
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

Amirreza Zamani Meighani

Investigation of the Effect of
Uncertain Parameters
on a Gas-Lifted Oil Network Using a
Non-Linear
Model Predictive Control (MPC)

Master’s thesis in Chemical Engineering
Supervisor: Johannes Jaschke
Co-supervisor: Evren Mert Turan
January 2022

M
as

te
r’s

 th
es

is

Amirreza Zamani Meighani

Investigation of the Effect of Uncertain
Parameters
on a Gas-Lifted Oil Network Using a
Non-Linear
Model Predictive Control (MPC)

Master’s thesis in Chemical Engineering
Supervisor: Johannes Jaschke
Co-supervisor: Evren Mert Turan
January 2022

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemical Engineering

Investigation of the Effect of Uncertain Parameters
on a Gas-Lifted Oil Network Using a Non-Linear

Model Predictive Control (MPC)

Department of Chemical Engineering

10/12/2021

Abstract

This work is to find the effect of changing important parameters in a gas lif-
ted oil production network on the production rate and controller behavior.
In order to be able to test and experiment the effects, a mathematical model
is modelled as a differential-algebraic system of equation and translated into
Julia Programming language. Also an economic model predictive controller is
made and applied on the system to maximize the profit made in the plant.
Moreover, a brief description of the theory behind the work is given. The the-
ory contains different type of optimization problems and respective methods
for solving them as well as discretization methods to translate dynamic optim-
ization problem (OCP) in a way that is understandable for numerical solvers.

Having the system working, the model has been tested for the open loop
response to examine the stability of the model and several experiments have
been made to capture the effect of mentioned parameters on the production
rate as well as the NMPC behavior. The experiments can be mentioned as
examining the effect of changing the factors such as Gas Oil Ratio (GOR)
or productivity index (PI) on the production rate. It is shown and discussed
that having higher PI indices in the system would result in more production
rate and being more important to NMPC in the optimization problem. Also,
for GOR parameter, the system would have less production rate if the GOR
parameter decreases in any cases such as aging in the reservoir or being used
too much for oil production. In the end the possible future work works are
mentioned and the performance of the system is discussed.

iii

Sammendrag

Dette arbeidet er å finne effekten av å endre viktige parametere i et gassløftet
oljeproduksjonsnettverk på produksjonshastigheten og kontrollerens oppførsel.
For å kunne teste og undersøke effektene, er en matematisk modell modellert
som et differensial-algebraisk ligningssystem og oversatt til programmeringss-
pråket Julia. Også en prediktiv kontroller for en økonomisk modell er laget og
brukt på systemet for å maksimere fortjenesten i anlegget. Videre gis en kort
beskrivelse av teorien bak arbeidet. Teorien inneholder ulike typer optimaliser-
ingsproblemer og respektive metoder for å løse dem, samt diskretiseringsmet-
oder for å oversette dynamiske optimaliseringsproblemer (OCP) på en måte
som kan løses numerisk.
Etter at systemet fungerer, har modellen blitt testet med åpen sløyfe-respons
for å undersøke stabiliteten til modellen, og flere eksperimenter har blitt ut-
ført for å fange opp effekten av nevnte parametere på produksjonshastigheten
samt NMPC-oppførselen. Forsøkene kan nevnes som å undersøke effekten av å
endre faktorene som Gas Oil Ratio (GOR) eller produktivitetsindeks (PI) på
produksjonsraten. Det er vist og diskutert at å ha høyere PI-indekser i systemet
vil resultere i høyere produksjonshastighet og være viktigere for NMPC i op-
timaliseringsproblemet. For GOR-parameteren vil systemet også ha mindre
produksjonshastighet hvis GOR-parameteren reduseres i alle tilfeller som for
eksempel aldring i reservoaret eller blir brukt for mye til oljeproduksjon. Til
slutt nevnes mulige fremtidige arbeid og ytelsen til systemet diskuteres.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . ix
Tables . xi
Code Listings . xiii
1 Introduction . 1

1.1 Scope and Objectives . 1
1.2 Outline of this thesis . 2
1.3 Gas Lift Approach . 2
1.4 Introduction to Optimization 4

1.4.1 Optimization Problems Classification 5
1.4.2 Different Types of Programming 7

1.5 Solving Algorithms . 8
1.6 Optimal Control . 8
1.7 Methods for Solving OCPs . 10

1.7.1 Direct Methods for Solving OCPs 11
1.8 PLantwide Control . 14

2 Model Description . 17
2.1 Modelling of Gas Lifted Wells 17
2.2 DAE System for the Plant . 20
2.3 Software Package . 21

3 Problem Formulation . 23
3.1 MPC Framework . 23
3.2 Nonlinear MPC . 26
3.3 Descretization of the OCP . 28
3.4 NMPC Framework . 32

4 Results and Discussion . 35
4.1 Open Loop Simulation . 36
4.2 Effect of Gas Lift on Production Rate (in Open Loop) 37
4.3 Closed Loop Simulation . 38
4.4 Effect of Parameter GOR on Production Rate 40
4.5 Effect of Parameter PI on Production Rate 41

vii

viii Amirreza Zamani Meighani: An NTNU Thesis Document Class

4.6 Effect of Changing the Maximum Gas Constraint on controller
behavior . 42

4.7 Possible Future Work . 42
5 Conclusion . 45
Bibliography . 47
A Additional Material . 49

A.1 Julia Codes . 49

Figures

1.1 Gas Lift Schematic . 3
1.2 Gas Lift vs Produced Oil . 4
1.3 An optimization problem contour 5
1.4 Convexity in sets . 6
1.5 Convexity in functions . 6
1.6 continuous in time OCP . 9
1.7 DAE Optimization Problem Solving Methods 10
1.8 Direct single shooting Method 11
1.9 Direct multiple shooting Method 12
1.10 Shooting Gap in DMS Method 12
1.11 Collocation method . 14
1.12 Plantwide control . 15

2.1 Plantwide controgdl . 18

3.1 MPC Framework . 24
3.2 Moving horizon strategy . 25
3.3 MPC Procedure . 25
3.4 Applying Collocation method for gas lift oil network 30

4.1 Open loop step change test . 37
4.2 The effect of increasing the gas lift on the production rate . . . 38
4.3 Closed loop response of the NMPC 39
4.4 Effect of Parameter GOR on Production Rate 40
4.5 Effect of Parameter PI on Production Rate 41
4.6 Effect of Parameter PI on Production Rate 42
4.7 Effect of Changing the Maximum Gas Constraint on controller

behavior . 43

ix

Tables

1.1 Iterative Approach to solve OPs 8

2.1 Variable definition in mass balance equations shown in Equa-
tion (2.1) . 19

3.1 Collocation points for two different types of lagrangian polyno-
mial coefficients, shifted Gauss–Legendre and Radau roots . . . 29

4.1 Parameters used in open-loop step response on gas injection
valves for wells with varying reservoir pressure 36

A.1 Parameter used in the system. Based on the specific experi-
ments, some of the might have been used with different values
which in that case, it is explained in the respective section. . . 49

xi

Code Listings

xiii

Chapter 1

Introduction

This work is inspired by the importance of optimal usage of the resources and
maximizing the profit in an oil platform since a very small change in production
can lead to considerable amount of profit considering an oil production plant
in industrial scale.

While small changes in production make considerable difference in profit-
ability in oil production as well as any other business, optimal use of resources
become more significant. In order to lessen the manual driven gas injection
and production in oil wells, companies introduced automated control tech-
niques Plucenio et al. [1]. Information Technology is applied to model, control
and optimize the gas lifted operations and this study is focused on using a Non
Linear Model Predictive Control (MPC).

1.1 Scope and Objectives

This thesis is a study of uncertain parameters on a gas-lifted oil production
network in julia programming language. The scope of this work is to first model
the well network containing 3 wells connected to a riser and then apply an MPC
framework on the model to maximize the profit of the plant. Establishing the
MPC framework, the scope of the work is then to study the uncertain para-
meter GOR and effect of that parameter on the input usage and consequently
the profit of the plant. The plant is modelled as an integrator of a system of
ordinary differential equations and solved by BS3 solver. The model inside the
optimizer is integrated using direct orthogonal collocation method. The colloc-
ation method uses forth order Radau polynomials to solve and integrate the
system of differential equations. Note that performing the multi stage scenario
based MPC is out of the scope of this thesis while it might be considered as
future work using the results of this thesis by the author. The objective of this
work can be mentioned as to examine the controller whether it can produce
control trajectories for maximizing the profit of the plant and then to see how
an uncertain parameter affects on the objective.

1

2 Amirreza Zamani Meighani: An NTNU Thesis Document Class

1.2 Outline of this thesis

Outline of this thesis can be described as below: Chapter 1 describes the gas
lift method and the theory behind the work. Also the methods used for optim-
ization as well as how one can formulate an optimization problem. The chapter
is finished by introducing the control hierarchy which presents how different
control layers are connected together. Chapter 2 aims to describe the gas lifted
oil network model and how an MPC framework can be built and maximize the
profit of the plant. Furthermore, in Chapter 3, the optimization problem for
the model is described to show that how the dynamic problem can be solved
using the MPC. Chapter 4 shows the result of applying the controller on the
plant as an MPC framework. Also, different situations are studied regarding
changing the uncertain parameter and the effect of that on the result. In the
end different comparisons and discussion are made to illustrate

1.3 Gas Lift Approach

Obviously, oil and gas reservoirs are the key part in oil and gas industries. In
a reservoir, the pressure is the driving force to push the mixture of oil and
gas up to the well head. Because the pressure in the reservoir is much greater
than the atmospheric pressure so that this pressure difference will affect as the
driving force and lead to push the oil from porous media through the well and
therefore to the manifold where it can be sent in separators and other upstream
equipment. But reservoirs can be depreciated after years of production, thus
the pressure inside the reservoir starts to reduce after a time. Passing a certain
value for the desired pressure in the reservoir, it would not economically be
efficient to use the reservoir for production since lower pressure leads to lower
production.

Gas lift technique has been widely used in oil industries to compensate the
loss of pressure effect by injecting artificial gas in the well. AS it is studied
by Eikrem et al. [2], It can be shown that injecting artificial gas close to the
bottom of the well can improve production rate by reducing the bottom liquid
density. Reducing the density of the liquid in the bottom of the well, it can be
moved easier with lower pressure in the reservoir so that the production rate
can be improved. To illustrate how a reservoir loses its pressure over the time
of production, one can take these points into account: As it is known, crude
oil is mixture of many different hydrocarbons which are called different cuts of
the crude oil. Starting from Natural gas as one of the lightest to heavier cuts
known as bitumen, crude oil can evaporate in almost any temperature and
lose some of the matters inside its mixture. Over the time the lighter hydro-
carbons evaporate faster than the heavier ones so the density and viscosity of
the crude oil changes. That can considerably lower the mobility of the mixture
and consequently lower the production rate. Also, when the liquid fraction of
the reservoir changes, one important parameter which is called the Gas Oil

Chapter 1: Introduction 3

Ratio (GOR) would change too. This parameter plays a key role in designing
the oil production plant over the reservoir. All in all, one can conclude that
passing a period of time using the reservoir for production, the pressure of the
reservoir might not satisfy the economics of the oil production plant so that the
gas-lift technique may be used in order to improve the production rate. More
information on the reservoirs can be found on Satter et al. [3]. A schematic of
the gas lift technology can be seen in Figure 1.1.

Figure 1.1: Schematic of using the gas lift technique - taken from Hammadih
et al. [4]

However, it has been studied that the more gas lift injected to the well would
not always be helpful. Krishnamoorthy et al. [5] studied two wells network
system and they showed that injecting too much artificial gas into the system
will reduce the production. Therefore there is an optimal value for gas lift which
implies the importance of optimization. Figure 1.2 shows the general behaviour
of the oil production in front of gas lift. The figure is made by studying the
effect of changing the gas lift on the total produced liquid in the plant. The
model will be described in the coming parts and different parameters of the
model will be introduced.

Looking at the Figure 1.2, one can comprehend that injecting the gas inside
the well would immediately increase the produced oil to a certain point but
after that, the production rate reduces. So the gas lift might not always be
beneficial, but sometimes it can be harmful for the production. The importance
of optimization in this case is clear and one can optimize the plant by changing
the gas lift injected to the plant. The model and optimization problem is well
described in chapters 2 and 3. Also the reason for decreasing the oil production

4 Amirreza Zamani Meighani: An NTNU Thesis Document Class

after a certain value for gas lift is that increasing the gas inside the tubing
would increase the friction among the mixture so that the hydro-static pressure
drop cannot compensate the new pressure drop caused by friction. When the
pressure drop passes the limit, the mixture inside the well cannot be pushed
up to the well head so that the production will stop. In this thesis the aim is
to study the parameters which can have an effect on the production rate and
to set up an optimization problem which will maximize the the profit of the
plant where the important cost is the usage of gas lift and income would be
produced oil.

Figure 1.2: Gas lift ωgl and produced oil ωpo performance curve

1.4 Introduction to Optimization

Mathematical Optimization or mathematical programming is the procedure of
finding the best element regarding some criterion and some sets of available
options. In other words, to find the minimum or maximum of a function called
objective function, in a specific area or over the whole available horizon where
the objective function is defined. The optimization problem can or cannot have
some constraints which in those cases the optimization problem will be called
as constrained or unconstrained programming respectively. Most of the optim-
ization problems have on or more equality and/or inequality constraints.[6]

Equation (1.1) represent the formulation for an optimization problem with
the cost function f where ε and Ω are sets of indices for equality and inequality
constraints respectively.

minimize
x ∈ χ

f(x) (1.1a)

subject to ci(x) = 0, i ∈ ε, (1.1b)
ci(x) = 0, i ∈ Ω (1.1c)

In the above equation, vector x contains all independent decision variable.
To have a feasible set of x, all the equality and inequality constraints should be
satisfied. Figure 1.3 illustrates the contour of the objective function f(x), also

Chapter 1: Introduction 5

shows the feasible region which is the set of the points where all constraints
are satisfied.

Figure 1.3: Geometrical representation of Equation (1.1), Contour is taken
from [6]

1.4.1 Optimization Problems Classification

Optimization problems can be classified by different criterion. Some of the
most famous ones are listed below.

Constrained or unconstrained optimization : As it was said later, the
optimization problem can have one or more equality and/or inequality con-
straints. For example the Equation (1.1) is a constrained optimization prob-
lem since the objective function is limited by sets of equality and inequality
constraints. The objective function f(x) can freely be distributed without any
conditions which makes an example of unconstrained optimization problem
like what is shown in Equation (1.2).

min
x∈χ

f(x) (1.2)

Local or global optimization : Optimization problems can also be clas-
sified by the type of solutions they have or people look for. In most cases,
solver look for local optimal solution which is a point where the objective
function take its minimum or maximum value compared to a neighbourhood
around that point. In convex programming or more specifically speaking, in
linear programming, a local solution is the global solution to the optimization
problem while non-linear optimization problems(both constrained or uncon-
strained) might take local solutions which are not globally an optima. In most
of the cases recognizing a global solution would be difficult and expensive and
locating that point would be even more expensive in time and computation
costs.

6 Amirreza Zamani Meighani: An NTNU Thesis Document Class

Convex or non-convex optimization : Convexity in optimization is an
essential concept. Many of the optimization problems have this feature which
makes it much easier to solve compared to the situation where an objective
function does not possess the convexity feature. Both functions and sets can
b convex. A set S ∈ Rn is convex if the straight line which connects any two
elements of the set is entirely inside the set or mathematically speaking, for
two elements x and y inside the set S, one should prove that αx+ (1− α)y ∈
S, for all α ∈ [0, 1]. The same principle is found for a function f aver the
convex domain S, if for two points x and y from S the following property is
satisfied:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), for all α ∈ [0, 1] (1.3)

Considering the terms mentioned above, an optimization problem is called
convex if the objective function f (x) is convex and the feasible set x is also
convex. Figure 1.4 shows two arbitrary sets which are convex (a) and non-
convex (b)

Figure 1.4: An illustration of convex and non-convex arbitrary sets [7]

Having a convex optimization problem, one can find the global solution
by only finding the local solution to problem since in a convex optimization
problem, a local optimum is guaranteed to be the global optimum. Note that
if either the objective function or the feasible set is non-convex there would
be no guarantee for local solution to be the global solution. Figure x represent
the schematic of a convex and a non-convex functions.

Figure 1.5: An illustration of convex (a) and non-convex (b) arbitrary func-
tions [7]

Chapter 1: Introduction 7

1.4.2 Different Types of Programming

Taking a closer look into the objective function, optimization problems can be
categorized based on the different types of objective functions they have. The
objective function can be linear, quadratic, non-linear or so many other forms.
But for some specific types of objective function, there are special formula-
tion of optimization problem where specific solvers can handle those problems
easier. A brief explanation to some of the most famous types of optimization
problems (programming) comes in the rest of this section.

