledge the results in this thesis are the first go set the focus on attitude
and speed control using NMPC. Simulation studies and experimental verification
demonstrate improved performance to industry-standard PID controllers despite
harsh weather conditions and significant model inaccuracies.

Considering that the focus of the thesis is on model-based control, we discuss
improvements to the dynamic model of the UAV that was part of the experiments.
The model identification procedure is based on wind tunnel measurements, includ-
ing a novel calibration routine for planar symmetry of the airframe. The model
from the wind tunnel is augmented with a damping model based on data collected
in flight experiments. Cross-validation based on flight data shows significant model
improvements compared to the baseline model that was used in the experiments.

As a final result, this thesis includes the design of a NMPC for the path-following
problem with direct actuator access. It can be seen as an integrated approach that
does not rely on a low-level motion controller, but directly controls actuator set-
points and takes a parameterized path as input. Numerical results show significant
performance improvements compared to the other cascaded controllers in the thesis,
where an advanced guidance controller sends commands to low-level controllers.
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Chapter 1

Introduction

1.1 Motivation

The autopilot is one of the most critical components in any system designed for
guidance navigation and control (GNC). On the lowest level in the control hierar-
chy, the task of the autopilot is to track reference orientation and speed1 to enable
the aircraft to follow a defined path or fly towards a specific location. In earlier
applications, its primary purpose was stability augmentation to assist a human
pilot in passenger aircraft, but engineers have since implemented them in a range
of autonomous systems ranging from robotics platforms such as autonomous un-
derwater vehicles (AUVs), unmanned surface vessels (USVs), UAVs to rockets and
more recently, cars.

The necessary hardware for an onboard GNC system has been initially costly
and heavyweight, but during the past 20 years, weight and prices have reduced
to such a degree that low-cost vehicles find an increasing amount of applications
and open-source projects. A good indicator for this trend is the rapid increase of
available software and hardware solution for autopilots from 2007 [26] to 2018 [49],
which opens up for a broad range of use cases. In the context of marine operations,
the cheap autopilot technology facilitates the use of UAVs instead of surface vessels
or ground vehicles. This can lead to reduced emissions [52], lower cost of operation,
and faster completion of the mission.

One case is search and rescue, where a fixed-wing UAV is deployed from a
surface vessel, as depicted in Fig. 1.1. The UAV is responsible for monitoring and
object detection across the sea [110] to find the survivors of a boat accident. Once
the UAV locates the survivors, the surface vessel can adapt its course to rescue
them. A notable example is the searchwing project [162] where a hobby-grade
UAV that costs less than 700 Euros assists surface vessels on their missions in the
Mediterranean Sea. However, there are days when severe wind conditions do not
allow to start the UAV. More challenging weather, such as at the coasts of the
Atlantic Ocean, can be even more constraining to UAV operations that rely on
industry-standard autopilot designs.

1Controller designs for this purpose will often be referred to as "low-level controller" in this
thesis.
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Throughout the thesis, we will refer to "challenging conditions" when we mean
that the environmental disturbances due to wind are such that the wind speed
makes up a significant portion of the vehicle’s cruise speed with moreover rapidly
changing magnitude and direction of the wind velocity vector due to gust winds. An
example that we will encounter in experiments in a later chapter is the operation
of the Skywalker X8 with a nominal cruise speed of 18 m/s in weather with 12 m/s
average wind speed and 6 m/s gust winds. More advanced autopilots that take
root in nonlinear control methods may reduce the number of days in which these
environmental conditions are prohibitive to a safe operation.

Figure 1.1: Deployment of a UAV to locate people in need for help in a search and
rescue mission. Copyright: Bjarne Stenberg, NTNU.

UAVs can take a vital role in disaster management [78]. They provide mobile
sensing and a communication network [135] to compensate for the loss of critical
infrastructure resulting from natural catastrophes such as floods, forest fires, or
earthquakes. The UAV can moreover be helpful in other surveillance missions sim-
ilar to ocean monitoring, including applications within traffic monitoring in urban
areas [94] or precision agriculture and crop monitoring [115, 149, 198]. The latter
enables more efficient use of fertilizer or pesticides and thus has a positive environ-
mental impact and increases productivity of the farm in general. Other applications
include data acquisition and transfer in remote sensing operations, with the UAV
serving as a data relay [148], and carrying of camera equipment in the mapping of
terrain and urban areas [141].
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They can also be included in logistics as part of the package delivery system.
One example would be the transport of medical goods or devices to remote areas
where multi-rotor UAVs would be too energy intensive [1].

State-of-the-art autopilots may be sufficient to be used in the outlined use cases
under nominal conditions in a limited range of flight conditions, referred to as flight
envelope. A careful operation of the UAV with mild maneuvers and conservative
tuning of the control algorithms ensures that the UAV does not exceed the limits
imposed by safety constraints. However, for agile flight, where the UAV tracks
a high curvature path with the simultaneously extensive course- and climb-rates,
nonlinear controllers are better equipped to deal with the nonlinearities that arise
from the inherently nonlinear kinematic and dynamic equations of the problem.
An example is loitering at a minimum turn radius [129].

As previously mentioned, adverse weather conditions may induce severe turbu-
lence and wind gusts that may push the UAV to a roll angle as far as 140 degrees
from its level flight reference. A skilled human pilot in manual control can recover
the UAV [199]. However, the increasingly dominant nonlinearities make it difficult
to do this with a standard autopilot based on linear control design. Other challeng-
ing maneuvers include deep stall landing [121]. A model of increased drag at higher
angles of attack allows the controller to actively "brake" and thus hit the landing
net at reduced kinetic energy and consequently with minor potential damage to
the airframe or landing equipment.

Finally, stabilization of the payload such as a camera may be done in a more
efficient way using aileron and rudder instead of only the aileron in a banked-to-
turn maneuver. All these scenarios illustrate that the control algorithm can be a
bottleneck, and suitable nonlinear controllers with a global region of attraction
may enable flight in a broader envelope. Conservatism in operation can further be
reduced by explicitly including the operational limits in the controller design, and
we will discuss the types of controllers for which this is possible in the following
section.

The objective of this thesis is to develop control algorithms to partially replace
the autopilot in fixed-wing UAVs. When discussing the autopilot, we usually refer
to the guidance controllers and low-level motion controllers as depicted in Fig. 1.2.

The focus will be on nonlinear controllers as an alternative to the widely adopted
PID controllers presented in most textbooks [9, 177] and with slight adaptation of-
ten implemented in open-source autopilots [7, 128]. The focus of this thesis is on
low-level motion control2. The controllers will be compared in simulations and
experiments to evaluate their performance. We will look at geometric control al-
gorithms for the attitude control problem in fixed-wing UAVs. The geometric con-
trollers have a small computational footprint and engineers can implement them on
embedded platforms with limited computing power. Another control methodology
in this thesis will be numerical optimal control, and we use NMPC [68, 151] to
achieve at least comparable performance to the baseline controller.

Additional desirable features include the enforcement of the constraints arising
from physical limits of the UAV, e.g., constraints due to actuator saturation and

2A brief presentation of an extension of the developed NMPC to the guidance control problem
is included in the end
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Figure 1.2: Example of a control hierarchy that can be treated via successive loop
closure.

aerodynamic phenomena such as stall at high angle of attack. The resulting con-
troller provides low-level controller that addresses safety considerations. Classical
PID loops would require the outer-level guidance logic to be cautious and restrict
the references passed to the low-level controller [33].

1.2 Background

To provide the context of the contributions, this section includes an overview of
state-of-the-art control algorithm designs for fixed-wing aircraft and UAVs. It starts
with classical methods of linear control theory that are part of the control archi-
tecture of modern passenger aircraft that require strict safety certificates and are
operated in a minimal flight envelope to ensure safety and passenger comfort. We
discuss their limitations and provide some directions of more advanced controllers
that still use linear models before giving an overview of nonlinear control methods
and some example applications in the field of fixed-wing UAVs.

This section is by no means an exhaustive survey but rather a list of examples
of how it is possible to achieve more agile flight by using nonlinear control methods.
We hint to relevant survey papers for additional references. A detailed technical
discussion is out of scope, but a treatment of the relevant concepts is given by How
et al. [80] for linear flight control and Girish et al. [63] for nonlinear flight control.

1.2.1 Linear Controller Review
Aerospace engineers have widely adopted PID control based on single-input-single-
output (SISO) feedback loops. The design is the subject of any textbook that
discusses controller design for aircraft, such as [9, 40, 51, 138, 177], and we usually
find modified implementations in open-source projects. See for example the imple-
mentation in PX4 [128] or Ardupilot [7]. For the attitude controller on the lower
level of the control hierarchy, Euler angles are often the go-to attitude represen-
tation with one individual control loop design for each angle as shown by Beard
and McLain [9]. The implied assumption is that the motion of the aircraft can be
decoupled into lateral and longitudinal direction. This is a fair approximation for
mild maneuvers, but becomes increasingly invalid at more dynamic flight. However,
there exist more general formulations based on quaternions as shown by Mayhew
et al. [124] or rotation matrices, discussed by Chaturvedi et al. [28].
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The resulting controllers do not need the decoupling assumption. In either at-
titude representation, there is a separate outer-level control loop that deals with
speed control as outlined by Sobolic [171]. Even with careful designs and suitable
feedforward terms it can be difficult to tune the parallel feedback loops to give
satisfactory results in a wide range of conditions.

A more integrated approach in which multiple-input-multiple-output (MIMO)
feedback loops can be considered, is the linear quadratic regulator (LQR). However,
it is common practice to have an estimator for navigation in the feedback loop. In
case this is an extended kalman filter (EKF), the combination of LQR and EKF is
called linear quadratic gaussian (LQG) control. LQG control works well for MIMO
problems where a linear state-space representation of the dynamics is available
and examples can be found in the textbooks of Stengel [176] and Lavretsky and
Wise [103].

Even though the UAV dynamics are inherently nonlinear, a linearization of the
dynamic model at equilibrium conditions (trim points) is usually available. The
linearized system matrices are then used in the controller design, and established
linear control theory can be applied, see for example Dorf and Bishop [48]. The
performance is specified based on weighting matrices that penalize tracking error
of the states and actuator usage. The designer can prioritize tracking of specific
states and specify how costly actuator usage is, facilitating energy-efficient con-
troller design.

The LQG minimizes the sum of squares of these metrics for all frequencies
by solving the discrete-time algebraic ricatti equation (DARE) that results from
the specification of the objective function and the linearized dynamics. The per-
formance is optimal but also sensitive to modeling errors. Notable examples for
the successful application include the work of Cory and Tedrake [41] and Moore
et al. [133], who achieved impressive results using a tree of time-varying LQRs as
introduced by Tedrake et al. [180]. They approximate the NMPC but avoid its
computational demands by continuously linearizing the system dynamics at the
reference trajectory to compute the solutions to the DARE.

A different MIMO design methodology that addresses robustness issues, is H
Infinity control, explained by McFarlane and Glover [127]. The design procedure
starts with the definition of weighted sensitivities for tracking performance, actua-
tor usage, and disturbance rejection. An iterative loop shaping procedure can then
minimize the respective gains of the closed-loop transfer function for all frequencies
as discussed in Skogestad and Postlethwaite [168].

A design choice is the compromise between good reference tracking at low fre-
quencies and disturbance rejection at high frequencies. The method is well-studied
for fixed-wing aircraft, and there are toolboxes tailored to aerospace applications for
which Hyde et al. [81] is one example. An extension of this approach is µ-synthesis,
allowing the designer to include parametric uncertainties. Uncertain mass, inertia,
or aerodynamic effects, can then be part of the controller design, and Michailidis
et al. [130] make use of this for attitude/speed control. Modeling errors again may
lead to a degradation in both robustness and performance.
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Figure 1.3: Example of a fixed-wing guidance, navigation and control scheme that is
implemented in PX4 and Ardupilot.

1.2.2 Nonlinear Controller Review

Even though linear control theory has a long history and may be regarded as more
mature, there is a rich set of nonlinear control methods which are described in, for
example, Slotine et al. [169] and Khalil [95]. Many have been applied to aircraft
and, in particular, to UAVs. The drawbacks of linear methods include the lack of
global stability results for nonlinear systems and performance can quickly degrade
in situations where nonlinear dynamics effects significantly impact the overall dy-
namics. Nonlinear effects may include time- or state-varying dynamics, such as
different linear models at individual equilibrium conditions, nonlinear aerodynam-
ics, and inherently nonlinear kinematics. Other nonlinearities are saturation limits
of the actuators and safety-related constraints on the state. We will give a short
overview of some established methods and how engineers applied them to control
fixed-wing UAVs.

One nonlinear control methodology that bridges the gap to linear control, and is
part of flight control designs, is gain scheduling, as discussed in, for example, Rugh
and Shamma [160]. The procedure is such that the control system designer identifies
a range of equilibrium conditions within the operational regime, the flight envelope
in aerospace applications, and linearizes the dynamics at each equilibrium state.
For each equilibrium condition, the parameters of the state-space matrices will
be different, leading to a linear parameter varying (LPV) model. For a switched
system of controllers, Lyapunov theory shows that if the gain matrix for each
controller satisfies the Lyapunov equation, the system asymptotically converges to
the equilibrium for each controller. Based on the partitioned state space, a linear
matrix inequality (LMI) can be solved to establish the stability result for the gain-
scheduling controller. Linear controllers such as the ones just mentioned can then
be designed for each pair of state and linearized dynamics.

Slowly time-varying state variables, for example, airspeed, can be used to com-
pute a scheduling variable that interpolates the controller parameters based on
its current value and the value at the neighboring equilibrium conditions. Gain
scheduling is therefore also referred to as parameter varying control. Biannic et
al. [12] discuss longitudinal control based on gain scheduling with H Infinity con-
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trol and µ synthesis, where they use speed and height as scheduling variables. An
extended gain-scheduled longitudinal controller based on the solution of a LMI
and a descriptor representation of the LPV system is presented by Masubuchi et
al. [120]. Lee et al. [104] present a lateral gain scheduling controller as a solution to
the bank-to-turn control problem based on Eigenvalue assignment for linear con-
troller design. Angle of attack commands and speed determine the scheduling of
the bank of linear controllers.

In Dynamic Model Inversion, the designer composes a control law such that
the originally nonlinear system exhibits closed-loop dynamics of a reference model,
which may have linear form. As the dynamic models of a UAV are often in control-
affine form, this means that the control effectiveness matrix needs to be inverted to
cancel modeled nonlinear terms via the control law. One can then use established
linear control theory results to prove exponential stability. Publications from the
80s include design examples for aircraft control in Smith et al. [170] and Lane et
al. [102]. The strong theoretical results are appealing, but the drawback of this ap-
proach is the potential high actuator usage to cancel the nonlinear terms. Moreover,
in practice, some of them may be useful for a suitably designed controller.

Sliding Model Control is a more modern approach to the control of nonlinear sys-
tems, with theoretical contributions published by Shtessel et al. [165, 166], among
other authors. It can be a tool for control problems that include measurement
uncertainties, external disturbances, and modeling errors. Around 2000, Levant et
al. [111] published their work on pitch control to compensate for unknown exter-
nal disturbances. A second-order sliding surface is used in the controller design to
avoid the chattering phenomenon known for first-order sliding mode control [164].

Backstepping control is another Lyapunov-based design methodology that pro-
vides a recursive approach for stabilizing systems with a dynamic representation in
the strict feedback form. Details can be found in Khalil’s text book [95]. Most air-
craft control architectures that exploit timescale separation principles to increase
bandwidth from the outer level to the low-level dynamics, allow for the strict feed-
back form. The idea is to use a virtual control variable to stabilize an internal
subsystem and then design the outer loop to stabilize the virtual control variable.
This way, a possibly complex control law that stabilizes the system can be designed
by recursively stabilizing each subsystem. For fixed-wing aircraft, one would design
a position controller by using course, flight-path angle, and speed as virtual control
inputs. In another step, control laws to stabilize flight-path angle and speed can
be designed based on the aerodynamic angles and the thrust input. Sonneveldt et
al. [173] demonstrate the adaptive backstepping control design for fighter aircraft
in this way.

An outstanding example of how a nonlinear control law can outperform its
linear counterpart is the "New nonlinear guidance logic" proposed by Park et al.
[147] in 2004 to provide lateral guidance based on acceleration commands. One can
argue about how well the contribution title is aging, but the proposed guidance
method is widely adopted and has since remained an essential part of the code-
base for both PX4 and Ardupilot. Controlling specific force accelerations through
to follow a path allows for separate roll control through the aileron. This can be
exploited for aerobatics as demonstrated by Park [146]. Cho et al. extended the
guidance logic to three dimensions in 2015 by Cho et al. [32]. However, guidance
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controller implementations in PX4 and Ardupilot use the original lateral guidance
logic and the "Total Energy Control System" by Lambregts et al. [101] for longitu-
dinal guidance. The combination of both guidance controllers can be found in the
control architecture of PX4 and ArduPilot as depicted in Fig. 1.3.

Kai et al. [87] recently published a more unified approach for the path-following
problem on model-scale fixed-wing UAVs. They do not construct a composite Lya-
punov function for the total control system as in backstepping designs, but give
a detailed derivation for each subsystem that relies on stabilization of its virtual
control variable through an inner-loop controller. They prove ultimately exponen-
tial convergence for each subsystem and use cascade stability arguments to prove
the stability of the total control architecture. Bulka et al. [17] discuss another
unified approach to keep the controller design platform generic. They design the
control laws assuming that the UAV can generate a force vector along a body-fixed
direction and a moment vector about an arbitrary axis. A static mapping then
transforms the control forces to a specific platform. Together with the use of dy-
namic mode inversion, this suggests that accurate models of the UAV need to be
available. The propulsion system of most UAVs satisfies the assumption of a body-
fixed force vector along the longitudinal axis. However, the moment assumption is
more restrictive, and classic fixed-wing UAVs do not satisfy it. The type of agile
fixed-wing UAVs that Bulka et al. use in their experiments can generate arbitrary
moment vectors thanks to its low weight, which gives it a high thrust-to-weight
ratio and the resulting maneuverability, as demonstrated in prior work by Khan
and Nahon [96]. Cory and Tedrake [41] use a similar light-weight UAV in their
perching experiments but significantly less actuation. See also the work of Moore
et al. [133] and Basescu and Moore [8], who recently published results on post-
stall motion planning based on NMPC with direct actuator access. The outlined
results are impressive regarding the agile maneuverability thanks to model-based
control algorithms. However, the experiments are conducted in controlled lab en-
vironments where wind disturbances are not a factor. This thesis follows the trend
of model-based controllers. The distinction is that we target outdoor applications
in potentially harsh weather conditions.

NMPC extend the abilities of LQR control with the short-term prediction of the
system trajectories and inherent enforcement of system constraints. A linear state-
space model is not required, and the full nonlinear dynamics can be part of the
constraints as long as the formulation is computationally tractable. Depending on
the dynamic model, employed solver, and embedded hardware, the optimal control
problem can repeatedly be solved fast enough for the desired update rate of the
controller. The computational demands of NMPC have been prohibitive for real-
time applications in UAVs due to the need for high update rates to control the fast
dynamics. This is the reason that we mainly see linear MPCs in aerospace control
in the past two decades with local linear models in a small envelope where it can
be hard to outperform a PID controller. To meet the computational capacities of
available hardware, engineers have mostly looked at NMPC for kinematic control
with a low-level autopilot in the loop, an approach called control-augmented MPC.
Good examples for this are the publications by Yang et al. [196], Garcia et al. [61],
Stastny et al. [175], Gavilan et al. [62], and Alessandretti et al. [3]. A comprehensive
overview of MPC in aerospace systems is the work by Eren et al. [50].
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In all the mentioned examples, aerodynamic effects and control surface limits
remain hidden behind a layer of abstraction in the control-augmented approach,
making them inaccessible to the MPC.

Except for iterative LQR and NMPC, the outlined nonlinear control method-
ologies extend linear control theory in the sense that they can handle nonlinear
process models and add a level of adaption. Proofs of asymptotic or exponential
convergence to a bounded set around the reference exist for Lyapunov-based de-
signs. However, they often do not add much conceptually to regular PID designs.
In contrast, NMPC, with its predictive capabilities and constraint enforcement,
actually brings something new to the table. Therefore, it is subject to a significant
part of this thesis, and we give it more focus in the next section.

1.2.3 Model Predictive Control

The key strengths of (nonlinear) MPC are the simple design of MIMO control loops,
constraint enforcement, inherent robustness, and performance optimization, as dis-
cussed by Di Cairano and Kolmanovsky [45]. But there are challenges to a real-time
controller that delivers satisfactory results. In addition to the mentioned high com-
putational capacities, we need a process model that captures nonlinearities that
are in particular significant during transients. Finding an accurate model usually
requires a substantial system identification effort. Other obstacles can be the de-
pendence on accurate state estimates and a lack of well-studied tuning guidelines.
We address each desirable feature of MPC and questions on tackling the challenges
separately in the following.

The multivariable control ability of MPC can already yield superior perfor-
mance to SISO control loops that connect single pairs of state variables and ac-
tuators, and an increase of available actuators in the configuration adds to the
gap. Together with reinforcement learning (RL), it is one of the go-to methods for
complex tasks such as gait control of quadrupeds which is shown by Neunert et
al. [140].

Another complex task is the control of the take-off and landing in vertical take-
off and landing (VTOL) tilt-wing UAVs as Rohr et al. [159] demonstrate. One
appeal of MPC is that it approximates LQR locally, including its guaranteed gain
and phase margin, explaining its inherent local robustness. A global robustness
result is hard to achieve but considering practical limitations of the aerodynamic
model, which is usually the bottleneck, is not the most limiting factor in practice.

The explicit enforcement of constraints allows for a more aggressive controller
design in the presence of safety constraints, which would otherwise be dealt with by
careful tuning and protection logic within the control architecture. Another type
of constraint, such as those naturally arising from collision avoidance objectives or
cooperative missions, can be easily added. The designer of the NMPC can address
performance through the objective function and conduct the tuning in the space
of the performance criterion itself rather than tweaking proportional or deriva-
tive gains of a proportional-derivative (PD) controller. However, the other way of
looking at it is that it is not intuitive to provide higher bandwidth and modify
damping.
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The inherent re-planning capabilities of MPCs can increase the autonomy of
UAVs as it can re-compute trajectories in events of appearing obstacles and system
failures, which is shown by Kufoalor and Johansen [98].

A feature that is generally nice to have and particularly important in the event
of delays or loss of communication.

As mentioned, the repeated solution of the optimal control problem results in
a high computational footprint that needs to be met by the embedded comput-
ing platform. The required computing capacity can be problematic on platforms
restricted to robust and resource-limited microcontrollers. However, in the field of
fixed-wing UAVs, it is often possible to extend the flight stack with a computa-
tionally powerful SBC. The cost of the added hardware is usually a fraction of a
standard fixed-wing UAV’s hardware configuration and well-developed open-source
solvers are available. One software package for embedded optimization is acados3,
which is widely adopted by the research community and under active develop-
ment by the group of Mortitz Diehl. For more details about acados and a list of
alternative software packages see [185].

The dynamics of fixed-wing aircraft are well-studied and understood to the ex-
tent that it remains to identify a model of the generalized aerodynamic forces of a
particular airframe either in wind tunnel experiments or based on flight data. The
result is a nominal physics-based model. To further improve the model, data-driven
approaches are available to capture the mismatch online, for example based on re-
sults from Gaussian Process regression published by Williams and Rasmussen [191].
Successful applications include the work by Hewing et al. [76] on racing cars, and
by Torrente et al. [184] on multi-rotor UAVs. Similar results for fixed-wing UAVs
have not been published.

Full-state feedback needs to be available to set the initial conditions of the
controller model at each update. The estimator in the feedback loop is thus a
critical component that can be a limiting factor to the overall control performance.
In UAV applications, the use of inertial navigation systems (INSs) aided by global
navigation satellite systems (GNSSs) is state-of-the-art and Farrel et al. [53] and
Markley et al. [119], among others, document available algorithms. Recent results
on wind velocity estimators include the work by Johansen et al. [85] and Wenz and
Johansen [189], with available open-source implementations [7].

Finally, safety certificates for aerospace applications lean on phase and gain
margins in the relevant frequency spectrum of the closed-loop. It is relatively
straightforward to establish the properties for linear systems, but a translation
from MPC is difficult. For UAV operations, higher risk can be accepted compared
to passenger aircraft, but certification remains a topic of current development.

The attitude control problem has been addressed with NMPC in research on
multi-rotor UAVs by Kamel et al. [91] and Zanelli et al. [197]. Gupta et al. [73]
and Kalabic et al. [89, 90] solve the problem for constrained maneuvers with satel-
lites. However, there are few applications to fixed-wing UAVs. Those that exist use
linear perturbation models and thus linear MPC, as Oettershagen et al. [143] or
Mammarella et al. [116]. The difference is arguably in the complexity of modeling
the actuated rotational dynamics.

3https://github.com/acados/acados
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1.3. Research Objectives

Rotor speeds that can be statically mapped to the resulting torque vector
(multi-rotors, see [184]) or reaction wheels to induce the control moment directly
(satellites, see [119]) are more straightforward than the aerodynamic effects of de-
flected control surfaces (fixed-wing).

1.3 Research Objectives

Being part of the Autofly project team, which includes one post-doc and two Ph.D.
candidates, with numerous colleagues at the UAV Lab opens for a range of intrigu-
ing pursuits that one can follow. The overall objective of the Autofly Project and
this thesis was to address fundamental research questions related to the nonlinear
control of UAVs.

Our research hypothesis was that nonlinear autopilots could significantly in-
crease the flight envelopes of fixed-wing UAVs compared to conventional linear
autopilot designs. An increased flight envelope opens for a broad range of possible
new applications, such as the described maneuvers in the preceding sections. Ex-
ploiting the physical limitations by using advanced nonlinear control designs can
increase the UAV’s performance. Further, increasing the autopilot’s capabilities to
reject environmental disturbances opens for operation in more challenging weather
conditions and therefore increase the number of days UAVs can be operated safely.
The idea that nonlinear designs can recover control after severe failures and un-
foreseen events is a step towards increased autonomy of the UAVs.

We seek nonlinear controller designs that achieve high performance and global
asymptotic closed-loop stability to tackle sudden disturbances that cast the UAV
far from its nominal desired state. Recall the example of attitude stabilization with
a 140-degree angle between the UAV roll angle and its reference. This scenario is
a strong motivation for global closed-loop stability, for which we also wanted to
achieve fault tolerance and robustness of the nonlinear autopilot system. Where
possible, the stability properties of the designed control laws should be proven
based on rigorous Lyapunov stability analysis.

The focus is on the development of low-level motion control algorithms with
explicit consideration of nonlinear aerodynamic models and actuator limitations.
The autopilot designs should be tested in numerical case studies that include non-
linear simulation models with realistic aerodynamic coefficients obtained in wind
tunnel experiments.

The final essential factor for the development process is the experimental veri-
fication of the designed nonlinear autopilot algorithms, with successful demonstra-
tions of their real-time implementation in challenging applications and case stud-
ies at NTNU’s UAV Lab. Overall, the thesis focuses on the benefits of advanced
control methods in implementable autopilot designs and related control tasks for
fixed-wing UAVs. We are not trying to establish fundamentally novel contributions
to nonlinear control theory, but instead use recent advanced control methods, such
as Model Predictive Control, as a basis for designing the autopilot and overall con-
trol tasks. Practical demonstrations in experiments have always been a major goal
in our work.

11



1. Introduction

More specifically, the research objectives led us to consider the following tasks
in this thesis:

• Design Lyapunov-based attitude control laws to meet desirable global sta-
bility and performance requirements in the unconstrained case. Use hybrid
feedback control, motivated by [126], to overcome the topological obstruction
of the attitude control problem and globally stabilize time-varying reference
signals, which can not be done by smooth feedback alone.

• Design (nonlinear) MPCs for low-level motion control that satisfies system
constraints and provides optimal performance. Due to the high computational
footprint of MPC, implementing it on resource-limited embedded computing
platforms can be challenging, which possibly limits the MPC to serve as a ref-
erence method for other developed controllers with a smaller computational
footprint. Investigate the feasibility of onboard control in real-time and fur-
ther pursue MPC designs for experimental testing if the employed nonlinear
solver meets the closed-loop runtime requirements on the targeted embedded
hardware.

• Benchmark the low-level motion control methods using developed nonlinear
simulator models. The benchmarks will, in particular, focus on disturbance
rejection in highly turbulent flight and recovery after the loss of control,
leading to attitude angles far from the reference with up to 140 degrees.

• Develop an experimental platform that allows testing the developed con-
trollers in flight experiments. The goal is to enable the rapid development
and testing of highly experimental control algorithms. To this end, the archi-
tecture and procedures of the platform need to be designed in a way that does
not interfere with the standard autopilot system such that a safe fall-back
mechanism is always available.

1.4 Contributions and Outline

The thesis is organized into 8 chapters, including this introduction and a concluding
chapter. In the following, we look at the topic and contributions of Chapter 2 to
Chapter 8.

Chapter 2: Preliminaries
This chapter introduces preliminary concepts necessary for the following chapters,
ranging from the notation, coordinate frames and the dynamic models used for
the model-based controller designs to the experimental platform to validate the
controllers. The feedback assumptions are outlined, and a motivational example
concludes the chapter. The content of this chapter summarizes results that ap-
peared in publications by other authors; among others Beard and McLain [9] and
Stevens et al. [177].

12
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Chapter 3: Experimental Platform
Publications:
[38] Erlend M. Coates, Dirk Reinhardt, Kristoffer Gryte, and Tor Arne Johansen.

Toward Nonlinear Flight Control for Fixed-Wing UAVs: System Architecture,
Field Experiments, and Lessons Learned. In 2022 International Conference
on Unmanned Aircraft Systems (ICUAS), accepted

Topic: The intention of this chapter is to cover implementation aspects and test
procedures in relation to our work in the Autofly project. It is not a contribution
that covers research questions concerning autopilot designs of fixed-wing UAVs,
but is meant to facilitate rapid testing of experimental low-level motion controllers.
The focus is on the hardware components and communication architecture to allow
implementing experimental algorithms. The outlined architecture does not inter-
fere with the standard flight stack in order to keep it as a fall-back mechanism
whenever necessary, which was one of the design requirements. We moreover de-
scribe development tools ranging from simulation to experiment protocols that are
proven in the field. The publication moreover contains valuable lessons learned and
experimental results that are not included in this chapter.

Contributions: The nature of this chapter’s contributions is less academic and
is intended as a description of our experimental platform and valuable experiences
that we had to collect the hard way when working on the flight stack and imple-
mentations of the control algorithms. It moreover includes valuable practices than
can be implemented by other researchers to facilitate rapid testing of experimen-
tal controllers that require direct access to the actuators with minimal impact on
safety protocols.

Chapter 4: Geometric Attitude Control
Publications:
[37] Erlend M. Coates, Dirk Reinhardt, and Thor I. Fossen. Reduced-Attitude

Control of Fixed-Wing Unmanned Aerial Vehicles Using Geometric Methods
on the Two-Sphere. IFAC-PapersOnLine, 53(2):5749–5756, 2020. 21st IFAC
World Congress

[153] Dirk Reinhardt, Erlend. M. Coates, and Tor Arne Johansen. Hybrid Control
of Fixed-Wing UAVs for Large-Angle Attitude Maneuvers on the Two-Sphere.
IFAC-PapersOnLine, 53(2):5717–5724, 2020. 21st IFAC World Congress.

Topic: This chapter includes the presentation of geometric attitude controllers
for the tracking control of roll and pitch references. The control law leverages at-
titude representations on the two-sphere and thus avoids problems of conventional
representations such as Euler angles or quaternions. Euler angles have the draw-
back of the singularity known as "Gimbal lock". A design of separate control loops
for pitch and roll control can introduce disturbances that a coupled roll and pitch
control can avoid. Quaternion-based control formulations can address a coupled
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1. Introduction

controller formulation but usually control the entire attitude, which is unsuitable
for fixed-wing UAVs where heading or course is controlled through bank-to-turn
maneuvers. An additional drawback of attitude controller designs based on quater-
nions is the unwinding phenomenon that results from the double cover of the Special
Orthogonal Group of order Three by the quaternion space.

Some authors address this with a switching logic based on the sign of the quater-
nion. By directly designing the feedback control law on the two-sphere, we avoid the
singularities of Euler angles and the unwinding phenomenon of quaternions. The
coupling between roll and pitch is a natural result of the design on the two-sphere,
and we design proportional state feedback such that the controller is incentivized
to steer the attitude in the direction of the shortest path. We establish almost
semi-global exponential stability for attitude tracking of a time-varying reference
signal and almost global asymptotic stability for attitude regulation to a constant
reference.

A demonstration in a simulation study shows the efficacy of our approach before
we provide the extension to a hybrid control law that achieves global exponential
stability, which we show in detailed proofs based on results in hybrid Lyapunov
stability theory published by Goebel et al. [64]. We draw on similar results that
Mayhew et al. [126] and Casau et al. [24] published for general rigid bodies and work
done by Lee [108] on multi-rotor UAVs. The chapter ends with an experimental
demonstration showing the practical use of our results.

Contributions: The contributions include a solution to the low-level attitude
control problem based on results in geometric control to which Bullo et al. made
substantial contributions [18, 21]. We propose an alternative attitude representa-
tion that can replace the frequently used expressions based on Euler angles or
quaternions. A Lyapunov-based stability analysis establishes almost global asymp-
totic stability in the case of regulating to constant reference and semi-global ex-
ponential stability when tracking time-varying references. The extension to hybrid
proportional feedback is shown to result in global exponential stability. This con-
tribution is the first to apply geometric attitude control to the low-level control
problem of fixed-wing UAVs.

Chapter 5: Direct Nonlinear Model Predictive Control for
Attitude and Speed Control

Publications:
[155] Dirk Reinhardt and Tor Arne Johansen. Nonlinear Model Predictive At-

titude Control for Fixed-Wing Unmanned Aerial Vehicle based on a Wind
Frame Formulation. In 2019 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 503–512, June 2019

[156] Dirk Reinhardt and Tor Arne Johansen. Control of Fixed-Wing UAV At-
titude and Speed based on Embedded Nonlinear Model Predictive Control.
IFAC-PapersOnLine, 54(6):91–98, 2021. 7th IFAC Conference on Nonlinear
Model Predictive Control NMPC 2021

14



1.4. Contributions and Outline

[152] Dirk Reinhardt, E. M. Coates, and Tor Arne Johansen. Low-level Nonlin-
ear Model Predictive Attitude and Speed Control of Fixed-Wing Unmanned
Aerial Vehicles. Control Engineering Practice, submitted.

Topic: We exploit the attitude representation introduced in the preceding chap-
ters to design different control strategies based on NMPC with direct access to
the control surfaces to solve the problem of controlling the attitude and speed of a
fixed-wing UAV. As we discussed previously, it is the state of the art to use NMPC
to design kinematic controllers for fixed-wing UAVs that rely on off-the-shelf low-
level autopilots to stabilize the UAV to given attitude and speed commands. There
exist linear MPC designs to control the low-level dynamics, but we could not find
publications where the full nonlinear dynamics model of a fixed-wing UAV is part
of the MPC to solve the attitude and speed control problem.

We present a NMPC that uses the Special Orthogonal Group of order Three
for attitude parameterization and a dynamic model expressed in the stability and
wind frame coordinates. The attitude kinematics are bilinear, and flight envelope
constraints are formulated as box constraints of the state vector to limit the con-
sequences of the non-convexity of the problem. We present a discussion on how
the devised NMPC can be incorporated into a standard control architecture and
evaluate the closed-loop solver runtime on a suitable embedded SBC before demon-
strating superior performance compared to industry-standard PID control in flight
experiments.

Contributions: The contribution of this chapter is a NMPC with direct access
to the actuators that tackles the low-level control problem of tracking attitude and
speed references from a higher-level guidance controller. The developed NMPC can
work as a low-level controller that enforces safe operation within the flight envelope
such that engineers can design the outer level guidance controllers without having
to carefully consider safety constraints. Experiments show the robustness of the
controller to significant inaccuracies of the employed model for the type of UAV
that was used in the experiments, which speaks to the robustness of the controller
and the possibility to use aerodynamic models from limited system identification
efforts. This contribution is the first to include a full nonlinear dynamic model in a
NMPC implemented on an onboard embedded computing platform to control the
low-level dynamics of a fixed-wing UAV with direct access to the actuators instead
of sending reference signals to an onboard controller, and demonstrates a successful
real-time application in experiments.

Chapter 6: Coupled Nonlinear Model Predictive Control and
Geometric Attitude Control
Publications:
[157] Dirk Reinhardt and Tor Arne Johansen. Nonlinear Model Predictive Control

combined with Geometric Attitude and Speed Control for Fixed-Wing UAVs.
In 2021 International Conference on Unmanned Aircraft Systems (ICUAS),
pages 465–475, 2021.
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Topic: The geometric control law in the previous chapter includes dynamic model
inversion. The assumed reference signals on angular rate and acceleration are also
not provided by many outer level guidance controllers.

In this chapter, we propose the design of a NMPC that can be used to overcome
the topological obstruction on the two-sphere for which we previously designed the
hybrid control law, and generate the required reference signals. The NMPC includes
the closed-loop dynamics of the geometric attitude controller in its process model.
It uses angular acceleration as a decision variable to generate the reference signals
for the geometric controller and extends the low-level controller with speed control
in which the throttle set-point is set directly by the NMPC. A combination of the
predictive capabilities of the NMPC with the more reactive geometric controller
allows for lower update frequencies of the NMPC. We discuss the results of this
approach in simulation examples.

Contributions: The contribution of this chapter is a cascaded controller that
consists of the geometric attitude controller, presented in Chapter 4, and a NMPC.
The NMPC exploits the tracking capabilities of the geometric attitude controller
by setting suitable reference signals for angular rate and acceleration. Results from
a simulation study show that the cascade with NMPC significantly improves the
performance in comparison to the nominal geometric attitude controller and that is
a viable alternative to the hybrid extension. However, the cost is the increased com-
putational complexity of the NMPC which limits this controller to more powerful
embedded computing platforms.

Chapter 7: Extended Aerodynamic Modeling of the Skywalker
X8 Fixed-Wing Unmanned Aerial Vehicle
Publications:
[158] Dirk Reinhardt, Morten D. Pedersen, Kristoffer Gryte, and Tor Arne Jo-

hansen. A Symmetry Calibration Procedure for Sensor-to-Airframe Misalign-
ments in Wind Tunnel Data. In 2022 Conference on Control Technologies
and Applications (CCTA), accepted

[154] Dirk Reinhardt, Kristoffer Gryte, and Tor Arne Johansen. Modeling of the
Skywalker X8 Fixed-Wing UAV: Flight Tests and System Identification. In
2022 International Conference on Unmanned Aircraft Systems (ICUAS), ac-
cepted

Topic: The experiments conducted in Chapter 5 showed that the dynamic model
used in the NMPC has some significant shortcomings which can be attributed to
the aerodynamic model. Improving the aerodynamic model, by using the available
wind tunnel data that is based on, in combination with flight test data, is the main
motivation for this chapter.

One contribution of this chapter is a calibration routine to transform datasets
obtained in wind tunnel experiments to minimize asymmetries that take root in
misalignments of the coordinate frame of the force and moment sensors and the
body-fixed coordinate frame that describes the airframe.
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The chapter is moreover a contribution that provides an improved aerodynamic
model than was previously published by Gryte et al. [70]. We achieve this by modi-
fying the model structure, using the data from the wind tunnel more cautiously, and
finally, by identifying the dynamic parameters by using sequentially thresholded
least squares algorithm (STLSQ) optimization proposed by Brunton et al. [16].
The result is a model that augments the identifiable model from the wind tunnel
with a parsimonious damping model based on flight data. Flight experiments show
that the new model is a significant improvement to the baseline model.

Contributions: The contributions of this chapter include a calibration routine
that can be used to increase the symmetry of measurements of the generalized aero-
dynamic forces for airframes that have a plane of symmetry by design. The method
is demonstrated using the available wind-tunnel data recorded for the Skywalker
X8 airframe. With a slight modification to the model structure, the static model
already improves the baseline model that was used at the UAV Lab. Augmentation
of the static model with a damping model found in flight experiments using STLSQ
optimization further improves the model quality. The resulting models are made
publicly available for the research community.

Chapter 8: Direct Nonlinear Model Predictive Control for the
Path-Following Control Problem
This chapter includes preliminary work and its content has not been published by
the time of writing the thesis.

In contrast to the preceding chapters that are primarily concerned with low-
level motion control, this chapter discusses a NMPC design for the path-following
problem. The research results have not appeared at a journal or conference when
submitting the thesis. The NMPC design in this chapter can track parametric
curves in three dimensions. We use the framework by Faulwasser et al. [54] and
design the NMPC with a timing law to simultaneously optimize actuator signals
and the reference position on the path. Our controller is similar to the one that
Yang et al. [194] recently published, but with the difference that we consider the
full dynamic model instead of a kinematic guidance model for controller design.
The approach is evaluated in numerical examples and the chapter concludes with
a discussion on future work toward real-time experiments.
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Other publications
I contributed to the development and experimental testing in a publication where
the attitude control problem was solved using deep reinforcement learning (DRL).
The results are intriguing, but are not included in this thesis. They can be found
in the following paper:
[14] Eivind Bøhn, Erlend M Coates, Dirk Reinhardt, and Tor Arne Johansen.

Data-Efficient Deep Reinforcement Learning for Attitude Control of Fixed-
Wing UAVs: Field Experiments. arXiv preprint arXiv:2111.04153, submitted
to IEEE Transactions on Neural Networks and Learning Systems, 2021
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Chapter 2

Preliminaries

2.1 Nomenclature and Definitions

Bold font indicates a vector entity, i.e. x, and its elements are denoted by xi. Capital
letters are used in addition to bold font to denote matrices, A. Its element in row
i and column j is denoted by [A]i,j . The set of all natural numbers is denoted by
N. The real numbers are denoted by R. All positive real numbers and all positive
real numbers including zero are denoted by R>0 and R≥0, respectively. The set
of real-valued vectors of dimension n is denoted by Rn and similarly the set of
real-valued matrices is denoted by Rm×n.

To make the text easier to follow, we will regularly use nx when we refer to
dimension of a vector x ∈ Rnx . We are usually looking at column vectors when
discussing elements in Rn. The transpose of either a matrix or a vector is denoted
by ·>. The concatenation of vectors x ∈ Rnx and y ∈ Rny is denoted by (x; y) =

[x>, y>]
>. An ordered collection of objects x ∈ X and y ∈ Y is denoted by

(x,y) ∈ X × Y. The identity matrix of dimension n is denoted by In, and the
subscript is dropped the dimension should be clear from context. Similarly, the
matrix of zeros with dimension m and n is denoted by 0m×n.

The Euclidean norm of a vector x is denoted by ‖x‖ =
√
x>x. The first time

derivative of a signal x(t) is denoted by d
dtx = ẋ. The second time-derivative is

denoted by d
dt ẋ = ẍ. The same notation applies for vector quantities. For ease of

notation, we drop the time argument whenever possible. An Eigenvalue of a matrix
A is denoted by λ(A) and the minimum and maximum Eigenvalue are denoted by
λmin(A) and λmax(A), respectively.

