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Abstract

The Global Navigation Satellite Systems (GNSS) signals have shown great
potential for remote sensing applications. The ubiquitous GNSS signals in direct
or reflected geometry can be processed to retrieve different geophysical parameters
of the Earth system’s components. This thesis presents several studies on the
performance assessment and enhancement of GNSS-derived remote sensing data
products and investigating possible new applications.

Exemplary datasets from three classes of GNSS data products are used. The first
dataset belongs to GNSS meteorology, which is derived from the processing of
direct GNSS signals. The data is among the established GNSS data products
with about three decades of data archive. The thesis also presents studies
based on reflected signals of Medium Earth Orbiting (MEO) GNSS satellites in
bistatic radar configuration. The reflected signals can be received by ground-
based receivers or spaceborne receivers onboard Low Earth Orbiting (LEOs)
satellites. In this sense, the second part of the thesis focuses on ground-based
GNSS-Reflectometry (GNSS-R) measurements with demonstrated applications
for environmental monitoring. Finally, a new generation of observations from
spaceborne GNSS-R technique is investigated.

The first study of this thesis focuses on Precipitable Water Vapor (PWV) time
series. Although this data product has been produced for decades, its usage in
climate applications depends on its homogeneity verification. This demand stems
from the fact that the GNSS-derived PWV time series can have change points
due to instrumentation upgrades or new settings in GNSS stations. Therefore,
a data homogenization method is developed and tested on real and simulated
PWV datasets. The method can identify and correct inhomogeneities in the GNSS
tropospheric time series without affecting climate or meteorological signals within
the time series.

A GNSS-R dataset from a coastal experiment has been used in four studies of this
thesis to investigate possible quality improvements of sea surface characterization
measurements. The dataset includes polarimetric observations recorded using
a dedicated reflectometry receiver with multiple input antennas. The antennas
have Right- and Left-Handed Circular Polarizations (RHCP and LHCP) and are
installed at zenith and sea-looking orientations. The studies show that polarimetric
observations can significantly improve the quality of the GNSS-R measurements.
A clear improvement in the sensitivity and performance of GNSS-R sea surface
roughness estimates is observed for combined polarimetric observations from



the RHCP and LHCP links. The sensitivity is even high-enough to discern the
roughness change due to rainfall over a calm sea. The dataset is also used to assess
GNSS-R sea-level monitoring under different scenarios. The effects of sea surface
roughness, polarization and orientation of the antenna, and the frequency of the
GNSS signal are studied. The results show that the roughness can degrade the
accuracy of the GNSS-R sea-level measurements. The best GNSS-R altimetric
performance is observed when combined multi-frequency measurements are used
from a sea-looking antenna with an LHCP design.

Finally, two datasets from the new generation spaceborne GNSS-R observations
are evaluated for novel applications of the GNSS remote sensing technique.
In one of the studies, the feasibility of sensing mesoscale ocean eddies using
spaceborne GNSS-R is demonstrated for the first time. A long dataset investigation
in this thesis reveals the evidence of changes in GNSS-R Normalized Bistatic
Radar Cross-Section (NBRCS) over the ocean eddies. The detected signatures
are justified using different properties of the eddies, including the eddy-induced
changes in Sea Surface Temperature (SST), the interaction of the eddy surface
currents with overpass wind field, and accumulated surfactants brought to the
surface by the turbulence associated with the eddies. The last study of the thesis
evaluates the spaceborne GNSS-R observations for flood detection and mapping
during heavy rainfalls. The study is conducted over an area with a high risk
of flooding, requiring constant monitoring with timely observations. The results
highlight the potential of the spaceborne GNSS-R for providing the observations
with the required sensitivity and short revisit time to detect and map the inundated
areas.



Acknowledgments

First and above all, I am very grateful to the Almighty God, for, without His graces
and blessings, this work would not have been possible.