Linear Programming (LP): If the objective function f(x) is linear and
all the constraints are linear too, the optimization problem is then called linear
programming (LP). A linear programming can be written as what is shown in
Equation (1.4).

min
x∈χ

dT(x)

subject to gi(x) = aTi x− bi = 0, i = 1, . . . ,m,

hi(x) = aTj x− bj ≤ 0, i = 1, . . . , n,

xmin ≤ x ≤ xmax

(1.4)

Where d is a vector containing the known coefficient.

Quadratic Programming (QP) Taking the Equation (1.4) and substi-
tute the objective function to a quadratic function, the optimization problem
will be called quadratic programming (QP). A quadratic programming is an
optimization problem where the objective function is quadratic and all the con-
straints are linear. This can be formulated as what is shown in Equation (1.5).

min
x∈χ

xTQx + dTx

subject to gi(x) = aTi x− bi = 0, i = 1, . . . ,m,

hi(x) = aTj x− bj ≤ 0, i = 1, . . . , n,

xmin ≤ x ≤ xmax

(1.5)

Quadratic programmings can be either convex or non-convex based on the
form of quadratic objective function. In Equation (1.5), the optimization prob-
lem is convex if the n-dimensional matrix Q is positive semi definite (Q ≥ 0).
Q = 0 is also by definition, positive semi definite.

Non-Linear Programming (NLP): If any of the constraints or objective
function in non-linear, the optimization problem would take the form of a non-
linear optimization problem or in short NLP. NLPs can be written in the same
way as Equation (1.1) despite that the objective function and/or constraints
are non-linear.

8 Amirreza Zamani Meighani: An NTNU Thesis Document Class

1.5 Solving Algorithms

There are different ways to build a solver to solve an optimization problem
which can be explicit or iterative in term of solving. There might be an ex-
plicit method for solving a very simple optimization problem while for more
complicated problems, finding an explicit way might cost too much in time
and computation and sometimes it is impossible to find an explicit method for
solving optimization problems such as non linear programmings. On the other
side, iterative algorithms can be designed in a way to tackle the problem iterat-
ively and solve them until a stopping criteria is satisfied. The general approach
for an iterative method to optimization problems(OPs) is shown below:

Algorithm 1 Algorithm 1 Iterative solution procedure of OPs

Given initial point x0 and stopping criteria

While stopping criteria not fulfilled do
Compute the next iteration point

end while

Table 1.1: Iterative Algorithm to solve OPs [7]

As it is stated in the algorithm, an initial point x0 should be given to the
method. Some algorithms need a feasible initial points while some others, like
sequential quadratic programming (SQP), does not require a feasible starting
point. Also, stopping criterion could be set via different measures such as:

• When the number of iterations reaches the limit
• Via gradient matrices such as gradient matrix of objective functoion ∇f ,

or the Lagrange of the objective function∇L.
• A posturing of the optimal point. Like when the gradient matrices are

smaller than a defined value ϵ

Also regarding optimization problems with inequality constraints, one can
advice the Interior Point Methods (IP). This method penalize the inequality
constraints using a barrier function and solves the inequality constraints as
equalities. A barrier function in mathematics is a continuous function where
value on a point would rise to infinity as the point closes to the boundary of
the feasible region of the OP.

1.6 Optimal Control

Dynamic systems are characterized by evolving in time. That means the vari-
able are not only functions of space, but also are functions of time while, on
the contrary, one can find static systems independent of time. There are dif-
ferent way to optimize dynamic systems and in this thesis, only the Dynamic

Chapter 1: Introduction 9

optimization will be considered and other approaches such as Quasi Dynamic
Optimization is neglected. Dynamic optimization, as it was mentioned before is
to optimize a dynamic system which means to find a time dependant solution
for an optimization problem with time variant decision variable.

Optimal control plays a key role in connecting the optimization and control
where the dynamic systems can be controlled by optimization.In other words,
optimal control is to find the proper inputs into the system in a way that all the
constraints are satisfied. In order to do so, one should be able to discretize the
dynamic system in predictive states so that the solver can apply an iterative
algorithm on the problem and solve it. Note that in this thesis the focus will be
on the continuous dynamic systems. An example of continuous in time optimal
control problem is given in Equation (1.6).

minimize
z, u

E(z(t)) +

T∫
0

L(z(t), u(t))dt (1.6a)

subject to z(0)− z0 = 0 , (1.6b)
.
z(t)− f(z(t), u(t)) = 0, t ∈ [0, T], (1.6c)

g(z(t), u(t)) = 0, t ∈ [0, T], (1.6d)
h(z(t), u(t)) ≤ 0, t ∈ [0, T], (1.6e)

r(z(T)) ≤ 0 (1.6f)

Taking Equation (1.6) into account, one can explain that in the objective
function mentioned in OCP, the integral cost contribution L(z, u) is often
called Lagrange term which should not be confused with lagrange function.
Also the first term E(z(t)) which is the terminal term is sometimes referred to
as Mayer term. An objective function which is mixed from these two terms is
called Bozla objective [8].

Figure 1.6: The constraints and of a continuous in time optimal control
problem (OCP)

Figure 1.6 illustrate the optimal control problem and its variable. In Equa-
tion (1.6), t ∈ [0, T] denotes the time vector, z(t) ∈ Rnz represents the the
vector (matrix) of state decision variables and u(t) ∈ Rnu is for control de-
cision variables (inputs). Moreover, the constraint Equation (1.6b) sets the
initial value fixed and subequation Equation (1.6c) illustrates the ODE system

10 Amirreza Zamani Meighani: An NTNU Thesis Document Class

where all the differential equations are defined. Path constraints are shown in
Equation (1.6e) and the last set of constraints which is shown in Equation (1.6f)
are called terminal constraints. [8]

1.7 Methods for Solving OCPs

Generally speaking, there are three common approaches to tackle the continu-
ous optimal control problems (OCPs) which can be mentioned as state space,
direct and indirect approaches. In this section , an introduction to these meth-
ods is given.

State-space methods usually use the optimality basis which say that all
subarcs of an optimal trajectory should be optimal by itself. This rule leads
to the Hamilton-Jacobi-Bellman (HJB) equation which is a partially differen-
tial equation in state space. There are some methods, numerically written to
calculate the solution approximations but, the problem is that mostly they
suffer from what is called Bellmans “curse of dimensionality” which is limited
by small state dimensions.

Also, there is another category among the methods for solving a continuous
in time OCPs which is called Indirect Methods. Creating a boundary value prob-
lem (BVP) using the optimality conditions is the key point in these methods.
The rule in this category is to first optimize ,then discretize so the optimality
conditions are expressed in continuous form and then discretized to form a
numerical solution. Non-linearity could be a strong barrier for these methods
since it costs a lot in computation and time. Figure 1.7 summarize different
categories for solving an optimal control problem.

DAE Optimization
Problem

State Space

Sequential
Approach

Simultanuous
Approach

Multiple Shooting

Direct Collocation

Single Shooting

Indirect
Approach

Direct
Approach

Figure 1.7: Different methods to solve optimal control problems (OCPs) [9]

Chapter 1: Introduction 11

1.7.1 Direct Methods for Solving OCPs

Without need to derive a BVP, direct methods are able to solve optimal con-
trol problems by transforming the problem into a finite Non-Linear Problem
(NLP). So these types of methods follow the methodology first discretize, then
optimize. Direct methods can handle all types of constraint since they are
being treated by most of the well developed NLP methods which work with
active changes [8]. Also, they can deal with both ordinary differential equa-
tion (ODEs) and differential-algebraic system of equations (DAEs) [10]. This
group can be broken down into two sub-categories, sequential and simultan-
eous. These methods are illustrated in Figure 1.7 and elaborated below.

Direct single shooting : As the simplest idea for solving an OCP directly,
single shooting method follows this idea: reducing the boundary value problem
to a initial value problem IVP and solving the IVP using a numerical integ-
rating fashion. As an example of how this method works, one can consider the
BVP problem shown in Equation (1.7).

d2y

dx2
= f(x, y,

dy

dx
)

y(a) = ya, y(b) = yb

(1.7)

As it is clear the problem is a boundary value problem. One can say that
they want to reduce it to an initial value problem where they can keep the
initial condition y(a) = ya and guess the initial condition for the first gradient
value dy

dx(a) = Ya and use a numerical integration method to discretize the
problem and integrate the problem to find the boundary value y(b) = λb.
Then the only step left is to compare the λb with yb and use a trial and error
method to find a dy

dx(a) such that λb = yb.

Figure 1.8: Schematic illustration of Direct single shooting Method [9]

The word shooting is used since the initial guess has to be guessed. Ap-

12 Amirreza Zamani Meighani: An NTNU Thesis Document Class

plying the method on an OCP, one can say that the single shooting in OCP
solving is to take the initial value and find the optimal trajectory such that all
the constraints are satisfied. In other words only the control parameter(u) is
discretized and will be the NLP decision variable and not the states. A scheme
of this method is shown in Figure 1.8.

Direct multiple shooting : In single shooting, the integration is performed
on the whole time horizon [t0, tf] which might be impotent because of too long
period for integration. The idea in multiple shooting is to break the integration
period down to finite number of smaller time intervals and include the states
xk in the NLP. The idea originally comes from Osborne [11] in it is to divide
the time interval [0, T] into shooting intervals [tk, tk+1] ⊂ [0, T] and most often
the shooting intervals are uniform. Then the integration is performed on each
different interval with initial guesses for each (Si). Afterwards the whole prob-
lem can be imported into an NLP solver where a new set of conditions which is
called continuity conditions is added to the problem to produce a continuous
state trajectory. This is shown in Figure 1.9.

Figure 1.9: Schematic illustration of Direct multiple shooting Method (DMS)
discretization applied to the optimal problem. On the left, initialized shooting
nodes where solution is breaking constraints. On the right, the constraints are
satisfied after convergence of NLP[12]

The continuity condition which is added to the NLP can be described as
a constraint which sets all the small intervals uniform to create a continuous
state trajectory. It can be shown as what is given in Equation (1.8):

0 1 2 3 4 5

0 1 2 3 4 5

Figure 1.10: Schematic illustration of Shooting Gap in DMS Method

Chapter 1: Introduction 13

xk+1 − f(xk;uk) = 0,∀k ∈ 1; ...;N (1.8)

The multiple shooting method results in producing much more variables in
NLP compared to the number of variables in single shooting which makes a
larger optimization problem but since the integration periods are smaller than
the integration period in single shooting, the solver reaches the convergence
faster.

As a comparison b between single, and multiple shooting method, one can
note that both of the methods rely on separate integrator package and optim-
ized integration routines can be applied on both single and multiple shooting
methods. Single shooting is conceptually simple since it is based on discretizing
only the control input U which results in small optimization problem (nu×N
variable) while multiple shooting is conceptually more complicated and results
in larger optimization problem (nu+nx)×N variables. Regarding nonlinearity,
single shooting can be unsuitable in unstable or highly nonlinear problems. On
the other hand, the multiple shooting method can perfectly handle unstable
and non-linear problems. Constraints are enforced at check points in single
shooting while multiple shooting method enforce the constraints for states at
each sample time [9].

Direct collocation : As is was mentioned in previous parts, the shooting
based methods put an integrator (mostly numerical ones) to integrate the
differential equations in each step points and import them to a solver so that
the optimization problem can be solved. Biegler [13] proposed the concept of
letting the solver (optimizer) also handle the integration. This is the philosophy
behind the orthogonal collocation method.

As it was mentioned, in collocation method, the solver takes care of integra-
tion as well as solving the optimization problem. This is done by approximating
the solution of the differential equation by an order of K polynomial.To start
explaining the method, one can consider Equation (1.9) which represents a
differential equation.

Ż = f(z) (1.9)

The Equation (1.9) can be approximated by a third order polynomial like
what is shown in Figure 1.11and Equation Equation (1.10).

Z(t) ≈ A+Bt+ Ct2 +
1

3
Dt3 (1.10)

As it is obvious, there should be at least K+1 points to determine an
order Kth polynomial. Figure 1.11 illustrate a third order polynomial which
approximate the function f in a time interval [t0, tf]. Neglecting the proof and
transforming the equation Equation (1.10) in matrix form, one can show that
using the orthogonal collocation would result in having the solution as what
is shown in Equation (1.11) where M represents a matrix of constants which

14 Amirreza Zamani Meighani: An NTNU Thesis Document Class

can differ based on the choice of different lagrange polynomial i.e., Radau,
Legandre or so on. 

Z1

Z2

Z3

...

 =


Z0

Z0

Z0

...

+M


Ż1

Ż2

Ż3

...

 (1.11)

Once one prepares the matrix M, they can “translate” the system of differ-
ential equations into an acceptable form for optimizer. Note that this method
would results in increasing the size of optimization problem considerably. In
other words, this method can trade nonlinearity with size of the optimization
problem by introducing collocation points.

𝑡1 𝑡2 𝑡3

𝑥0
𝑥1

𝑥2
𝑥3

𝑥

𝑡0 = t f

Figure 1.11: Schematic illustration of approximated polynomial with inter-
mediate collocation points

Like the other numerical methods, there would be a big error if the method
is applied on a “too large” interval say the whole horizon where the problem
is defined. One solution to this problem could be introducing finite elements
throughout the horizon and applying the collocation method on each element
which would considerably increase the accuracy Biegler [13]. The trade off
between having more collocation points or finite elements has been the matter
of discussion while academia accepts the idea of increasing the number of finite
elements better.

1.8 PLantwide Control

Plantwide control regards the structural decisions which is involved in design-
ing control system of a chemical plant. More specifically, plantwide control is
concerned with the questions “which variables should be controlled, measured,
manipulated and what links should be made between them?” [14]. The goal is
to find sets of variables which when are kept in certain values, lead the plant to
be operated near the optimal conditions. Because different parts of a large scale
system have different time scale, there should be different layers for controlling
the system.

Chapter 1: Introduction 15

Figure 1.12: Schematic illustration of different layers (time scales) in
plantwide control

Figure 1.12 briefly represents these layers combining the selection of con-
trol structures in chemical plants. Considering large scale chemical systems like
multi-well oil production plant it is required to have a stable control structure.
Two main objectives are to achieve long term economical objectives and short
term stability in the system. Based on plantwide control rules, the control
structure includes (i) scheduling (weeks), (ii) site-wide (real-time) optimiza-
tion (days), (iii) local optimization (hours), (iv) Supervisory or Model predict-
ive control (MPC, minutes), and finally (v) stabilizing and regulatory control
(seconds). Layers (ii) and (iii) compromise the economic aspects of the system
while the supervisory and regulatory layers are concerned with setpoint track-
ing from the layers above (setpoints for regulatory layers are given from higher
layers). So, these layers are interdependent through the controlled variables.
Note that the supervisory layer is a slow economic layer which tries to satisfy
the economics of the system using the control variables which are high worth.
On the other hand, this layer produces the setpoints for regulatory layers which
deal with those control variable that have less effect on the economics of the
plant. The economic MPC can be noted as on of the means to be used in
supervisory layer.

Chapter 2

Model Description

This chapter describes how a model for a network of wells in an oil production
plant can be written to imitate the behavior of the actual plant. To recap the
previous the actual plant, the model should describe the gas lift effect on the
production rate and encompass the parameters in the actual system. To keep
the derivation as straightforward as possible, the model derivation starts with
writing the mass balance equations for a gas lifted oil production plant with
one well and in the end of this chapter, the differential-algebraic system of
equations for a multi well gas lifted oil production network is given.

2.1 Modelling of Gas Lifted Wells

In this section, a brief description of a gas lifted well model is given. The
model is used in the optimization problem as a network of wells which can be
combination of several wells with different characteristics. The derivation can
be started with a model for one gas lifted well and the way to include all wells
as a model in optimization problem. A schematic representation of a network
of gas lifted wells in an oil production plant is presented in Figure 2.1. Note
that the model for the gas lifted well as well as the DAE system formulations
are taken from the work done by Krishnamoorthy et al. [15].

For a gas lifted well model, the model derivation consists of four main
parts: (i) mass balance in the various phases; (ii) density models; (iii) pres-
sure models and (iv) flow models. Mass balance in one well can be written
as Equation (2.1) where the variables are defined as what is shown in table
Table 2.1.

ṁga = ωgl − ωiv (2.1a)
ṁgt = ωiv − ωpg + ωrg (2.1b)
ṁot = ωro − ωpo (2.1c)

17

18 Amirreza Zamani Meighani: An NTNU Thesis Document Class

Figure 2.1: Schematic illustration of an oil production plant with three gas
lifted wells. Each well has different characteristic and the gas lift (

∑
ωgl) is

injected to the wells to improve the production rate (
∑

ωpoi) [16]

The equations mentioned in Equation (2.1a) to 2.1c are the three main
differential equations in the model which describe the behavior of the mass in
annulus and well tubing. The rest of equations will express the algebraic part
of the model. The pressure distribution can be expressed by equations (2.2a)
to (2.2d). where Pa is annulus pressure, Pwi is well injection point pressure,
Pwh is well head pressure and the bottom hole pressure is Pbh.

