
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Eirik Halvdan Sølvberg Bratbak

Asset Administration Shell for Life
Cycle Management of Safety Systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Maria Vatshaug Ottermo
March 2022

M
as

te
r’s

 th
es

is

Eirik Halvdan Sølvberg Bratbak

Asset Administration Shell for Life
Cycle Management of Safety Systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Maria Vatshaug Ottermo
March 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

i

Preface

This master’s thesis was written as a part of the study program Cybernetics and Robotics at the Depart-

ment of Engineering Cybernetics at the Norwegian University of Science and Technology during the fall

of 2021 and the first months of 2022. The project has been carried out in cooperation with members of the

APOS project at SINTEF, and the thesis assumes that the reader has a background in safety instrumented

systems and functional safety.

I want to thank my supervisors, Mary Ann Lundteigen and Maria Vatshaug Ottermo, for their guid-

ance, advice, feedback, and patience throughout this project. This thesis would not have been possible

without it.

Trondheim, 30/03/2022

Eirik Halvdan Sølvberg Bratbak

ii

Executive Summary

This master’s thesis explores the Asset Administration Shell (AAS) and proposes five models for repre-

senting information related to safety instrumented systems (SIS) in the Asset Administration Shell. The

AAS is the implementation of the digital twin for Industrie 4.0 systems. The AAS digitally represents and

describes an asset. In the AAS, different aspects of an asset are described in submodels. A submodel is a

collection of properties that each represent one value describing a characteristic of an asset.

This master’s thesis focuses on using the AAS with equipment that is part of safety instrumented

systems. SISs are industrial systems designed to detect and mitigate dangerous events that can cause

harm to humans, the environment, and equipment. An SIS performs one or more safety instrumented

functions (SIF). A safety instrumented function typically consists of three subsystems: sensors, logical

units, and actuators.

Because the role of SISs and SIFs are to prevent dangerous events, it is vital to collect and analyze

reliability data on these systems. The APOS project at SINTEF has defined taxonomies used to simplify

and standardize the follow-up procedure of equipment that is a part of SISs and SIFs. The taxonomies

cover the classification of equipment and different aspects related to failures of SIS equipment.

This master’s project is based on reports and taxonomies published by APOS and specifications defin-

ing the metamodel of the AAS. The AAS metamodel describes the structure of the AAS and defines the

objects and attributes used to model AAS and submodels.

This master’s thesis suggests three submodels and two AAS that describe SIS-related information

based on the AAS metamodel and the APOS reports. The suggested models are generic and apply to

different types of equipment. The suggestions are:

• A submodel for equipment classification

• A submodel for possible failure modes

• A submodel for failure classification and registration

• An AAS for an equipment group

• An AAS for a SIF

Analysis of the suggestions shows that the framework of the AAS is well suited to model equipment

classification and equipment groups. Representing a possible failure mode proved difficult as no method

was found to indicate that a property represents a possible failure mode and not the current failure mode

state of the asset. The failure classification submodel’s initial scope was found to be too large since it

contains properties describing both asset-specific and equipment group-specific aspects. The AAS was

found to be suited for modeling the composition of a SIF, but deciding which submodels to include in the

SIF AAS requires identifying standards and specifications used to describe different aspects of SIFs.

List of Figures

2.1 APOS equipment group hierarchy with the L3 equipment attribute categories. 7

3.1 The object worlds of I4.0, adapted from DIN SPEC 9134:2016 [2016] 12

3.2 The life of an asset, adapted from DIN SPEC 9134:2016 [2016] 13

3.3 The Asset Administration Shell representing an asset in the information world 16

3.4 Basic structure of an AAS, adapted from Ye and Hong [2019] 17

3.5 Information exchange by type of Asset Administration Shell, based on Plattform Industrie

4.0 and ZVEI [2020b] . 21

3.6 Network infrastructure with Asset Administration Shells hosted on componentes 22

3.7 Network infrastructure with AAS hosted in a central repository 23

3.8 Network infrastructure with distributed Asset Administration Shells and submodels 24

3.9 Retrieval and discovery of Asset Administration Shells and submodels, adapted from Plat-

tform Industrie 4.0 and ZVEI [2020b] . 24

4.1 Dependencies of Identifiable, adapted from Plattform Industrie 4.0 and ZVEI [2020a] 32

4.2 Dependency of Qualifiable, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 33

4.3 Inheritance from Constraint, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 33

4.4 Dependencies of AssetInformation, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 35

4.5 Metamodel of AssetAdministrationShell, adapted from Plattform Industrie 4.0 and ZVEI

[2020a]. 36

4.6 Metamodel of SubmodelElement, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. . 38

4.7 Metamodel of the SubmodelElement Event, adapted from Plattform Industrie 4.0 and ZVEI

[2020a]. 39

4.8 Metamodel of DataElement, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 41

4.9 A composite fire suppression asset consisting of heat and smoke detectors, a PLC and a

sprinkler . 44

4.10 Modelling relationships between assets with billOfMaterial, Entity, and RelationshipEle-

ment . 45

4.11 Modelling relationships between AAS in a submodel with RelationshipElement 46

4.12 Model of composite asset and AAS relationships, adapted from Plattform Industrie 4.0 and

ZVEI [2020b]. 48

5.1 Submodel Template of the equipment group hierarchy . 50

iii

LIST OF FIGURES iv

5.2 Contents of the SMC with idShort "EquipmentAttributes" in the submodel template for

equipment group shown in figure 5.1. 51

5.3 Contents of the nested SMC with idShort "MediumProperties" of the SMC with idShort

"EquipmentAttributes" in figure 5.2 . 52

5.4 Contents of the nested SMC with idShort "LocationEnvironment" of the SMC with idShort

"EquipmentAttributes" in figure 5.2 . 52

5.5 Contents of the nested SMC with idShort "DiagnosticsConfigurationPrinciple" of the SMC

with idShort "EquipmentAttributes" in figure 5.2 . 53

5.6 Contents of the nested SMC with idShort "TestMaintenanceMonitoringStrategy" of the SMC

with idShort "EquipmentAttributes" in figure 5.2 . 53

5.7 A template for a SMC that represents possible failure modes 55

5.8 Submodel template for failure parameters . 57

5.9 Contents of the SMC with idShort "manuallyRegisteredParameters" of the submodel tem-

plate with idShort "FailureReport" in figure 5.8. 58

5.10 Contents of the submodelElementCollection with idShort "CalculatedParameters" of the

submodel template with idShort "FailureReport" in figure 5.8. 59

5.11 Contents of the submodelElementCollection with idShort "AutomaticallyGeneratedParam-

eters" of the submodel template with idShort "FailureReport" in figure 5.8. 60

5.12 Example of an asset instance of an equipment group of pressure transmitters 61

5.13 A type AAS for equipment group assets . 62

5.14 A type AAS for a SIF . 64

5.15 Contents of the SMCs belonging to the type AAS for SIF submodel with idshort "Subgroups"

in figure 5.14 . 65

6.1 Example of a submodel instance of the equipment group submodel for a pressure transmitter 67

6.2 Instance of FailureModes SMC . 69

6.3 FailureClass property with qualifier. 70

A.1 UML model of Class, adapted from Plattform Industrie 4.0 and ZVEI [2020a] 76

A.2 UML model of an abstract Class, adapted from Plattform Industrie 4.0 and ZVEI [2020a] . . . 76

A.3 UML model of a dependency, adapted from Plattform Industrie 4.0 and ZVEI [2020a] 77

A.4 UML model of inheritance, adapted from Plattform Industrie 4.0 and ZVEI [2020a] 77

A.5 UML model of cardinality, adapted from Plattform Industrie 4.0 and ZVEI [2020a] 77

A.6 UML model of composition, adapted from Plattform Industrie 4.0 and ZVEI [2020a] 78

A.7 UML model of aggregation, adapted from Plattform Industrie 4.0 and ZVEI [2020a] 78

A.8 UML model of enumeration, adapted from Plattform Industrie 4.0 and ZVEI [2020a] 78

List of Tables

2.1 Failure modes for the process transmitter equipment group, adapted from Hauge et al.

[2021a]. 8

2.2 Failure class generation, adapted from Hauge et al. [2021a]. 9

3.1 Example of the property for weight . 14

3.2 Excerpt of the IEC 61360 definition of the property temperature, based on IEC [2022]. 15

3.3 Possible sources of standarized submodels, based on Plattform Industrie 4.0 [2018] 18

3.4 Life-cycle of the AAS, based on Open Industry 4.0 Alliance [2021]. 19

4.1 Table format used to describe metamodel classes . 27

4.2 Example of the metamodel class property, adapted from Plattform Industrie 4.0 and ZVEI

[2020a]. 28

4.3 Example of a property representing the name of a city . 28

4.4 Attributes of HasKind, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 29

4.5 Attributes of HasSemantics, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 29

4.6 Attributes of HasExtensions, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 30

4.7 Attributes of Extension, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 30

4.8 Attributes of HasDataSpecification, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 30

4.9 Attributes of Referable, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 31

4.10 Attributes of Identifiable, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 32

4.11 Asset with inherited attributes, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. . . . 34

4.12 Contents of Submodel, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 37

4.13 Attributes of RelationshipElement, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. . 40

4.14 Attributes of Entity, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 40

4.15 Attributes of Property, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 41

4.16 Attributes of MultiLanguageProperty, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 42

4.17 Attributes of Range, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 42

4.18 Attributes of File, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 42

4.19 Attributes of Blob, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. 43

4.20 Attributes of ReferenceElement, adapted from Plattform Industrie 4.0 and ZVEI [2020a]. . . 43

4.21 Attributes of SubmodelElementCollection, adapted from Plattform Industrie 4.0 and ZVEI

[2020a]. 44

v

LIST OF TABLES vi

Acronyms

AAS Asset Administration Shell

APOS Automatisert Prosess for Oppfølging av Instrumenterte Sikkerhetssystemer

CDD Common Data Dictionary

DD Dangerous Detected

DU Dangerous Undetected

ERO Erratic Output

GUID Globally Unique Identifier

HIO High Output

I4.0 Industrie 4.0

IEC International Electrotechnical Commission

IRDI International Registration Data Identifier

IRI Internationalized Resource Identifier

LOO Low Output

NOO No Output

OPC UA Open Platform Communications Unified Architecture

PFD Probability of Failure on Demand

PLC Programmable Logic Controller

S Safe

SIF Safety Instrumented Function

SIL Safety Integrity Level

SIS Safety instrumented System

SMC Submodel Element Collection

SRS Safety Requirement Specification

URL Uniform Resource Locator

XML Extensible Markup Language

ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie

Contents

Preface . i

Executive Summary . ii

Acronyms . vi

1 Introduction 2

1.1 Background . 2

1.2 Objective . 3

1.3 Approach . 3

1.4 Limitations . 4

1.5 Outline . 4

2 APOS and SIS 5

2.1 Safety Instrumented Systems . 5

2.2 APOS . 5

2.2.1 Equipment Group Hierarchy . 6

2.2.2 Failure Mode Hierarchy . 7

2.2.3 Failure Registration Parameters . 8

3 AAS and Asset 11

3.1 The Asset . 11

3.2 The Property Principle . 14

3.2.1 The I4.0 Property . 14

3.3 The Asset Administration Shell . 15

3.3.1 Structure of the AAS . 16

3.3.2 Submodels . 17

3.3.3 Life Cycle of the AAS . 19

3.3.4 Information Exchange with AAS . 20

3.3.5 Hosting of AAS . 21

4 The AAS Metamodel 26

4.1 AAS Metamodel Classes . 26

4.1.1 Common Classes . 29

4.1.2 Asset . 34

4.1.3 AAS . 35

4.1.4 Submodel . 37

4.2 Modelling Composition in the AAS . 44

vii

CONTENTS 1

5 APOS Models In The AAS Framework 49

5.1 Submodel for Equipment Group Classification . 49

5.2 SMC for Failure Modes . 54

5.3 Submodel for Failure Parameters . 56

5.4 AAS for an Equipment Group . 61

5.5 AAS for a SIF . 63

6 Usage and Limitations of APOS AAS Models 66

6.1 Submodel for Equipment Group Classification . 66

6.2 SMC for Failure Modes . 68

6.3 Submodel for Failure Parameters . 69

6.4 AAS for an Equipment Group . 70

6.5 AAS for a SIF . 71

7 Conclusions and Discussion 73

7.1 Summary and Conclusion . 73

7.2 Discussion . 74

7.3 Future Work . 75

A UML Legend 76

Bibliography 79

Chapter 1

Introduction

1.1 Background

The term industrial revolution describes a fundamental shift in how industrial systems function due to

new technology or ideas. The first industrial revolution marked the transition from manual labor to ma-

chine production. Adaptation of the assembly line and electricity was the second industrial revolution.

Innovation of computer technology and automation systems marked the third industrial revolution.

In Germany, Industrie 4.0 (I4.0), the fourth industrial revolution, is being developed by Plattform

Industrie 4.0 [b]. I4.0 is a collective term for technologies and concepts used to create a digital reflection

of the physical world. One of the key I4.0 concepts is the Asset Administration Shell (AAS). The AAS is a

digital representation of an industrial component. The AAS is an attempt from the German I4.0 initiative

to implement the digital twin.

According to Plattform Industrie 4.0 [2021a], the AAS is envisioned to be a digital structure that rep-

resents information about an industrial component. It will also function as the digital interface of the

information. Future industrial systems might adopt the AAS for the digital description of industrial com-

ponents. This possibility makes it interesting to research how the AAS structures data and how the AAS

can be used to describe different aspects of industrial components.

A safety instrumented system (SIS) is in IEC-61511:2016 [2010] described as an industrial system de-

signed to detect and prevent dangerous events. An SIS consists of safety instrumented functions (SIFs).

A SIF is composed of sensors, logic solvers, and actuators. There are requirements for the follow-up

procedure of SIS equipment to ensure that they perform as intended. The APOS (Automatisert pros-

ess for oppfølging av instrumenterte sikkerhetssystemer, English: Automated process for follow-up of

safety instrumented systems) project at SINTEF has published guidelines on follow-up of SIS, which the

specialization project “Identification and analysis of data sources for equipment being part of safety in-

strumented systems ” by Bratbak [2021] was based on. APOS has defined an information model and

taxonomies for aspects related to failures and classification of SIS equipment.

The AAS is the digital representation of an industrial component. The focus of APOS is industrial

components in SISs. The specialization project "APOS OPC-UA" written for APOS by Omang [2021] ex-

plored and suggested how the APOS information model and taxonomies can be implemented in OPC-UA

based on the "OPC UA for ISA-95" companion specification published by the OPC UA Foundation [2013].

The AAS framework is an emerging model used to represent and structure data. Therefore, it is interesting

for APOS to explore how equipment is described in the AAS framework and how the APOS information

2

CHAPTER 1. INTRODUCTION 3

model and taxonomies can be used with the AAS.

1.2 Objective

This project aims to explore the concept of the Asset Administration Shell and identify how different

aspects of the APOS information model and taxonomies can be used within the AAS framework. In order

to complete this objective, the master project covers the basic concepts of the AAS, the metamodel of

the AAS, and provides suggestions on how the APOS model and taxonomies can be applied with Asset

Administration Shells.

The four questions this project is centered around are:

1. What is considered an I4.0 asset, and what is the relationship between an Asset Administration

Shell and an asset?

2. How does the Asset Administration Shell structure and represent information?

3. How can the Asset Administration Shell be used to represent a complex and functional oriented SIF

structure?

4. How can the APOS taxonomy, and information model be realized in the Asset Administration Shell

framework?

1.3 Approach

During the specialization project by Bratbak [2021], a limited amount of research was done on the Asset

Administration Shell. Therefore, the theoretical work to create an overview of the Asset Administration

Shell needed to be performed in the master project. At the start of the project, several attempts were

made to use available tools to model and implement Asset Administration Shells. However, these tools

currently lack the functionality needed to create practical implementations of Asset Administration Shells

for this project. Therefore, the decision was made to focus on the theoretical part of the AAS. The main

activities of the master project have been:

1. Perform a literature search to identify papers and specifications on the Asset Administration Shell

2. Explain the metamodel of the Asset Administration Shell

3. Identify how the APOS taxonomies and information model can be translated into the Asset Admin-

istration Shell metamodel

4. Describe theoretical implementations and use of different aspects of the APOS model in the Asset

Administration Shell framework

Performing a continuous literature search during the entire period of working on the thesis was one

of the keys to building a fundamental understanding of the Asset Administration Shell framework. The

AAS is a relatively new topic and continuously checking research databases for recent publications on the

Asset Administration Shell was fruitful. Also, tracking the publications of white papers and specification

updates by Platform Industrie 4.0 created a solid literature foundation to build the thesis on.

CHAPTER 1. INTRODUCTION 4

Creating a basic understanding of the AAS concept was essential to interpreting the AAS metamodel.

Understanding the metamodel is important because it is the basic set of rules that determine how in-

formation can be represented in the AAS and how structure and context is kept intact when exchanging

AAS-related information in different object models and data formats.

Understanding the functionality of the AAS and the metamodel structure helped identify how differ-

ent aspects of the APOS model could be translated into an AAS conform representation. Furthermore,

this made it possible to model suggestions on how the APOS model can be implemented and used in the

AAS framework.

1.4 Limitations

The AAS is a new concept, the first specifications describing the structure of the AAS were published in

2018. There is a limited amount of published research and experience with the AAS, which proved to be

a limitation of the work done in this project. The official specifications of the AAS are a bit unclear on

specific topics, and the lack of published research to add additional context has at times made it difficult

to establish a coherent understanding of the AAS topic.

The scope of the AAS framework made it impossible to cover every relevant aspect of the AAS in the

thesis because of time constraints. Therefore, several important aspects are not discussed in detail, such

as the IEC 61360 standard and the OPC UA AAS companion specification.

The suggested implementations of APOS models in the AAS framework are only theoretical. Because

of the lack of maturity around the AAS concept, no software tools were found to be suitable to implement

and test the suggested models of this project.

1.5 Outline

Chapter 2 discusses SIS and the APOS model for standardized failure reporting and classification. The

section covers taxonomies created by APOS, which are used to classify equipment into groups and define

failure modes and parameters used for failure registration. Chapter 3 provides a general overview of

the asset and the Asset Administration Shell. It describes how information and data are represented

in an AAS and introduces the concept of submodels. The AAS metamodel and modeling of composite

AAS is presented and discussed in chapter 4. In chapter 5, the concepts discussed in chapters 3 and 4

are applied to the APOS model. The chapter contains five suggestions on how the APOS model can be

modeled and used in the AAS framework. Chapter 6 discusses use cases and limitations of the suggested

implementations for the APOS model in the AAS framework. Finally, chapter 7 contains a conclusion,

discussion, and recommendations for further work.

Chapter 2

APOS and SIS

2.1 Safety Instrumented Systems

The main purpose of a safety instrumented system (SIS) is to detect and mitigate events that can lead to

dangerous situations in process systems. An SIS consists of several SIFs (Safety Instrumented Function)

that each is designed to prevent a dangerous situation. A SIF typically consists of three subsystems; sen-

sor equipment, logic solvers, and actuator equipment. This project uses terminology related to the field

of SISs. The terminology is defined in the APOS H1 specification by Hauge et al. [2021a], the Electrotech-

nical Vocabulary by the International Electrotechnical Commission [2015] and IEC-61508:2010 [2010]:

• Failure: A failure is the loss of ability to operate as intended.

• Fault: Fault describes the state of equipment that has lost the ability to operate as intended.

• Failure Detection: Failure detection refers to how a failure is observed or discovered.

• Failure Mode: A failure mode is a description of how equipment fails to perform as intended.

• Failure Cause: Failure cause is the description of circumstances leading to a fault.

• Failure Class: A failure is classified into one of four categories:

– Safe Detected (SD) or Safe Undetected (SU): A safe failure (S) is a failure without loss of safety.

SD is a failure revealed by diagnostics that can bring the safety system to a safe state. SU is an

undetected failure, but the safety system still remains in a safe state.

– Dangerous Detected (DD): DD failures lead to loss of safety functionality, but diagnostics

detect them.

– Dangerous Undetected (DU): DU failures lead to loss of safety and remain undiscovered until

the safety system fails to operate as intended.