When discussing the proximity of points, we sometimes use the unit ball defined
as B = {x ∈ Rn : ‖x‖ < 1}. The quadratic norm with respect to a positive definite
weighting matrix Q = Q> is denoted by ‖x‖2Q = x>Qx. Let eni ∈ Rn×1 be a
column vector with the i-th element equal to 1, but 0 anywhere else. In the special
case of n = 3, we drop the dimension, i.e. use ei = eni . Let 1n ∈ Rn×1 be a column
vector with 1 at every element. Matrices with m rows and n columns with all
elements being zero is denoted by 0m×n. For any bounded variable, · and · denote
lower and upper bounds, respectively.
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2. Preliminaries

2.1.1 Matrix and Vector Identities

Given two vectors x,y ∈ R3, their cross product can be represented as a matrix
multiplication x × y = S(x)y where the skew-symmetric operator S : R3 → R3×3

is defined as

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . (2.1)

The inner product is denoted by x · y = x>y ∈ R.
A few practical properties of the skew-symmetric operator, cross product and

inner product for any x, y, z ∈ R3 include

S(x)
>
= −S(x) (2.2)

x · (y × z) = y · (z× x) = z · (x× y) (2.3)
‖x× y‖2 = ‖x‖‖y‖ − (x>y)2 (2.4)

S(x)3 = −‖x‖2S(x) (2.5)
S(x× y) = S(y)S(x)− S(x)S(y), (2.6)

and will be used in the context of geometric control in Chapter 4.
Let n be the unit vector that is orthogonal to the plane spanned by x,y ∈ R3

and θ ∈ [−π, π] be the angle between x and y on that plane, then the following
relationships are useful

x× y = ‖x‖‖y‖ sin(θ)n (2.7)
x · y = cos(θ). (2.8)

2.1.2 Derivative Functions

Suppose that f : X → R is a scalar-valued function that is differentiable on the
open set X ⊂ Rn. Then its gradient is denoted by ∇f = ∂f(x)

∂x ∈ Rn. The gradient
at x ∈ Rn in the direction of y ∈ Rn is given by ∇f · y ∈ R, and is often
referred to as the directional derivative in the literature. In cases where we are
working with a scalar-valued function f : X × Y → R that is differentiable on the
open set X × Y ⊂ Rn × Rn, the gradient with respect to x will be denoted by
∇xf = ∂f(x,y)

∂x ∈ R.
Suppose now that f : X → Rm is a vector-valued function instead, and it is

differentiable on the open set X ⊂ Rn. Its derivative function is defined as

∂f(x)

∂x
=

∇f1...
∇fm

 =


∂f1
∂x1

. . . ∂f1
∂xn... . . . ...

∂fm
∂x1

. . . ∂fm
∂xn

 ∈ Rm×n, (2.9)

and is usually referred to as Jacobian matrix.
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2.1.3 Manifold Concepts
In parts of this thesis we will look at control algorithms that draw upon the field of
Geometric Control. The topic of Geometric Control itself is quite rich [19, 28, 109],
but one can say that the pervasive paradigm is the goal to design control algorithms
directly on the configuration manifold instead of using local coordinates. This allows
for the design of global controllers that can handle wide range of rotational motion
and rapid attitude changes. This is in contrast to controllers that are reflected in
the classical PID control used for conventional aircraft autopilots which usually
deal with local set-point stabilization of a given attitude reference.

In general, a differentiable manifold embedded in Rn is described by

M = {x ∈ Rn : fi(x) = 0, i = 1, . . . , l}, (2.10)

where the scalar-valued and differentiable functions fi : Rn → R are such that their
gradients ∇fi are linearly independent vectors in Rn for each x ∈ M . Manifolds
for which the functions fi are globally differentiable with respect to the manifold
are often referred to as smooth manifolds.

The global configuration manifold that describes the attitude of a rigid-body is
the Special Orthogonal Group of Order Three which is defined as

SO(3) = {R ∈ R3×3 : R>R = I, det(R) = 1}. (2.11)

The elements R ∈ SO(3) are referred to as a rotation matrix, and its columns
describe axes of a frame of interest relative to a reference frame. The Lie Group
SO(3) has an associated Lie algebra so(3) defined as

so(3) = {L1ω1 + L2ω2 + L3ω3|ω ∈ R3}, (2.12)

with the basis

L1 =

0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

0 −1 0
1 0 0
0 0 0

 . (2.13)

Note the equivalence to the skew-symmetric operator which can be defined by using
the basis Li.

Another important manifold for this thesis is the n-Sphere which is defined as

Sn = {x ∈ Rn+1 : ‖x‖ = 1}. (2.14)

In particular the Two-Sphere which is embedded in R3 and denoted by S2 will be
used throughout this text to describe the direction in which a given axis is pointing.

The Tangent Space at a point x ∈ S2 is defined as the set of three-dimensional
vectors that are orthogonal to x

TxS2 = {y ∈ R3 : x · y = 0}. (2.15)

It will be useful to decompose a vector v ∈ R3 into an element that is in TxS2
and component normal to it. For this purpose consider the orthogonal projection
operator Π⊥

x : R3 → TxS2 defined as [109]

Π⊥
x = I− xx> = −S(x)2, (2.16)
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Figure 2.1: Illustration of the local flow for a strip of the wing generating lift ∆L and drag
∆D, which act along the axes zw and xw, respectively. The body-fixed axes (xb,yb, zb)
are also shown. Modified based on [163].

and the decomposition
v = Π⊥

x v + (I−Π⊥
x )v, (2.17)

where the first term on the right-hand side is the part of v is the projection onto
TxS2 and the second term is the part that is orthogonal to TxS2. We will sometimes
refer to this space as the normal space and denote it as NxS2. In this context we
will also use the parallel projection operator Π‖

x : R3 → NxS2 defined as

Π‖
x = I−Π⊥

x = xx>. (2.18)

2.2 Kinematics, Dynamics and Actuation

2.2.1 Coordinate Frames
Throughout the text it will often be necessary to use different coordinate frames
in kinematic and dynamic equations and the associated vector or matrix variables.
Let {a}, {b}, {c} be different frames that may be moving relative to each other.
Then a vector xabc ∈ R3 denotes a vector that is decomposed along the axes of {a}
and describes a quantity, e.g. orientation or velocity, of {c} relative to a reference
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frame {b}. In some cases we leave the coordinate axes unspecified and drop the
superscript, only assuming that all variables within an equation are described by
the same coordinates. The exception to this rule are variables that describe a
rotation. In that case there is no superscript and the axes of {c} are described in
coordinates of {b}, e.g. Θbc for Euler angles.

The following coordinate frames are useful to understand and describe kine-
matics and dynamics of aircraft in general, but particular for small UAVs that are
subject to a more pronounced impact of environmental disturbances such as wind.
We give a brief presentation here, but a more elaborate discussion can be found in
[9, 176, 177].

Relative velocity For an understanding of part of coordinate frame, it is im-
portant to first introduce the relative velocity vector, which describes the velocity
of the UAV relative to the surrounding air mass. The surrounding air mass is
moving with the local wind field. Independent of the coordinates, let the vector
describing the linear velocity of the UAV with respect to the ground be denoted by
vnb ∈ R3, and the linear velocity vector of the surrounding air mass with respect to
the ground, i.e. wind in layman terms, be denoted by vnw ∈ R3, then the relative
velocity vector is given by

vr = vnb − vnw. (2.19)

This relationship is sometimes referred to as wind triangle in textbooks that ex-
plicitly deal with the flight mechanics of small UAVs (see [9]). Based on vr the
aerodynamic forces and moments can be defined. Other textbooks that consider
more heavy passenger aircraft do not take wind into account, given that forces and
moments due to the surrounding air mass are negligible and vr ≈ vnb is often a
good approximation at the speed that these aircraft operate. Nonetheless, modern
passenger aircraft normally come with equipment to measure the relative velocity
vector. For small UAVs in contrast, an estimation algorithm usually needs to be
employed (for examples see [15, 85, 189]).

NED The North-East-Down frame is a local reference frame that is practical to
use for applications with UAVs limited to a small area such that the Earth can be
approximated by a flat surface and a local tangent plane may be used to describe
the position and orientation of the UAV. The coordinate frame is denoted by {n}
and usually has its origin and orientation defined relative to a local base-station
from which the UAV is operated. Its axis xn points towards the North, zn points
in the direction of gravity, and yn = zn × xn completes a right-handed coordinate
system. For small UAVs, considering the NED frame to be the inertial frame is
usually a good approximation, and we make use of it throughout this text.

BODY The body-fixed frame is denoted by {b} and is described by the axes
(xb, yb, zb). It is fixed to the airframe of the vehicle. Position and attitude of the
body-fixed frame are expressed relative to the NED frame, but its linear and an-
gular velocities are often expressed along the axes of b. The axis xb points forward,
and we define zb as a vertical axis pointing downward. The axis yb = zb×xb again
completes a right-handed coordinate system.
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STABILITY To generate lift, the airfoil of the UAV needs to be oriented at a
positive angle with respect to the relative velocity vector that describes the linear
velocity of the UAV with respect to the velocity of the surrounding air mass. This
angle is referred to as angle of attack and denoted by α ∈ R. The angle of attack is
described by a left-handed rotation along yb such that the relative velocity vector
projected onto the xb−zb plane is aligned with xb. The resulting coordinate frame
is denoted by {s}.

WIND Similar to the angle of attack, there is an angle that describes the rotation
between the relative velocity vector and the xb − zb plane. It is called the sideslip
angle and denoted by β. The wind frame is rotated relative to the stability frame
by a right-handed rotation along zs with rotation angle β ∈ R. The wind frame is
denoted by {w}.

2.2.2 Attitude Representation and Kinematics
Rotation matrix

As discussed previously, a rotation matrix is an element of SO(3) and denoted by
R ∈ SO(3). We use it in this text develop the control laws, given that this eliminates
the need for handling the unwinding problem of quaternions and the singularity
problem of Euler angles, which we will briefly discuss in the next. Suppose the
angular velocity vector with which frame {a} rotates relative to frame {b} is given
along the axes of {b}, and it is thus denoted by ωbab. The continuous kinematic
equation of Rab is then given as

Ṙab = RabS(ω
b
ab). (2.20)

Euler Angles

Representing the attitude of a rigid body in terms of Euler Angles is often done
because they give a minimum parameterization of SO(3), and allow for an intuitive
interpretation of trajectories. However, one drawback is the problem of singular con-
figurations when two of the intermediate rotation axes coincide, commonly known
as gimbal lock. For local control laws, the singularity can be avoided, but it can
become an issue when designing global control laws that target a wide range of
rotational motion.

In aerospace applications it is common practice to use the intrinsic ZYX-
convention. This means that orientation of the body-fixed frame relative to the
reference frame is described by the rotation along zn by the yaw angle ψ ∈
[−π, π]. Thereafter, a rotation along the intermediate axis y′ by the pitch an-
gle θ ∈ [−π/2, π/2]. And the final rotation is about the intermediate axis x′′ by
the roll angle φ ∈ [−π, π].

A more thorough discussion of the rotation sequences, including illustrations
of the intermediate frames, can be found in any textbook on rigid-body motion
such as [9, 56, 119, 176, 177]. Some authors summarize the Euler sequence in one
variable denoted by Θ = [φ, θ, ψ]

> ∈ [π, π]× [−π/2, π/2]× [−π, π].

24



2.2. Kinematics, Dynamics and Actuation

This sequence of Euler angles parameterizes elements of SO(3) by

R(Θ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


=

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψcφ+ sθsψcφ
−sθ cθsφ cθcφ

 , (2.21)

where we used the shortened notation s := sin and c := cos. We will normally use
Θ or its associated rotation matrix to describe the orientation of the axes of the
body-fixed frame {b} with respect to the NED frame {n}. Thus, the Euler angles
will be denoted by Θnb and a vector vb can be transformed to vn and vice versa
by

vn = R(Θnb)v
b, vb = R(Θnb)

>
vn. (2.22)

A useful property of R(Θ) is that it gives a direct relationship between the
axes of the body-fixed frame and the axes of the NED frame by means of Euler
angles. Upon inspection of Eq. (2.21), note that this can be useful for designing a
low-level controller for roll and pitch that operates directly on S2 by extracting the
vector R(Θnb)

>
e3.1

The kinematic equation for the Euler angles is

Θ̇nb = T(Θnb)ω
b
nb (2.23)

with

T(Θnb) =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ)/ cos(θ) cos(ϕ)/ cos(θ)

 . (2.24)

Details can be found in standard textbooks [53, 56, 119, 177]. Note that using
Euler angles comes with the drawback of singular attitudes (gimbal lock).

Quaternions

Unit quaternions, commonly denoted by q ∈ S3, can be decomposed into q =
[s, r]

> where s denotes as scalar part and r ∈ R3 denotes a vector part. The inter-
pretation of unit quaternions is less intuitive compared to Euler angles, but they
are numerically more robust when used in integration schemes, which is the reason
why they are often used in numerical simulations. They also allow for attitude
interpolation.

An issue that needs to be considered when using unit quaternions for attitude
control is that S3 is a double cover of SO(3) which means that the same attitude can
be described by two equivalent quaternions2. When this is not taken into account
in the design of the control law, a rigid body that is initially close to the reference
attitude can be caused to perform a large rotational maneuver before eventually

1This will be central in the context of geometric attitude control in Chapter 4.
2The original unit quaternion and its conjugate [119] describe the same attitude
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being stabilized to the desired values. This problem is known as the Unwinding
Phenomenon [28] and some authors tackle this by stabilizing both the original
reference quaternion and its conjugate, given that unit quaternions allow for an
otherwise more intuitive design of Control Lyapunov Functions.

In this text we only use unit quaternions for simulation purposes so that it is
enough to be familiar with the kinematic equations

q̇nb =
1

2
T(qnb)ω

b
nb, with T(qnb) =

[
−r

sI+ S(r)

]
, (2.25)

For an exponential map from unit quaternions to the corresponding rotation
matrix one can use the quaternion to rotation matrix formula [172]

R(q) = (s2 − r>r)I+ 2rr> + 2sS(r). (2.26)

Rotations between BODY, STABILITY and WIND

The angle of attack α ∈ [−π/2, π/2] and sideslip angle β ∈ [−π, π] can be obtained
from the relative velocity vector vr = [ur vr wr]

> by

α = arctan

(
wr
ur

)
, β = arcsin

(
vr
Va

)
. (2.27)

Vectors in the frames {b}, {s}, {w} can then be transformed via the rotation
matrices Rbs,Rsw ∈ SO(3) defined as

Rbs(α) =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

 , Rsw(β) =

 cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

 . (2.28)

The magnitude of the relative velocity vector vr is often referred to as airspeed
and denoted by Va = ‖vr‖ ∈ R≥0.

Velocities

The velocity relative to the surrounding air is

vbr = RbsRswe1Va =

cos(α) cos(β)sin(β)
sin(α) cos(β)

Va (2.29)

The direction of travel of an aircraft is often expressed in terms of course angle
χ ∈ [−π, π] and flight-path angle γ ∈ [−π/2, π/2], a representation which is inde-
pendent of speed. The course angle describes the angle between the axis xn and
the ground velocity vector of the aircraft projected onto the North-East plane. It
can thus be determined from a velocity estimate vnnb =

[
vnnorth vneast vndown

]
as

χ = arctan

(
vnnorth
vneast

)
(2.30)
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The flight-path angle characterizes the climb rate of the aircraft and can be
determined as [9]

ḣ = −vndown = ‖vn‖ sin(γ)⇔ γ = arcsin

(
−vndown

‖vn‖

)
. (2.31)

2.2.3 Dynamics of a fixed-wing Unmanned Aerial Vehicle
The kinematic and dynamic equations that are commonly used to describe the
state of a single fixed-wing UAV can be derived by applying Newton’s second law
[9] and are given as:

ṗnnb = Rnbv
b
nb (2.32a)

v̇bnb =
1

m
(R>

wbf
w
a + f bt ) +R>

nbg
n − ωbnb × vbnb (2.32b)

Ṙnb = RnbS(ω
b
nb) (2.32c)

Jω̇bnb = S(Jωbnb)ω
b
nb +mb, (2.32d)

where pnnb ∈ R3 denotes the position of the UAV. The angular velocity is denoted
by ωbnb ∈ R3, J = J> ∈ R3×3 denotes the inertia matrix and gn = [0 0 g]

> denotes
the acceleration due to gravity. The mass of the UAV is denoted by m ∈ R. The
external forces due to aerodynamics and thrust and the external torque are denoted
by fwa , f

b
t ,m

b ∈ R3. They are functions of the relative velocities and actuators,
which will be discussed in a later section. The inertia matrix is given as

J =

 Jxx 0 −Jxz
0 Jyy 0
−Jxz 0 Jzz

 . (2.33)

An alternative dynamic model that is often used for stability analysis with
respect to the aerodynamic quantities (Va, β, α) can be found in [177]. We will
make use of it in the context of MPC, so it is worth to present it here. Let ωsnb
denote the angular velocity vector decomposed in {s}. The dynamic equations are
then given as:

 V̇a
β̇Va

α̇Va cosβ

 =
1

m
(fwa +Rwbf

b
t ) +RwbR

>
nbg

n − ωwnb × vwr (2.34)

Jsω̇snb = S(Jsωsnb)ω
s
nb +Rsbm

b − Js(ωsbs × ωsnb), (2.35)

where Js is given by the similarity transformation Js = RsbJ
bR>

sb. The angular
velocity ωsbs and the relative velocity vector vwr are given as:

ωsbs =
[
0 α̇ 0

]>
, vwr =

[
Va 0 0

]>
. (2.36)

For a detailed derivation of the model in a slightly different form, see [177].
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+δer

+δel

δt

Figure 2.2: The Skywalker X8 as one example of a flying-wing UAV. Moving the elevons
together or differentially corresponds to a virtual elevator or aileron deflection, respec-
tively. The throttle set-point determines the propeller speed.

2.2.4 Actuation
A standard set of actuators includes the control surfaces referred to as aileron,
elevator and rudder, with their deflections denoted by δa, δe, δr ∈ R. They are
illustrated in Fig. 2.1 and actuated to generate a moment around their respective
body-fixed axes. The aileron is a composite of two control surfaces on each side of
the aircraft and can be collected in one variable as

δa =
1

2
(δa,left − δa,right).

Its primary use is to induce a roll moment around xb. The elevator and rudder
usually consist of one single control surface, and they primarily act around yb and
zb, respectively.
Remark 2.1. In addition to their primary axes, the aileron and elevator induce a
minor moment around the respective axes of the other actuator. This cross effect is
considered as a disturbance in classical control design, but may be exploited when
using more advanced control methods such as model predictive control. We will
have more to say about this in Chapter 5.

One type of UAV that is more compact due to a missing tail and often comes
with a less expensive airframe is the flying wing, which does have a throttle and two
control surfaces on each side of the UAV, see Fig. 2.2. These surfaces are referred
to as elevons, and they are moved differentially to induce a roll moment and in the
same direction to induce a pitch moment. Thus, there is a linear map between left
and right elevons denoted by δel, δer ∈ R and δa, δa which we define as:[

δel
δer

]
=

[
1 1
−1 1

] [
δa
δe

]
. (2.37)

In classic flight mechanics, the control surfaces deflect an air-stream which
induces a dynamic pressure that is determined by the air density and speed to

q̄ =
1

2
ρV 2

a ∈ R≥0.
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The product of dynamic pressure and the surface area then results in a force
vector that has a component orthogonal to the primary axis around which the
control surface actuates. The control moment is then the result of the product of
the force component and the distance to the respective body-fixed axis. A large
enough airspeed is thus critical to ensure sufficient control authority of the sur-
face actuators. This fact can be taken into consideration when designing control
schemes to desaturate the control surfaces by increasing airspeed, thus making
them more effective [145]. However, for our control design purposes, we use the
following assumption

Assumption 1. The airspeed is greater or equal to a minimum airspeed denoted
by V a, i.e. Va ≥ V a.

Note that this assumption excludes take-off maneuvers during which the air-
speed may theoretically be zero.

The propeller is the primary actuator to add energy to the system. It is con-
trolled through the throttle δt ∈ [0, 1] which is usually mapped to a PWM signal
that is within the engine limits. The resulting thrust force f bt that can be generated
by the spinning propeller depends on the airspeed. We assume that the propeller
is mounted such that the force acts along the longitudinal axis

Assumption 2. The thrust force vector f bt is aligned with the longitudinal axis
xb.

And we impose an assumption on the wind conditions:

Assumption 3. The local wind field has a negligible angular velocity component,
i.e. ωbnb ≈ ωbr.

2.2.5 Model of the Generalized Forces
As it is often done in the literature we model the aerodynamic force vector in wind
frame coordinates and express it as a function of the relative velocities and con-
trol inputs, resulting in the forces referred to as drag, crosswind and lift, which are
denoted by D, C and L, respectively. They are obtained as a product of the aerody-
namic pressure with the wing surface area, denoted by S ∈ R and a dimensionless
aerodynamic coefficient. The result can be expressed asDC

L

 = fwa (vr,ωr, δ) = q̄Swing

CD(vr,ωr, δ)CC(vr,ωr, δ)
CL(vr,ωr, δ)

 (2.38)

with the structure of the aerodynamic coefficients as identified in [71]

CD = CD0 + CDα1α+ CDα2α
2 + CDβ

β + CDβ2β
2 + CDq

c

2Va
q + CDδe

δ2e , (2.39)

CC = CY0
+ CYβ

β + CYp

b

2Va
p+ CYr

b

2Va
r + CYδa

δa + CYδr
δr, (2.40)

CL = CL0
+ CLα

α+ CLq

c

2Va
q + CLδe

δe. (2.41)
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The moment vector mb is a function of the same variables as fwa , but is modelled
in the body-fixed frame l

m
n

 = mb(vr,ωr, δ) = q̄Swing

 bCl(vr,ωr, δ)cCm(vr,ωr, δ)
bCn(vr,ωr, δ)

 , (2.42)

and its aerodynamic coefficients have a similar structure compared to the force
coefficients

Cl = Cl0 + Clββ + Clp
b

2Va
p+ Clr

b

2Va
r + Clδa δa + Clδr δr, (2.43)

Cm = Cm0
+ Cmα

α+ Cmq

c

2Va
q + Cmδe

δe, (2.44)

Cn = Cn0 + Cnβ
β + Cnp

b

2Va
p+ Cnr

b

2Va
r + Cnδa

δa + Cnδr
δr. (2.45)

The structure of the aerodynamic coefficients is for the most part linear in the
state variables, which is the established way of modelling the aerodynamics in the
aerospace literature [9, 176, 177] where models are commonly expressed as linear
perturbation models at trim conditions around state vectors in the regime that the
aircraft operates. A model that consists of higher order polynomials to capture the
aerodynamics globally, i.e. for all possible relative velocities in the flight envelope,
is presented in [65] for passenger aircraft. Pioneering work for global models of agile
fixed-wing UAVs with high thrust-to-weight ratio is done in [163]. Our motivation to
use the model structure as outlined here is that wind-tunnel data for the Skywalker
X8 and the identified model is available at our lab thanks to the work of Gryte
et al. [71]. We do however discuss preliminary work based on a modern machine-
learning approach [16] that allows to identify the dynamic model based on flight
data, which requires less effort than classical approaches [82]. The results of the
machine-learning approach and improvements to the model of Gryte et al. are the
subject of Chapter 7.

The generalized forces can be decomposed into an aerodynamic flow term f(vr),
a damping term D(vr,ωr) and a control-effectiveness term G(vr). The resulting
moment can then be expressed as

mb(vr,ωr, δ) = f(vr) +D(vr,ωr) +G(vr)
[
δa δe δr

]> (2.46)

with the aerodynamic flow term as

f(vr) = q̄Swing

 b(Cl0 + Clββ)
c(Cm0 + Cmαα)
b(Cn0 + Cnβ

β)

 , (2.47)

the damping matrix

D(vr,ωr) = q̄Swing


b2

2Va
Clp 0 b2

2Va
Clr

0 c2

2Va
Cmq 0

c2

2Va
Cnp 0 c2

2Va
Cnr

 , (2.48)
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and the control-effectiveness matrix

G(vr) = q̄Swing

bClδa 0 bCnδr

0 cCmδe
0

bCnδa
0 bCnδr

 . (2.49)

The matrix G(vr) has full rank for all Va > 0 and Cmδe
(ClδaClδa − ClδaClδa ) 6= 0

as noted in [145].
The angular acceleration can now be expressed as

Jω̇bnb = S(Jωbnb)ω
b
nb + f(vr) +D(vr)ω

b
nb +G(vr)

[
δa δe δr

]>
. (2.50)

This representation is useful to design controllers that include feedback lin-
earization/dynamic inversion, as it allows us to explicitly remove the aerodynamic
flow term, the damping term or parts of it from the dynamics. In the case of a
flying-wing configuration that that does include a rudder, the third column is re-
moved from G(vr), making it rank-deficient, which shows that this type of UAV
is underactuated [179].

Another representation of the rotational dynamics is in the control-affine form
in which the right-hand side of the dynamic equation is split into a drift-term,
independent of the control variables, and a control-affine term

Jω̇bnb = f(vr,ω
b
nb) +G(vr)

[
δa δe δr

]>
, (2.51)

with f(vr,ω
b
nb) = S(Jωbnb)ω

b
nb + f(vr) +D(vr)ω

b
nb.

Note that the moment vector is purely based on the relative velocities and
control surface deflections. Depending on the type and mounting of the propeller,
the UAV may actually experience a moment coming from the propulsion system,
suggesting that the throttle set-point δt should be included in the moment vector.
However, we consider this effect to be difficult to model and also small enough to
be compensated for through integral action in the controller design [9].

2.3 Assumptions on Feedback Signals

We assume that the UAV comes with a standard sensor suite that consists of a
GNSS receiver to measure position and at least one inertial measurement unit
(IMU) to measure linear acceleration and angular velocities. This allows for state-
of-the art Inertial Navigation Systems (INS) to be employed, either in the form of
nonlinear observers [75, 114] or the more prominent EKF [53, 74, 113]. In addition
to the sensors for the INS, assume that airspeed measurements are obtained via a
pitot tube to facilitate the estimation of the local wind field, for example by using
the estimators presented in [85, 190]. Based on the available sensor suite, we make
the following assumptions regarding the feedback signals:

Assumption 4. The set of available feedback signals includes position estimates,
pnnb(t) = p̂nnb(t)

Assumption 5. The set of available feedback signals includes attitude estimates,
Rnb(t) = R̂nb(t)
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Assumption 6. The set of available feedback signals includes linear velocity es-
timates, vbnb(t) = v̂bnb(t)

Assumption 7. The set of available feedback signals includes angular velocity
estimates, ωbnb(t) = ω̂bnb(t)

Assumption 8. The set of available feedback signals includes linear wind velocity
estimates, vnnw(t) = v̂nnw(t)

The controller designs in this thesis are therefore based on the assumption of
full state feedback. However, there are still uncertainties that need to be dealt with,
such as estimation errors and model mismatch.

2.4 Motivational Example for Nonlinear Control

kpφ

skdφ

1
aφ2

aφ2

s+aφ1

1
s

φref(s)

e(s) +

δa(s)

+

p(s) φ(s)

−−
+

dφ2

Figure 2.3: Roll attitude control loops.

In this section we briefly discuss the involved dynamics that lead to the design
of standard PID controllers for the low-level dynamics based on the example of the
roll attitude loop as presented by Beard et al. [9]. The aim is to motivate the use
of more advanced nonlinear MIMO controllers.

Consider the kinematic equation Eq. (2.23) and Eq. (2.24), which result in the
first and second time-derivative of the roll angle as

φ̇ = p+ q sinφ tan θ + r cosφ tan θ = p+ dφ1
(2.52)

and
φ̈ = ṗ+ ḋφ1

. (2.53)

The angular acceleration ṗ can be determined from Eq. (2.32d) as

ṗ = c1pq + c2qr +
1

2
ρV 2

a Sb(c3Cl(vr,ω, δ) + c4Cn(vr,ω, δ)) (2.54)
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with 
c1
c2
c3
c4

 =
1

JxxJzz − J2
xz


Jxz(Jxx − Jyy + Jzz)
Jzz(Jzz − Jyy) + J2

xz

Jzz
Jxz

 . (2.55)

For the design of a SISO controller that steers the aileron δa based on roll
feedback, Eq. (2.52) - Eq. (2.55) can be summarized in terms of state, control
input and disturbance to

φ̈ = aφ1φ̇+ aφ2δa + dφ2 (2.56)

with

aφ1 = −1

2
ρVaSb

2(c3Clp + c4Cnp
) (2.57)

aφ2 =
1

2
ρV 2

a Sb(c3Clδa + c4Cnδa
) (2.58)

dφ2 = c1pq + c2qr +
1

2
ρV 2

a Sb(c3Cl(vr,ω, δ) + c4Cn(vr,ω, δ) +
b

2Va
dφ1) + ḋφ1.

(2.59)

A PD controller can then be designed such that the closed-loop dynamics of the roll
angle look as in Fig. 2.3. It may be desirable to use an additional integral term in
the controller to compensate for a steady-state offset caused by the disturbance [9].
This would however decrease the bandwidth of the closed-loop roll dynamics and
is also not the focus of our current discussion. The closed-loop transfer function
from φref(s) to φ(s) can be determined from Fig. 2.3 as

φ(s)

φref(s)
=

kpφaφ2

s2 + (aφ1
+ aφ2

kdφ)s+ kpφaφ2

(2.60)

and can be represented as a canonical second-order transfer function

φ(s)

φref(s)
=

ω2
nφ

s2 + 2ζωnφ
s+ ω2

nφ

(2.61)

with 2ζωnφ
= (aφ1

+ aφ2
kdφ) and ω2

nφ
= kpφaφ2

. In a situation where a parameter-
ization of the outlined model of the vehicle is known, the parameters aφi

can be
computed and additional airspeed scaling in the control law can be used such that
the controller parameters kpφ , kdφ can be determined based on the desired natu-
ral frequency ωnφ

and damping ratio ζφ. This approach is widely known as pole
placement in linear control theory. In practical controller design of UAVs, where
the parameters are often unknown or identified with a high degree of uncertainty,
it is common to tune the controller parameters directly.

The aim of this discussion is to illustrate, based on the example of the roll
channel, how state variables that are not controlled by the roll controller enter the
closed loop as shown in the expression in Eq. (2.52) and Eq. (2.59).
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Longitudinal variables such as pitch angle θ and pitch rate q, controlled in a
separate SISO control loop, are part of the disturbances dφ1 , dφ2 , and rudder de-
flections are implicit in Eq. (2.59). Following similar manipulations of the kinematic
and dynamic equations in the longitudinal direction, it can be shown that the roll
control loop introduces disturbances to the closed-loop pitch dynamics. This cou-
pling between lateral and longitudinal plane can be assumed small in a limited
flight envelope when non-aggressive maneuvers are considered. For example in a
maneuver where the UAV is following an orbital path with negligible longitudinal
motion, we can approximate θ ≈ q ≈ α ≈ β ≈ 0 which leads to dφ1

≈ dφ2
≈ 0,

and the closed-loop dynamics are well approximated by Eq. (2.60) and Eq. (2.61).
However, in maneuvers where both lateral and longitudinal dynamics are signifi-
cant, this approximation becomes increasingly invalid and the SISO control loops
introduce disturbances to each other.
Remark 2.2. The example given here includes the independent PD control of each
Euler angle. This is to have a clear presentation of the problem of independent
control loops running in parallel to control low-level dynamics. Note however that
more general attitude control approaches exist where quaternion representation or
rotation matrices are used as attitude representation. We will look at one such
approach in Chapter 4

The aim of this thesis is to explore how more advanced control methods can
be applied to design the low-level autopilot to extend the flight envelope to more
aggressive maneuvers in more extreme conditions, in which the terms included in
the disturbance here have increasing impact.

In Chapter 4 we will look at geometric attitude control (GAC) where roll and
pitch dynamics are controlled in one MIMO controller such that disturbances in-
troduced through the outlined cross-coupling are avoided. A suitable feedforward
term based on the model of the UAV will compensate for other disturbing factors.

A more integrated approach that considers simultaneous control of the airspeed
dynamics in addition to roll and pitch will be the focus of Chapter 5, where all
available actuators will be directly set based on the output of a NMPC.

2.5 Benchmark Scenario

Throughout the thesis, we examine the developed controllers with respect to a
benchmark that consists of individual step responses and a path-following scenario
where the reference signals to the low-level controllers are generated by a guidance
controller. The UAV for the benchmark is the Skywalker X8, which also serves as
our test vehicle in experiments.

2.5.1 Benchmark Controllers for Low-Level Motion Control
We examine the performance of the controllers that are the results of the following
chapters in comparison to a simple set of SISO PID controllers and the ArduPlane
controller. The simple PID controllers follow the design from the discussion in
Section 2.4, with additional integral terms for offset-free control. The reference
signals for roll, pitch and airspeed, are denoted by φref , θref and Va,ref , respectively.
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For the simple PID design, the actuator signals are then determined based on the
control laws

δa = kp,φ (φref − φ) + ki,φ

∫ t

0

(φref − φ) dτ − kd,φp, (2.62a)

δe = −kp,θ (θref − θ)− ki,θ
∫ t

0

(φref − φ) dτ − kd,θq, (2.62b)

δt = kp,Va(Va,ref − Va) + ki,Va

∫ t

0

(Va,ref − Va)dτ. (2.62c)

Whenever we compare the controllers in the benchmark, we will refer to this con-
troller as PID.

A slightly more sophisticated controller design for low-level motion control is
the ArduPlane controller. The ArduPlane attitude controller implements separate,
cascaded SISO feedback loops for the roll and pitch channels to control aileron and
elevator, respectively. The control laws are based on Release 4.0.9, which is the most
recent stable release (as of August 2021). The outer loop consists of proportional
controllers, where desired roll and pitch rates pr, qr ∈ R are calculated according
to

pref = kφ (φref − φ) (2.63a)
qref = kθ (θref − θ) + qct, (2.63b)

where kφ, kθ > 0 and qct is the pitch rate offset needed to maintain height in a
coordinated turn, given by

qct = sin(φ) cos(θ)
g

Va
tan(φ). (2.64)

The rate set-points are inputs to the inner loop, which consists of proportional-
integral (PI) controllers with feedforward action:

δa = kp,pν
2 (pref − p) + ki,pν

2

∫ t

0

(pref − p) dτ + kff,pνpref (2.65a)

δe = −kp,qν2 (qref − q)− ki,qν2
∫ t

0

(qref − q) dτ − kff,qνqref , (2.65b)

where kp,∗, kki,∗ and kff,∗ are proportional, integral and feedforward gains, re-
spectively. The variable ν = V ∗/Va, where V ∗ is some constant reference airspeed,
provides airspeed scaling of the controller parameters, accounting for the fact that
larger airspeeds give greater aerodynamic control authority. The negative sign in
the control law for δe is introduced to account for the convention that positive
elevator deflections yield a negative pitch moment [9].

For UAVs equipped with a rudder, additional control loops utilize the extra
control surface for turn coordination. However, as the Skywalker X8 considered in
this paper is rudderless, this part of the control algorithm is not relevant here.

The ArduPlane autopilot controls altitude and airspeed simultaneously using a
total energy control system (TECS) [101], where throttle and desired pitch angle

35



2. Preliminaries

are the control variables. Since altitude control is not part of the low-level motion
controller and thus out of scope for most chapters, we rather use the simple PI
control law Eq. (2.62c) to control airspeed. Whenever we compare the controllers
in the benchmark, we will refer to the ArduPlane controller as AP.

2.5.2 Benchmark Guidance Controller
As a guidance controller in the benchmark scenario, we use the nonlinear differen-
tial geometric path-following guidance (NDGPFG) by Cho et al. [32], which is an
extension of the widely adopted guidance law published by Park et al. [147]. It is
conceptually a line-of-sight (LOS) guidance method with a look-ahead vector that
defines a reference position on the path and an approach angle that is subject to
design parameters, but in general monotonically decreasing with decreasing cross-
track error. The output of the guidance controller is a linear acceleration command
in the inertial frame that is orthogonal to the velocity of the UAV, which makes it
suitable for simultaneous path-following and airspeed stabilization. We repeat the
essential ingredients to implement the algorithm for completeness but refer to [32]
for more details.

Let T̂P , N̂P ∈ R3 denote the vectors that are tangent and normal to the path
at the closest projection point P, and let the curvature at P be denoted by κP .
Let δBL, k, ε ∈ R denote design parameters of the guidance algorithm. The shifted
distance along the path, denoted by dshift, is given by

dshift ,
|κ|
k

δBL

1− ε
(2.66)

such that the distance to the reference point is

d , e+ dshiftsign(κP )N̂P . (2.67)

The approach angle is computed via

θL , arccos

(
(1− ε)sat

(
‖d‖
δBL

))
(2.68)

which results in the look-ahead vector

L̂ , cos θLd̂+ sin θLT̂P , (2.69)

and the acceleration reference

v̇nnb,ref = k(vnnb × L̂)× vnnb. (2.70)

In the benchmark scenario, we use the design parameters δBL = 100, k = 0.04,
and ε = 10−4.

We then transform v̇nnb,ref to the body-fixed frame

v̇bnb,ref = Rnb
>v̇nnb,ref , (2.71)
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and compute the roll and pitch references

φref = φ0 + arctan(e2
>v̇bnb,ref/g) cos(θ) (2.72)

θref = θ0 + arcsin(−e3>v̇bnb,ref/g) + ki,h

∫ t

0

(e3
>d)dτ, (2.73)

where φ0 and θ0 denote the attitude at trim state. Note that the lateral guidance
controller as presented here is very similar to the L1 Guidance implemented in the
ArduPlane Controller.
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Figure 2.4: Gust wind profile for the benchmark simulations.

2.5.3 Performance Metrics
In all simulations, the reference signal for attitude and speed is assumed constant
throughout the entire prediction horizon of the MPCs, which allows for a fair
comparison to the baseline controllers. The tracking performance of the controllers
and their actuator usage are evaluated based on the metrics

Je =
1

n

n∑
i=1

|ei|, Ju =
1

n

n∑
i=1

|ui|, Jf =
2

nffs

nf∑
i=1

Mifi, (2.74)

where n denotes the amount of samples in the data series. The sampling frequency
is denoted by fs and fi, Mi denote the respective frequencies and magnitudes of
the control signal. The metric Sf jointly considers the amplitudes of the evaluated
frequencies, effectively measuring the smoothness of the control signals [136].

2.5.4 Simulation Setup
The actuators in the simulation are modelled with first-order lag dynamics

δ̇i =
1

T
(δi,ref − δi) (2.75)

The wind is modelled as the combination of a static component in the inertial frame
and a gust component in the body-fixed frame as vnnw = vnnw,s + Rnbv

b
nw,g. The

gust component is generated by the Dryden wind model, which means essentially
passing white noise through a low-pass filter. The resulting sample of the gust wind
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Figure 2.5: The position of the UAV in the benchmark simulation for the PID (blue)
and AP controller (orange). Both controllers are tracking the attitude and speed reference
coming from the NDGPFG which follows the reference path (black, dashed).

profile used in the benchmark simulation is depicted in Fig. 2.4. The static wind
component in the inertial frame is set to vnnw,s =

[
4 3 0

]>.
The initial conditions of the UAV are set to trimmed horizontal flight in east

direction at 18m/s airspeed given the static wind. The resulting initial state is
given by

pnnb(0) =

 0.0
0.0
−50.0

m, Θnb(0) =

 0.0
1.76
90.0

deg, (2.76)

vbnb(0) =

17.990.0
0.55

m/s, ωbnb(0) =

0.00.0
0.0

deg/s, δ(0) =

δa(0)δe(0)
δt(0)

 =

 0.0 deg
2.10 deg
0.12

 .
The path to be followed by the UAV is a horizontal lemniscate defined by

p(u) = ro +Rnp(φp, θp, ψp)

 l
2 cos(u)/(1 + sin(u)2)

w
2

√
2 sin(2u)/(1 + sin(u)2)

0

 (2.77)

where u ∈ R denotes a path variable, l, w ∈ R define the size of the lemniscate,
and ro ∈ R3 denotes the origin. The rotation matrix Rnp describes the orientation
of the lemniscate in the NED frame. For the benchmark scenario, the path is
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parameterized with

r0 =

 0
250
−50

 , Rnp(0, 0, π/2) =

0 −1 0
1 0 0
0 0 1

 , l = 300, w = 150. (2.78)

For the simple PID design and the ArduPlane controller, the simulation results
in which the UAV approaches the path and then follows it are depicted in Fig. 2.5
and Fig. 2.6. Both controllers are able to track the low-level motion commands sent
by the guidance controller at almost no distinguishable actuator usage and perfor-
mance. In the following chapters, we will come back to this benchmark scenario to
evaluate the performance of each developed controller. A complete comparison for
all controllers is given in Appendix A, which also includes the tuning parameters
for each controller.
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Figure 2.6: The position of the UAV in the benchmark simulation for the simple PID
(PID, blue) and ArduPlane controller (AP, orange). The distance to the path ‖d‖2 is
stabilized by the NDGPFG. The airspeed error eVa , roll error eφ and pitch error eθ are
stabilized by the PID and AP controller. Both controllers result in very similar actuator
usage and performance.
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Chapter 3

Experimental Platform

This chapter includes a description of the platform architecture and test procedures
that we used in the experiments to test the controllers. The work described was
also intended to facilitate the testing of the DRL controller in [14]. The content of
this chapter, in addition to experimental results and lessons learned, is submitted
as a conference contribution:
[38] Erlend M. Coates, Dirk Reinhardt, Kristoffer Gryte, and Tor Arne Johansen.

Toward Nonlinear Flight Control for Fixed-Wing UAVs: System Architecture,
Field Experiments, and Lessons Learned. In 2022 International Conference
on Unmanned Aircraft Systems (ICUAS), accepted.

3.1 Architecture

In this section, we describe our experimental platform, which has evolved over
several years as a result of a wide range of research topics carried out at the NTNU
UAV-lab. An alternative system architecture is described in [199], which provides a
flexible architecture for system integration that is well suited for research on high-
level planning, guidance and payload control, but less ideal for low-level control
research. For our purpose, the goal was to extend the existing capabilities with the
following:

1. An embedded platform powerful enough to run low-level NMPC online on-
board the vehicle at a sufficiently high update frequency.

2. This platform should also have direct access to the actuators.
3. The system should be flexible enough to run a wide range of advanced control

algorithms, also including DRL and MPC.
4. To lower the threshold for early testing of highly experimental low-level con-

trol algorithms (and to lower the risk of crashing), we needed some way to
safely transition between the well-tested (and trusted) standard autopilot
and our experimental algorithms.

5. For continued safe operation, the added functionality should not interfere
with the existing fail-safe systems.
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Figure 3.1: Hardware configuration of the experimental platform.

6. A software-in-the-loop (SITL) simulation environment to test the airworthi-
ness of the low-level algorithms before conducting flight experiments.

7. Support for an automated reference generator to gather repeated sample
trajectories for system identification, as well as evaluation and comparison of
different algorithms.

An overview of the hardware configuration and communication architecture of the
UAV and ground station is depicted in Fig. 3.1. We proceed by describing each
main element of the system architecture.

3.1.1 UAV Platform
Our platform is built around a Skywalker X8 airframe, depicted in Fig. 3.2. The X8
is a tailless aircraft with two elevon control surfaces, one on each wing, which can
be moved differentially to produce a rolling acceleration, or collectively, to produce
a pitch acceleration. The control signals consists of pulse width modulation (PWM)
signals to the two servo motors that actuate the elevons, and the throttle signal
(also PWM) to a consumer-grade electronic speed control (ESC) that controls the
motor and propeller in the back of the UAV.

The standard avionics flight stack is centered around a Cube Orange1 that
is running ArduPlane open-source autopilot, which is the fixed-wing build of the
ArduPilot firmware [7]. The sensor suite consists of triple redundant IMUs with
magnetometers, pressure sensors for altitude and airspeed (pitot-static tube), and
a GNSS receiver.