Pa =

(
TaR

VaMw
+

gLa

LaAa

)
mga (2.2a)

Pwh =
TwiR

Mw

(
mgt

LwAw + LbhAbh − mot
ρ0

)
(2.2b)

Pwi = Pwh +
g

LwAw
(mot +mgt − ρ0LbhAbh)Hw +∆Pfric (2.2c)

Pbh = Pwi + ρwgHbh +∆Pfric (2.2d)

Also, the density of gas in the annulus (ρa) and density of fluid mixture in
tubing (ρm) can be found through the equations written in Equation (2.3).

ρa =
MwPa

TaR
(2.3a)

ρm =
mgt +mot − ρoLbhAbh

LwAw
(2.3b)

Where the molecular weight is represented as Mw, annulus temperature as
Ta, gas constant as R, Reservoir oil density as ρo, cross-sectional area of the

Chapter 2: Model Description 19

Name Definition

mga Mass of the gas in the annulus
mgt Mass of the gas in well tubing
mot Mass of the oil in well tubing
ωgl Rate of gas lift injection
ωiv Gas flow from annulus into the tubing
ωpg Produced gas flow rate
ωpo Produced oil flow rate
ωrg Gas flow rate from the reservoir
ωro Oil flow rate from the reservoir

Table 2.1: Variable definition in mass balance equations shown in Equa-
tion (2.1)

well below and above the injection point as Aw and Ar respectively and well
length below and above the injection point as Lw and Lr respectively. Also,
the flow rates through different parts of the system can be written as following:

ωiv = Civ

√
max(0, ρa(Pa − Pwi)) (2.4a)

ωpc = Cpc

√
max(0, ρwi(Pwi − Pm)) (2.4b)

ωpg =
mgt

mgt +mot
ωpc (2.4c)

ωpo =
mot

mgt +mot
ωpc (2.4d)

ωro = PI(Pr − Pbh) (2.4e)
ωrg = GOR · ωro (2.4f)

Using the Diameters of the annulus and the tubing, Da and Dw, the respect-
ive cross-sectional areas can be computed. Aa and La are the cross-sectional
area and length of the annulus respectively, Tw is the well tubing temperature,
La is the annulus length, Hw and Hr are the well tubing vertical height above
and below the injection point, respectively, Tw is the well tubing temperature,
and g is the gravity acceleration constant. Also in equation set (2.4), valve
flow coefficients for the production choke and the downhole injection valve are
represented as Cpc and Civ respectively ; moreover, Pr is the pressure in the
reservoir, PI is the productivity index of the reservoir, Pm is the manifold
pressure and GOR is the gas–oil ratio. Note that no pressure coupling can be
found between the wells in the mentioned formulation.

Considering the mentioned equations, one can realize that all the three
differential equations and the algebraic ones are coupled to each other so that
they can form a Differential-Algebraic system of equations (DAE) which is

20 Amirreza Zamani Meighani: An NTNU Thesis Document Class

described in the next section. Among the parameters in the model, some can
have uncertainty with them which make the problem more complicated and one
might have to apply methods for optimization with uncertainty. In this thesis,
all the parameters in optimization problem are assumed to have a certain value
and only the effect of changing the uncertain parameter on different aspects of
the plant is considered.

2.2 DAE System for the Plant

As it can be seen from the derived model in Section 2.1, the model is a semi-
explicit index-1 DAE (differential-algebraic system of equation) of the form:

ẋi = fi(xi, zi, ui, pi)

gi(xi, zi, ui, pi) = 0, ∀i ∈ N = {1, ..., nw}
(2.5)

Where fi is the set of differential equations mentioned in Equation (2.1)
and gi is the set containing all the algebraic equations mentioned in (2.2a)
to (2.4f). Also the subscript i refers to each well in a network of nw wells.
Again, note that the subscript i has been removed from the model equations
in Section 2.1 for more convenience. The variables and parameters presented
in Equation (2.5) are differential states (xi), algebraic states (zi), decision
variables (ui), and the parameters (pi) which can be expressed as:

xi = [mgai , mgti , moti]
T (2.6a)

zi = [ρa, ρm, Pai , Pwhi
, Pwii , Pbhi

, ωivi , ωpci , ωpgi , ωpoi]
T (2.6b)

ui = [ωgli]
T (2.6c)

pi = [GORi]
T (2.6d)

Considering a network of wells consisting of nw wells, the system of equa-
tions can be written as Equation (2.7)

ẋ = f(x, z, u, p) (2.7a)
g(x, z, u, p) = 0 (2.7b)

Where x, z, u, and p are the matrices containing the values for all wells.
For example, x is the matrix of all xi where i ∈ 1, ..., nw. The combined states,
control input and parameters are shown in more detail in equation4.

Chapter 2: Model Description 21

x = [xT1 , xT2 ... xTnw
]T (2.8a)

z = [zT1 , zT2 ... zTnw
]T (2.8b)

u = [uT1 , uT2 ... uTnw
]T (2.8c)

p = [pT1 , pT2 ... pTnw
]T (2.8d)

The resulting model is a differential-algebraic system of equations with
three differential and 12 algebraic equations all coupled to each other. The
input for the model is the gas lift flowrate and the output is the total amount
of produced oil. Note that for the sake of simplicity, the models mentioned
above can be easily transformed into an ordinary differential equations (ODE)
by eliminating the algebraic variables and creating three differential equations.

2.3 Software Package

For modelling purpose, the Julia programming language was used. The model
was written as a function file which takes the input of the model and the
time which user wants to integrate the model for, and then the model will
integrate and sole the model based on the input and the required time. Note
that the gas lifted well model can be used either for one well or for a network
of gas lifted wells by introducing the number of wells (Nw) as another input
to the model. For simplicity, the DAE system is transformed to an ordinary
differential system of equations and by taking the initial values and the time
span for integration, the function will solve the problem using (BS3) solver in
julia. Afterwards, Algebraic states can be computed using the results of solver
and the parameters given to the problem.

Chapter 3

Problem Formulation

An introduction to optimal control problems (OCPs)was given in Section 1.6.
One can understand from that section that an optimal control trajectory would
be the result of solving the OCP and one can use it to keep the system at its
optimal conditions. But that would be slightly risky because of the probab-
ility of deviation in model with respect to the actual plant and in that case,
the computed input trajectory would not be beneficial anymore. [8] and [6]
Moreover, there might be external factors affecting the plant behaviour and
not considered in the model and consequently using the given model might
not lead to the points that the actual system produces. Considering all of
these matters, one might consider a way to "monitor" the model in order to
tackle the deviation or unwanted disturbances during the time that simulation
is working. Having the means to monitor the model, it would be possible to
modify the input trajectory or some parts of the optimal control problem such
as relaxing a condition by a relaxation factor and so on. And by doing that,
the simulated model can always be kept as similar as the actual system and
even more, it can be kept as close as desired optimal condition. For instance
if the gas to oil ratio for one of the wells is changed, the controller (optimizer)
should be able to first see that change and second it should be able to give a
new optimal input trajectory to the plant in a way that the optimal conditions
are satisfied. Monitoring the system and act based on the changes is also called
"Feedback Control".

This chapter aims to present a constructive way to fill the gap between
the optimization and control by introducing Model Predictive Control (MPC)
framework. Furthermore, this chapter demonstrates the approach used to con-
struct a nonlinear program using the collocation method, as well as the software
package utilized to solve this huge NMPC system.

3.1 MPC Framework

Considering the real plant working over the time, some parts of the charac-
teristics of the plant, i.e. GOR might be affected by disturbances. Moreover,

23

24 Amirreza Zamani Meighani: An NTNU Thesis Document Class

measurement also can be subject to noises or measurement errors. So, one can
conclude that feedback control or monitoring the model and change the de-
cision periodically would be more effective [17]. As it can be guessed by the
name, The model predictive control (MPC) uses a model to predict the future
to decide for control input and produce an optimal input trajectory for a pre-
diction horizon of T = tf − t0 where t0 is the starting point and tf is the final
time. In addition, to be able to have a reliable MPC, one should provide not a
perfect, but a considerably accurate model for the MPC [18]. The procedure of
making decision for each step (as long as prediction horizon, T) of simulation
time and repeating the decision making until reaching the final time for simu-
lation horizon is called Model Predictive Control (MPC). Note that prediction
horizon is normally much shorter than simulation horizon.

k+N

Found by solving a
dynamic optimization problem

kt 1kt + 2kt + ... k Nt +

()u k

ˆ(1)z k +

1k Nt + +

(1)u k +

ˆ(2)z k +

2k Nt + +

(2)u k +)(ˆ kz𝑥(𝑘)

Figure 3.1: MPC procedure on the left and the order of computed optimal
input trajectory for each time step

As it can be seen from the Figure 3.1, MPC uses the past data from the
model and predicts the future as long as the prediction horizon is by solving a
dynamic optimization problem (OCP). One might use the simulation horizon as
prediction horizon and solve the OCP only once if they have the perfect model.
In most cases, finding the perfect model would be too expensive in time and
computation energy so that, an effective idea is to break the simulation horizon
into smaller pieces and solve the OCP several times. Each step would be called
as prediction horizon. Having the optimal trajectory by solving the OCP for
the time period of prediction horizon, one can use the first element of that
trajectory (first sample time, i.e. second or minute) and shift the prediction
horizon for the next turn and repeat the procedure until the end of simulation
horizon. This can be summarized in four main steps [17]:

• Take the system’s present state x̃0
• Use the state x̃0 predict the future by solving the optimization problem

for N steps called prediction horizon. 3. Apply the first part of resulted
optimal control trajectory uopt to the plant.

• Apply the first part of resulted optimal control trajectory uopt to the
plant.

• Take the new state from the system and shift the optimization horizon
one step forward and repeat the procedure.

The last step in the MPC is referred to as moving horizon control, because

Chapter 3: Problem Formulation 25

Figure 3.2: Moving horizon strategy shown for the first two steps [17]

of the allotment of the prediction time horizon T. See Figure 3.2 to see the
moving horizon strategy. Also, figure 3.3 illustrates the general procedure for
MPC to solve the OCP Nocedal and Wright [6].

xt′

xt

ut

t

t′ t′ +N

← Past Future →

Present

Plant

xt′

xt

ut′

t′

ut

Solution to the open loop
optimization problem at t = t′

(measured history)
(most recent measurement)
(control history)
(most recent control input)

(most recent measurement)
(predicted)
(predicted)

First control input
ut′ from solution

Measured
state at t′

Figure 4.1: Illustration of the MPC principle.

Figure 3.3: Illustration of the MPC principle [6]

The main benefit of model predictive control over single-step optimization
is that it combines feedback control with open loop optimization by demanding
a new solution from the open loop optimization based on future observed errors,
as seen in the algorithm below.

There are different choices for the objective function in MPC where it
can be minimization of the error between states and references or directly
controlling the profit of the plant. The first case would make a (setpoint)

26 Amirreza Zamani Meighani: An NTNU Thesis Document Class

Algorithm 2: State feedback MPC procedure

for t = 0,1,2,3,. . . do
Get the current state value from measurement data;
Solve the dynamic OCP on the prediction horizon T from t to t+N;
Apply the first control action ut on the plant;

end for

tracking MPC and the second case would result in having an Economic MPC
or Dynamic Real-time Optimization (DRO) which would have the objective
function in the form of what is shown in Equation (3.1). Hence the Economic
MPC. In this thesis, the goal is to control the gas lift well network plant with
an economic MPC.

Min

k=Nc1∑
k=0

cos t(xk, uk) +

k=Nc2∑
k=0

(uk − uk−1)R(uk − uk−1)

 (3.1)

Having the mentioned equation in 3.1, it should be noted that the coefficient
R should be as small as possible, but large enough to give a stable controller.
In other words, all the concern is on the cost function while the controller is
stable. The objective function for the well network plant is explained in the
next sections.

3.2 Nonlinear MPC

Considering the huge loads of constraints and stiff specification on the gas lifted
oil production plant as well as considerable as well as demanding economical
surveillance, one can find it highly non-linear. Having the plant as a non-linear
model, the controller turns to be non-linear too because it has the model inside
itself and it will be called as a Nonlinear Model Predictive Control, (NMPC).
The NMPC would have the same basics and rules as what is shown in Figure 3.3
but the model would be non-linear.

As it was mentioned in 2.2, one can write the gas lifted oil network as a
differential-algebraic system of equations in the following form:

ẋ = f(x, z, u, p)

g(x, z, u, p) = 0
(3.2)

Where the states and control input are assumed to be measurable. The

revenue of the plant is computed by the total amount of oil produced (
nw∑
i=0

ωpoi)

and the main cost is the gas lift usage. So, an NMPC like what is shown in
Equation (3.3) can be written to maximize the profit of the plant.

Chapter 3: Problem Formulation 27

minimize −
N−1∑
t=0

Jprofit + γ
N−1∑
t=0

∥∆u∥2 (3.3a)

subject to x− x0 = 0 , (3.3b)
ẋ(t)− f (x(t), z(t), u(t), p) = 0, t ∈ [t0, tf], (3.3c)
g (x(t), z(t), u(t), p) = 0, t ∈ [t0, tf], (3.3d)
nw∑
i=1

ωpgi ≤ ωpgmax , (3.3e)

xlow ≤ x(t) ≤ xhigh , (3.3f)

zlow ≤ z(t) ≤ zhigh , (3.3g)

ulow ≤ u(t) ≤ uhigh , (3.3h)

∆ulow ≤ ∆u(t) ≤ ∆uhigh (3.3i)

Where the profit function and ∆u are given in the following form:

Jprofit = αpo

nw∑
i=1

ωpoi − αgl

nw∑
i=1

ωgli (3.4)

∆ut = ut − ut−1 (3.5)

Note that in Equation (3.3), x, z, uandp are differential and algebraic states,
control input and parameters or characteristics of the wells. Parameters are
assumed to be constant during the time of simulation. Also, the objective
function in 3.3 implies the maximization of the costs in the plant while the
minimum amount of gas lift is used and all the constraints are satisfied. The
cost function also contains total oil produced in the whole system as revenue
and the gas lift usage as cost. αpo and αpo are the prices for oil and gas lift
respectively.

The bounds such as upper and lower bounds are considered for differen-
tial, algebraic and control input variables in order to prevent different parts of
the system from having too much or too less regarding their respective values.
Moreover, higher and lower bounds are defined for control input change regard-
ing the time (∆u). This would prevent the control input trajectory from having
big jumps and give a better trajectory in case of smoothness; However, physical
characteristics of valves in the plant might not handle immense changes and
because of that, the control trajectory should be smooth to certain levels.

Note that optimization problem 3.3 does not have any feedback control.
Hence it illustrates an open loop optimization a non-linear DAE. The loop can
be closed by using the MPC fashion like what is written below:

28 Amirreza Zamani Meighani: An NTNU Thesis Document Class

Algorithm 3: State feedback MPC procedure

for t = 0,1,2,3,. . . ,N-1 do
Get the current state value from measurement data;
Solve the dynamic OCP on the prediction horizon T from t to t+N;
Apply the first control action ut on the plant;

end for

3.3 Descretization of the OCP

The basics for direct collocation method was explained in Section 1.7.1. Since
the solvers used for solving optimization problems cannot handle the dynamic
optimization problems directly, one should use a method for translating the
dynamic optimization problem (OCP) such that the solver can take the prob-
lem and solve it to find the optimal input trajectory. The mentioned method
would be discretization of the DAE system and transforming the optimal con-
trol problem. The discretization of the gas lifted well network is done using
the direct orthogonal collocation [13]. This section aims to present a process
of discretization using the direct collocation method as well as transcription of
the gas lifted well network OCP.

Considering the OCP states and control variable, one can take the colloca-
tion method and discretize them all on the collocation interval t ∈ [tk, tk+1] ⊆
[t0, tf] where k ∈ [0, ...0, N−1], using a Kth order polynomial l. The polynomial
l is a function of coefficient τ ∈ [0, 1]. The formulation which results in having
the polynomial using a set of collocation points such as shifted Gauss–Legendre
or Radau is given below:

ℓk(τ) =
K∏

k=0,̸=j

τ − τk
τj − τk

(3.6)

Where the Table 3.1 can be used to find the coefficient τ based on the order
of the polynomial and type of the collocation points.