2.2 APOS

The APOS project at SINTEF is a project that develops specifications for automation and operation of

safety instrumented systems in the petroleum industry. These specifications aim to automate and sim-

5

CHAPTER 2. APOS AND SIS 6

plify the collection, analysis, and sharing of data related to SIS failures. This thesis uses taxonomies de-

fined in the APOS report "Guidelines for standardized failure reporting and classification of safety equip-

ment failures in the petroleum industry" by Hauge et al. [2021a]. The taxonomies define hierarchies for

equipment grouping, failure modes, and parameters used to describe failures.

The specialization project "Identification and analysis of data sources for equipment being part of

safety-instrumented systems" by Bratbak [2021], is partially based on concepts discussed in the APOS

reports "Guidelines for standardised failure reporting and classification of safety equipment failures in

the petroleum industry" by Hauge et al. [2021a] and "Guideline for follow-up of Safety Instrumented

Systems (SIS) in the operating phase" by Hauge et al. [2021b].

This section reiterates information on the APOS taxonomies and failure parameters previously dis-

cussed in the specialization project by Bratbak [2021]. The taxonomies and failure parameters defined by

APOS are directly used as a basis for developing AAS models in this thesis and are therefore reintroduced

in this section.

2.2.1 Equipment Group Hierarchy

The equipment group hierarchy defined by APOS groups equipment based on two criteria; function and

design. Function is the main function of the equipment, i.e. to detect fire, do a process measurement

or isolate a process. Design refers to the characteristics of the equipment, such as method of measure-

ment or how the equipment is designed to perform its intended functionality. Based on these criteria the

equipment group hierarchy is divided into three levels, L1, L2 and L3:

L1 - Main Equipment Group

The top level of the equipment group hierarchy is the main equipment group. Here equipment is divided

into groups based on their main functionality. Examples of groups at this level are process transmitters,

fire detectors, or isolation valves. Typically equipment belonging to the same equipment group will share

the same failure modes and detection methods.

L2 - Safety Critical Elements

The safety critical element is the defining characteristic of the equipment, for example, what a process

transmitter measures. The second level of the equipment hierarchy sorts equipment in a specific main

equipment group into more specialized groups based on the safety critical element of the equipment.

The main equipment group of process transmitters is, for example, divided into pressure transmitters,

temperature transmitters, or level transmitters.

L3 - Equipment Attributes

The third equipment level of the equipment group hierarchy details a set of attributes that impact the

performance and reliability of equipment belonging to a specific L2 equipment group. These attributes

describe the specifics of equipment design and application, such as if the measuring principle of a tem-

perature transmitter is resistance or expansion or in what environment the equipment is installed. Figure

2.1 illustrates the equipment group hierarchy from L1 to L3 with the possible categories of equipment at-

tributes that can be used to describe and differentiate equipment at L3.

CHAPTER 2. APOS AND SIS 7

L1
Main Equipment Group

L2
Safety Critical Elements

L3
Equipment Attributes

Measuring principle Design principle Actuation principle Medium properties Dimension

Location/Environment Application DiagnosticsTest, maintenance &
monitoring strategy

Figure 2.1: APOS equipment group hierarchy with the L3 equipment attribute categories.

2.2.2 Failure Mode Hierarchy

The taxonomy for failure modes proposed by APOS consists of two levels, F1 and F2. The top level F1

groups failure modes into three main groups based on failure criticality. The F1 groups are:

• Safety Function Impaired (SFI): The SFI group covers failure modes that are associated with dan-

gerous failures, i.e., loss of safety function.

• Safe/Spurious Failures (SF): The SF group covers failure modes that are not associated with loss

of safety function failures or failure modes that causes spurious operation. A spurious operation is

defined as the activation of a SIS without process demand by Lundteigen and Rausand [2008],

• Non-Critical Failures (NONC): The NONC group covers failure modes that describe a reduction in,

but not the absence of, the ability of equipment to perform intended safety functionality or failures

that do not affect equipment function.

There are also two additional failure mode groups at the F1 level, which cover failure modes that are not

related to functional safety. These are Loss Of Containment (LOC) and Loss Of Explosion Control (LEX).

The F2 level of the APOS failure mode hierarchy covers specific failure modes. The failure mode hi-

erarchy is used in conjunction with the equipment group hierarchy. The F2 level describes the failure

modes for a specific equipment group. Table 2.1 shows the F2 failure modes for the main equipment

group for process transmitters.

CHAPTER 2. APOS AND SIS 8

Table 2.1: Failure modes for the process transmitter equipment group, adapted from Hauge et al. [2021a].

Failure Mode

F1 F2

SFI

No Output (NOO)

Erratic Output (ERO)

High Output (HIO)

Low Output (LOO)

SF

Spurious Output (SPO)

High Output (HIO)

Low Output (LOO)

NONC

High Output (HIO)

Low Output (LOO)

Erratic Output (ERO)

Minor in-service problem (SER)

LOC External Leakage of Process Medium (ELP)

LEX Defect Explosion Protection (DEX)

2.2.3 Failure Registration Parameters

When a failure occurs, information describing the failure needs to be registered. The Activities Regulation

by the PSA (Petroleum Safety Authority Norway), Petroleumstilsynet [2017], requires that a failure that

can have dangerous consequences is reported and classified. Several different types of information are

used to describe a failure. Hauge et al. [2021a] has summarised a set of information categories that are

used when reporting and classifying a failure. The categories consist of parameters that each describe

different aspects of a failure. A distinction is made between three different types of failure parameters:

manually registered parameters, automatically generated parameters and calculated parameters.

Manually registered parameters

The manually registered parameters are decided and classified by a person. The parameters describe a

specific instance of a failure and are declared to be either mandatory, recommended, or optional to use

when classifying a failure by Hauge et al. [2021a]. The manually registered parameters are:

• Detection method (mandatory): The detection method describes how a failure is revealed. Hauge

et al. [2021a] has suggested a taxonomy similar to that of equipment grouping and failure modes for

detection methods. The taxonomy is a two-layered hierarchy that separates scheduled activities,

unscheduled events, and detection through an alarm at the top level. The second level defines

activities such as functional testing and predictive maintenance as scheduled, failure on demand

and casual observation as unscheduled, and detection by diagnostics as alarmed.

• Failure mode (mandatory): The second mandatory parameter is failure mode, which describes

how the equipment failed to perform as intended. The parameter follows the previously described

failure mode hierarchy.

• Failure cause (recommended): The failure cause describes the root cause of the sequence of events

that resulted in the failure. Hauge et al. [2021a] has suggested a three-level taxonomy for failure

CHAPTER 2. APOS AND SIS 9

cause. The top-level divides failure causes into categories, such as user-related and stress-related.

The second layer describes the general activity that caused the failure, for example, operational

stress. The third layer is a more specific description of the activity, such as friction.

• Restoration time (recommended): The restoration time is the period from detection of a failure to

the equipment again is functioning as intended.

• Independent or Common Cause Failure (recommended): It is recommended by Hauge et al.

[2021a] to include whether the failure occurred independently of other failures or if it was a com-

mon cause failure (CFF), i.e. if the failure cause resulted in additional failures.

• Failure mechanism (optional): The failure mechanism is the observable process that leads to a

failure, for example, visible corrosion on a piece of equipment. There is a taxonomy defined for

failure mechanisms in ISO-14224:2016 [2016]. However, this parameter is set to be optional by

Hauge et al. [2021a] as the guideline is more focused on the underlying causes for failure.

• Failure impact (optional): The failure impact describes the severity of the consequences of a fail-

ure on the intended functionality of the equipment. In ISO-14224:2016 [2016] critical, degraded,

and incipient are terms used for failure impact. Failure impact is also set to be optional by Hauge

et al. [2021a] as the combination of failure mode, and detection method should be sufficient to

decide the severity of the failure.

Automatically generated parameters

These are parameters that can be automatically generated from the manually registered parameters and

equipment group classification.

• Failure Class: The failure class, if a failure is considered to be DU, DD, S or NONC failure, is a

classification of a failure that is dependant on the failure mode and the detection method of the

failure. This is shown in table 2.2, which illustrates how different combinations of failure mode and

detection method can be used to generate the failure class parameter.

Table 2.2: Failure class generation, adapted from Hauge et al. [2021a].

F1

Failure Mode

Detection Method

Undetected Detected

Scheduled Activity Unscheduled Activity Diagnostics

SFI DU DU DD

SF S S S

NONC NONC NONC NONC

• Priority: The priority indicates the priority of restoring the equipment to a functioning state after

a failure. The priority can be decided automatically by combining information about the criticality

of the equipment and the failure mode.

• Random or systematic failure: Random failures appear randomly at a random point in time, while

a systematic failure is due to the presence of some set of conditions that leads to the failure, ac-

cording to Hauge et al. [2021a]. The APOS guideline suggests that failure causes can indicate if the

CHAPTER 2. APOS AND SIS 10

failure was random or systemic. For example, if the failure cause was due to natural degradation, it

might indicate a random failure, and a management-related failure cause might indicate a systemic

failure caused by inadequate management procedures.

Calculated Parameters

The calculated parameters represent aspects regarding failure analysis. While the automatically gener-

ated parameters describe a specific failure, the calculated parameters are applied at an equipment group

level and use data collected from members of an equipment group.

Some calculated parameters which are relevant for follow up of safety equipment mentioned by

Hauge et al. [2021b] and in NOROG070 [2020] are:

• Number of DU failures: Not strictly a calculated parameter, but an aggregation of the total amount

of DU classified failures.

• Operating time: Total time an equipment group has been in operation. The sum of operating hours

for every instance of equipment in an equipment group.

• DU failure rate: The rate of DU failures. One method for calculating the DU failure is:

λDU = Number of DU failures

Aggregated Operating Time
(2.1)

• Test interval: Time between proof tests. A proof test is a test designed to reveal DU failures.

• Diagnostic coverage: The ratio of dangerous detected failures to dangerous failures, given by:

DC = λDD

λDD +λDU
(2.2)

• Safe failure fraction (SFF): The ratio of safe and DD failures to safe and dangerous failures, given

by:

SFF = λS +λDD

λS +λDD +λDU
(2.3)

• Probability of failure on demand (PFD): A simplified formula for the PFD is given in NOROG070

[2020]:

PFD = λDU ∗ (test interval)

2
(2.4)

Chapter 3

AAS and Asset

The framework for data representation and communication of I4.0 is based on two concepts: the asset

and the Asset Administration Shell. In 4.0, an asset is something that has value to an organization and

information worth representing digitally. The digital representation of the asset and the information

related to it is the Asset Administration Shell. The Asset Administration Shell is a standardized framework

for structuring and communicating data in I4.0 systems.

This chapter explains the basic concepts of the I4.0 asset and the Asset Administration Shell. It ex-

plains how information and data describing an asset are represented through properties, how descrip-

tions of different aspects of an asset are structured within the Asset Administration Shell through sub-

models, and how the AAS can be implemented into a network infrastructure.

3.1 The Asset

According to Heidel et al. [2019], I4.0 defines three separate object worlds; the human world, the infor-

mation world, and the physical world, as shown in figure 3.1. The physical world includes all physical

entities such as equipment, IT systems, or production systems. The information world is split into three

separate worlds; the model world, the state world, and the archive world. Entities such as specification

documents, technical documentation, or business plans exist in the model world. The state world con-

tains information about the current state of an entity, such as the value of a sensor measurement or how

an object is configured. The archive world holds information about previous states of an entity, historical

data, or life cycle documentation. Humans are separated into a separate world because they exist in the

physical world and participate actively in the information world.

11

CHAPTER 3. AAS AND ASSET 12

Human World

Model world

- Standards
- Specifications
- Technical documentation

State world

- Measurements
- Target values
- Configuration parameters

Archive World

- State history
- Life cycle documentation
- Project history

Physical World

- Equipment
- IT systems
- Production systems

Information World

Physical World

Figure 3.1: The object worlds of I4.0, adapted from DIN SPEC 9134:2016 [2016]

An asset is an entity that is owned or administered by an organization, and it has either a perceived

or an actual value to an organization, according to Plattform Industrie 4.0 [a]. Originally the concept of

an asset encompassed smart components in the physical world, components with embedded computing

resources, and communication ability, as stated by Heidel et al. [2019]. The concept has since expanded

to include “non-smart” entities from all object worlds, as long as the entity can be integrated into a net-

work infrastructure with external computing resources by the asset owner or administrator. According to

Heidel et al. and DIN SPEC 9134:2016 [2016] the following statements are true for asset:

1. An asset can be a physical or non-physical object

2. An asset can be represented in the information world

3. The characteristics of an asset can be described by properties

4. An asset is identifiable

5. An asset has a lifetime characterized by time, location, and state

6. One or more assets can be combined to create a new asset

7. Information about an asset is linked to a carrier

The first point refers to the idea that an asset is an object that has either perceived or actual value. An

asset can be anything from an entire plant to a valve, an unfinished piece of equipment under develop-

ment, a software system, a maintenance plan, or a simple screw. An asset can also be more abstract, such

as an idea or a concept. The source of an asset can be from any of the object worlds shown in figure 3.1.

CHAPTER 3. AAS AND ASSET 13

The second and third statements state that for an entity to be considered an asset, it must be possi-

ble to represent the characteristics and technical data of the asset in the information world. The asset

is represented in the information world through a description of its properties. In order to ensure inter-

operability between users and computer systems, each property used to describe the asset must have a

consistent semantic definition. The digital representation of an asset is the Asset Administration Shell.

The fourth point states that an asset is identifiable. Identifiable means that every asset has a unique

identifier that separates it from other assets.

Figure 3.2 illustrates the fifth statement, the generalized life cycle of an asset in regards to time, lo-

cation, and state. The commissioning and production phases will depend on the type of asset. It can

mean the conceptualization of an idea or the development and production of a product. It is the creation

process of an asset. The provisioning phase is the transport of an asset from manufacturer to customer

and the assembly and installation process of the asset at a plant. When the asset is taken into use, it can

either be working as intended, temporarily removed for maintenance, or sent back to the manufacturer

for repair. In the end, the asset is disposed of when no longer needed. The state of the asset changes

throughout the life cycle. The possible states of an asset in the I4.0 framework are type and instance. Dur-

ing the creation phase of the asset, it is a type asset. When commissioning of the asset is complete, every

asset produced based on the original design and specification is an instance of the type. An example is a

manufacturer that designs and develops a specific type of valve. Every valve sold and taken in use is an

instance of the base valve type.

Commissioning

Production

Provision

Usage Maintenance

Disposal

Repair

Figure 3.2: The life of an asset, adapted from DIN SPEC 9134:2016 [2016]

Point number six states that assets can be complex entities. An asset can consist of other assets. For

example, a SIF can be an asset that consists of sensors assets, PLC assets, and actuator assets.

The last statement is that every piece of information about an asset is linked to a carrier. In this

context, a carrier means something that stores or hosts information, such as a file, a server, a web page,

or a database.

CHAPTER 3. AAS AND ASSET 14

3.2 The Property Principle

In the book "Industrie 4.0 - the Reference Architecture Model RAMI 4.0" by Heidel et al. [2019] the prop-

erty principle refers to the idea that something from the physical world can be represented digitally by

describing its characteristics and technical data with properties. This is synonymous with the statement

from the previous section that stated that an asset can be represented in the information world by prop-

erties. According to Heidel et al. [2019] a property is defined by:

• A human-readable term naming the property

• A concept definition of the property

• An identifier for the concept definition of the property

• A list of attributes characterizing the property

• The presence or absence of a value assigned to the property

Similar to the type and instance concept of the asset, a property without an assigned value is a property

type, and a property with an assigned value is a property instance.

A basic example of the property concept is an asset where the weight of the asset is a relevant property

to express in the information world to describe the asset. The parameters of an example property of

weight are shown in table 3.1.

Table 3.1: Example of the property for weight

Name Weight

Concept Definition The relative mass of a body

Identifier www.example.org/weight

Attributes
Newton

kgms-2

Value 20

The weight property is an example that can illustrate the importance of including a concept definition

of a property. A human reading the property called weight might think that the property represents the

mass of the asset in kilograms. Weight and mass are often used interchangeably in everyday speech, but

they are two different concepts in physics. The inclusion of a context description is supposed to ensure

semantic consistency between asset users during different phases of the asset life cycle.

3.2.1 The I4.0 Property

The use of properties in an I4.0 compliant system is similar to the concept described in the previous

section. However, a key difference is that the structure of the context description of a property follows a

standardized framework. A property represented in the information world of I4.0 should be described in

accordance with "IEC 61360 - Standard data element types with associated classification scheme" IEC-

61360:2017 [2017]. The reason for using a standardized approach to property descriptions is to ensure

interoperability between machines according to Plattform Industrie 4.0 [2021c]. It creates a framework

where a software application can expect a specific set of mandatory attributes to be present describing

CHAPTER 3. AAS AND ASSET 15

the property. In addition, there can also be extra optional attributes describing the property further. Table

3.2 illustrates an excerpt of the concept definition of the property temperature from the IEC Common

Data Dictionary (IEC CDD), which is based on IEC 61360. The first four rows in the table are the identifiers

of the concept definition. The Code attribute is a unique identifier for this entry in the IEC Common

Data Dictionary, and version and revision are life cycle attributes for the entry. The IRDI (International

Registration Data Identifier) is a globally unique identifier. It is identical to the Code, except for the last

part, #001, which indicates that it is version one of the property definition of temperature. Since an IRDI

is globally unique, it can be used as an external reference to the context description. The rest of the

table contains information on the actual definition of the property, standard SI unit, if the definition is

standardized, and where.

Table 3.2: Excerpt of the IEC 61360 definition of the property temperature, based on IEC [2022].

Attribute Value

Code 0112/2///61360_4#AAE685

Version 001

Revision 06

IRDI 0112/2///61360_4#AAE685#001

Preferred Name temperature

Definition temperature of a component, or its environment, as a variable

Primary Unit C

Data type INT_MEASURE_TYPE

Status level Standard

Published in IEC 61360-4

Published by IEC

3.3 The Asset Administration Shell

The Asset Administration Shell is the digital representation of an asset in the information world. Figure

3.3 illustrates the basic concept. The idea behind the word "Shell" is that the AAS "wraps" around the

asset and functions as the digital representation of its attributes and capabilities in the information world.

The AAS is described in the specification series "Details of the Administration Shell" by Plattform In-

dustrie 4.0. Currently, there are two published specifications in the series, part 1: "The exchange of infor-

mation between partners in the value chain of Industrie 4.0" Plattform Industrie 4.0 and ZVEI [2020a] and

part 2: "Interoperability at Runtime- Exchanging information via Application Programming Interfaces"

Plattform Industrie 4.0 and ZVEI [2020b]. Part 1 of the specification series defines a technology-neutral

information model of the AAS. It describes how to structure and represent data and information in the

Administration Shell. Part 2 of the specification series defines a technology-neutral API (Application Pro-

gramming Interface) for accessing data represented by the Administration Shell in the information world.

An essential part of the AAS information model and API is that they are technology-neutral. Interoper-

ability is one of the core aspects of I4.0, and a neutrally defined AAS framework is of the keys to achieving

interoperability. The information model described in part 1 of the Details of the Administration Shell

series can be mapped to other technologies. In this context, a mapping to another technology means

representing the Asset Administration Shell in different modeling languages, storing it in a serialized file,

CHAPTER 3. AAS AND ASSET 16

or describing it in an OPC UA object model. The interoperable aspect is that any mapping of an AAS

to another technology must keep the structure and rules for data representation intact. Any application

interfacing with an AAS should be able to expect consistent structure and data representation regardless

of the technology used to implement the AAS, as long as the application knows the mapping from the

generic AAS information model to the technology used.

Asset Administration
Shell

Physical world

Information world

Asset

Industry 4.0
systems

Figure 3.3: The Asset Administration Shell representing an asset in the information world

The arrows in the figure 3.3 represent communication. The AAS is not only the digital representation

of an asset; it also functions as the interface of the asset to other systems in the information world. An

AAS has two interfaces, one interface to the asset and one interface to other I4.0 systems. There are no

restrictions on how to implement the interface to the asset. Any communication protocol can be used to

communicate data between the asset and the AAS. The vision of Plattform Industrie 4.0 and ZVEI [2020b]

is that communication in the information world is done with open and standardized data formats and

communication protocols, such as XML (Extensible Markup Language) based file formats or OPC UA.