1https://cubepilot.org/
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Figure 3.2: Skywalker X8 fixed-wing UAV.

3.1.2 Payload Computer
Alongside the Cube Orange, we use the Khadas Vim32 SBC that includes four
2.2Ghz Cortex-A73 cores and two 1.8Ghz Cortex-A53 cores. We initially started
using other SBCs, including the Odroid-XU4 and a Raspberry Pi 4. After a series
of benchmarking tests, we settled with the Khadas Vim3, mainly driven by the
computational requirements of the NMPC. Details on the simulations and closed-
loop runtime of the solver on the SBC can be found in Chapter 5.

On the SBC we run the DUNE Uniform Navigation Environment. DUNE is
part of the LSTS tool-chain [148] developed at the Underwater Systems and Tech-
nology Laboratory (LSTS), University of Porto. DUNE allows us to write different
tasks that run independently of each other on separate threads or processes, while
exchanging data using a message bus mechanism (similarly to ROS).

The NMPC is implemented using acados [185], which we interfaced as a DUNE
Task. The closed-loop runtime of the solver was benchmarked for each SBC based
on simulations that reflect targeted maneuvers. Benchmarking results for the Khadas
Vim3 are depicted in Fig. 3.3, which show the closed-loop runtime of the solver
to find solutions to the optimal control problem (OCP) at each solver update for
a Monte-Carlo study that includes a range of initial conditions and environmen-
tal disturbances. Approximately 96% of the simulations allow the solver to find a
solution in less than 50 ms after two controller updates when warm-starting the
solver based on the time-shifted previous solution. We therefore chose an update
period of 50 ms in the experiments, which led to satisfactory performance. More
details can be found in Chapter 5 or [156].

The DRL controller is implemented as a DUNE task in C++ with the artificial
neural network (ANN) implemented in TensorFlow. Benchmarking tests show that
the controller is able to run with an update rate of several thousand hertz. However,
this is orders of magnitude faster than needed since state estimates are delivered
at 50Hz (see next section). Naturally, the computational demands of the DRL
controller is not the bottleneck when selecting our hardware, but rather that of the
NMPC.

2https://www.khadas.com/vim3
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Figure 3.3: NMPC benchmarking results for the employed SBC for different prediction
horizons N in a direct multiple-shooting scheme with 0.1 s shooting interval.

3.1.3 State Estimates
State estimates, including estimates of the local wind velocity, are provided by
ArduPilot’s EKF, and is propagated to the SBC together with attitude references
(either originating from the pilot’s radio transmitter or ArduPlane’s guidance sys-
tem) and other auxiliary signals via a serial communication link using the MAVLink
protocol. This provides our controllers with all the necessary data. The MAVLink
communication was configured to provide data at the highest possible rate, which
in this case is 50 Hz, corresponding to the loop rate of the ArduPlane scheduler.

Communicating such large amount of data at a high rate turned out to be
a demanding task for the ArduPilot system, which in turn made us select the
Cube Orange among several candidate autopilots. Cube Orange is (as of February
2022) the most powerful of the CubePilot series of autopilots, with a 400MHz
ARM Cortex M7 processor. Benchmarking tests showed that less powerful autopilot
hardware platforms such as the Pixhawk 1 and Pixhawk 2.1/Cube Black was not
powerful enough to handle the high data throughput over the serial link.

3.1.4 Actuators
Our controllers output desired throttle and control surface deflections that are
converted to PWM duty cycle using static linear maps. For the elevons these were
identified based on lab experiments using a camera.
Remark 3.1. For future work, an interesting extension to a static linear mapping
would be to identify a second-order model of the actuator dynamics. This can be
done with a series of step responses that can be recorded in a motion capture
lab [100]. More advanced servos that provide position feedback and control of the
surface deflection angles can also be considered for model-based control.
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Most of the SBCs require additional hardware for PWM output. For instance,
the Odroid-XU4 has no hardware PWM ports, and the Raspberry Pi 4 only has two
(we need three). For the Khadas Vim3, we chose a solution based on a PCA9685
servo driver which is interfaced through inter-integrated circuit (I2C) communica-
tion.

3.1.5 Multiplexer Switch
The PWM signals to the actuators can be set by both computing platforms. A
PWM multiplexer (MUX) is used to switch between the controller that runs on
the SBC and the ArduPilot controllers. A switch on the pilot’s radio transmitter
is mapped to the MUX switch using ArduPilot’s RC pass-through functionality,
allowing the pilot to choose the output source at any given time, including a manual
recovery if loss of control should occur. To achieve an additional layer of safety, the
manual mode always overrides the SBC output.

This architecture allows for a redundant PID controller to run on the autopi-
lot that may overwrite the commands from the experimental controller whenever
necessary to ensure a safe operation, for example if instability occurs or when the
required update rates of an optimization-based controller such as MPC can not be
met by the employed solver. The switching mechanism enables us to safely engage
the highly experimental low-level control code in flight, while takeoff and landing
are performed by the pilot operating the standard ArduPlane autopilot.

For an alternative control selection method, based on a performance monitor-
ing scheme, together with a thorough discussion of MPC employed on alternative
computing platforms such as field programmable gate arrays (FPGAs), see [84].

3.1.6 Fail-Safe
The ArduPilot system includes standard fail-safe functionality, such as an auto-
matic return to launch (RTL) mode that is triggered if the pilot’s radio transmitter
signal is out of range or otherwise lost. Since this includes the MUX switch signal,
we had to augment the fail-safe functionality. Otherwise, if the signal is lost when
the SBC is in control, we would have no way to recover the aircraft should our
algorithms fail. To solve this, the fail-safe configuration of our RC receiver (FrSky)
is set to move the controls to the following preset values in the case of a lost control
signal for some period of time:

• The mode switch is set to RTL.
• The MUX switch is set such that the Cube Orange’s PWM output is sent to

the servos.
• The other controls are set such that they correspond to centered sticks on

the transmitter.
This way, our fail-safe system works similarly to ArduPilot’s. In addition, we are
sure that ArduPilot will be in control should we lose the control signal. A potential
downside of this is that the ArduPilot system will not be aware that the control
signal is out of range, since the receiver channels are just set to some preset values,
instead of the usual "no signal".
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3.1.7 Ground Station

Communication with the ground station is handled through a redundant radio link
using one 433MHz SiK Telemetry Radio and a 5GHz Ubiquiti Rocket M5, both
providing MAVLink communication with the Cube autopilot. The 5GHz radio also
enables us to communicate with the SBC on a local area network (LAN) through
an onboard network router (see [199] for details).

We use the ArduPilot-compatible ground control software Mission Planner run-
ning on a dedicated lab computer. Both radio communication links are used for
redundancy, and multiplexing of the two radio signals is handled by MAVProxy.

Control of the DUNE controller tasks is done through Neptus, which is the com-
mand and control framework of the LSTS toolchain, communicating with DUNE
using the inter module communication (IMC) protocol. Neptus allows the operator
to set configuration parameters, monitor telemetry data and execute commands on
the SBC.

3.1.8 Reference Generation for Automated Testing

We can use pre-defined signals to overwrite references coming from the guidance
controller to test our low-level motion controllers repeatably. This means that we
can e.g. use ArduPlane to fly a square waypoint mission, where we run repeated
custom maneuvers when on the long sides of the square. Step sequences and chirp
signals with increasing frequency turned out to be a good way to test the closed-
loop dynamics with different control algorithms that need to be compared.

We follow a similar approach to collect data for identifying dynamic models of
a particular airframe. However, instead of manipulating reference signals for the
low-level controller, the actuator signals of a particular actuator are overwritten by
suitable step sequences or oscillating signals. A frequency analysis of the open-loop
model dynamics or of the linearized closed-loop system around trim states can be
used to guide the parametrization of the test signals such that their power spectral
density covers the natural frequencies of the system. The aim is to sufficiently
excite the dynamics such that the collected aerodynamic data can be used for
system identification.

This section provides a description of our testing procedures. To assess the air-
worthiness of our algorithms, we use a three-stage ground-testing process before
finally attempting field experiments: (a) initial verification of promising designs in
our laptop simulators, (b) SITL simulation to verify the platform specific imple-
mentation of the algorithms, and (c) system integration testing at the lab.

All of our simulators are based on previous and ongoing modeling efforts, in
particular [39, 70, 71]. For more recent work on how to improve these models, see
Chapter 7 or [154, 158].

3.1.9 Python Simulator

As a first verification step, prototype implementations of promising designs are first
tested in simulator environments implemented in Matlab or Python.
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Model mismatch can be introduced in a controlled environment to assess the
algorithm’s robustness to modeling errors. Also, initial tuning guidelines are estab-
lished during this stage.

3.1.10 Software-In-The-Loop (SITL) Simulations

The SITL simulator is based on a combination of a SITL configuration of our DUNE
application, in combination with ArduPilot’s SITL framework, using a JSBSim
simulation model for the Skywalker X8 based on our previously mentioned models.
The standard SITL framework is sufficient for systems where the SBC only sends
commands to a low-level autopilot using the MAVLink interface, e.g. when testing
high-level guidance controllers. However, since we need to simulate the case where
the SBC has direct access to the actuators, we need to extend this functionality.

Our solution uses MAVLink’s "RC override" functionality to emulate the be-
havior of our physical system. In DUNE, instead of sending actuator signals to
the PWM driver, the controller output is transmitted to ArduPlane SITL using
our MAVLink interface, using the RC override message. In the simulator, these
values are interpreted as servo set-points, as if the UAV was under manual control.
Therefore, for this to work, ArduPlane needs to be in "MANUAL" mode.

To achieve automated testing of different maneuvers, we implemented a DUNE
Task that essentially provides scripting capabilities of a succession of different ma-
neuvers and system commands, including automated arming, takeoff and loitering,
mode switching, as well as switching between ArduPlane and out controllers.

3.1.11 Lab Testing

At the lab, we conduct system integration tests on the physical hardware, checking
all communication channels, and that critical systems work as expected. This in-
cludes the MUX switch, data logging, and telemetry. In particular, we check edge
cases concerning arming/disarming of the propeller, and confirm that the MUX
switch does not interfere with the safety-critical features.

When preparing for field tests, we first communicate the expected behavior of
our system to the pilot, and demonstrate safety critical features. An important tool
we use when verifying and configuring our controller implementations, is the surface
deflection test ("ground test"), where we check that the control surfaces move in
the correct directions in response to manually tilting the vehicle, or moving the
transmitter sticks.

3.1.12 Field Experiments

When performing field experiments, we typically use a team of three persons: (1)
the pilot (first in command), operating the UAV in the manually controlled modes
using an RC transmitter, (2) ground station operator (second in command) operat-
ing the automatically controlled modes and setting ArduPilot parameters through
Mission Planner, and (3) one researcher controlling the payload computer through
Neptus.
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This is typically the researcher that designed the experiment or implemented
the algorithm that we test. During the experiment, the team communicates over
radio. Additional personnel, if any, is in charge of taking notes.

The flight testing procedure can be roughly broken down into the following
steps:

1. After all pre-flights checks are passed, the pilot takes off manually and puts
the UAV into loiter mode or a square waypoint pattern.

2. With the experimental algorithm running in the background, we monitor its
outputs while comparing them with the PWM values set by ArduPlane.

3. If everything looks good, we switch to our controller using the MUX switch
mapped to a switch on the pilot’s radio transmitter. When testing controllers
with dynamic elements such as integral action or disturbance observers, the
dynamic elements are engaged (or their states reset) when we perform the
switch. This is to avoid any wind-up or other potential issues.

4. We then observe the behavior of the experimental controller and test it with
increasingly challenging maneuvers, starting with straight and level flight.
If the UAV performs any sudden maneuvers, or if substantial oscillations or
instability occurs, the pilot takes back control over the UAV by using the
MUX switch. The pilot’s visual eye contact with the vehicle is aided by the
other operators, constantly monitoring telemetry data, and warning the pilot
if needed.

5. After some initial tuning, we initiate the automated maneuver sequences for
tuning and repeatability of the collected evaluation data. This is especially
useful when comparing the performance of two controllers.

6. When data collection is complete, we switch the actuator control back to
ArduPlane using the MUX switch before landing.
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Chapter 4

Geometric Attitude Control

The chapter is based on
[37] Erlend M. Coates, Dirk Reinhardt, and Thor I. Fossen. Reduced-Attitude

Control of Fixed-Wing Unmanned Aerial Vehicles Using Geometric Methods
on the Two-Sphere. IFAC-PapersOnLine, 53(2):5749–5756, 2020. 21st IFAC
World Congress.

[153] Dirk Reinhardt, Erlend. M. Coates, and Tor Arne Johansen. Hybrid Control
of Fixed-Wing UAVs for Large-Angle Attitude Maneuvers on the Two-Sphere.
IFAC-PapersOnLine, 53(2):5717–5724, 2020. 21st IFAC World Congress.

4.1 Introduction

The attitude control system provides the main stabilization function in autopilots
for fixed-wing UAVs. It enables a UAV to follow commands originating from outer-
loop guidance schemes, thus allowing fully automatic flight. Guidance controllers
typically achieve path-following or waypoint-tracking capabilities by controlling
climb and turn rates through roll and pitch commands to the inner-loop attitude
controller [9]. Turning is not achieved by controlling yaw angle or turn rate directly,
but rather through banked-turn maneuvers.

The orientation, or attitude, of a fixed-wing aircraft relative to an inertial refer-
ence frame is represented, both globally and uniquely, by an element of the special
orthogonal group SO(3), which is the set of 3 by 3 rotation matrices. The Euler
angles given by roll, pitch and yaw provide a minimal, local coordinate system on
SO(3), but will suffer from “gimbal-lock” singularities [119].

In the last decades, coordinate-free geometric attitude controllers, designed di-
rectly on SO(3), have been proposed in the literature, without the need for attitude
parameterizations, and with no singularities [29]. Another advantage of these ap-
proaches is that such controllers are often geodesic in the sense that proportional
action is designed to steer the vehicle along the shortest path in the physical ro-
tation space, whereas controllers based on Euler angles are not. These advantages
are desirable when the controlled vehicle is subject to large angle rotations, e.g. a
UAV recovering from large attitude errors resulting from severe wind gusts [86].
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Controllers designed on SO(3), or using quaternions [188], control the full atti-
tude, and therefore can not be directly applied to fixed-wing aircraft using banked
turn maneuvers. Instead of studying the full attitude, some authors consider a
reduced-attitude representation, evolving on the two-sphere, S2 ⊂ R3 [21]. In this
space of reduced attitude, all rotations that are related by a rotation about some
fixed axis, are considered the same [27]. Control systems with reduced attitude
evolving on S2 have previously been studied in the context of spin-axis stabilization
of satellites [21], pendulum stabilization [27], path-following control of underwater
vehicles [193], control of multi-rotor UAVs [24] and for general rigid bodies [126].

In the beginning of this chapter, we present a smooth, nonlinear reduced-
attitude controller for fixed-wing UAVs, in a coordinate-free manner, using a global,
singularity-free attitude representation on S2. The chosen reduced-attitude repre-
sentation is independent of the yaw angle and thus enables traditional banked-turn
maneuvers. A consequence of this is that the presented approach fits directly into
existing control architectures that rely on roll and pitch control in the inner loop.
Also, no lateral/longitudinal decoupling assumptions are used in the design.

The reduced-attitude representation allows for a convenient decomposition of
the dynamics and a natural corresponding decoupling of the control objective into
two parts: 1. Reduced-attitude (roll/pitch) control, and 2. Control of the angular
velocity about the inertial z-axis (turn rate control). Since only two control torques
are needed to control the reduced attitude, there is one degree of freedom left to do
turn rate control, which essentially performs turn coordination, providing damping
about the inertial z-axis, and reducing the sideslip angle.

Almost semi-global exponential tracking of reduced attitude is established using
Lyapunov methods. In the special case of regulation, a stronger almost global
asymptotic stability result is established. Because of topological constraints when
dealing with compact manifolds [11], the latter is the strongest possible stability
result possible for continuous attitude control systems [29].

Using hybrid control however, the region of attraction can be made global as
shown in e.g. [125, 126]. We use these results to further extend the smooth, nonlin-
ear reduced-attitude controller to use hybrid proportional feedback and solve the
problem of vanishing proportional action at the opposite direction of the reference
point, which otherwise introduces significant performance limitations [30].

Recently, a general discussion of attitude tracking on Sn has been published in
[24], with application to multi-rotor UAVs. However, despite their desirable stability
properties, results for fixed-wing UAVs have not been published in the literature.
We thus discuss a suitable adaptation in this chapter.

4.2 Preliminaries and Problem Statement

4.2.1 Notation
We briefly discuss notation that is specific to this chapter and the related proofs.
The rotation matrix and velocities express the rotation and velocity of the body-
fixed frame with respect to the NED frame in the coordinates of the body-fixed
frame, i.e. R , Rnb and ω , ωbnb. Relevant dynamic equations will however be
recalled to make the reading easier.
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Explicit time arguments will be used for state variables only when considering
specific solutions, or for signals and functions in general when we want to highlight
that time-varying exogenous signals are considered. At some points we will use
a slight abuse of notation and write e.g. V (t) for a Lyapunov function evaluated
along system trajectories, when we really mean V (x(t)). Lastly, the positive real
numbers will be denoted R>0, the set of 3 by 3 symmetric positive definite matrices
will be denoted P3

+.

4.2.2 UAV Attitude Dynamics
Throughout this chapter, we will consider the fully actuated attitude dynamics
for a fixed-wing UAV in control-affine form. Recall the dynamics in Eq. (2.32c),
Eq. (2.51) given as

Ṙ = RS(ω) (4.1)

Jω̇ = f(ω,vr) +G(vr)
[
δa δe δr

]> (4.2)

where ω ∈ R3 denotes the angular velocity in the body-fixed frame, J = J> ∈
R3×3 denotes the inertia matrix. Given aileron, elevator and rudder deflections
δa, δe, δr ∈ R we define the control input vector u =

[
δa δe δr

]>.
For UAVs that are dependent on control surface deflections to deflect an air-

stream, a sufficiently large airspeed is needed to ensure controllability. We thus
consider flight conditions for which the following assumption holds

Assumption 9. The control effectiveness matrix G(vr) has full rank.

From Eq. (2.49) and the related discussion, it is clear that a consequence of this
assumption is that a strictly positive airspeed is required, i.e. Va ≥ V a for some
V a ∈ R>0.
Remark 4.1. For common parameterizations based on constant control effective-
ness coefficients [9, 177], it can be shown that the full rank condition corresponds to
primary control coefficients being larger than the coefficients associated with sec-
ondary roll-yaw coupling effects. The full rank assumption is therefore reasonable
for most common fully actuated control surface configurations.

We also need an additional assumption to ensure that the moment vector is
uniformly bounded:

Assumption 10. There exist constants cf , cG > 0 such that ‖f(ω,vr)‖ ≤ cf and
‖G(ω,vr)‖ ≤ cG.

The scope throughout this chapter is on the rotational subsystem of the dynam-
ics, meaning that the throttle δt and relative velocity vr, and therefore also α, β
and Va (as functions of vr), will be treated as known time-varying input signals.
Remark 4.2. Note that since the translational subsystem (see [177]) depends on
R, ω and u, the relative velocity vr is not truly an exogenous signal. Nevertheless,
as a decoupling maneuver, we will assume that it is a known signal available for
feedback. This should be considered when integrating the control system developed
in this paper in UAV GNC systems, e.g. using bandwidth separation.
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Figure 4.1: The two-sphere parameterized by the angles roll φ and pitch θ.

4.2.3 Reduced Attitude
We make use of the reduced-attitude vector Γ ∈ S2 as presented by Chaturvedi et
al. [29] and define it here as the representation of the vertical axis of the inertial
frame e3 =

[
0 0 1

]> expressed in the body-fixed frame

Γ = R>e3. (4.3)
The same reduced-attitude parameterization has been applied to stabilization of
the inverted 3D pendulum [30]. Note that the reduced-attitude vector is invariant
to rotations about e3 and therefore independent of yaw. In fact, given a roll an-
gle φ ∈ [−π, π] and pitch angle θ ∈ [−π2 ,

π
2 ], the reduced-attitude vector can be

parameterized as

Γ(φ, θ) =
[
− sin θ cos θ sinφ cos θ cosφ

]>
, (4.4)

which can be seen by expanding Eq. (4.3) using Eq. (2.21). A graphical illustration
how the two-sphere is parameterized by roll and pitch angles is given in Fig. 4.1.
Using Eq. (2.17), we can obtain an orthogonal decomposition of the angular velocity
ω with respect to Γ such that ω = ω⊥ + ω‖, where

ω⊥ , Π⊥
Γω ∈ TΓS2 ω‖ , Π

‖
Γω ∈ NΓS2. (4.5)

The kinematic equation follows by differentiating Eq. (4.3) using Eq. (4.1) and is
given by

Γ̇ = Γ× ω = Γ× ω⊥ ∈ TΓS2. (4.6)
The parallel component ω‖ is the angular velocity about the inertial z-axis (ex-
pressed in the body-fixed frame), and clearly does not influence Γ̇. Differentiat-
ing Eq. (4.5) and using Eq. (4.6) gives

ω̇⊥ = Π⊥
Γ ω̇ + ω⊥ × ω‖ (4.7)

ω̇‖ = Π
‖
Γω̇ + ω‖ × ω⊥, (4.8)

where we have also applied the identity x>Sx = 0 for any x ∈ R3 and S ∈ so(3).
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4.2.4 Reference System
Let a time-varying reduced-attitude reference vector Γd(t) ∈ S2 satisfy

Γ̇d = Γd × ωd, (4.9)

where ωd ∈ TΓd
S2. Consider the projection of ωd onto the tangent space TΓS2,

given by Π⊥
Γωd ∈ TΓS2. Using Eq. (2.3), Eq. (2.16), Eq. (2.18), Eq. (4.6), the

derivative can be found to satisfy

d

dt
(Π⊥

Γωd) = Π⊥
Γ ω̇d + ω⊥ ×Π

‖
Γωd +Π

‖
Γ(ωd × ω⊥). (4.10)

We assume that ωd is twice continuously differentiable and that its derivative
is continuous and uniformly bounded, i.e. there exist constants cωd

, cω̇d
such that

ωd(t) ∈ cωd
B, ω̇d(t) ∈ cω̇d

B. (4.11)

The reasons for this assumption are twofold. First, the reference trajectory is
smooth such that it may be used in feedforward-terms of the control law. And
second, the differential inclusion of ω̇d(t) allows to formulate an autonomous closed-
loop system such that hybrid invariance principles can be applied.

We briefly give an example for a reference filter that can be used to generate
a reference trajectory (Γd(t),ωd(t), ω̇d(t)) based on trajectories parameterized by
Euler angles. An expression for the reduced-attitude vector Γ in terms of the Euler
angles roll and pitch is given by Eq. (4.4). Differentiating leads to

Γ̇ =

 − cos(θ)θ̇

− sin(θ) sin(φ)θ̇ + cos(θ) cos(φ)φ̇

− sin(θ) cos(φ)θ̇ − cos(θ) sin(φ)φ̇

 . (4.12)

For ωb⊥nb ∈ TΓS2 we can invert Eq. (4.6) using Eq. (4.4) and Eq. (4.12) to get

ω⊥ = Γ̇× Γ =

 cos2(θ)φ̇

cos(φ)θ̇ + sin(θ) cos(θ) sin(φ)φ̇

− sin(φ)θ̇ + sin(θ) cos(θ) cos(φ)φ̇

 , (4.13)

with derivative
ω̇⊥ = Γ̈× Γ, (4.14)

where Γ̈ = [Γ̈1 Γ̈2 Γ̈3]
> can be found by differentiating Eq. (4.12), and its elements

are given by

Γ̈1 = sin(θ)θ̇2 − cos(θ)θ̈ (4.15a)
Γ̈2 = − cos(θ) sin(φ)(θ̇2 + φ̇2)− 2 sin(θ) cos(φ)θ̇φ̇ (4.15b)
− sin(θ) sin(φ)θ̈ + cos(θ) cos(φ)φ̈

Γ̈3 = − cos(θ) cos(φ)(θ̇2 + φ̇2) + 2 sin(θ) sin(φ)θ̇φ̇ (4.15c)
− sin(θ) cos(φ)θ̈ − cos(θ) sin(φ)φ̈.
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Given twice continuously differentiable reference trajectories φd(t), θd(t) and
their first and second derivatives (e.g. using third order linear reference filters [56]),
the relations Eq. (4.4) and Eq. (4.12) - Eq. (4.15c) can be used to generate con-
tinuous signals Γd(t), ωd(t), ω̇d(t), which can be used to implement the tracking
controller that we discuss in this chapter.

4.2.5 Potential Function and Error States
Let a smooth configuration error function Ψ: S2 × S2 → R be defined by

Ψ(Γ,Γd) =
1

2
‖Γ− Γd‖2 = 1− Γd · Γ. (4.16)

The function Ψ measures the “distance” between two points Γ and Γd on S2, and
is positive definite with respect to Γ = Γd. There are two critical points, i.e. points
where the gradient of the function vanishes: A minimum when Γ = Γd, and a
maximum when Γ = −Γd. Our goal is to drive the potential to its minimum by
finding a proportional feedback in the direction of the gradient. To this end, let a
variation of a curve R(t) ∈ SO(3) be given in terms of a perturbation parameter
ε ∈ R3 as Rε(t, ε) = R(t)eεS(η(t)), where η(t) ∈ TΓ(t)S2 ∀ t. The corresponding
variation of Γ(t) on S2 is given by

Γε(t, ε) = R>
ε (t, ε)e3 = e−εS(η(t))Γ(t), (4.17)

and an infinitesimal variation can be found by

δΓ(t) =
d

dε

∣∣∣∣
ε=0

Γε(t, ε) = Γ(t)× η(t). (4.18)

The derivative of Ψ in the direction δΓ is given by

∇ΓΨ · δΓ = −Γd · (Γ× η) = −η · (Γd × Γ) = η · eΓ, (4.19)

so with Γd fixed, the term Γd × Γ can be viewed as the gradient vector field on
S2 induced by the potential function Ψ. The example in Fig. 4.2 illustrates this
and also shows that the gradient vector field vanishes at both critical points. In
subsequent Lyapunov analysis, Ψ will be used as pseudo-potential energy1.

We can now apply proportional feedback on S2, by using the configuration error
vector eΓ : S2 × S2 → TΓS2 given by

eΓ = Γ× Γd, (4.20)

and define the angular velocity error as

eω = ω⊥ −Π⊥
Γωd = Π⊥

Γ (ω − ωd) ∈ TΓS2. (4.21)

From Eq. (4.7) and Eq. (4.10), the derivative of eω can be written as

ėω = Π⊥
Γ

(
ω̇ − ω̇d + ω⊥ × (ω‖ −Π

‖
Γωd)

)
−Π

‖
Γ(ωd × eω). (4.22)

1When Γd is constant, we write Ψ(Γ) and also remove Γd as an argument of the corresponding
Lyapunov function.
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Figure 4.2: The left figure shows the gradient field defining eΓ as induced by the potential
Ψ for the reference example Γd =

[
0 0 1

]>. Note the additional unstable equilibrium
at the opposite direction of Γd in the circle section on the right figure.

The error terms eΓ and eω are also compatible in the sense that Ψ̇ = e>ω eΓ,
which will cancel with the proportional feedback term defined later when calculat-
ing the derivative of a Lyapunov function. The error vector eΓ is geodesic in the
sense that its direction defines an axis of rotation which connects Γ and Γd with
the shortest possible curve on S2.
Remark 4.3. Other configuration error vectors (with corresponding potential func-
tions) on S2 could be used in place of Eq. (4.20), without changing the general
approach considered in this chapter. For instance, alternative error vectors that do
not vanish when approaching −Γd (at the cost of being undefined at this point)
can be found in [21], [30] and [150].

4.2.6 Control Objective
Let an orthogonal decomposition of the control input vector u be given by u =
u⊥ + u‖, where J−1G(ω,vr)u

⊥ ∈ TΓS2, and J−1G(ω,vr)u
‖ ∈ NΓS2.

The control objective can be stated as follows:

Reduced-Attitude Tracking.

Design a state-feedback control law u⊥ such that Γ(t) → Γd(t) and eω(t) → 0 as
t→∞.

A special case of reduced-attitude tracking is the case when Γd is constant, so
ωd = 0 and eω = ω⊥. We can formulate the following regulation problem:

Reduced-Attitude Regulation.

Design a state-feedback control law u⊥ such that Γ(t)→ Γd, with constant refer-
ence Γd, and ω⊥(t)→ 0 as t→∞.

The remaining degree of freedom provided by u‖ is in the nullspace of the
orthogonal projection and as such does not interfere with the control of reduced
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attitude. It should be used for turn coordination and to stabilize the parallel compo-
nent of angular velocity. We will discuss this after introducing the smooth geometric
attitude controller and its stability properties.

4.3 Design of the smooth Geometric Attitude Controller

This section introduces the main result for reduced-attitude tracking control for
fixed-wing UAVs, where a control law u⊥ is given. The design of a control law using
the remaining degree of freedom, given by u‖ is treated in Section 4.3.1.

Proposition 4.1 (Reduced-Attitude Tracking): Consider the reduced-attitude er-
ror dynamics defined by Eq. (4.2), Eq. (4.6), and Eq. (4.22), assuming Va ≥ V a > 0
and that the control effectiveness matrix G(ω,vr) has full rank. With kp ∈ R>0 and
Kd ∈ P3

+, let a smooth tracking control law u⊥ satisfying J−1G(ω,vr)u
⊥ ∈ TΓS2

be given by

u⊥ = G−1(ω,vr)J

(
− kpeΓ −Π⊥

ΓKdeω −Π⊥
Γ J

−1f(ω,vr)

−ω⊥ × (ω‖ −Π
‖
Γωd) +Π⊥

Γ ω̇d

)
, (4.23)

with vr treated as a bounded, time-varying exogenous signal. The closed-loop system
then satisfies the following properties:

(i) There exist two equilibrium solutions given by (Γ, eω) = (±Γd, 0).
(ii) The desired equilibrium (Γd, 0) is exponentially stable, with region of exponential

convergence given by

Ψ(Γ(0),Γd(0)) ≤Ψ (4.24)

‖eω(0)‖ ≤
√
2kp

(
Ψ−Ψ(Γ(0),Γd(0))

)
, (4.25)

for some Ψ< 2, where 2 is the maximum value of Ψ, attained at Γ = −Γd.
(iii) The additional undesired equilibrium (−Γd, 0) is unstable.
(iv) Additionally, if ωd = 0, the desired equilibrium (Γd, 0) is almost globally asymp-

totically stable.

Proof: The proof can be split into three parts. First, we show that the equilibria of
the closed-loop error system are (Γ, eω) = (±Γd, 0). Then we proof local exponen-
tial stability based on derived bounds of the potential function Ψ, which define the
region of exponential convergence. Then we show that the antipodal of the desired
equilibrium is unstable by studying its local properties.

Differentiating Eq. (4.20), applying the identity Eq. (2.6) and combining with Eq. (4.2),
Eq. (4.22), Eq. (4.23) gives the non-autonomous closed-loop error system

ėΓ = −S(ωd)eΓ − S(Γd)S(Γ)eω (4.26)

ėω = −kpeΓ −Π⊥
ΓKdeω −Π

‖
Γ(ωd × eω), (4.27)
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which gives the equilibrium condition[
−S(ωd) −S(Γd)S(Γ)
−kpI3 −S2(Γ)KdS

2(Γ)− ΓΓ>S(ωd)

] [
eΓ
eω

]
=

[
0
0

]
, (4.28)

where we have used the fact that −S2(Γ)eω = eω. For Eq. (4.28) to be satisfied for
all t, where the time-dependence is implicit through Γd(t),ωd(t), we get eΓ = eω =

0. Note that, when ωd = 0, the matrix above is rank-deficient, with v = [0> w>]
>

as a basis of the nullspace, where w is parallel to Γ. But eω lies in TΓS2. Thus,
equilibrium solutions are given by (Γ, eω) = (±Γd, 0), which shows (i).

For showing (ii), consider the Lyapunov-like function V : TS2 × S2 → R≥0

V1(Γ, eω,Γd) = kpΨ(Γ,Γd) +
1

2
e>ω eω. (4.29)

Differentiating along closed-loop trajectories of Eq. (4.27) gives

V̇1 = kpe
>
ω eΓ + e>ω

(
−kpeΓ −Π⊥

ΓKdeω −Π
‖
Γ(ωd × eω)

)
(4.30)

= −e>ωKdeω ≤ −λmin(Kd)‖eω‖2 ≤ 0, (4.31)

where the last term in Eq. (4.30) disappears since eω ∈ TΓS2, and we have used the
property e>ωΠ

⊥
Γ = (Π⊥

Γ eω)
> = eω. For initial conditions satisfying Eq. (4.24), Eq. (4.25),

we get V1(t0) ≤ kpΨ. Since V1(t) is non-increasing, we get:

kpΨ(Γ(t),Γd(t)) ≤ V1(t) ≤ V1(t0) ≤ kpΨ, (4.32)

which means that Ψ(Γ(t),Γd(t)) ≤Ψ. Using the bound Ψ, let a sublevel set for Ψ

be L2 =
{
Γ,Γd ∈ S2 : Ψ(Γ,Γd) ≤Ψ

}
. In L2 we can then bound Ψ by

1

2
‖eΓ‖2 ≤ Ψ(Γ,Γd) ≤

1

2−Ψ
‖eΓ‖2. (4.33)

Now, consider the Lyapunov function candidate

V2(Γ, eω,Γd) = V1 + ce>ω eΓ. (4.34)

Using Eq. (4.33), we can derive upper and lower bounds

1

2
z>M1z ≤ V2 ≤

1

2
z>M2z, (4.35)

where z = [‖eΓ‖ ‖eω‖]> and

M1 =

[
kp −c
−c 1

]
, M2 =

[
2kp

2−Ψ
c

c 1

]
. (4.36)

If c <
√
kp, both M1 and M2 are positive definite.

Differentiating V2 along the closed-loop trajectories gives

V̇2 = −e>ωKdeω + cė>ω eΓ + ce>ω ėΓ. (4.37)
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The cross terms can be bounded as follows:

‖e>ω ėΓ‖ ≤ ‖eω‖ ‖ωd‖ ‖eΓ‖+ ‖eω‖2 ≤ B‖eω‖‖eΓ‖+ ‖eω‖2 (4.38)
‖e>Γ ėω‖ ≤ −kp‖eΓ‖2 + λmax(Kd)‖eΓ‖‖eω‖, (4.39)

which leads to

V̇2 = −e>ωKdeω + cė>ω eΓ + ce>ω ėΓ ≤ −z>M3z, (4.40)

where the matrix M3 is given by

M3 =

[
ckp − c(B+λmax(Kd)))

2

− c(B+λmax(Kd)))
2 λmin(Kd)− c

]
(4.41)

If c is chosen to satisfy

c < min

{√
kp,

4kpλmin(Kd)

4kp + (B + λmax(Kd))
2

}
, (4.42)

then M1, M2 and M3 are positive definite.
By following similar arguments as in the proof of [95, Theorem 4.10], we get

that V2(t) and ‖z(t)‖ converge exponentially to zero, which in turn means that
(Γ(t), eω(t)) converges exponentially to (Γd(t),0), with the region of exponential
convergence given by Eq. (4.24) and Eq. (4.25). This shows (ii).

To show that the undesired equilibrium is unstable, define

W = 2kp − V2 ≥ −
1

2
‖eω‖2 − c‖eω‖‖eΓ‖+ kp(2−Ψ(Γ,Γd)). (4.43)

At the undesired equilibrium (−Γd,0), we have W = 0, and Ẇ = −V̇2 is positive
definite from Eq. (4.40). Now consider Γ arbitrarily close to −Γd. In this case, the
term 2−Ψ(Γ,Γd) is positive, and we can choose ‖eω‖ sufficiently small such that
W > 0 and Ẇ > 0. By [95, Theorem 4.3], the equilibrium (−Γd, 0) is unstable,
which show (iii).

When ωd = 0, Eq. (4.31) reduces to V̇1 = −(ω⊥)>Kdω
⊥ ≤ 0, so the set given

by

Ω , {(Γ,ω⊥) ∈ S2 × TΓS2 : V1(Γ(t),ω⊥(t)) ≤ V1(Γ(t0),ω⊥(t0))} (4.44)

is positively invariant. Since S2 is compact, all sublevel sets of V1 are compact,
which means that the set Ω is compact. Let E be set of points in Ω where V̇1 = 0.
In E, ω⊥ = 0, which when inserted into Eq. (4.27) and using Eq. (4.20) leads
to Γ = ±Γd. By LaSalle’s invariance principle [95, Theorem 4.4], every solution
starting in Ω then converges asymptotically to one of the equilibrium solutions
(±Γd,0). Local asymptotic stability of the desired equilibrium point, as well as
the instability of the undesired equilibrium follows from (ii) and (iii). To establish
almost global asymptotic stability of the desired equilibrium we will study the local
structure of the undesired equilibrium.
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4.3. Design of the smooth Geometric Attitude Controller

Similarly to Eq. (4.17), let a perturbation of the equilibrium solution (Γ(t),ω⊥(t)) =
(Γe,0) be given in terms of a perturbation parameter ε as (Γε(t, ε),ω

⊥
ε (t, ε)) =

(e−εS(η(t))Γe, εδω(t)), which satisfies η(t) · Γe = δω(t) · Γe = 0 for all t. Now,
consider the perturbed equations of motion Eq. (4.6), Eq. (4.27) given by

Γ̇ε(t, ε) = Γε(t, ε)× ω⊥
ε (t, ε) (4.45)

ω̇⊥
ε (t, ε) = −kpΓε(t, ε)× Γd −Kdω

⊥
ε (t, ε) + Γε(t, ε)Γ

>
ε (t, ε)Kdω

⊥
ε (t, ε).

Differentiating both sides with respect to ε and inserting ε = 0 gives the linearized
set of equations ẋ = A(Γe)x, where x = [η> δω>]

>. For Γe = −Γd, we get

A(−Γd) , A =

[
03 I3

−kpS2(Γd) −S2(Γd)KdS
2(Γd)

]
, (4.46)

where the relation −S2(Γd)δω = δω has been used to add the last factor in the
lower right element of the matrix.

The state space has dimension six, but in reality, the system evolves on a four-
dimensional subspace according to the constraints

Cx =

[
Γ>
e 01×3

01×3 Γ>
e

] [
η
δω

]
=

[
0
0

]
, (4.47)

which is respected by the linearized dynamics, in the sense that CA = 0.
If decomposing eigenvectors vi of A into vi = [v>

i1 v>
i2]

>, it follows from the
equation Av = λv that eigenvalue-eigenvector pairs of A need to satisfy

vi2 = λivi1 (4.48)
−kpS2(Γd)vi1 − S2(Γd)KdS

2(Γd)vi2 = λivi2. (4.49)

Inserting Eq. (4.48) into Eq. (4.49) and pre-multiplying with the complex conjugate
transpose v̄>

i1 of vi1 gives
aλ2 + bλ− c = 0, (4.50)

where

a = v̄>
i1vi1 > 0 (4.51)

b = v̄>
i1[−S2(Γd)]Kd[−S2(Γd)]vi1 ≥ 0 (4.52)

c = kpv̄
>
i1[−S2(Γd)]vi1 ≥ 0, (4.53)

since the matrix −S2(Γd) is positive semi-definite. The coefficients b and c are
only (simultaneously) zero when −S2(Γd)vi1 = 0, i.e. when vi1 has the form
vi1 = z1Γd for some z1 ∈ C. In this case, Eq. (4.50) reduces to aλ2 = 0, so
λ1 = 0 is an eigenvalue of A with algebraic multiplicity two, corresponding to
the eigenvector v1 = [z1Γ

>
d 0>]>. However, since A has rank five, the geometric

multiplicity of λ1 is one. To get a full Jordan basis, we choose the generalized
eigenvector v2 = [z2Γ

>
d z1Γ

>
d ]

>, which satisfies (A − λ1I)v2 = Av2 = v1, for
z2 ∈ C.
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The solutions of the linearized system defined by Eq. (4.46) can be written in
terms of its Jordan form as

x(t) = c1e
λ1tv1 + c2e

λ1t(v1t+ v2) +

6∑
i=3

cihi(t), (4.54)

where the functions hi(t) depend on the vectors vj , j ∈ {1, . . . , 6}, the eigenvalues
λk, k = {2, 3, 4, 5} and their multiplicities. The constants ci depend on the initial
condition x(0) =

∑6
i=1 civi, which satisfies Cx(0) = 0. Since the vectors v1,v2 do

not satisfy the constraints Eq. (4.47), c1 = c2 = 0, so the solution x(t) does not
depend on λ1.

Since A ∈ R6×6 is a rank-five matrix, we know that no other eigenvectors are
parallel to v1, so for all remaining eigenvector pairs, a, b, c > 0. Given that Eq. (4.50)
has two solutions, we know from the quadratic formula that from the remaining
eigenvalues λk, k = {2, 3, 4, 5}, two are positive, and two are negative. This confirms
that the undesired equilibrium point (Γ,ω⊥) = (−Γd,0) is unstable. Moreover, the
stable eigenspace corresponding to the two negative eigenvalues is the tangent space
to a two-dimensional stable invariant manifoldM, where all trajectories starting in
M converge to the undesired equilibrium point [72]. Since the zero eigenvalue has
no influence on the solution, all trajectories converging to the undesired equilibrium
lie in M. We conclude that all trajectories except those starting in M converge
to the desired equilibrium. Since the dimension of M is two, it has measure zero
in the state space TS2, and we say that the domain of attraction of the desired
equilibrium point is almost global, which shows (iv).

For almost all Ψ(Γ(t0),Γd(t0)), eω(t0) (excluding Γ(t0) = −Γd(t0)), some kp
can be chosen such that Eq. (4.24), Eq. (4.25) is satisfied. The equilibrium (Γd, 0)
is therefore said to be almost semi-globally exponentially stable [107]. By exploit-
ing passivity-properties in the Lyapunov design, the term −ω⊥ × (ω‖ − Π

‖
Γωd)

in Eq. (4.23) could be replaced by −Π⊥
Γωd × (ω‖ −Π

‖
Γωd), without changing V̇ .

This would also remove the seemingly unneeded cross product term in Eq. (4.55).
However, this would give a closed-loop system that depends on ω‖, and invalidate
several arguments used in the proof.

A notable property of the control law Eq. (4.23) is that since the control ef-
fectiveness matrix G(vr) given by Eq. (2.49) contains a factor of V 2

a , the inverse
matrix G−1(vr) contains a factor of 1/V 2

a . This means that the control law in-
cludes airspeed scaling. Also note that instead of compensating for the entire drift
term f(ω,vr), only the orthogonal projection is compensated for.

A part of the proof is inspired by Lee [105], where a tracking controller for
a double integrator system on S2 is presented. However, Lee [105] considers an
inertial frame representation of reduced attitude, as opposed to Eq. (4.3), which
is defined in the body-fixed frame. Also, no dynamics, or parallel component of
the angular velocity is considered. In addition to compensating for the dynamics,
compared to [105], the controller Eq. (4.23) allows a matrix gain Kd, projects the
feedforward term ω̇d to TΓS2, and adds a term −ω⊥ × ω‖ to compensate for the
“coriolis” term that appears when ω‖ is nonzero.