Also based on what is given in Biegler [13], the collocation and continuity
equation are given as below respectively:

Collocation equation:

K∑
j=0

xij
dℓj(τk)

dτ
= hif (xik, zik, uk, p, tik) , k = 1, ...,K (3.7)

Continuity equation:

xi+1,0 =
K∑
j=0

ℓj(1)zij (3.8)

Neglecting the proof (see [13]) section 10.2 for proof), the differential and

Chapter 3: Problem Formulation 29

Degree K Legendre Roots Radau Roots
1 0.500000 1.000000

2 0.211325
0.788675

0.333333
1.000000

3
0.112702
0.500000
0.887298

0.155051
0.644949
1.000000

4

0.069432
0.330009
0.669991
0.930568

0.088588
0.409467
0.787659
1.000000

5

0.046910
0.230765
0.500000
0.769235
0.953090

0.057104
0.276843
0.583590
0.860240
1.000000

Table 3.1: Collocation points for two different types of lagrangian polynomial
coefficients, shifted Gauss–Legendre and Radau roots

algebraic states (x , and z respectively) can be discretized using the collocation
method in the following form:

xk(t) =
K∑
j=0

ℓj(τ)xij (3.9a)

zk(t) =

K∑
j=0

ℓj(τ)zij (3.9b)

Note that the control inputs are assumed to be piece-wise constant in the
interval [tk; tk+1], which is given by:

u(t) = uk (3.10)

Summing up, the OCP is descretized into a finite dimensional nonlinear pro-
gramming broken into N uniformly spaced sample intervals in K = {1, · · · , N}.
This is done using the third order Radau collocation points which creates an
approximation of the system mentioned in Equation (3.2) as shown in Fig-
ure 3.4. The reason for choosing Radau collocation points is that the Radau
collocation selects a set of collocation points that includes the interval’s end
point. This is a beneficial trait for stiff systems [6].

Note that the index c ∈ C = 0, 1, 2, 3 is used to show three collocation
points and their initial state in each intervals [k, k+1]. Applying the mentioned

30 Amirreza Zamani Meighani: An NTNU Thesis Document Class

k k + 1

tk;0 tk;3 = tk+1;0tk;1 tk;2

k k + 1

tk;0 tk;3; tk+1;0tk;1 tk;2

xk;0

xk;1

xk;2

xk;3

x

z
zk;1

zk;2 zk;3

f(xk; zk; uk)

k k + 1

tk;0 tk+1;0tk;1 tk;2

u

Figure 3.4: Schematic illustration of third order orthogonal direct collocation
method using Radau pattern for positioning the collocation points. The figure
is representing the approximation of the dynamic system mentioned in 2.5 for
an interval [k, k + 1]. Note that by adding one extra collocation point for
differential states at tk,0, the shooting gap would be enforced to be zero and
the continuity of the states would be ensured. Also the control input u is
constant over each interval [k, k + 1] [15].

Chapter 3: Problem Formulation 31

technique, the discretized differential states x̃ = (xk,c|k ∈ K, c ∈ C) and the
algebraic ones z̃ = (zk,c|k ∈ K, c ∈ C) would then take the format shown below:

x̃ = [xT1,1 xT1,2 xT1,3 xT2,1 · · · xTN−1,3 xTN,1 xTN,2 xTN,3]T (3.11a)

z̃ = [zT1,1 zT1,2 zT1,3 zT2,1 · · · zTN−1,3 zTN,1 zTN,2 zTN,3]T (3.11b)

The combined states for nw wells in Equation (3.11a) at time instant k and
the collocation point c in the interval [k, k+1] are represented by xk,c. The final
state variables xk,3 and the beginning conditions of the following time interval
x0 must be equivalent to maintain state continuity across two successive time
intervals, where the vector of initial states at each interval is represented by:

x0 = [xT1,0 xT1,0 · · · xTN,0 xTN+1,0]T (3.12)

Moreover, as it is mentioned in 3.4, the discretized control inputs ũ =
(uk|k ∈ K) are expected to be piecewise constant during each sample interval
and so are not discretized at the collocation points. This is shown in Equa-
tion (3.13). Also, the parameters p in the system are assumed to be invariant
by time.

ũ = [uT1 uT2 · · · uTN]T (3.13)

The discretized system dynamics system at any time piece k can also be
written as:

F (x̃k, x
0
k, z̃k, ũk, p) = 0 (3.14)

The daily production optimization problem can be framed as a standard
NLP problem with N evenly spaced sampling intervals in K = {1, · · · , N} on a
prediction horizon from k = 1 to k = N once the system has been discretized
[15]. The following equations yield the vector of decision variables for the NLP
problem across this prediction horizon, as well as the discretized NLP:

θ =

[
· · · xTk,0︸︷︷︸

x0
k

xTK,1 . . . xTK,3︸ ︷︷ ︸
x̃k

zTK,1 . . . zTK,3︸ ︷︷ ︸
z̃k

uTK︸︷︷︸
ũk

· · ·
]T
(3.15)

32 Amirreza Zamani Meighani: An NTNU Thesis Document Class

minimize
θ

J = −
N∑
k=1

Jprofit + γ

N∑
k=1

∥∆u∥2 (3.16a)

subject to F (x̃k, x
0
k, z̃k, ũk, p) = 0, ∀k ∈ K.∀p ∈ U , (3.16b)

nw∑
i=1

ωpgi ≤ ωgmax , ∀i ∈ N , (3.16c)

xlow ≤ xk,c ≤ xhigh, ∀k ∈ K.∀c ∈ C, (3.16d)

zlow ≤ zk,c ≤ zhigh, ∀k ∈ K.∀c ∈ C, (3.16e)

ulow ≤ uk,c ≤ uhigh, ∀k ∈ K, (3.16f)

∆ulow ≤ ∆uk ≤ ∆uhigh, ∀k ∈ K, (3.16g)

xk,3 = x0k+1, ∀k ∈ K, (3.16h)
x1,0 = x0 (3.16i)

The objective function is constituted of the economic cost function which
is stated Equation (3.4) as well as the tuning parameter γ, which penalizes
the control effort. Equation (3.16c) is used to implement the total gas capacity
constraints, where ωgmax is the maximum gas capacity. The state constraints
Equation (3.16b) is used to create the discretized dynamic model. Upper and
lower bound constraints on differential and algebraic states, as well as upper
and lower bound constraints on decision variables, are applied at each colloc-
ation point and sample time, as demonstrated in Equations 3.16d to 3.16f.
Equation (3.16g) implements rate of change constraints on the decision vari-
ables. Equation (3.16h) implements the shooting gap restrictions to maintain
state continuity. Equation (3.16i) enforces the initial conditions. When it comes
to constrained optimization, the best approach is one with active gas capacity
constraint.

3.4 NMPC Framework

Throughout this thesis, a brief description of the whole plant and the equations
and dynamic system approximated to imitate the actual plant was given. In
Section 3.3, the optimal control problem (OCP), which was designed to control
the plant at the highest accessible profit, has been discretized to a minor finite-
dimensional non-linear optimization problem (NLP) to be able to be fed into a
non-linear solver. The problem has been turned to closed loop using the MPC
algorithm in order to manage (unpredicted) external factors to the plant and
control the plant in the best way.

From now, the model should be translated into an understandable com-
puter language and then it can be run as a simulation. This thesis is done
using the Julia programming language. Julia is a high-level, high-performance

Chapter 3: Problem Formulation 33

dynamic programming language that has been designed to contain general
programming purposes while having lots of well-suited tools for computational
science and numerical analysis. See Julia documentation for more details Julia
documentation user manual [19].

The enormous sized optimization problems can be coded and performed in
Julia with considerable speed in computation using the pre-loaded packages,
which can be used for defining the optimization problem, i.e. JuMP, (see JuMP
documentation [20]) or non-linear solvers such as IPopt [21]. This work is coded
in Julia using three main scripts and two auxiliary scripts all connected to
each other to simulate the actual plant using the model given in Chapter 2,
set up the optimizer to take the states from the model and return the optimal
input trajectory and a simulator to imitate the MPC fashion (closed-loop).
Auxiliary files are helping the three main scripts, designed to produce the M
matrix for collocation method (see 1.11), prepare and return the suitable set
of parameters depending on the number of wells or compute the initial steady
states optimizer and model. The NMPC is often used to provide set-points to a
lower regulatory layer, such as PI controllers (see Figure 1.12), which operate
the valves to maintain the plant operating at an optimal steady state. On
the other hand, the regulatory layer is not taken into account in this thesis.
Instead, the NMPC is employed to directly control the valves in the gas-lifted
oil network. To be more specified, the procedure of finding the optimal gas lift
trajectory for the gas lifted oil network can be described as below:

1. The steady-state values of x, z and u are given to the problem and as-
sumed to be optimal (planning the RTO is not considered in this thesis).

2. The NMPC takes the provided initial points for the states and control
input and solves the NLP to find the optimal input trajectory over the
prediction horizon. Afterwards, the NMPC gives the plant the first step
of the optimal trajectory.

3. The plant runs and solves the DAE system to find the states for the next
step and return them to the NMPC.

4. The simulator manages all these data transforms between the files to
simulate the closed-loop simulation for the system. It is also in charge
of data recording and creating proper matrices containing all differential
and algebraic states and optimal control sequences.

The results of the work is presented in the next chapter where each of them
has been discussed separately. Also, a brief description of the possible future
work is given in the end of next chapter.

Chapter 4

Results and Discussion

This chapter aims to illustrate the result of the work which has been done in
this thesis. Throughout the thesis, the model has been depicted and different
parts of it have been described. Also the optimization problem which can be
used in solver is introduced. The programming part of the work has been
done using the Julia programming language and the setup is used for studying
different aspects of the work, such as studying the effect of changing the key
parameters on the objective function or testing the NMPC files package in
order to see if it can handle the situation where a constraint changes. Briefly
mentioning, these studies are considered in this chapter:

• Open loop part

◦ Open loop response of the system
◦ Effect of Gas Lift on Production Rate

• Closed loop part

◦ Effect of Parameter GOR on Production Rate
◦ Effect of Parameter PI on Production Rate
◦ Effect of Changing the Maximum Gas Constraint on Production

Rate

The work starts with finding the steady states of the plant which can be
found using he model and initial points given to the problem such as initial
points for three differential states and the initial value for gas lift. Once the
steady states of the plant are found, the optimizer would start to solve the NLP
to produce the optimal input (gas lift) trajectory. Then the first part of the
input sequence is fed into the plant model file which solves the ODE system to
find the states for the next time step. Afterwards, the states would be taken
back to the optimizer to close the loop and the procedure will be repeated until
the time reached the simulation time. In the codes configuration it has been
tried to make everything general so that the user can change the parameters as
an input to the function. Some of the most important ones of these parameters
can be mentioned as:

35

36 Amirreza Zamani Meighani: An NTNU Thesis Document Class

• Number of the wells to make it more sufficient for further studies where
the system can have more or less than three wells.

• Several time intervals such as the prediction horizon for optimizer, sim-
ulation time, the integration time for the plant model so that the simu-
lation can be done in different ways

• For more information, see the codes in appendices

Solving the NLP in optimizer has been done using the JuMP package in
Julia which makes defining the problem considerably easier since the problem
can be defined in multi dimensional matrices so that all the differential states
containing the interior points (collocation point), data for each wells of the
information of the states on each finite elements can be defined in one matrix.
Once the optimization problem is defined using the JuMP, it can be solved
using the IPopt plugin which takes the NLP and returns the optimal input
trajectory. Furthermore, the ODE system which is an approximation of the
actual oil production plant is solved using the BS3() solver.

4.1 Open Loop Simulation

Setting the NMPC program up, one can start the numerical studies by checking
the open loop simulation of the plant. This can be done using the plant file
which is basically an integrator that can solve the ODE system and find the
states for the next time step. The open loop simulation is done using a step
change on the gas lift flow rate which is the input of the plant. The open loop
simulation is done when the wells have different reservoir pressure so that the
stability of the system can be tested. The result of the test is illustrated in
Figure 4.1 where it shows the total oil production trajectory (the subplot in
the middle) as well as total gas produced (the subplot in the bottom) and the
gas lift flow rate which has a step change.

Symbol Description Well 1 Well 2 Well 3 units

GOR Gas oil ratio 0.1 0.1 0.1 -
PI Productivity index 1.2 2.2 3.2 Kg/Pa/S
Pres Reservoir pressure 140 150 160 bar

Table 4.1: Parameters used in open-loop step response on gas injection valves
for wells with varying reservoir pressure

The step change test is done using the initial gas lift and differential states
values for each well and a jump in the gas lift flow rate to the 60% of the
maximum value of the gas lift (when the valves are fully open). Figure 4.1
shows that the system reaches the steady states after around 6 minutes. Also
the effect of increasing the gas lift is visible where increasing the gas lift flow
rate increase the total produced gas in the system. It also results in increasing

Chapter 4: Results and Discussion 37

Figure 4.1: The open loop step change test is represented by the three shown
plots. On the top, gas lift flow rate is shown which has a jump form 4 [Kg/s]
to 6 [Kg/s]. In the middle, the total produced oil represented and the in the
last subplot in the bottom, the total produced gas is illustrated.

the total produced oil but accumulation of the gas inside the wells would have
negative effects on the production rates. This is explained more deeply in the
next sections. All in all, one can conclude that the resulting model is stable
and it responds to the changes correctly. Some of the important parameters
used as wells characteristics are shown in Table 4.1.

4.2 Effect of Gas Lift on Production Rate (in Open
Loop)

Testing the model in open loop, one can examine the response of the system to
changes in system input. In the modelled oil production network, the gas lift
flow rate is the only input to the system which can affect the production rate
considerably. In this part it is tried to show the fact that increasing the gas lift
is not always beneficial for the plant and raising the flow rate too much would
cost a lot for the plant since it would result in less production rate. Figure
<XX> is showing the effect of increasing the gas lift flow rate to the wells
with respect to the total oil produced. The gas lift is increased from 4 [Kg/s]
to 8 [Kg/s] and the total produced oil from the plant is recorded. As it can be
seen from the figure, after a certain value for gas lift flow rate, it would not
be beneficial for the production rate to increase the gas lift more than before.
Figure 4.2 shows that the production rate falls down after around 5.5 [Kg/s]
of gas lift injected to the plant. The reason for this effect is that increasing
the gas lift inside the well would reduce the pressure difference between the
reservoir and bottom hole of the well since it is the driving force for the mass
inside the well to be able to go up along the the well to the riser and finally to

38 Amirreza Zamani Meighani: An NTNU Thesis Document Class

the manifold. The curve is explained by the hydro-static pressure drop, which
is insufficient to compensate for the increased friction loss caused by the rise
in gas mass in the well tubing.

4 5 6 7 8

54.0

54.5

55.0

55.5

56.0

56.5

Gas Lift [Kg/s]

To
ta

l P
ro

du
ce

d
O

il
[K

g/
s]

Effect of Gas Lift on Oil Production

Figure 4.2: Increasing the gas lift flow rate with respect to the total oil
production is represented. On the horizontal axis, the flow rate for gas lift in
each well is depicted while the vertical axis illustrates the total oil production
flow rate

It can also be shown that by increasing the gas lift, the driving force for the
mass inside the wells which is the pressure difference ∆P = Pres − Pbh would
have the same behavior as the total oil produced. In fact the reason for dropping
the production rate is that, after a certain value, increasing the gas lift would
only increase the bottom hole pressure which results in reducing the pressure
drop between the reservoir and bottom hole of the well and consequently having
less driving force would kill the production rate. Altogether, there is always an
optimum for gas lift flow rate and it cannot be increased forever since it would
not be advantageous for the system

4.3 Closed Loop Simulation

In the real processes, the steady state cannot be achieved forever and the
processes run in dynamic state. Passing the open loop tests for the system, one
can close the loop by adding the feedback effect. The close loop in oil production
network is achieved by introducing the NMPC framework and simulate the
real plant by using the MPC algorithm mention in previous parts. The first
study in closed-loop part is to test the controller if it can solve the NLP and
maximize the profit of the plant (see 3.4). The plant ran for a simulation time
of 10 minutes to see the NMPC behavior. Also the bounds for the NLP is
applied to the optimization problem using a 4th order collocation method. The

Chapter 4: Results and Discussion 39

maximum possible gas into the plant (see 3.16c)is set to 28 [Kg/s]. The results
are shown in Figure 4.3 where the results for each well separately (on the left)
and summation of all three wells (on the right) are visible.

Figure 4.3: The closed loop response of the NMPC to the oil production well
network. Left side has the data for each well separately naming w1, w2 and
w3. On the right, the data for summation of three wells can be found. The
maximum allowed flow rate for total gas lift usage and produced gas are 30
and 28 [Kg/s] respectively

Taking a look at the Figure 4.3, one can comprehend that the NMPC was
successful controlling the plant to maximize the profit while taking care of all
constraints. Also the maximum produced gas constraint is active after around
2 minutes which shows that the answer for profit of the plant is optimal. The
gas lift trajectory is oscillatory because the NMPC tries to maximize the profit
of the plant while it has constraints on the way and the only mean to do these
works is the gas lift. In other words the NMPC should maximize ωpo while
maintaining the restriction on ωpg. Considering the presented subplots for the
produced oil in the system (subplots in the middle), one can say that because of
the different productivity indices for three wells, the NMPC prefers to prioritize
the attention on the wells based on the PI factor since the GOR in all wells is
assumed to be equal. In other words, well number 3 which has the highest PI
factor (3.2 KG/bar/s) always has the highest share from gas lift and it can be
seen from the produced oil plot that the well number three made the highest
amount of oil among the others. Well number 2 and 1 come after well number
3 respectively. Also, for the behavior of the total produced oil plot, one can
argue that it is obvious that the total oil production drops after a while but
the profit which has been made through making that jump is higher than the

40 Amirreza Zamani Meighani: An NTNU Thesis Document Class

case that optimizer does not make the overshoot and keep the steady state
value of the total oil production at somewhere higher than the presented case.
In other words, it is worth it to have a lower steady state value but have a
considerable amount of produced oil in the beginning. It is also advantageous
for total produced gas limitation since in the beginning the well network can
accept having gas inside itself without having the total produced gas constraint
active but passing the the time, the capacity for having gas inside the system
reduces and it would be better to have less gas inside the wells.