3.3.1 Structure of the AAS

The basic structure of the AAS is illustrated in figure 3.4. The structure of the Asset Administration Shell

can be broken down into two sections: the header and the body. The header of the AAS contains infor-

mation that identifies the Asset Administration Shell and the asset it is representing. Just an asset has a

unique identifier distinguishing it from other assets, the AAS has a separate identifier distinguishing it

from other AAS. The body of the AAS consists of submodels. A submodel contains one or more proper-

ties that are linked to a value, a file, or a function. The contents of one submodel will usually describe

one aspect of the asset. If the asset is a temperature sensor, one submodel might contain information re-

garding the manufacturing of the sensor, with properties describing the name of the manufacturer, serial

number, or year of construction as a few examples. Another submodel can hold properties describing the

current measurements of the sensor, with values being fed to the submodel in real time from the asset.

CHAPTER 3. AAS AND ASSET 17

If the sensor is a safety critical, another submodel might describe the SIL classification and the safety

related capabilities of the sensor. If there is a use for representing a certain set of asset attributes in the

information world, it is done in a submodel in the body of the AAS representing the asset.

Administration Shell

Submodel

- Property 1.1
- Property 1.2

Identification Asset

Identification
Asset Administration Shell

Submodel 2

- Property 2.1
- Property 2.2

- Property 2.2.1
- Property 2.2.2

Submodel n

- Property 1
- Property 2

Asset Administration Shell

Asset

Information Access

Runtime data from
asset

File

Value

Function

Complex data

Location

Schematics

Figure 3.4: Basic structure of an AAS, adapted from Ye and Hong [2019]

3.3.2 Submodels

A submodel is a part of an AAS that holds information and describes the attributes associated with one as-

pect of the asset the AAS is representing. A submodel represents information through submodel elements

such as properties. Two statements are always true for a submodel according to Plattform Industrie 4.0

and ZVEI [2020a] :

• A submodel is either a submodel template or a submodel instance

• A submodel has a unique identifier

The first statement is similar to the concept of type and instance of asset and AAS. In the case of a sub-

model, it can either be a submodel template or a submodel instance. A submodel represents a particular

aspect of an asset. The aspect may apply to several different assets, or there can be several instances

CHAPTER 3. AAS AND ASSET 18

of a specific asset type. In both of these cases, the same submodel representing the aspect of the asset

would be used. The submodel template is a standardized structure and list of properties used to describe

an aspect of an asset that frequently occurs. Every time a submodel based on a submodel template is

implemented in an AAS, the submodel is an instance of the submodel template.

The second statement is the same as the one for an asset and the AAS. Every submodel has a unique

identifier that separates it from other submodels.

Sources of submodels

Generally speaking, there are two sources of submodels: published standards and private specifications.

Submodels can be based on and modeled after a standard, such as a specification published by IEC or

ISO; this is a basic submodel. The alternative is a free submodel. The free submodel can be based on

anything but should have a specific use case according to Plattform Industrie 4.0 [2019]. For example,

this can be to represent an in-house specification of the owner of the AAS or some aspect of the asset that

has value to the users of the AAS.

Table 3.3: Possible sources of standarized submodels, based on Plattform Industrie 4.0 [2018]

Specification Title Technical Domain

IEC 61987
Industrial-process measurement
and control

Process control of
field devices

IEC 61511
Functional safety –
Safety instrumented systems for
the process industry sector

Functional Safety

ISO 20140-5 Automation systems and integration Energy efficiency

65E/482/NP
Industrial-process measurement,
control and automation

Condition
monitoring

ISO/IEC 6523

Information technology:
Structure for the identification
of organizations
and organization parts

Identification

IEC 62453
Field device tool (FDT) interface
specification

Configuration of
field devices

IEC CDV 62890

Life-cycle management for systems
and products used in
industrial-process measurement,
control and automation

Life-cycle
management

From the perspective of interoperability across companies, submodels should be basic submodels.

A basic submodel is associated with a submodel template and a standardized specification. An external

application will know what to expect from the submodel in terms of structure and properties because

the submodel is an instance based on a known and published template. Plattform Industrie 4.0 and ZVEI

[2020a] claims that the aim of submodels is to create submodel templates for every technical domain.

Table 3.3 shows some suggested specifications and the technical domains the submodels based on the

specifications would cover.

Currently, there are two published submodel templates, which mostly function as an illustration of

the concept. One is for a digital nameplate based on the requirements of minimum nameplate infor-

CHAPTER 3. AAS AND ASSET 19

mation in EU directive 2006/42/EC published by Plattform Industrie 4.0 and ZVEI [2020c] The other is a

submodel template for technical data and is not based on a specific standard, also published by Plattform

Industrie 4.0 and ZVEI [2020d]. It is a generic framework for representing product classification and the

technical properties of industrial equipment.

Free submodels can also be submodel templates. However, they only offer interoperability in the

space where the template is known. The AAS information model ensures that free submodels can be read

by any application capable of interacting with Administration Shells. However, the context and semantics

of the free submodel might not translate outside of the space where the submodel template is known.

This is not necessarily a problem; as long as the submodel template is agreed upon and shared by the

partners and users of the AAS, it offers full interoperability in the space where it is used.

3.3.3 Life Cycle of the AAS

The life cycle of the AAS mirrors that of the asset it is representing. Just as an asset is a type asset or an

instance asset, the Administration Shell is a type AAS or an instance AAS. Table 3.4 shows the basic life

cycle of an Asset Administration Shell and how it is populated with information.

Table 3.4: Life-cycle of the AAS, based on Open Industry 4.0 Alliance [2021].

AAS
Type/Instance
Phase

AAS
Contents

Owner
Life cycle
Phase

Type • Private Manufacturer Submodels Manufacturer Development

Type
• Private Manufacturer Submodels
• Shared Manufacturer Submodels

Manufacturer
Usage
and
Maintenance

Instance

• Private Manufacturer Submodels
• Shared Manufacturer Submodels

•
Submodels on Usage and Maintenance
used by Manufacturer

Manufacturer Production

Instance

• Shared Manufacturer Submodels

•
Submodels on Usage and Maintenance
used by Operator

• Operator Specific Submodels

Operator
Usage
and
Maintenance

In the first life cycle phase, development, a type AAS is created by the manufacturer of the asset the

AAS describes. The AAS contents in this phase are submodels with information relevant to the manu-

facturer, such as design documents, schematics, or submodels describing embedded software. The sub-

models describe information the manufacturer needs but might not wish to share with a future customer

or operator of the asset and AAS.

In the second life cycle phase, usage and maintenance, the manufacturer adds submodels to the AAS

they wish to share with customers. These can be submodels describing technical data, the contact infor-

mation of the manufacturer, or SIL certifications, as a few examples. At this phase, the AAS is still a type

AAS, so the information added to the AAS will be accurate for any instance of the asset produced.

The third life cycle phase is production. Production is the phase where instances of a type asset are

created with an associated instance of the type AAS. The owner of the asset in this phase is still the manu-

facturer, and the instance AAS created is intended to be used and owned by the manufacturer for the rest

CHAPTER 3. AAS AND ASSET 20

of the asset’s lifetime. Effectively there are two instance AAS created for one instance of an asset at this

life cycle phase. One is owned and used by the manufacturer, and the other is delivered with the asset to

the customer. An asset can have several Asset Administration Shells with different owners. In this case,

there could be interest from the manufacturer to get feedback on the usage and maintenance of the asset

instance from the operator. This information is then stored in the manufacturer-owned instance AAS.

The fourth life cycle phase of the AAS starts when the asset changes owner. The asset is delivered

to the operator with an instance AAS. This instance AAS is controlled and owned by the operator. In

addition to the submodels shared by the manufacturer, additional submodels can be added describing

aspects relevant to the operator.

3.3.4 Information Exchange with AAS

In the context of networking and information exchange, the AAS can be distinguished into three different

types according to the documentation of the I4.0 software platform BaSyx [2021]. The difference between

AAS types is based on how the AAS shares information and the capability of the AAS to communicate in

a network. Figure 3.5 illustrates the different types of AAS and how they exchange information. The

different types of AAS are:

• Type 1 AAS

• Type 2 AAS

• Type 3 AAS

A type 1 AAS contains only static information. Every submodel associated with the type 1 AAS con-

tains properties that represent values that do not change over time. A type 1 AAS can therefore be stored

and shared through files. Serialized data formats such as the XML-based AML format, which is associated

with AutomationML, or JSON (JavaScript Object Notation), are envisioned to be used to share type 1 AAS.

A type 2 AAS contains both static and dynamic data. Submodels in a type 2 AAS can also represent

properties with values that change over time in addition to static properties. A type 2 AAS exists as a

runtime instance and is hosted on a server. The type 2 AAS has an interface that can be used to interact

with the AAS and access, view, and change the values associated with a property. It is envisioned that OPC

UA will be an essential technology when implementing the type 2 AAS. The type 2 AAS will be hosted on

OPC UA servers, and the structure of the AAS information model will be translated to an OPC UA object

model.

A type 3 AAS is a smarter version of the type 2 AAS. The type 3 AAS contains both static and dynamic

information, but in addition, it has the capability to communicate and negotiate with other AAS on its

own. At the moment, little information on the implementation of a type 3 AAS is available. Since the

vision is an AAS with intelligent behavior, some elements of artificial intelligence will maybe be involved.

CHAPTER 3. AAS AND ASSET 21

AAS Sub Sub

User 1

User 2

AAS

External
Application

Asset

AAS

AAS AAS

Asset

Asset Asset

Type 1

File

Type 2 Type 3

Industry 4.0 network

Figure 3.5: Information exchange by type of Asset Administration Shell, based on Plattform Industrie 4.0
and ZVEI [2020b]

3.3.5 Hosting of AAS

The focus of this thesis is mainly on the type 2 Asset Administration Shells that are hosted on servers and

can share information with external applications through a communication interface. The existence of

a server hosting an AAS implies that an AAS is located somewhere in the network infrastructure. Wenger

et al. [2018] claims there are three approaches to the question of where in network infrastructure the Asset

Administration Shells can be located:

Component AAS

The concept of the component AAS is that each component has an embedded server hosting its own AAS

and submodels. To execute this concept, the component must have sufficient memory, communication,

and data processing capabilities to implement a server hosting the AAS or be directly connected to a

gateway that can host a server for the component and communicate over the network. The benefit of

this approach is the closeness between asset and AAS, as illustrated in figure 3.6. It creates a network

structure where it is easy to locate a specific AAS and its submodels because they are all hosted together

on the component, and the asset can easily feed dynamic data into the AAS.

It seems infeasible to expect every component to have sufficient memory and communication ability

to host a server. Another possible problem is the increased network traffic to the component. For exam-

ple, suppose the asset’s real-time behavior depends on computing resources shared by the AAS. In that

case, there is a worst-case scenario where the increased network traffic causes the component not to work

as intended because of a lack of available computing resources. This problem is partially circumvented

CHAPTER 3. AAS AND ASSET 22

by directly connecting the asset to a gateway, an embedded system with sufficient memory to host the

AAS. However, this creates a situation where for every asset, you need an extra component, the gateway,

to implement the asset into the infrastructure.

Component

Applications

AAS
Server

Component

Network

Component

AAS
Server

Gateway

AAS
Server

Component

Gateway

AAS
Server

Figure 3.6: Network infrastructure with Asset Administration Shells hosted on componentes

Central AAS repository

If every component hosting its own AAS is one extreme, the opposite is hosting every AAS in a central

repository separate from the components. Unless there are real-time requirements and restrictions on

the communication between component and AAS, the AAS can be located entirely separate from the asset

it is representing. In this solution, which is illustrated in figure 3.7, a central repository hosts the Adminis-

tration Shells and submodels for the components connected to the network. Data from the components

is fed into the repository and placed into the AASs. The benefit of this approach is that it creates a single

point of access for applications to find and connect to the Administration Shells. However, it also has the

possibility to create a bottleneck in the network as all data flows through the repository.

CHAPTER 3. AAS AND ASSET 23

AAS
Repository

Component Component Component

Applications

Network

Network

Figure 3.7: Network infrastructure with AAS hosted in a central repository

Distributed AAS

The third approach to placing the AASs in the network infrastructure is to allow AASs and submodels to

be distributed throughout the network on different servers with different access points. Figure 3.8 shows

an example of how a network infrastructure with distributed AAS could be realized. The key parts of

this solution are the Asset Registry, the AAS Registry, and the Submodel Registry. Every asset, AAS, and

submodel has a unique identifier. The registries stores information connecting these identifiers to an

endpoint in the network where the associated AAS or submodel is located. The endpoint information

could be an URL (Uniform Resource Locator) an application can use to connect to the server where the

AAS or submodels are hosted.

Figure 3.9 shows the flow of how an application could use these registries to discover and retrieve AAS

and submodels. In this example, an application knows the identifier of an asset and wants to connect to

AAS and submodels describing it. The Asset Registry holds information relating the asset’s identifier to

the identifier of the associated AAS. The AAS Registry would then provide the endpoint of where the AAS

with the identifier is hosted. The endpoint information allows the application to connect to the interface

of the AAS. The AAS Interface provides information on which submodels the AAS consists of and the iden-

tifiers of the submodels. The submodel identifiers can then be used to look up the endpoint addresses

of the submodels in the Submodel Registry. The application can then use the endpoint information to

connect to the servers hosting the submodels and the related properties.

CHAPTER 3. AAS AND ASSET 24

Asset
Registry

AAS
Registry

Submodel
Registry

Applications

Component

Submodel
AAS

server

Component

AAS
Submodel

server

Network

Figure 3.8: Network infrastructure with distributed Asset Administration Shells and submodels

Asset
Registry

AAS
Registry

AAS
Interface

Submodel
Registry

Submodel
Interface

Asset Identifier

AAS Identifier

AAS Endpoint

Submodel
Identifier

Submodel
Endpoint

AAS Identifier

AAS endpoint

Submodel
Identifier

Submodel
Endpoint

Submodel
Properties

Figure 3.9: Retrieval and discovery of Asset Administration Shells and submodels, adapted from Plattform
Industrie 4.0 and ZVEI [2020b]

One of the main benefits of distributing AASs and submodels throughout the network infrastructure

is that it allows for the technology best suited to host a specific submodel to be used. Submodels describe

different aspects of an asset. The information of an aspect may be more static or dynamic than that of

another aspect. For example, a submodel that contains data describing the contact information of the

CHAPTER 3. AAS AND ASSET 25

asset manufacturer does not frequently change. Such a submodel could be stored as a serialized file in a

database. In contrast, a submodel with dynamic properties such as sensor measurements can be hosted

on an OPC UA server.

One of the possible downsides to this approach is its complexity. It heavily relies on the use of and

access to registries. Both the component-centric and central repository approach would need some form

of registry relating identifiers to network endpoints for an application to connect to an AAS. The added

complexity of the distributed approach is that submodels are not necessarily hosted on the same server as

the AAS they belong to. However, the distributed approach is a lot more flexible in the use of technology

and implementation than the alternatives. It seems most likely that something akin to the distributed

approach is what will be adopted in an I4.0 framework. It does not exclude the use of components hosting

its own AAS or larger repositories hosting several Administration Shells. It provides the flexibility and

freedom to create implementations that fit different use cases.

Chapter 4

The AAS Metamodel

The AAS metamodel is a UML (Unified Modeling Language) model that specifies the structure, con-

structs, relationships, and rules of the AAS. The metamodel is described in the specification "Details of

the Asset Administration Shell - Part 1" by Plattform Industrie 4.0 and ZVEI [2020a]. A metamodel is a

model of a model. The AAS metamodel is the definition and the explanation of how to model the AAS.

The AAS metamodel is a template for creating and implementing AAS structures in other object models.

For example, the OPC UA for AAS companion specification published by the OPC UA Foundation [2021]

is a translation of the AAS metamodel into the OPC UA object model. The OPC UA for AAS companion

specification defines the rules of how to structure and host AAS on OPC UA servers.

The AAS metamodel is technology-neutral. Therefore, translation of the metamodel into other mod-

eling languages is possible, such as the XML-based AutomationML or JSON. The AAS metamodel creates

a situation where implementation and use of AASs are not restricted to a specific technology or commu-

nication protocol. For example, an AAS hosted on an OPC UA server can be translated and stored in an

AutomationML file without data- or structure loss because both implementations follow the rules of the

AAS metamodel.

This chapter consists of two sections. The first section presents and discusses the components of the

AAS metamodel. The second section explains how an asset made up of other assets, called a composite

asset, is modeled in the AAS metamodel language.

The UML notation used in this chapter is explained in appendix A.

4.1 AAS Metamodel Classes

The AAS metamodel describes AAS objects and AAS concepts with classes. Each metamodel class defines

a concept or an object that is part of the AAS framework. An example of a concept is that an AAS is

identifiable by a unique identifier, and an example of an object is a submodel or a property. A metamodel

class has a set of attributes used to implement the class’s functionality. For example, the property class

has an attribute for the property value and an attribute for the reference to the concept description.

This section consists of four parts. The first part discusses the common classes of the AAS meta-

model. The common classes consist of attributes implementing functionality used by several objects in

the AAS framework. For example, that an asset, a submodel, and an AAS have unique identifiers. How to

implement a unique identifier is defined in one of the common classes.

26

CHAPTER 4. THE AAS METAMODEL 27

The second part describes what is required to describe an asset object. The third part discusses the

classes and attributes that define the AAS. The last part is on the classes and attributes of submodels.

Table 4.1 shows the table format used to describe a class of the AAS metamodel in this chapter. The

definition of the terms is given below:

Table 4.1: Table format used to describe metamodel classes

Class: Class name

Inherits from: Inherits the attributes of : class1, class2, ...

Attribute Type Kind Cardinality

Attribute name The data type of

the attribute

The kind of the

attribute

Amount of the

attribute

• Class: The name of the class. If the class name is followed by «abstract», there is no object instance

of the class. An «abstract» class defines a set of attributes often inherited by other classes.

• Inherits from: Names of classes the parent class inherits attributes from. The parent Class1 inher-

iting from Class2 will contain the attributes listed in the table, and the attributes of Class2. Another

Class inheriting from Class1, inherits the attributes of Class1 and Class2.

• Attribute: Name of an attribute in the class.

• Type: The data type of the attribute. Types often used in this section are:

– string: Used to represent text

– langStringSet: Short for languageStringSet. A set of strings used to represent an attribute

name in different languages.

– reference: A reference to an external object.

– modelingKind: The enumeration: {Template, Instance}

– dataTypeDef: Used for attributes that can be one of several data types. For example a value

attribute can be represented by a string or an integer.

– valueDataType: Used in conjunction with dataTypeDef. Indicates that an attribute represents

a value, of type dataTypeDef.

– "Class name": If the Type starts with a capital letter, the attribute Type is another class defined

in AAS metamodel.

• Kind: Describes if the attribute is a value or a reference to a value or an object. Kind is one of:

– attr: The attribute is a value that is implemented directly in the class.

– aggr: Implies composition, the attribute is a reference to an external object that is dependant

on the parent class of the attribute.

– ref*: The attribute is a reference to an object that exist independent of the parent class of the

attribute.

• Cardinality: Describes how many of a specific attribute can be present in the class, and if the at-

tribute mandatory or optional. The types of cardinality used are:

CHAPTER 4. THE AAS METAMODEL 28

– 0..1: The attribute is optional, but only one can be included.

– 0..*: The attribute is optional, no restrictions on how many can be included.

– 1: The attribute is mandatory, one must be included.

An example of the table format for the property class is shown in table 4.2. The property class inherits

the attributes of another class called DataElement. The base attributes of property are: valueType, value,

and valueId. The attribute valueType is of type dataTypeDef, which means the property can represent a

value in different data formats. The Kind of valueType is attr, so the valueType is represented directly in

a property object. The cardinality of valueType is 1, so it is mandatory to include the valueType attribute

in a property object.

The value attribute is represents a value. The attribute is of Type valueDataType, which means that

value represents a value on in data format declared by valueType. The Kind is attr, so the value of the

property is represented in the property object itself. It is optional to include a value attribute in a prop-

erty object since the cardinality is 0..1.

The last attribute of the Property class is valueId. The Type of valueId is a reference. In a property

object, the valueId is reference to an external object. The Kind is aggr, which means the valueId references

an object that is dependant on the property object. Finally, it is optional to include a valueId attribute in

a property object since the cardinality is 0..1.

Table 4.2: Example of the metamodel class property, adapted from Plattform Industrie 4.0 and ZVEI
[2020a].

Class: Property

Inherits from: DataElement

Attribute Type Kind Cardinality

valueType dataTypeDef attr 1

value valueDataType attr 0..1

valueId reference aggr 0..1

An example of an instance of a property representing the city of Stavanger based on table 4.2 is shown

in table 4.3. The property includes the attributes idShort and semanticId inherited from the class dataEle-

ment. IdShort is an attribute used for the common name of a property and semanticId is an attr reference

like valueId to a concept description of a property. The valueId has been excluded since it is optional.