I owe Professor Hossein Nahavandchi a deep debt of gratitude for his continuous
support and help during my doctoral studies. His guidance, motivation, and advice
have been invaluable assets to me in all recent years. Furthermore, I express my
sincere gratitude to Professor Jens Wickert and my friends Dr. Milad Asgarimehr
and Dr. Sadegh Modiri at GFZ-Potsdam for their help and excellent and productive
collaboration. I would like to thank associate Professor Egil Eide and Professor
Ole Baltazar Andersen for supporting my PhD project. I am also thankful to
Professor Tor Arne Johansen and Professor Ingrid Schjølberg for their help for
funding the PhD project.

I wish to thank my colleagues at the Department of Civil and Environmental
Engineering, particularly my friend Mr. Mahmoud Rajabi, and the coauthors of
the papers included in this thesis.

Finally, my immeasurable appreciation and profound gratitude go to my parents,
my wife, and my brothers for their patience, genuine love, and heart-warming
support.

Mostafa Hoseini
Trondheim, January 2022



This page is intentionally left blank



Table of Contents

Preface v

Abstract vii

Acknowledgement ix

Table of Contents xi

List of Tables xv

List of Figures xvii

List of Abbreviations xxiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Objectives and Research Questions . . . . . . . . . . . 5

1.4 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . 8

xi



2 Conceptual Foundations 11

2.1 A brief overview of the Global Navigation Satellite Systems (GNSS) 11

2.2 Signal specifications . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Receiver architecture . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Interference of the direct and reflected signals . . . . . . . . . . . 19

2.4.1 Ellipticity and polarization of the reflected signals . . . . . 23

2.5 Direct and reflected GNSS signals for remote sensing . . . . . . . 31

2.5.1 Monitoring the troposphere using GNSS signals . . . . . 31

2.5.2 Sea surface characterization using ground-based GNSS-R 37

2.5.3 Spaceborne GNSS-R scatterometry for the study of
mesoscale ocean eddies . . . . . . . . . . . . . . . . . . . 43

2.5.4 Flood detection and mapping using GNSS reflections . . . 49

3 Results 53

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Papers of the dissertation . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Paper A: Towards a Zero-difference Approach for Homo-
genizing GNSS Tropospheric Products . . . . . . . . . . 54

3.2.2 Paper B: On the Response of Polarimetric GNSS-
Reflectometry to Sea Surface Roughness . . . . . . . . . 57

3.2.3 Paper C: Remote Sensing of Precipitation using Reflec-
ted GNSS Signals: Response Analysis of Polarimetric
Observations . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.4 Paper D: A Performance Assessment of Polarimetric
GNSS-R Sea Level Monitoring in the Presence of Sea
Surface Roughness . . . . . . . . . . . . . . . . . . . . . 63

3.2.5 Paper E: Polarimetric GNSS-R Sea Level Monitoring
using I/Q Interference Patterns at Different Antenna
Configurations and Carrier Frequencies . . . . . . . . . . 65



3.2.6 Paper F: First Evidence of Mesoscale Ocean Eddies
Signature in GNSS Reflectometry Measurements . . . . . 68

3.2.7 Paper G: Evaluation of CYGNSS Observations for Flood
Detection and Mapping during Sistan and Baluchestan
Torrential Rain in 2020 . . . . . . . . . . . . . . . . . . . 71

4 Conclusions and Outlook for Future Research 75

4.1 Practical Contribution . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

References 83

5 Publications 91



This page is intentionally left blank



List of Tables

2.1 An overview of the operational constellations of Global Nav-
igation Satellite Systems (GNSS) [33]. The orbit types of the
satellites are Medium Earth Orbit (MEO), Geostationary orbit
(GEO), and Inclined Geosynchronous Orbit (IGSO). . . . . . . . 12

3.1 The root mean square deviation (ε) and correlation coefficient (ρ)
based on one-year GNSS-R sea level measurements compared
to nearby tide gauge measurements. The values are based on
different averaging windows for four measurement scenarios.
Scenario A is based on observations from a zenith-looking RHCP
antenna, scenario B includes observations from a seaward-oriented
RHCP antenna, scenario C shows the results from a sea-looking
LHCP antenna, and scenario D combines the observations from
the RHCP and LHCP antennas. For each scenario, the columns
L1, L2, and L12 respectively indicate the sea level measurements
using the GPS L1, L2 carrier frequencies as well as their combined
solution in the averaging step. The table is reused from [44]. . . . 67

xv



This page is intentionally left blank



List of Figures

1.1 A schematic view of different classes of GNSS remote sensing
data products for the monitoring of climate and environment. . . . 3