4.4 Effect of Parameter GOR on Production Rate

In this section and the next section (4.5), the effect of changing the two most
important parameters among the system characteristics which are Gas Oil Ra-
tio (GOR) and productivity index PI is considered. In this section the para-
meter GOR has been changed to see the effect of that change on the production
rate and consequently on the profit made in the plant. To have the result more
visible and change only one factor at a time, the GOR parameter is assumed to
be equal for all three wells during the examination and the set of GOR para-
meters is reduced by 50% to see the effect on the oil and gas production as
well as the usage of gas lift for each case. To achieve that goal, the simulation
is done twice, first with GOR = [0.1, 0.1, 0.1] and results were recorded. The
second time, the same test was done but with GOR = [0.05, 0.05, 0.05] which
was 50% lower than the first case. The results are shown in Figure 4.4 where
the three subplots are presenting the results of two experiments by showing
the gas lift usage, total oil produced and total gas produced respectively.

Figure 4.4: Representation of the effect of changing the GOR factor on the
production rate. GOR has the value of 0.1 for all wells in blue line while it
takes the value of 0.05 in red lines

Having Figure 4.4in mind, One can conclude that reducing the GOR would

Chapter 4: Results and Discussion 41

not be beneficial for the system since it reduces the pressure difference between
the reservoir and bottom hole of the well. As it can be seen from the total pro-
duced oil plot, production rate for the case where GOR is 0.05 is considerably
less than the case with GOR 0.1 for all wells. It is also visible that having
less gas to oil ratio would result in later activation of the total produced gas
constraint which is true because the amount of gas present in the system in
the first case is much less than the second case. Therefore, it would take longer
for the system to reach the total gas limitation.

4.5 Effect of Parameter PI on Production Rate

The productivity index is the other important factor in the oil production plant
which determines the possible amount of oil produced from a well compared to
another one. In this section, changing this factor in order to capture the effect
of it on the production rate is considered. As it was mentioned in the previous
section, it has been tried to keep everything but the wanted factor the same
before and after changing the factor in order to see its outcome more clearly.
Figure 4.5 shows the experiment results where two cases were experimented:
one with the nominal PI values PI = [1.2, 2.2, 3.2] and the second one with
5% deduction in the values (PI = [1.14, 2.09, 3.04]). The results can be shown
as what is presented in Figure 4.5:

1.14, 2.09, 3.04

Figure 4.5: Illustration of the effect of changing the PI factor on the pro-
duction rate. The well number 3 has the highest PI factor among the other
wells which leads to have the greatest share in the total oil production

As it is obvious from the presented figure, less productivity index would
results in less production rate. The steady state value for deducted case is
around 30 [Kg/s] while the nominal case have the steady state value of around
50 [Kg/s]. Another way to examine this effect is to check the effect of having
different productivity indices for wells in the network. As it was mentioned

42 Amirreza Zamani Meighani: An NTNU Thesis Document Class

before, having the higher productivity factor would result in producing more
oil as it can be seen from Figure ... where three wells with nominal PI values
are shown after a closed loot experiment.

Figure 4.6: Illustration of the effect of the parameter PI on the production
rate. Blue lines are the nominal values while the red ones have been reduced
by 5% compared to the nominal case

4.6 Effect of Changing the Maximum Gas Constraint
on controller behavior

In this section, testing the ability of the controller in facing constraint changing
is considered. As an experiment, the plant was run for 15 minutes with chan-
ging the maximum allowed produced gas limitation in between. The nominal
constraint for total produced gas was 28 [KG/s] and it was reduced by 5% to
capture the behavior of the NMPC to move the plant to somewhere with less
allowed produced gas. The results for this experiment is shown in Figure 4.7
where the data for both separated wells and total production is depicted.

As it can be captured from the figure 4.7, the NMPC was successful in
controlling the maximum produced gas from the system while it made the
best possible profit out of the system.

4.7 Possible Future Work

As it was also mentioned in the beginning of this thesis, all the uncertainties
on parameters are neglected in this work and it is assumed that the uncertain
parameters such as GOR would take their expected values. While in the actual
plant it might not possible all the time. Because of that, the writer of this thesis
has been doing an extra work as a continuation to this work in order to change

Chapter 4: Results and Discussion 43

Figure 4.7: Illustration of the effect of Changing the maximum allowed pro-
duced gas limitation on the controller behavior

the NMPC to a Multistage Scenario-based Economic NMPC which can take
all the possibilities for uncertain parameter(s) and create the scenario tree for
the case. Completing that code, it can be attached to this plant to include the
uncertainties as well. Moreover, the writer have the thought in mind to also
apply decomposition algorithms on the Multistage Scenario-based Economic
NMPC in order to address the probable long computation time for solving the
problem. The code for multi stage scenario based NMPC is also attached to
the appendices section. Note that the code is under construction and it might
have several problems solving the oil production network problem.

Chapter 5

Conclusion

In this thesis, optimization a gas lifted oil production network is considered.
The model has been defined as as DAE system which is imported into the julia
programming language to simulate the actual model. Also the optimal control
problem for the plant is created in order to maximize the profit of the plant.
In other words, creating an economic model predictive control for the oil pro-
duction network is considered. The optimal control problem is descretized and
translated in a way that it is understandable for numerical solver in julia. To
achieve that goal, the fourth order collocation method is taken into considera-
tion to translate the dynamics of the system for julia in a way that a numerical
method can solve that. In other words, the optimal control problem has been
changed to a non-linear programming and fed into julia so that the numerical
solver such as IPopt can handle it. Furthermore, the model for the plant is
coded in julia and transformed to an ordinary differential system of equations
for simplicity. The model is solved using the BS3() solver.The approach to
simulate the NMPC procedure can be mentioned as below:

The initial values for the problem are given so that the steady state values
can be found using the model integrator. Then the optimizer can solve an
optimization problem over a prediction horizon that maximizes the profit of
the plant as well as taking care of all constraints in the system. Afterwards,
the modelled plant will take the first part of the optimal control sequence and
solve the ODE system to find the states for the next time steps. The states for
the next time step is fed into the optimizer again and the procedure will be
repeated until it reaches the end point which is the simulation time.

In order to have the model tested for open loop and NMPC work, it has
been used in different ways to capture different aspects of the plant such as
changing important factors in the plant and recording the effect of that on
the production rate. Or testing the NMPC in case of changing a constraint
for instance maximum allowed produced gas. The results are presented and
discussed in detail in the respective chapters.

All in all, the simulation shows that the model is a good approximation
of the actual plant while the NMPC does not have any set point and it only

45

46 Amirreza Zamani Meighani: An NTNU Thesis Document Class

maximizes the profit of the plant. Also using the julia programming language
made the computation of the results faster and it made the problem easier
to be written and coded considering amazing packages pre-loaded in the pro-
gramming language. The studies in this chapter led the writer to consider
continuing the work after the master program as an extra work which is to in-
clude uncertainties to the problem and decomposition algorithm for addressing
the computation time since the size of the problem is considerably large.

Bibliography

[1] A. Plucenio, D. Pagano, E. Camponogara, A. Traple and A. Teixeira,
‘Gas-lift optimization and control with nonlinear mpc,’ IFAC Proceed-
ings Volumes, vol. 42, no. 11, pp. 904–909, 2009, 7th IFAC Symposium on
Advanced Control of Chemical Processes, issn: 1474-6670. doi: https:
//doi.org/10.3182/20090712-4-TR-2008.00148. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474667015303918.

[2] G. O. Eikrem, O. M. Aamo and B. A. Foss, ‘On Instability in Gas Lift
Wells and Schemes for Stabilization by Automatic Control,’ SPE Pro-
duction & Operations, vol. 23, no. 02, pp. 268–279, May 2008, issn:
1930-1855. doi: 10.2118/101502-PA. eprint: https://onepetro.org/
PO/article-pdf/23/02/268/2108429/spe-101502-pa.pdf. [Online].
Available: https://doi.org/10.2118/101502-PA.

[3] A. Satter, G. Iqbal and J. Buchwalter, Practical enhanced reservoir en-
gineering: assisted with simulation software. PennWell Books, LLC, 2008.

[4] M. L. Hammadih, K. Al-Hosani and I. Boiko, ‘Soft sensing in deep wells
within artificial gas lift technology,’ Nov. 2015. doi: 10.2118/177731-MS.

[5] D. Krishnamoorthy, J. Ryu and S. Skogestad, ‘A dynamic extremum
seeking scheme applied to gas lift optimization,’ IFAC-PapersOnLine,
vol. 52, no. 1, pp. 802–807, 2019, 12th IFAC Symposium on Dynamics and
Control of Process Systems, including Biosystems DYCOPS 2019, issn:
2405-8963. doi: https://doi.org/10.1016/j.ifacol.2019.06.160.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2405896319302472.

[6] J. Nocedal and S. Wright, Numerical optimization. Springer Science &
Business Media, 2006.

[7] B. Foss and T. A. N. Heirung, ‘Merging optimization and control,’ Lecture
Notes, Mar. 2016. [Online]. Available: https://www.researchgate.net/
publication/301685613_Merging_Optimization_and_Control.

[8] M. Diehl and S. Gros, ‘Numerical optimal control,’ Optimization in En-
gineering Center (OPTEC), 2011.

[9] J. Jäschke, ‘Dynamic optimization for mpc,’ Lecture Notes, Sep. 2020.

47

https://doi.org/https://doi.org/10.3182/20090712-4-TR-2008.00148
https://doi.org/https://doi.org/10.3182/20090712-4-TR-2008.00148
https://www.sciencedirect.com/science/article/pii/S1474667015303918
https://doi.org/10.2118/101502-PA
https://onepetro.org/PO/article-pdf/23/02/268/2108429/spe-101502-pa.pdf
https://onepetro.org/PO/article-pdf/23/02/268/2108429/spe-101502-pa.pdf
https://doi.org/10.2118/101502-PA
https://doi.org/10.2118/177731-MS
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.06.160
https://www.sciencedirect.com/science/article/pii/S2405896319302472
https://www.sciencedirect.com/science/article/pii/S2405896319302472
https://www.researchgate.net/publication/301685613_Merging_Optimization_and_Control
https://www.researchgate.net/publication/301685613_Merging_Optimization_and_Control

48 Amirreza Zamani Meighani: An NTNU Thesis Document Class

[10] M. F. Dlima, ‘Nonlinear model predictive control of gravity separators,’
M.S. thesis, NTNU, 2017.

[11] M. Osborne, ‘On shooting methods for boundary value problems,’ Journal
of Mathematical Analysis and Applications, vol. 27, no. 2, pp. 417–433,
1969, issn: 0022-247X. doi: https://doi.org/10.1016/0022-247X(69)
90059-6. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0022247X69900596.

[12] C. Kirches, ‘Fast numerical methods for mixed-integer nonlinear model-
predictive control,’ Ph.D. dissertation, Heidelberg Graduate School of
Mathematical and Computational Methods for Sciences, 2010.

[13] L. T. Biegler, Nonlinear Programming. Society for Industrial and Ap-
plied Mathematics, 2010. doi: 10.1137/1.9780898719383. eprint: https:
//epubs.siam.org/doi/pdf/10.1137/1.9780898719383. [Online]. Avail-
able: https://epubs.siam.org/doi/abs/10.1137/1.9780898719383.

[14] S. Skogestad, ‘Plantwide control: The search for the self-optimizing con-
trol structure,’ Journal of Process Control, vol. 10, no. 5, pp. 487–507,
2000, issn: 0959-1524. doi: https://doi.org/10.1016/S0959-1524(00)
00023-8. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0959152400000238.

[15] D. Krishnamoorthy, B. Foss and S. Skogestad, ‘Real-time optimization
under uncertainty applied to a gas lifted well network,’ Processes, vol. 4,
no. 4, p. 52, 2016.

[16] D. Krishnamoorthy, K. Fjalestad and S. Skogestad, ‘Optimal operation
of oil and gas production using simple feedback control structures,’ Con-
trol Engineering Practice, vol. 91, p. 104 107, 2019.

[17] S. H. Yahia, ‘Real time optimization and nonlinear model predictive con-
trol of a gas lifted oil network,’ M.S. thesis, NTNU, 2018.

[18] A. Zamani Meighani, Developing an mpc package with julia programming
language, specialization project,ntnu, 2020.

[19] Julia documentation user manual, https://docs.julialang.org/en/
v1/, Accessed: 2022-01-01.

[20] JuMP documentation user manual, https://jump.dev/JuMP.jl/stable/,
Accessed: 2022-01-01.

[21] Ipopt documentation user manual, https : / / github . com / jump - dev /
Ipopt.jl, Accessed: 2022-01-01.

https://doi.org/https://doi.org/10.1016/0022-247X(69)90059-6
https://doi.org/https://doi.org/10.1016/0022-247X(69)90059-6
https://www.sciencedirect.com/science/article/pii/0022247X69900596
https://www.sciencedirect.com/science/article/pii/0022247X69900596
https://doi.org/10.1137/1.9780898719383
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719383
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719383
https://epubs.siam.org/doi/abs/10.1137/1.9780898719383
https://doi.org/https://doi.org/10.1016/S0959-1524(00)00023-8
https://doi.org/https://doi.org/10.1016/S0959-1524(00)00023-8
https://www.sciencedirect.com/science/article/pii/S0959152400000238
https://www.sciencedirect.com/science/article/pii/S0959152400000238
https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/
https://jump.dev/JuMP.jl/stable/
https://github.com/jump-dev/Ipopt.jl
https://github.com/jump-dev/Ipopt.jl

Appendix A

Additional Material

Parameter Units Well 1 Well 2 Well 3

Lw [m] 1500 1500 1500
Hw [m] 1000 1000 1000
Dw [m] 0.121 0.121 0.121
Lbh [m] 500 500 500
Hbh [m] 500 500 500
Dbh [m] 0.121 0.121 0.121
La [m] 1500 1500 1500
Ha [m] 1000 1000 1000
Da [m] 0.189 0.189 0.189
ρ0 [Kg m^-3] 800 800 800
Civ [m^2] 0.1E-3 0.1E-3 0.1E-3
Cpc [m^2] 2E-3 2E-3 2E-3
Pr [bar] 150 150 150
PI [K/s/bar] 1.2 2.2 3.2
Ta [C] 28 28 28
Tw [C] 32 32 32
GOR [Kg/Kg] 0.1 0.1 0.1

Table A.1: Parameter used in the system. Based on the specific experiments,
some of the might have been used with different values which in that case, it
is explained in the respective section.

A.1 Julia Codes

For the last version of the codes, please see:
https : //github.com/Amirrezz94/GasLiftF inal

49

A Plant.jl

1 include("Parameters.jl")

2

3 using DifferentialEquations

4 using Plots

5 using DataInterpolations

6

7 function Plant(Nw, U_opt, States, t_min)

8 if Nw == 1

9 par = WellPar1()

10 @unpack_WellPar1 par

11 elseif Nw == 2

12 par = WellPar2()

13 @unpack_WellPar2 par

14 elseif Nw == 3

15 par = WellPar3diff()

16 @unpack_WellPar3diff par

17 else

18 println("Nw must be either 1 or 2 or 3!")