Table 4.3: Example of a property representing the name of a city

Class: Property

Attribute Value

idShort City

semanticId www.example.no/def/City

valueType string

value Stavanger

In the rest of the chapter bold font is used for class names and italic is used for attribute names.

CHAPTER 4. THE AAS METAMODEL 29

4.1.1 Common Classes

The common classes of the AAS metamodel define basic concepts and attributes of the AAS framework.

Most of the common classes are abstract; they do not exist as object instances in the AAS. For example, no

object of an abstract common class exits in an AAS hosted by an OPC-UA server. However, other objects

in the AAS will inherit and use the attributes of the common classes.

HasKind

A submodel is one of two kinds: a submodel template or a submodel instance. A property in a submodel

shares the same kind as the submodel: template or instance. HasKind, shown in table 4.4, is the im-

plementation of the "kind" principle. HasKind has one attribute: kind. The possible values of kind are

"template" and "instance". An object of a class inheriting from HasKind can be of kind template or kind

instance.

Table 4.4: Attributes of HasKind, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: HasKind «abstract»

Inherits from: - -

Attribute Type Kind Cardinality

kind modelingKind attr 0..1

’

HasSemantics

Objects such as submodels and properties have semantic definitions in the AAS framework. For example,

a concept description is the semantic definition of a property. HasSemantics, shown in table 4.5, states

that an object of a class inheriting from HasSemantics can have a semantic definition. The semanticId is

a reference to the semantic definition. If the object is a property, semanticId is a reference to an external

repository, such as the IEC Common Data Dictionary, hosting a concept description of the property.

Table 4.5: Attributes of HasSemantics, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: HasSemantics «abstract»

Inherits from: - -

Attribute Type Kind Cardinality

semanticId reference aggr 0..1

HasExtensions

An class inheriting from HasExtensions, shown in table 4.6, inherits the extension attribute. The data

type of extension is the class Extension shown in table 4.7 . An Extension is an object when instantiated

in the AAS. The use of an Extension object is to add additional information about another object, refersTo

is a reference to the other object. An Extension object is a proprietary extension, meaning that the data

type or format of the object is specific to a company or an organization. A property object is expected to

offer interoperability; any application reading a property can understand the attributes of the property.

There is no such expectation of an Extension object.

CHAPTER 4. THE AAS METAMODEL 30

Table 4.6: Attributes of HasExtensions, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: HasExtensions «abstract»

Inherits from: - -

Attribute Type Kind Cardinality

extension Extension aggr 0..*

Table 4.7: Attributes of Extension, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: Extension

Inherits from: HasSemantics

Attribute Type Kind Cardinality

name string attr 1

valueType dataTypeDef attr 0..1

value valueDataType attr 0..1

refersTo reference aggr 0..1

HasDataSpecification

For a property the semanticId from HasSemantics is a reference to a concept description of the property.

As discussed in section 3.2.1, the structure and attributes of a concept description are defined in the IEC

61360 standard. For a property object, the semanticId is a reference to an object that contains additional

attributes describing the property object beyond the base attributes of the class property.

Table 4.8 shows HasDataSpecification which contains dataSpecification. The attribute dataSpecifica-

tion is a reference to a specification describing the structure and formulation of additional attributes that

is added to a base class. In the case of a property object, dataSpecification references the IEC 61360 stan-

dard, because the semanticId of the property references a concept description object that is structured

after IEC 61360.

HasDataSpecification is not limited to referencing IEC 61360 objects only. If another specification

template is used to extend the description of a property, the specification template is referenced by

dataSpecification.

Table 4.8: Attributes of HasDataSpecification, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: HasDataSpecification «abstract»

Inherits from: - -

Attribute Type Kind Cardinality

dataSpecification reference aggr 0..*

Referable

Referable defines one of core attributes for objects in the AAS framework: idShort, shown in table 4.9.

The attribute idShort is the common name of an object. The idShort of a property representing a serial

number, can be "serialNumber". IdShort is a string without spaces. The reason idShort is a core attribute

and the class is named Referable, is that idShort is used to reference objects in the AAS framework. An

object of a class inheriting from Referable can be referenced in the AAS framework.

CHAPTER 4. THE AAS METAMODEL 31

The rule for use of idShort is that the value of idShort is unique in the namespace of the object the id-

Short belongs to. The parent of an object defines a namespace in AASs. A submodel is the namespace of

a property. Therefore all properties in a submodel must have different idShorts. The same is true for sub-

models; all submodels in an AAS must have different idShorts because the namespace of the submodels

is the AAS.

Table 4.9: Attributes of Referable, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: Referable «abstract»

Inherits from: HasExtensions

Attribute Type Kind Cardinality

idShort string attr 1

displayName langStringSet attr 0..1

category string attr 0..1

description langStringSet attr 0..1

The other attributes in table 4.9 are optional attributes used to name and describe an object of a

class that inherits from Referable. The attribute displayName is the preferred name to use in a software

application displaying an object to a user. The dataType langStringSet can contain the name of the object

in several languages. Metainformation about the object is stored in category, for example if a property

represents a temperature measurement, the category of the property is "measurement". The description

is a free string that can be used to represent comments or notes about an object

Identifiable

Identifiable contains another core attribute of the AAS framework: identification, shown in table 4.10.

The attribute identification implements the concept of globally unique identifiers for objects in the AAS.

An object of a class inheriting from Identifiable has a globally unique identifier. Figure 4.1 shows how

an unique identifier is modeled. Identifier is the dataType of identification. Identifier contains two at-

tributes: idType and id. The id is a value representing an identifier of a type specified by idType .There is

three allowed values for idType

• IRDI

• IRI (Internationalized Resource Identifier)

• Custom

IRDI is a scheme for creating identifiers described in IEC-61179:2015 [2015]. The IEC CDD uses IRDIs as

identifiers for concept descriptions. Duerst and Suignard [2005] have defined the IRI scheme for identi-

fiers, a commonly used IRI type is the URL. An URL is a web address, such as www.example.com. The last

idType value is custom, which allows for other identifier schemes to be used. However, IRDI and IRI are

the commonly used identifier schemes for the AAS.

The second attribute of Identifiable is administration, of Type AdministrativeInformation. The class

AdministrativeInformation has two attributes: version and revision. The two attributes are used to rep-

resent information about version number and revisions of an object of class that inherits from Identifi-

able.

CHAPTER 4. THE AAS METAMODEL 32

Table 4.10: Attributes of Identifiable, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: Identifiable «abstract»

Inherits from: Referable

Attribute Type Kind Cardinality

identification Identifier attr 1

administration AdministrativeInformation attr 0..1

 Referable
<<abstract>>
Identifiable

+ identification: Identifier
+ administration: AdministrativeInformation [0..1]

Identifier

+ idType: IdentifierType
+ id: id

<<enumeration>>
IdentifierType

 <<enum>> IRDI
 <<enum>> IRI
 <<enum>> Custom

 HasDataSpecification
AdministrativeInformation

+ version: string [0..1}
+ revision: string [0..1]

Figure 4.1: Dependencies of Identifiable, adapted from Plattform Industrie 4.0 and ZVEI [2020a]

Identifiable inherits from Referable. The two classes are the implementation of how objects in AAS

are referenced. Any object in an AAS is either:

• identifiable

• referable

• Neither referable nor identifiable

An identifiable object can be referenced by the unique id attribute. Objects that have an id are assets,

submodels and AASs. Objects that don’t have an id, but an idShort are referable. A property is an example

of an object that is referable but not identifiable. However, a property is a part of an identifiable object:

a submodel. A referable object having an identifiable parent is the key for referencing objects without

unique identifiers in the AAS.

For example, the id of a submodel is "www.example.com/submodel/id" and the idShort of a property

is "name". The submodel can be referenced directly by the unique id. The property can referenced

by combining the id and the idShort to "www.example.com/submodel/id/name". The combination is

CHAPTER 4. THE AAS METAMODEL 33

unique and is used as a reference because the id of the submodel is unique. This type of referencing is

why an idShort of a property must be unique in the namespace of the submodel it is a part of.

Objects that are neither referable nor identifiable can not be referenced in the AAS.

Qualifiable

Qualifiable is an abstract class, shown in figure 4.2. An object of a class inheriting from Qualifiable in-

herits attributes that further define the context of the object. This is called a constraint. There are two

generic types of constraint: Qualifier and Formula, shown in figure 4.3

<<abstract>>
Qualifiable

+ qualifier: Constraint [0..*]

<<abstract>>
Constraint

Figure 4.2: Dependency of Qualifiable, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

 HasSemantics
Qualifier

+ type: QualifierType
+ valueType: DataTypeRef
+ value: ValueDataType [0..1]
+ valueID: Reference [0..1]

<<abstract>>
Constraint

Formula

+ dependsOn: Reference [0..*]

Figure 4.3: Inheritance from Constraint, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

A Qualifier is in IEC-62569:2017 [2017] defined as: "a term that helps define and render the context

of a property". Examples of Qualifiers from IEC-62569:2017 [2017] are:

• SPE (as specified)

• SUP (as supplied)

• CAL (as calculated)

• EST (as estimated)

CHAPTER 4. THE AAS METAMODEL 34

SPE and SUP are life-cycle qualifiers, and CAL and EST are called value origin qualifiers. The use case

for Qualifier is to provide context to an object. For example, property for DU failure rate represents a

calculated value. A value origin Qualifier with value "CAL" can be added to the property to indicate that

the value of the property is calculated. Likewise, a property representing the specified SIL of a SIF can

have a life-cycle Qualifier with value "SPE" to indicate that the property represents a value generated

during the specification phase of the SIF.

Formula is another type of constraint. The idea behind formula is that the value of a property can be

the product of a logical expression. In figure 4.3 Formula has the reference attribute: dependsOn. For-

mula is used to model a logical expressions like: the value of property A dependsOn the value of property

B and property C.

No modeling language has been defined to create logical expressions in the AAS, so Formula is at the

moment a concept to be implemented in the future.

4.1.2 Asset

In the AAS framework there are two objects directly related to the asset. An object representing the asset

itself, and an object representing metainformation about the asset. The class Asset is used to define an

asset object, and the class AssetInformation is used to model the metainformation.

Asset

Table 4.11 shows the attributes of Asset. All the attributes of Asset are inherited from Identifiable and

HasDataSpecification. Two attributes are mandatory to describe an Asset object: idShort and identifi-

cation. In order to create an Asset object in the AAS framework only an idShort and an unique identifier

need to be defined. The rest of the attributes of table 4.11 are optional additions used to further describe

the Asset object.

An Asset object represents one real-world asset. The AAS is the digital description of the asset, and

several AASs can describe the same asset simultaneously. Every AAS describing the asset references the

same Asset object.

Table 4.11: Asset with inherited attributes, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: Asset

Inherits from: Identifiable, HasDataSpecification

Attribute Type Kind Cardinality

idShort string attr 1

displayName langStringSet attr 0..1

category string attr 0..1

description langStringSet attr 0..1

identification identifier attr 1

administration AdministrativeInformation attr 0..1

extension Extension aggr 0..*

dataSpecification reference aggr 0..*

CHAPTER 4. THE AAS METAMODEL 35

AssetInformation

AssetInformation is what ties an AAS to an asset. The attributes of the AssetInformation, shown in figure

4.4, are the metainformation about an asset needed for an AAS to describe the asset in the information

world. If several AASs describe the same asset, every AAS has its own set of AssetInformation attributes

describing the metainformation about the asset.

 Identifiable
 HasDataSpecification

Asset

AssetInformation

+ assetKind: AssetKind [1]
+ globalAssetId: Reference [0..1]
+ specificAssetId: IdentifierKeyValuePair [0..*]
+ billOfMaterial: Submodel* [0..*]
+ defaultThumbnail: File [0..1]

<<enumeration>>
AssetKind

<<enum>> Type
<<enum>> Instance

 HasSemantics
IdentifierKeyValuePair

+ key: string
+ value: string
+ externalSubjectId: Reference

Figure 4.4: Dependencies of AssetInformation, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

The attributes of AssetInformation are:

• assetKind: An asset is either a type asset or an instance asset, which is represented by the manda-

tory attribute assetKind.

• globalAssetId: A reference to the Asset object. The reference is the unique identifier of the Asset

object. The globalAssetId attribute is listed as optional. The reason

textitglobalAssetId is listed as optional is that early in the life cycle of an asset, an identifier might

not yet be assigned to the asset. When an identifier is assigned, the globalAssetId is mandatory.

• specificAssetId: An asset can have other proprietary identifiers, such as a serial number or a tag

number. IdentifierKeyValuePair is a key-value pair reference that is used to tie an asset-specific

identifier (serial/tag number) to the unique asset identifier (IRDI/IRI).

• billOfMaterial: The billOfMaterial attribute is a reference to a specific type of submodel used to

model composite assets. The billOfMaterial submodel is discussed in section 4.2.

• defaultThumbnail: A reference to a file, a picture, or a digital drawing of the asset.

4.1.3 AAS

The metamodel of the AssetAdministrationShell is shown in figure 4.5. The AAS is a digital representa-

tion of an asset.

CHAPTER 4. THE AAS METAMODEL 36

 Identifiable
 HasDataSpecification
 HasKind

 HasSemantics
 Qualifiable

Submodel

AssetInformation

+ assetKind: AssetKind [1]
+ globalAssetId: Reference [0..1]
+ specificAssetId: IdentifierKeyValuePair [0..*]
+ billOfMaterial: Submodel* [0..*]
+ defaultThumbnail: File [0..1]

 Identifiable
 HasDataSpecification

AssetAdministrationShell

+ assetInformation: AssetInformation [1]
+ derivedFrom: AssetAdministrationShell* [0..1]
+ submodel: Submodel* [0..*]
+ security: Security [0..1]
+ view: View [0..*]

 HasDataSpecification
 HasSemantics
 Referable

View

Security
0..*

0..*

Figure 4.5: Metamodel of AssetAdministrationShell, adapted from Plattform Industrie 4.0 and ZVEI
[2020a].

The attributes that define an AssetAdministrationShell object are:

• idShort: AssetAdministrationShell inherits the idShort attribute from Identifiable. The idShort is

the common name for the AAS and is a mandatory attribute.

• identification: AssetAdministrationShell inherits the identification attribute from Identifiable. Ev-

ery AAS has a globally unique IRI or IRDI identifier that is represented by the mandatory identifi-

cation attribute.

• assetInformation: The assetInformation is a mandatory attribute of the type AssetInformation dis-

cussed in the previous section. AssetInformation contains attributes describing the asset the AAS

represents. The essential attributes of AssetInformation are globalAssetId and assetKind. The glob-

alAssetId is an reference to the specific asset the AAS represents, the reference value is the IRDI or

IRI of the asset. The assetKind attribute states if that asset is type asset or an instance asset, and as

a consequence if the AAS is a type AAS or an instance AAS.

• derivedFrom: If the assetKind attribute states that the asset is an instance asset, then the AAS is an

instance AAS. In that case, if the instance AAS is based on a type AAS, derivedFrom references the

identifier of the type AAS.

• submodel: The body of an AAS consists of submodels. A submodel describes a specific aspect of an

asset represented by an AAS. The Submodel class is explained in detail in the next section.

• security: The Details of the Asset Administration Shell Part 1 specification by Plattform Industrie 4.0

and ZVEI [2020a] cover aspects of security and access control to AAS. However, the security aspects

of the AAS are not in the scope of this project. In short, the security aspects of the metamodel cover

the use of certificates to limit access to AAS and access control policies to govern read and write

permissions to data represented in the AAS.

CHAPTER 4. THE AAS METAMODEL 37

• view: The body of the AAS consists of submodels that describe different aspects of an asset. For a

specific user of the AAS, some submodels will describe relevant information, and some submodels

irrelevant information. What information is relevant or not in an AAS will depend on the perspec-

tive of the user. A View object is a predetermined list of referable objects in an AAS that are relevant

from a specific perspective. For example, a View can be created to only display submodels and

properties related to SIS failures.

4.1.4 Submodel

This section describes the attributes that define a Submodel object in the AAS and objects that are used

to represent the characteristics of an asset inside the submodel.

Submodel

Table 4.12 shows the content of the class Submodel. Submodel inherits from Identifiable, so it has an

idShort and unique identifier attribute. From HasKind, Submodel inherits kind. A Submodel object

is either a submodel template or a submodel instance, which is indicated by the kind attribute. The

semanticId is inherited from HasSemantics. For a Submodel object, semanticId is a reference to the

specification or documentation describing the structure and semantics of the submodel.

If a qualifier from Qualifiable is added to a Submodel object, the qualifier will be applied to the ob-

jects of the submodel. For example, if the life-cycle qualifer "SPEC" is added to a submodel, all properties

in the submodel will also be qualified as "SPEC".

The only non-inherited attribute for Submodel is submodelElement. The submodelElement attribute

is of type SubmodelElement. A submodel consist of submodelElements that each holds information re-

lated to the aspect of the asset the submodel is representing.

Table 4.12: Contents of Submodel, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: Submodel

Inherits from: Identifiable, HasKind, HasSemantics, Qualifiable, HasDataSpecification

Attribute Type Kind Cardinality

submodelElement SubmodelElement aggr 0..*

SubmodelElement

The metamodel of SubmodelElement is shown in figure 4.6. The figure is an excerpt of the available types

of SubmodelElement that can be used to model a characteristic of an asset. Two element types are a part

of the metamodel and SubmodelElement but have been left out of the figure. The two are: Operation

and Capability. Operation is supposed to model the value of an output variable based on the value of an

input variable. Capability is supposed to be a representation of an asset’s potential to achieve something

in the information world or the physical world. The functionality of the two SubmodelElements and

their related attributes are not fully fleshed out yet in "Details of the AAS Part 1" by Plattform Industrie

4.0 and ZVEI [2020a] and have therefore not been included in this section.

CHAPTER 4. THE AAS METAMODEL 38

 Referable
 HasKind
 HasSemantics

 Qualifiable
 HasDataSpecification

<<abstract>>
SubmodelElement

<<abstract>>
DataElement

RelationshipElement

+first: Referable*
+second: Referable*

SubmodelElementCollection

+value: SubmodelElement[0..*]
+ordered:boolean[0..1]
+allowDuplicates:boolean[0..1]

<<abstract>>
Event

Entity

+statement: SubmodelElement[0..*]
+entityType:EntityType
+globalAssetId: Referance*[0..1]
+specificAssetId:IdentifierKeyValuePair[0..1]

Figure 4.6: Metamodel of SubmodelElement, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

SubmodelElement inherits from Referable which means it has the idShort attribute. SubmodelEle-

ments are not identifiable, only referable. The idShort attribute is unique in the namespace of a Sub-

model object, which means that any SubmodelElements of a submodel can not have the same idShort.

SubmodelElement also inherits the kind attribute of instance or template from HasKind. The value of

kind for a SubmodelElement is inherited from the value of kind for the parent Submodel object. Has-

Semantics provides the semanticId attribute which in the case of a SubmodelElement is a reference to

an external concept description of the SubmodelElement. HasDataSpecification offers the opportunity

to extend the set attributes for SubmodelElement based on a reference to a data specification describing

the attributes. Inheritance from Qualifiable means a SubmodelElement can be extended with a Formula

or a Qualifier.

Event

The concept of the submodel element Event, shown in figure 4.7, is still not fully defined by Plattform

Industrie 4.0 and ZVEI [2020a]. The intended mechanism of Event can be very impactful in the AAS

framework. In the context of AAS, an Event is a change to the value of an object that warrants commu-

nication with other AAS. One example could be a property representing a dynamic sensor measurement

with a threshold value modeled with a qualifier. If the property’s value exceeds the threshold value, an

event can be modeled to generate a message to signal an alarm to other AAS. It seems that the intention

behind events is to automatically generate communication and signaling between AAS based on prede-

fined conditions.

CHAPTER 4. THE AAS METAMODEL 39

 SubmodelElement

<<abstract>>
Event

Figure 4.7: Metamodel of the SubmodelElement Event, adapted from Plattform Industrie 4.0 and ZVEI
[2020a].

In the Details of the Administration Shell Part 1 by Plattform Industrie 4.0 and ZVEI [2020a], there are

suggestions on attributes used to model an event and the structure of the generated event message sent

when conditions of the event are triggered. The suggestions are purely for discussion, but they indicate

a possible solution to an issue not discussed in detail in the AAS specifications. That issue is how to

handle historical data. Type 2 and type 3 AAS are implemented as run-time instances on a server, and by

definition, they describe dynamically changing data. An AAS represents the current state of an asset, and

a property represents one value describing state information.