In the special case of regulation, where ωd = 0, and eω = ω⊥, the control

60



4.3. Design of the smooth Geometric Attitude Controller

law Eq. (4.23) reduces to

u⊥ = G−1(ω,vr)J

(
− kpeΓ −Π⊥

ΓKdω
⊥Π⊥

Γ J
−1f(ω,vr)− ω⊥ × ω‖

)
. (4.55)

The closed-loop system in this case is autonomous. This means that LaSalle’s
invariance theorem [95] can be applied. Inspired by the methodology presented for
the 3-D pendulum in [30], this can be combined with local analysis of the linearized
closed-loop dynamics at the equilibria to show almost global asymptotic stability.
However, the linearized dynamics in [30] evolve on R5, since the state space includes
the full angular velocity ω. In [106], a closed-loop 3-D pendulum system is analyzed,
with angular velocity in TΓS2 and with linearization evolving on R4, but only for
very specific numerical values of the controller gains. The proof of almost global
asymptotic stability follows [30], but is adjusted to use a linearization on R4 instead
of R5, inspired by [106], but done in full generality. In addition, a matrix gain Kd

is used instead of a scalar.

4.3.1 Turn Coordination
The control law defined by Eq. (4.23) does not inject damping about the axis de-
fined by Γ. The control u‖ can be utilized to do this. Let a reference for the angular
velocity about the vertical axis of the inertial frame be given by the equation for a
coordinated turn with zero sideslip [9]:

ω
‖
d = ψ̇dΓ, ψ̇d =

g

Va
tan(φ). (4.56)

Note that care needs to be taken to avoid the singularity at Γ3 = 0, corresponding
to φ = ±π/2, either by constraining the value of φ used in Eq. (4.56), or by using
the reference instead. A controller that adds damping about Γ without interfering
with the banked turn maneuver is then given by

u‖ = G−1(ω,vr)J
(
−ktc(ω‖ − ω

‖
d)−Π

‖
ΓJ

−1f(ω,vr)
)
, (4.57)

where ktc ∈ R>0 is a scalar design parameter.
As an alternative to Eq. (4.57), for some kβ ∈ R>0, consider the following

control law, which is designed to drive the sideslip angle to zero:

u‖ = G−1(ω,vr)JΠ⊥
Γ (kββe3). (4.58)

4.3.2 Comparison With Controller Based on Euler Angles
In this section, the geometric controller presented in Section 4.3 will be compared
to a controller based on Euler angles. For Kω ∈ P3

+, consider the cascaded dynamic
inversion based controller

u = G−1(ω,vr)J

(
−Kω(ω − ω̄d)− J−1f(ω,vr, δt)

)
, (4.59)
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where the bar in ω̄d is introduced to distinguish it from ωd in Eq. (4.9). The desired
angular velocity is computed using Eq. (4.56) and linear state feedback from the
roll and pitch regulation errors φ̃ , φ− φd, θ̃ , θ − θd as follows:

ω̄d = T−1(φ, θ)

 −kφφ̃
−kθ θ̃

g
Va

tan(φ)

 (4.60)

where kφ, kθ ∈ R>0, and T−1(φ, θ) is the inverse of the Euler angle transformation
matrix, given by [9]

T−1(φ, θ) =

1 0 − sin(θ)
0 cos(φ) cos(θ) sin(φ)
0 − sin(φ) cos(θ) cos(φ)

 (4.61)

for θ 6= ±π/2. Note that the third column is Γ (see Eq. (4.4)).
Remark 4.4. Apart from the dynamic inversion term, this controller has similar
structure as the control architecture used in the PX4 open source autopilot [128].

To compare the geometric controller from Section 4.3 with the Euler angle
controller Eq. (4.59)-Eq. (4.61), we consider the regulation case with ωd = 0, and
set Kd = Kω = kdI3, kθ = kφ = kp/kd, and Eq. (4.57) is used for u‖ with ktc = kd.

For the geometric controller, the closed-loop angular velocity dynamics then
become

ω̇ = −kpeΓ − kdω + kdω
‖
d, (4.62)

while for the controller based on Euler angles, the closed-loop dynamics are

ω̇ = −kpeθφ − kdω + kdω
‖
d, (4.63)

where we have introduced the following error vector:

eθφ ,
[
φ̃ kθ

kφ
θ̃ cos(φ) − kθ

kφ
θ̃ sin(φ)

]>
. (4.64)

The only difference between Eq. (4.62) and Eq. (4.63) lies in the proportional error
vectors. By calculating Γ · eθφ = −φ̃ sin(θ) 6= 0, we see that eθφ /∈ TΓS2, so the
proportional action has a different direction than the geodesic direction defined by
eΓ. The error vectors also have different magnitude, but this can be changed using
a different potential function (see Remark 4.3). In the numerical simulation study
of Section 4.4 we will normalize the magnitude of the error vectors by redefining
eΓ as e′Γ = ‖eθφ‖ · eΓ/‖eΓ‖, which enables us to compare the controllers on equal
grounds.

4.4 Simulation Study of the smooth Geometric Attitude
Controller

This section presents some simulation results using a model of the Aerosonde
UAV [9] with a simple PI controller for airspeed and a constant reference of 35m/s.
In the tracking example, Eq. (4.58) is used for u‖, while Eq. (4.57) is used in the
regulation case. The angular velocity is initialized to zero in both cases, while the
controller parameters are set to kp = 9.5, Kd = 8I3 and kβ = 10.
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4.5. Design of the Hybrid Geometric Attitude Controller

4.4.1 Tracking
Consider a tracking scenario, where a trajectory (Γd(t), ωd(t), ω̇d(t)) has been
generated using Eq. (4.4), φd(t) = 60 π

180 cos(0.1 · 2πt), θd(t) = 30 π
180 cos(0.08 · 2πt)

and their analytical first and second order derivatives. Initial reduced attitude is
set using φ(0) = −70◦ and θ(0) = −30◦. Fig. 4.3 shows that reduced attitude,
visualized using roll and pitch angles, converge to the desired trajectory from large
initial errors, while the angular velocity error goes to zero. Angle of attack, sideslip
and control surface deflection angles, which attain reasonable values throughout
the maneuver, are displayed in Fig. 4.3.

4.4.2 Regulation
Now consider a regulation case, where ωd = 0. The constant reference is generated
using φd = 60◦ and θd = 30◦. Initial roll and yaw angles are set to zero, while θ(0)
is calculated using a trim routine. As explained in Section 4.3.2, the magnitude of
the error vector Eq. (4.20) is scaled for comparison with the Euler angle controller.
Fig. 4.4 shows that the UAV performs a banked turn maneuver with approximately
constant turn rate, and roll and pitch angles converge in both cases. For this specific
maneuver, the geometric controller seem to have a slightly faster response in pitch.
The difference can be more clearly understood by looking at Fig. 4.5. The response
of the geometric controller is shown to make the UAV take the shortest path
between Γ and Γd, while the controller based on Euler angles does not. Fig. 4.4
might indicate that this makes the geometric controller spend less control energy.
However, the sideslip angle is smaller, which also reduces the magnitude of the
compensated drift term f(ω,vr). Further investigation should compare the two
controllers when f(ω,vr) is unknown, and integral action is implemented.

4.5 Design of the Hybrid Geometric Attitude Controller

This section extends the smooth proportional feedback of the controller design to
hybrid feedback to render the reduced attitude reference globally exponentially
stable. The essential ingredient is the use of synergistic potential functions [125]
that enable switching of the proportional action in the vicinity of the undesired
equilibrium where the gradient of the nominal potential function vanishes.

We begin by introducing the framework presented in [64] and let the hybrid
system be defined as

(ξ̇, q̇) ∈ F(ξ, q), ξ ∈ C (4.65)
(ξ+, q+) = G(ξ, q), ξ ∈ D, (4.66)

with state ξ ∈ Rn. When the state is inside the flow set C ⊂ Rn, its continuous
motion is governed by the set-valued flow map F : Rn×Q⇒ Rn×Q. Complemen-
tary, when the state is inside the jump set D ⊂ Rn it evolves in the form of discrete
jumps with its dynamics governed by the jump map G : Rn → Rn. The variable
q ∈ Q is a discrete logic state. The hybrid time domain (t, i) consists of continuous
time t ∈ R≥0 and jump time i ∈ N. In the stability analysis of this section we will
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Figure 4.3: Tracking scenario: The attitude trajectories of the geometric controller (blue)
converge exponentially to the reference values (dashed). The angular velocity error, eω

in the third subplot (blue, orange, green for the axes x, y, z, respectively), and the angle
of attack, α (blue), and sideslip angle, β (orange), in the third subplot remain within
reasonable bounds. The deflections for the aileron, δa (blue), elevator, δe (orange), and
rudder, δr (green), are also within their respective limits.
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Figure 4.4: Regulation scenario: The baseline controller (blue) results in larger control
surface deflections, as indicated by ‖u‖, and slower convergence to the reference (dashed)
when compared to the geometric controller (orange). The angle of attack, α, and sideslip
angle, β, are within reasonable bounds for both controllers.
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Figure 4.5: Regulation scenario: Trajectories on the two-sphere. The controller based
on Euler angles (blue) takes a longer trajectory compared to the geometric controller
(orange).

use the notation V (t, i) instead of V (φ(t, i)) where φ(t, i) denotes a solution to the
system dynamics.

In the following we describe the design of a hybrid controller which employs
proportional feedback based on a synergistic potential function as presented in
[126], coordinated by a set of modes. The magnitude of the proportional feedback
will depend on the gradient of the potential function in the active mode, which
vanishes at the critical points of the potential function. The synergism property
means that at all points other than the reference where this occurs, there is another
mode in which the potential function has a significantly lower value. This solves the
problem of vanishing proportional action at the opposite direction of the reduced-
attitude reference and renders the desired equilibrium globally asymptotically or
exponentially stable, depending on the design of the sets C and D.

4.5.1 Synergistic Potential Function

The design of a synergistic potential function Ψ : S2 × S2 × S2 ×Q→ R≥0 follows
the approach presented in [108] based on two modes which gives the set Q = {0, 1}.
The nominal mode q = 0 drives the reduced attitude in the direction of the nominal
reference Γd. The expelling mode q = 1 will be designed such that the critical points
of its potential function are at maximum distance to both the nominal reference
and its antipodal point, i.e. they evolve on the unit circle on S2 orthogonal to Γd.
Let the reference in the expelling mode be sd ∈ S2 satisfying

ṡd = sd × ωd. (4.67)

It follows from Eq. (4.6), Eq. (4.67) and the identity Eq. (2.3) that when sd is
initialized orthogonal to Γd, i.e. satisfies sd(0)·Γd(0) = 0, it holds that sd(t)·Γd(t) =
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0 for all time. This can be shown expending the orthogonality expression to

d

dt
(sd(t) · Γd(t)) = Γ̇d · sd + Γd · ṡd = (Γd × ωd) · sd + sd · (ωd × Γd) = 0, (4.68)

where we used Eq. (4.6), Eq. (4.67) and the identity Eq. (2.3).
In the following let ξ = (Γ,ωb⊥nb ,Γd, sd,ωd) ∈ Ξ be the continuous state of the

hybrid system which evolves in the space Ξ , S2 ×TΓS2 × S2 × S2 ×TΓd
S2. As in

[126] we define the synergistic potential function as

Ψq(Γ,Γd, sd) =

{
1− Γ · Γd if q = 0

a+ b(1− Γ · sd) if q = 1,
(4.69)

where the parameters a, b ∈ R>0 act as a bias and a scaling factor to the expelling
potential which are designed such that Ψq is positive definite relative to Γd. The
gradient of Ψq with respect to Γ is given by

∇ΓΨq(Γ,Γd, sd) =

{
−Γd if q = 0

−bsd if q = 1.
(4.70)

Note that since S2 is a compact manifold and b is finite, ‖∇ΓΨq(Γ,Γd, sd)‖ is
bounded. The nominal mode may be interpreted as a special case with zero bias and
unity scaling. The potential function is continuous in each mode and by choosing
a, b strictly positive it is positive definite relative to Γd.

4.5.2 Error States
The goal in either mode is to converge to the attitude with minimum potential along
the shortest path on S2. This can be achieved by applying state feedback that is
proportional to the gradient of the potential function with respect to Riemannian
metric on S2. By [19, Lemma 11.6], the gradient vector field on S2 induced by Ψq is
given by dΨq(Γ) = S(Γ)2∇ΓΨq. It can be driven to zero by proportional feedback
in the direction of the error vector

eΓq = −Γ×∇ΓΨq(Γ,Γd, sd) ∈ TΓS2, (4.71)

which can be interpreted as a rotation axis acting on Γ in the direction of −dΨq(Γ)
towards the reference. The illustration of both the nominal and the expelling gra-
dient field is given in Fig. 4.6, which shows that the additional expelling potential
solves the problem of the vanishing proportional action at the antipodal of the
desired reduced attitude.

Let the angular velocity error eω ∈ TΓS2 be defined by

eω = ωb⊥nb −Π⊥
Γωd, (4.72)

which, using Eq. (4.7) and Eq. (4.10), can be shown to satisfy

ėω = Π⊥
Γ

(
ω̇ − ω̇d + ωb⊥nb × (ω

b‖
nb −Π

‖
Γωd)

)
−Π

‖
Γ(ωd × ωb⊥nb ). (4.73)
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Figure 4.6: The left figure shows the gradient fields defining eΓq as induced by the
potential Ψq for the reference example Γd =

[
0 0 1

]> and sd =
[
0 1 0

]>. The
proportional action of the hybrid controller is not vanishing at the antipodal of Γd.

Note that, even though ωb⊥nb and ωd belong to different tangent bundles, the angular
velocity error in Eq. (4.72) provides a valid comparison. This can be verified by
showing that the sufficiently smooth map Π⊥

Γ acts as a transport map following
the definition given in [20], which means that the equality

∇rΨ(Γ,Γd, sd)
>
S(r) = −∇ΓΨ(Γ,Γd, sd)

>
S(Γ)Π⊥

Γ (4.74)

needs to be satisfied for r ∈ {Γd, sd}. Since this is the case, Π⊥
Γ is said to be

compatible transport map to the potential function Ψq, which is essential in the
stability proofs [19, Lemma 11.16].

4.5.3 Control Law
The control law is a combination of dynamic inversion, feedforward terms and
PD-like feedback in terms of eΓq and eω. It is defined as

u = G−1(vr)J
(
−Π⊥

Γ J
−1
(
f(ω,vr)

)
+ κ(ξ, q)

)
(4.75)

where κ : Ξ×Q→ TΓS2 is defined as

κ(ξ, q) = −ωb⊥nb × (ω
b‖
nb −Π

‖
Γωd) +Π

‖
Γω̇d − kpeΓq −Π⊥

ΓKdeω, (4.76)

with proportional gain kp ∈ R>0 and positive definite gain matrix Kd = Kd
> ∈

R3×3. As in the case of the continuous controller, this control law only affects
ω̇⊥ ∈ TΓS2. This leaves the possibility for an independent design of a control law
u‖ ∈ NΓS2 for other objectives such as turn coordination, which we discussed in
Section 4.3.1.

4.5.4 Jump Map
In the nominal mode, the error vector eΓq drives the reduced attitude in the di-
rection on the sphere that lies on the path of minimal distance between Γ and Γd,
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known as the minimal geodesic path [21]. To extend this path to the case where
the expelling mode is active, s+d is chosen as

s+d ∈ gsd(Γ,Γd, sd) ,

{
Γd×Γ

‖Γd×Γ‖ × Γd if Γ 6= ±Γd
sd otherwise

(4.77)

which in the first case gives the point on S2 that lies on the geodesic path and
satisfies the orthogonality constraint with respect to the nominal reference. The
second case is included to ensure a well-defined solution.

4.5.5 Closed-loop System
We can now describe the closed-loop dynamics of the hybrid system. The con-
tinuous kinematics of Γ,Γd, sd are given by Eq. (4.6), Eq. (4.10) and Eq. (4.67),
respectively. The closed-loop dynamics for ωb⊥nb are given by Eq. (2.32d), Eq. (4.6),
Eq. (4.7) and the control law Eq. (4.75). Both references are governed by the same
kinematic equation as the reduced-attitude vector and the derivative of the angular
velocity reference is included in cω̇d

B which allows for the formulation of an au-
tonomous system [124]. The resulting continuous motion of the closed-loop system
is governed by 

Γ̇

ω̇⊥

Γ̇d
ṡd
ω̇d
q̇

 ∈ F(ξ, q) ,


Γ× ωb⊥nb
κ(ξ, q) + ωb⊥nb × ω

b‖
nb

Γd × ωd
sd × ωd
cω̇d

B
0

 . (4.78)

The discrete motion is independent of the control law and only has an effect on
the mode and the expelling reference which results in jumps as defined by

Γ+

ω⊥+

Γ+
d

s+d
ω+
d

q+

 = G(ξ, q) ,


Γ

ωb⊥nb
Γd

gsd(Γ,Γd, sd)
ωd
1− q

 . (4.79)

4.5.6 Hybrid Controller Sets
To coordinate the control laws, we use the difference between the potential of the
current mode to the minimum potential, referred to as synergy gap by [126]. It is
defined as

µ(Γ, q) = Ψq(Γ,Γd, sd)−min
ν∈Q

Ψν(Γ,Γd, sd). (4.80)

Let us further introduce the constant hysteresis parameter δ ∈ R>0 to define
the sets C,D ⊂ Ξ×Q as

C = {(ξ, q) : µ(Γ, q) ≤ δ}, (4.81)
D = {(ξ, q) : µ(Γ, q) ≥ δ}. (4.82)
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The following proposition establishes conditions on the potential function such that
it is synergistic and positive definite relative to Γd:

Proposition 4.2: Let the sets C, D be given by Eq. (4.81) and Eq. (4.82), with
synergy gap µ defined in Eq. (4.80). Then the potential function Ψq in Eq. (4.69) is a
synergistic potential function with gap exceeding δ satisfying

0 < δ < min{2− a− b, a− 1, a+ 2b− 1}. (4.83)

Proof: We first show that Ψq describes a synergistic potential function with syn-
ergy gap exceeding δ. This is to say that at every critical point other than the
nominal reference the difference to the other potential function is larger than some
specified δ. To this end, denote the set of critical points of Ψq for a fixed q ∈ Q as

CritΨq = {(Γ,Γd, sd) ∈ (S2)3 : eΓq = 0}. (4.84)

From the definition of eΓq it follows that at all critical points, the reduced atti-
tude Γ is parallel to the gradient of the potential function ∇ΓΨq. The set of all crit-
ical points follows as ∪q∈QCritΨq = {(±Γd), (±sd)}. For {Ψq}q∈Q to be centrally
synergistic relative to Γd with gap exceeding δ, the condition ∪q∈QCritΨq \{Γd} ⊂
D needs to be satisfied. At (Γ, q) = (−Γd, 0), the potential function evaluates to
Ψ0(−Γd) = 2 and Ψ1(−Γd) = a + b, where we use the fact that sd · Γd = 0. To
include that point in the jump set, the synergy gap needs to satisfy

µ(−Γd, 0) = 2− a− b > δ > 0. (4.85)

At the critical points of the expelling mode, the nominal potential evaluates
to Ψ0(±sd) = 1 and for the expelling potential we have Ψ1(−sd) = a + 2b and
Ψ1(sd) = a. Therefore, the synergy gap also has to satisfy

µ(−sd, 1) = a− 1 > δ > 0 (4.86)
µ(+sd, 1) = a+ 2b− 1 > δ > 0. (4.87)

Then by [126, Proposition 1], the potential function Ψq is centrally synergistic
relative to Γd with synergy gap exceeding δ given by Eq. (4.83).

The closed-loop hybrid system is designed such that it satisfies the hybrid basic
conditions [64, Assumption 6.5] which makes it nominally robust to measurement
noise. The hybrid basic conditions lean on outer semicontinuous set-valued maps,
a concept which we briefly look at before our proposition and proof for the basic
conditions to be satisfied by the hybrid control system. In [64] outer semicontinuity
is defined as

Definition 4.1 (Outer semicontinuity). A set-valued mapping M : Rm ⇒ Rn is
outer semicontinuous (osc) at x ∈ Rm if for every sequence of points xi convergent
to x and any convergent sequence of points y ∈ M(xi), one has y ∈ M(x), where
limi→∞ yi = y. The mapping M is outer semicontinuous if it is outer semicontin-
uous at each x ∈ Rm. Given a set S ⊂ Rm, M : Rm ⇒ Rn is outer semicontinuous
relative to S if the set-valued mapping from Rn to Rm defined by M(x) for x ∈ S
and ∅ for x /∈ S is outer semicontinuous at each x ∈ S.

70



4.5. Design of the Hybrid Geometric Attitude Controller

Goebel adds that outer semicontinuity of M : Rm ⇒ Rn relative to S ⊂ Rm
just means that for each x ∈ S, each sequence of points xi ∈ Si convergent to
x, and each sequence of points yi ∈ M(xi) convergent to y, y ∈ M(x). More
details including examples can be found in [64, Chap. 5]. For our goal of attitude
control on S2, it suffices to know that a set-valued mapping M : Rm ⇒ Rn is outer
semicontinuous if and only if its graph is closed, as given by [64, Lemma 5.10].

We are now ready to propose that the designed closed-loop control system
satisfies the hybrid basic conditions:

Proposition 4.3: Consider the sets C in Eq. (4.81), D in Eq. (4.82) and the maps
F , G in Eq. (4.78),Eq. (4.79). Then, the following is satisfied:

1. The sets C and D are closed.
2. The map F is outer semicontinuous and locally bounded relative to C and F(ξ, q)

is convex for every (ξ, q) ∈ C.
3. The map G is outer semicontinuous and locally bounded relative to D.

Proof: To show that C and D are closed, note that Ψq is continuous for q ∈ Q
and that the minimum of two continuous functions is continuous. The synergy gap
µ in Eq. (4.80) then is the difference of two continuous functions, which makes it
continuous. Therefore, the sets C and D are closed. The unit ball B is compact
and convex for any (ξ, q) ∈ C such that ωd, ω̇d are bounded by assumption. All
remaining components of F are continuous and single-valued functions on C. Thus,
the map F is convex and locally bounded relative to C and outer semi-continuity
follows from [64, Lemma 5.10], which shows (ii). Further, note that S2 is compact
and hence s+d = gsd(Γ,Γd, sd) ∈ S2 is locally bounded relative to D and the graph
of gsd : S2 × S2 → S2 given by

gphgsd = {(Γ,Γd, sd) ∈ S2 × S2 × S2 : sd ∈ gsd(Γ,Γd, sd} (4.88)

is closed. Since D is closed, outer semi-continuity of gsd relative to D follows from
[64, Lemma 5.10].

The stability results can be summarized in two propositions that need the
following additional assumption:

Assumption 11. The parameters a, b, δ ∈ R are such that Ψq in Eq. (4.69)
satisfies Eq. (4.83) according to Proposition 4.2. Further, the time-varying reference
trajectory (Γd(t), sd(t),ωd(t), ω̇d(t)) satisfies Eq. (4.10), Eq. (4.11) and Eq. (4.67).

Proposition 1: Let Assumption 9 and Assumption 11 hold. Consider the closed-
loop hybrid system H = (C,F ,D,G) with F , G defined in Eq. (4.78), Eq. (4.79) and
the sets C, D given by Eq. (4.81), Eq. (4.82). Then the set

A = {(ξ, q) ∈ Ξ×Q : Γ = Γd, ω
b⊥
nb = ωd} (4.89)

is globally asymptotically stable for H.

Proof: Given Eq. (4.69), Eq. (4.72) and Eq. (4.6) - Eq. (4.10), the closed-loop
solution to Ψq can be shown to satisfy

Ψ̇q = eΓq · eω, (4.90)
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where we used the identity Eq. (2.5). The time-derivative of the error vectors are
given by

ėΓq = −S(ωd)eΓq + S(∇ΓΨq)S(Γ)eω (4.91)

ėω = −kpeΓq −Π⊥
ΓKdeω −Π

‖
Γ(ωd × eω) (4.92)

which can be found using Eq. (2.3), Eq. (4.5) and Eq. (4.10). Note that the er-
ror dynamics in either mode correspond to those in the smooth controller case
Eq. (4.26), Eq. (4.27).

To show asymptotic stability, let a Lyapunov function candidate be defined as

V = kpΨq +
1

2
eω

>eω. (4.93)

It follows from Eq. (4.90) and Eq. (4.92) that for (ξ, q) ∈ C along solutions of the
closed-loop system, V satisfies

V̇ (t, i) = −eω>Π⊥
ΓKdeω ≤ −λmin(Kd)‖eω‖2 , uc(ξ). (4.94)

It follows from Kd being positive definite that uc(ξ) ≤ 0 such that V (t, i) is non-
increasing along flows. In D, the mode is switched to the lower potential which
leads to the difference during jumps

V (t, i+ 1)− V (t, i) = −kpδ , ud. (4.95)

This shows that the growth of V (t, i) along solutions to H is bounded by uc(ξ) ≤ 0
and ud < 0. Note that by requiring the reference to be bounded, the dynamics
of closed-loop system in Eq. (4.78) and Eq. (4.79) are autonomous and hybrid
invariance principles can be applied. Then by [64, Theorem 8.8] we have that for an
arbitrary c ∈ V (Ξ, Q) each pre-compact solution to H converges to the nonempty
set that is the largest weakly invariant subset of

Ω = V (c)−1 ∩ cl (uc(0)
−1), (4.96)

where V (c)−1 denotes the preimage of the Lyapunov function candidate at c and
uc(0)

−1 denotes the preimage of uc at 0 for which cl (uc(0)
−1) is the closure. Then

from Eq. (4.94) we see that cl (uc(0)
−1) leads to eω = 0 which implies ėω = 0.

We substitute this into Eq. (4.92) to see that eΓq = 0 which gives (Γ, q) ∈ CritΨ.
Since all critical points except (Γd, 0) are included in D, it follows that A is the
largest weakly invariant subset of Ω. Thus, all pre-compact solutions of H converge
to A. Further, note that A is compact and cl (C) ∪ D = Ξ × Q and therefore
G(D) ⊂ cl (C)∪D. Since V is positive definite with respect to A it follows from [64,
Theorem 8.8] and [64, Corollary 8.9 (iii)] that A is globally asymptotically stable.

It follows from Eq. (4.71) and Eq. (4.72) that inclusion in the set A implies
eΓq = 0 and eω = 0. An additional condition for inclusion in the jump set based
on the angular velocity error can be shown to yield a stronger stability result. The
next proposition summarizes the conditions for global exponential stability.
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Proposition 2: Let Assumption 9 and Assumption 11 hold. Consider the closed-
loop hybrid system H = (C,F ,D,G) with F , G defined in Eq. (4.78), Eq. (4.79) and
the sets C, D ⊂ Ξ×Q given by

C = {(ξ, q) : µ(Γ, q) ≤ δ or ‖eω‖ ≥ Beω}, (4.97)
D = {(ξ, q) : µ(Γ, q) ≥ δ and ‖eω‖ ≤ Beω} (4.98)

where Beω ∈ R>0 is constant. Then the set

A = {(ξ, q) ∈ Ξ×Q : Γ = Γd, ω
b⊥
nb = ωd} (4.99)

is globally exponentially stable for H.

Proof: The aim of the proof is to show global exponential stability as defined in
[181]. Along continuous flows and for bounds, Ψq and eΓq are assumed for a fixed
q, unless specified otherwise. We first show that the potential function is uniformly
quadratic [20]. Since all critical points other than Γd are excluded from the flow
set C, there exists a constant γ such that the potential function can be bounded
from above (see [107]) as

Ψq(Γ,Γd, sd) ≤
1

2
γ‖eΓq‖2. (4.100)

To show a lower bound, we use scaling in each mode and define bq as b0 = 1 and
b1 = b. It then follows from Eq. (4.70) and Eq. (4.71), using Eq. (2.4) that the
potential function is uniformly bounded by

1

2bq
‖eΓq‖2 ≤ Ψq(Γ,Γd, sd) ≤

1

2
γ‖eΓq‖2. (4.101)

Using Eq. (4.93), let a Lyapunov-function candidate be

Vε = V + εe>ω eΓq (4.102)

for some ε ∈ R>0. From Eq. (4.101) and defining z =
[
‖eΓq‖ ‖eω‖

]> we see that
Vε can be bounded by

1

2
z>M1z ≤ Vε ≤

1

2
z>M2z, (4.103)

where the matrices M1,M2 ∈ R2×2 are given by

M1 =

[
kp
bq
−ε

−ε 1

]
, M2 =

[
kpγ ε
ε 1

]
. (4.104)

Next, we show that there exists a λ > 0 such that along solutions of the closed-
loop dynamics, Vε can be bounded by

Vε(t, i) ≤ Vε(0, 0)exp(−λt). (4.105)

During jumps, the difference in Vε is given by

Vε(t, i+ 1)− Vε(t, i) = −kpδ + εeω
>(eΓq+ − eΓq), (4.106)
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which can be bounded using Eq. (2.7) and the triangle inequality such that

Vε(t, i+ 1)− Vε(t, i)
≤ −kpδ + ε‖eω‖‖Γ× (Γd − bsd)‖
≤ −kpδ + ε‖eω‖(‖Γd‖+ |b|‖sd‖)
≤ −kpδ + εBeω (1 + |b|). (4.107)

The right side of the last inequality is non-positive for

ε ≤ kpδ

Beω (1 + |b|)
, (4.108)

which shows that Vε is non-increasing during jumps. Next we show that there exists
a positive definite matrix M3 ∈ R2×2 such that along flows, Vε satisfies

V̇ε(t, i) ≤ −z>M3z. (4.109)

The upper bound of V̇ is given by Eq. (4.94), and it remains to find a bound for
the time-derivative of the cross-term in Eq. (4.102). From Eq. (4.91), Eq. (4.92) we
see that

d

dt
(e>ω eΓq) = e>ω (S(∇ΓΨq)S(Γ))eω − kp‖eΓq‖2 − eΓq

>(Kd + S(ωd))eω

≤ ‖∇ΓΨq‖‖eω‖2 − kp‖eΓq‖2 + (λmax(Kd) +Bωd
)‖eΓq‖‖eω‖,

where Eq. (2.7) is used. From Eq. (4.94) and Eq. (4.109) follows

M3 =

[
εkp − ε

2 (λmax(Kd) +Bωd
)

− ε
2 (λmax(Kd) +Bωd

) λmin(Kd)− ε‖∇ΓΨq‖

]
. (4.110)

The matrices M1,M2,M3 are positive definite for any ε satisfying

ε < min
q∈Q

{√
kp
bq
,

4λmin(Kd)

4kp‖∇ΓΨq‖+ (λmax(Kd) +Bωd
)2

}
, (4.111)

which shows that Eq. (4.105) is satisfied for all initial conditions with λ = λmin(M3).
We can then apply [181, Theorem 1] to conclude global exponential convergence
of Vε. Then Vε = 0 if and only if Ψq = 0 and eω = 0 and hence Γ → Γd and
ωb⊥nb → ωd, which shows that A is globally exponentially stable.

Note in the proof to Proposition 2 that Beω may be chosen arbitrarily large
such that it does not necessarily impose practical limitations. Moreover, the sets
C and D are closed and the maps F and G are not changed. The hybrid basic
conditions are thus also satisfied for Proposition 2.

4.6 Simulation Study of the Hybrid Geometric Attitude
Controller

We use the model of the Aerosonde UAV with the nonlinear aerodynamics as
described in [9] and compare two controllers. First, a continuous controller that
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Figure 4.7: Control surface deflections of aileron δa, elevator δe and rudder δr for the
continuous controller (blue) and the hybrid controller (orange).
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Figure 4.8: Attitude response represented by the angles roll φ and pitch θ for the contin-
uous controller (blue) and the hybrid controller (orange) including the reference (dashed).
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Figure 4.9: Angular rate response represented by roll rate p, pitch rate q, and yaw rate
r, for the continuous controller (blue) and the hybrid controller (orange) including the
reference (dashed).

employs the nominal mode throughout the simulation and second, the presented
hybrid controller that may switch to the expelling mode in addition. A stability
analysis showing semi-global exponential stability of the continuous controller is
presented in [37]. The airspeed is treated as an exogenous signal and controlled via
a PI-Controller through the propeller throttle.

The controller parameters are chosen as kp = 9.5, Kd = 8I3, a = 1.25, b = 0.6.
We simulate the recovery from a large initial attitude disturbance and set the initial
state such that Γ(0) = −exp(e1ε)Γd with ε = π/180 and e1 = [1 0 0]

>. In terms of
Euler angles, this corresponds a roll angle of -179 degrees and pitch angle of -21.26
degrees. The yaw angle is set to zero. The reference is parameterized according
to Eq. (4.4) with zero roll angle and 21.26 degrees pitch angle, which is the trim
condition for wings-level ascending flight at 35 meters per second airspeed. Note
that the initial attitude is thus far from the given reference.

As shown in Fig. 4.8, the continuous controller remains close to the initial at-
titude up to 3 seconds whereas the hybrid controller reacts instantly and uses the
expelling potential with a larger gradient up to 3.5 seconds into the simulation
before switching to the nominal potential (cf. Fig. 4.11). As a consequence, the hy-
brid controller recovers faster from the descending flight condition at a lower speed
(cf. Fig. 4.10) and returns to ascending flight two seconds before the continuous
controller, with similar actuator usage (cf. Fig. 4.7). A drawback of the hybrid
controller however is the deceleration close to the expelling reference as shown in
Fig. 4.9 and Fig. 4.11. This suggests using a dynamic extension in which the control
action is given by a dynamic weighting of both configuration error vectors as done
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Figure 4.10: Results of the relative velocity represented by airspeed Va, angle of attack
α, and sideslip angle β, for the continuous controller (blue) and the hybrid controller
(orange).

in [10] or [126]. Future work will also address performance of the hybrid controller
in the face of non-vanishing disturbances and model perturbations. Another aspect
is the extension to the optimal use of the actuators while respecting saturation
constraints, potentially in a model predictive control scheme.
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Figure 4.11: Trajectories of the potential functions for the continuous controller (blue)
and the hybrid controller (orange). The values for the nominal potential function Ψ0

(dashed), the expelling potential function Ψ1 (dotted), and the activated potential func-
tion Ψq (solid) are shown.
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4.7 Experimental Verification

For the experiments we used a more simple controller structure that is conceptually
the same as outlined in the preceding sections, but does not depend on a dynamic
model except for the control-effectiveness matrix G. The controller does not include
hybrid feedback and was tested in conditions where this would not have had an
effect. The structure reads as

ω⊥
d = kω,eΓeΓ (4.112)

ω
‖
d =

g

Va
tan(φ)Γ (4.113)

ωd = ω⊥
d + ω

‖
d (4.114)

z = ω − ωd (4.115)
u = G(vr)

†(−k1eΓ −K2z− ∆̂) (4.116)
˙̂
∆ = K3z, (4.117)

where Eq. (4.113) is equivalent to Eq. (4.56). The controller structure is designed
for practical implementations where sufficient knowledge of the aerodynamic model
or matrix of inertia may not be available. We therefore drop the feedforward terms
and instead introduce the disturbance estimate ∆̂ ∈ R3.

As we conducted the experiments with the X8 which is an underactuated UAV,
with its rank-deficient matrix G as outlined in Chapter 2, it is necessary to use the
Moore-Penrose inverse G† = (G>G)−1G>. To extend the stability proof for asymp-
totic stability of the resulting closed-loop trajectories to the scenario of the under-
actuated UAV requires an additional symmetry condition for the matrix of inertia
[2]. The elements about two principal axes would need to be equal which would be
fulfilled for the example of a homogenous cylinder, but not for a regular fixed-wing
UAV. We therefore do not give a stability proof here, but show the practical effi-
cacy in experiments. For an in-depth analysis of the controller structure used in the
experiments, but with full actuation, see [35]. The controller is parameterized with
k0 = 5.0, k1 = 1.0, K2 = diag(

[
5.0 1.5 2.0

]
), and K3 = diag(

[
0.2 0.2 0.1

]
).

The update rate was set to 50Hz.
The data collected in the experiments includes two modes of operation for which

we present an example. The first mode is referred to as Fly-by-wire-A (FBWA),
when it is active, the pilot that operates the UAV uses the RC transmitter to
set reference values for the angles roll and pitch directly. The references are then
tracked by the low-level controller, and the throttle set-point is controlled manually.
The second mode sets the UAV into automatic control (AUTO) and the low-level
controller receives reference values from a higher-level guidance module that is
following a path defined via a pattern of waypoints.

The results are shown in Fig. 4.12. In the first half, until 930s, the UAV is
operated in FBWA, before it is set to mode AUTO to follow a rectangular pattern
of waypoints. During FBWA operation, we tested the response to series of manu-
ally set steps for pitch and then for roll, which are set to their respective limits.
The controller is able to track the references with convergence that appears to be
approximately exponential. The tracking performance is better in roll compared to
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pitch, where the controller seems to struggle to track the negative steps. During
AUTO, the controller is able to follow the reference signals set by the guidance
module (L1 and TECS implemented in ArduPlane), but again there are periods
during which there is a static offset in pitch. The results are from an early stage
of testing and further tuning of the integral gain may compensate for this prob-
lem. However, for control architectures as the one employed here, the timescale
separation principle requires the low-level controller to have significantly higher
bandwidth compared to the guidance controller, such that integral action on this
level is usually not included.
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Figure 4.12: Experiment with the smooth controller. In the first half of the data series
the pilot controlled the UAV by setting reference to roll and pitch via the RC Transmitter
(mode FBWA). In the second half, the UAV received the reference signals (black, dashed)
from a path following controller to follow a rectangular pattern of waypoints. Angular
velocity errors for roll, pitch and yaw direction (in blue, orange, green, respectively) are
shown in the third plot. The angle of attack (blue) and sideslip angle (orange), and the
deflection of the aileron (blue) and elevator (orange) are shown in the last two plots.
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4.8 Benchmark Scenario

The geometric attitude controller that we use in the benchmark scenario has a
simpler structure than presented in the main contribution of this chapter. It does
not use dynamic model inversion to the same extent, but rather includes integral
action. The required knowledge of the model is therefore reduced to the control-
effectiveness matrix G. The resulting control law for the geometric attitude con-
troller is given as

u = G(vr)
†(−kpeΓ −Kdeω −Ki∆̂) (4.118)

˙̂
∆ = eΓ. (4.119)

The controller gains are tuned to kp = 20.0 and Ki = Kd = diag(2.0, 2.0, 2.0),
to give a similar step response to the baseline controllers as outlined in Appendix A,
and the desired angular velocity ωd is set to zero. The airspeed controller is the
same as for the baseline controllers introduced in Section 2.5. The path-following
performance in cascade with the guidance controller is only marginally different to
the baseline controllers, as can be seen from the plots in Fig. 4.13 and the mean
squared distance Je,d given in Section A.2. From Fig. 4.14, it appears that the geo-
metric attitude controller results in slightly slower changes in the control surfaces.
To some extent this confirms the observation of more efficient actuator usage drawn
in Section 4.4.2. However, the reduced actuator usage seems to cause an increase in
the roll and pitch errors, suggesting that the difference in performance and actuator
usage in this case can simply be reduced by selecting the gains differently.
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Figure 4.13: Benchmark simulation comparing the geometric controller (GC, plotted in
green) introduced in this chapter to the previous controller designs (gray). The reference
path is plotted in black, dashed.

4.9 Chapter Summary

We introduced a geometric controller for the control of roll and pitch angle based
on and equivalent reduced-attitude vector. We highlighted the benefits of this al-
ternative attitude representation and used it to derive a proportional-derivative
control law with feedback linearization. Based on Lyapunov theory, the control law
is shown to render the reduce-attitude reference almost semi-globally exponentially
stable and almost globally asymptotically stable, with region of exponential con-
vergence depending on the chosen controller gains. After comparing the geometric
controller to a more conventional controller based on Euler angles, both controllers
were evaluated in numerical results, showing that the geometric achieves set-point
stabilization on the shortest path on the two sphere. The proportional feedback
of the geometric controller was then extended to hybrid feedback to overcome the
topological obstruction of the two-sphere and render the desired reduced attitude
exponentially stable, which we showed in detailed stability proofs. The benefits of
the hybrid controller over the smooth geometric controller was demonstrated in a
simulation scenario where the performance of the smooth controller is negatively
effected by the unstable equilibrium. We closed the chapter with experimental re-
sults that demonstrate the practical use of the smooth geometric controller.
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Figure 4.14: Benchmark simulation comparing the geometric controller (GC, plotted in
red) introduced in this chapter to the previous controller designs (gray). The first subplot
includes the distance to the reference path ‖d‖2, and the following subplots include the
error signals for airspeed, roll and pitch, as well as the actuator signals.
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Chapter 5

Direct Nonlinear Model Predictive
Control for Attitude and Speed
Control

This chapter is based on
[155] Dirk Reinhardt and Tor Arne Johansen. Nonlinear Model Predictive At-

titude Control for Fixed-Wing Unmanned Aerial Vehicle based on a Wind
Frame Formulation. In 2019 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 503–512, June 2019.

[156] Dirk Reinhardt and Tor Arne Johansen. Control of Fixed-Wing UAV At-
titude and Speed based on Embedded Nonlinear Model Predictive Control.
IFAC-PapersOnLine, 54(6):91–98, 2021. 7th IFAC Conference on Nonlinear
Model Predictive Control NMPC 2021.

[152] Dirk Reinhardt, E. M. Coates, and Tor Arne Johansen. Low-level Nonlin-
ear Model Predictive Attitude and Speed Control of Fixed-Wing Unmanned
Aerial Vehicles. Control Engineering Practice, submitted.

5.1 Introduction

The classic design for the low-level autopilot of modern Unmanned Aerial Vehicles
(UAVs) is based on first-order Taylor approximations of the nonlinear dynamics
around trim states in which the UAV is either in wings-level horizontal flight or
performing a banked turn with a possible change in altitude [9, 177]. The resulting
controllers show desirable performance in the vicinity of the trim conditions and
the UAV is operated with set-points for speed and attitude such that the vehicle
stays in the region where the local approximation is valid. This often results in a
rather conservative usage of the UAVs physical capabilities in autonomous flight.
In addition, it is difficult to handle actuator limits in the controller design, leading
to controller gains to be tuned in a way to not saturate the control inputs.

Considering the full flight envelope, in particular, effects related to the detach-
ment of the laminar flow from the airfoil in the transition to the angles of attack
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above the stall angle introduce more significant non-linearities into the dynamic
equations. On the kinematic level, the natural configuration space of the UAV atti-
tude, either be it the full attitude represented by elements of the Special Orthogonal
Group SO(3) or vectors on the unit two-sphere S2 for roll-pitch or pitch-yaw con-
trol, are often captured by linear approximations in the local tangent space at each
element, which implies only local performance and stability properties. This makes
large-angle attitude maneuvers, with consistent performance throughout the tran-
sition, difficult to achieve by applying linear methods. Assuming that the model
of the dynamics is sufficiently accurate, a nonlinear controller may not have these
problems.

Nonlinear Model Predictive Control (NMPC) can be applied to include the non-
linear effects into the controller design and explicitly deal with the boundary of the
flight envelope and the actuator limits by including them in the definition of the
constraint set. Due to the rather fast low-level dynamics in roll and pitch motion,
most NMPCs for UAVs are designed for the guidance level, such as [3, 174, 194],
and rely on low-level PID-type controllers to track given attitude/speed set-points.
However, the autopilot comes with a set of tuning parameters that have been ob-
tained for the nominal trim conditions. When far away from them, the low-level
controller might show degrading performance which will carry over to the higher-
level NMPC. In this case, direct actuation may lead to improved performance, as
shown for multi-rotors in [139, 197]. For fixed-wing UAVs however, few works use
MPC to directly control surfaces and engine. One exception is [143] where lin-
ear perturbation models in lateral/longitudinal direction are identified from which
explicit UAVs with low computational demands can be derived. Mammarella and
Capello [116, 117] also use liner models to design a robust MPC in a tube-based ap-
proach. See also their work in [118] using sample-based stochastic MPC for tracking
control.