19 #More data can be added in Parameters.jl

20 end

21

22 ##function

23 function Gas_Lift_Model(dx,x,p,t)

24 ## mass flow rates

25 _gl = p(t)

26 m_ga = x[1:Nw, 1] # mass of gas in annulus

27 m_gt = x[1:Nw, 2] # mass of gas in tubing

28 m_ot = x[1:Nw, 3] # mass of oil in tubing

29 ## Algabraic Equations

30 P_a = 1e-5*(((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga.*1e3) +

(Mw./(R.*T_a).*((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga.*1e3)).*9.81.*H_a)

annulus pressure

↪→

↪→

31 _a = 1e-2*(Mw./(R.*T_a).*P_a*1e5) # gas, in annulus

32 P_wh = 1e-5*(((R.*T_w./Mw).*(m_gt*1e3./(L_w.*A_w + L_bh.*A_bh .- m_ot.*1e3./))) -

((m_gt*1e3+m_ot*1e3) ./ (L_w.*A_w)).*9.81.*H_w./2) # wellhead pressure↪→

33 rho_m = 1e-2*(((m_gt*1e3 + m_ot*1e3).*P_wh*1e5.*Mw.*) ./ (m_ot*1e3.*P_wh*1e5.*Mw +

.*R.*T_w.*m_gt*1e3)) # mixture, in tubing↪→

34 _pc = C_pc.*sqrt.(rho_m*1e2.*(P_wh*1e5 .- P_m*1e5)) # total flow through choke

35 P_wi = 1e-5*((P_wh*1e5 + 9.81./(A_w .* L_w) .* (m_ot*1e3+m_gt*1e3 .- .* L_bh .*

A_bh) .* H_w + 128*mu_oil .* L_w .* _pc ./(3.141*D_w .^ 4 .*((m_gt*1e3 +

m_ot*1e3) .* P_wh * 1e5 .* Mw .*) ./ (m_ot*1e3 .* P_wh*1e5.*Mw + .* R .* T_w

.* m_gt * 1e3))))

↪→

↪→

↪→

36 _iv = C_iv .*sqrt.(_a*1e2.*(P_a*1e5 - P_wi*1e5))

37 _pg = (m_gt*1e3./(m_gt*1e3+m_ot*1e3)).*_pc # produced gas rate

38 _po = (m_ot*1e3./(m_gt.*1e3+m_ot.*1e3)).*_pc # produced oil rate

39 P_bh = 1e-5*(P_wi*1e5 .+ *9.81.*H_bh + 128*mu_oil.*L_bh.*_po./(3.14 * D_bh .^4 .*

))↪→

40 _ro = (PI)*1e-6.*(Press_r*1e5 .- P_bh*1e5)

41 _rg = 1e1*GOR.*_ro

42 ## Differential Equations

43 dx[1:Nw, 1] = (_gl - _iv)*1e-3

44 dx[1:Nw, 2] = (_iv + _rg*1e-1 - _pg)*1e-3

45 dx[1:Nw, 3] = (_ro - _po)*1e-3

46 end

1

47

48 tspan = (0.0, t_min*60)

49 t_points = collect(tspan[1]:4:tspan[2])

50

51 gas_lift_1 = ConstantInterpolation(U_opt[1,:],t_points)

52 gas_lift_2 = ConstantInterpolation(U_opt[2,:],t_points)

53 gas_lift_3 = ConstantInterpolation(U_opt[3,:],t_points)

54

55 p_fun(t) = [gas_lift_1(t), gas_lift_2(t), gas_lift_3(t)]

56

57 # I assumed U_opt is [1:3,1:16]

58 #Problem Loading

59 prob = ODEProblem(Gas_Lift_Model, States[:x0], tspan, p_fun)

60

61 #Solve

62 sol = DifferentialEquations.solve(prob, BS3(),saveat=4)

63 # sol = DifferentialEquations.solve(prob,saveat=4)

64 #storing the trajectories

65 temp_1 = Array(sol)[1,:,:]

66 temp_2 = Array(sol)[2,:,:]

67 temp_3 = Array(sol)[3,:,:]

68 m_ga_profile = [temp_1[1,:]';temp_2[1,:]';temp_3[1,:]']

69 m_gt_profile = [temp_1[2,:]';temp_2[2,:]';temp_3[2,:]']

70 m_ot_profile = [temp_1[3,:]';temp_2[3,:]';temp_3[3,:]']

71

72

73 U_profile = zeros(3,length(t_points))

74 for i =1:length(t_points)

75 U_profile[:,i] = p_fun(t_points[i])

76 end

77

78 ##==

79 # m_ga0 = sol.u[end][:, 1]

80 # m_gt0 = sol.u[end][:, 2]

81 # m_ot0 = sol.u[end][:, 3]

82 state0 = [m_ga_profile[:,end] m_gt_profile[:,end] m_ot_profile[:,end]]

83 # state0 = [temp_1[:,end] temp_2[:,end] temp_3[:,end]]

84 ##

85 # dxi =zeros(Nw,3)

86 P_a = 1e-5*(((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga_profile.*1e3) +

(Mw./(R.*T_a).*((R.*T_a./(V_a.*Mw) +

9.81.*H_a./V_a).*m_ga_profile.*1e3)).*9.81.*H_a) # annulus pressure

↪→

↪→

87 _a = 1e-2*(Mw./(R.*T_a).*P_a*1e5) # gas, in annulus

88 P_wh = 1e-5*(((R.*T_w./Mw).*(m_gt_profile*1e3./(L_w.*A_w + L_bh.*A_bh .-

m_ot_profile.*1e3./))) - ((m_gt_profile*1e3+m_ot_profile*1e3) ./

(L_w.*A_w)).*9.81.*H_w./2) # wellhead pressure

↪→

↪→

89 rho_m = 1e-2*(((m_gt_profile*1e3 + m_ot_profile*1e3).*P_wh*1e5.*Mw.*) ./

(m_ot_profile*1e3.*P_wh*1e5.*Mw + .*R.*T_w.*m_gt_profile*1e3)) # mixture, in

tubing

↪→

↪→

90 _pc = C_pc.*sqrt.(rho_m*1e2.*(P_wh*1e5 .- P_m*1e5)) # total flow through choke

91 P_wi = 1e-5*((P_wh*1e5 + 9.81./(A_w .* L_w) .* (m_ot_profile*1e3+m_gt_profile*1e3 .-

.* L_bh .* A_bh) .* H_w + 128*mu_oil .* L_w .* _pc ./(3.141*D_w .^ 4

.*((m_gt_profile*1e3 + m_ot_profile*1e3) .* P_wh * 1e5 .* Mw .*) ./

(m_ot_profile*1e3 .* P_wh*1e5.*Mw + .* R .* T_w .* m_gt_profile * 1e3))))

↪→

↪→

↪→

92 _iv = C_iv .*sqrt.(_a*1e2.*(P_a*1e5 - P_wi*1e5))

93 _pg = (m_gt_profile*1e3./(m_gt_profile*1e3+m_ot_profile*1e3)).*_pc # produced gas rate

94 _po = (m_ot_profile*1e3./(m_gt_profile.*1e3+m_ot_profile.*1e3)).*_pc # produced oil

rate↪→

95 P_bh = 1e-5*(P_wi*1e5 .+ *9.81.*H_bh + 128*mu_oil.*L_bh.*_po./(3.14 * D_bh .^4 .*))

96 _ro = (PI)*1e-6.*(Press_r*1e5 .- P_bh*1e5)

97 _rg = 1e1*GOR.*_ro

98 dx1 = (U_profile - _iv)*1e-3

99 dx2 = (_iv + _rg*1e-1 - _pg)*1e-3

2

27 U_opt, _po, _pg, obj = Plant_optimizer(U_opt, t_min_o, t_min_p, Nw, Initial, p,

_gl, , false);↪→

28 Inits = Plant(Nw, U_opt, Initial, t_min_p);

29

30 U_opt_hist = U_opt;

31 _po_profile = Inits[:_po0];

32 _pg_profile = Inits[:_pg0];

33

34

35

36 for k in 2:5

37 U_opt, _po, _pg,obj = Plant_optimizer(U_opt, t_min_o, t_min_p, Nw, Inits,

p, _gl, , false);↪→

38 U_opt_hist = hcat(U_opt_hist, U_opt[:, 2:end]);

39 Inits= Plant(Nw, U_opt, Inits, t_min_p);

40

41 _po_profile = hcat(_po_profile, Inits[:_po0][:, 2:end]);

42 _pg_profile = hcat(_pg_profile, Inits[:_pg0][:, 2:end]);

43 end

44 for k in 6:10

45 U_opt, _po, _pg,obj = Plant_optimizerr(U_opt, t_min_o, t_min_p, Nw,

Inits, p, _gl, , false);↪→

46 U_opt_hist = hcat(U_opt_hist, U_opt[:, 2:end]);

47 Inits= Plant(Nw, U_opt, Inits, t_min_p);

48

49 _po_profile = hcat(_po_profile, Inits[:_po0][:, 2:end]);

50 _pg_profile = hcat(_pg_profile, Inits[:_pg0][:, 2:end]);

51 end

52 for k in 11:15

53 U_opt, _po, _pg,obj = Plant_optimizer(U_opt, t_min_o, t_min_p, Nw, Inits,

p, _gl, , false);↪→

54 U_opt_hist = hcat(U_opt_hist, U_opt[:, 2:end]);

55 Inits= Plant(Nw, U_opt, Inits, t_min_p);

56

57 _po_profile = hcat(_po_profile, Inits[:_po0][:, 2:end]);

58 _pg_profile = hcat(_pg_profile, Inits[:_pg0][:, 2:end]);

59 end

60

61

62 println("Simulation has ended!")

63

64 ## plotting

65

66 plotlyjs()

67 gr()

68 t_points = collect(0:4:t_min_s*60)

69 Max_Gas = vec(hcat(28*ones(1, 15*5 + 1), 25*ones(1, 15 * 5), 28*ones(1, 15 * 5)))

70 p1=plot(t_points/60,U_opt_hist', linetype=:steppre, title="gas lift",label=["well1"

"well2" "well3"])↪→

71 p_po=plot(t_points/60,_po_profile', title="Produced oil",label=false)

72 p_pg=plot(t_points/60,_pg_profile', title="Produced gas",xlabel = "Time

(min)",label=false)↪→

73 fig1 = plot(p1,p_po,p_pg , layout = (3, 1))

74 ##

75 t_points = collect(0:4:t_min_s*60)

76 p1=plot(t_points/60, sum(U_opt_hist[i,:] for i in 1:Nw) , linetype=:steppre,title="gas

lift",label="All wells together",color = :bluesreds, legend = (0.4, 0.3))↪→

77 p_po=plot(t_points/60, sum(_po_profile[i,:] for i in 1:Nw) ,

linetype=:steppre,title="Total produced oil",label=false,color = :bluesreds)↪→

78 p_pg=plot(t_points/60, sum(_pg_profile[i,:] for i in 1:Nw) , linetype=:steppre,xlabel =

"Time (min)",label=false,color = :bluesreds)↪→

79 p_pg=plot!(t_points/60, Max_Gas , linetype=:steppre,title="Total produced gas",xlabel =

"Time (min)",label=" Maximum allowed gas", linestyle=:dash, legend = (0.4, 0.3))↪→

4

80 fig2 = plot(p1,p_po,p_pg , layout = (3, 1))

81

82 fig3 = plot(fig1, fig2 , layout = (1, 2), yaxis="[kg/s]", yguidefontsize=7)

83

84 savefig(fig3, "Figures//11Jan//Results_part4.pdf")

85

86

87

88

89 #p1=plot(x,[ua u],xlabel = "x", ylabel = "u", color = [:deepskyblue :red], label =

["Exact" "Numerical"], lw = 2,linealpha=[1.0 .2],marker = ([:none :o],0.75,

Plots.stroke(:black)),markersize=2, legend=(-35.0, 1.0),framestyle = :box, grid=false)

↪→

↪→

90 #julia>

plot(rand(40),xtickfontsize=18,ytickfontsize=18,xlabel="wavelength",xguidefontsize=18,yscale=:log10,ylabel="flux",yguidefontsize=18,legendfontsize=18)

here

↪→

↪→

91 ##Save the Figures

92 using Dates

93 a = today()

94 savefig(fig3, "Figures//11Jan//abcd.pdf")

95 ## Profit Computing

96

97 profit = p * sum(_po_profile) - _gl * sum(U_opt_hist)

98 ##Data recording center

99 U_opt_gmaxr = U_opt_hist

100 _po_gmaxr = _po_profile

101 _pg_gmaxr = _pg_profile

102 #--------------------------------

103 U_opt_gmaxp5 = U_opt_hist;

104 _po_gmaxp5 = _po_profile;

105 _pg_gmaxp5 = _pg_profile;

106 #--------------------------------

107 U_opt_gmaxm5 = U_opt_hist;

108 _po_gmaxm5 = _po_profile;

109 _pg_gmaxm5 = _pg_profile;

110 ##

111

112

113

114 p1=plot(t_points/60,U_opt_gmaxr', linetype=:steppre, title="gas lift",label=["w1 - 1.2"

"w2 - 2.2" "w3 - 3.2"])↪→

115 p_po=plot(t_points/60,_po_gmaxr', title="Produced oil",label=false)

116 p_pg=plot(t_points/60,_pg_gmaxr', title="Produced gas",xlabel = "Time (min)",label=false)

117 fig1 = plot(p1,p_po,p_pg , layout = (3, 1))

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133 t_points = collect(0:4:t_min_s*60)

134

135 p1=plot(t_points/60, sum(U_opt_gmaxr[i,:] for i in 1:Nw) , linetype=:steppre,title="Gas

lift",label="PI=[1.2, 2.2, 3.2]",color = :bluesreds, labelsize=50)↪→

5

136 p1=plot!(t_points/60, sum(U_opt_gmaxp5[i,:] for i in 1:Nw) ,

linetype=:steppre,title="Gas lift",label="PI=[1.26, 2.31, 3.36]",color = :red,

labelsize=50)

↪→

↪→

137 # p1=plot!(t_points/60, sum(U_opt_gmaxp5[i,:] for i in 1:Nw) ,

linetype=:steppre,title="gas lift",label="PI=[1.14, 2.09, 3.04]",color = :green)↪→

138

139 p_po=plot(t_points/60, sum(_po_gmaxr[i,:] for i in 1:Nw) , linetype=:steppre,title="Total

produced oil",label=false,color = :bluesreds)↪→

140 p_po=plot!(t_points/60, sum(_pg_gmaxp5[i,:] for i in 1:Nw) ,

linetype=:steppre,title="Total produced oil",label=false,color = :red)↪→

141 # p_po=plot!(t_points/60, sum(_pg_gmaxp5[i,:] for i in 1:Nw) ,

linetype=:steppre,title="Total produced oil",label=false,color = :green)↪→

142

143 p_pg=plot(t_points/60, sum(_pg_profile[i,:] for i in 1:Nw) , linetype=:steppre,xlabel =

"Time (min)",label=false,color = :bluesreds)↪→

144 p_pg=plot!(t_points/60, sum(_pg_gmaxp5[i,:] for i in 1:Nw) , linetype=:steppre,xlabel =

"Time (min)",label=false,color = :red)↪→

145 # p_pg=plot!(t_points/60, sum(_pg_gmaxp5[i,:] for i in 1:Nw) , linetype=:steppre,xlabel =

"Time (min)",label=false,color = :green)↪→

146

147 p_pg=plot!(t_points/60, 28 * ones(length(t_points)) , linetype=:steppre,title="Total

produced gas",xlabel = "Time (min)",label=" Maximum allowed gas", linestyle=:dash)↪→

148 fig4 = plot(p1,p_po,p_pg , layout = (3, 1), legend = (0.7, -.1), yaxis="[kg/s]")

149

150

151 savefig(fig4, "Figures//11Jan//Results_part3.pdf")

152

153

154 profitr = p * sum(_po_gmaxr) - _gl * sum(U_opt_gmaxr)

155 profitp = p * sum(_pg_gmaxm5) - _gl * sum(U_opt_gmaxm5)

C Optimizer.jl

1 using JuMP

2 using Ipopt

3 using Plots

4 ##Supplementary Files

5 include("CollMat.jl")

6 include("Parameters.jl")

7 include("InitiStates.jl")

8 #choose backend for plots

9 # plotlyjs()

10

11 ##Define the optimizer Function

12 function Plant_optimizer(u0, t_min, t_min_inp, Nw, Inits, p, _gl, , Plotting)

13 #Required Parameters

14 Nx = 3;

15 Nz = 12;

16 Nu = 1;

17 NCP = 4

18 # NFE = round(Int, t_min/NCP)

19 NFE = round(Int, t_min * 60/NCP)

20 # Nw = 3;

21

22

23 # u0=[4.0; 4.0; 4.0]

24

25 # Inits = Initials()

26 # @unpack_Initials Inits

6

27

28 m_ga0 = Inits[:m_ga_pro]

29 m_gt0 = Inits[:m_gt_pro]

30 m_ot0 = Inits[:m_ot_pro]

31 P_a0 = Inits[:P_a0]

32 _a0 = Inits[:_a0]

33 P_wh0 = Inits[:P_wh0]

34 _m0 = Inits[:_m0]

35 _pc0 = Inits[:_pc0]

36 P_wi0 = Inits[:P_wi0]

37 _iv0 = Inits[:_iv0]

38 _pg0 = Inits[:_pg0]

39 _po0 = Inits[:_po0]

40 P_bh0 = Inits[:P_bh0]

41 _ro0 = Inits[:_ro0]

42 _rg0 = Inits[:_rg0]

43 dx0 = Inits[:dx0]

44 x0 = Inits[:x0]

45

46 M = Collocation_Matrix(NCP)

47 dt = 4;

48 # p = 1;

49 # _gl = 0.01;

50 # = 0;

51

52 # Parameter Loading

53 if Nw == 1

54 par = WellPar1()

55 @unpack_WellPar1 par

56 elseif Nw == 2

57 par = WellPar2()

58 @unpack_WellPar2 par

59 elseif Nw == 3

60 # par = WellPar3()

61 # @unpack_WellPar3 par

62 par = WellPar3diff()

63 @unpack_WellPar3diff par

64 else

65 println("Nw must be either 1 or 2 or 3!")