The AAS does not have a SubmodelElement used to store historical values of a property. The reason

why Event can be used for historical data logging is that some of the proposed attributes of an event

message are: timestamps, the identifier of the AAS object that generated the message, and a payload

attribute that contains the state of the AAS when the Event occurred. The Event message can be stored

in a separate database and still maintain a connection to the AAS or submodel it was generated from

because the message contains the unique identifier.

Another possible use case of Event is to exploit the connection between AAS types and AAS instances.

Through the derivedFrom attribute of AssetAdministrationShell every instance of a type AAS knows the

identifier of the type AAS it is based on. Plattform Industrie 4.0 and ZVEI [2020a] claims that since an

instance knows the identifier of the type AAS, it should be able to listen for event messages generated by

the type AAS. For example, the owner of the type AAS, the asset manufacturer, can use the connection

to publish updates on the shared submodels with customers. The reverse can also be done if the owner

of an instance AAS wants to share maintenance information regarding the asset instance with the asset

manufacturer.

Even though the concept of events still is in the early stages of being defined, it seems like it can be an

essential aspect of the AAS framework and the possible solution to the problem of managing historical

data in AAS.

RelationshipElement

The RelationshipElement, which is shown in table 4.13, is used to create a relationship between two

referable elements. As the attributes of table 4.13 show, the relationship is directed, with attribute first

being the parent of what attribute second references. Hierarchical structures between AAS objects can be

modeled with RelationshipElement.

CHAPTER 4. THE AAS METAMODEL 40

Table 4.13: Attributes of RelationshipElement, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: RelationshipElement

Inherits from: SubmodelElement

Attribute Type Kind Cardinality

first Referable ref* 1

second Referable ref* 1

Entity

The attributes Entity is shown in table 4.14. An Entity is used to model an object within a submodel. The

use of Entity is represent an Asset object in a submodel. The mandatory entityType shown in table 4.14

is an enumeration that can take the values of SelfManagedEntity and CoManagedEntity. If an entity is a

SelfManagedEntity, it represents an asset with an AAS. If it is a CoManagedEntity, the entity is an asset

without an AAS and the characteristics of the Entity are represented within the AAS where the entity is

defined.

CoManagedEntities will usually be assets that are considered to be important but not complex enough

to warrant having their own AAS. An example is a valve mounted with a nut and a bolt. The nut and the

bolt can be considered assets, but it is not necessary to have an AAS for every nut and bolt on a plant.

Suppose the owner of the AAS representing the valve considers information on the type of bolt and nut

used to mount the valve valuable. In that case, the nut and bolt assets can be modeled within the AAS of

the valve as CoManagedEntities. The data describing the entity can be modelled by statement attributes,

which are submodelElements. If the entity is a SelfMangedEntity the globalAssetId will hold the identi-

fier of the asset, and the specificAssetId can represent alternative identifiers such as the serial number or

the tag number. If the entity is a CoManagedEntity it does not need to have an identifier.

Entity inherits from SubmodelElement, which means it is referable. Entity is one use case for Rela-

tionshipElement which be used to represent the relationship between an entity defined in a submodel

and the asset of the AAS where the Entity is defined.

Table 4.14: Attributes of Entity, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: Entity

Inherits from: SubmodelElement

Attribute Type Kind Cardinality

statement SubmodelElement aggr 0..*

entityType EntityType attr 1

globalAssetId Reference aggr 0..1

specificAssetId Reference aggr 0..1

DataElement

The DataElement class represents a specific characteristic of an asset in a submodel. The most important

of these is the Property. However, the DateElement metamodel class shown in figure 4.8 also covers

alternative ways to represent characteristics of an asset, such as through paths to files and the min-max

range of a value.

CHAPTER 4. THE AAS METAMODEL 41

 SubmodelElement
<<abstract>>
DataElement

Property

+valueType:DataTypeDef
+value: ValueDataType[0..1]
+valueId: Reference[0..1]

MulitiLanguageProperty

+value:LangStringSet[0..1]
+valueId: Reference[0..1]

Range

+valueType: DataTypeDef
+min: ValueDataType[0..1]
+max: ValueDataType[0..1]

Blob

+value: BlobType[0..1]
+mimeType: MimeType

File

+value: PathType[0..1]
+mimeType: MimeType

ReferenceElement

+value: Reference[0..1]

Figure 4.8: Metamodel of DataElement, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Property

Table 4.15 shows the attributes of Property. Property inherits from DataElement, which means it in-

herits the semanticId and idShort attributes which satisfies the requirement that a property shall have

reference to a concept description and a human readable name. The additional attributes of Property

are the valueType which states if the value of the property is, for example, a string or and integer and the

value attribute holds the actual value of the property.

A Property object is used to represent one parameter of an asset that can take a value. One of the

interesting aspects of Property is the optional valueId. The Property attribute valueId is a reference

to an optional attribute in a concept description structured after IEC 61360. In IEC-61360:2017 [2017]

there is an attributed named "Value_list". The "Value_list" is an enumeration set of permissible values a

property can take. If the valueId is present in a Property object, then the only values the value attribute

can take is defined in the concept description of the Property. The value of the value attribute must be

identical to one of the values in "Value_list" referenced by valueId.

Table 4.15: Attributes of Property, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: Property

Inherits from: DataElement

Attribute Type Kind Cardinality

valueType DataTypeDef attr 1

value ValueDataType attr 0..1

valueId Reference aggr 0..1

CHAPTER 4. THE AAS METAMODEL 42

MultiLanguageProperty

The MultiLanguageProperty of table 4.16 is a special optional case of the Property when the value of

the property is represented by a string. Since the value of the property is a string, it offers the option to

represent the value in multiple languages with a set of strings.

Table 4.16: Attributes of MultiLanguageProperty, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: MultiLanguageProperty

Inherits from: DataElement

Attribute Type Kind Cardinality

value LangStringSet attr 0..1

valueId Reference aggr 0..1

Range

The Range class is used to model a range of possible values a property can take. Table 4.17 shows the

attributes of Range which is a minimum and a maximum value and an attribute describing how the

value is represented, for example, as an integer or a double. A use case for Range can be if an asset is

supposed to operate within a specific temperature range. A Range object can represent the minimum

and maximum operating temperatures.

Table 4.17: Attributes of Range, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: Range

Inherits from: DataElement

Attribute Type Kind Cardinality

valueType DataTypeDef attr 1

min ValueDataType attr 0..1

max ValueDataType attr 0..1

File

File is used to represent the existence of a file that is relevant to the contents of the submodel. This can be

a CAD file of a digital model, a PDF, or a picture. The value of File is the path to where the file is located,

such as the URL of the server where the file is stored. The mimeType attributed denotes what kind of file

it is, if it is a jpeg or pdf, for example.

Table 4.18: Attributes of File, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: File

Inherits from: DataElement

Attribute Type Kind Cardinality

value PathType attr 0..1

mimeType MimeType attr 1

CHAPTER 4. THE AAS METAMODEL 43

Blob

The use case of Blob is similar that of File as it used to represent a file object. The difference is that while

the value of File represents the path to where the file object is stored, the value of Blob shown in table

4.19 is the binary data of the file. So with a Blob the file object is stored directly in the submodel. As with

File the mimeType indicates what kind of file a Blob obejct represents.

Table 4.19: Attributes of Blob, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: Blob

Inherits from: DataElement

Attribute Type Kind Cardinality

value BlobType attr 0..1

mimeType MimeType attr 1

ReferenceElement

The last of the DataElements is the ReferenceElement shown in table 4.20. The value is a reference to a

referable or identifiable object. A ReferenceElement object can reference another object in same AAS as

the ReferenceElement object, or an object in another AAS.

Table 4.20: Attributes of ReferenceElement, adapted from Plattform Industrie 4.0 and ZVEI [2020a].

Class: ReferenceElement

Inherits from: DataElement

Attribute Type Kind Cardinality

value Reference aggr 0..1

SubmodelElementCollection (SMC)

Table 4.21 shows the attributes of SubmodelElementCollection which inherits from SubmodelElement.

A SubmodelElementCollection object functions like submodel within a submodel, with the exception

that is not identifiable. The SMC is used to group elements that logically belong together. An example is

representing an address in a submodel. An address has several properties such as a name of a street and a

postal code. Instead of listing these properties directly in the submodel, they can be placed in a SMC with

idShort "Address". This is done with the value attribute in table 4.21. The other attributes are ordered and

allowDuplicates. The attribute ordered indicates if the order of the values in a SMC is relevant or not. The

attribute allowDuplicates declares if the values of a SMC can have the same semanticId, i.e. represent the

same concept. However it does not allow for the same idShort to be used for SMC value objects that share

a semanticId. A SMC is the same as submodel in regards to namespace, which means any element within

it must have a unique idShort.

CHAPTER 4. THE AAS METAMODEL 44

Table 4.21: Attributes of SubmodelElementCollection, adapted from Plattform Industrie 4.0 and ZVEI
[2020a].

Class: SubmodelElementCollection

Inherits from: SubmodelElement

Attribute Type Kind Cardinality

value SubmodelElement aggr 0..*

ordered boolean attr 0..1

allowDuplicates boolean attr 0..1

4.2 Modelling Composition in the AAS

In the Asset Administration Shell framework, one asset can consist of other assets. For example, a SIF

asset would consist of input assets, logic assets, and actuator assets. This type of complex asset and its

Administration Shell is called a composite component. In order to model a composite component, two

sets of relationships need to be represented within the Administration Shell of the composite component.

These are:

• The relationship between the composite asset and the assets of the composition

• The relationship between the composite Administration Shell and the Administration Shells of the

assets that create the composite asset

The method of modelling the relationship in the first point is described in the AAS metamodel. The

solution is the inclusion of a special submodel called billOfMaterial, which is the submodel referenced by

AssetInformation in section 4.1.2. The purpose of the billOfMaterial submodel is to represent the assets

with the submodelElement class Entity and the relationships between the them with the SubmodelEle-

ment class RelationshipElement.

Asset
Heat Detector

Asset
Smoke Detector

Asset
PLC

Asset
 Sprinkler

Composite Asset
Fire Suppression

System

Figure 4.9: A composite fire suppression asset consisting of heat and smoke detectors, a PLC and a sprin-
kler

As an example, consider a simplified fire suppression system that consists of a heat detector, a smoke

detector, a PLC, and a water sprinkler. In this case, the fire suppression system is the composite asset

which is comprised of the heat detector asset, the smoke detector asset, the PLC asset, and the sprinkler

asset, as illustrated in figure 4.9.

CHAPTER 4. THE AAS METAMODEL 45

Submodel
billOfMaterial

www.example.com/AAS/FireSuppressionSystem/submodel/billOfMaterial

FireSuppressionSystem: entity [1]
HeatDetector: entity [1]
FireDetector: entity [1]
PLC: entity [1]
Sprinkler: entity [1]
RelationshipFireSuppressionHeatDetector: RelationshipElement [1]
RelationshipFireSuppressionSmokeDetector: RelationshipElement [1]
RelationshipFireSuppressionPLC: RelationshipElement [1]
RelationshipFireSuppressionSprinkler: RelationshipElement [1]

AAS
FireSuppressionSystem

www.example.com/AAS/FireSuppressionSystem

billOfMaterial: submodel [1]

Entity
FireSuppressionSystem

entityType= SelfManagedEnity
globalAssetID = www.example.com/asset/FireSuppressionSystem

Entity
HeatDetector

entityType= SelfManagedEnity
globalAssetID = www.example.com/asset/HeatDetector

RelationshipElement
RelationshipFireSuppressionHeatDetector

first = www.example.com/AAS/FireSuppressionSystem/submodel/billOfMaterial/FireSuppressionSystem
second = www.example.com/AAS/FireSuppressionSystem/submodel/billOfMaterial/HeatDetecor

Figure 4.10: Modelling relationships between assets with billOfMaterial, Entity, and RelationshipEle-
ment

The structure of the billOfMaterial submodel is not yet standardized, but according to Plattform In-

dustrie 4.0 and ZVEI [2020a], it is expected to make use of Entity to model assets within the AAS. Figure

4.10 illustrates a possible implementation of how the billOfmaterial submodel can represent relation-

ships. Here the AAS of the composite asset is modeled with the idShort "FireSuppressionSystem," and

the URL is the identifier of the AAS. The only contents of the AAS in this example is the billOfMaterial

submodel. The contents billOfmaterial is a set of five Entity objects, one for the composite asset and one

for each of the other assets, and four relationshipElements. The fire suppression system asset is rep-

resented by a globalAssetId referencing the globally unique identifier of the asset. The entityType is set

to SelfManagedEntity as it is an asset with its own AAS. The other assets not shown in the figure would

be represented in the same manner, as an entity with a globalAssetId referencing the respective asset

identifiers. All assets in this example are assumed to have an AAS; an asset without an AAS would be

CHAPTER 4. THE AAS METAMODEL 46

represented as a CoManagedEntity.

The RelationshipElement is implemented with the Entity representing the composite asset in billOf-

Material as first, and an Entity representing one of the other assets as second. RelationshipElement is

directional and the structure indicates that second Entity is a part of the first Entity. Similar Relation-

shipElements would be used to implement relationships for the rest of the entities not shown in the

figure.

Submodel
CompositeAASrelationship

www.example.com/AAS/FireSuppressionSystem/submodel/CompositeAASrelationship

AASRelationshipFireSuppressionHeatDetector: RelationshipElement [1]
AASRelationshipFireSuppressionSmokeDetector: RelationshipElement [1]
AASRelationshipFireSuppressionPLC: RelationshipElement [1]
AASRelationshipFireSuppressionSprinkler: RelationshipElement [1]

AAS
FireSuppressionSystem

www.example.com/AAS/FireSuppressionSystem

billOfMaterial: submodel [1]
CompositeAASrelationships: submodel [1]

RelationshipElement
AASRelationshipFireSuppressionHeatDetector

first = www.example.com/AAS/FireSuppressionSystem
second = www.example.com/AAS/HeatDetecor

Submodel
billOfMaterial

www.example.com/AAS/FireSuppressionSystem/submodel/billOfMaterial

...

Figure 4.11: Modelling relationships between AAS in a submodel with RelationshipElement

The billOfMaterial submodel represents relationships between assets. These relationships describe

the composition of a complex asset, but they do not describe any relationship between the associated

AAS. A possible solution to this problem is presented in the discussion paper "AAS Reference Modelling"

published by Plattform Industrie 4.0 [2021b]. The approach is very similar to that of the billOfmaterial

submodel. An additional submodel is added to the body of the composite AAS, which in figure 4.11 has

the idShort CompositeAASrelationships. As billOfMaterial this submodel uses RelationshipElements to

model the directed relationship between the composite AAS and the AASs of the other assets. The first

attribute of an RelationshipElement is the identifier of the composite AAS and second attribute would

be the identifier of one of component AAS. The reason the billOfMaterial makes use of Entity, and this

submodel does not is to indicate if an asset is a SelfManagedEntity or a CoManagedEntity. AAS are not

self-managed or co-managed; only assets are. If the billOfMaterial had a CoManagedEnity, which could

CHAPTER 4. THE AAS METAMODEL 47

be represented in a submodel of the composite AAS, the attribute second of a RelationshipElement in

the CompositeAASrelationships submodel would reference the identifier of submodel describing the Co-

ManagedEnity.

The billOfMaterial and AAS relationship submodels create the possible implementation of composite

components shown in figure 4.12. The billOfMaterial submodel relates assets to a composite asset, and

the CompositeAASrelationship submodel relates the AAS of these assets to the AAS of the composite asset.

What makes this implementation possible is the concept of unique identifiers for assets, submodels, and

AAS, which are used as references. Both submodels in this example are implemented in the composite

AAS. The contents of the AAS of asset 1, asset 2, and asset n in the figure could also include their own

billOfMaterial submodels and AAS relationship submodels. This example is from the perspective of the

composite component. From the perspective of a component that is part of a composition, it would

also make sense to include the same type of submodels. Composition is a relevant aspect of an asset, and

these submodels would, in the case of a single component, represent which compositions the component

is a part of.

The creation of composites is an important modeling tool for the AAS framework. It allows the cre-

ation of an AAS that can represent information and data relevant to multiple assets that each needs its

own AAS to represent asset-specific information. However, there are some limitations to this approach to

relationship modeling. The limitations stem from the current iteration of RelationshipElement, which

represents directed relationships. This is good for creating a hierarchical representation, which fits the

idea of a composite, but it might not be sufficient to model non-hierarchical relationships. However

RelationshipElement does inherit the attributes of HasSemantics, which could be used to include a se-

manticId referencing a term further defining the reality of the relationship beyond the basic first, second

of RelationshipElement.

CHAPTER 4. THE AAS METAMODEL 48

Composite
AAS

Asset 1 Asset 2 Asset n
Composite

Asset

Submodel
billOfMaterial

entity: Entity [0..*]
relationship: RelationshipElement [0..*]

AAS
Asset 1

AAS
Asset 2

AAS
Asset n

Submodel
CompositeAASrelationship

relationship: RelationshipElement [0..*]

Represents

Represents

Relates

Is part of

Is part of and relates

RepresentsRepresents

Relates Relates Relates

Relates Relates Relates

Figure 4.12: Model of composite asset and AAS relationships, adapted from Plattform Industrie 4.0 and
ZVEI [2020b].

Chapter 5

APOS Models In The AAS Framework

This section presents five suggestions on how the APOS model described in chapter 2 can be represented

in an AAS. The suggestions are modeled using the language and concepts discussed in chapter 4.

The section discusses how the APOS hierarchies for equipment group classification, failure modes,

and failure parameters can be modeled in submodels. Additionally, the section covers how an AAS de-

scribing an equipment group and how an AAS describing a SIF can be structured. The suggested sub-

models are formulated as submodel templates without assigned values. The AASs are type AAS that can

represent composite assets.

The identifier attributes for submodels, AAS, and semanticId references used in the models are non-

functioning examples, with URLs in the format www.example.no/. . . /. The inclusion of real identifiers

would require external repositories to host documentation and concept definitions. The work done in the

master’s project has not included creating such repositories or defining concept descriptions for terms

used in the APOS model. The URLs have been included for illustration purposes only.

5.1 Submodel for Equipment Group Classification

The equipment group hierarchy from APOS discussed in section 2.2.1 describes a specific aspect of equip-

ment: the equipment group classification. In the AAS framework, a submodel represents an aspect of an

asset. Therefore, the equipment group hierarchy can be modeled as a submodel.

The equipment group hierarchy covers a large selection of equipment types. The hierarchy consists

of one parameter describing the main equipment group, one parameter describing the safety critical el-

ement, and a set of parameters describing the equipment attributes. The parameters used to describe

the equipment attributes will depend on the main equipment group and safety critical element classifi-

cation. Since the set of parameters used to represent an equipment group classification is different based

on the equipment type, a submodel-template can be created based on the hierarchy.

When applied to specific equipment, the parameters of the equipment group hierarchy are assigned

values. For example: main equipment group = process transmitter. A parameter that can take a value is

modeled as a property in the AAS language. A property can represent the parameters of the main equip-

ment group and the safety critical element in the submodel. A SMC can represent the set of properties

characterizing the equipment attributes.

Figure 5.1 shows the structure and contents of a submodel template for the equipment group hier-

archy. The attributes defining the unique identifier of the submodel template are: idType and id. The

49

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 50

idType is an IRI and the id is an example URL of a globally unique identifier for the submodel template.

The Kind attribute declares the submodel as a template. The idShort, the common name of the sub-

model, is set to "EquipmentGroup". Finally, the semanticId is an example reference. The semanticId

reference would link to documentation describing the formulation of the template.