For high-performance flight in a wide envelope, however, we believe that it
is necessary to consider coupled dynamics in the nonlinear regime (see [92] for
a comparison between linear and nonlinear MPC for multi-rotors). The present
work is a contribution toward this goal. A limiting factor for the use of NMPC
in robotic applications with fast dynamics has been the achievable update rate
to counteract disturbances, which is limited by the closed-loop runtime of the
employed numerical solver to update the predicted optimal trajectory. We show
that due to recent advancements on both algorithmic and hardware levels, low-level
control using NMPCs with up to 40Hz update rates is feasible, despite a rather
rich dynamic model and moderate environmental disturbances due to wind. The
controller design may be employed on standard embedded computing platforms
and the proposed architecture of the flight stack allows for operation parallel to an
established low-level autopilot.

5.2 Controller Design and Implementation

5.2.1 Dynamic Model
We use the rotation matrix for the attitude representation, in contrast to minimum
parameterizations such as Euler angles or quaternions, which is motivated by the
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fact that they result in a globally unique and non-singular attitude representation.
Quaternions evolve on S3, which is a double cover of the natural configuration space
SO(3), meaning that two quaternions can be used to represent the same attitude.
Euler angles are prone to singular attitude representations (gimbal lock), which
would need to be handled in the implementation. Chaturvedi et al. [29] offers an
excellent discussion on this topic.

We decompose the rotation matrix into the individual axes, i.e. Rnb = [rx, ry, rz]
with r{x,y,z} ∈ S2 representing the axes of the body-fixed frame expressed in the
coordinates of the inertial frame. Then define the state vector x ∈ Rnx and input
vector u ∈ Rnu as

x = [Va β α rx
> ry

> rz
> (ωsnb)

>
δa δe δr δt]

>
, (5.1)

u = [δ̇a δ̇e δ̇r δ̇t], (5.2)

with nx = 19 and nu = 4. The vector ωsnb denotes the angular velocity vector
decomposed in {s}. The dynamic and kinematic equations for the state variables
are given by

 V̇a
β̇Va

α̇Va cosβ

 =
1

m
(Fwa +RwbF

b
T ) +RwbRnb

>gn − ωwnb × vwr (5.3a)

Ṙnb =
[
ṙx ṙy ṙz

]
= RnbS(Rsb

>ωsnb) (5.3b)
ω̇snb = −ωsbs × ωsnb + (Js)−1(Rsbτ

b − ωsnb × Jsωsnb), (5.3c)

with Js given by the similarity transformation Js = RsbJ
bRsb

>. Other new quan-
tities are the angular velocity of {s} with relative to {b} and the relative velocity
vector in {w} denoted given by

ωsbs =
[
0 α̇ 0

]>
, vwr =

[
Va 0 0

]>
. (5.4)

For a detailed derivation of the model in a slightly different form, see [177]. Through-
out the rest of the paper, we will use the continuous vector ODE ẋ = f(x,u) to
denote the state dynamics described in Eq. (5.3a) - Eq. (5.3c). Where applicable,
the discretized version based on an explicit Runge-Kutta method will be used, in
that case denoted as the difference equation x(k + 1) = fRK4(x(k),u(k)).

5.2.2 Target Generation
The full attitude on SO(3), or it’s parameterization based Euler angle or quater-
nion, is not controllable for fixed-wing aircraft. This fact is caused by the coupling
between roll angle and yaw rate in banked turns, implying that they can not be
controlled independently. The consequence of this is that a projection to a control-
lable subspace has to be applied first. The two natural alternatives that exist are
roll-pitch control or pitch-yaw control. For roll-pitch control, we effectively steer
the direction of the gravity axis of the inertial frame with respect to the body-fixed
frame, as discussed in detail in Chapter 4. Pitch-yaw control steers the direction
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of the longitudinal axis of the body-fixed frame, i.e. xb, with respect to the iner-
tial frame. We continue the notation introduced in Chapter 4 and let the reduced
attitude vector to represent both projections be denoted by Γ : SO(3)→ S2.

Roll-Pitch Projection

The reduced-attitude vector Γ ∈ S2 in a roll-pitch projection is the same as we used
for geometric attitude control in Chapter 4, which was defined as the direction of
the vertical axis of the inertial frame e3 =

[
0 0 1

]> expressed in the body-fixed
frame

Γ = Rnb
>e3. (5.5)

The same reduced-attitude parameterization has been applied to stabilization of
the inverted 3D pendulum [30]. Note that the reduced-attitude vector is invariant
to rotations about e3 and therefore independent of yaw. In fact, given a roll an-
gle φ ∈ [−π, π] and pitch angle θ ∈ [−π2 ,

π
2 ], the reduced-attitude vector can be

parameterized as

Γ(φ, θ) =
[
− sin θ cos θ sinφ cos θ cosφ

]>
. (5.6)

It is rather simple to use roll angle and pitch angle directly to generate the output
target. In practice, however, references on climb rate ḣref and course turn-rate χ̇ref

can be used to set up an optimization problem to find the desired reduced-attitude
vector.

As input to the target generation routine, consider the triplet (ḣref , χ̇ref , Va,ref).
The output target for the controller is then given by the optimization problem

J∗(vnnw) := min
x

ẋ>Cφθ
>Cφθẋ (5.7a)

s.t. ẋ− f(x,u) = 0 (5.7b)

χ̇ref −
Va
g

e2Rnb
>e3

e3Rnb
>e3

= 0 (5.7c)

ḣref − (RnbRbwVae1 + vnw)
>
e3 = 0 (5.7d)

Va,ref − Va = 0 (5.7e)
u = 0 (5.7f)
x ∈ X , (5.7g)

where the wind velocity vector vnnw is treated as a fixed parameter and the state-
selection matrix is defined as Cφθ , diag(13, e3, e3, e3,17) ∈ Rnx×nx The con-
straints are included to enforce the turn rate in a coordinated turn Eq. (5.7c),
the desired climb rate Eq. (5.7d) and the airspeed Eq. (5.7e). Let the optimizer of
Eq. (5.7) be denoted by x∗. The resulting output target is then extracted via[

Va,ref Γref
>]>

φθ
,

[
enx
1 enx

6 enx
9 enx

12

]>
x∗ ∈ Rny×nx . (5.8)
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Pitch-Yaw Projection

As an alternative to references on rates of turn and climb, consider the objective of
primarily controlling the direction of travel, i.e. the direction of the velocity vector
of the vehicle. For this purpose, the axis to be controlled is the longitudinal axis
of the UAV, which is obtained by the projection

Γ = Rnbe1 (5.9)

Replace the roll angle with the yaw angle ψ ∈ [−π, π], then the reduced-attitude
vector for pitch-yaw control can be parameterized as

Γ(θ, ψ) =
[
− cos θ cosψ cos θ sinψ − sin θ

]>
. (5.10)

Again, one can use the parameterization by means of a subset of Euler angles given
in Eq. (5.10). But in most cases a higher-level objective can be defined based on
desired course angle χref which is different from ψ when considering nonzero wind
disturbances. A modified version of the optimization problem for output target
generation for pitch-yaw control can be posed as

J(vnnw) := min
x

ẋ>Cθψ
>Cθψẋ (5.11a)

s.t. ẋ− f(x,u) = 0 (5.11b)

χref − arctan
e1

>(RnbRbwe1Va,ref + vnnw)

e2>(RnbRbwe1Va,ref + vnw)
= 0 (5.11c)

ḣref − (RnbRbwVae1 + vnw)
>
e3 = 0 (5.11d)

Va,ref − Va = 0 (5.11e)
u = 0 (5.11f)
x ∈ X , (5.11g)

with Cθψ = blkdiag(I6×6,013×13) ∈ Rnx×nx . Now, instead of the turn-rate con-
straint Eq. (5.7c), the velocity vector is constrained to result in the course angle
reference Eq. (5.11c). Let the optimizer of Eq. (5.11) be denoted by x∗. The re-
sulting output target then given by[

Va,ref Γref
>]>

θψ
,

[
enx
1 enx

4 enx
4 enx

4

]>
x∗ (5.12)

Remark 5.1. Let the set Xtarget denote the set of all states x in the preimage of
either Eq. (5.8) or Eq. (5.12). And suppose that F denotes an integrator function of
the continuous dynamics. Then it holds that F : Xtarget → Xtarget for all states in
Xtarget. This means that Xtarget is invariant under the state dynamics at the target,
which is a requirement towards a well-posed output for the NMPC problem.
Remark 5.2. The optimization problems defined in Eq. (5.7) - Eq. (5.7g) and
Eq. (5.11) - Eq. (5.11g) are sensitive to changes in the wind velocity vector, that
can either be caused by gust winds or dynamics of the estimator. Solving a tar-
get optimization problem adds to the complexity of the control architecture, and
solutions may drastically change due to the non-convexity of the problems. Regu-
larizing the problem with an additional cost term that penalizes differences from
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preceding solutions, similar to the presentation in Chapter 6 help to alleviate this
problem. However, in practice it is preferable to apply the maps Eq. (5.6) and
Eq. (5.10) directly for given reference signals. The roll reference signal for exam-
ple may be found by inverting the coordinated turn equation [161], and analytical
solutions for a mapping between the angles for course and flight path to yaw and
pitch are discussed in [9, 161].

5.2.3 Constraints
At each time instant, the state and input are subject to polytopic constraints
that arise from safety considerations and physical limits of the UAV. The state
constraint set, denoted by X , represents safety-related constraints due to the ad-
missible flight envelope and actuator limits. We define it as

X , {x ∈ Rnx |h(x, s) ≥ 0}, (5.13)

where h is a vector-valued function that is linear in the state variables, which
we now discuss based on the example of the Skywalker X8. However, it is straight
forward to extend the actuator suite. The Skywalker X8, as used in the experiments,
is a flying wing with no tail. The set of actuators includes a throttle and two control
surfaces on each side of the UAV.

Actuator limits can be expressed in terms of the true surface deflection limits of
the elevons by substituting Eq. (2.37). The constraints include limits to the angle of
attack and airspeed to avoid stalling and structural damage to the vehicle. Further,
including the deflection limits, we get the set of constraints state constraints X
defined by aerodynamic-related constraints

Va − (1 + εVa)V a + sVa
≥ 0 (5.14a)

−Va + (1− εVa
)V a + sVa

≥ 0 (5.14b)
α− (1− εα)α+ sα ≥ 0 (5.14c)
−α+ (1− εα)α+ sα ≥ 0 (5.14d)
β − (1− εβ)β + sβ ≥ 0 (5.14e)

−β + (1− εβ)β + sβ ≥ 0, (5.14f)
(5.14g)

constraints to limit the angular rates

ps − (1− εps)ps + sps ≥ 0 (5.15a)
−ps + (1− εps)ps + sps ≥ 0 (5.15b)
qs − (1− εqs)qs + sqs ≥ 0 (5.15c)
−qs + (1− εqs)qs + sqs ≥ 0 (5.15d)
rs − (1− εrs)rs + srs ≥ 0 (5.15e)

−rs + (1− εrs)rs + srs ≥ 0, (5.15f)
(5.15g)
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and actuator constraints

δa + δe − δel ≥ 0 (5.16a)
−δa − δe + δel ≥ 0 (5.16b)
−δa + δe − δer ≥ 0 (5.16c)
δa − δe + δer ≥ 0 (5.16d)

δt − δt ≥ 0 (5.16e)
−δt + δt ≥ 0, (5.16f)

which include slack variables for constraint relaxation to guarantee the feasibility of
the quadratic problem (QP). The slack variables are part of the NLP formulation
as a concatenated vector s ∈ Rns with the elements in the order that they appear
in Eq. (5.14a) - Eq. (5.15f). The slack variables are constrained non-negative real
numbers, i.e.

s ≥ 0. (5.17)

The tightening parameters ε∗ allow for tightening of the original constraints for a
robust MPC formulation. The tightening parameter can be chosen as a static back-
off parameter [66] or based on the exponential contraction rate to the reference [99].
The concatenation of Eq. (5.14a) - Eq. (5.16f) and Eq. (5.17) gives h(x, s) ≥ 0,
where the inequality is to be interpreted element-wise.
Remark 5.3. Since the control surface deflections δel, δer and the throttle set-pint
δt are determined by the controller, it is not necessary to use slack variables in the
associated constraints. However, there are practical scenarios when another con-
troller is active while the NMPC may run in the background with initial conditions
set by state estimates and control signals. In a case where it can not be ensured
that the surface deflections of the alternative controller do not exceed the limits of
the NMPC, slack variables would be necessary.

The control variables u do not require slack variables, considering that the
rates of the actuators are virtual variables used in the NMPC. The output of the
controller will be the actual actuator set-points after one integration step, which
we will discuss later. For now, let the set of input constraints U be defined by

U , {u ∈ Rnu |u− u ≥ 0 ∧ −u+ u ≥ 0} (5.18)

for some bounds u, u ∈ Rnu . Practical rate limits of the control surfaces deflections
can, for example, be found in a motion capture lab based on a step change from
minimum to maximum deflection and vice versa. Similarly test for the engine can
be conducted if measurement equipment for the power output is available. We did
not see actuator rate limits to be a problem in practice. However, the Skywalker
X8 comes with an electric engine, and the situation may be different in case of
combustion engines that only allow for significantly slower changes of the speed
set-point.

For a more compact notation, let the constraint in Eq. (5.14a) - Eq. (5.16f),
Eq. (5.17) and Eq. (5.18) be concatenated by h(x,u, s) ≥ 0, where the inequality
again denotes an element-wise operation.
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Remark 5.4. We did not discuss constraints on the roll and pitch angle, which
are common elements in open-source flight controllers. They can be included as
nonlinear constraints of the state vector through the mapping between elements
of SO(3) and Euler angles in the yaw-pitch-roll convention. A box constraint that
couples roll and pitch limits can be formulated using Eq. (5.5) as

Γ>e3 = e>3 Rnbe3 = enx
12

>x ≤ cos(Θ) (5.19)

with Θ denoting the maximum spherical angle between the Γ and the vertical axis
of the inertial frame.

5.2.4 Disturbance Observer
For offset-free attitude stabilization in the presence of e.g. unmodelled dynamics,
parametric disturbances or estimation errors, we include an observer for moment
and force disturbances that affect angular rate and airspeed. This follows the gen-
eral discussion on offset-free NMPC in [134]. Consider the observed airspeed Va
and angular rate ωbnb and the difference to their predictions in the controller at
each time instant

∆Va(t) = Va(t)− (enx
1 )

>
x∗(1|t− 1) (5.20)

∆ωbnb(t) = ωbnb(t)−Rbs

[
03×12 I3×3 03×3)

]
x∗(1|t− 1) (5.21)

The disturbance estimates are initialized as df (0) = dm(0) = 03×1 and can
simply be updated continuously together with the NMPC as

df (t)← df (t) + lf
[
∆Va(t) 0 0

]> (5.22)
dm(t)← dm(t) + Lm∆ωbnb(t) (5.23)

with lf ∈ R as the learning gain for the force disturbance and Lm ∈ R3×3 defined
as

Lm = diag(lp, lq, lr) (5.24)

acting as the learning gain for the moment disturbance which is the diagonal com-
position of the individual gains for the angular rates lp, lq, lr ∈ R. In the following,
we will concatenate the disturbances to

d =
[
df

> dm
>]> (5.25)

and augment f defined in Section 5.2.1 with the disturbance as follows

f(x,u,d) , f(x,u) +
[
df

> 01×3 dm
>]>. (5.26)

It is also possible to integrate the dynamic model in a separate simulator that
runs in parallel to the onboard estimators at the same update rate. The integration
of the dynamic model in an explicit integration scheme is computationally cheap
compared to solving the NLP online in the controller. At each controller update,
the state of the parallel simulator is reset to the initial conditions of the NMPC,

92



5.2. Controller Design and Implementation

which ensures that the disturbance estimates are not diverging. The dynamic of
the disturbances in the controller and the simulator are modeled as slowly time-
varying, which we express as

ḋ = 0 (5.27)
This is approach works well in practice, as we will show in the experimental vali-
dation.
Remark 5.5. We also experimented with an EKF implementation to provide the
disturbance estimates. The EKF runs in parallel to the onboard state estimator,
which is another EKF in our experimental platform. However, there were no signifi-
cant performance improvements in simulations that would justify the more complex
tuning and potential instabilities. Further work may include the integration of the
disturbance estimates in the existing EKF.

5.2.5 Cost and Nonlinear Program
In the following we assume that a suitable reference for the controller has been
found. This can be done either through the outlined methods in the preceding
chapter or using the nominal cruise speed and Euler angle references that are
mapped to the reduced attitude using Eq. (5.6) or Eq. (5.10). Let the resulting
reference vector be defined as

r ,
[
Va,ref Γref

>]> (5.28)

To formulate the NMPC scheme for output tracking, we define the stabilizing
stage cost as a sum of quadratic terms

l(x,u, r) = qVa(Va − Va,ref)2 + ‖Γ− Γref‖2QΓ
+ ‖u‖2R, (5.29)

which includes the positive definite and symmetric weighting matrices Q ∈ R3×3,
R ∈ Rnu×nu and the positive scalar qVa

. To shed some light on the geometric
interpretation of the least-squares penalty term regarding the attitude, note that

1

2
‖Γ− Γref‖2 = 1− Γ>Γref = 1− cos(Θ) (5.30)

where Θ ∈ [0, π] denotes the spherical angle between Γ and Γref . This implies
that there exists a unique minimum where the angle between both axes is zero.
A more in-depth discussion of this transformation on the manifold can be found
in Chapter 4 or more general in [19]. We will use this intuition to derive tuning
guidelines in the coming section.

Using the disturbance-augmented dynamics in Eq. (5.26) and a prediction hori-
zon T , the OCP reads as

min
x(·),u(·)

∫ T

0

l(x(τ),u(τ), r(τ))dτ +
1

2
s>Ps t ∈ [0, T ) (5.31a)

s. t. x(0) = x0 (5.31b)
ẋ(t) = f(x(t),u(t),d(0) t ∈ [0, T ) (5.31c)

h(x(t),u(t), s) ≥ 0 t ∈ [0, T ), (5.31d)
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which includes an additional cost term to penalize the slack variables with a sym-
metric and positive-definite weighting matrix P ∈ R4×4. The magnitude of the
elements in P should be significantly higher in comparison to Q and R to approxi-
mate hard constraints in nominal operation, but allow for relaxed constraints when
necessary.

We use direct multiple-shooting [13] with an explicit Runge-Kutta integration
scheme of order four to integrate f and let fRK4 denote the resulting integrator
function. The system is discretized into N steps with the resulting shooting interval
∆t = T/N . The MPC scheme is then based on solving the NLP at time t for the
predictions at k ∈ [0, ..., N ]. Let a predicted state and input sequence be denoted
by x(·|t) ∈ Rnx×(N+1), u(·|t) ∈ Rnu×N . The resulting then NLP reads

min
x(·),u(·)

N−1∑
k=0

l(x(k|t),u(k|t), r(k|t)) + 1

2
s>Ps k ∈ [0, ..., N ] (5.32a)

s. t. x(0|t) = x(t) (5.32b)
x(k + 1|t) = fRK4(x(k|t),u(k|t),d(0|t)) k ∈ [0, ..., N ] (5.32c)

h(x(k|t),u(k|t), s) ≥ 0 k ∈ [0, ..., N ], (5.32d)

with the estimated state x(t) as initial condition. Note that we do not employ a
terminal cost or terminal constraint set, which is common practice in MPC for
aerospace applications that may be subject to severely turbulent and uncertain
dynamics [45]. We also observed that simulations show already sufficiently large
region of attraction for rather low prediction horizons, suggesting that terminal
conditions may not be needed [68]. Given the computation of the state target
however, the presented scheme can be readily extended following the discussion in
[31] to not only improve stability, but also increase closed-loop performance [151].
We will discuss some intuitive tuning guidelines and evaluation of the closed-loop
runtime on the targeted hardware is given in the following sections.

The control signals that are propagated to the actuators are extracted from the
optimal state after one shooting interval denoted by x∗(1|t). The control commands
to the vehicle, denoted by uuav are thus given by

uuav(t) =
[
0nu×(nx−nu) Inu×nu

]
x∗(1|t). (5.33)

Using the control signal after the one shooting interval worked well in simula-
tions and in practice for a discretization interval ∆t = 0.1 s. We came to a similar
observation when we targeted the attitude control problem with the same plat-
form (Skywalker X8) using DRL in [14]. Successful experiments required the DRL
controller to be trained with a significant actuator delay, and an actuator delay of
0.1 s gave satisfactory results. Note however that this might be that the true ac-
cumulated delays due to communication and actuators might be shorter and that
more elaborate schemes can be implemented based on integration of the optimal
actuator rate u∗(0|t). This can be useful when accurate knowledge of communica-
tion delays is available. If this is not the case, the integration step can still be used
as a tuning parameter. Note that our MPC formulation allows for time-varying
reference signals to be used in the controller. However, future references for the
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Figure 5.1: Illustration of how the reduced-attitude vector is parameterized by the angles
roll φ and pitch θ. In the tuning example, the attitude Γ is to be steered to its reference
Γref along the dashed curve.

low-level controller are usually not available in most UAV control architectures,
except for particular applications such as aerobatic maneuvering [146]. Assuming a
constant reference signal over the prediction horizon is therefore the best approach
in a conventional operation.

5.2.6 Tuning
The geometric formulation of the control objective allows for some constructive
tuning guidelines which we briefly outline in this subsection. We follow standard
arguments in the proof of stability and performance properties for NMPC without
terminal ingredients [68] in which the closed-loop stage cost is upper bounded by a
class KL0 function. For better performance and stability at small N , it is necessary
to shape the cost in such a way as to allow for a faster decay of the bounding
function. In essence, a class KL is a function that maps two arguments to R. A
special property is that the output of the function is monotonically increasing with
increasing its first argument, and monotonically decreasing with increasing second
argument. Class KL are essential in nonlinear control theory and more details on
class KL0 functions can be found in [95].

We discuss this with an illustrative example for the roll-pitch controller, but
the conceptual idea can be readily carried over to the pitch-yaw controller case.
Consider the parts of the output vector that correspond to the attitude evolve
on the two-sphere depicted in Fig. 5.1 and keep other state and input variables
constant. Tuning the part of the weighting matrix that corresponds to the attitude
can be thought of as a scaling of the sphere along its three axes. One can see that in
nominal flight conditions, the attitude vector evolves on the top part of the sphere
at a low roll and pitch angle. The lower hemisphere, in contrast, corresponds to
a situation in which the UAV is far from a nominal flight and either conducts an
acrobatic maneuver or needs to be recovered to nominal conditions.

In the constructed example, the current attitude Γ is on the lower hemisphere
with the reference Γref at zero roll and pitch angle. In this case, the first and second
elements of Γ would increase in magnitude before decreasing again when the upper
hemisphere is reached. A higher weight on these elements would potentially lead
to a temporary increase of the cost function (overshoot). In that case, the horizon
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Figure 5.2: Illustration of how the reduced-attitude vector is parameterized by the angles
roll φ and pitch θ. In the tuning example, the attitude Γ is to be steered to its reference
Γref along the dashed curve.

N has to be long enough to include a decrease of the stage cost in the predicted
trajectory. Increasing the weight on the third element however helps to flatten
the overshoot and results in monotonic decrease of the stage cost, which allows
for shorter control horizons. This is illustrated in Fig. 5.3 for a scaled version of
Eq. (5.30), i.e. lΓ = 0.5‖Γ− Γref‖2Q.

To tune the controller for the recovery case, a heuristic tuning procedure would
be to increase the horizon length to a level at which the available hardware can
update the controller at the desired rate and then increase the weight on Γ3 in a
trial-and-error procedure on numerical simulations.

When nominal flight conditions are considered, a higher weight on Γ1 or Γ2 will
result in tighter tracking of pitch or roll angle, respectively. When a set of suitable
entries of the weighting matrix for the attitude is found, one can then tune the
element corresponding to the airspeed. A general guideline here is to increase the
weighting relative to the attitude for the expected level of turbulence to keep the
UAV in stable conditions. The weights on the actuator rates should in general be
tuned to be low relative to the weights that correspond to parts of the state vector,
as is often done in practice. Too low weights however may lead to chattering, which
may be readily observed in numerical simulations.

5.2.7 Implementation and Hardware
We implement the NMPC and the simulator for the disturbance observer using the
open-source software package acados [185] and employ the Realtime-Iteration se-
quential quadratic programming (SQP) solver based on [46] with the high-performance
interior point method (HPIPM) presented in [57] for the solutions of the underly-
ing QPs. The auto-generated C/C++ code is then interfaced in dynamic unified
navigation environment (DUNE) [148], which is part of the tool chain that runs
on the SBC during operation to handle inter-process communication and compute
the optimal control inputs onboard.

It will request estimates of the vehicle state and the wind velocity vector from
the onboard navigation system that is part of the standard avionics flight stack
centered around a Pixhawk/Cube Orange1 that is running Ardupilot, as outlined

1https://cubepilot.org/
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Figure 5.3: Different cost shaping for the constructed example. The tuning of the blue
trajectory requires a longer horizon N due to the overshoot, and a less desirable perfor-
mance compared to the tuning for the green trajectory.

in Chapter 3. The companion SBC to run the MPC onboard is a Khadas Vim32

which includes four 2.2Ghz Cortex-A73 cores and two 1.8Ghz Cortex-A53 cores.
The code to run the NMPC is cross-compiled on a laptop computer with four
2.7GHz i7-7500 CPUs which takes about two seconds.

5.3 Simulation Study

The initial evaluation of the closed-loop runtime of the controller is designed as
a lab experiment. We conduct a simulation study in which the problem data is
generated on a lab computer. The initial conditions, output target values, and
parameters in each controller update are then sent to the single-board computer
embedded in the aircraft where the successive controller updates are repeated to
obtain measurements of the achievable update rates. For this test, the DUNE
task that would retrieve current initial conditions from the communication with
ArduPilot instead reads them from local data files and sends them as messages
over the IMC protocol.

5.3.1 Simulation Setup
To assess closed-loop performance, stability, and the real-time applicability of the
proposed NMPC, we conduct a Monte-Carlo simulation study in with varying ini-
tial conditions and environmental disturbances. The length of the shooting interval
of the controller is set to ∆t = 0.1s. We ran a series of simulations for varying
horizon length given by N ∈ {10, 15, 20, 25, 30, 35, 40, 45}. The update rate of the
simulation is set to fsim = 100Hz with controller updates at fmpc = 10Hz. The
dynamic model of the aircraft is based on the Skywalker X8 as identified in [71]
and discussed in Chapter 2.

The actuators in the simulation are modelled with first-order lag dynamics, i.e.

δ̇i =
1

T
(uuav,i − δi) (5.34)

2https://www.khadas.com/vim3
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Table 5.1: Inequality constraints used in the controller.

Variable unit min max
Va [m/s] 15.0 25.0
β [deg] -90.0 90.0
α [deg] -15.0 27.0
ps [deg] -180.0 180.0
qs [deg] -180.0 180.0
rs [deg] -180.0 180.0
δa [deg] -35.0 35.0
δe [deg] -35.0 35.0
δr [deg] 0.0 0.0
δt [-] 0.0 1.0

with T = 0.01 for the control surfaces and T = 1 for the throttle. The wind is
modelled as the combination of a static component in the inertial frame and a gust
component in the body-fixed frame vnnw = vnnw,s+Rnbv

b
nw,g. The gust component

is generated by the Dryden wind model, which means essentially passing white
noise through a low-pass filter as discussed by Beard and McLain [9]. We selected
the parameters of the Dryden process (length scale, intensity) to simulate moderate
turbulence. Both the propagation of the state and the controller updates are based
on the same model to simulate ideal conditions. The effect of model mismatch
will be the subject of a following subsection when we look at the performance in
experiments.

5.3.2 Monte-Carlo Simulations

To establish the robustness results of the controller, we conduct a brief Monte-
Carlo simulation study. The aerodynamic quantities, attitude, angular rate vector,
and the wind velocity vector in NED were sampled from a uniform distribution
with bounds as summarized in Table 5.3. For each prediction horizon N , we ran 30
simulations with the initial state and wind velocity vector drawn from the distri-
bution. The constraints for the controller are given in Table 5.1. The motivations
for the constraints are twofold. First, restrict the aerodynamic quantities to ensure
a stable flight regime, i.e. stay within the flight envelope that is bounded by stall
angle and stall speed, and at the same time limit the load factor acting on the
airframe through the angular rate constraints. Note that initial conditions outside
the constraint set of the controller are part of the simulation study. In these cases,
the high weighting on the slack variables will cause the controller to first try to
reach the constraint set and then stabilize the given reference.

We follow the tuning procedure outlined in Section 5.2.6 and use the cost ma-
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Table 5.2: Initial condition for the edge cases.

Variable unit 0 1 2 3
Va [m/s] 10.0 15.0 25.0 30.0
β [deg] -10.0 -10.0 10.0 10.0
α [deg] 33.0 27.0 -15.0 -20.0
φ [deg] -100.0 -100.0 100.0 100.0
θ [deg] 20.0 20.0 20.0 20.0

trices

Q = diag(0.1, 1, 1, 50), (5.35a)
R = 10−3Inu×nu , (5.35b)

P = diag(1, 1, 103, 1, 1, 103). (5.35c)

This is to penalize deviations from the reference significantly higher than actuator
rates while still maintaining a high enough penalty to avoid chattering. A different
factor that prevents fast oscillations of the actuators is the rather low update rate
of the controller itself. It is also notable that violations of the airspeed and sideslip
constraint are tolerated a lot more than violations of the angle of attack constraint.

The Monte-Carlo simulation has two objectives. The first objective is to il-
lustrate that the NMPC can recover the aircraft from a wide range of initial
conditions into a wings-level horizontal flight at nominal cruise speed. We use
the proposed roll-pitch controller to execute these maneuvers with input triplet
(ḣref , χ̇ref , Va,ref) = (0, 0, 18) to generate the target outputs for the current wind
conditions. The second objective is to record simulation data to gauge the achiev-
able update rates.

5.3.3 Edge Cases
To illustrate the closed-loop behavior for N = 10 and N = 45, we simulate different
initial conditions on the edge of the constraint set and outside it. The actuators
and angular rates are initialized to zero. The state variables that correspond to the
initial attitude and velocity for each case are summarized in Table 5.2. The reference
for each case is set to (φ, θ, Va) = (0, 0, 18), given that the primary goal is a stable
flight condition. The wind-velocity vector is set to be constant at vnw = [−4,−3, 0].

5.3.4 Discussion of the Simulation Results
The edge cases are illustrated based on their aerodynamic quantities in Fig. 5.4,
output error trajectories in Fig. 5.5 and the applied control signals in Fig. 5.6. For
each initial condition, N = 10 is plotted in dashed and N = 45 with solid lines.
For all scenarios, the controller can recover the UAV from the initial condition. It
is clear from Fig. 5.4 that when driving the state trajectory into the constraint set,
the angle of attack constraint is prioritized as encoded in the weighting matrix P.
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Table 5.3: Bounds for the uniform distribution of initial state and wind conditions.

Variable unit min max
Va [m/s] 10.0 30.0
β [deg] -45.0 45.0
α [deg] -15.0 40.0
φ [deg] -100.0 100.0
θ [deg] -20.0 20.0
p [deg] -50.0 50.0
q [deg] -50.0 50.0
r [deg] -50.0 50.0
vwx [m/s] -5.0 5.0
vwy [m/s] -5.0 5.0
vwz

[m/s] -1.0 1.0
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Figure 5.6: Control signals from the controller for the edge cases.

Both prediction horizons, N = 10 and N = 45, result in a very similar closed-
loop trajectory, which suggests that stability can be achieved at shorter prediction
horizons with only a minor loss of performance.

However, it is worth noting that in all cases of the simulation, the time needed
by the controller to update the solution does not exceed 100 ms, even at the start of
the maneuver (c.f. Fig. 5.8) where the longest closed-loop runtime can be expected
due to the initialization of the numerical solver.

Further, note that except for a low amount of outliers, along almost all trajec-
tories the closed-loop cost of the NMPC converges within one second as does the
time the solver needs to update the solutions to the new problem, with 4.6% of
the simulation runs showing closed-loop solver runtimes exceeding 25 ms at 1 s into
the simulation. This is despite moderate wind turbulence being present which has
the effect of pushing the UAV continuously away from the predicted closed-loop
trajectory.
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Figure 5.8: Cost evaluated at each controller update.

These simulations imply that even though the UAV is initialized in an extreme
condition with large attitude errors, the controller is still able to update the actu-
ator signals reasonably fast to recover the UAV into a nominal flight condition at
the reference attitude. In the worst-case employing update rates of 10 Hz can be
expected to increase to 40 Hz for N = 45. In the case of N = 10, even 100Hz up-
date rates may be achieved, which is in the range of established low-level autopilots
using PID-type controllers. This implies a desirable length of update periods for
the low-level controller onboard modern UAV in flight operations. However, this
observation hinges on the assumption of perfect model knowledge, which can not
be satisfied in practice.

So far, we showed that the presented NMPC can incorporate higher-level objec-
tives such as turn-rate control or course control with simultaneous control of climb
rate and airspeed. Monte-Carlo simulations demonstrated that the UAV can be re-
covered from rather large attitude errors and stabilize the aircraft in nominal flight
conditions at the reference attitude. The most crucial part in our discussion is the
fact that the presented controller can be updated at high rates even for complex
models and that the closed-loop runtime of the nonlinear solver is not a bottleneck
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for a successful application in practice, even with the rather fast dynamics of the
UAV. We are now prepared to test the controller in practical experiments, which
will be the subject of the next section.

5.4 Experimental Verification

In this section we will first look at the implementation of the controller in the
experiments and the parameterization of the baseline controller. The results of the
experiments follow after a brief discussion on how to assess the model mismatch and
experiment descriptions. Finally, the comparative benefits of the MPC in contrast
to the baseline controller will be discussed based on the different test scenarios.

5.4.1 NMPC Implementation
The update frequency of the MPC is set to 20Hz. We chose a time horizon T = 3 s
split into N = 30 shooting nodes, which corresponds to ∆t = 0.1. The cost matrices
to parameterize the NLP are

Q = diag([0.001, 10, 10, 10]) (5.36a)
R = diag([1, 1, 0.01]) (5.36b)
P = diag([100, 100, 1000, 1000]). (5.36c)

The weight for airspeed tracking is significantly lower compared to the attitude
weights. We noticed in initial experiments that the MPC was struggling with neg-
ative pitch references in which the UAV would necessarily increase speed, such
that tracking of the airspeed and pitch reference were conflicting objectives. The
outlined tuning prioritizes attitude tracking until the upper airspeed constraint is
reached, but still gives satisfactory airspeed tracking in cases when the throttle is
not saturated to the lower limit. The weights in the slack penalty matrix P are
significantly larger to allow for constraint relaxation when this is necessary for the
QP solver to converge, but nominally approximate hard constraints.

The gains for the disturbance observer were set to lVa
= lr = 0.1 and lp =

lq = 0.5 The observer is updated at the same rate as the MPC. The gains for the
moments in roll and pitch direction were slightly increased based on the observation
of the model mismatch. We will discuss inaccuracies of the model together with
the performance in the next section. The given disturbance observer gains gave
satisfactory results after a short tuning procedure based on a sequence of step
responses. The parameters for the constraint set are given in Table 5.4. Note that
we do not constrain the sideslip angle or angular rates.

5.4.2 Observed and modeled Accelerations
This work is the first to use the models presented in [39, 71] for flight control
in experiments. We therefore include an assessment of the model quality for a
subset of the test sequences based on the difference between observed and modeled
accelerations. The observed linear acceleration is indicated by a subscript z and its
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Table 5.4: NMPC parameters.

Parameter Value Unit
V a, V a 12.0, 25.0 [m/s]
α, α -10.0, 12.0 [deg]
δel, δer, δel, δer -30, -30, 20, 20 [deg]
δt, δt 0.0, 1.0 [-]

computation follows standard literature [9]

v̇bnb,z = abnb +Rnb
>gn − ωbnb × vbnb, (5.37)

where abnb ∈ R3 denotes the acceleration measured by the IMU. The observed
angular acceleration ω̇bnb ∈ R3 is computed using the centered difference formula
based on the estimated angular velocity. The accelerations obtained through the
model, indicated by a subscript y, are given by

v̇bnb,y =
1

m
(Rwb

>fwa,y + f bt,y) +Rnb
>gn − ωbnb × vbnb (5.38)

ω̇bnb,y = J−1(Jωbnb × ωbnb +mb
a). (5.39)

5.4.3 Experiment Description
We examine the performance of the MPC in comparison to the ArduPilot Controller
based on a series of tests for roll and pitch angle references. The ArduPilot attitude
controller implements separate, cascaded SISO feedback loops for the roll and pitch
channels to control aileron and elevator, respectively. The control laws are based
on Release 4.0.9, which is the most recent stable release (as of August 2021). The
outer loop consists of proportional controllers, where desired roll and pitch rates
are calculated based on the error in the respective angles. Details of the structure
of the baseline controllers are given in Section 2.5.

The parameters of the baseline controller were tuned in a manual procedure
based on visual inspection of the response to reference tracking in a rectangular
pattern and individual step responses in roll and pitch. The resulting parameters
that were used in the experiments are summarized in Table 5.5.

Table 5.5: AP parameters.

Parameter Value
kφ, kff,p, kp,p, ki,p 2.222, 0.312, 0.041, 0.015
kθ, kff,q, kp,q, ki,q 2.222, 0.197, 0.023, 0.0113
kp,Va

, ki,Va
0.25, 0.1

The integral terms in the baseline control laws are implemented using a first
order forward Euler method with a discretization step of 0.02 s, corresponding to
the control frequency of 50Hz. To avoid integral windup issues, we use conditional
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integration. The baseline controller is implemented on the SBC to use the same
hardware and communication pipeline as the MPC, which ensures a fair compar-
ison. Through the rest of the paper we will follow the convention e = yref − y to
report tracking errors.

In all tests, unless explicitly stated, the commanded airspeed reference is set to
the nominal cruise speed of the Skywalker X8, which is 18m/s

We initially test the tracking performance to smooth and continuously changing
reference signals coming from a higher-level guidance controller.

During a step sequence for the roll angle reference, the roll angle is commanded
to zero for two seconds, then to −50 deg for three seconds and to 50 deg for three
seconds before finishing with another two seconds at zero. The reference of the
pitch angle is kept constant at the last value before initiating the step sequence.

During a step sequence for the pitch angle reference, the roll angle is kept at zero
throughout the entire sequence. Similar to the roll angle sequence, the pitch angle
reference is set to zero for two seconds at the beginning and end of the sequence
with −20 deg and 20 deg for three seconds in between.

To gauge how both controllers compare in maneuvers where the roll and pitch
dynamics are excited simultaneously, we use step sequences, oscillating references
and a simultaneous constant reference for 30 s. All of these sequences use the same
magnitude of the individual step sequences.

The oscillating references have a frequency f = 0.3Hz and are defined as

φref(t) = 50
π

180
cos(2πft), θref(t) = 2

π

180
sin(2πft), (5.40)

which makes for a moderately varying reference that can be followed by both
controllers.

In all experiments, the reference signal for attitude and speed is assumed con-
stant throughout the entire prediction horizon of the MPC, which allows for a fair
comparison to the baseline controller. The tracking performance of the controllers
and their actuator usage are evaluated based on the metrics

Se =
1

n

n∑
i=1

|ei|, Su =
1

n

n∑
i=1

|ui|, Sf =
2

nffs

nf∑
i=1

Mifi, (5.41)

where n denotes the amount of samples in the data series. The sampling frequency
is denoted by fs and fi, Mi denote the respective frequencies and magnitudes of
the control signal. The metric Sf jointly considers the amplitudes of the evaluated
frequencies, effectively measuring the smoothness of the control signals [136].

5.4.4 Results
We begin by presenting the experimental results based on a discussion of each test
sequence before drawing conclusions and discussing common features. The exper-
iments include several runs of each test sequence for both controllers. Each run
is encoded in a different color in the plots. All tests were conducted during two
days in autumn 2021 at a local airfield at Breivika, Norway. The wind conditions
on the first day when we tested the controller’s response to continuously changing
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references coming from a guidance controller were rather harsh, with an average
wind speed of 12.5m/s. This is a significant portion of the nominal cruise speed of
18.0m/s, which makes control of the UAV increasingly challenging in comparison
to passenger aircraft where the wind velocity can be safely neglected. The condi-
tions on the second day when we tested individual step responses and oscillating
references were more moderate with estimated wind speeds of approximately 6m/s.
Gust winds were significant on both days. Due to the size of the plots of the results,
the related figures are given in Appendix B.

Reference from Guidance Module

In a first scenario, both controllers were given commands by a guidance module to
follow a pattern that consists of two loiters and two rectangles. We conducted the
tests at severe wind conditions with average wind speed estimates of approximately
12.5m/s. The resulting trajectories are shown in Fig. B.1.

The reference trajectories in this case are slowly varying such that while both
tracking results look similar, the PID achieves a slightly tighter attitude tracking
compared to the MPC. Regarding airspeed on the other hand, the MPC is far out-
performing the PID, suggesting a trade-off between attitude and airspeed tracking
performance. It is notable that the MPC in general appears to have a more effi-
cient actuator usage with Su for the elevons at 60% of the PID with less frequent
set-point changes, resulting in Sf at 61%. During the test, the airspeed command
to the AP was 18m/s and to the MPC it was 20m/s. This was a request from our
pilot who is responsible for a safe operation. The MPC is therefore running the
UAV at a higher throttle. In this case where the controller is purely reacting to
guidance set-points and operating well within the operational limits in the linear
regime, the PID is sufficient.

Roll Steps

The sequence with only step changes in roll were run five times for each controller
and are shown in Fig. B.2. The transient response in the roll angle are different for
both controllers in the sense that the AP controller results in an approximately lin-
ear convergence, verified by roughly constant angular rates, towards the reference,
whereas the MPC gives an approximately exponential convergence.

A closer look at usage of the control surfaces shows that the MPC achieves this
by using high deflections of both elevons in the beginning but then quickly reduces
the deflections as the attitude converges towards its reference. The AP controller
on the other hand commands moderate elevon deflections that are approximately
constant throughout the entire transient. Moreover, the AP controller shows oscil-
lations in both roll and pitch angle. The MPC oscillates less and appears to actively
use the pitch angle to react to step changes in the roll angle.

Moreover, the throttle is actively used at each step, which is most prominent at
the change from -50 to 50 deg. In effect, the airspeed is kept within 1m/s around
the reference. The AP controller does not use this coupling and has a notable
airspeed offset of approximately 1m/s in all tests. The TECS controller would be
handling the offset in the original control architecture of Ardupilot. However, in
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the experiments it is replaced by the PI airspeed controller as detailed in Appendix
A.

Pitch Steps

The results of the pitch angle step sequence are shown in Fig. B.3. The transients
for both controllers look similar in the beginning, but the AP controller induces
pitch oscillations in a negative pitch change, whereas the MPC settles more quickly
to the reference value. Moreover, the AP does not settle at -20 deg, but this may
be handled by a different tuning, e.g. a higher integral gain.