66 #More data can be added in Parameters.jl

67 end

68

69 ##Model Defining

70 m1 = Model(Ipopt.Optimizer)

71 #Defining the Variables===

72 @variable(m1, x[1:Nw, 1:Nx, 1:NFE, 1:NCP+1])

73 @variable(m1, dx[1:Nw, 1:Nx, 1:NFE, 1:NCP])

74 @variable(m1, z[1:Nw, 1:Nz, 1:NFE, 1:NCP])

75 @variable(m1, u[1:Nw, 1:Nu, 1:NFE])

76 #Bounds and Starting Points===

77 for nw in 1:Nw, nx in 1:Nx, nz in 1:Nz, nfe in 1:NFE, ncp in 1:NCP, nu in 1:Nu

78 #Bounds

79 set_lower_bound(x[nw, nx, nfe, ncp], 0.01)

80 set_upper_bound(x[nw, nx , nfe, ncp], 1e7)

81 set_lower_bound(z[nw, nz, nfe, ncp], 0)

82 set_upper_bound(z[nw, nz , nfe, ncp], 1e7)

83 set_lower_bound(u[nw, nu, nfe], 3)

84 set_upper_bound(u[nw, nu, nfe], 10)

85

86 end

87 #Start Values

88 for nw in 1:Nw, nfe in 1:t_min_inp*15, ncp in 1:NCP

89 set_start_value(x[nw, 1, nfe, ncp], m_ga0[nw, nfe])

7

90 set_start_value(x[nw, 2, nfe, ncp], m_gt0[nw, nfe])

91 set_start_value(x[nw, 3, nfe, ncp], m_ot0[nw, nfe])

92

93 set_start_value(u[nw, 1, nfe], u0[nw, nfe])

94

95 set_start_value(z[nw, 1, nfe, ncp], P_a0[nw, nfe])

96 set_start_value(z[nw, 2, nfe, ncp], _a0[nw, nfe])

97 set_start_value(z[nw, 3, nfe, ncp], _m0[nw, nfe])

98 set_start_value(z[nw, 4, nfe, ncp], P_wh0[nw, nfe])

99 set_start_value(z[nw, 5, nfe, ncp], P_wi0[nw, nfe])

100 set_start_value(z[nw, 6, nfe, ncp], P_bh0[nw, nfe])

101 set_start_value(z[nw, 7, nfe, ncp], _iv0[nw, nfe])

102 set_start_value(z[nw, 8, nfe, ncp], _pc0[nw, nfe])

103 set_start_value(z[nw, 9, nfe, ncp], _pg0[nw, nfe])

104 set_start_value(z[nw, 10, nfe, ncp], _po0[nw, nfe])

105 set_start_value(z[nw, 11, nfe, ncp], _ro0[nw, nfe])

106 set_start_value(z[nw, 12, nfe, ncp], _rg0[nw, nfe])

107 end

108 for nw in 1:Nw, nfe in t_min_inp*15 + 1:NFE, ncp in 1:NCP

109 set_start_value(x[nw, 1, nfe, ncp], m_ga0[nw, end])

110 set_start_value(x[nw, 2, nfe, ncp], m_gt0[nw, end])

111 set_start_value(x[nw, 3, nfe, ncp], m_ot0[nw, end])

112

113 set_start_value(u[nw, 1, nfe], u0[nw, end])

114

115 set_start_value(z[nw, 1, nfe, ncp], P_a0[nw, end])

116 set_start_value(z[nw, 2, nfe, ncp], _a0[nw, end])

117 set_start_value(z[nw, 3, nfe, ncp], _m0[nw, end])

118 set_start_value(z[nw, 4, nfe, ncp], P_wh0[nw, end])

119 set_start_value(z[nw, 5, nfe, ncp], P_wi0[nw, end])

120 set_start_value(z[nw, 6, nfe, ncp], P_bh0[nw, end])

121 set_start_value(z[nw, 7, nfe, ncp], _iv0[nw, end])

122 set_start_value(z[nw, 8, nfe, ncp], _pc0[nw, end])

123 set_start_value(z[nw, 9, nfe, ncp], _pg0[nw, end])

124 set_start_value(z[nw, 10, nfe, ncp], _po0[nw, end])

125 set_start_value(z[nw, 11, nfe, ncp], _ro0[nw, end])

126 set_start_value(z[nw, 12, nfe, ncp], _rg0[nw, end])

127 end

128

129

130

131 #Expressions Variables===

132 #(makes it easier to write DAE Equation) #?add variables and change indices

133 @NLexpressions(m1, begin

134 m_ga[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP+1], x[nw, 1, nfe, ncp]

135 m_gt[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP+1], x[nw, 2, nfe, ncp]

136 m_ot[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP+1], x[nw, 3, nfe, ncp]

137

138 dm_ga[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], dx[nw, 1, nfe, ncp]

139 dm_gt[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], dx[nw, 2, nfe, ncp]

140 dm_ot[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], dx[nw, 3, nfe, ncp]

141

142 P_a[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 1, nfe, ncp]

143 _a[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 2, nfe, ncp]

144 _m[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 3, nfe, ncp]

145 P_wh[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 4, nfe, ncp]

146 P_wi[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 5, nfe, ncp]

147 P_bh[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 6, nfe, ncp]

148 _iv[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 7, nfe, ncp]

149 _pc[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 8, nfe, ncp]

150 _pg[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 9, nfe, ncp]

151 _po[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 10, nfe, ncp]

152 _ro[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 11, nfe, ncp]

8

153 _rg[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], z[nw, 12, nfe, ncp]

154

155 _gl[nw in 1:Nw, nfe in 1:NFE], u[nw, 1, nfe]

156 end)

157 #Set the ODEs==

158 @NLconstraints(m1, begin

159 ODE1[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], dm_ga[nw, nfe, ncp] ==

(_gl[nw, nfe] - _iv[nw, nfe, ncp])*1e-3↪→

160 ODE2[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], dm_gt[nw, nfe, ncp] ==

(_iv[nw, nfe, ncp] - _pg[nw, nfe, ncp] + _rg[nw, nfe, ncp] * 1e-1)*1e-3↪→

161 ODE3[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], dm_ot[nw, nfe, ncp] ==

(_ro[nw, nfe, ncp] - _po[nw, nfe, ncp])*1e-3↪→

162 #ODEn[nfe in 1:NFE, ncp in 1:NCP], ...

163 end)

164 #Algebraic Equations==

165 @NLconstraints(m1, begin

166 #Defining Model Algebraic Equations in each line

167 Constr_Alg1[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], P_a[nw, nfe, ncp] ==

1e-5*(((R[nw]*T_a[nw]/(V_a[nw]*Mw[nw]) + g[nw]*H_a[nw]/V_a[nw])*m_ga[nw, nfe,

ncp]*1e3) + (Mw[nw]/(R[nw]*T_a[nw])*((R[nw]*T_a[nw]/(V_a[nw]*Mw[nw]) +

g[nw]*H_a[nw]/V_a[nw])*m_ga[nw, nfe, ncp]*1e3))*g[nw]*H_a[nw]) # annulus

pressure

↪→

↪→

↪→

↪→

168 Constr_Alg2[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], _a[nw, nfe, ncp] ==

1e-2*(Mw[nw]/(R[nw]*T_a[nw])*P_a[nw, nfe, ncp]*1e5) # gas, in annulus↪→

169 Constr_Alg3[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], P_wh[nw, nfe, ncp] ==

1e-5*(((R[nw]*T_w[nw]/Mw[nw])*(m_gt[nw, nfe, ncp]*1e3/(L_w[nw]*A_w[nw] +

L_bh[nw]*A_bh[nw] - m_ot[nw, nfe, ncp]*1e3/[nw]))) - ((m_gt[nw, nfe,

ncp]*1e3+m_ot[nw, nfe, ncp]*1e3)/(L_w[nw]*A_w[nw]))*g[nw]*H_w[nw]/2) #

wellhead pressure

↪→

↪→

↪→

↪→

170 Constr_Alg4[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], _m[nw, nfe, ncp] ==

1e-2*(((m_gt[nw, nfe, ncp]*1e3 + m_ot[nw, nfe, ncp]*1e3)*P_wh[nw, nfe,

ncp]*1e5*Mw[nw]*[nw])/(m_ot[nw, nfe, ncp]*1e3*P_wh[nw, nfe, ncp]*1e5*Mw[nw] +

[nw]*R[nw]*T_w[nw]*m_gt[nw, nfe, ncp]*1e3)) # mixture, in tubing

↪→

↪→

↪→

171 Constr_Alg5[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], _pc[nw, nfe, ncp] ==

C_pc[nw]*((_m[nw, nfe, ncp]*1e2*(P_wh[nw, nfe, ncp]*1e5 -

P_m[nw]*1e5))^2)^(1/4) # total flow through choke

↪→

↪→

172 Constr_Alg6[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], P_wi[nw, nfe, ncp] ==

1e-5*((P_wh[nw, nfe, ncp]*1e5 + g[nw]/(A_w[nw]*L_w[nw])*(m_ot[nw, nfe,

ncp]*1e3+m_gt[nw, nfe, ncp]*1e3-[nw]*L_bh[nw]*A_bh[nw])*H_w[nw] +

128*mu_oil[nw]*L_w[nw]*_pc[nw, nfe, ncp]/(3.141*D_w[nw]^4*((m_gt[nw, nfe,

ncp]*1e3 + m_ot[nw, nfe, ncp]*1e3)*P_wh[nw, nfe,

ncp]*1e5*Mw[nw]*[nw])/(m_ot[nw, nfe, ncp]*1e3*P_wh[nw, nfe, ncp]*1e5*Mw[nw] +

[nw]*R[nw]*T_w[nw]*m_gt[nw, nfe, ncp]*1e3))))

↪→

↪→

↪→

↪→

↪→

↪→

173 Constr_Alg7[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], _iv[nw, nfe, ncp] ==

C_iv[nw]*((_a[nw, nfe, ncp]*1e2*(P_a[nw, nfe, ncp]*1e5 - P_wi[nw, nfe,

ncp]*1e5))^2)^(1/4)

↪→

↪→

174 Constr_Alg8[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], _pg[nw, nfe, ncp] ==

(m_gt[nw, nfe, ncp]*1e3/(m_gt[nw, nfe, ncp]*1e3+m_ot[nw, nfe,

ncp]*1e3))*_pc[nw, nfe, ncp] # produced gas rate

↪→

↪→

175 Constr_Alg9[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], _po[nw, nfe, ncp] ==

(m_ot[nw, nfe, ncp]*1e3/(m_gt[nw, nfe, ncp]*1e3+m_ot[nw, nfe,

ncp]*1e3))*_pc[nw, nfe, ncp] # produced oil rate

↪→

↪→

176 Constr_Alg10[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], P_bh[nw, nfe, ncp] ==

1e-5*(P_wi[nw, nfe, ncp]*1e5 + [nw]*g[nw]*H_bh[nw] +

128*mu_oil[nw]*L_bh[nw]*_po[nw, nfe, ncp]/(3.14*D_bh[nw]^4*[nw]))

↪→

↪→

177 Constr_Alg11[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], _ro[nw, nfe, ncp] ==

(PI[nw])*1e-6*(Press_r[nw]*1e5 - P_bh[nw, nfe, ncp]*1e5)↪→

178 Constr_Alg12[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], _rg[nw, nfe, ncp] ==

1e1*GOR[nw]*_ro[nw, nfe, ncp]↪→

179 #Constr_Alg999[nfe=1:NFE, ncp=1:NCP], alg[999,nfe,ncp] ==

180 Constr_InEq1[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], (P_wh[nw, nfe, ncp] -

P_m[nw])*1e5 >= 0↪→

9

181 Constr_InEq2[nw in 1:Nw, nfe in 1:NFE, ncp in 1:NCP], (P_a[nw, nfe, ncp] -

P_wi[nw, nfe, ncp])*1e5 >= 0↪→

182 end)

183

184 #Collcation!===

185 @NLconstraints(m1, begin

186 Coll_Eq_Diff[nw in 1:Nw, nx in 1:Nx, nfe in 1:NFE, ncp in 1:NCP],

x[nw, nx, nfe, ncp+1] == x[nw, nx, nfe, 1] + sum(M[ncp, i] * dt * dx[nw, nx,

nfe, i] for i in 1:NCP)

↪→

↪→

187 Cont_Eq_First[nw in 1:Nw, nx in 1:Nx],

x[nw, nx, 1, 1] == x0[nw, nx]↪→

188 Cont_Eq_rest[nw in 1:Nw, nx in 1:Nx, nfe in 2:NFE],

x[nw, nx, nfe, 1] == x[nw, nx, nfe-1, end]↪→

189 end)

190 ##constraint on input===

191 @NLconstraints(m1, begin

192 #Defining Inequality Constraints in each line

193 # Constr_Inp1[nw in 1:Nw], abs((_gl[nw, 1] - u0[nw]) / (_gl[nw, 1])) <= 0.5

194 # Constr_Inp2[nw in 1:Nw, nfe in 2:NFE], abs((_gl[nw, nfe] - _gl[nw, nfe-1]) /

(_gl[nw, nfe])) <= 1↪→

195 #Constr_Inp1[nfe in 1:NFE-1], abs((_gl[1, nfe+1] - _gl[1, nfe]) / (_gl[1,nfe]))

<= 0.5↪→

196 #Constr_Inp2[nfe in 1:NFE-1], abs((_gl[2, nfe+1] - _gl[2, nfe]) / (_gl[2,nfe]))

<= 0.5↪→

197 #Constr_Inp3[nfe in 1:NFE-1], abs((_gl[3, nfe+1] - _gl[3, nfe]) / (_gl[3,nfe]))

<= 0.5↪→

198 #Define constraint on maximum handling

199

200 Constr_InpSum[nfe in 1:NFE, ncp=1:NCP], sum(_pg[i, nfe, ncp] for i in 1:Nw) <=

28↪→

201 #Define constraint on maximum gas available

202

203 Constr_InpSum2[nfe in 1:NFE], sum((_gl[i, nfe]) for i in 1:Nw) <=

30↪→

204

205 #In case of more states - pattern

206 #Constr_Ineq999[nfe=1:NFE, ncp=1:NCP], alg[999,nfe,ncp] ==

207 end)

208 ##bjective Function===

209 # @NLobjective(m1, Min, -(sum(p * _po[nw, nfe, end] - _gl * _gl[nw, nfe] for nw in

1:Nw, nfe in 1:NFE) - * sum((_gl[nfe+1] - _gl[nfe])^2 for nw in 1:Nw, nfe in

1:NFE-1)))

↪→

↪→

210 @NLobjective(m1, Min , -(p * sum(_po[nw, nfe, ncp] for nw in 1:Nw, nfe in 1:NFE, ncp

in 1:NCP) - _gl * sum(_gl[nw, nfe] for nw in 1:Nw, nfe in 1:NFE) - *

sum(((_gl[nw, nfe+1] - _gl[nw, nfe])^2) for nw in 1:Nw, nfe in 1:NFE-1) -

*sum((_gl[nw, 1]-u0[nw,end])^2 for nw in 1:Nw)))

↪→

↪→

↪→

211 #@NLobjective(m1, Min, -sum(p * _po[nw, nfe, end] - _gl * _gl[nw, nfe] for nw in

1:Nw, nfe in 1:NFE))↪→

212

213 ##===

214 optimize!(m1)

215 JuMP.termination_status(m1)

216 JuMP.solve_time(m1)

217 ##--

218 return JuMP.value.(u)[:,1,1:t_min_inp * 15 + 1], JuMP.value.(_po)[:, 1:t_min_inp * 15

+ 1, end], JuMP.value.(_pg)[:, 1:t_min_inp * 15 + 1, end], objective_value(m1)↪→

219 # return JuMP.value.(u)[:,1,:],

220 # JuMP.value.(z)[:, 10, :, end],

221 # JuMP.value.(z)[:, 9, :, end]

222 end

10

D Collocation.jl

1 function Collocation_Matrix(N)

2

3 #Radau

4 if N == 2

5

6 t1 = 0.3333333

7 t2 = 1.0

8

9 M1 = [

10 t1 1 / 2 * t1^2

11 t2 1 / 2 * t2^2

12]

13 M2 = [

14 1 t1

15 1 t2

16]

17

18 M = M1 * inv(M2)

19

20 elseif N == 3

21

22 t1 = 0.155051

23 t2 = 0.644949

24 t3 = 1.0

25

26 M1 = [

27 t1 1 / 2 * t1^2 1 / 3 * t1^3

28 t2 1 / 2 * t2^2 1 / 3 * t2^3

29 t3 1 / 2 * t3^2 1 / 3 * t3^3

30]

31 M2 = [

32 1 t1 t1^2

33 1 t2 t2^2

34 1 t3 t3^2

35]

36

37 M = M1 * inv(M2)

38

39 elseif N == 4

40

41 t1 = 0.088588;

42 t2 = 0.409467;

43 t3 = 0.787659;

44 t4 = 1;