2.1 Linearly (left) and circularly (right) polarized waves. . . . . . . . 14

2.2 A schematic representation of phase modulation of data mes-
sage and ranging code layers on GPS carrier signals, originally
presented by [24]. The parameter as is the modulation amplitude. 15

2.3 An exemplary Delay-Doppler Map (DDM), that is generated in
typical GPS receivers (image source: [24]). . . . . . . . . . . . . 16

2.4 The fundamental components of a typical GPS receiver including
the Radio Frequency (RF) front-end, Analog to Digital Converter
(ADC), In-phase/Quadrature (I/Q) sampling unit, and correlators. . 17

2.5 A block diagram of the signal processing steps in the receiver
frond-end, produced based on the description presented in [54]. . . 17

2.6 A block diagram of the signal processing steps during In-phase
and Quadrature (I/Q) sampling. The ADC refers to the analog to
digital converter, produced based on the description presented in
[54]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 A block diagram of a correlator channel in the receiver, produced
based on the description presented in [54]. . . . . . . . . . . . . . 19

xvii



2.8 Phasor representation of the In-phase (I) and Quadrature (Q)
components of the received direct and reflected GNSS signals
at the receiver: (a) before tracking the phase of the compound
signal (generated by the interference of the direct and reflected
signals) in the master channel, (b) after tracking the phase of
the compound signal in the master channel. The same value of
the tracked phase in the master channel is applied to the slave
channel and represented in (c) a simplified model and (d) a model
including the phase contributions from other factors, e.g., possible
baseline between the master and slave antennas. Panels (a) to (c)
are reused from [44]. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 An exemplary antenna gain pattern for Righ- and Left-Handed
Circular Polarization signals (RHCP and LHCP) referred respect-
ively here as co- and cross-polarization receptions with respect to
the RHCP design of the direct signals. Left panel is related to a
zenith-looking orientation for the antenna and right panel shows a
horizon-looking orientation. The gain values are retrieved from [39]. 24

2.10 (a) The extra path traveled by the reflected signal in a ground-based
GNSS-Reflectometry setting, (b) the Phase Center Variations
(PCV) of the antenna for the direct and reflected signals. The
parameter ρ is used for the signal path with subscript sat, sp,
and rcv respectively denoting the satellite, reflection point, and
receiver. δH is the height difference between the reflecting surface
and the receiver antenna, and e refers to the elevation angle of the
satellite. The variables ϕpcv and ψδ pcv are the phase residuals due
to the PCV for the direct and reflected signals, respectively. . . . 25

2.11 An example of the antenna Phase Center Offset and Variation
(PCO and PCV) for GPS L1 signal in millimeter (image source:
[35]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.12 A sketch showing the incidence plane as well as the parallel and
perpendicular components of the incoming and reflected waves.
The figure is reused from [8]. . . . . . . . . . . . . . . . . . . . . 27

2.13 Real (Re) and imaginary (Im) parts of the parallel (left) and
perpendicular (right) components of the Fresnel reflection coef-
ficients for water, wet and dry soil. The imaginary parts of the
permittivity for wet and dry soil are not considered here. . . . . . 28



2.14 The RHCP and LHCP components of the Fresnel reflection coef-
ficients with values ranging from 0 to 1 (left) and corresponding
power losses in decibel (dB) (right) for water, wet and dry soil. . 28

2.15 Power loss due to the co-polarization (RHCP) Fresnel reflection
coefficient as a function of seawater salinity and temperature for
different elevation angles. . . . . . . . . . . . . . . . . . . . . . 29

2.16 Power loss due to the cross-polarization (LHCP) Fresnel reflection
coefficient as a function of seawater salinity and temperature for
different elevation angles. . . . . . . . . . . . . . . . . . . . . . . 29