The error in roll angle is similar for both controllers, but it is again notable how
the oscillations in roll and pitch angle have an adverse effect on each other for the
AP controller. The airspeed error looks similar for both controllers up to 5 s into
the test, given that the only control strategy when following a negative pitch angle
reference is to shut down the throttle. Note here that simultaneously commanding
pitch angle references and airspeed references lead to conflicting objectives when
the throttle is saturated. The tuning in Eq. (5.36a) - Eq. (5.36c) is such that the
attitude tracking is prioritized as long as the airspeed is kept within the constraints
and the respective slack variables are zero.

Shortly after the pitch angle reference changes from -20 to 20 deg, the MPC
engages the throttle, even though the airspeed is already 5m/s above its reference
value. This behavior shows that MPC predicts a declining airspeed towards the end
of the prediction horizon and by counteracting by using the throttle, the airspeed
is kept closer to its reference compared to the AP controller. Not considering the
airspeed limits, the AP controller comes dangerously close to the stall speed of
12m/s.

Simultaneous Steps

The results for a simultaneous step change in both roll and pitch are shown Fig. B.4.
Here, the MPC gives a response that is very close to that of the scenarios where each
channel was excited separately. The AP controller does not show the oscillations at
negative pitch step changes, but its overall pitch response is again worse compared
to that of the MPC, with the AP unable to settle to either -20 or +20 deg. This
time, the AP controller also violates the limits of the right elevon at the first step
change which happens at 3 s into the test. Again, the MPC appears to actively use
the throttle to counteract anticipated declines in the airspeed.

To study the quality of the model and its effect on the controller perfor-
mance, we plot the trajectories of the norm of the difference of the linear ac-
celeration ‖∆v̇bnb‖ = ‖v̇bnb,z − v̇bnb,y‖ and the difference of the angular accelerations
∆ṗ = ṗz − ṗy, ∆ṗ = ṗz − ṗy in Fig. 5.9. There is a notable correlation between
the errors in linear and pitch acceleration and the tracking performance concerning
pitch angle and airspeed. It is not possible to distinguish between estimation errors
of the wind velocity observer and inaccuracies of the aerodynamic model, given that
equipment to measure the relative wind velocity vector was not part of the sensor
suite during the experiments. However, the analysis of a dataset that includes flow
measurements of a precision air data instrument suggests that the aerodynamic
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ṗ

[r
ad

/s
2
]

0 1 2 3 4 5 6 7 8 9 10

−40

−20

0

Time [s]

∆
q̇
[r
ad

/
s2
]

Figure 5.9: Difference between observed and modeled accelerations for the simultaneous
step maneuvers.

model is the main cause for the difference between modeled and observed accelera-
tions. In any case, the performance of the MPC despite the significant acceleration
errors, in particular in the roll acceleration error with up to 100 rad/s2, speaks to
its robustness.

Oscillation References

The response for the scenario where the UAV was given oscillations references in roll
and pitch are shown in Fig. B.5. This case demonstrates again the cross-coupling
effects for the AP controller that do not appear when the MPC is in control. It
is however notable that the MPC is not able to track both sinusoidal signals and
the airspeed reference simultaneously. We have not checked if the given output
trajectories consisting of roll, pitch and airspeed may be tracked at the same time
and the obtained results are the trade-off implemented through the cost function
in the given weather conditions. This explanation is most intuitive regarding the
pitch angle and the airspeed. In the phase where the pitch reference is decreasing,
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the UAV follows, and the airspeed is necessarily increasing. With the exception for
reference signals where thrust and drag forces can completely compensate for this
effect, tracking both references at the same time becomes infeasible. Other reasons
for the lack of performance in this case can be attributed to model mismatch, as
discussed in the following section, and tuning. Both the control surfaces and the
throttle could be tuned more aggressive for the MPC when compared to the AP
controller.

Constant References and Disturbance Discussion

In the last scenario we look at the response to a constant reference command in
roll and pitch that results in the UAV following a path that can be described as
an upward spiral. This could be practical in a scenario where the UAV needs to
quickly increase its height with a limited change in its horizontal position. The AP
controller is again inducing oscillations until 5 s into the test, which are avoided by
the MPC as it quickly converging to both references.

However, the performance of the MPC degrades notably, leading to oscillat-
ing errors in speed and pitch tracking, most visible at 10 s and 20 s into the test.
The phenomenon is consistent over two separate runs, indicating that this is a
systematic error which is likely due to errors in the dynamic model. The fact that
the model is not accurately capturing the dynamics of the vehicle in this flight
condition, is revealed by the correlating difference between observed and mod-
eled accelerations depicted in Fig. 5.10. Ongoing work concerning the aerodynamic
model suggests that our model has two shortcomings. The first is the decoupling
assumption in the wind tunnel experiments that lead to purely lateral and longi-
tudinal models, whereas this scenario leads to simultaneously significant angles of
attack and sideslip.

The other flaw is that the damping model has been identified using an inde-
pendent Vortex-Lattice method which leads to significantly different static aerody-
namic coefficients. The selected damping coefficients are therefore not consistent
with the static coefficients from the wind tunnel tests and leads to a poor damping
model which we confirmed by inspection of the difference to a static aerodynamic
model without damping.

Thus, handling a state that resembles a consistent simultaneous turn and climb,
exposing the UAV to non-zero angular rates, is a weakness of the MPC, which is
partially what we see in this test sequence. We conclude the discussion considering
rejection of random disturbances such as sudden wind gusts or turbulences. At high
roll angles, the wing surface area is more exposed to horizontal gust winds, which
results in an increased sensitivity to disturbances. In this case, the MPC appears to
reject wind gusts as good as the baseline controller, suggesting sufficient reactivity
of the MPC.

Another concern is the quality of the wind estimate, which is likely to degrade at
a large angle of attack and sideslip angle. Rapid oscillation roll and pitch movements
such as in the previous test will therefore introduce disturbances. These can either
be compensated for by the disturbance observer employed with the controller or
avoided by using sensor equipment that directly measures the relative velocity
vector. The wind estimate only enters the model-free baseline controller through
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Figure 5.10: Difference between observed and modeled accelerations for the 30 s constant
reference.

airspeed scaling in the control law. We can expect that degrading wind estimates
will be less problematic here.

We have seen in the experiments that the MPC is better equipped to keep
the airspeed error small, and it further includes the angle of attack limits in the
constraint function. The wind disturbances become more significant at low-speed
flights where the UAV is also at increased risk of stalling. Assuming the model
in this flight condition is sufficiently accurate and that disturbances are well-
estimated, the MPC provides safety benefits that the model-free baseline controller
can not provide.

5.5 Benchmark Scenario

For the benchmark scenario simulation in this chapter, the controller structure is as
presented in the preceding sections. The cost matrices are again tuned for similar
performance to the preceding benchmarked controllers in the step sequence shown
in Fig. A.1, which results in the cost matrices

Q = diag(qVa
, qΓ,x, qΓ,y, qΓ,z) = diag(0.01, 30, 30, 30) (5.42a)

R = diag(rδ̇a , rδ̇e , rδ̇t) = diag(10−1, 10−1, 10−1). (5.42b)
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Figure 5.11: Benchmark simulation comparing the low-level MPC (LLMPC, plotted in
purple) introduced in this chapter to the previous controller designs (gray). The reference
path is plotted in black, dashed.

The prediction horizon is set to N = 30 and the length of the shooting intervals
is set to ∆t = 0.1 s.

The results of the simulation in comparison to the previously introduced con-
trollers are plotted for the position in Fig. 5.11 and for the distance to the path,
error signals and actuator signals in Fig. 5.12. Again, the scores for the perfor-
mance metrics and colored plots for all controllers are given in Appendix A. We
refer to the controller presented in this chapter as low-level MPC (LLMPC). From
Table A.2 it can be seen that the LLMPC has the best roll-tracking performance
and almost equal airspeed-tracking performance to the MPCGC. Again, the infe-
rior performance in pitch-tracking when compared to the reactive controllers (PID,
AP, GC), is likely a result of the trade-off with the airspeed-tracking performance.

It is moreover clear that the LLMPC commands the fastest changes in the
control surface set-points as indicated by the metric Jf . This is due to the design
decision to prioritize tracking performance over actuator usage and it is straight-
forward to improve the score in Jf by modifying the elements of R.
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Figure 5.12: Benchmark simulation comparing the low-level MPC (LLMPC, plotted
in purple) introduced in this chapter to the previous controller designs (gray). The first
subplot includes the distance to the reference path ‖d‖2, and the following subplots
include the error signals for airspeed, roll and pitch, as well as the actuator signals.

112



5.6. Chapter Summary

5.6 Chapter Summary

In this chapter we looked at NMPC design for the control problem of tracking
attitude and speed references, using the previously introduced notion of reduced-
attitude representations to use dynamics in the controller where the attitude evolves
on the Special Orthogonal Group of order Three. The actuators of the UAV are
directly accessed by the NMPC. A feature that is distinct to most publications in
the literature that often use control-augmented approaches to solve a higher-level
guidance problem.

The introduced controllers can be used to track reduced-attitude projections
in either roll-pitch or pitch-yaw direction, and we discussed possible extensions to
include objectives such as turn-rate control. The focus was on the control of the
roll, pitch and airspeed, given that this formulation can readily be integrated into
existing GNC architectures to enable experimental testing. Tuning guidelines were
given and possible values for the closed-loop solver runtime on a suitable SBC were
assessed through a Monte-Carlo simulation study.

We then tested the controller in experiments in different scenarios and com-
pared its performance to the attitude controller implementation of ArduPilot,
which showed favorable results for the presented NMPC. The performance of the
NMPC in the experiments despite significant inaccuracies of the dynamic model
speaks to the robustness of the controller.

We have seen in the experiments that under nominal flight conditions, the
NMPC and the baseline AP have comparable performance when following attitude
references from a guidance controller, and that the NMPC has in almost all test
cases at least equal or superior performance to the AP controller. The guidance
example has shown the ability of the NMPC to keep the UAV significantly closer
to the airspeed reference when following standard flight patterns such as loitering
maneuvers or rectangular paths. Together with the coupling between pitch and
airspeed, this can be exploited in scenarios where the UAV is to be operated at
low airspeed. In addition to the ability of the NMPC to keep the UAV close to
the airspeed reference, it is explicitly considering the increased angle of attack
during this flight condition and through its constraint definition readily includes a
mechanism to avoid stalling.
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Chapter 6

Coupled Nonlinear Model
Predictive Control and Geometric
Attitude Control

This chapter is based on

[157] Dirk Reinhardt and Tor Arne Johansen. Nonlinear Model Predictive Control
combined with Geometric Attitude and Speed Control for Fixed-Wing UAVs.
In 2021 International Conference on Unmanned Aircraft Systems (ICUAS),
pages 465–475, 2021.

6.1 Introduction

6.1.1 Motivation and Background

In this chapter, we discuss a combination of NMPC and Geometric Attitude Control
for the attitude and speed control problem of fixed-wing UAVs. The problem that
we aim at with this controller design is to give a viable alternative to local controller
designs based on PID loops as is common in modern low-level autopilots. The
design based on a perturbation model around a local trim state is effective in
nominal flight conditions, with degrading performance at more distant regions of
the state space. An example for this is where the aircraft is in agile flight or has
to be recovered from severe wind disturbances [86], motivating the use of globally
stabilizing controllers. Toward this, a geometric controller in its basic form has been
proposed in [37] showing almost semi-global exponential stability of the closed-loop
dynamic system. A natural consequence of the controller design on the two-sphere
S2 is the existence of an additional unstable equilibrium, due to the fact that it is a
compact manifold. This precludes the global attitude stabilization via continuous
feedback [11] or discontinuous feedback as shown by Mayhew et al. [125]. Using
hybrid control theory as a remedy to this problem for the spherical orientation is
thoroughly discussed in [126] and the theory has recently been developed to the
case of general smooth manifolds by Casau et al. [24]. Drawing from these ideas
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we designed a hybrid controller with an additional expelling potential as discussed
in [153] where we showed global exponential stability.

The motivation of this work is to use NMPC in a cascade with the geometric
controller [37] instead of the hybrid control scheme [153]. This way we solve the
problem of performance loss and discontinuous actuator commands that may occur
at instances where the potential function is switched, as an alternative to a hybrid
controller with an additional dynamic of the logic state [25]. Moreover, except for
constructed examples it is not a trivial task to design suitable angular acceleration
references for the geometric controller, such that it solely relies on attitude or pos-
sibly rate set-points. This can be readily dealt with by a suitable NMPC design,
together with a relaxation of decoupling assumption of throttle input and slowly
time-varying angle-of-attack and airspeed. Finally, constraint satisfaction and op-
timal performance is readily achieved and the NMPC may be allowed to run at
slower update rates by exploiting the disturbance rejection capabilities of the more
reactive geometric controller.

6.1.2 Related work
Up until recently, employing NMPC has been prohibitive in robotic systems with
fast dynamics, but due to advancements on both algorithmic and hardware level,
finds more applications also in UAVs. Trajectory tracking for fixed-wing aircraft
is considered in [66] where it is demonstrated that efficient algorithms allow for
NMPC that directly actuate control surfaces and throttle. However, most appli-
cations focus on the guidance level and rely on off-the-shelf autopilots to handle
low-level dynamics. For example, the approach [174] in avoids the use of a complex
aerodynamic model and instead finds a model of the response to attitude/speed
set-points with the autopilot in closed-loop. The resulting model is then used in a
path-following NMPC. In [4], path-following MPCs for constrained under-actuated
vehicles is proposed based on kinematic guidance models, where the resulting an-
gular rate and forward velocity set-points may be tracked by a sufficiently fast
low-level controller [3]. See also [194], where atmospheric disturbances are consid-
ered. A more recent approach where the complete model including actuators is used
in a trajectory optimization problem for motion planning, with low-level LQG feed-
back between updates is [8], resulting in extended maneuverability at high angles of
attack. For attitude control with direct actuation of the control surfaces, the work
in [143] employs small perturbations to apply linear models that are decoupled in
lateral/longitudinal direction from which explicit MPCs can be derived. The low
computational demands allow for implementation on a standard avionic system
with limited resources. For high performance flight in a wide envelope however, we
believe that it is necessary to consider coupled dynamics in the nonlinear regime.

In fact, there are several examples for multi-rotors which support this. For
example in [139] designs a NMPC scheme with an iterative LQG for direct control of
the actuators on the prospect of significant performance improvement. [5] assumes
sufficiently fast low-level controller and sets references for roll/pitch angles. In
later work, some authors propose NMPC in [91] to replace the low-level autopilot,
potentially in a more extensive control architecture [93]. Similarly, in [197], with
a stronger focus on the efficient numerical solvers. And recently, [92] showed for
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path-following on a multi-rotor that considering the full system dynamics in NMPC
can improve disturbance rejection, tracking performance and computational effort
compared to linear MPC.

6.2 Geometric Controller Design

We first recapitulate the necessary ingredients to implement the geometric con-
troller. Then explain the model predictive controller and outline the control archi-
tecture. A simulation study of the cascaded controller concludes this chapter.

For the geometric attitude controller, we again assume the standard kinematic
equation for the rotation matrix and the moment equation as in Section 4.2.2,
but a more careful notation with respect to the coordinates is needed. Recall the
dynamics as

Ṙnb = RnbS(ω
b
nb) (6.1)

Jω̇bnb = f(ωbnb,vr) +G(vr)
[
δa δe δr

]> (6.2)

with drift term f(vbr,ω
b
nb), control effectiveness matrix G(vbr,ω

b
nb) and control

input vector u =
[
δa δe δr

]>. The inertia matrix is denoted by J ∈ R3×3.

6.2.1 Reduced Attitude
An orthogonal decomposition of the angular velocity vector ωbnb = ωb⊥nb +ω

b‖
nb with

respect to Γ can be obtained using Eq. (2.17) as

ωb⊥nb = Π⊥
Γω

b
nb ∈ TΓS2, ω

b‖
nb = Π

‖
Γω

b
nb ∈ NΓS2. (6.3)

The kinematic equation for Γ follows from Eq. (6.1) and Eq. (4.3) as

Γ̇ = Γ× ωbnb = Γ× ωb⊥nb , (6.4)

where the second equality results from ωbnb = ωb⊥nb + ω
b‖
nb and Γ × ω

b‖
nb = 0. The

derivative of Eq. (6.3) is given by

ω̇b⊥nb = Π⊥
Γ ω̇

b
nb + ωb⊥nb × ω

b‖
nb (6.5)

ω̇
b‖
nb = Π

‖
Γω̇

b
nb − ωb⊥nb × ω

b‖
nb. (6.6)

6.2.2 Reference System
Consider a time-varying reference trajectory for the reduced attitude Γd ∈ S2,
satisfying

Γ̇d = Γd × ωbnb,d (6.7)

for some time-varying desired angular velocity ωbnb,d ∈ TΓd
S2. The objective of the

higher-level NMPC will be to drive the reference through its acceleration ω̇bnb,d ∈
NΓS2, effectively running the exogenous reference system to which we imposed a
boundedness assumption in Section 4.2.4.
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6.2.3 Error States
Recall the potential function used in the geometric attitude controller Eq. (4.16),
given as

Ψ(Γ,Γd) =
1

2
‖Γ− Γd‖2 = 1− Γ · Γd (6.8)

which leads to the definition of the error vector

eΓ = −Γ×∇ΓΨ(Γ,Γd) = Γd × Γ ∈ TΓS2. (6.9)

Let the angular velocity error eω ∈ TΓS2 be defined as

eω = Π⊥
Γ (ω

b
nb − ωbnb,d). (6.10)

The potential function and the error states are precisely as introduced in the
preceding chapter and more details can be found in Section 4.2.5.

6.2.4 Control Law
In its original form as discussed in Chapter 4, we used dynamic inversion to formu-
late the control law for geometric attitude control as a combination of feed-forward
terms and PD-like feedback in terms of eΓ and eω. However, the dynamic inver-
sion effectively eliminates all - and thus also the potentially useful - nonlinearities
that are present in the dynamic equations. This was necessary to prove the almost
semi-global exponential stability property of a Lyapunov-based controller design.
Here we take a different approach and leave it up to the NMPC to deal with the
modelled nonlinearities. Let the state-feedback control law uGC for the geometric
controller be [

δa δe δr
]>

= uGC(x, ω̇
b
nb,d) = G−1(ωbnb,v

b
r)Jκ(x, t) (6.11)

with

κ(x, t) = −ωb⊥nb × (ω
b‖
nb −Π

‖
Γω

b
nb,d) +Π

‖
Γω̇

b
nb,d − kpeΓ −Π⊥

ΓKdeω. (6.12)

The state vector x will be defined in the next section.

6.3 Nonlinear Model Predictive Controller Design

6.3.1 State and Dynamic Model
To have globally unique attitude representations without singularities, we use the
rotation matrix for the attitude representation, instead of the common minimum
parameterizations such as Euler angles or quaternions. Quaternions evolve on S3,
which is a double cover of the natural configuration space SO(3), meaning that two
quaternions can be used to represent the same attitude. Euler angles are prone to
singular attitude representations (gimbal lock), which would need to be handled
in the implementation. Chaturvedi et al. [29] offer an excellent discussion on this
topic. Another benefit is that the attitude kinematics of the rotation matrix only
include bilinear expressions instead of trigonometric terms.
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Let a decomposition of the rotation matrix into the individual axes be Rnb =
[rx, ry, rz] with r{x,y,z} ∈ S2 representing the axes of the body-fixed frame ex-
pressed in the coordinates the inertial frame. Then define the state vector x ∈ Rnx

and input vector u ∈ Rnu as

x = [Va β α rx
> ry

> rz
> (ωsnb)

>
Γd

> ωbnb,d
>
δt]

>
, (6.13)

u =
[
ω̇bnb,d δ̇t

]> (6.14)

with nx = 22 and nu = 4. With ωsnb ∈ R3 denoting the angular velocity vec-
tor decomposed in the axes components of {s}. The dynamic equations for the
translational motion are given by V̇a

β̇Va
α̇Va cosβ

 =
1

m
fw(x,uGC(x, ω̇

b
nb,d)) +RwbRnb

>gn − ωwnb × vwr + df (6.15)

where fw(x,uGC(x, ω̇
b
nb,d)) = fwa (x,uGC(x, ω̇

b
nb,d))+Rwbf

b
t (Va, δt) is the force vec-

tor resulting from aerodynamics fwa and thrust f bt . The mass of the UAV is given
by m ∈ R and gn denotes the gravity vector in {n}. For the rotational motion we
have

Ṙnb =
[
ṙx ṙy ṙz

]
= RnbS(R

>
sbω

s
nb) (6.16)

Jsω̇snb = S(Jsωsnb)ω
s
nb +Rsbm

b(x,uGC(x, ω̇
b
nb,d))− Js(ωsbs × ωsnb) + Jsdm,

(6.17)

The difference to the nominal dynamic equation assumed by the geometric con-
troller is the added moment disturbance term Jsdm in Eq. (6.17) which is not
present in Eq. (6.2). Another disturbance is acting as a force disturbance df in
Eq. (6.15). We consider both disturbances as slowly varying and provide details on
how they are updated in Section 6.3.5. For now, let the disturbances be concate-
nated by

d =
[
df

> dm
>]>. (6.18)

The remaining equations for the evolution of the NMPC state x are given by
Eq. (6.7) for Γ̇d. The rest is directly controlled through the input vector u as de-
fined in Eq. (6.14). The control algorithm design, in particular the interconnection
between the geometric controller and the NMPC is illustrated Fig. 6.1.

Throughout the rest of this chapter, we will use the continuous vector ODE
ẋ = fc(x,u,d) to denote the state dynamics described in Eq. (6.7) and Eq. (6.15)
- Eq. (6.17). Where applicable, the discretized version based on an explicit Runge-
Kutta method of order four will be used, with x(k + 1) = fRK4(x(k),u(k),d(k))
denoting the resulting difference equation.

6.3.2 Constraints
The constraint set includes box constraints and mixed nonlinear constraints. To
ensure safe flight conditions within the admissible envelope, the aerodynamic angles
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Figure 6.1: The control algorithm design. Reference signals for airspeed Va,ref and linear
acceleration v̇n

nb,ref(t) are used to find suitable attitude and airspeed references for the
NMPC through x∗

ref by solving Eq. (6.23). Control surface deflections are set by the GC,
based on the control-law uGC and the reference signals (Γd,ω

b
nb,d, ω̇

b
nb,d).

and airspeed are subject to the relaxed box constraints with the possibility to
tighten the constraints. The related constraint inequalities are given by

Va − (1 + εVa
)V a + sVa

≥ 0 (6.19a)
−Va + (1− εVa

)V a + sVa
≥ 0 (6.19b)

α− (1− εα)α+ sα ≥ 0 (6.19c)
−α+ (1− εα)α+ sα ≥ 0 (6.19d)
β − (1− εβ)β + sβ ≥ 0 (6.19e)
−β + (1− εβ)β + sβ ≥ 0. (6.19f)

The tightening parameters ε∗ allow for further tightening the original constraints.
This can be useful to react to turbulent weather conditions and uncertainty of the
dynamic model. The slack variables denoted by s∗ ∈ R≥0 in the constraints are
included to guarantee the feasibility of the underlying QPs.

Limits of the control surface deflections are included as mixed nonlinear con-
straints, given that they are not being set directly, but are the output of the
geometric controller function uGC. The throttle set-point δt is subject to a box
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constraint. The constraints related to the actuator limits are thus given by

uGC(x, ω̇
b
nb,d)−

[
δa δe δr

]
+ suGC

≥ 0 (6.20a)
−uGC(x, ω̇

b
nb,d) +

[
δa δe δr

]
+ suGC ≥ 0 (6.20b)
δt − δt ≥ 0 (6.20c)
−δt + δt ≥ 0. (6.20d)

Finally, constraints for the control input of the NMPC and constraints that ensure
positive slack variables are included through the inequalities

u− u ≥ 0, −u+ u ≥ 0, s ≥ 0, (6.21)

where the vector s ∈ R12 is defined as the concatenation of all slack variables
in the order they appear in Eq. (6.19a) - Eq. (6.20b). All vector inequalities are
interpreted as element-wise. For the remainder of this chapter, let the inequalities
Eq. (6.19a) - Eq. (6.21) be concatenated in

h(x,u, s) ≥ 0. (6.22)

6.3.3 Reference Generation for the Nonlinear Model Predictive
Controller

As a reference signal, we consider linear acceleration commands in the inertial
frame, denoted by v̇nnb,ref , which can be generated by employing a nonlinear path-
following controller, e.g. the guidance law proposed in [32]. The acceleration com-
mand then enters an optimization problem to find a reference state xref that is close
to the current state x with airspeed close to cruise speed Va,ref . The optimization
problem is there formulated as

min
xref

(
‖v̇nnb,ref(t)− v̇nnb‖2Qv̇

+ qV a(Va,ref(t)− Va)2 + ‖x(t)− xref‖2Qx

)
(6.23a)

s. t. v̇nnb =
1

m
RnbRwb

>fw(xref , δ) + gn (6.23b)

Va = e1
>xref (6.23c)

h(xref ,0,0) ≥ 0. (6.23d)

The first two terms in Eq. (6.23a) constitute the deviation from the reference
signals which we seek to minimize whereas the last term is a regularization term
to keep the solution close to the given estimated state of the UAV. The dynamic
model enters through the equality constraint Eq. (6.23b). The airspeed is extracted
from the state vector through Eq. (6.23c), and we impose the previously defined
constraints on the reference through Eq. (6.23d).

The positive definite weightings qVa , Qv̇ and Qx are included to allow for a
weighting between the reference signals and the regularization term. Defining x∗

ref

as the argument that minimizes Eq. (6.23), the output reference signal for the
NMPC is given by

r ,
[
Va,ref Γref

>]> =
[
enx
1 enx

6 enx
9 enx

12

]>
x∗
ref . (6.24)
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Note that we distinguish between Γref and Γd. The reference obtained through via
the optimization problem is Γref and is included in the output reference to the
NMPC, and Γd is part of the state vector x as defined in Eq. (6.13).
Remark 6.1. Let the set Xtarget be defined by all states x in the pre-image of
Eq. (6.24). We see that for all states in Xtarget, for either the continuous or the
discrete mapping, we have f : Xtarget → Xtarget, i.e. Xtarget is invariant under the
state dynamics at r, which is a necessary requirement for a well-posed output in
the NMPC.

6.3.4 Cost and Nonlinear Program
To formulate the NMPC for output stabilization, let the stabilizing quadratic stage
cost be

l(x,u, r) = qVa
(Va − Va,ref)2 + ‖Γ− Γref‖2QΓ

+ ‖u‖2R, (6.25)

which includes qVa > 0 and the positive definite and symmetric weighting matrices
QΓ ∈ R3×3 and R ∈ Rnu×nu .

We use direct multiple shooting to discretize the OCP into N control intervals
and integrate the continuous dynamics for each interval with an explicit Runge
Kutta scheme of order four. Let a predicted state and input sequence be denoted
by x(·|t) ∈ Rnx×(N+1), u(·|t) ∈ Rnu×N . The resulting NMPC scheme is based on
the solving the NLP at time t given by

min
x(·),u(·)

N−1∑
k=0

l(x(k|t),u(k|t), r(k|t)) + 1

2
s>Ps k ∈ [0, ..., N ] (6.26a)

s. t. x(0|t) = x(t) (6.26b)
x(k + 1|t) = fERK4(x(k|t),u(k|t),d(0|t)) k ∈ [0, ..., N ] (6.26c)

h(x(k|t),u(k|t), s) ≥ 0 k ∈ [0, ..., N ], (6.26d)

with the current state x(t) and a positive definite and symmetric weighting matrix
P ∈ Rns×ns . The disturbance terms are modelled as constant over the prediction
horizon. A possible variant is the use of exponentially decaying disturbance terms
along the prediction horizon, i.e.

d(k|t) = (1− e−(N−k)Ts/τ )d(t), (6.27)

for disturbance which can be expected to be zero-mean. Here Ts denotes the length
of the shooting intervals. The parameter τ ∈ R is a tuning parameter that can be
used to change the rate of decay of the disturbance terms.

After each update of the NMPC, the predicted optimal state sequence x∗(·|t)
is used to extract the reference signals for the low-level geometric controller, given
by (Γ(t), ωbnb,d(t), ω̇

b
nb,d(t)). This is done after the first shooting interval as Γd(t)

ωbnb,d(t)

δt(t)

 = blkdiag(015, I7)x
∗(1|t) (6.28)
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and
ω̇bnb,d(t) = blkdiag(I3, 0)u

∗(1|t). (6.29)

The throttle command δt(t) is sent to directly the UAV as shown in Fig. 6.1.

6.3.5 Disturbance Observer
For offset-free attitude stabilization in the presence of e.g. unmodelled dynamics,
parametric disturbances or estimation errors, we include an observer for moment
and force disturbances that affect angular rate and airspeed. This follows the gen-
eral discussion on offset-free NMPC in [134]. Consider the observed airspeed V̂a
and angular rate ω̂bnb and the difference to their predictions in the controller at
each time instant

∆Va(t) = V̂a(t)− (enx
1 )

>
x∗(1|t− 1) (6.30)

∆ωbnb(t) = ω̂bnb(t)−
[
03×12 I3×3 03×7)

]
x∗(1|t− 1). (6.31)

For simplicity, we discuss the case in which the update period and prediction inter-
val of the controller have equal length.1 For different update rates of the controller
and the disturbance observer, a practical approach is to separately integrate the
dynamics of the NMPC at the desired rate of the observer. Another alternative is
to map the update period of the disturbance observer to the shooting intervals of
the predicted state trajectory of the controller and then apply interpolation based
on the neighboring points of x(·|t).

The disturbance estimates are initialized as df (0) = dm(0) = 03×1 and then
updated continuously together with the NMPC

df (t)← df (t) + lf
[
∆Va(t) 0 0

]> (6.32)
dm(t)← dm(t) + Lm∆ωbnb(t) (6.33)

with lf ∈ R as the learning gain for the force disturbance and Lm ∈ R3×3 defined
as

Lm = diag(lp, lq, lr) (6.34)

acting as the learning gain for the moment disturbance which is the diagonal com-
position of the individual gains for the angular rates lp, lq, lr ∈ R.

6.3.6 Implementation
We implement the NMPC using the open-source software package Acados [185]
using a fourth-order explicit Runge-Kutta integrator for discretization. To solve the
NLP, we use real-time iteration sequential quadratic programming (RTI SQP) [46]
with the high-performance interior point method presented in [57] for the solutions
of the underlying QPs. The QP solver is relying on the numerical subroutines of
BLASFEO [58].

1An alternative approach with different update rates is presented in Chapter 5.
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6.4 Numerical Results and Discussion

6.4.1 Simulation Study

UAV & Wind Model

The UAV model used for all simulation is the Aerosonde with dynamic model and
parameter set as given in [9]. It includes the control surfaces aileron, elevator rudder
and a throttle. The control effectiveness matrix of the rotational dynamics has thus
full rank. This is needed to be able to employ the version of the geometric controller
presented in Chapter 4 against which we compare the MPCs. The nominal cruise
speed of the Aerosonde is 35m/s with a 250m turn radius2. The actuators in the
simulation are modelled with first-order lag dynamics

δ̇i =
1

T
(δi,d − δi) (6.35)

and T = 0.01 for the control surfaces, i.e. i ∈ {a, e, r} and T = 1 for the throttle δt.
The wind is modelled as the combination of a static component in the inertial frame
and a gust component in the body-fixed frame as vnnw = vnnw,s + Rnbv

b
nw,g. The

gust component is generated by the Dryden wind model, which means essentially
passing white noise through a low-pass filter. The static wind component in the
inertial frame is set to vnnw,s =

[
4 3 0

]>. The design of an observer for the
estimation of the wind-velocity vector is out of scope of this paper, and we assume
the wind to be known at all times. To take the changing wind conditions into
account, the output target that determines reference values for airspeed and the
reference r is updated at 10Hz in all simulations. Both the propagation of the state
and the controller updates are based on the same model parameters. Seeing as all
controllers are model-based, this is still a fair comparison.

Geometric Controller Setup

The geometric controller is updated at 100Hz and parameterized based on the
gains kp = 9.5 and Kd = 8I3. The same parameterization is used in the pure geo-
metric attitude controller and in the combined controller of NMPC and geometric
controller.

Nonlinear Model Predictive Controllers

Both MPCs are updated at 10Hz. The weighting matrices of the pure NMPC are
chosen as

QNMPC = diag(10−2, 10, 1, 1), (6.36a)
RNMPC = diag(10−1, 10−1, 10−1, 10−1), (6.36b)
PNMPC = diag(1, 103, 1, 103), (6.36c)

2http://uavbook.byu.edu/doku.php
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and the weighting matrices of the combined controller are

QNMPC+GC = diag(10−2, 10, 1, 1), (6.37a)
RNMPC+GC = diag(5 · 10−3, 5 · 10−3, 5 · 10−3, 10−1), (6.37b)
PNMPC+GC = diag(1, 103, 1, 103). (6.37c)

Both parameterizations differ only in the first three elements of the input weight
matrix R, given that the pure NMPC sets the rates of the actuators directly,
whereas the combined controller sets the angular acceleration commands of the
low-level control in addition to the throttle rate command. Regarding reference
following, the pitch reference is prioritized. There is a lower penalty on airspeed
deviations, note however that violations of the constraint are given a significantly
higher penalty due to the weighting matrix of the slack variables P. Finally, vio-
lation of the angle-of-attack constraint receives the highest cost. This is to ensure
that the UAV remains within bounds to avoid stall.

For evaluation of reference following performance for a variable a and actuator
usage u, we use the performance indices

Jea =
1

T

∫ T

0

‖ea‖ds, Ju =
1

T

∫ T

0

‖u‖ds (6.38)

6.4.2 Disturbance Rejection
To illustrate the disturbance rejection capabilities of the different controllers, we
use constant reference signals for roll and pitch angle to command a loitering
maneuver with a 250m radius in the horizontal plane. The constant wind velocity
in this scenario is set to vnnw = 03×1, and the gust winds are simulated for low,
moderate and high intensity.

The results for 300 s of simulations with 0.01 s step size are summarized for each
controller and gust intensity in Table 6.1. Attitude disturbances are significantly
better rejected by the combined controller, when compared to the pure NMPC
for all levels of turbulence, which is indicated by Jeφ , Jeθ . Also, actuator usage as
indicated by Ju remains approximately at the same level in contrast to the pure
NMPC. On the other hand, the pure geometric controller appears to have the best
performance regarding reference following in both airspeed and pitch as indicated
by JeVa

and Jeθ . This is likely to be caused by the reference signals for angular
rate and acceleration set by the NMPC, which are then tracked by the low-level
geometric controller (GC) between NMPC updates. However, the most suitable
references would be the zero vector for each, which is what the pure GC assumes.
Thus, in this case the references generated by the NMPC may actually cause a
degrading performance.

6.4.3 Recovery
To show that the NMPC is a viable alternative to the hybrid controller discussed in
Section 4.5, we simulate a similar scenario as for the hybrid case in which the UAV
needs to be recovered from φ0 = −175 deg to φref = θref = 0. However, different to
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Figure 6.2: Input trajectories of the controllers for the global stabilization case including
that of the pure NMPC (blue), combined controller (orange) and the pure geometric
controller (green).

the scenario as discussed in Section 4.6, the initial pitch angle is set to θ0 = 0deg.
Considering that this is a highly dynamic scenario in which fast solutions of the
NLP solver are desirable, we choose a warm-start for both MPCs in which the
initial guess is initialized as the shifted trajectory of the optimal state predictions
of the previous iteration.

In this case the continuous geometric attitude controller suffers from a per-
formance loss due to the close unstable equilibrium in the vicinity of the initial
state which results in reduced proportional action. A consequence of this is that
the attitude stays close to the initial roll angle for a longer time as can be seen in
Fig. 6.3, which at t = 2 s leads to a violation of the airspeed constraint. Both MPCs
show significantly faster response by making use of all actuators (see Fig. 6.2), as
contrasted by the pure GC which does not use aileron and rudder to a notable
extent up to this point into the simulation.

However, it is notable that the slower response of the geometric control law
carries over to the mixed controller, when compared to the pure NMPC. The most
prominent indicator is that the pure NMPC leads to operation at the limit of the
angular rate constraints Fig. 6.4 to stabilize the UAV at the commanded attitude.
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Table 6.1: Performance indices for airspeed and attitude errors.

Var Intensity NMPC NMPC GC GC

JeVa
[m/s]

low 0.187 0.190 0.202
medium 0.430 0.458 0.368

high 0.499 0.510 0.512

Jeφ [deg]
low 0.033 0.016 0.020

medium 0.072 0.029 0.037
high 0.113 0.047 0.060

Jeθ [deg]
low 0.038 0.021 0.019

medium 0.090 0.064 0.035
high 0.137 0.106 0.043

Ju [deg]
low 3.323 3.327 3.372

moderate 3.499 3.341 3.418
high 3.729 3.304 3.358

Further, note that the mixed controller and the pure NMPC start to enacting
a different strategy at t = 2 s to keep the UAV close to the constraint set. The
magnitude of the constraint violation is subject to the tuning of the cost P of the
slack variables.
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Figure 6.3: Speed and attitude trajectories of the controllers for the global stabilization
case including that of the pure NMPC (blue), combined controller (orange) and the pure
geometric controller (green).

While this case shows that the NMPC can act as a viable alternative to hybrid
control regarding the problem of performance loss in the vicinity of the unstable
equilibrium on the two-sphere, it has to be noted that this example is however
purely academic as such as it requires a globally valid dynamic model. The suc-
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Figure 6.4: Aerodynamic data and angular rates for the controllers for the recovery case
including that of the pure NMPC (blue), combined controller (orange) and the pure geo-
metric controller (green). The state constraints (dashed) are included to ensure nominal
flight conditions and model validity below the stall regime.

cessful identification of the dominant dynamics of a model for the entire state space
of the attitude dynamics can surely be regarded as a hard task in practice.
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Figure 6.5: Benchmark simulation comparing the combined controller (MPCGC, plotted
in red) introduced in this chapter to the previous controller designs (gray). The reference
path is plotted in black, dashed.

6.5 Benchmark Scenario

As a geometric attitude controller, we use a similar design as discussed in the
benchmark of Chapter 4, but without the integral action. The resulting control
law for the geometric attitude controller has therefore a simple PD structure

u = G(vr)
†(−kpeΓ −Kdeω). (6.39)

The same control law is consequently also used in the definition of OCP. The
gains for the geometric controller in combination with the MPC are the same as
in Section 4.8, i.e. kp = 20.0 and Ki = Kd = diag(2.0, 2.0, 2.0). The difference is
now that the desired angular velocity ωd is not set to zero, but determined by the
MPC. The MPC is tuned with the following cost matrices

Q = diag(qVa
, qΓ,x, qΓ,y, qΓ,z) = diag(0.01, 30, 30, 30) (6.40a)

R = diag(rω̇x
, rω̇y

, rω̇z
, rδ̇t) = diag(10−3, 10−3, 10−3, 10−1) (6.40b)

The geometric attitude controller is updated at 50Hz and the MPC at 20Hz.
The trajectories for the position are plotted in Fig. 6.5 and the distance, error
signals and actuator signals are depicted in Fig. 6.6. In this case, the comparison
to the geometric controller derived in Chapter 4 is particularly interesting, as it
allows us to gauge the performance improved achieved by adding the MPC into
the loop.

The plots for all controllers and the performance metrics are given in Ap-
pendix A. The mean squared error (MSE) of the roll angle, Je,φ, and pitch angle,
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Je,θ, shows that the combined controller achieves better or comparable perfor-
mance. The MSE concerning the airspeed, Je,Va also got improved, which can be
attributed to the coupling between pitch angle and airspeed that is taken into
account by the MPC. As shown for the tuning steps Fig. A.1, the combined con-
troller actively uses a pitch-down or pitch-up motion to respectively accelerate or
decelerate the UAV.

Regarding the actuator velocities captured by the smoothness metric Jf,·, the
combined controller is commanding notably faster set-point changes, which can be
mitigated by a less aggressive tuning of the MPC. It is however the rule for all
MPC designs in this thesis to favor tracking performance over actuator usage.
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Figure 6.6: Benchmark simulation comparing the combined controller (MPCGC, plotted
in red) introduced in this chapter to the previous controller designs (gray). The first
subplot includes the distance to the reference path ‖d‖2, and the following subplots
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6.6 Chapter Summary

We looked into a cascade of NMPC and smooth geometric attitude control as
introduced in Chapter 4, where the NMPC tracks linear acceleration commands
from a guidance module and generates the reference signals for angular acceleration,
angular rate and the reduced attitude vector. This makes the cascaded controller
not only an alternative to the hybrid extension, but exploits the tracking controller
design of the geometric attitude controller.

The controller design was compared to the smooth geometric attitude controller
and a NMPC with direct actuator access in simulation scenarios. Significant per-
formance improvements to the smooth geometric attitude controller were evident,
and moreover constraint satisfaction was achieved. Disturbance rejection capabil-
ities of the cascaded controller were better than that for the NMPC with direct
actuator access which in turn proved to be the best choice in a recovery scenario.

We therefore put a stronger emphasis on the NMPC with direct actuator access
in the preceding chapter to see if the required update rates can be achieved on the
experimental platform introduced in Chapter 2. Note that as for the NMPC in
Chapter 5, the controller designed in this chapter includes the coupling between
pitch control and airspeed control in addition to the angle of attack constraints.
It is therefore also suited for operations at low airspeeds where the UAV is at
increased risk of stalling.
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Chapter 7

Extended Aerodynamic Modeling
of the Skywalker X8 Fixed-Wing
Unmanned Aerial Vehicle

7.1 Introduction

The experimental results of the preceding chapter revealed that the controller in-
cluded a dynamic model that has potential for improvements. Our experiments were
the first to evaluate the model proposed by Gryte et al. [71] with in-flight tests.
In their paper, Gryte et al. merely auto-validate the identified models against the
measured wind tunnel data, resulting in favorable scores of the coefficient of de-
termination very close to 1. However, the resulting score is even negative when we
compared the accelerations obtained through the force model and the observations
based on data from IMUs. This indicates that using the model in a model-based
controller does not improve performance but makes it worse in some situations.
Considering that the targeted use case by Gryte et al. is model-based flight control
or model-based estimation or aerodynamic parameters, we see it crucial to apply
the fitness metric to actual flight data.

With a closer look at the wind tunnel data that serves as a foundation for
the following model identification process, we identified four possible modifications
that can improve the model. First, the dataset includes asymmetries concerning the
longitudinal plane that divides the airframe into the fuselage’s left and right sides.
Gryte et al. mention the possible misalignment of the body-fixed frame and the
wind tunnel at zero sideslip angle to be the cause for the asymmetries. However,
instead of finding a proper rotation, they addressed the problem of asymmetric
measurements in an ad-hoc manner by setting specific parameters to zero to obtain
the desired symmetries in the model. We propose a different approach to minimize
the asymmetries in a least-squares sense using a calibration of the data prior to
identifying the model. Second, the lever arm of the attack point of the force vector
to the center of mass is implicit in the model. Gryte et al. tweaked the vector
describing the lever arm to have the pitch moment aligned with their experience.
We instead explicitly model the generalized forces at the aerodynamic reference
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point, the location of the force sensors during the experiments, and identify the
vector to center of mass based on flight data. Third, we have a more thorough
look at the subset of the obtained data suitable for identifying aerodynamic linear
coefficients in the sideslip angle. We moreover reduce the drag model’s complexity
and simultaneously improve its fitness. Fourth, the final set of parameters proposed
by Gryte et al. is a blend of parameters identified by the wind tunnel, results from a
Vortex-Lattice method (XFLR), and additional manual tweaks to the parameters
based on experience from flight experiments. The result is a set of parameters
that is not optimal in either of the original identification procedures. We present
a different approach that combines the use of wind tunnel and flight data, which
leads to a consistent parameter vector.