45

46

47 M1 = [

48 t1 1 / 2 * t1^2 1 / 3 * t1^3 1 / 4 * t1^4

49 t2 1 / 2 * t2^2 1 / 3 * t2^3 1 / 4 * t2^4

50 t3 1 / 2 * t3^2 1 / 3 * t3^3 1 / 4 * t3^4

51 t4 1 / 2 * t4^2 1 / 3 * t4^3 1 / 4 * t4^4

52]

53 M2 = [

54 1 t1 t1^2 t1^3

55 1 t2 t2^2 t2^3

56 1 t3 t3^2 t3^3

57 1 t4 t4^2 t4^3

58]

59

60 M = M1 * inv(M2)

11

61

62 elseif N == 5

63

64 t1 = 0.057104;

65 t2 = 0.276843;

66 t3 = 0.583590;

67 t4 = 0.860240;

68 t5 = 1;

69

70 M1 = [

71 t1 1 / 2 * t1^2 1 / 3 * t1^3 1 / 4 * t1^4 1 / 5 * t1^5

72 t2 1 / 2 * t2^2 1 / 3 * t2^3 1 / 4 * t2^4 1 / 5 * t2^5

73 t3 1 / 2 * t3^2 1 / 3 * t3^3 1 / 4 * t3^4 1 / 5 * t3^5

74 t4 1 / 2 * t4^2 1 / 3 * t4^3 1 / 4 * t4^4 1 / 5 * t4^5

75 t4 1 / 2 * t4^2 1 / 3 * t4^3 1 / 4 * t4^4 1 / 5 * t5^5

76]

77 M2 = [

78 1 t1 t1^2 t1^3 t1^4

79 1 t2 t2^2 t2^3 t2^4

80 1 t3 t3^2 t3^3 t3^4

81 1 t4 t4^2 t4^3 t4^4

82 1 t4 t4^2 t4^3 t5^4

83]

84

85 M = M1 * inv(M2)

86

87 end

88

89

90 return M

91 end

E InitiStates.jl

1 function Initial_States(U_opt, Nw, t_min, t_min_inp)

2 # plotlyjs()

3 include("Plant.jl")

4 ##

5

6 # t1 = 2

7 # t2 = 2

8 # t_min = t1+t2

9

10 # U_opt=hcat(4*ones(Nw, 15*t1 + 1), 4*ones(Nw, 15 * t2 + 1))

11

12 # dicc = Dict(

13 # :x0 => [0.402602 0.592004 1.3199

14 # 0.5657 0.7424 1.7786

15 # 0.6603 0.7065 3.3344]

16 #)

17

18 dicc = Dict(

19 :x0 => [1.32 0.8 6.0

20 1.32 0.8 6.0

21 1.32 0.8 6.0]

22)

23 ##

24 Full_states = Plant(Nw, U_opt, dicc, t_min)

25

12

26 myDict = Dict(

27 :m_ga_pro => Full_states[:m_ga_pro][:,end - (15*t_min_inp):end],

28 :m_gt_pro => Full_states[:m_gt_pro][:,end - (15*t_min_inp):end],

29 :m_ot_pro => Full_states[:m_ot_pro][:,end - (15*t_min_inp):end],

30 :U_pro => Full_states[:U_pro][:,end - (15*t_min_inp):end],

31 :P_a0 => Full_states[:P_a0][:,end - (15*t_min_inp):end],

32 :_a0 => Full_states[:_a0][:,end - (15*t_min_inp):end],

33 :P_wh0 => Full_states[:P_wh0][:,end - (15*t_min_inp):end],

34 :_m0 => Full_states[:_m0][:,end - (15*t_min_inp):end],

35 :_pc0 => Full_states[:_pc0][:,end - (15*t_min_inp):end],

36 :P_wi0 => Full_states[:P_wi0][:,end - (15*t_min_inp):end],

37 :_iv0 => Full_states[:_iv0][:,end - (15*t_min_inp):end],

38 :_pg0 => Full_states[:_pg0][:,end - (15*t_min_inp):end],

39 :_po0 => Full_states[:_po0][:,end - (15*t_min_inp):end],

40 :P_bh0 => Full_states[:P_bh0][:,end - (15*t_min_inp):end],

41 :_ro0 => Full_states[:_ro0][:,end - (15*t_min_inp):end],

42 :_rg0 => Full_states[:_rg0][:,end - (15*t_min_inp):end],

43 :dx0 => Full_states[:dx0],

44 :x0 => Full_states[:x0],

45 :dx1 => Full_states[:dx1][:,end - (15*t_min_inp):end],

46 :dx2 => Full_states[:dx2][:,end - (15*t_min_inp):end],

47 :dx3 => Full_states[:dx3][:,end - (15*t_min_inp):end]

48)

49 return myDict

50 end

F Parameters.jl

1 @with_kw struct WellPar1

2 # L, H, D = Length, Height, Diameter [m]

3 # well

4 L_w = 1500 # length well

5 H_w = 1000 # height well

6 D_w = 0.121 # diameter well

7 # bottom hole

8 L_bh = 500

9 H_bh = 500

10 D_bh = 0.121

11 # annulus

12 L_a = L_w

13 H_a = H_w

14 D_a = 0.189

15

16 = 800 # density of oil, kg/m3

17 mu_oil = 1*0.001

18

19 C_iv = 1e-3 # injection valve characteristic, m2

20 C_pc = 2e-3 # choke valve characteristic, m2

21

22 GOR = 0.1 # Gas Oil Ratio

23 Press_r = 150 # reservoir pressure

24 PI = 2.2 # Productivity index, kg/s/bar

25 P_m = 20 # manifold pressure

26 T_a = 28 + 273 # K

27 T_w = 32 + 273 # K

28

29 Mw = 20e-3 # ? units kg/mol

30 #Other Parameter

31 A_bh = *D_bh^2/4

13

32 LA_bh = L_bh*A_bh

33 A_w = *D_w^2/4

34 LwAw = L_w*A_w

35 g = 9.81 # m/s2

36 R = 8.314 # J/mol K

37 V_a = L_a*(*(D_a/2)^2 - *(D_w/2)^2)

38 end

39

40 @with_kw struct WellPar2

41 # L, H, D = Length, Height, Diameter [m]

42 # well

43 L_w = 1500 .*ones(2) # length well

44 H_w = 1000 .*ones(2) # height well

45 D_w = 0.121 .*ones(2) # diameter well

46 # bottom hole

47 L_bh = 500 .*ones(2)

48 H_bh = 500 .*ones(2)

49 D_bh = 0.121 .*ones(2)

50 # annulus

51 L_a = L_w .*ones(2)

52 H_a = H_w .*ones(2)

53 D_a = 0.189 .*ones(2)

54 = 800 .*ones(2) # density of oil, kg/m3

55 mu_oil = 1*0.001 .*ones(2)

56

57 C_iv = 1e-3 .*ones(2) # injection valve characteristic, m2

58 C_pc = 2e-3 .*ones(2) # choke valve characteristic, m2

59

60 GOR = 0.1 .*ones(2) # Gas Oil Ratio

61 Press_r = 150 .*ones(2) # reservoir pressure

62 PI = 2.2 .*ones(2) # Productivity index, kg/s/bar

63 P_m = 20 .*ones(2) # manifold pressure

64 T_a = (28 + 273) .*ones(2) # K

65 T_w = (32 + 273) .*ones(2) # K

66

67 Mw = 20e-3 .*ones(2) # ? units kg/mol

68 #Other Parameter

69 A_bh = (.*D_bh.^2/4) .*ones(2)

70 LA_bh = (L_bh.*A_bh) .*ones(2)

71 A_w = (.*D_w.^2/4) .*ones(2)

72 LwAw = (L_w.*A_w) .*ones(2)

73 g = 9.81 .*ones(2) # m/s2

74 R = 8.314 .*ones(2) # J/mol K

75 V_a = (L_a.*(.*(D_a./2).^2 - .*(D_w./2).^2)) .*ones(2)

76 end

77

78 @with_kw struct WellPar3

79 # L, H, D = Length, Height, Diameter [m]

80 # well

81 L_w = [1500.0, 1500.0, 1500.0] # length well

82 H_w = [1000.0, 1000.0, 1000.0] # height well

83 D_w = [0.121, 0.121, 0.121] # diameter well

84 # bottom hole

85 L_bh = [500.0, 500.0, 500.0]

86 H_bh = [500.0, 500.0, 500.0]

87 D_bh = [0.121, 0.121, 0.121]

88 # annulus

89 L_a = [1500.0, 1500.0, 1500.0]

90 H_a = [1000.0, 1000.0, 1000.0]

91 D_a = [0.189, 0.189, 0.189]

92

93 = [800.0, 800.0, 800.0] # density of oil, kg/m3

94 mu_oil = [0.001, 0.001, 0.001]

14

95 C_iv = [1e-3, 1e-3, 1e-3] # injection valve characteristic, m2

96 C_pc = [2e-3, 2e-3, 2e-3] # choke valve characteristic, m2

97

98 GOR = [0.1, 0.1, 0.1] # Gas Oil Ratio

99 Press_r = [150.0, 150.0, 150.0] # reservoir pressure

100 PI = [2.2, 2.2, 2.2] # Productivity index, kg/s/bar

101 P_m = [20.0, 20.0, 20.0] # manifold pressure

102 T_a = [301.0, 301.0, 301.0] # K

103 T_w = [305.0, 305.0, 305.0] # K

104

105 Mw = [0.02, 0.02, 0.02] # Mulecular weight units kg/mol

106 #Other Parameter

107 A_bh = .*(D_bh./2).^2

108 LA_bh = L_bh.*A_bh

109 A_w = (.*D_w.^2/4)

110 LwAw = L_w.*A_w

111 g = [9.81, 9.81, 9.81] # m/s2

112 R = [8.314, 8.314, 8.314] # J/mol K

113 V_a = L_a.*(.*(D_a./2).^2 - .*(D_w./2).^2)

114 end

115

116 @with_kw struct WellPar3diff

117 # L, H, D = Length, Height, Diameter [m]

118 # well

119 L_w = [1500.0, 1500.0, 1500.0] # length well

120 H_w = [1000.0, 1000.0, 1000.0] # height well

121 D_w = [0.121, 0.121, 0.121] # diameter well

122 # bottom hole

123 L_bh = [500.0, 500.0, 500.0]

124 H_bh = [500.0, 500.0, 500.0]

125 D_bh = [0.121, 0.121, 0.121]

126 # annulus

127 L_a = [1500.0, 1500.0, 1500.0]

128 H_a = [1000.0, 1000.0, 1000.0]

129 D_a = [0.189, 0.189, 0.189]

130

131 = [800.0, 800.0, 800.0] # density of oil, kg/m3

132 mu_oil = [0.001, 0.001, 0.001]

133 C_iv = [1e-3, 1e-3, 1e-3] # injection valve characteristic, m2

134 C_pc = [2e-3, 2e-3, 2e-3] # choke valve characteristic, m2

135

136 GOR = [0.1, 0.1, 0.1] # Gas Oil Ratio

137 Press_r = [150.0, 150.0, 150.0] # reservoir pressure

138 PI = [1.2, 2.2, 3.2] # Productivity index, kg/s/bar

139 P_m = [20.0, 20.0, 20.0] # manifold pressure

140 T_a = [301.0, 301.0, 301.0] # K

141 T_w = [305.0, 305.0, 305.0] # K

142

143 Mw = [0.02, 0.02, 0.02] # Mulecular weight units kg/mol

144 #Other Parameter

145 A_bh = .*(D_bh./2).^2

146 LA_bh = L_bh.*A_bh

147 A_w = (.*D_w.^2/4)

148 LwAw = L_w.*A_w

149 g = [9.81, 9.81, 9.81] # m/s2

150 R = [8.314, 8.314, 8.314] # J/mol K

151 V_a = L_a.*(.*(D_a./2).^2 - .*(D_w./2).^2)

152 end

153

154 @with_kw struct WellPar3diffp5

155 # L, H, D = Length, Height, Diameter [m]

156 # well

157 L_w = [1500.0, 1500.0, 1500.0] # length well

15

158 H_w = [1000.0, 1000.0, 1000.0] # height well

159 D_w = [0.121, 0.121, 0.121] # diameter well

160 # bottom hole

161 L_bh = [500.0, 500.0, 500.0]

162 H_bh = [500.0, 500.0, 500.0]

163 D_bh = [0.121, 0.121, 0.121]

164 # annulus

165 L_a = [1500.0, 1500.0, 1500.0]

166 H_a = [1000.0, 1000.0, 1000.0]

167 D_a = [0.189, 0.189, 0.189]

168

169 = [800.0, 800.0, 800.0] # density of oil, kg/m3

170 mu_oil = [0.001, 0.001, 0.001]

171 C_iv = [1e-3, 1e-3, 1e-3] # injection valve characteristic, m2

172 C_pc = [2e-3, 2e-3, 2e-3] # choke valve characteristic, m2

173

174 GOR = [0.1, 0.1, 0.1] # Gas Oil Ratio

175 Press_r = [150.0, 150.0, 150.0] # reservoir pressure

176 PI = [1.26, 2.31, 3.36] # Productivity index, kg/s/bar

177 P_m = [20.0, 20.0, 20.0] # manifold pressure

178 T_a = [301.0, 301.0, 301.0] # K

179 T_w = [305.0, 305.0, 305.0] # K

180

181 Mw = [0.02, 0.02, 0.02] # Mulecular weight units kg/mol

182 #Other Parameter

183 A_bh = .*(D_bh./2).^2

184 LA_bh = L_bh.*A_bh

185 A_w = (.*D_w.^2/4)

186 LwAw = L_w.*A_w

187 g = [9.81, 9.81, 9.81] # m/s2

188 R = [8.314, 8.314, 8.314] # J/mol K

189 V_a = L_a.*(.*(D_a./2).^2 - .*(D_w./2).^2)

190 end

191

192 @with_kw struct WellPar3diffm5

193 # L, H, D = Length, Height, Diameter [m]

194 # well

195 L_w = [1500.0, 1500.0, 1500.0] # length well

196 H_w = [1000.0, 1000.0, 1000.0] # height well

197 D_w = [0.121, 0.121, 0.121] # diameter well

198 # bottom hole

199 L_bh = [500.0, 500.0, 500.0]

200 H_bh = [500.0, 500.0, 500.0]

201 D_bh = [0.121, 0.121, 0.121]

202 # annulus

203 L_a = [1500.0, 1500.0, 1500.0]

204 H_a = [1000.0, 1000.0, 1000.0]

205 D_a = [0.189, 0.189, 0.189]

206

207 = [800.0, 800.0, 800.0] # density of oil, kg/m3

208 mu_oil = [0.001, 0.001, 0.001]

209 C_iv = [1e-3, 1e-3, 1e-3] # injection valve characteristic, m2

210 C_pc = [2e-3, 2e-3, 2e-3] # choke valve characteristic, m2

211

212 GOR = [0.1, 0.1, 0.1] # Gas Oil Ratio

213 Press_r = [150.0, 150.0, 150.0] # reservoir pressure

214 PI = [1.14, 2.09, 3.04] # Productivity index, kg/s/bar

215 P_m = [20.0, 20.0, 20.0] # manifold pressure

216 T_a = [301.0, 301.0, 301.0] # K

217 T_w = [305.0, 305.0, 305.0] # K

218

219 Mw = [0.02, 0.02, 0.02] # Mulecular weight units kg/mol

220 #Other Parameter

16

221 A_bh = .*(D_bh./2).^2

222 LA_bh = L_bh.*A_bh

223 A_w = (.*D_w.^2/4)

224 LwAw = L_w.*A_w

225 g = [9.81, 9.81, 9.81] # m/s2

226 R = [8.314, 8.314, 8.314] # J/mol K

227 V_a = L_a.*(.*(D_a./2).^2 - .*(D_w./2).^2)

228 end

17

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

Amirreza Zamani Meighani

Investigation of the Effect of
Uncertain Parameters
on a Gas-Lifted Oil Network Using a
Non-Linear
Model Predictive Control (MPC)

Master’s thesis in Chemical Engineering
Supervisor: Johannes Jaschke
Co-supervisor: Evren Mert Turan
January 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Scope and Objectives
	Outline of this thesis
	Gas Lift Approach
	Introduction to Optimization
	Optimization Problems Classification
	Different Types of Programming

	Solving Algorithms
	Optimal Control
	Methods for Solving OCPs
	Direct Methods for Solving OCPs

	PLantwide Control

	Model Description
	Modelling of Gas Lifted Wells
	DAE System for the Plant
	Software Package

	Problem Formulation
	MPC Framework
	Nonlinear MPC
	Descretization of the OCP
	NMPC Framework

	Results and Discussion
	Open Loop Simulation
	Effect of Gas Lift on Production Rate (in Open Loop)
	Closed Loop Simulation
	Effect of Parameter GOR on Production Rate
	Effect of Parameter PI on Production Rate
	Effect of Changing the Maximum Gas Constraint on controller behavior
	Possible Future Work

	Conclusion
	Bibliography
	Additional Material
	Julia Codes