2.17 Reconstruction of different components of SNR observations
from a zenith-looking antenna based on Equation 2.22: (a)
contribution of the direct signal, (b) the RHCP component of the
reflected signal, (c) the LHCP component of the reflected signal,
(d) the phase of the compound signal, and (e) combination of
the components (dotted line) overlaid on the actual observations
(green line). The blue and red lines in panel (a) to (c) refer to the
in-phase and quadrature components of the signals. . . . . . . . . 30

2.18 An example of Precipitable Water Vapor time series from a
permanent GNSS station in the southeast of Berlin (latitude:
52.4097, longitude: 13.6022). . . . . . . . . . . . . . . . . . . . . 33

2.19 homogenization workflow (reused from [26]) . . . . . . . . . . . 34

2.20 The application of Change Magnitude Estimator (CME) index
based on Singular Spectrum Analysis (SSA) to a synthetic time
series (reused from [26]) . . . . . . . . . . . . . . . . . . . . . . 37

2.21 The effect of tropospheric refraction on ground-based GNSS-R
altimetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.22 (Top) the concept of spaceborne GNSS-R using small satellites,
(bottom) an illustration of a Delay Doppler Map (DDM) and
corresponding patches on the ocean surface. . . . . . . . . . . . . 44

2.23 An illustration of the CYGNSS GNSS-R σ0 profile over a
mesoscale ocean eddy with the radius of R. The figure is reused
from [27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.24 Variation of surface stress over an eddy due to the interaction of
an overpass wind field with the eddy-induced surface current. The
figure is reused from [27]. . . . . . . . . . . . . . . . . . . . . . 47



2.25 Schematic representations of warm-core and cold-core eddies
(image source: railsback.org/Oceanography.html.) . . . . . . . . . 48

2.26 (a) A map showing the locations of the SAR images, (b) to (d)
three examples of eddies signature in SAR images from ERS-2
mission (image source: [16]). . . . . . . . . . . . . . . . . . . . . 48

2.27 Global prediction map of flooding return period for 21st century.
The gray lines show the coverage limits of the CYGNSS GNSS-R
mission (image source: [23]). . . . . . . . . . . . . . . . . . . . . 49

3.1 An exemplary inspection of inhomogeneities by applying the
detection method to the difference (top), ERA-Interim (middle)
and GNSS (bottom) PWV time series. The data is related to
Saarbrücken GNSS station in Germany (49.22°N, 7.01°E) (reused
from [26]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 The impact of applying the proposed homogenization approach
to a GNSS PWV dataset consist of 214 stations in Germany. A
comparison of the fitting linear trends of the ERA-Interim and the
GNSS PWV time series show significant improvements after the
homogenization (reused from [26]). . . . . . . . . . . . . . . . . 57

3.3 Left column shows the results of the roughness retrievals from:
(a) co-polarization, (b) cross-polarization, and (c) cross-to-co-
polarization power ratios calculated using one-year coastal GNSS-
R observations at Onsala, Sweden. Right column highlights the
Sensitivity of roughness measurements to wind directions. The
correlation of wind speeds with (a) co-polarization, (b) cross-
polarization, and (c) cross-to-co-polarization roughness retrievals
is shown as a function of wind direction (reused from [28]). . . . . 59

3.4 Results of a fully polarimetric solution for the estimation of sea
surface roughness at a coastal GNSS-R station in Onsala, Sweden.
The results are related to a time span of one-year from January to
December 2016. (a) Roughness estimates against different wind
speeds overlaid with the first-order polynomial. (b) Dependence
of the roughness retrievals on the direction of wind fields (reused
from [28]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



3.5 (a) RHCP and (c) LHCP power ratios and in different cases,
during rain events, at rates higher than 0.2 mm/h, and at no rain
along with model-simulated (b) RHCP and (d) LHCP power ratios
at different standard deviations of surface heights σ . Average and
maximum rain rates of the data during rainfall are 1.5 and 23.0
mm/h, respectively (reused from [5]). . . . . . . . . . . . . . . . 62

3.6 Obtained values of (a) standard deviation of sea surface heights σ

and (b) SSS along with simulated SSS at different rain duration D
versus rain rate. The average values and standard deviations are
shown in red (reused from [5]). . . . . . . . . . . . . . . . . . . 62