Submodel
idType: IRI
id: https://www.example.no/APOS/EquipmentGroup/1/1/
kind= Template
idShort = EquipmentGroup
semanticId = https://www.example.no/APOS/SubmodelTemplate/EquipmentGroup/1/1

p

Property
idShort = MainEquipmentGroup
semanticID = https://www.example.no/APOS/MainEquipmentGroup/1/1

value: string [1]
vauleId = reference [0..1]

Property
idShort = SafetyCriticalElement
semanticID = https://www.example.no/APOS/SafetyCriticalElement/1/1

value: string [1]
vauleId = reference [0..1]

SubmodelElementCollection
idShort = EquipmentAttributes
semanticId = https://www.example.no/APOS/EquipmentAttributes/1/1

[0..1]

[1]

[0..1]

Figure 5.1: Submodel Template of the equipment group hierarchy

The parameter for main equipment group is modeled as a mandatory property of the submodel, as

illustrated in figure 5.1. Since the contents of the submodel are based on a taxonomy, the top level needs

to be included for the submodel to be able to represent the taxonomy. The attribute valueId has been

included in the properties for main equipment group and safety critical element. APOS has defined a

set of main equipment group types and safety critical element types. In an IEC 61360 structured context

description, an enumeration set containing the names of predetermined types of main equipment group

or safety critical element can be included. The properties would then only be allowed to take values

predetermined by APOS.

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 51

SubmodelElementCollection
idShort = EquipmentAttributes
semanticId = https://www.example.no/APOS/EquipmentAttributes/1/1

Property
idShort = MeasuringPrinciple
semanticID = https://www.example.no/APOS/MeasuringPrinciple/1/1

value: string [1]

Property
idShort = Dimension
semanticID = https://www.example.no/APOS/Dimension/1/1

value: string [1]

Property
idShort = DesignMountingPrinciple
semanticID = https://www.example.no/APOS/DesignMountingPrinciple/1/1

value: string [1]

Property
idShort = Application
semanticID = https://www.example.no/APOS/Application/1/1

value: string [1]

Property
idShort = ActuationPrinciple
semanticID = https://www.example.no/APOS/ActuationPrinciple/1/1

value: string [1]

SubmodelElementCollection
idShort = MediumProperties
semanticId = https://www.example.no/APOS/MediumProperties/1/1

SubmodelElementCollection
idShort = LocationEnvironment
semanticId = https://www.example.no/APOS/LocationEnvironment/1/1

SubmodelElementCollection
idShort = DiagnosticsConfigurationPrinciple
semanticId = https://www.example.no/APOS/DiagnosticsConfigurationPrinciple/1/1

SubmodelElementCollection
idShort = TestMaintenanceMonitoringStrategy
semanticId = https://www.example.no/APOS/TestMaintenanceMonitoringStrategy/1/1

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

Figure 5.2: Contents of the SMC with idShort "EquipmentAttributes" in the submodel template for equip-
ment group shown in figure 5.1.

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 52

Property
idShort = service
semanticID = https://www.example.no/APOS/service/1/1

value: string [1]

SubmodelElementCollection
idShort = MediumProperties
semanticId = https://www.example.no/APOS/MediumProperties/1/1

Property
idShort = medium
semanticID = https://www.example.no/APOS/medium/1/1

value: string [1]

[0..1]

[0..1]

Figure 5.3: Contents of the nested SMC with idShort "MediumProperties" of the SMC with idShort
"EquipmentAttributes" in figure 5.2 .

SubmodelElementCollection
idShort = LocationEnvironment
semanticId = https://www.example.no/APOS/LocationEnvironment/1/1

Property
idShort = location
semanticID = https://www.example.no/APOS/location/1/1

value: string [1]

Property
idShort = environment
semanticID = https://www.example.no/APOS/environment/1/1

value: string [1]

[0..1]

[0..1]

Figure 5.4: Contents of the nested SMC with idShort "LocationEnvironment" of the SMC with idShort
"EquipmentAttributes" in figure 5.2 .

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 53

SubmodelElementCollection
idShort = DiagnosticsConfigurationPrinciple
semanticId = https://www.example.no/APOS/DiagnosticsConfigurationPrinciple/1/1

allowDuplicates = True

Property
idShort = diagnostics[00]
semanticID = https://www.example.no/APOS/diagnostics/1/1

value: string [1]

Property
idShort = configuration
semanticID = https://www.example.no/APOS/configuration/1/1

value: string [1]

[0..1]

[0..*]

Figure 5.5: Contents of the nested SMC with idShort "DiagnosticsConfigurationPrinciple" of the SMC
with idShort "EquipmentAttributes" in figure 5.2 .

SubmodelElementCollection
idShort = TestMaintenanceMonitoringStrategy
semanticId = https://www.example.no/APOS/TestMaintenanceMonitoringStrategy/1/1

allowDuplicates = True

Property
idShort = testStrategy[00]
semanticID = https://www.example.no/APOS/testStrategy/1/1

value: string [1]

Property
idShort = maintenanceStrategy[00]
semanticID = https://www.example.no/APOS/maintenanceStrategy/1/1

value: string [1]

[0..*]

[0..*]

Property
idShort = monitoringStrategy[00]
semanticID = https://www.example.no/APOS/monitoringStrategy/1/1

value: string [1]

[0..*]

Figure 5.6: Contents of the nested SMC with idShort "TestMaintenanceMonitoringStrategy" of the SMC
with idShort "EquipmentAttributes" in figure 5.2 .

The equipment attributes are modeled in a SMC. The contents of the SMC are shown in figure 5.2. The

attributes describing the SMC are idShort and semanticId. The semanticId of the SMC would reference

a concept description of "equipment attributes." Most of the parameters at the "equipment attribute"

level of the "equipment group" hierarchy are modeled as properties. However, some of the equipment

attribute parameters describe more than one concept. These equipment attribute categories are:

• The medium properties

• Location and environment

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 54

• Diagnostics and configuration principle

• Test, maintenance, and monitoring strategies

In the APOS model, "location and environment" is one category of equipment attributes. The cate-

gory covers two different concepts: the location of the equipment and the operating environment of the

equipment. Since the category covers two different concepts, two properties are needed to model the

category in an AAS. First, the "location and environment" is modeled as a nested SMC inside the par-

ent SMC representing "equipment attributes," as shown in figure 5.2. The concept of location and the

concept of environment are represented as two separate properties inside the nested SMC, as shown in

figure 5.4. Nested SMCs are also used for the previously listed categories. "Medium properties" is shown

in figure 5.3, "diagnostics and configuration principle" is shown in figure 5.5, and "test, maintenance,

and monitoring strategies" is shown in figure 5.6.

The SMC for "diagnostics" and "test strategy," shown in figure 5.5 and figure 5.6, is a special case of the

SMC class. The property used to represent "diagnostics," and the property used to represent "test strate-

gies" must be able to take more than one value simultaneously. A piece of equipment can have more than

one diagnostic tool, and more than one test strategy can be applied. Several values are true for the same

concept at the same time. This type of property must be modeled with the allowDucplicates attribute of

the parent SMC set to true. A SMC with the allowDuplicates attribute set to true can host properties that

share semanticId, i.e., properties representing the same concept. The idShort of the properties must use

the [00]-suffix. The namespace of a SMC is unique, so the idShorts of the properties must be different,

even though they describe the same concept. For example, figure 5.6 shows the idShort for test strategy

modeled as testStrategy[00]. The [00]-suffix indicates that in an instance of the submodel, the idShorts of

properties describing test strategies shall be testStrategy[00], testStrategy[01], and so on.

5.2 SMC for Failure Modes

The APOS model for classification and registration of failures defines a hierarchy of failure modes. An

equipment group, for example, process transmitters, has an associated set of failure modes that apply to

that group based on the failure mode hierarchy. The idea is that when a failure occurs, the user classifying

the failure has a predetermined set of failure modes to choose from based on the type of equipment. The

AAS use case for this concept is that the user of an AAS representing a safety-critical asset can look up the

possible failure modes of the asset in the AAS.

The failure mode taxonomy defined by APOS is a two-layered hierarchy. The top layer elements are

separated into categories by the severity of the failure. When applied to an asset, each category has a

set of predetermined failure modes depending on the asset’s equipment group. In the AAS metamodel

language, this translates to a set of five submodel element collections, where the contents of the SMCs

are one or more properties, each representing a failure mode.

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 55

SubmodelElementCollection
idShort = failureModes
semanticId = http://www.example.no/APOS/failureModes/1/1

SubmodelElementCollection
idShort = SFI
semanticId = http://www.example.no/APOS/SFI/1/1

allowDuplicates = True

[0..1]

Property
idShort = failureMode[00]
semanticId = http://www.example.no/APOS/failureMode/1/1

value: string [1]
valueId: reference [0..1]

[0..*]

SubmodelElementCollection
idShort = SF
semanticId = http://www.example.no/APOS/SF/1/1

allowDuplicates = True

Property
idShort = failureMode[00]
semanticId = http://www.example.no/APOS/failureMode/1/1

value: string [1]
valueId: reference [0..1]

SubmodelElementCollection
idShort = NONC
semanticId = http://www.example.no/APOS/NONC/1/1

allowDuplicates = True

Property
idShort = failureMode[00]
semanticId = http://www.example.no/APOS/failureMode/1/1

value: string [1]
valueId: reference [0..1]

SubmodelElementCollection
idShort = LOC
semanticId = http://www.example.no/APOS/LOC/1/1

allowDuplicates = True

Property
idShort = failureMode[00]
semanticId = http://www.example.no/APOS/failureMode/1/1

value: string [1]
valueId: reference [0..1]

[0..1]

[0..1]

[0..1]

[0..*]

[0..*]

[0..*]

SubmodelElementCollection
idShort = LEX
semanticId = http://www.example.no/APOS/LEX/1/1

allowDuplicates = True

Property
idShort = failureMode[00]
semanticId = http://www.example.no/APOS/failureMode/1/1

value: string [1]
valueId: reference [0..1]

[0..*]

Figure 5.7: A template for a SMC that represents possible failure modes

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 56

Figure 5.7 shows one possibility of how a set of possible failure modes can be modeled in an AAS.

Failure modes are represented as a SMC, containing five nested SMCs, one for each failure mode category:

SFI, SF, NONC, LOC, and LEX. Each of the nested SMCs is optional, as each failure mode category may or

may not have failure modes relevant to a specific equipment group. The contents of the nested SMCs are

properties that represent failure modes. Each of these properties is modeled with an idShort which takes

the value "failureMode[00]" and a string type value attribute. In an instance of the SMC, the value of a

property would represent the actual failure mode, for example, "Spurious Operation."

The valueId attribute is included for every property. The failure modes available for a property to

represent in this submodel are predetermined. The "failure mode" concept description referenced by the

semanticId can include an enumeration set of possible failure modes. Use of the valueId attribute would

then enforce the property’s value to match an entry in the enumeration set of the concept description.

The issue of modeling a template for the failure mode categories is that every property represents

the same concept, the concept of "failure mode." The consequence is that every property will have the

same semanticId referencing an external concept description of "failure mode." In order to model a fail-

ure mode category as a SMC, the optional allowDuplicates attribute of the SMC class is set to "true."

AllowDuplicates allows properties within the SMC to have the same semanticId. The idShort of the prop-

erties must be modeled with the "[00]" suffix to keep the idShort unique in the namespace.

The reason for using a SMC to represent the available failure modes is that it can be an addition to

the submodel template for equipment group classification discussed in section 5.1. When a submodel

instance based on the equipment group submodel template is created, the properties of the submodel

instance will characterize a specific equipment group. An instance of the SMC template shown in figure

5.7 would then have properties with values describing the failure modes of the equipment group.

It would also be possible to model failure modes as a separate submodel. The SMC with idShort

"failureModes" in figure 5.7 would then be modelled as a submodel instead of a SMC. The contents of the

submodel would remain the same as for the SMC.

5.3 Submodel for Failure Parameters

Another possible application of the APOS information model in the AAS framework is to create a logical

collection of the parameters generated during the follow-up procedure of a failure. Section 2.2.3 discusses

the parameters generated during the follow-up procedure.

Parameters related to the failure follow-up procedure are generated from three different sources.

They are manually registered, generated automatically, or represent a calculated value. In terms of the

AAS, there are two options to create structures that can contain a collection of elements that logically

belong together. One option is a submodel, and the other is a SMC. The three failure source categories

characterize the same aspect: parameters describing a failure related to an asset. This aspect motivates

creating a submodel template for the representation of failure parameters.

The failure source categories can be modeled within the submodel as SMCs. The failure parameters

can be modeled as a property. The properties take a string or number value depending on the failure

parameter in question. Figure 5.8 shows the suggested submodel template of this solution. Figure 5.9

shows the properties of the SMC for manually registered parameters, figure 5.10 shows the properties

of the SMC for calculated parameters and figure 5.11 show the properties of the SMC for automatically

generated parameters.

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 57

Submodel
idType = IRI
id = http://www.example.no/APOS/FailureReport/1/1
kind = Template
idShort = FailureReport
semanticId = http://www.example.no/APOS/SubmodelTemplate/FailureReport/1/1

SubmodelElementCollection
idShort = manuallyRegisteredParameters
semanticId = http://www.example.no/APOS/manuallyRegisteredParameters/1/1

SubmodelElementCollection
idShort = automaticallyGeneratedParameters
semanticId = http://www.example.no/APOS/automaticallyGeneratedParameters/1/1

SubmodelElementCollection
idShort = calculatedParamters
semanticId = http://www.example.no/APOS/CalculatedParameters/1/1

[1]

[0..1]

[0..1]

Figure 5.8: Submodel template for failure parameters

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 58

SubmodelElementCollection
idShort = manuallyRegisteredParameters
semanticId = http://www.example.no/APOS/manuallyRegisteredParameters/1/1

SubmodelElementCollection
idShort = DetectionMethod
semanticId = http://www.example.no/APOS/DetectionMethods/1/1

[1]

Property
idShort = DetectionMethodD1
semanticID = http://www.example.no/APOS/DetectionMethodD1/1/1

value: string [1]
vauleId = reference [0..1]

Property
idShort = DetectionMethodD2
semanticID = http://www.example.no/APOS/DetectionMethodD2/1/1

value: string [1]
vauleId = reference [0..1]

[1]

[1]

SubmodelElementCollection
idShort = FailureMode
semanticId = http://www.example.no/APOS/FailureMode/1/1

[1]

Property
idShort = FailureModeF1
semanticID = http://www.example.no/APOS/FailureModeF1/1/1

value: string [1]
vauleId = reference [0..1]

Property
idShort = FailiureModeF2
semanticID = http://www.example.no/APOS/FailureModeF2/1/1

value: string [1]
vauleId = reference [0..1]

[1]

[1]

Property
idShort = RestorationTime
semanticID = http://www.example.no/APOS/RestorationTime/1/1

value: integer [1]

[0..1]

[0..1]

SubmodelElementCollection
idShort = FailureCause
semanticId = http://www.example.no/APOS/FailureCause/1/1

Property
idShort = FailureCauseC1
semanticID = http://www.example.no/APOS/FailureCauseC1/1/1

value: string [1]
vauleId = reference [0..1]

Property
idShort = FailureCauseC2
semanticID = http://www.example.no/APOS/FailureCauseC2/1/1

value: string [1]
vauleId = reference [0..1]

[0..1]

[0..1]

Property
idShort = FailureCauseC3
semanticID = http://www.example.no/APOS/FailureCauseC3/1/1

value: string [1]
vauleId = reference [0..1]

[0..1]

Property
idShort = IndepentendOrCFF
semanticID = http://www.example.no/APOS/IndepentendOrCFF/1/1

value: string [1]
vauleId = reference [0..1]

[0..1]

Figure 5.9: Contents of the SMC with idShort "manuallyRegisteredParameters" of the submodel template
with idShort "FailureReport" in figure 5.8.

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 59

SubmodelElementCollection
idShort = CalculatedParameters
semanticId = http://www.example.no/APOS/CalculatedParameters/1/1

Property
idShort = FailureRateDU
semanticId = http://www.example.no/APOS/FailureRateDU/1/1

value: double [1]

Property
idShort = NumberOfDUfailures
semanticID = http://www.example.no/APOS/NumberOfDUfailures/1/1

value: integer [1]

[0..1]

[0..1]

Property
idShort = PFD
semanticID = http://www.example.no/APOS/PFD/1/1

value: double [1]

[0..1]

Property
idShort = TestInterval
semanticID = http://www.example.no/APOS/TestInterval/1/1

value: integer [1]

[0..1]

Property
idShort = DiagnosticConverage
semanticID = http://www.example.no/APOS/DiagnosticConverage/1/1

value: double [1]

Property
idShort = SafeFailureFraction
semanticId = http://www.example.no/APOS/SafeFailureFraction/1/1

value: double [1]

Property
idShort = OperatingTime
semanticID = http://www.example.no/APOS/OperatingTime/1/1

value: double [1]

[0..1]

[0..1]

[0..1]

Figure 5.10: Contents of the submodelElementCollection with idShort "CalculatedParameters" of the
submodel template with idShort "FailureReport" in figure 5.8.

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 60

SubmodelElementCollection
idShort = AutomaticallyGeneratedParameters
semanticId = http://www.example.no/APOS/AutomaticallyGeneratedParameters/1/1

Property
idShort = FailureClass
semanticId = http://www.example.no/APOS/FailureClass/1/1

value: string [1]
vauleId = reference [0..1]

Property
idShort = Priority
semanticID = http://www.example.no/APOS/Priority/1/1

value: string [1]
vauleId = reference [0..1]

[0..1]

[0..1]

Property
idShort = RandomOrSystematic
semanticID = http://www.example.no/APOS/RandomOrSystematic/1/1

value: string [1]
vauleId = reference [0..1]

[0..1]

Figure 5.11: Contents of the submodelElementCollection with idShort "AutomaticallyGeneratedParame-
ters" of the submodel template with idShort "FailureReport" in figure 5.8.

As shown in figure 5.8 the only mandatory element of the submodel is the SMC with idShort: man-

uallyRegisteredParameters. This SMC is mandatory because it contains detection method and failure

mode properties. Detection method and failure mode are considered mandatory parameters in the APOS

model.

Detection method, failure mode, and failure cause are hierarchical structures. Therefore, to represent

the structures in an AAS, they are as nested SMCs in the parent SMC for manually registered parameters.

Figure 5.9 shows the properties used in the nested SMCs. The properties inside the SMCs have idShort

attributes ending in D1, D2, F1, F2, C1, C2, C3. The endings indicate the hierarchy layer the property

represents. In the SMC template of failure modes from section 5.2 nested SMCs are used to indicate the

hierarchy layer instead of idShort. The difference between this template and the failure modes template

is that the use case of this template is to describe a failure mode that has occurred. A failure mode that has

occurred can be described with a single property. The failure modes template describes a set of failure

modes that can happen, which is easier to model in a SMC.

Figure 5.10 shows the properties of the SMC for calculated parameters and figure 5.11 the properties

of the SMC for automatically generated parameters. The only difference from the previous SMC is the

data type of the value attribute for the properties in the SMC for calculated parameters. The calculated

parameters are numerical values, and the properties representing them in SMC use data types for nu-

merical representation. The vauleId attribute has not been included for properties that take numerical

values. The semanticId of the property should provide sufficient context for the numerical value. For

the suggested template, valueId has only been included for properties that can take predetermined set of

values, such as detection methods, failure modes, failure class.

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 61

5.4 AAS for an Equipment Group

The equipment group hierarchy defined by APOS groups safety-critical equipment with the same char-

acteristics. Defining equipment groups makes it possible to create standardized taxonomies, such as the

failure mode taxonomy, that can describe a characteristic that is true for every asset of a specific equip-

ment group. Grouping assets into equipment groups also makes it possible to do follow-up and failure

analysis on an equipment group level.

In the AAS framework, an asset is something of value, and an equipment group will have value for

both APOS and operators using the APOS models. From the perspective of the AAS, an equipment group

is a composite asset. For example, pressure transmitter assets will create the composite asset of a pressure

transmitter equipment group. Figure 5.12 shows how an asset for an equipment group can be modeled in

the AAS framework. An asset is defined by setting a value to the idShort attribute and assigning a globally

unique identifier to the asset.

Asset
idType = IRI
id = https://www.example.no/APOS/Asset/ProcessTransmitters/PressureTransmitters/1/1
idShort = PressureTransmitters

p

Figure 5.12: Example of an asset instance of an equipment group of pressure transmitters

If an equipment group is considered a composite asset, it needs to have an AAS representing it in the

information world. The contents of an equipment group AAS should at least cover:

• A description of the composition of assets creating the composite asset

• A description of the relationship to the Administration Shells of the composition assets

• A set of properties characterizing the attributes that define the equipment group

Additionally, there could also be:

• A description of the intended safety performance of the equipment group from design

• A description of the experienced performance of the equipment group during operation

The APOS equipment group taxonomy defines several main equipment groups such as process trans-

mitters, logic solvers, and gas detectors. Each of the main equipment groups can have subgroups based

on the safety-critical element. For example, pressure transmitters and level transmitters are subgroups

of process transmitters. Since there are several different equipment groups and equipment subgroups, a

generic type AAS can be used as a base to create instance AAS for specific equipment groups.