This chapter aims to find an improved model compared by dealing with the out-
lined shortcomings of the described identification process. We begin by presenting
a novel method to calibrate the dataset for the symmetry concerning the longitu-
dinal plane of the airframe and follow with the modified model structure before
identifying the aerodynamic coefficients. A significant part will be identified based
on the same wind tunnel data used by Gryte et al. However, instead of finding the
damping coefficients for the rotational motion through a Vortex-Lattice method,
we use actual flight data. Finally, evaluate the new model compared to the baseline
model from Gryte et al. and a model entirely based on the estimated coefficients
from the flights. The outlined procedure to find an improved model is illustrated
in Fig. 7.1.

The following notation related to the aerodynamics is different to the notation
used in the preceding chapters. This is a consequence of our effort to describe the
aerodynamics in a manner that takes geometric properties into account, in particu-
lar for the design of the calibration procedure in Section 7.2.2. Another motivation
was to describe the aerodynamics moments and forces as a function of the relative
linear and angular velocities, which would reduce the need for trigonometric terms,
i.e. for the angle of attack and sideslip angle, and thus reduce the nonlinearities in
a model-based controller.

7.1.1 Related Work

The work for this chapter is not the first to consider the aerodynamic model of
the X8. In addition to [71], which is a continuation of [69], several publications
consider this popular airframe. Farhadi et al. [131] identify a lateral model of the X8
using flight data, in a combination of the output-error method and ordinary least
squares regression. Gan et al. [60] identify the static aerodynamic coefficients from
a Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD)
program. Winter et al. [192] also provide a RANS CFD analysis, further using time-
series CFD simulations to study the effect on the dynamic coefficients in situations
where the airfoil is subject to ice aggregation. All three papers rely to some extent
on our previous work [69, 71]. System identification based on flight data is also a
well-established field [82, 97], and has been widely used in modelling of fixed-wing
UAVs, both in the time- [112, 167] and frequency domain [123, 182]. More recently,
Kaiser et al. [88] presented results where they identify the longitudinal dynamics
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of a fighter aircraft using the Sparse Identification of Nonlinear Dynamics (SINDy)
proposed by Brunton et al. [16].

Fixed-wing UAV designs are usually symmetric with respect to the longitudinal
plane, such that the left-hand side mirrors the right-hand side of the airframe.
The goal is for the generalized aerodynamic forces to be symmetric for equivalent
maneuvering capabilities during turns in either direction. To identify the forces for
a given airframe design, engineers often collect data that capture the forces in wind
tunnel tests or flight experiments. In either case, one would expect the magnitude
of the forces to be equal for symmetric use of the actuators and mirrored relative
velocities concerning the plane of symmetry. However, this is not the case for the
collected data when the coordinate axes of the force and moment measurement
equipment are not aligned with the coordinate axes of the body-fixed coordinate
frame, which is usually the case. This asymmetry then propagates to the identified
models and can be problematic in model-based control, which is the use-case we
are targeting.

The misalignment can be kept small by careful mounting procedures, such
that it is possible to calibrate for remaining asymmetries through proper post-
processing. However, it appears that a systematic calibration method to do this
has not been addressed, whereas engineering researchers focused on the compen-
sation of other error sources and effects. Molinari et al. [132] consider disturbances
due to the airframe and wall of the wind tunnel blocking the airstream. They isolate
the airfoil in a pitching motion such that symmetries to sideslip angle variations
are not a factor. Damljanovic et al. [42] also focus on wall interference. They note
possible offsets between coordinate axes of the measurement equipment and air-
frame but state that the effects are in the order of magnitude of measurement noise
and disregard further calibration.

Ocokoljic et al. [142] extensively discuss wind tunnel calibration tests, including
the test section, measurement instruments, and standard models for calibration.
Jindeog et al. [83] consider possible measurement biases due to thermal effects but
only within the longitudinal plane where asymmetries in sideslip angle variations
can not be observed. Simmons et al. [167] focus on experiments design and system
identification techniques and do not discuss asymmetries.

Holsten et al. [79] notice asymmetries in data series that they expect to be
symmetrical but do not offer a solution to compensate for this. The data provided
by Ol et al. [144] looks to be sufficiently symmetric, but they do not give de-
tailed information on possible post-processing steps. They note, however, the need
for cautious treatment of the actuators. In particular, when testing off-the-shelf
radio-controlled UAVs, consumer-grade servos to actuate the control surfaces can
introduce significant offsets to the reference deflections due to the hysteresis band.
A possible reason for neglecting symmetry considerations in the literature may be
that this problem is likely more pervasive for airframes of fixed-wing UAVs that
are small and have a low cost.

In Section 7.2.2, we discuss an approach to find a static rotation that aligns
the coordinates of the measurement equipment in a wind tunnel experiment with
the coordinate axes of the body-fixed frame of a fixed-wing UAV. The necessary
assumption that the UAV is symmetric concerning its longitudinal plane is satisfied
by most classes of small fixed-wing UAVs and aircraft.
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Our approach builds on the formulation of a symmetry condition along the
coordinate axes of the force and moment measurement equipment to formulate a
suitable error function. We then formulate an optimization problem that finds a
transformation that minimizes the asymmetries in the generalized forces (i.e. linear
forces and angular momentums) for symmetric relative velocities in a least-squares
sense. We base our work on a dataset from a wind tunnel. However, it is straight-
forward to apply the proposed method to flight data and find the orientation of a
relative velocity sensor with respect to the body-fixed frame.

7.2 Wind Tunnel Model

7.2.1 The Dataset
The experiments conducted by Gryte et al. are thoroughly described in their paper
[71]. The collected dataset includes variations of the airspeed, angle of attack, and
sideslip angle, as well as surface deflections. The collected data is based on the
assumption of decoupled dynamics in the lateral and longitudinal plane at small
aerodynamic angles. This means that it includes rotations of the lateral plane at
zero angles of attack and rotations of the longitudinal plane at zero sideslip angle.
The angle of attack mainly was varied between −10 deg and 15 deg degrees with
some measurements at higher values and low airspeeds to identify forces in the stall
regime. Gryte et al. tested five uniformly distributed elevator deflections between
−20 deg and 20 deg at airspeeds set to either 18m/s or 21m/s. With zero aileron
deflection and sideslip angle, the data points available for the identification of the
longitudinal coefficients are given by

(Va, α, δe) ∈ {18, 21} × [−10, 15]× {−20,−10, 0, 10, 20}. (7.1)
The dataset for identifying the lateral coefficients includes sideslip angle variations
within −15 deg and 15 deg at the same airspeeds as for the longitudinal tests. Based
on the assumption of the aileron to be symmetric around zero, the dataset only
includes negative deflections. At zero elevator deflection and angle of attack, the
lateral data points are given by

(Va, β, δa) ∈ {18, 21} × [−15, 15]× {−20,−10, 0}. (7.2)
Forces and moments due to the vehicle’s weight were compensated during each run.
The airframe was carefully mounted onto the force sensor to align the measurement
axes with the axes of the body-fixed frame. The measurement axes are assumed
to be in alignment with the axes of the wind tunnel at zero angles of attack and
sideslip angles. However, the measured dataset does not appear to be symmetric
concerning the longitudinal plane of the airframe, which is shown in Fig. 7.2 for a
sweep of sideslip angles. We will first address this problem and show how one can
find a static rotation matrix to improve the symmetry of the available dataset.

7.2.2 Calibration of the Dataset for Planar Symmetry
Problem

We have an airframe for which we impose the assumption

137



7. Extended Aerodynamic Modeling of the Skywalker X8 Fixed-Wing
Unmanned Aerial Vehicle

−4.5

−4

−3.5

−3

X
[N

]

−5

0

5

10

l[
N

m
]

−10

0

10

Y
[N

]

5

6

m
[N

m
]

−10 0 10

−20

−15

SSA [deg]

Z
[N

]

−10 0 10

−0.5

0

SSA [deg]

n
[N

m
]

Figure 7.2: A sweep of the sideslip angle with α = δa = δe = 0 and Va = 21m/s. The
measured data does not appear to be symmetric to the longitudinal plane (zero sideslip
angle) of the airframe.

Assumption 12. The geometry of the airframe is symmetric with respect to the
xz-plane.

However, a set of measurement data recorded in the wind tunnel does not show
this symmetry when the xz-plane is rotated, as depicted in Fig. 7.2. We assume a
misalignment between the body-fixed frame that includes the symmetry plane and
the measurement frame in which the data is recorded. Let the orientation of the
body-fixed frame relative to the measurement frame be denoted by Rmb ∈ SO(3).
The problem is to find the rotation Rmb merely based on the available measurement
data that is to be used for model identification and without a prior symmetry
calibration routine in the experiments.

Symmetry and Transformations

Let the relative linear velocity vr ∈ R3 and the relative angular velocity ωr ∈ R3

be concatenated into one vector νr = [vr; ωr]. Let the vector of generalized forces
be denoted by τ = [f b; mb], and suppose f : R6 → R6 denotes a mapping from
velocities to forces. The general symmetry condition that we impose reads as

Mf(Mνbr) = f(νbr), (7.3)
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with the case of xz-symmetry being defined by the symmetry matrix M given as

M , diag(1,−1, 1,−1, 1,−1). (7.4)

Now suppose that the body-fixed frame {b} and the sensor-fixed frame {m} are
not aligned, but that the orientation of {b} with respect to the coordinate axes of
{m} is given by a rotation Rmb ∈ SO(3). Then we can express the velocity in {m}
as

νmr = Tνbr (7.5)

where

T =

[
Rmb 0

S(rmmb)Rmb Rmb

]
. (7.6)

The variable rmmb ∈ R3 denotes the position of the origin of {b} with respect to
{m} in coordinates of {m}. We make a few simplifying assumptions

Assumption 13. The sensor is placed at the origin of the body-fixed frame, i.e.
rmmb ≈ 0 such that T ≈ blkdiag(Rmb,Rmb) and T−1 = T>.

Note that the origin of {b} does not necessarily coincide with the center of mass.

Assumption 14. The wind tunnel produces a homogenous air stream with a
negligible angular velocity component, i.e. ωr ≈ 0.

Let the coordinate frame of the wind tunnel be described by {w}. Each data
point includes measurements of the relative linear velocity vector in the sensor
frame, i.e. vmr , typically recorded in terms of airspeed Va ∈ R, angle of attack
α ∈ R and sideslip angle β ∈ R. This can be thought of as magnitude and spherical
direction of vmr . To parameterize vmr from the data points, we define the map
µ : R3 → R3 as

vmr = µ(Va, α, β) , Rmw(α, β)v
w
r (7.7)

and its inverse

(Va, α, β) = µ−1(vmr ) ,

(
‖vmr ‖2, arctan

(wr
ur

)
, arcsin

( vr
‖vmr ‖2

))
. (7.8)

The rotation matrix Rmw(α, β) = Rms(α)Rsw(β) is a composition of

Rms(α) =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

 , Rsw(β) =

 cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

 , (7.9)

which are the known rotation matrices between body-fixed frame, stability frame
and wind frame [9].
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Interpolating the Dataset

Our goal is to formulate an optimization problem to find the rotation matrix Rmb

based on the available force measurements in the dataset from which expressions
for both sides of Eq. (7.3) can be derived. To be able to use gradient-based op-
timization methods, we need to approximate the measurements by functions that
are continuously differentiable with respect to the sideslip angle. In this subsection
we give an outline how this can be done using polynomial interpolation. For each
sweep of sideslip angles, the airspeed Va (indicated by the Reynolds Number), and
the angle of attack α and elevator deflection δe are constant. Moreover, we only
consider sweeps during which the aileron deflection δa is set to zero, given that a
non-zero value would violate the symmetry condition. The aileron deflections are
assumed to be offset-free.

To interpolate between data points, we fit polynomial functions of the sideslip
angle to the recorded aerodynamic coefficients given as

fCk
(β) =

n∑
i=0

aiβ
i. (7.10)

Given the measurements (CX , CY , CZ , Cl, Cm, Cn), the coefficients ai in the func-
tions fCk

can be found by using linear regression for each sweep of the sideslip an-
gle. Upon inspection of the measured aerodynamic coefficients with varying sideslip
angle, we found a good compromise between a reasonable fit and low polynomial
order for the polynomial order n = 4 for CD, CL, Cm, n = 3 for Cl, Cn and n = 1
for CY .

We then concatenate the functions fCk
to approximate the function f in Eq. (7.3)

by f̂ defined as

f̂(νmr |δa, δe) ,
[
fCx

(β) fCY
(β) fCZ

(β) bfCl
(β) cfCm

(β) bfCn
(β)

]>
,

(7.11)
where b, c ∈ R≥0 denote wingspan and chord length of the airframe, respectively.
Note that angle of attack and control surface deflections are implicit in the poly-
nomials fCk

. In addition to the angle of attack, the airspeed and sideslip angle can
be obtained by the map µ−1.

To obtain the reflected relative velocity vector in {m}, the measured relative
velocity vector first needs to be transformed to {b} using Eq. (7.5), then reflected
using Eq. (7.4), and transformed back to {m} again. This leads to the reflected
relative velocity vector ν′m

r given as

ν′m
r = TMT−1νmr , (7.12)

in which the expression TMT−1 can be interpreted as a similarity transformation
of the reflection matrix M to the measurement frame {m}.

Optimization Problem

The symmetry condition Eq. (7.3) can be used to formulate a symmetry error in
the body-fixed frame based on the interpolation polynomials as

e = MT−1f̂(TMT−1νmr |0, δe)−T−1f̂(T−1νmr |0, δe). (7.13)
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We use e to formulate a cost function as the sum over all sideslip angle sweeps
with zero aileron deflection. Let the set of all suitable sweeps be denoted by D and
the samples in each sweep be denoted by ND, then the cost function is defined as

J =
∑
D

ND∑
i

ei. (7.14)

Suppose the matrix Rmb is parameterized by at set of Euler angles. Then it
can be shown that the similarity transformation TMT−1 is invariant to rotations
around a vector that is normal to the xz-plane, i.e. pitch rotations. This means
that it is enough to use roll angle φ ∈ [φ, φ] and yaw angle ψ ∈ [ψ,ψ], where ·, ·
denote a respective lower and upper bound. The parameterization of Rmb is

Rmb(φ, ψ) =

 cos(ψ) sin(ψ) 0
− cos(φ) sin(ψ) cos(φ) cos(ψ) sin(φ)
sin(φ) sin(ψ) − sin(φ) cos(ψ) cos(φ)

 . (7.15)

We then find the optimal values φ∗, ψ∗ by solving the optimization problem

φ∗, ψ∗ , argmin
φ,ψ

J(φ, ψ) (7.16a)

s. t. φ ≤ φ ≤ φ (7.16b)
ψ ≤ ψ ≤ ψ (7.16c)

and denote the resulting rotation matrix as R∗
mb and the transformation as T∗.

Remark 7.1. The outlined problem of finding a static rotation matrix to minimize
the cost function Eq. (7.14) is similar to Wahba’s problem [187] if Assumption 13
is satisfied. If one can show equivalence of the cost function given here to the loss
function used in [187], it is possible to use Davenport’s q-method [119] to arrive at
an explicit solution to the optimization problem.

Results of the Symmetry Calibration

We use algorithmic differentiation provided by CasAdi [6] and the interior-point
optimization implemented in interior point optimizer (Ipopt) [186] to solve the
optimization problem defined by Eq. (7.16a) - Eq. (7.16c). The optimal solution
to the calibration problem is given by φ∗ = −0.90 deg and ψ∗ = 1.58 deg, which
is in the range that can not be corrected for via visual inspection of the operator
conducting the wind tunnel experiment. The result for a sweep of the sideslip
angle during which α = δa = δe = 0 and Va = 21m/s is depicted in Fig. 7.3.
Clearly, the measured forces and moments do not look symmetric with respect to
the longitudinal plane, i.e. when β = 0. However, when plotted over the calibrated
sideslip angle, most of the forces and moments look symmetric. The exception is
the roll moment in the upper right plot. A possible cause for this can be that the
airframe that was used in the experiments has asymmetries with respect to the
xz-plane such that Assumption 12 is not satisfied. Another explanation is that the
wind tunnel may be producing a vortex around its longitudinal axis that would
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Figure 7.3: A sweep of the sideslip angle with α = δa = δe = 0 and Va = 21m/s. The
data over the measured sideslip angle (blue) and the data over the calibrated sideslip
angle (orange) are plotted. The calibration angles are φ∗ = −0.90 deg and ψ∗ = 1.58 deg.

produce a non-zero relative angular velocity and therefore violate Assumption 14.
In the latter case, the calibration could be extended to estimating the relative
angular velocity

ωwr =
[
pr 0 0

]>
, (7.17)

with pr ∈ R as an additional decision variable in the optimization.
Another possibility is that the control surface deflections were not symmet-

ric and therefore inducing an additional roll moment. The resulting aerodynamic
model of the roll moment shows that an aileron deflection of less than 2.5 deg is
enough to explain the offset of approximately 2Nm in Fig. 7.3. Mapped to the
elevon deflection, this amounts to 1.25 deg on each side, which is within the hys-
teresis band for the consumer-grade servos that were used during the tests.

Now that the measurement from the wind tunnel are calibrated, we proceed
with the identification of the aerodynamic model based on this dataset.

7.2.3 Dataset for Model Identification
The aerodynamic force coefficients were computed based on the measured body-
fixed forces, airspeed and geometric factors. The body-fixed forces X, Y, Z ∈ R
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are transformed to the forces referred to as drag, crosswind and lift, denoted by
D, C, L ∈ R as follows:

fwa =

DC
L

 = Rwb(α, β)

−XY
−Z

 . (7.18)

The moments in the directions roll, pitch and yaw are denoted by l, n, n ∈ R
and modeled in the body-fixed frame. The dimensionless coefficients are given by

CD =
D

q̄Swing
, CC =

C

q̄Swing
, CL =

L

q̄Swing

Cl =
l

q̄Swingb
, Cm =

m

q̄Swingc
, Cn =

n

q̄Swingb
, (7.19)

and plotted in Fig. 7.4 for their respective variations of the control surfaces and
aerodynamic angles. Higher angles of attack measurements beyond those used for
model identification are included in the figures to determine the linear region below
the stall angle. We see that for identifying a linear model in CL and Cm, the angle of
attack measurements need to be restricted to angles below 12 deg, which is referred
to as stall angle.

Having a look at the lateral coefficients, we can see that nonlinear effects are
notable for sideslip angles that are either below −5 deg or above 5 deg. The non-
linearities appear negligible for roll and pitch moment, but are clearly visible for
the yaw moment. Regarding zero aileron deflections, identifying the yaw moment
coefficient would in the case of ideal measurements lead to a model that is invari-
ant to sideslip angle variations. Moreover, the effect of aileron deflections on the
yaw moment coefficient seems to be saturated for aileron deflections below −10 deg
(or above 10 deg due to symmetry), which should be considered when selecting a
subset of the data for identification of a model for Cn that is linear in δa. None of
these effects are taken into account by Gryte et al. [71].

7.2.4 Model Identification

Model Structure

We modify the structure of the existing model with alterations to the drag co-
efficient. For now, we focus on a subset of the aerodynamic coefficients that can
be identified based on wind tunnel experiments in which the airframe is statically
mounted to a pan-tilt-unit. The dynamic coefficients that capture effects of the
angular rate are therefore not included. The expressions for the identifiable aero-
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Figure 7.4: Measured aerodynamic coefficients for varying aerodynamic angles and sur-
face deflections. The moment coefficients in the right column are with respect to the
sensor position. The interval of the angle of attack [−10 deg, 12 deg] and the sideslip angle
[−5 deg, 5 deg] (marked in blue) are suitable for identification of a linear model.

dynamic coefficients are given by

CD = CD0 + CDαα+ CDαδe
αδe + CDα2α

2

CC = CC0 + CCβ
β + CCδa

δa

CL = CL0
+ CLα

α+ CLδe
δe

Cl = Cl0 + Clββ + Clδa δa

Cm = Cm0
+ Cmα

α+ Cmδe
δe

Cn = Cn0
+ Cnβ

β + Cnδa
δa. (7.20)

The model of the drag coefficient does not include the effects of sideslip, given that
the sensitivity of the drag force to sideslip angle variations was not significant. We
also replace the quadratic elevator term by a mixed term with the angle of attack,
reflecting the fact that a negative/positive elevator deflection at a positive angle of
attack actually decreases/increases the area of the UAV that is orthogonal to the
air stream.
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Table 7.1: Parameters of the wind tunnel model

CD0
0.023617 Cm0

0.051656 CL0
0.058192

CDα
0.012051 Cmα

2.409198 CLα
3.996278

CDαδe
0.075081 Cmδe

-0.043286 CLδe
0.242942

CDα2
1.725632

Cl0 0.001839 CC0
-0.002544 Cn0

0.000058
Clβ -0.064541 CCβ

-0.23371 Cnβ
0.006828

Clδa 0.094302 CCδa
0.036065 Cnδa

-0.004462

Remark 7.2. Gryte et al. [71] also saw a notable drop in the coefficient of de-
termination for the drag model when auto-validating it against the wind tunnel
measurements. They however assumed misalignment of the airframe to be the issue
and did not conclude that the aerodynamic coefficient is not significantly affected
by sideslip angle variations.

Parameter Estimation

The model structure in Eq. (7.20) is well-suited for linear regression which can be
used to identify models of the form

z = XΘ+ ε (7.21)

where z ∈ RN is a vector of N measurements, X ∈ RN×p is the regressor matrix
composed of the model terms, and Θ ∈ Rp is the vector of model parameters. The
part of the measurements that are not explained by the model are captured by
the residual ε ∈ RN . Gauss showed that a cost function composed of the sum of
squares of the residuals

J(Θ) =
1

2
(z − XΘ)

>
(z − XΘ), (7.22)

is minimized by the solution

Θ̂ = (X>X)−1X>z. (7.23)

Now, for example, to find an estimate of the parameter vector for the drag
coefficient model Θ̂, we use the regressor matrix and measurement vector

XD =

1 αi αiδei α2
i

...
...

...
...

1 αN αNδeN α2
N

 , z =

CDi

...
CDN

 . (7.24)

The parameters of the other coefficients are identified in the same way by parame-
terizing regressor matrix and measurement vector according to the model structure
in Eq. (7.20). A problem with ordinary least squares is that it will fit the given
parameter vector to the measurements, regardless of how well its elements explain
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Figure 7.5: Aerodynamic models based on the wind tunnel data. The moment coefficients
are with respect to the sensor position.

them, which requires a good confidence in the proposed model structure. Regard-
ing the preceding discussion of the measurements, it is clear that a linear model
is appropriate for all coefficients except the drag coefficient, which also requires
quadratic terms. The resulting model parameters are summarized in Table 7.1 and
plotted against the measurements in Fig. 7.5. The linear models correlate well with
the measured data in general. The notable exception is the yaw moment coefficient
where a model that is linear in the aileron deflection significantly differs from the
measurements at higher deflections due to the saturation discussed previously. The
drag coefficient model could be extended by polynomial terms of the angle of at-
tack up to order four to better capture the data at negative angles. Negative angles
of attack are usually not part of the nominal flight conditions, and we prioritize
model simplicity over global accuracy in this case.

The coefficients Cl, Cm, Cn model the aerodynamic moments at the point where
the sensor was located during the wind tunnel experiments. Let this point be
referred to as aerodynamic reference point. This is in contrast to [71], who propose
a model with respect to the center of mass of the airframe. The position of the point
of the force measurements relative to the center of mass was manually adjusted
until the equilibrium point of the pitch moment was shifted to an angle of attack
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that approximately matched the experience from flight tests. Instead of implicitly
assuming a fixed offset, we identify the vector based on data collected in flight tests.
The identification of this lever arm, together with a suitable model that augments
the wind tunnel model with additional damping, is the subject of the next section.

7.3 Model Augmentation based on Flight Experiments

So far, we have found an aerodynamic model based on data from a wind tunnel.
The wind tunnel model maps relative linear velocities and the surface deflections
to aerodynamic forces and is denoted by fwt : R5 → R6 which reads as[

fwa,wt

mb
a,wt

]
= fwt(ν

b
r, δa, δe) = fwt(v

b
r, δa, δe) + fdamp(ν

b
r). (7.25)

The aim of this section is to use data collected during flight experiments to
augment fwt with a damping model that further considers the effect of angular
velocities onto the generalized aerodynamic forces. We thus seek a function fdamp :
R6 → R6, and the final augmented model fwt,aug : R8 → R6 such that the modeled
generalized aerodynamic forces are given by[

fwa,wt,aug

mb
a,wt,aug

]
= fwt,aug(ν

b
r, δa, δe) = fwt(v

b
r, δa, δe) + fdamp(ν

b
r). (7.26)

We will further identify a separate model that is entirely based on the collected
flight data and includes effects of the throttle δt. Let this model be denoted by
fflight : R9 → R6, and it’s resulting forces be given by[

fwa,flight
mb
a,flight

]
= fflight(ν

b
r, δ), with δ =

[
δa δe δt

]>
. (7.27)

A brief outline of the flight experiments to identify the new models reads as
follows: Starting from wings-level horizontal flight, we induced oscillations of the
control surfaces as a chirp signal with frequency range from 4Hz to 8Hz and
minimum and maximum set to −5 deg and 5 deg, respectively. We moreover used
step signals that were added as doublets to the elevators and in the form of 1-
2-1 signals to the ailerons as depicted in Fig. 7.6. The relative velocities from
Ardupilot’s wind velocity observer, IMU data and actuator set-points are recorded
and used for the following identification procedure.

We assume that a model of the propulsion is available that maps airspeed and
throttle set-point to a propulsion force and let the result be denoted by f bt,prop ∈ R3.
For example the propulsion force model identified in [39] models the propulsion
force vector f bt,prop =

[
T 0 0

]> with

CT = δt(Va + δt(km − Va))(km − Va)
T = ρSpropηpropCT . (7.28)

The propeller parameters are Sprop = 0.108, ηprop = 0.248 and the engine parame-
ter is km = 37.42. For more details on the identified thrust model, see [39]. A last
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Figure 7.6: Step inputs used in the flight experiments for model identification and
evaluation.

assumption on existing models is knowledge of the moment of inertia J, which has
been identified based on bifilar pendulum tests and is given by

J =

 0.335 0 −0.029
0 0.14 0

−0.029 0 0.40

 (7.29)

The observed generalized aerodynamic forces are then computed as

fwa,z = mRwba
b
nb − f bt,prop (7.30)

mb
a,z = Jbω̇bnb − Jbωbnb × ωbnb, (7.31)

where abnb ∈ R3 denotes the linear acceleration measured by the IMU andm denotes
the mass of the UAV. The observed angular acceleration ω̇bnb ∈ R3 is computed
using the centered difference formula based on the estimated angular velocity.

In the following section we will first discuss how to find a lever arm between
the center of mass and the aerodynamic reference point, i.e. the position of the
measurement equipment in the wind tunnel tests. The lever arm will be used to
update the moments of the wind tunnel model. After that follows a discussion on
how to find the damping model, fdamp, and the model that is fully identified based
on flight data, fflight.

7.3.1 Distance from the Aerodynamic Reference Point to the
Center of Mass

Let the coefficients that model the aerodynamic moment at the aerodynamic ref-
erence point used in the wind tunnel be denoted by C{l,m,n},ar and the values at
the center of mass be denoted by C{l,m,n},cm. Their difference is determined by the
lever arm rar,cm and the aerodynamic force coefficients as ClCm

Cn


cm

=

 ClCm
Cn


ar

− diag(b, c, b)−1S

(
Rwb(α, β)

>

−CDCC
−CL

)rar,cm, (7.32)
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which follows from simple mechanics of a force-inducing moment given by the
cross-product of the lever arm and the force vector.

We can again use linear regression to find rar,cm. Given N measurements, let
for each sample i be

Xi = −diag(b, c, b)−1S

(
Rwb(α, β)

>

−CDCC
−CL

), zi =

 ClCm
Cn


z

−

 ClCm
Cn


ar

(7.33)

which can be vertically concatenated to give the regressor matrix X ∈ R3N×3 and
measurement vector z ∈ R3N . Using the measured data gives the result

rar,cm =
[
−0.226 −0.02 0.144

]
, (7.34)

which is in line with the vector found in [71].
Remark 7.3. Considering the dimensions of the Skywalker X8, an offset of 0.144m
in the z-direction may seem too high. However, keep in mind that this reflects the
different orientations of the sensor frames of the force balance used in the wind
tunnel experiments and the frame of the IMU in the flight experiments.

7.3.2 Aerodynamic Models from Flight Observations
In this subsection, we will first give a brief outline of the method that we use to
identify the models fdamp and fflight before briefly showing how to apply it.

Sparse Identification of Nonlinear Dynamics

Ordinary least squares that we used up until now has the drawback that it gives
a solution that fits the proposed parameter vector to the measurements, even if a
subset of the parameters actually does not explain the measurements in a mean-
ingful way. There are several methods that address this problem by introducing
an additional penalty on the size of the coefficients. A prominent method is Ridge
Regression using an additional l2 regularization. Other methods such as Lasso or
Elastic Net fit sparse models by including l1 or l0 regularization sparse models with
fewer terms. In this direction, Brunton et al. [16] developed sparse identification of
nonlinear dynamics (SINDy).

Since its first publication in 2016, SINDy received a lot of attention and has
recently been made available as an open-source toolbox implemented in Python
[44]. The idea is to use a library of symbolic functions such as polynomials and
optimize over the induced function space to have a linear combination of nonlinear
functions describe the dynamical system that best fits the collected measurement
data. The underlying assumption is that the dynamics have a sparse representation
in the function space that is described by the library. We use SINDy to find an
expression for the damping forces of the airframe, and give a brief outline on how
it works.

Assume an autonomous dynamic system that is not affected by external dis-
turbances. Its dynamics can be described by

ẋ = f(x) (7.35)
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for which the function f is to be determined from data of the state x(t) or its
derivative ẋ(t). The data at sampling times t1, t2, . . . , tm is arranged into matrices
X, Ẋ ∈ Rm×nx given as

X =


x>(t1)
x>(t2)

...
x>(tm)

 , Ẋ =


ẋ>(t1)
ẋ>(t2)

...
ẋ>(tm)

 . (7.36)

Then a function library Θ(X) consisting of nonlinear candidate functions based
on X is used, for example

Θ(X) =
[
1 X XP2

]
(7.37)

where the matrix XP2 includes quadratic nonlinearities:

XP2 =


x21(t1) x1(t1)x2(t1) . . . x22(t1) . . . x2nx

(t1)
x21(t2) x1(t2)x2(t2) . . . x22(t2) . . . x2nx

(t2)
...

... . . . ... . . . ...
x21(tm) x1(tm)x2(tm) . . . x22(tm) . . . x2nx

(tm)

 . (7.38)

The coefficients Ξ = [ξ1 ξ2 . . . ξnx
] are then used to set up a sparse regression

problem to select the nonlinear candidate functions that model the time-derivatives
Ẋ through a linear combination of the features that are included in the function
library

Ẋ = ΞΘ(X)
>
. (7.39)

The minimization problem seeks the coefficients according to the objective

ξk = argmin
ξk

‖Ẋk − ξkΘ(X)
>‖2 + α‖ξk‖1 (7.40)

where the ‖·‖1 promotes sparsity in the function space. A trade-off between low
model complexity and sufficient accuracy can be made by tuning the parameter α.
The result of the sparse symbolic regression, which is implemented in [44], is the
coefficient vector Ξ from which we can construct the governing equations as

ẋk = fk(x) ≈ Θ(x>)ξk (7.41)

with Θ(x) denoting the vector of symbolic functions that were proposed as candi-
dates.

Damping Model Augmentation to the Wind Tunnel Model

Now, to find expressions for the damping terms to augment the wind tunnel model,
we use the error vectors of the generalized aerodynamic forces. Let the values
obtained by the wind tunnel model be denoted by fwa,wt, m

b
a,wt. The goal is to find

a damping model fdamp that minimizes a residual ε of the difference between the
wind tunnel model and the observations fwa,z, m

b
a,z, which can be formulated as[

fwa,z − fwa,wt

mb
a,z −mb

a,wt

]
= fdamp(x) + ε, with x = νbr. (7.42)
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Table 7.2: The coefficient matrix Ξ for the damping augmentation to the wind tunnel
model. The coefficients that are 0 are structural zeros and not rounded.

dX dY dZ dl dm dn
1 -15.01 -2.88 -398.74 3.22 0.29 0
u 0.52 0.21 48.51 -0.21 0 0
v 0 6.89 18.54 0.66 0 0
w 8.73 2.02 -41.30 0 -0.24 0
p 2.70 2.07 -8.62 -0.67 0 0
q -5.60 -0.26 50.31 0.16 0.50 0
r -4.89 -26.10 21.09 32.12 -0.12 -0.18
u2 0 0 -1.43 0 0 0
uv 0 -0.33 -1.06 0 0 0
uw -0.48 -0.11 3.04 0 0 0
up -0.16 -0.14 0.50 0 0 0
uq 0.28 0 -3.30 0 0 0
ur 0.23 1.86 -1.16 -2.16 0 0
v2 0.16 0 -2.03 0 0 0
vw 0 0.16 -0.72 0 0 0
vp 0 0 -0.17 0 0 0
vq 0 -0.15 0.56 0 0 0
vr 0.85 -0.20 -7.35 0 0 0
w2 -0.41 0 0.30 0 -0.15 0
wp 0 0.44 0 0.44 0 -0.17
wq 0 0 0.44 0 0.24 0
wr 0.13 0 0.84 0.87 0 0
p2 -0.26 0 -0.57 0 0 0
pq 0.21 -0.95 -0.48 -0.14 0 0
pr -0.26 -0.23 -4.86 0.36 -0.66 0.39
q2 0.86 0 -0.70 0 -0.23 0
qr -0.53 -0.37 -0.46 -2.52 0 0
r2 2.77 -0.76 -43.44 -0.49 -0.56 0

The variables to explain the errors are the relative velocities νbr, which build
the polynomial function library in the form of Eq. (7.37). We used six sequences of
oscillating input disturbances to the aileron and elevator over a duration of 15 s as
training data. Finding the error models with the STLSQ as optimizer and α = 0.05
with the threshold set to 0.1 gives the coefficient matrix Ξ shown in Table 7.2.
The coefficient vectors for the rotational damping model have a desirable sparse
structure which shows that a simple model is sufficient to explain the difference
between the observed moment and the linear model from the wind tunnel. The
coefficient vectors for the force error model are less sparse, which indicates that
a function library based on second order polynomials of the relative velocities
is not sufficient to capture the difference between the wind tunnel model and the
observations. For instance angle of attack, sideslip angle, airspeed or their products
are not included.
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The extension of the feature library to rational numbers of the variables, trigono-
metric functions or fractional exponents is straight forward and may give models
that are more accurate and sparse.

Remark 7.4. The training data can also be used to find the aerodynamic damping
coefficients that that were used in [71] by means of ordinary least squares. However,
this leads to a degrading fitness compared to the raw wind tunnel model where
damping is neglected.

Full model of the aerodynamic forces

A model that is identified based on the available flight data can be used for compar-
ison. We seek a model fflight for the generalized aerodynamic forces as a function of
the relative velocities and the actuators δ =

[
δa δe δt

]>. This can be formulated
as [

fwa,z
mb
a,z

]
= fflight(x) + ε with x =

[
νbr
δ

]
. (7.43)

We use the same training data and parameterization of the optimizer as for the
damping model. The coefficients of fflight are given in Table 7.3. Note again the
sparsity of the resulting coefficient vectors, indicating a good choice of the function
library. A problem that shows in this model is that the data for identification
includes mostly constant throttle so that there is little information on how it affects
the dynamics. The result of this is the high magnitudes of the coefficients related
to the terms that include δt. A more rigorous test design would be needed to
accurately model the effect of the throttle. During this test campaign, however,
the primary purpose was to find the rotational damping coefficients to augment
the wind tunnel model. A more thorough identification of a model that is entirely
based on data collect in flight is part of future work.

7.4 Flight Results and Discussion

The models are compared against the baseline model presented in [71] in test
sequences including chirp signals and step perturbations to elevator and aileron.
The modeled aerodynamic forces for the respective disturbances to the aileron and
elevator are depicted in Fig. 7.7 and Fig. 7.8. A set of different chirp signals was
used to identify the damping model and the full aerodynamic model based on flight
data, and no step perturbations were used in the identification process.

We use the coefficient of determination (R2) as a metric to evaluate the model
fitness in terms of the generalized aerodynamic forces and the resulting acceler-
ations. The results are summarized in Table 7.4. They indicate that our model
obtained from the wind tunnel without damping already outperforms the baseline
model in all forces except for the side force Y . However, the lateral acceleration
v̇ shows that the aerodynamic force in this direction is not significant compared
to the coriolis term. The damping augmentation further improves the wind tunnel
model except for the roll moment l and the resulting acceleration ṗ. This suggests
an overfitting of the roll damping to the training data.
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Table 7.3: The coefficient matrix Ξ for the generalized forces identified with flight data.

X Y Z l m n
1 27.72 -5.94 -200.19 -8.80 3.19 -1.04
u -0.97 0.41 23.41 0.52 -0.22 0
v 2.49 -1.81 -15.41 0.20 0 0.50
w 11.27 0 -23.38 -0.64 -0.57 0
p 4.96 3.54 -16.26 0 0 0
q -10.49 0.23 56.32 0.56 0.86 0
r 20.82 -9.70 -77.45 -5.75 -5.21 -0.52
δa 0 0 0.10 0 0 0
δe 0 0 0 0 -0.10 0
δt -118.23 17.33 14.27 22.95 -3.23 3.29
u2 0 0 -0.89 0 0 0
uv -0.11 0 0.87 0 0 0
uw -0.66 0 0.98 0 0 0
up -0.36 -0.17 1.18 0 0 0
uq 0.67 0 -4.15 0 0 0
ur -1.53 0.76 5.85 0.79 0.31 0
uδa 0 0 0 0 0 0
uδe 0 0 -0.12 0 0 0
uδt 2.20 -0.93 7.05 -1.12 0.37 0
v2 0 0 0 0 0 0
vw 0.18 0 -0.78 0 0 0
vp 0 0 0 0 0 0
vq 0 0 0.47 -0.10 0 0
vr -0.39 -0.29 -0.69 0 0 0
vδa 0 0 0 0 0 0
vδe 0 0 0 0 0 0
vδt -1.40 1.24 3.31 -1.23 0 -0.45
w2 0.47 0 -0.36 0 0 0
wp 0 0.21 0 0.26 0 0
wq -0.66 0 1.21 0 0.12 0
wr 2.41 0 -6.73 0.72 0 0
wδa 0 0 0 0 0 0
wδe 0 0 0 0 0 0
wδt 2.02 -0.31 -3.06 0.79 0.28 0
p2 0 0 -1.36 0 0 0
pq 0 -0.39 0 0 0 0
pr 0.16 0 -3.12 -0.41 -0.62 0
pδa 0 0 0 0 0 0
pδe 0 0.10 0 0 0 0
pδt 2.16 0 -6.49 -0.93 0 0
q2 0.96 0 -2.36 0 -0.23 0
qr -2.98 -0.49 4.33 -1.84 0 -0.30
qδa 0 0 0 0 0 0
qδe 0 0 0 0 0 0
qδt -3.78 0 17.89 -0.42 -0.64 0
r2 2.61 -2.61 5.17 -2.45 0 0.45
rδa 0 0 -0.75 0 0 0
rδe -0.18 0 0.37 0.12 0 0
rδt 2.41 -5.04 -19.24 -12.51 0 -0.71
δ2a 0 0 0 0 0 0
δaδe 0 0 0 0 0 0
δaδt 0 0.34 0 0.69 0 0
δ2e 0 0 0 0 0 0
δeδt 0 0.14 -1.19 0 -0.12 0
δ2t 80.40 -1.86 -106.05 -4.67 -2.28 -2.86
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Table 7.4: The R2 scores for the entire flight, including the modeled aerodynamic forces
and the resulting accelerations.

X Y Z l m n u̇ v̇ ẇ ṗ q̇ ṙ

baseline -3 -0.27 -1.5 -3.1 -1.3 -0.63 -1.3 0.93 -0.19 -3.1 -1.3 -0.62
wt -1.6 -0.5 -1 0.093 -0.096 0.21 -0.52 0.91 0.036 0.089 -0.096 0.036
wt,aug 0.68 0.12 0.63 -0.76 0.7 0.37 0.69 0.94 0.82 -0.77 0.7 0.26
flight 0.71 0.24 0.81 0.6 0.72 -0.0047 0.65 0.95 0.91 0.6 0.72 -0.26

Another possible explanation is the feedback controller in the loop that will
introduce disturbances into the observations of the open-loop damping.

A more rigorous test campaign in which the UAV is operated in open-loop for
the collection of the training data can mitigate this problem. Upon inspection of
the trajectories depicted in Fig. 7.7 and Fig. 7.8, we see that the roll model from the
wind tunnel is already capturing the most important transients of the observed roll
moment, which should be sufficient for model-based control. Similar arguments can
be made for the yaw moment n, which in contrast to the roll moment, is improved
by the damping augmentation. The most improvements to the wind tunnel model
are in the pitch moment m, for which we see drastic improvements by adding a
small set of additional terms, as can be seen in Table 7.2.

Regarding the modeled forces X, Y, Z, the R2 scores and the depicted trajec-
tories show that the wind tunnel model without damping augmentation is a better
fit than the baseline model. However, both models appear to capture all relevant
transients and thus differ from the observations by a slowly time-varying offset.
The variance of this offset is further reduced for the trajectories of the accelera-
tions, which are not shown here. Simple forms of integral action are well-suited to
compensate for this type of model mismatch, such that the additional complexity
introduced by the damping augmentation is not necessary for model-based control.

154



7.4. Flight Results and Discussion

−10

0

10

X
[N

]

−5

0

5

Y
[N

]

−100

−50

Z
[N

]

−20

0

20

l[
N

m
]

−2

0

m
[N

m
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

0

1

2

Time [s]

n
[N

m
]

observed
baseline
wt
wt,aug
flight

Figure 7.7: Forces for aileron disturbances. The chirp disturbance was active during the
first half and the step disturbance during the second half.

155



7. Extended Aerodynamic Modeling of the Skywalker X8 Fixed-Wing
Unmanned Aerial Vehicle

0

20

40

X
[N

]

−5

0

5

Y
[N

]

−200

−100

0

100

Z
[N

]

−10

0

10

20

l[
N

m
]

−10

0

10

m
[N

m
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

Time [s]

n
[N

m
]

observed
baseline
wt
wt,aug
flight

Figure 7.8: Forces for elevator disturbances. The chirp disturbance was active during
the first half and the step disturbance during the second half.
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7.5 Chapter Summary

In this chapter, we looked at the shortcomings of the existing model that we used for
the dynamic model of the NMPC in Chapter 5. A symmetry calibration procedure
that finds a static transformation for the wind tunnel data and a more careful
consideration of the subset of data in which the aerodynamic coefficients are linear
helped to improve the model compared to the baseline model [71].

Additional damping augmentation using SINDy further lifted the quality of the
model which we demonstrated using flight observations. We also used SINDy to
identify a model that is entirely based on in-flight data collections, which does not
require access to a wind tunnel and therefore helps to significantly reduce cost and
effort.