3.7 An evaluation of the performance of GNSS-R sea level measure-
ments at different sea state based on the observations from RHCP
and LHCP antennas with zenith-looking and sea-looking orienta-
tions. The panels show the results from the zenith-looking RHCP
(a), sea-looking RHCP (b), and sea-looking LHCP (c) antennas.
The blue bars show the bias of the GNSS-R measurements with
respect to the tide gauge over each wind speed range. The red bars
are the associated RMSE values (reused from [41]). . . . . . . . 64

3.8 Time series of sea level anomalies derived from a one-year GNSS-
R dataset (left panels), and zoomed views of a 2-day window
(right panels), overlaid on the tide gauge (TG) measurements.
The antennas used for the measurements are: (A) up-looking
RHCP, (B) sea-looking RHCP, (C) sea-looking LHCP, and (D)
sea-looking RHCP and LHCP. The lines with different colors
show the estimates from different frequencies, i.e., L1 (blue), L2
(green), and combined L1 and L2 or L12 (red) (reused from [44]). 66

3.9 A CYGNSS track overpassing three mesoscale eddies on 29 June
2017, 20:45. The top panel displays SST, surface wind (white
arrows) and current (blue cones). In the middle, instantaneous
SHF as well as surface stress (blue arrows) are visualized. The
profiles in the bottom panel include CYGNSS σ0 along with the
wind and current velocity, instantaneous SHF and surface stress
magnitudes (reused from [27]). . . . . . . . . . . . . . . . . . . . 70



3.10 A CYGNSS track overpassing three mesoscale eddies on 4 June
2017, 08:11. The top panel displays SST, surface wind (white
arrows) and current (blue cones). In the middle, instantaneous
SHF as well as surface stress (blue arrows) are visualized. The
profiles in the bottom panel include CYGNSS σ0 along with the
wind and current velocity, instantaneous SHF and surface stress
magnitudes (reused from [27]). . . . . . . . . . . . . . . . . . . . 71

3.11 The outcome of interpolation process for the corrected SNR over
the period of three days from 13 January to 15 January 2020. (A)
Representation of the CYGNSS measurements along the satellite
tracks, (B) the interpolated data at 0.1◦× 0.1◦ grid points using
the natural neighbor interpolation method (reused from [43]). . . . 73

3.12 The georeferenced optical satellite imagery of the flood from
MODIS (13 January 2020) overlaid by the corrected signal to
noise ratio derived from CYGNSS observations (13 January to 15
January 2020). The regions labeled A, B, and C show significant
SNR anomalies (reused from [43]). . . . . . . . . . . . . . . . . . 73



List of Abbreviations

ADC Analog to Digital Converter
AGC Automatic Gain Controller
BRCS Bistatic Radar Cross Section
CME Change Magnitude Estimator
CORS Continuously Operating Reference Station
CS Commercial Service
CYGNSS Cyclone GNSS mission
DDM Delay-Doppler Map
ECMWF European Center for Medium-range Weather Forecast
EIRP Equivalent Isotropically Radiated Power
GCOS Global Climate Observing System
GEO Geostationary orbit
GLONASS GLObal NAvigation Satellite System
GNSS Global Navigation Satellite Systems
GNSS-R GNSS-Reflectometry
GNSS-RO GNSS Radio Occultation
GORS GNSS Occultation, Reflectometry, and Scatterometry receiver
GPS Global Positioning System
GPT Global Pressure and Temperature model
GRUAN GCOS Reference Upper-Air Network
I/Q In-phase/Quadrature
IF Intermediate Frequency
IGS International GNSS Service
IGSO Inclined Geosynchronous Orbit
IRNSS Indian Regional Navigation Satellite System