Figure 5.13 shows a possible solution of a type AAS for equipment groups. The attributes defining the

AAS itself are an id attribute, an idShort, assetKind set to "Type" to state the type status of the AAS, and

a globalAssetId which references a unique identifier of an equipment group asset. The content of this

type-AAS is five submodels. Any attribute of the submodels in figure 5.13 which has a data type, such as

string, integer, or double, is as a property.

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 62

AssetAdministrationShell
idType = IRI
id = https://www.example.no/APOS/AAS/EquipmentGroupAAS/1/1/
idShort = EquipmentGroupAAS
AssetKind = Type
globalAssetId = https://www.example.no/APOS/Asset/EquipmentGroupExample/1/1/

Submodel
idType: IRI
id: https://www.example.no/APOS/AAS/EquipmentGroupAAS/1/1/BillOfMaterial
kind = Template
idShort = BillOfMaterial
semanticId = https://www.example.com/CommonTemplates/BillOfMaterial

Entity: entity [0..*]
RelationshipElement: relationshipElement [0..*]

Submodel
idType: IRI
id: https://www.example.no/APOS/AAS/EquipmentGroupAAS/1/1/EquipmentGroup
kind = Template
idShort = EquipmentGroup
semanticId = https://www.example.no/APOS/SubmodelTemplate/EquipmentGroup/1/1

MainEquipmentGroup: string [1]
SafetyCriticalElement: string [0..1]
EquipmentAttributes: submodelElementCollection [0..1]

Submodel
idType: IRI
id: https://www.example.no/APOS/AAS/EquipmentGroupAAS/1/1/PerformanceIndicatorsDesign
kind = Template
idShort = PerformanceIndicatorsDesign
semanticId = https://www.example.no/APOS/SubmodelTemplate/PerformanceIndicatorsDesign/1/1

FailureRateDU: double [0..1]
FailureRateManufacturer: double [0..1]
FailureRatePDS: double [0..1]
PFD: double [0..1]
TestInterval: integer [0..1]

Submodel
idType: IRI
id: https://www.example.no/APOS/AAS/EquipmentGroupAAS/1/1/PerformanceIndicatorsOperation
kind = Template
idShort = PerformanceIndicatorsOperation
semanticId = https://www.example.no/APOS/SubmodelTemplate/PerformanceIndicatorsOperation/1/1

FailureRateDU: double [0..1]
NumberOfDUfailures: integer [0..1]
PFD: double [0..1]
TestInterval: integer [0..1]
DiagnosticConverage: double [0..1]
SafeFailureFraction: double [0..1]
OperatingTime: integer [0..1]

Submodel
idType: IRI
id: https://www.example.no/APOS/AAS/EquipmentGroupAAS/1/1/CompositeAASrelationship
kind = Template
idShort = CompositeAASrelationship
semanticId = https://www.example.com/CommonTemplates/CompositeAASrelationship

RelationshipElement: relationshipElement [0..*]

Figure 5.13: A type AAS for equipment group assets

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 63

The first submodel is the bill of material. The intended use of this submodel is to model each of

the equipment assets and the equipment-group asset as entities. The relationship between the assets is

defined with relationshipElements. This submodel describes the combination of assets that create the

composite asset. The semanticId of the submodel does not use the URL: example.no/APOS/. The new

URL indicates that it does not need to be defined by APOS. Commonly used submodels like the bill of

material will probably be standardized and described by organizations working on the AAS framework.

The second submodel with idShort "CompositeAASrelationship" is included to model the relation-

ship between the equipment group AAS and the AASs of the composition assets. The relationship ele-

ments will hold references to the identifiers of the AASs.

The third submodel is derived from the submodel template for equipment group classification from

section 5.1. An instance of the submodel describes the equipment group classification of the assets that

create the group.

The fourth and fifth submodels are submodels that can be included to represent the safety perfor-

mance of the equipment group. The submodel with idShort "PerformanceIndicatorsDesign" contains

properties with values assigned during the design phase, such as the test interval, PFD, and DU failure

rate. Also included are properties that can be applicable, such as the claimed failure rate from a manu-

facturer or failure rates from the PDS handbook by Ottermo et al. [2021].

The submodel with idShort "PerformanceIndicatorsOperation" holds properties with values calcu-

lated during operation. The reason for dividing the performance indicators into two submodels based

on the design and operation phase is that the design parameters are static, and the operation parameters

are dynamically changing. It also avoids problems with uniqueness in the namespace for idShorts, as

both the design phase submodel and operation phase submodel will consist of properties representing

the same concept, for example, PDF or FailureRateDU.

5.5 AAS for a SIF

The APOS model is used to describe aspects of safety-critical equipment. Safety-critical equipment is

often a part of a SIF. The concept of a SIF, which at its core is a composition of safety-critical equipment,

fits well in the framework of the AAS composite asset. Modeling a SIF as a composite asset with an AAS

creates a structure where information that is not necessarily related to a specific piece of equipment but

relevant to the SIF, can be hosted.

Figure 5.14 shows one possibility of how a type AAS can model a SIF. The bill of material submodel

represents relationships between the SIF asset and the assets that create the SIF. The AAS relationship

submodel represents relationships between the AAS of the equipment assets and the SIF AAS.

Also included here is a submodel with idShort "Subgroups ."The intended use of this submodel is to

describe which assets are used as input to the SIF, which assets perform the logic, and which assets are

used as output elements of the SIF. The subgroups are represented as SMCs, with idShorts ending in [00].

The suffix indicates that there can be several different sets of input elements to a SIF. A suggestion of the

content of the SMCs is shown in figure 5.15. The submodel element entity is used to represent the assets

that belong to a subgroup of the SIF. The voting property is used to describe the voting scheme of the

assets, such as 2oo3 or 1oo2. Properties are also included for performance parameters of the subgroups,

such as SIL, PFD, and test interval.

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 64

AssetAdministrationShell
idType = IRI
id = https://www.example.no/APOS/AAS/SIF/1/1/
idShort = SIF
AssetKind = Type
globalAssetId = https://www.example.no/APOS/Asset/SIF/1/1/

Submodel
idType: IRI
id: https://www.example.no/APOS/AAS/SIF/1/1/BillOfMaterial
kind = Template
idShort = BillOfMaterial
semanticId = https://www.example.com/CommonTemplates/BillOfMaterial

Entity: entity [0..*]
RelationshipElement: relationshipElement [0..*]

Submodel
idType: IRI
id: https://www.example.no/APOS/AAS/SIF/1/1/CompositeAASrelationship
kind = Template
idShort = CompositeAASrelationship
semanticId = https://www.example.com/CommonTemplates/CompositeAASrelationship

RelationshipElement: relationshipElement [0..*]

Submodel
idType: IRI
id: https://www.example.no/APOS/AAS/SIF/1/1/SRS
kind = Template
idShort = SRS
semanticId = https://www.example.no/APOS/SubmodelTemplate/SRS/1/1

...

Submodel
idType: IRI
id: https://www.example.no/APOS/AAS/SIF/1/1/SRS
kind = Template
idShort = Subgroups
semanticId = https://www.example.no/APOS/SubmodelTemplate/Subgroups/1/1

inputElements[00]: submodelElementCollection [0..1]
logicElements[00]: submodelElementCollection [0..1]
outputElements[00]: submodelElementCollection [0..1]

Submodels based on documentation and specifications of SIF

Figure 5.14: A type AAS for a SIF

CHAPTER 5. APOS MODELS IN THE AAS FRAMEWORK 65

SubmodelElementCollection
idShort = inputElements[00]
semanticId = https://www.example.no/APOS/inputElements/1/1

Entity: entity [0..*]
voting: string [0..1]
SIL: integer [0..1]
PFD: double [0..1]
testInterval: integer [0..1]

SubmodelElementCollection
idShort = logicElements[00]
semanticId = https://www.example.no/APOS/logicElements/1/1

Entity: entity [0..*]
voting: string [0..1]
SIL: integer [0..1]
PFD: double [0..1]
testInterval: integer [0..1]

SubmodelElementCollection
idShort = outputElements[00]
semanticId = https://www.example.no/APOS/outputElements/1/1

Entity: entity [0..*]
voting: string [0..1]
SIL: integer [0..1]
PFD: double [0..1]
testInterval: integer [0..1]

Figure 5.15: Contents of the SMCs belonging to the type AAS for SIF submodel with idshort "Subgroups"
in figure 5.14

The last suggested submodel for the type AAS representing a SIF is a submodel representing the pa-

rameters of the SRS (Safety Requirement Specification) of the SIF. There are no suggestions for properties

to be represented in SRS submodel in figure 5.14, the reason for this is the same as for why "Submodels

based on documentation and specifications of SIF" has been included in the figure. A SIF is a complex

asset. It consists of different types of equipment, and there are regulations and specifications on how to

design, operate and perform maintenance of the SIF. SIF specifications, such as the SRS, define essential

aspects of the SIF life cycle. The regulations and specifications guiding the SIF life cycle should also guide

the type of submodels present in a SIF AAS. Beyond modeling of SIF asset composition with the bill of

material and AAS relationship submodels, the submodels present in a SIF type AAS should be submodel

templates based on standardized SIF specifications.

Chapter 6

Usage and Limitations of APOS AAS Models

The submodels and AASs described in chapter 5, are submodel templates and AAS types. This section

analyses how they can be used when instantiated. The limitations and modeling choices of the proposed

type AASs and submodel templates are also discussed.

The discussion in this section on the usage of instantiated submodels and AAS is mostly suggestive as

the models have not been implemented and tested on a functioning AAS software platform.

One general limitation of all the suggested models is the semanticId attribute, which has been in-

cluded as an example reference to non-existent concept descriptions. In order for the templates and AAS

types to be valid, concept descriptions based on IEC 61360 of the properties should be hosted in external

repositories, which the semanticId attribute can reference.

6.1 Submodel for Equipment Group Classification

The primary use case for the equipment group submodel template is to use it to describe the equipment

group classification of an asset. When applied to an asset instance, the submodel can be placed within the

AAS representing the asset. An example of an instance of the equipment group submodel for a pressure

transmitter is shown in figure 6.1.

In a distributed approach to hosting AASs, discussed in section 3.3.5, the network infrastructure uses

registries for asset, submodel, and AAS identifiers. An additional registry of semanticIds could also be a

part of the distributed hosting approach. If this registry organizes submodel instances by semanticId, it

can be used to discover AAS that has a submodel with a specific semanticId. A registry making submodel

instances discoverable by semanticId is not very beneficial for submodel instances based on the proposed

template. Every instance based on the template inherits the semanticId of the template. At most, this can

be used to discover AASs with the submodel for equipment classification.

An option for APOS is to make the submodel template less generic and create separate templates for

every equipment group. The semanticId of the new templates would be unique for a specific equipment

group. A unique semanticId for every equipment group would make it possible to identify AASs repre-

senting an asset of a specific equipment group by searching the semanticId registry. This would simplify

identifying assets and AAS to be modeled as entities in the bill of material and the AAS relationship sub-

model of the equipment group AAS.

66

CHAPTER 6. USAGE AND LIMITATIONS OF APOS AAS MODELS 67

Submodel
idType: IRI
id: https://www.example.no/Operator/EquipmentGroup/1/1/#001
kind= Instance
idShort = EquipmentGroup
semanticId = https://www.example.no/APOS/SubmodelTemplate/EquipmentGroup/1/1

Property
idShort = MainEquipmentGroup
semanticID = https://www.example.no/APOS/MainEquipmentGroup/1/1

value = Process Transmitter
vauleId = 0116/2///APOS#EXAMPLE1#001

Property
idShort = SafetyCriticalElement
semanticID = https://www.example.no/APOS/SafetyCriticalElement/1/1

value = Pressure Transmitter
vauleId = 0116/2///APOS#EXAMPLE2#001

SubmodelElementCollection
idShort = EquipmentAttributes
semanticId = https://www.example.no/APOS/EquipmentAttributes/1/1

Property
idShort = MeasuringPrinciple
semanticID = https://www.example.no/APOS/MeasuringPrinciple/1/1

value = Capacitor

Property
idShort = DesignMountingPrinciple
semanticID = https://www.example.no/APOS/DesignMountingPrinciple/1/1

value = Absolute (bar)

SubmodelElementCollection
idShort = MediumProperties
semanticId = https://www.example.no/APOS/MediumProperties/1/1

Property
idShort = service
semanticID = https://www.example.no/APOS/MeasuringPrinciple/1/1

value = Clean Service
vauleId = https://www.example.no/APOS/CleanService/1/1

SubmodelElementCollection
idShort = DiagnosticsConfigurationPrinciple
semanticId = https://www.example.no/APOS/DiagnosticsConfigurationPrinciple/1/1

allowDuplicates = True

Property
idShort = diagnostics[00]
semanticID = https://www.example.no/APOS/diagnostics/1/1

value = Range Checking

Property
idShort = diagnostics[01]
semanticID = https://www.example.no/APOS/diagnostics/1/1

value = Discrepancy Alarm

Property
idShort = configuration
semanticID = https://www.example.no/APOS/Configuration/1/1

value = Trip Point HH

Figure 6.1: Example of a submodel instance of the equipment group submodel for a pressure transmitter

CHAPTER 6. USAGE AND LIMITATIONS OF APOS AAS MODELS 68

One limitation of the submodel template is that it does not model the actual hierarchical relation-

ship between the properties representing each layer of the equipment group taxonomy. The directed

relationship can be modeled with the submodel element "relationshipElement." Including a relation-

shipElement would create a directed relationship from the property representing the main equipment

group to the property representing the safety critical element, and from the safety critical element prop-

erty to the SMC of equipment attributes.

6.2 SMC for Failure Modes

Figure 6.2 shows an instance of the submodel element collection used to represent possible failure modes

for a specific equipment group. The figure illustrates how using idShort [00] suffix creates a unique id-

Short for the failure mode properties. The SMC is intended to be an optional addition to the submodel

template for equipment group classification. For an instance of an equipment group classification sub-

model, the failure modes SMC can represent the set of possible failure modes for the equipment group.

The reason for not including the SMC in the original submodel template is that the properties in the

SMC do not explicitly express information about the state of an asset. Instead, the properties describe

a possibility, a set of failure modes that can be used to describe the state. If properties describing pos-

sible failure modes are to be included, it should be made clear that the value of the properties does not

represent state information about the asset. The concept description referenced by the semanticId of

the SMC can provide context, but an external definition seems to be insufficient. A possible solution is

to add a qualifier that provides additional context to the properties, but no such qualifier is defined in

IEC-62569:2017 [2017].

CHAPTER 6. USAGE AND LIMITATIONS OF APOS AAS MODELS 69

SubmodelElementCollection
idShort = FailureModes
semanticId = http://www.example.no/APOS/FailureMode/1/1

SubmodelElementCollection
idShort = SFI
semanticId = http://www.example.no/APOS/SFI/1/1

allowDuplicates = True

Property
idShort = FailureMode00
semanticID = http://www.example.no/APOS/FailureMode/1/1

value = NOO
vauleId = 0111/2///61987#EXAMPLE001

Property
idShort = FailureMode01
semanticID = http://www.example.no/APOS/FailureMode/1/1

value = ERO
vauleId = 0111/2///61987#EXAMPLE002

Property
idShort = FailureMode02
semanticID = http://www.example.no/APOS/FailureMode/1/1

value = HIO
vauleId = 0111/2///61987#EXAMPLE003

Property
idShort = FailureMode03
semanticID = http://www.example.no/APOS/FailureMode/1/1

value = LOO
vauleId = 0111/2///61987#EXAMPLE004

Figure 6.2: Instance of FailureModes SMC

6.3 Submodel for Failure Parameters

The use case for the submodel template of parameters for failure registration and classification can be

to function as a failure report. When a failure occurs, the properties in the SMC for manually registered

parameters are given values by a user. An external application can provide values for the properties in the

SMC for automatically generated parameters, and the properties of the SMC for calculated parameters

can be given values as required.

If the intended use of the submodel is to function as a failure report, there is a need to be able to

save historical versions of the contents of the submodel. A submodel instance based on the template

will be able to represent only one instance of each property when hosted in an AAS. The consequence

of this is that unless some external effort is made to save the historical values of properties, previous

failure reports will be overwritten if the actual submodel is used as the host for failure reports. A possible

solution within the AAS framework is the event concept. If it is possible to model an event that snapshots

CHAPTER 6. USAGE AND LIMITATIONS OF APOS AAS MODELS 70

the state of the submodel when a new failure is registered, the snapshot can be stored in an external

database. The globally unique identifier of the AAS or submodel will create a logical connection between

the stored snapshot and the asset.

The scope of the proposed submodel template for failure parameters is too large. It includes SMCs for

manually registered, auto-generated, and calculated parameters. The SMCs for manually registered and

auto-generated parameters represent failure classification of a specific failure. The SMC for calculated

parameters represent safety performance, which is usually applied to an equipment group. Therefore,

the SMC for calculated parameters should be probably be modeled as a separate submodel for use in the

equipment group type AAS.

Property
idShort = FailureClass
semanticId = http://www.example.no/APOS/FailureClass/1/1

qualifier: constraint [1]
value: string [1]
vauleId = reference [0..1]

Constraint::Formula

dependsOn: reference [2]

Figure 6.3: FailureClass property with qualifier.

A possible evolution of this submodel template is to extend the properties representing the automat-

ically generated parameters with a formula constraint, shown in figure 6.3. There is no defined language

to create logic expressions in the AAS metamodel, but it might be possible to model logic automatically

assigning values to the automatically generated parameters inside the AAS. An example of this would be

a function assigning a value to the failure class property based on the values of the properties for detec-

tion method and failure mode. However, this might be outside the scope of the formula constraint if the

language for logic expressions in the AAS is limited to boolean values.

6.4 AAS for an Equipment Group

The primary use case of equipment group type AAS is to create instance AAS, which can host informa-

tion related to a specific equipment group. The primary use case for creating a type AAS is to model a

generic AAS to share with customers or partners that use assets that the AAS can represent. For APOS, the

motivation for creating a type AAS for an equipment group is to:

1. Create a structure where equipment group information can be logically represented

2. Share the AAS with industry partners to make easier to use equipment groups

3. Collect failure data on equipment groups in use in the industry.

The suggested type AAS is a structure where data relevant to an equipment group can be represented.

An equipment group is a composite asset. The bill of material submodel is used to create a relationship

CHAPTER 6. USAGE AND LIMITATIONS OF APOS AAS MODELS 71

between assets in an equipment group and the equipment group composite asset. The proposed equip-

ment group classification submodel is used in equipment group instance AAS to represent the character-

istics of the equipment group the AAS represents.

Regarding sharing the AAS and collecting data on equipment groups in use, the implementation of

the proposed type AAS is probably too generic. The type AAS modeled in section 5.4 represents the gen-

eral concept of an equipment group, not a specific group like "process transmitters". This is because

the type AAS uses the submodel template for equipment group classification and not an instance of the

submodel with assigned values representing a specific equipment group.

An instance AAS has a connection to the parent type AAS through the attribute "derivedFrom" that

references the identifier of the type AAS. One of the prospects of type AAS - instance AAS relationship

is information sharing. The event concept of the AAS framework is envisioned to facilitate communi-

cation between type AAS and instance AAS. For example, suppose APOS creates a type AAS for equip-

ment groups, and partners use an instance derived from the type. In that case, APOS can collect safety

performance-related information about the equipment groups if the partners agree to share data. Since

the instance AAS uses the same submodels as the type AAS, the shared data will have a known structure

and be represented by predefined properties.

The type AAS - instance AAS connection is why the suggested type AAS for equipment groups is too

generic. The "derivedFrom" attribute would reference a type AAS for the concept of equipment groups.

Every class of equipment group is connected to the same type AAS. Therefore, the submodel for equip-

ment classification in the suggested type AAS can be instantiated to represent a specific equipment group

and create a type AAS for every specific equipment group. Then the "derivedFrom" attribute in the in-

stance AAS would reference a type AAS for the specific equipment group the instance represents.

6.5 AAS for a SIF

Compared to the submodel templates and type AAS discussed in this thesis, the idea of a type SIF AAS is

much more complex and comprehensive. The equipment groups, failure modes, and classification dis-

cussed are based on a single APOS rapport by Hauge et al. [2021a]. Several specifications and guidelines

describe the life cycle of a SIF. Which guidelines are used and how they are interpreted will probably vary

from one organization to another. The structure and submodels of a possible SIF AAS depend on the

objective of creating the AAS. Is it to create a functional representation or to create a standardized digital

representation of a SIF?