We discussed the implications of the additional complexity in light of the model
mismatch for model-based control. However, a more rigorous design of the test
campaign may improve the model quality, in particular larger variations to the
throttle and open-loop training sequences for the control surfaces are needed.
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Chapter 8

Direct Nonlinear Model Predictive
Control for the Path-Following
Control Problem

The content of this chapter includes preliminary results and is not part of a con-
ference or journal publication.

8.1 Introduction

The controller designs of the preceding chapters focus on low-level motion control.
Critical components such as the dynamic model and the computing platform were
the respective subject of Chapter 7 and Chapter 3. This chapter aims to widen
the scope to guidance control and modify the presented NMPC of Chapter 5 to a
path-following controller for which we presented successful experiments using the
controller with the developed model and experimental platform.

This motivates a modification to a path-following NMPC to tackle the guid-
ance control problem. Only moderate alterations to the system dynamics and cost
function are required, and we follow ideas based on the general discussions by
Faulwasser and Findeisen [54]. We will look into the controller design and a numer-
ical example demonstrating the approach. The chapter starts with a brief review
of existing guidance algorithms for small fixed-wing UAVs and AUVs to provide
the necessary context for the contribution of this chapter.

The path-following problem is well-studied and different approaches to steer an
underactuated vehicle to planar or three-dimensional Euclidean paths exist in the
literature. Sujit et al. [178] published a survey paper comparing established algo-
rithms for fixed-wing UAVs. They include the standard methods in off-the-shelf au-
topilot implementations based on the L1 guidance law proposed by Park et al. [147]
and TECS by Lambregts [101]. An approach for a general class of underactuated
vehicles is the Lyapunov-based nonlinear design by Aguiar and Hespanha [2], which
guarantees global convergence to an arbitrarily small neighborhood of the path.

Focusing on small UAVs, Nelson et al. [137] discuss a Lyapunov-based design
that uses vector fields for straight-line and orbital path-following. Another interest-
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ing discussion on path-following control based on vector fields in arbitrarily strong
wind fields is given by Furieri et al. [59]. Capello et al. [23] propose a waypoint-
based guidance algorithm with outer-loop PID control that does not require a
model. Cichella et al. [34] present a geometric approach and provide experiments
that demonstrate the ability of the controller to follow position and speed profiles
independently. Kai et al. [87] discuss a more model-based unified approach using
parallel transport frames. All these approaches have proven stability properties
and have a computational footprint that is small enough to implement them on
low-cost hardware.

However, a significant part of the controllers are limited to simple path geome-
tries such as straight lines or orbits and do not address constraint satisfaction or
optimal performance, which NMPC is well-suited to handle. The use of NMPC for
path-following control based on control-augmented dynamics with an off-the-shelf
autopilot in the loop for low-level motion control is discussed by Stastny and Sieg-
wart [174]. The topic of constraint output path-following using MPC is generally
addressed by Faulwasser and Findeisen [54]. They propose to augment the system
dynamics with an additional integrator chain that determines the motion of the
reference along a given output path.

Applications that use this idea for the guidance of underactuated mobile robots
include the work by Alessandretti and Aguiar [3] for following planar curves and
the more recent approach by Yang et al. [194]. Dauer et al. [43] published similar
work targeting helicopters where they use dynamic model inversion for low-level
motion control. An application for airborne wind energy systems is presented by
Diwale et al. [47] with a stronger emphasis on theoretic stability properties.

The reviewed path-following control methods, including the control-augmented
NMPC, are guidance controllers based on kinematic models. They assume a mod-
ular architecture with sufficient bandwidth separation to generate reference signals
that low-level motion controllers can track. The contribution of this chapter is an
integrated NMPC design to follow defined position and speed profiles with direct
actuator access and without relying on separate control loops.

The chapter is structures as follows. The next section gives a brief description
of the path-following control objective before we show how cubic Bézier curves can
be used to generate a set of successive path segments that can be generated from
a list of waypoints that is available in most GNC architectures. The section then
continues with the NMPC design that stabilizes the position error and airspeed,
with references to the previous discussion on NMPC to keep the presentation short.
The next section then demonstrates the performance of the controller in a numer-
ical example following a periodic Lissajous curve, before the chapter ends with a
discussion on the results and future work toward an experimental verification.

8.2 Control Objective

In conventional operations of aerial robotics applications, the output path is usu-
ally a parametric geometric curve in three-dimensional Euclidean space on which
the reference position, here denoted by pnnb,ref , evolves. Let the path P be param-
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eterized by the path variable γ ∈ [γ, γ] as

P =
{
pnnb,ref ∈ R3|γ ∈ [γ, γ]→ pnnb,ref = p(γ)

}
. (8.1)

Under the system dynamics outlined in Chapter 2 the objective is to achieve
convergence of the position to the path, i.e.

lim
t→∞

∥∥pnnb (x(t))− pnnb,ref (γ(t))
∥∥ = 0, (8.2)

while satisfying safety-related constraints imposed by aerodynamics and actuator
limits. Instead of designing the NMPC to track low-level attitude references the
objective end-to-end control from the path definition to the actuator set-points.
This means that we aim for a controller design that achieves guidance and low-
level motion control in one integrated approach instead of the timescale separated
modular approach described in Chapter 2. A suitable NMPC can be designed based
on the framework of constrained output path-following MPC proposed by [54] in
which the controller determines the evolution of a reference on the path as part of
the OCP by means of additional ordinary differential equations (ODEs) referred
to as timing law. The resulting control algorithm will be discussed in Section 8.3.

8.2.1 Reference Path using Cubic Bézier Curves

A flexible path parameterization are cubic Bézier curves, which can be generated
by a set of waypoints, which we briefly discuss now. Given a set of control knots
[P0, . . . ,P3] a cubic Bézier curve F is defined as

F(s) = (1− s)3P0 + 3(1− s)2sP1 + 3(1− s)s2P2 + s3P3, s ∈ [0, 1], (8.3)

which can be used to parameterize path segments for s = γ + 1. We use this for
both straight line segments and transitions. Let γ ∈ [−1, 0], then the reference
position using cubic Bézier curves is given by

pnnb,ref(γ) = γ3P0 + 3γ2(γ + 1)P1 + 3γ(γ + 1)2P2 + (γ + 1)3P3, (8.4)

which facilitate penalties on the path variable that incentivize the controller to
reach the end of the path. However, using γ = s and Eq. (8.3) is also possible when
the squared path variable is not part of the stage cost.

In normal waypoint tracking operations for UAVs an ordered list of waypoints
is available from which a list of path parameterizations can be generated. We dis-
tinguish between straight line segments, that are commonly used in operation, and
transitions between straight lines. Even though the complexity of cubic splines is
unnecessary to parameterize straight lines, we use it to keep a consistent formula-
tion of the reference which makes the implementation easier regarding most OCP
solvers. Let a transition radius be denoted by r ∈ R and assume that the ini-
tial path segment is a straight line defined by two waypoints [wk−1,wk]. Suitable
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control knots Si to parameterize a straight line are given by

S0 = wk−1 + r
wk −wk−1

‖wk −wk−1‖2
(8.5)

S3 = wk − r
wk −wk−1

‖wk −wk−1‖2
(8.6)

S1 = S0 + 0.25(S3 − S0) (8.7)
S2 = S0 + 0.75(S3 − S0). (8.8)

A transition between two straight line segments defined by [wk−1,wk] and
[wk,wk+1] can be heuristically parameterized as

T0 = S3 = wk − r
wk −wk−1

‖wk −wk−1‖2
(8.9)

T3 = wk + r
wk+1 −wk

‖wk+1 −wk‖2
(8.10)

T1 = wk + ε
T0 −wk

‖T0 −wk‖
(8.11)

T2 = wk + ε
T3 −wk

‖T3 −wk‖
, (8.12)

with ε as a tuning parameter that determines the distance of the inner control
knots to the corner. A more elaborate scheme to find the control knots of the
corner spline segments is the G2 Continuous Cubic Bézier Spiral Path Smoothing
(G2CBS) by Yang and Sukkarieh [195]. It allows to define a maximum curvature
constraint that will be satisfied by a resulting set of control knots

Bc =
[
B0 B1 B2 B3

]
∈ R3×4 (8.13)

Ec =
[
E3 E2 E1 E0

]
∈ R3×4, (8.14)

for which Yang and Sukkarieh provide an analytical solution that can be imple-
mented in a simple algorithm. This approach was used by Basescu and Moore [8]
for control of an agile UAV via time-varying LQR in confined spaces. However,
constraints can be directly implemented in our MPC formulation such that it is
not necessary to use curvature constrained paths and simulations did not show
significant differences in performance to the more simple spline transition using
Ti. The control knots enter as parameters into the OCP. They are updated to the
control knots of the next path segment at γ ≥ γ1 and the path variable is reset to
γ = γ0.
Remark 8.1. Simulations show that a naive switching of path segments with the
resulting sudden discontinuities in the path variables dynamics can be problem-
atic. Other authors using similar controller designs present examples based on pe-
riodic path definitions and do not specifically address problems of switching path
segments. See for example Faulwasser et al. [55] for industrial robots or Yang et
al. [194] for UAV. However, in follow-up work, Faulwasser et al. [54] provide demon-
strations for robotic manipulators that follow more complex geometries using poly-
nomial splines with up to 1750 path segments. The results show that switching path
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segments should not be a problem with careful implementation of the NLP solver.
Suitable modifications to the solver are part of ongoing work, and we will only
consider periodic paths for the remainder of the chapter.

8.3 Controller Design

8.3.1 Dynamic Model
In this chapter we use the dynamic model in the body-fixed frame. Recall the
ordinary differential equations from Chapter 2

ṗnnb = Rnbv
b
nb (8.15)

v̇bnb =
1

m
(R>

wbf
w
a + f bt ) +R>

nbg
n − ωbnb × vbnb (8.16)

Ṙnb = RnbS(ω
b
nb) (8.17)

Jω̇bnb = S(Jωbnb)ω
b
nb +mb. (8.18)

To enable the NMPC to manipulate the position reference, the system state is
augmented with the path variable γ and a double-integrator as timing law such
that the acceleration of the path variable is part of the control inputs. Let the
integrator state be denoted by z =

[
z1 z2

]> ∈ R2 and the control variable to
manipulate the acceleration be denoted by ν ∈ R. The dynamic equations for the
path variable then read

ż1 = z2 (8.19)
ż2 = ν. (8.20)

The actuator signal of the UAV is again denoted by δ ∈ Rnδ , reflecting that different
configurations are readily handled by the solver. We will however continue with the
familiar flying-wing configuration of the Skywalker X8 to illustrate the approach,
i.e. use aileron, elevator and throttle as actuators such that δ =

[
δa δe δt

]>.
The state vector x ∈ X ⊂ Rnx and control input vector u ∈ U ⊂ Rnu are defined
as

x =
[
pnnb

> vbnb
>

rx
> ry

> rz
> ωbnb

>
δ> z>

]>
, (8.21)

u =
[
δ̇
>

ν

]
, (8.22)

where the rotation matrix is again decomposed as Rnb =
[
rx ry rz

]
∈ SO(3).

In the following, we use a fourth order explicit Runge-Kutta scheme to inte-
grate the actuator dynamics and the continuous dynamics defined by Eq. (8.15) -
Eq. (8.20) and let fRK4 : X × U → X denote the integrator function.

8.3.2 Reference and Cost
The primary objective is to find control actions such that the path-following error
denoted by e = pnnb − pnnb,ref(γ) is converging to zero. To improve convergence of
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the direction of travel of the UAV to the direction of the path, we define the vector
η as the direction of the velocity vector in the inertial frame, effectively describing
course and flight-path angle. The reference is the direction of the path ηref , and
both are defined as

η(x) =
Rnbv

b
nb

‖Rnbvbnb‖2
, ηref(x) =

∇γpnnb,ref(γ)
‖∇γpnnb,ref(γ)‖2

(8.23)

Using the reference ηref allows for dropping the penalty term or lower constraint on
γ to ensure forward motion along the path, which is the original approach proposed
by Faulwasser and Findeisen [54]. The initial motivation for this cost term however
is our observation that it helps to stabilize the dynamics even for large mismatches
in the damping derivatives of the model. We also add a penalty on the deviation of
the airspeed Va from a given reference Va,ref , which is usually the nominal cruise
speed of the UAV. We then define the stabilizing stage cost as a sum of quadratic
terms

l(x,u) = ‖kp(pnnb−pnnb,ref)(γ))‖
2
Qp

+‖η(x)−ηref(x)‖2Qv
+qVa(Va−Va,ref)2+‖u‖2R,

(8.24)
with symmetric and positive-definite weighting matrices Qp, Qη,∈ R3×3, R ∈
Rnu×nu and qVa

> 0. The scaling parameter kp ∈ R≥0 is included to define a
distance to the path where the magnitude of the position error is equal to the error
between velocity vector and path direction, which facilitates more intuitive tuning.
The path reference is parameterized through control knots of the Bézier curve that
enter the cost function through pnnb,ref . For an easier notation, the reference is not
included in the argument list of the cost function.

8.3.3 Constraints
We include the constraints on airspeed, angle of attack and actuators as discussed
in Chapter 5 given by Eq. (5.14a) - Eq. (5.14d) and Eq. (5.16a) - Eq. (5.16f).
Additional constraints related to the path variable are needed to ensure that the
reference position is constrained to the defined path, formulated as

γ − γ ≥ 0 (8.25)
−γ + γ ≥ 0. (8.26)

Note that this is not necessary in cases where the path is periodic in the path
variable and the operation does not require the system to stop at the end of the
path. For example compare the endpoint of a robotic end effector in industrial
manufacturing where the end-effector is not allowed to continue and a periodic
surveillance pattern in UAV operations.
Remark 8.2. Faulwasser and Findeisen [54] moreover include a constraint ex-
pressed as γ̇(t) = ż1 ≥ 0 to ensure monotonous forward motion along the path.
We do not include this constraint to address cases where wind conditions are so
severe that forward motion along the path may not feasible due to significant differ-
ences in the inertial and relative velocity. Note however that the positive airspeed
constraint and alignment with the path direction through the stage cost result in
forward motion in most flight conditions.
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As in Chapter 5, constraints are needed to enforce the slack variables to be
non-negative and possibly limit the actuator rates and acceleration along the path.
The constraint expressions are given by

s ≥ 0, u− u ≥ 0, −u+ u ≥ 0, , (8.27)

where the inequality denotes an element-wise operation. For a more compact no-
tation, let the constraints again be represented by h(x,u, s) ≥ 0.

8.3.4 Nonlinear Program and Implementation
As in Chapter 5, we use direct multiple-shooting [13] with an explicit Runge-Kutta
integration scheme of order four to integrate f and let fRK4 denote the resulting
integrator function. The system is discretized into N steps with the resulting shoot-
ing interval ∆t = T/N . The MPC scheme is then based on solving the NLP at time
t for the predictions at k ∈ [0, ..., N ] given by

min
x(·),u(·)

N−1∑
k=0

l(x(k|t),u(k|t)) + 1

2
s>Ps (8.28)

s. t. x(0|t) = x(t) (8.29)
x(k + 1|t) = fRK4(x(k|t),u(k|t),d(0|t)) (8.30)

h(x(k|t),u(k|t), s) ≥ 0. (8.31)

The disturbance d(t) is again included for offset-free control and estimated by
the disturbance observer presented in Chapter 5. As in the preceding chapter on
NMPC, we implement the controller and the simulator for the disturbance observer
using the open-source software package acados [185] and employ the Realtime-
Iteration SQP solver based on [46] with the HPIPM presented in [57] for the solu-
tions of the underlying QPs.

8.4 Simulation Study

We conduct a simulation study to test the performance of the proposed controller in
following 3D curves. The controller can be used to follow parameterized geometric
paths that are more general than circles or straight-line segments. We therefore use
a Lissajous curve as done in [194] to define the reference path which is described
by

pnnb,ref(γ) =
[
150 cos(2πγ) 75 sin(4πγ) −200 + 30 cos(γ)

]>
. (8.32)

The curve is periodic in the path parameter, such that it is not necessary to switch
between path segments and therefore avoid discrete jumps of the path variable. As
discussed previously, we found naive resets of the path variable to be problematic
when testing with spline curves and using a periodic path geometry enables the
study of effects of prediction horizon and parametric and environmental distur-
bances, which is the primary objective of the simulation study. All simulations are
run on a lab computer which includes eight CPU cores of the model AMD Ryzen
7 Pro 5850U.
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8.4.1 Controller Parameterization
The direct multiple shooting scheme is parameterized with a discretization interval
length ∆t = 0.1 s. The controller is parameterized with the weights

Qp = diag(50, 50, 50) Qη = diag(20, 20, 20) qVa
= 0.3 kp = 0.02.

R = diag(0.1, 0.1, 0.1, 1) P = 103I6. (8.33)

The disturbance estimator, which is discussed in detail in Chapter 5, is param-
eterized with the gain matrix

L = 0.03I4. (8.34)

The simulation of the UAV uses a fourth order explicit Runge-Kutta integra-
tor with step size set to 0.01 s. The disturbance estimator is updated at every
simulation step, i.e. with a 100Hz update rate, and the controller is updated at
20Hz.

8.4.2 Initial Conditions and Wind
The initial flight condition of the UAV is set to a trimmed wings-level flight with
direction towards the path at its nominal cruise speed with 18m/s. There is no
static wind component in the simulations, but highly dynamic gust winds gener-
ated by the Dryden wind model as described in [9]. A generated wind sequence is
depicted in Fig. 8.1. The initial states are given by

pnnb =

−2000
−200

m, vbnb =

17.990
0.55

m/s,

φθ
ψ

 =

 0
1.76
180.0

deg, ωbnb =

00
0


(8.35)

with the actuators and the control variables of the NMPC initially set toδaδe
δt

 =

 0.0
2.10
0.12

 , [
γ
z

]
=

[
−0.5
0

]
, u = 04×1, (8.36)

where the control surfaces deflections δa, δe are given in degrees.

8.4.3 Effect of the Prediction Horizon
The simulations include results for the prediction horizons N ∈ {10, 15, · · · , 40}
under the gust wind profile shown in Fig. 8.1. The convergence to the path for
each prediction horizon is depicted in Fig. 8.2. The controller is able to converge
to the path for all prediction horizons and keep the UAV on the path despite
the significant wind gusts. The shorter prediction horizons are stabilized through
the reference for the direction of the inertial vector which, compared to longer
prediction horizons, results in prioritizing alignment with the path direction and
thus a slower convergence to the path. This is confirmed by inspecting the plotted
distance and airspeed error in Fig. 8.3 which shows similar actuator usage after
the initial convergence to the path for prediction horizons N ≥ 20. For N ≥ 30
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Figure 8.1: The wind velocity vector in the body-fixed frame coordinates along the
x-axis (blue), y-axis (orange) and z-axis (green).
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Figure 8.2: Position convergence to the reference path (dashed) given as a tilted Lemnis-
cate for different prediction horizons N for the shooting interval ∆t = 0.1 s. The shorter
prediction horizons are stabilized through the reference for the direction of the inertial
velocity vector and have a slower convergence to the path.

the performance is not distinguishable, indicating a good compromise between
stabilizing horizon length and computational demand. We will therefore continue
using N = 30 in the following Monte-Carlo study.

8.4.4 Effect of parametric Disturbances and Wind

We conduct a Monte-Carlo simulation study to test the controller under turbulent
wind conditions and significant model mismatch. The gust winds are again gener-
ated through the Dryden model resulting in qualitatively similar wind profiles as
the one shown in Fig. 8.1. To study the effect of model mismatch, the UAV is sim-
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Figure 8.3: Distance to the path and airspeed error for varying horizon lengths (N = 10
in read to N = 40 in green). The left/right elevon deflections and throttle set-point
are also shown. The shorter prediction horizons prioritize stabilization of the airspeed to
cruise speed at the expense of slower convergence to the path.
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ulated using the nominal model parameters that were used throughout the thesis.
The dynamic model of the controller has the same structure except for the actuator
dynamics which we again model as first-order systems as described in the simu-
lation study of Chapter 5. To simulate parametric disturbances the parameters of
the controller model are drawn from a normal distribution N (ρ, σ2) with nominal
parameter ρ ∈ R and standard deviation σ ∈ R. The standard deviation for each
parameter distribution were chosen as summarized in Table 8.1. The distributions
for the static coefficients are parameterized with smaller standard deviations which
reflects our experience that they can be determined with more accuracy, e.g. from
wind-tunnel experiments, compared to the dynamic coefficients which require flight
tests or alternative CFD methods. See Chapter 7 for a more detailed discussion
regarding model identification efforts. In extreme cases the dynamic coefficients
drawn from the distribution are even allowed to have a different sign than the
nominal parameter, which amounts to a severe parametric disturbance.

The Monte-Carlo study includes 100 simulations starting from the initial con-
dition described in the previous section. Out of the 100 simulations, the controller
was able to converge to the reference in 97% of the cases. The remaining 3% of
the simulations were interrupted due to 10 consecutive fails of the underlying QP
solver. The distance to the path and deviation of the airspeed from the reference
are shown in Fig. 8.4 with their respective mean values and 1σ-band around it.
The initial convergence to the path during the first five seconds shows a robust
performance along all parameter perturbations. It is notable that convergence to
the path is significantly prioritized over tracking the airspeed reference which is
accelerated to its upper bound of 25m/s. A smaller scaling value kp can help to
mitigate this effect. An alternative is to temporarily tighten the airspeed limits
until the UAV is at a shorter distance to the path where the problem is less pro-
nounced. An approach that would change the structure of the problem is to use
multidimensional paths as suggested by Matschek et al. [122] to conceptually define
a tube around the original path as a reference. The systematic airspeed error until
approximately 25 s into the simulation indicates that the decreasing height profile
introduces as conflicting objective where the NMPC needs to find a compromise.
A deviation of 2m/s is however in the acceptable range.

The closed-loop computation times of the NLP solver includes the evolution
of the maximum computation times which is mostly in a band around 10 ms and
rarely exceeds 20 ms. However, the resources of the lab computer used to run the
simulations significantly exceed the resources that are available onboard the UAV
as outlined in Chapter 3. The evaluation of the runtime on the targeted hardware
is part of future work in preparation of the flight experiments.

8.5 Discussion and Future Work

We discussed the design of a path-following NMPC following ideas proposed by
Faulwasser and Findeisen [54] with minor modifications. Initial simulation results
show good path-following capabilities even for smaller prediction horizons due to
the additional penalty term on the direction of the linear velocity vector. However,
there are some challenges that we did not address. The most important one is a
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Table 8.1: Controller parameters are sampled at the start of each simulation according
to these distributions, where ρ denotes the nominal parameter value that is used by the
simulated UAV model. The static coefficients can be determined in wind-tunnel experi-
ments with significantly less uncertainty compared to the dynamic coefficients, which is
expressed through the standard deviation of the distribution.

Parameter Distribution
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Figure 8.4: Results of the Monte-Carlo study including the distance to the path, airspeed
error, and computation times needed by the NLP solver. The respective mean value (blue,
solid) with a band indicating addition and substraction of one standard deviation (blue,
shaded) are shown. The maximum time (black, solid) is also shown. The controller is able
to keep the UAV on the path despite significant parametric disturbances and severe wind
conditions. The worst case computation times indicate that the required update rates for
flight experiments can be met by the controller.

170



8.6. Benchmark Scenario

suitable switching logic that enables to transition between different paths which
is a major ingredient to stitching together a sequence of parametric cubic Bézier
curves such that almost arbitrarily complex geometries can be used. Resetting the
path variable at each transition leads to significant discrete jumps in the OCP
which are not well-handled by the current controller design, even in the case of
sufficiently smooth geometries. Another topic that we did not discuss is the initial
convergence to the path from a wider range of initial conditions, and it can be
expected that the short prediction horizons of the given simulation study will not
suffice for closed-loop stability of the defined path when the UAV is at increasingly
longer distance to the path in opposite direction of travel. Finally, the evaluation
of the closed-loop computation times on the embedded hardware remains to show
that the real-time application is feasible, which can be seen as the last milestone
towards experimental verification. So far, computation times are only evaluated on
a more powerful lab computer. Critical components such as the dynamic model
and the hardware and software architecture were the subject of Chapter 7 and
Chapter 3, respectively, and used to successfully apply NMPC for low-level motion
control as shown in Chapter 5.

8.6 Benchmark Scenario

The path-following MPC presented in this chapter has a different control objective
compared to the low-level motion controllers of the preceding chapters. It is there-
fore not possible to use the same tuning procedure based on the reference steps as
outlined in Appendix A. We instead use a simple tuning that achieved satisfactory
performance when following a loiter pattern in simulations. This resulted in the
cost matrices

Q = diag(qVa
, qe,N , qe,E , qe,D, qη,x, qη,y, qη,z) = diag(1, 1, 10, 1, 1, 1, 1) (8.37)

R = diag(rδ̇a , rδ̇e , rδ̇t) = diag(1, 1, 1). (8.38)

The prediction horizon is set to N = 30 and the length of the shooting intervals
is set to ∆t = 0.1 s, matching the LLMPC and MPCGC. In contrast to the preced-
ing control algorithms, the benchmark simulation for the PFMPC gives notably
different results, as shown for the position trajectories in Fig. 8.5 and the distance,
error signals and actuator signals in Fig. 8.6. The PFMPC is able to keep the UAV
close to the path at comparable airspeed-tracking performance and significantly
less rapid actuator changes, which is shown in Fig. 8.6 and confirmed by the scores
on the respective metrics in Table A.2. The decisive difference for the PFMPC in
comparison to the LLMPC and MPCGC is that it integrates guidance and low-
level motion control into one control algorithm with an internal dynamic state.
Instead of reacting to commands from a guidance controller as the LLMPC and
MPCGC, the PFMPC can re-plan the trajectory to the path whenever necessary
and therefore achieves better path-following performance at less control effort. The
LLMPC and MPCGC on the other hand have to use constant reference signals
along the prediction horizon that match the current attitude and speed command,
which significantly reduces the comparative benefits of a predictive controller.

171



8. Direct Nonlinear Model Predictive Control for the Path-Following Control
Problem

0 50 100 150 200 250 300 350 400
−100

−50

0

50

100

N
or

th
[m

]

0 50 100 150 200 250 300 350 400

46

48

50

52

54

East [m]

H
ei

gh
t

[m
]

Figure 8.5: Benchmark simulation comparing the path-following MPC (PFMPC, plotted
in brown) introduced in this chapter to the previous controller designs (gray). The PFMPC
keeps the UAV significantly closer to the reference path (black, dashed).

It is however also important to note that the NDGPFG which we employed as
a guidance controller does not include an integrator state in the implementation
that we used in the benchmark simulations. Augmenting the NDGPFG with inte-
gral action would enable a more accurate comparison. Nonetheless, the arguments
regarding the benefits of the integrated approach of the PFMPC over the LLMPC
and MPCGC, which are run in a reactive fashion, still hold. A last note concerns
the comparably big airspeed error of the PFMPC in the first five seconds during
the convergence to the path. This effect is due to initializing the position of the
UAV at a distance to the path where the PFMPC prioritizes to path-following
performance over airspeed. As soon as the UAV is close enough to the reference
path, the airspeed is giving higher priority and the corresponding error trajectory
is similar to those of the LLMPC and MPCGC. To reduce the effect of the ini-
tial convergence to the performance metrics, they are evaluated for the interval
t ∈ [10, 50].
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Figure 8.6: Benchmark simulation comparing the path-following MPC (PFMPC, plotted
in brown) introduced in this chapter to the previous controller designs (gray). The PFMPC
keeps the UAV significantly closer the reference path at less control effort.
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8.7 Chapter Summary

This content of this chapter is preliminary research on tackling the path-following
problem by using NMPC with direct access to the actuators instead of relying on
off-the-shelf autopilots which is the state of the art so far. The controller design
follows the general proposition on constrained path-following NMPC by Faulwasser
and Findeisen [54]. We use an additional penalty term on the deviation of the lin-
ear velocity vector to the path direction which helps to stabilize the path-following
error for even smaller prediction horizons at the cost of potentially slower initial
convergence to the path. A simulation study demonstrates the controller’s robust-
ness to gust winds and parametric disturbances in a Monte-Carlo study. We dis-
cussed future work toward employing cubic Bézier curves as parameterized path
and remaining work towards flight experiments.
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Chapter 9

Concluding Remarks and Future
Work

9.1 Conclusion

Each chapter that included contributions ends with a summary and a brief con-
clusion of the related work. The purpose of this chapter is to widen the scope and
hint to possible future directions that start at open ends, which this thesis did
not cover. We will discuss suggestions for further work in the order in which the
contributions appeared.

Chapter 3: Experimental Platform
The work of this chapter is not a contribution that attempts to give answers to
research questions but work that facilitates the testing of experimental algorithms
for the control of fixed-wing UAVs. A description of the hardware components
onboard the UAV and test procedures in simulations and experiments summarize
our experience in the Autofly project and may help other researchers avoid pitfalls
by providing lessons learned.

Future work should consider establishing on-site facilities at the research insti-
tute for agile fixed-wing UAVs similar to the facilities used by Basescu and Moore [8]
or Bulka et al. [17]. Performing flight experiments with fixed-wing UAVs is an out-
door sport. Weather conditions, travel time to the airfield, and the size of the test
crew are all elements that make this a substantial undertaking. In retrospect, we
could have first set up some test facilities at our department (possibly indoors)
for more rapid development cycles, using a smaller model airplane. In this way,
the complete tool-chain could have been tested thoroughly before moving on to
larger vehicles in outdoor experiments. Preliminary tests are not limited to control
algorithms but can include data collections for model identification.

Chapter 4: Geometric Attitude Control
This chapter presented geometric attitude control laws for tracking roll and pitch
angle reference signals. We designed the control laws directly on the two-sphere
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instead of relying on more conventional attitude representations and discussed the
possible benefits of this approach. A rigorous Lyapunov analysis provided proof
of almost global asymptotic stability of constant attitude references in closed-loop
with the proposed control law and almost semi-global exponential stability for
tracking time-varying attitude reference signals. The extension to hybrid feedback
rendered time-varying attitude references globally exponentially stable. Numerical
results show the viability of the controllers, and initial experiments demonstrated
its applicability in flight tests. This contribution addresses the research objective
to design Lyapunov-based attitude control algorithms with proven global stability
properties to recover the UAV from loss of control and stabilize it from attitudes
far from the reference, which we demonstrated in simulations.

The theoretical results are strong, but the dynamic model inversion imposes a
strong assumption on the model’s accuracy. Work that progresses from this the-
sis’s results should analyze the stability properties under parametric uncertainties
and external disturbances. E. Coates, who collaborated on both papers, pursued
this direction and published further work [35, 36]. This work also uses a backstep-
ping design to relax the need for knowing angular acceleration references. Another
important topic that the resulting controller does not address is the limits of the
actuators and safety constraints. One possible approach is to modify the output
of the control methods to (virtual) control moments and then map these to the
actuator suite through control allocation algorithms [183].

Further, the geometric attitude controllers should be subjected to a more thor-
ough experimental verification. So far only preliminary flight tests have been con-
ducted to demonstrate the control performance when tracking roll and pitch refer-
ences from a guidance module.

Chapter 5: Direct Nonlinear Model Predictive Control for
Attitude and Speed Control

The contribution of this chapter is a NMPC design for low-level motion control of
fixed-wing UAVs with direct access to the actuators instead of relying on off-the-
shelf control boards that track attitude reference signals generated by a guidance-
level MPC. Experiments demonstrated that real-time control is feasible using state-
of-the-art numerical algorithms and hardware. The performance in comparison to
industry-standard PID controllers was either matched or exceeded. This chapter
addresses the second research task to develop NMPC designs that can function as
a reference method to assess the performance of the Lyapunov-based controllers
with a smaller computational footprint. Given the promising results on the real-
time applicability of the controller, we further pursued experiments that showed
superior results to industry-standard PID controllers.

There are three main directions for future work regarding the experiments of
the controller:

1. Improve the dynamic model of the controller. We have already looked at
some shortcomings of the aerodynamic model and possibilities to increase its
quality in Chapter 7.
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2. The improved aerodynamic model should be used in the dynamic constraints
to repeat the experiments described in this chapter.

3. It would be very interesting to conduct experiments with designs that include
more aggressive maneuvers where the safety-related constraints are active
over a considerable period.

Another intriguing enhancement is to use learning-based MPC in challenging
maneuvers. One possibility is to augment the developed NMPC with a data-driven
approach such as Gaussian process regression [191] to capture the error of the
nominal dynamic model. Successful applications of this approach include problems
similar to improving the aerodynamic model of fixed-wing UAVs. Prominent exam-
ples are learning tire friction in racing cars or improving the aerodynamic model of
multi-rotor UAVs. Hewing et al. [77] and Torrente et al. [184] demonstrated success-
ful applications in experiments. Another promising way to enhance our controller
would be the combination of RL and NMPC, which Gros and Zanon [67] thoroughly
discuss.

Chapter 6: Coupled Nonlinear Model Predictive Control and
Geometric Attitude Control
This chapter exploits two other contributions, i.e., the presentation of the geo-
metric controller in Chapter 4 and the NMPC for low-level motion control with
direct actuator access in Chapter 5. The cascade of the geometric controller and the
NMPC showed promising results in numerical simulations. The NMPC is a viable
approach to generate the angular rate references for the low-level geometric atti-
tude controller. Assuming full dynamic model inversion of the nominal geometric
attitude controller and the resulting requirements for an accurate model, the use of
an additional NMPC in a cascade does not add much to the necessary information
of the dynamic model. However, it does require other computing resources to em-
ploy the numerical solver on a suitable SBC. When working on this controller, it
was not clear if it was possible to run the NMPC design with direct actuator access
in real-time such that the solver could meet the required update rates for the fast
dynamics of the UAV. Seeing the successful experiments of the NMPC design in
Chapter 5 and its overall better performance in the simulation study, we did not
pursue this approach any further. It would, however, be interesting to see it tested
in flight experiments. The work that led to this thesis contributed sufficiently to
the infrastructure at the UAV Lab to see this type of experiment as low-hanging
fruit.

Chapter 7: Extended Aerodynamic Modeling of the Skywalker
X8 Fixed-Wing Unmanned Aerial Vehicle
This chapter reflects work on system identification efforts that concluded in an
improved aerodynamic model of the Skywalker X8 airframe. The chapter begins
with developing a method to increase the symmetry of generalized aerodynamic
force measurements of an airframe that is by design symmetric to its longitudinal
plane. Identifying the dynamic coefficients based on flight data is well-established
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and not a result of this chapter. However, the application of the SINDy method
proposed by Brunton et al. [16] to augment the model from the wind tunnel with
additional damping is, to the best of my knowledge, first presented in this thesis.
The extended model builds on previous work at the UAV Lab that identified a
propulsion model and the matrix of inertia. Both were key to isolating the aerody-
namic force contributions to the observed generalized forces. Considering that this
work was always secondary to work on control design, it is fair to assume that a
more focused modeling effort in this direction can further improve the accuracy of
the model and consequently improve the performance of the model-based control
algorithms of the preceding chapters.

The work is primarily intended to contribute to the model-based controller
designs. However, it also helps to improve the simulation models to assess the
controller performance before experimental verification.

Future work should include more advanced measurement equipment of the rela-
tive velocity vector in the flight experiments and, in general, high-resolution sensors
to log more accurate data at higher rates to improve the quality of the datasets.
Such measurement equipment is available at the UAV Lab. We moreover observed
that using PX4 instead of ArduPilot would enable updating state estimates at
more reliable and higher rates. The estimates of the ArduPilot EKF, which we
used for the data collection, were updated at 0.02s periods. This update rate is 20x
slower than what can be achieved using high resolution IMUs or the rates in the
demonstrations to identify the longitudinal dynamics by Kaiser et al. [88].

Follow-up work should also consider a more thorough experiment design re-
garding variations in the throttle input and its effect on the dynamics. Our focus
was primarily on the impact of the control surface deflections. Related work on
the assessment of maneuvering qualities of fixed-wing UAVs has been presented by
Capello et al. [22], which may complement the identification efforts to see if the
maneuvering capabilities of the model matches the observations from experiments.

Chapter 8: Direct Nonlinear Model Predictive Control for the
Path-Following Control Problem

The controller designs in this thesis focus in most parts on low-level motion control.
This chapter includes a wider scope and presents work on designing a NMPC for
the path-following problem. The NMPC design of Chapter 5 is modified to follow
parametric curves in three-dimensional Euclidean space. Initial results using the
framework by Faulwasser et al. [54] are promising but limited to numerical exam-
ples. The resulting controller is similar to the one that Yang et al. [194] recently
published, but with the difference that we consider the full dynamic model instead
of a kinematic guidance model for controller design. It remains to evaluate the real-
time feasibility on our experimental platform before an experimental verification
can be conducted.

178



9.2. Other Future Work

9.2 Other Future Work

While the previous section gave an outline of the road ahead from each chapter’s
contributions, there is more future work to enhance the results of this thesis. The
initial plan was to demonstrate the use of the developed controllers in challenging
case studies as outlined in Section 1.3.

However, we were not as quick to build our algorithms to the mature level
needed to include them in more advanced case studies. Consequently, the results
of this thesis are limited to simulations and initial experiments to demonstrate
the controllers in maneuvers that have the sole purpose of proving their practical
usability.
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Appendix A

Benchmark Comparison

A.1 Tuning

Table A.1: Parameterization for each controller in the benchmark scenario.
Controller Parameters Values

PID kp,φ, ki,φ, kd,φ, kp,θ, ki,θ, kd,θ, kp,Va , ki,Va 1.00, 0.10, 0.10, 2.00, 0.50, 0.10, 0.08, 0.05
AP kφ, kp,p, ki,p, kff,p, kθ, kp,q, ki,q, kff,q, kp,Va , ki,Va 3.00, 0.17, 0.03, 0.30, 5.00, 0.20, 1.20, 0.30, 0.08, 0.05
GC kp, Kd,x Kd,y Kd,z, Ki,x Ki,y Ki,z 20.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00

MPCGC qVa
, qΓ,x, qΓ,y, qΓ,z, rδ̇a , rδ̇e , rδ̇t 0.01, 30.00, 30.00, 30.00, 0.01, 0.01, 0.01

MPCGC qVa
, qΓ,x, qΓ,y, qΓ,z, rω̇x

, rω̇y
, rω̇z

0.01, 30.00, 30.00, 30.00, 1e-3, 1e-3, 1e-3
PFMPC qVa , qe,N , qe,E , qe,D, rδ̇a , rδ̇e , rδ̇t 1.00, 1.00, 10.00, 1.00, 1.0, 1.00, 1.00, 1.00, 1.00, 1.00

All low-level motion controllers are tuned based on a step for each channel, i.e.
roll, pitch, and airspeed, as depicted in Fig. A.1. All controllers have been tuned
such that they achieve similar performance for each step. For a fair comparison
between the low-level controllers, for both MPCs, the reference along the predic-
tion horizon is set to the reference at the initial conditions, meaning they do not
have information about the coming step change. The step responses are mostly
in-distinguishable, except for the qualitative difference between the MPCs and the
reactive controllers regarding the coupling between airspeed and pitch control. At
the step decrease in airspeed from 21 m/s to 15 m/s, the MPCs actively pitch up
to decelerate. Later at the pitch step to 10 deg, the MPCs predict a decrease in air-
speed and increase the throttle early to avoid a drop in airspeed. Similar behavior
can be achieved by applying a TECS, but the reactive low-level motion controllers
(PID, AP, GC) can not do more than decreasing the throttle to the lower limit
and let the drag decelerate. The parameterizations from the tuning procedure are
summarized in Table A.1 which also includes the parameterization for the PFMPC.

A.2 Performance Metrics and Figures

The trajectories for the positions, distance to the path, error signals and actuator
usage are plotted in Fig. A.2 and Fig. A.3. From Fig. A.3, the actuator usage of the
low-level MPCs is similar to the reactive controllers, i.e. the PID, AP and GC, which
can be best seen for the aileron deflections δa. The path-following performance in
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Figure A.1: Step responses for each controller before applying them to the benchmark.
All controllers are tuned for comparable performance on each step. One exception is the
negative in airspeed which the MPCs are better equipped to handle by pitching up to
decelerate faster.
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A.2. Performance Metrics and Figures

Table A.2: Performance metrics as given by Eq. (2.74) for the basic PID (PID), Ardupilot
(AP), Geometric Controller (GC), low-level MPC (LLMPC), the combination of MPC
and GC (MPCGC) and the path-following MPC (PFMPC).

Jfδa Jf,δe Jf,δt Ju,δa Ju,δe Ju,δt Je,d Je,Va Je,φ Je,θ
PID 1.49 1.93 0.08 1.37 2.53 0.04 4.39 1.78 1.52 0.72
AP 1.86 2.45 0.08 1.40 2.55 0.04 4.86 1.78 1.53 0.78
GC 0.94 1.70 0.09 1.30 2.51 0.04 4.82 1.77 2.41 0.77

LLMPC 2.82 6.22 0.07 1.42 2.37 0.05 4.23 1.67 1.42 0.83
MPCGC 1.46 4.16 0.07 1.31 2.35 0.05 4.42 1.66 2.06 0.80
PFMPC 0.53 0.77 0.05 1.34 2.09 0.05 1.84 1.86

loop with the guidance controller is therefore very similar for all controllers, as can
be seen from the position plot in Fig. A.2 and the performance MSE of the distance
Je,d in Table A.2.

The MPC with direct access to the actuators (LLMPC) achieves the best per-
formance in the metrics for the path distance, airspeed (Je,Va

) and roll tracking
(Je,φ). The fact that the pitch angle tracking, as indicated by Je,θ, is worse com-
pared to the reactive controllers (PID, AP, GC), suggests that a trade-off between
airspeed and pitch tracking is being made. It is important to note that the LLMPC
is also using significantly larger changes in the control surfaces, as indicated by
Jf,δa , Jf,δe , which is to some extent mitigated for the combination of the MPC
and the GC (MPCGC). However, the tuning of the R matrix of the LLMPC has a
direct impact on this performance metric and can be used in cases where actuator
set-point changes are too fast.

The behavior of the PFMPC is significantly different, due to the fact that the
controller has a dynamic state to control the reference point on the path. This allows
the PFMPC to replan within its prediction horizon instead of purely reacting to
a higher-level guidance controller as is the case for the low-level controllers. The
smoothness metric Jf,· in Table A.2 is consequently significantly better for the
PFMPC when compared to the reactive controllers. This is not surprising when
considering the relatively high cost of the elements of R in the PFMPC, as given
in Table A.1.

The overall goal of keeping the UAV close to the reference path is significantly
better achieved by the PFMPC compared to the low-level motion controllers in
loop with the guidance controller. However, a fair comparison on a guidance level
would require to the NDGPFG to be augmented with integral action to minimize
the visible offset in the cross-track error that can be seen in Fig. A.2. The main
goal of this running example was to compare the low-level motion controllers,
where it is only required to use equal guidance controllers where the path-following
performance is not critical.
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Figure A.2: The position of the UAV in the benchmark simulation for all controllers.
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for all controllers in the benchmark scenario.
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Experiment Plots for Chapter 5:
Direct Nonlinear Model Predictive
Control for Attitude and Speed
Control
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B. Experiment Plots for Chapter 5: Direct Nonlinear Model Predictive Control
for Attitude and Speed Control
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(orange) are also shown.
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Figure B.3: Responses to pitch reference steps (dashed) for the MPC and the ArduPlane
Controller. The colors encode different runs for the same controller.
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ence (dashed) shown in the first two subplots.
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Figure B.5: Responses to simultaneously oscillating references (dashed) for roll and
pitch.
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