xxiii



LEO Low Earth Orbit
LHCP Left-Handed Circular Polarization
LNA Low-Noise Amplifier
LS-HE Least-Squares Harmonics Estimation
MEO Medium-altitude Earth Orbit
MSS Mean Square Slopes
NBRCS Normalized Bistatic Radar Cross Section
NWP Numerical Weather Prediction model
OS Open Service
PCO Phase Center Offset
PCV Phase Center Variation
PPS Precise Positioning Service
PRN PseudoRandom Noise
PRS Public Regulated Service
PWV Precipitable Water Vapor
QZSS Quasi-Zenith Satellite System
RHCP Right-Handed Circular Polarization
RMSE Root Mean Squared Error
SAR Synthetic Aperture Radar
SNR Signal-to-Noise Ratio
SoOP Signals of Opportunity
SP Specular Point
SPS Standard Positioning Service
SR Surface Reflectivity
SSA Singular Spectrum Analysis
SST Sea Surface Temperature
SVD Singular Value Decomposition
SWH Significant Wave Height
VMF Vienna Mapping Function
ZTD Zenith Total Delay



Chapter 1

Introduction

1.1 Motivation
The privileged environment and ecosystem of our planet are affected by many
different issues. It has been suffering from ever-growing anthropogenic effects, re-
sponsible for imposing climate change and its devastating consequences, including
severe weather conditions. The situation needs special considerations for monit-
oring the environment, natural resources, and climate variability. Authorities at
national or international levels have to be provided with timely and accurate in-
formation to plan effective measures and monitor the corresponding feedback.

The remote sensing technique has become the key approach to observing differ-
ent climate variables within different Earth system components, i.e., atmosphere,
hydrosphere, lithosphere, and biosphere. Numerous ground-based monitoring sta-
tions monitor various geophysical parameters connected with the Earth compon-
ents. Moreover, spaceborne missions have provided crucial information for the
Earth observations and are tracking the negative aspects of modern life on the en-
vironment. The observations can be made using active or passive sensors. The
Global Navigation Satellite Systems (GNSS), primarily intended for positioning
and navigation services, have opened up opportunities for ground-based or space-
based remote sensing applications in a passive configuration. Multiple constella-
tions of GNSS satellites in orbit provide full coverage anywhere on the Earth at
any time of the day. The satellites transmit signals at L-band frequencies, provid-
ing reliable all-weather signals for the users on Earth and for Low Earth Orbiting
(LEO) satellites.

There are different scenarios to utilize these signals for retrieving geophysical

1



Chapter 1 – Introduction

parameters. The scenarios can be categorized based on the geometry of the sig-
nals, i.e., direct or reflected geometry, concerning a ground-based or spaceborne
receiver. For example, propagation of direct GNSS signals through the atmo-
sphere involves some changes in the characteristics of the signals. Although the
atmosphere-induced changes can affect the high-precision positioning and naviga-
tion, they can be used to study the atmosphere in ground-based or spaceborne set-
tings. As an exemplary case, one of the most successful and widely acknowledged
remote sensing techniques, i.e., GNSS Radio Occultation (GNSS-RO), measures
the atmospheric effects on the signals using receivers aboard LEO satellites to
derive different parameters such as water vapor, vertical profiles of atmospheric
temperature, and electron density [53]. Moreover, precise measurement of the
atmospheric effects on the direct signals is possible using ground-based GNSS re-
ceivers. The reflection geometry can also be used to retrieve information about
the physical or geometrical properties of the surface from which the signals are
bounced off. For instance, the reflected signals can be used to measure sea sur-
face height and estimate the sea state. Both the direct and reflected geometries are
now being used by different GNSS-based remote sensing techniques to provide
scientifically valuable data products.

The precise measurements made by GNSS-based observing systems provide high
temporal resolution data that can be assimilated into the traditional observation
resources within different disciplines for real time or near real-time applications.
Besides, the time span of some of established GNSS-derived remote sensing data
products have been growing in recent decades and soon they will be long enough
to be used for the applications demanding long-term datasets. Studies are demon-
strating such a feasibility [2] aiming to both facilitate and promote scientific use of
the GNSS-derived data products.

The GNSS remote sensing data products can be classified into three classes based
on their maturity and practical applications. The first group is a class of traditional
data products that have been produced for decades and can be used in practice.
For example, GNSS meteorology data products, e.g., measurements of water vapor
content of the atmosphere, can be assimilated into Numerical Weather Prediction
(NWP) models or can be used for monitoring climate variability [20].