The suggested type AAS for a SIF shown in figure 5.14 is an incomplete functional representation

of a SIF. The subgroups submodel is not based on specifications or a documented submodel template.

While the submodel represents a relevant aspect of the SIF, the composition of subsystems and voting, it

does not offer much interoperability because the submodel is not standardized. The submodels in the

suggested type AAS that can be expected to be a part of a standardized SIF AAS are the bill of material and

the submodel for AAS relationships. These submodels model composition in the AAS framework.

In order to design a SIF AAS it would be beneficial to take a step back and identify which specifica-

tions guide the creation and management of a SIF. These specifications are the most likely sources for

submodels included in a SIF AAS. If the aim of the AAS is to be standardized, there must be a common

acceptance in the industry of which specifications are used. A few candidates are APOS guidelines, IEC

standards on functional safety, and industry guidelines on applying IEC standards. Another question is,

CHAPTER 6. USAGE AND LIMITATIONS OF APOS AAS MODELS 72

should documentation be included as files in the AAS, or should properties in a submodel represent it.

If standardized SIF AAS is to be designed, there must first be a standardized approach to managing

SIFs. Then the specifications and guidelines defining the approach can be converted to descriptive sub-

model templates used in the SIF AAS.

Chapter 7

Conclusions and Discussion

7.1 Summary and Conclusion

This thesis has explored and described the Asset Administration Shell and proposed five theoretical im-

plementations of submodels and AAS for management of safety systems based on the work done by the

APOS project. The suggestions presented in the thesis are:

• A submodel of equipment classification

• A submodel for possible failure modes

• A submodel for failure classification and registration

• An AAS for an equipment group

• An AAS for a SIF

Developing the submodels and AASs involved a literature study of the general functionality and use

of the AAS. A presentation and discussion of the AAS metamodel defined the modeling language used to

describe and create the suggested submodels and AASs.

In section 1.2 four questions were stated. This thesis has attempted and partially succeeded in an-

swering the questions. The stated questions and the answers discussed in the thesis were:

1. What is considered an I4.0 asset, and what is the relationship between an Asset Administration

Shell and an asset?: The first part of this question was answered in chapter 3, which discussed the

concept of asset and the AAS as a digital representation of an asset. The relationship between asset

and AAS was further defined in chapter 4 on the AAS metamodel, which presented AssetInforma-

tion class and how AAS and asset are connected by the use of globally unique IRI or IRDI identifiers.

2. How does the Asset Administration Shell structure and represent information? This question

was partially answered. Chapter 3 introduced the I4.0 property that is used to represent a char-

acteristic of an asset in the AAS. The submodel was introduced as a collection of properties that

represent one aspect of an asset. The specific structure of the AAS, submodels, and objects used to

describe assets were discussed in chapter 4 on the AAS metamodel. Due to time constraints and the

scope of the AAS framework, the IEC 61360 structure for concept descriptions was not discussed

73

CHAPTER 7. CONCLUSIONS AND DISCUSSION 74

in detail. Concept descriptions are not directly a part of the AAS, but references to external repos-

itories hosting IEC 61360 structured concept descriptions are an important part of how the AAS

represents information.

3. How can the Asset Administration Shell be used to represent a complex and functional oriented

SIF structure? The first part of this question on how to represent a complex SIF structure was an-

swered in chapter 4 on the AAS metamodel and in chapter 5, which presented a SIF AAS. From

the perspective of the AAS framework, a SIF is a composite asset. AAS for composite assets can be

created with submodels representing relationships between assets, such as the bill of material sub-

model. The second part on the functional oriented SIF structure was not answered in detail. This

was because submodels should be based on specifications, and the scope of identifying specifica-

tions and creating submodels for a SIF was too large and time-consuming for this master’s project.

However, the idea of creating a standardized SIF AAS is possible, and work should be done to iden-

tify specifications and create submodels based on these for use in the SIF AAS:

4. How can the APOS taxonomy and information model be realized in the Asset Administration

Shell framework? This question was answered in chapter 5 and 6, which discussed and analyzed

three submodels and one AAS directly based on concepts defined in the APOS model and tax-

onomies. The conclusion from the analysis is that the equipment group taxonomy is well suited

to be used as a basis for both a submodel and an AAS.

7.2 Discussion

The objectives of the thesis have mostly been completed. However, the scope of the AAS is considerable.

The vision for the AAS is to become the standardized digital representation of assets. Because of the

scope of the AAS, it has not been easy to create a consistent overview of the basic functionality of the

AAS. The IEC 61360 standard was discussed in minor detail, which does not justify its importance in the

AAS framework.

The AAS is still a relatively new concept, the first version of the AAS metamodel specification was first

published in 2018. There are central concepts described in the AAS metamodel, such as events and mod-

eling of logic expressions, that are not yet defined. The lack of maturity of the AAS makes it difficult to

develop use cases for the suggested APOS AAS models. However, the basic functionality of the AAS, divid-

ing information into submodels and using properties to represent information, is in place. Even if there

are changes to the metamodel specification, the suggested APOS AAS models should remain conform to

the AAS structure as they mostly use the core concepts of submodel and property.

Of the suggested submodel templates and type AASs, the submodel for equipment group classifica-

tion and the AAS for equipment groups have the clearest use cases in the AAS framework. The concept of

an equipment group fits very well with the idea of composite assets and AAS. The equipment group sub-

model has several use cases; it can be implemented in an asset AAS or an equipment group AAS. The use

case of the failure parameter submodel is not as clear, it contains properties that describe equipment-

specific information and properties that are usually used to describe data at the equipment group level.

The failure mode SMC has a well-defined use case, but the current implementation of using properties

to describe a possibility seems wrong. The SIF AAS is too complex of an AAS to model in the timeframe

of the master’s project.

CHAPTER 7. CONCLUSIONS AND DISCUSSION 75

The most impactful limitation of this project is that it has not been possible to test the suggested AAS

models in software implementing the AAS framework. There are standardized translations of the AAS

metamodel to object models such as OPC UA. It is possible to create software implementations of AAS,

but it has not been realistic to create such an implementation for the project. The reality is that the AAS

models based on the APOS taxonomies in this project are untested and unverified. They are consistent

with the AAS metamodel, but it is difficult to claim usefulness and correctness without testing the models.

7.3 Future Work

Based on the work done creating submodels and AASs two main objectives remain to be completed:

Verifying the suggested APOS AAS Models

The submodel templates and the type AASs described in the master’s project are not tested or verified

in a functioning AAS framework. The creation of an AAS framework can be done in BaSyx [2021], or by

using the OPC UA AAS Companion Specification by OPC UA Foundation [2021] to translate the submodel

templates into an OPC UA object model.

The templates should be tested to verify that they comply with the AAS metamodel and that the struc-

ture of the submodels is useful for failure and equipment group classification.

Create Concept Descriptions for APOS

Semantic consistency and external dictionaries are an important part of the AAS. The suggested sub-

model templates and type AAS uses example references to concept descriptions as semanticIds. If the

submodel templates and type AASs are realized, concept descriptions must be available to be referenced.

An external dictionary with concept descriptions, following the IEC 61360 structure, can be developed

for properties used in the APOS taxonomies. Alternatively, the APOS model can conform to IEC or ISO

standards that define the terminology used.

Appendix A

UML Legend

Class

Figure A.1 shows a class named "Class A" with an attribute of type "Class B".

Class A

+ attr: Class B

Figure A.1: UML model of Class, adapted from Plattform Industrie 4.0 and ZVEI [2020a]

Abstract Class

Figure A.2 shows an abstract class, indicated by «abstract». There is no object instance of an abstract

class.

<<abstract>>
Class

Figure A.2: UML model of an abstract Class, adapted from Plattform Industrie 4.0 and ZVEI [2020a]

Dependency

Figure A.2 shows a dependency, indicated by the dotted arrow. Class A depends on Class B since Class A

has an attribute of type Class B.

76

APPENDIX A. UML LEGEND 77

Class A

+ attr: Class B
Class B

Figure A.3: UML model of a dependency, adapted from Plattform Industrie 4.0 and ZVEI [2020a]

Inheritance

Figure A.4 shows two methods visualizing inheritance. Class B inherits the attributes of Class A. This is

indicated by the Class A statement in the top right corner of the Class B diagram, or by a open arrow from

Class B to Class A.

 Class A
Class B

+ attr: Class D

Class A

+ attr: Class C

Class B

+ attr: Class D

Figure A.4: UML model of inheritance, adapted from Plattform Industrie 4.0 and ZVEI [2020a]

Cardinality

Figure A.5 shows cardinality. Cardinality is indicated by the 0..* statement. 0..* states that there can be

zero or unlimited instances of Class B. 0..1 states that there can be zero or one instance of class B, 1 states

that there is exactly on instance of Class B.

Class A

+ attr: Class C

Class B

+ attr: Class D

0..*

Figure A.5: UML model of cardinality, adapted from Plattform Industrie 4.0 and ZVEI [2020a]

Composition

Figure A.6 shows composition, indicated by the filled diamond. Class A is a part of Class B, and only Class

B.

APPENDIX A. UML LEGEND 78

Class A

+ attr: Class C

Class B

+ attr: Class D

Figure A.6: UML model of composition, adapted from Plattform Industrie 4.0 and ZVEI [2020a]

Aggregation

Figure A.7 shows aggregation, indicated by the hallow diamond. Class A is a part of Class B, but one

instance of Class A can be a part multiple instances of Class B.

Class A

+ attr: Class C

Class B

+ attr: Class D

Figure A.7: UML model of aggregation, adapted from Plattform Industrie 4.0 and ZVEI [2020a]

Enumeration

Figure A.8 shows an enumeration, indicated by «enumeration». An enumeration is a set of literal values,

the enumeration in the figure is the value set (A,B).

<<enumeration>>
Enumeration

<<enum>> A
<<enum>> B

Figure A.8: UML model of enumeration, adapted from Plattform Industrie 4.0 and ZVEI [2020a]

Bibliography

BaSyx. BaSyx Documentation. https://wiki.eclipse.org/BaSyx_/_Documentation_/
_AssetAdministrationShell, 2021. Accessed: 2022-02-20.

Eirik H.S. Bratbak. Identification and analysis of data sources for equipment being part of safety-

instrumented systems. 2021.

DIN SPEC 9134:2016. Reference Architecture Model Industrie 4.0 (RAMI4.0) . Beuth Verlag, Germany, 2016.

M. Duerst and M. Suignard. RFC 3987: Internationalized Resource Identifiers (IRIs). http://
www.ietf.org/rfc/rfc3987.txt, 2005. Accessed: 2022-03-16.

Stein Hauge, Solfrind Håbrekke, and Mary Ann Lundteigen. Guidelines for standardised failure reporting

and classification of safety equipment failures in the petroleum industry. SINTEF, Trondheim, 2021a.

Stein Hauge, Solfrind Håbrekke, and Mary Ann Lundteigen. Guideline for follow-up of Safety Instru-

mented Systems (SIS) in the operating phase. SINTEF, Trondheim, 2021b.

Roland Heidel, Michael Hoffmeister, Martin Hankel, and Udo Dôbrich. Industrie 4.0 The Reference Archi-

tecture Model RAMI 4.0 and the Industrie 4.0 component. VDE Verlag GmbH, 2019.

IEC. IEC Common Data Dictionary. https://cdd.iec.ch/cdd/iec61360/iec61360.nsf/
TreeFrameset?OpenFrameSet&ongletactif=1, 2022. Accessed: 2022-02-17.

IEC-61179:2015. Information technology — Metadata registries (MDR). International Electrotechnical

Commission, Geneva, 2015.

IEC-61360:2017. Standard data element types with associated classification scheme. International Elec-

trotechnical Commission, Geneva, 2017.

IEC-61508:2010. Functional safety of electrical/electronic/programmable electronic safety-related systems.

International Electrotechnical Commission, Geneva, 2010.

IEC-61511:2016. Functional safety - Safety instrumented systems for the process industry sector. Interna-

tional Electrotechnical Commission, 2010.

IEC-62569:2017. Generic specification of information on products by properties – Part 1: Principles and

methods. International Electrotechnical Commission, Geneva, 2017.

International Electrotechnical Commission. International Electrotechnical Vocabulary. https://
www.electropedia.org/iev/iev.nsf/index?openform&part=192, 2015. Accessed: 2022-03-26.

79

https://wiki.eclipse.org/BaSyx_/_Documentation_/_AssetAdministrationShell
https://wiki.eclipse.org/BaSyx_/_Documentation_/_AssetAdministrationShell
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt
https://cdd.iec.ch/cdd/iec61360/iec61360.nsf/TreeFrameset?OpenFrameSet&ongletactif=1
https://cdd.iec.ch/cdd/iec61360/iec61360.nsf/TreeFrameset?OpenFrameSet&ongletactif=1
https://www.electropedia.org/iev/iev.nsf/index?openform&part=192
https://www.electropedia.org/iev/iev.nsf/index?openform&part=192

BIBLIOGRAPHY 80

ISO-14224:2016. Petroleum, petrochemical and natural gas industries — Collection and exchange of reli-

ability and maintenance data for equipment. International Organization for Standardization, 2016.

Mary Ann Lundteigen and Marvin Rausand. Spurious activation of safety instrumented systems in the

oil and gas industry: Basic concepts and formulas. Reliability Engineering & System Safety, 93(8):1208–

1217, 2008. doi: 10.1016/j.ress.2007.07.004.

NOROG070. Application of IEC 61508 and IEC 61511 in the Norwegian Petroleum Industry. The Norwe-

gian Oil Industry Association, 2020.

Einar M. Omang. APOS OPC-UA. 2021.

OPC UA Foundation. OPC Unified Architecture for ISA-95. OPC UA Foundation, 2013.

OPC UA Foundation. OPC UA for Asset Administration Shell (AAS). https://
reference.opcfoundation.org/src/v104/I4AAS/v100/docs/readme.htm, 2021. Accessed: 2022-

03-21.

Open Industry 4.0 Alliance. The Asset Administration Shell in the OI4 solution framework . Open Industry

4.0 Alliance, 2021.

Maria Ottermo, Stein Hauge, and Solfrid Håbrekke. Reliability Data for Safety Equipment - PDS Data

Handbook . SINTEF, Trondheim, Norway, 2021.

Petroleumstilsynet. Regulations relating to conducting petroleum activities (the activities regula-

tions). https://www.ptil.no/en/regulations/all-acts/the-activities-regulations3/IX/
46/, 2017. Accessed: 2022-03-26.

Plattform Industrie 4.0. Industrie 4.0 Glossary. https://www.plattform-i40.de/IP/Navigation/EN/
Industrie40/Glossary/glossary.html, a. Accessed: 2022-02-17.

Plattform Industrie 4.0. What is Industrie 4.0? https://www.plattform-i40.de/IP/Navigation/EN/
Industrie40/WhatIsIndustrie40/what-is-industrie40.html, b. Accessed: 2022-03-30.

Plattform Industrie 4.0. The Structure of the Administration Shell: TRILATERAL PERSPECTIVES from

France, Italy and Germany . Federal Ministry for Economic Affairs and Energy, 2018.

Plattform Industrie 4.0. Details of the Asset Administration Shell from idea to implemen-

tation. https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/vws-in-
detail-presentation.pdf?__blob=publicationFile&v=12, 2019. Accessed: 2022-02-02.

Plattform Industrie 4.0. The Asset Administration Shell: Implementing digital twins for use in Industrie

4.0. Plattform Industrie 4.0, 2021a.

Plattform Industrie 4.0. AAS Reference Modelling. Plattform Industrie 4.0, 2021b.

Plattform Industrie 4.0. Functional View of the Asset Administration Shell in an Industrie 4.0 System Envi-

ronment . Plattform Industrie 4.0, 2021c.

https://reference.opcfoundation.org/src/v104/I4AAS/v100/docs/readme.htm
https://reference.opcfoundation.org/src/v104/I4AAS/v100/docs/readme.htm
https://www.ptil.no/en/regulations/all-acts/the-activities-regulations3/IX/46/
https://www.ptil.no/en/regulations/all-acts/the-activities-regulations3/IX/46/
https://www.plattform-i40.de/IP/Navigation/EN/Industrie40/Glossary/glossary.html
https://www.plattform-i40.de/IP/Navigation/EN/Industrie40/Glossary/glossary.html
https://www.plattform-i40.de/IP/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40.html
https://www.plattform-i40.de/IP/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/vws-in-detail-presentation.pdf?__blob=publicationFile&v=12
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/vws-in-detail-presentation.pdf?__blob=publicationFile&v=12

BIBLIOGRAPHY 81

Plattform Industrie 4.0 and ZVEI. Details of the Asset Administration Shell Part 1 - The exchange of in-

formation between partners in the value chain of Industrie 4.0 (Version 3.0RC01). Federal Ministry for

Economic Affairs and Energy, 2020a.

Plattform Industrie 4.0 and ZVEI. Details of the Asset Administration Shell Part 2 - Interoperability at

Runtime – Exchanging Information via Application Programming Interfaces (Version 1.0RC01). Federal

Ministry for Economic Affairs and Energy, 2020b.

Plattform Industrie 4.0 and ZVEI. Submodel Templates of the Asset Administration Shell - ZVEI Digital

Nameplate for industrial equipment (Version 1.0) . Federal Ministry for Economic Affairs and Energy,

2020c.

Plattform Industrie 4.0 and ZVEI. Submodel Templates of the Asset Administration Shell - Generic Frame

for Technical Data for Industrial Equipment in Manufacturing (Version 1.1)) . Federal Ministry for Eco-

nomic Affairs and Energy, 2020d.

SINTEF. Automatisert prosess for oppfølging av instrumenterte sikkerhetssystemer. https:
//www.sintef.no/prosjekter/2019/automatisert-prosess-for-oppfolging-av-
instrumenterte-sikkerhetssystemer/. Accessed: 2022-03-26.

Monika Wenger, Alois Zoitl, and Thorsten Müller. Connecting PLCs With Their Asset Administration Shell

For Automatic Device Configuration. In 2018 IEEE 16th International Conference on Industrial Infor-

matics (INDIN), pages 74–79, 2018. doi: 10.1109/INDIN.2018.8472022.

Xun Ye and Seung Ho Hong. Toward Industry 4.0 Components: Insights Into and Implementation of

Asset Administration Shells. IEEE Industrial Electronics Magazine, 13(1):13–25, 2019. doi: 10.1109/

MIE.2019.2893397.

https://www.sintef.no/prosjekter/2019/automatisert-prosess-for-oppfolging-av-instrumenterte-sikkerhetssystemer/
https://www.sintef.no/prosjekter/2019/automatisert-prosess-for-oppfolging-av-instrumenterte-sikkerhetssystemer/
https://www.sintef.no/prosjekter/2019/automatisert-prosess-for-oppfolging-av-instrumenterte-sikkerhetssystemer/

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Eirik Halvdan Sølvberg Bratbak

Asset Administration Shell for Life
Cycle Management of Safety Systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Mary Ann Lundteigen
Co-supervisor: Maria Vatshaug Ottermo
March 2022

M
as

te
r’s

 th
es

is

	Preface
	Executive Summary
	Acronyms
	Introduction
	Background
	Objective
	Approach
	Limitations
	Outline

	APOS and SIS
	Safety Instrumented Systems
	APOS
	Equipment Group Hierarchy
	Failure Mode Hierarchy
	Failure Registration Parameters

	AAS and Asset
	The Asset
	The Property Principle
	The I4.0 Property

	The Asset Administration Shell
	Structure of the AAS
	Submodels
	Life Cycle of the AAS
	Information Exchange with AAS
	Hosting of AAS

	The AAS Metamodel
	AAS Metamodel Classes
	Common Classes
	Asset
	AAS
	Submodel

	Modelling Composition in the AAS

	APOS Models In The AAS Framework
	Submodel for Equipment Group Classification
	SMC for Failure Modes
	Submodel for Failure Parameters
	AAS for an Equipment Group
	AAS for a SIF

	Usage and Limitations of APOS AAS Models
	Submodel for Equipment Group Classification
	SMC for Failure Modes
	Submodel for Failure Parameters
	AAS for an Equipment Group
	AAS for a SIF

	Conclusions and Discussion
	Summary and Conclusion
	Discussion
	Future Work

	UML Legend
	Bibliography