Another class of GNSS measurements is still the scientific community’s topic for
possible performance improvement. The feasibility and usage of these measure-
ments for different applications are demonstrated in numerous studies. This class
of GNSS measurements can be considered as developing data products since there
are ongoing efforts to apply them for different case studies and improve the qual-
ity of the products. For instance, ground-based GNSS-Reflectometry (GNSS-R)
measurements, which are based on reflected Signals of Opportunity (SoOP) from
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Figure 1.1: A schematic view of different classes of GNSS remote sensing data products
for the monitoring of climate and environment.

GNSS satellites, are now being used for research in several applications such as
sea surface characterization, soil moisture, vegetation growth, and snow depth re-
trieval. These measurements are still being enhanced, e.g. by novel data pro-
cessing methods, utilizing modernized GNSS signals and multiple constellations,
or by studying polarimetric aspects of the signals upon reflection.

Finally, a new-generation GNSS-derived data products class can also be found
in the scientific community. For instance, several missions in recent years have
demonstrated the possibility of utilizing reflected GNSS signals of opportunity in
spaceborne configuration for monitoring different geophysical parameters of the
Earth’s surface. In addition, a substantial collection of spaceborne observations
has been provided by pioneering GNSS-R missions, which have stimulated sev-
eral novel applications of this new-generation of GNSS data products. Figure 1.1
shows an schematic view of this classification.

This thesis aims to contribute to promoting the exploitation of the GNSS-derived
data products as well as improving the quality of the measurements for climate
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and environmental monitoring applications. The contribution is different based
on the introduced classes. The measurements at different levels, i.e., from raw
observations to final scientific data products, have been processed, investigated,
and evaluated in exemplary applications. Several issues have been highlighted and
addressed to enhance GNSS-derived measurements. Moreover, some challenges
worth further investigations have been discussed to stimulate future research in the
community.

1.2 Problem Statement
The accuracy and reliability of the measurements and products from GNSS-based
remote sensing systems could be affected by some of the inherent aspects of the
systems. The satellites within different GNSS constellations have been modern-
ized to offer new features and signals on top of the traditional services. This
dynamic enhancement highlights the necessity of frequent instrumental or soft-
ware changes in the observation equipment and data processing schemes every
few years. In addition, it puts forward new demands for scientific research to util-
ize the new features to introduce new applications and improve the quality of the
established data products.

One of the established products is the ground-based GNSS-derived atmospheric
time series retrieved from the processing of direct GNSS signals. This product is
based on the data streams from continuously operating permanent GNSS stations
available from a worldwide network. Several processing centers of the Interna-
tional GNSS Service (IGS) process the data streams and produce, as a byproduct,
zenith and slant atmospheric delays of the direct GNSS signals. Besides met-
eorological applications, this dataset with a time span of about three decades can
gradually be considered for some climate applications. For climate applications,
a fundamental issue associated with these time series is its homogeneity. A ho-
mogeneous time series for climate applications is considered to only contain the
variations due to weather and climate [55]. Nevertheless, instrumental or other
systematic changes can affect the homogeneity state of the GNSS-derived time
series. On this basis, either verifying the homogeneity of the time series or find-
ing and correcting inhomogeneities is a prerequisite step before approaching any
climate applications.

The worldwide network of the permanent GNSS stations includes stations in coastal
regions in the proximity of water bodies. These stations can receive the reflected
GNSS signals from the sea surface. The signature of these reflections in the obser-
vations can transform such a station into a multi-purpose observation site for en-
vironmental monitoring purposes and natural hazard warning systems. However,
the standard geodetic receivers used in these stations have not been specifically
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designed to perform reflectometry observations. Exploring the potentials of reflec-
tometry observations and introducing novel applications demands the utilization
of a dedicated reflectometry receiver. The observations made by such a receiver
can also give the flexibility of assessing the performance of GNSS-R sensors in
different scenarios. The findings from such investigations could be used for space-
borne missions where low-cost, low-power, and low-mass GNSS-R sensors on-
board small satellites can elucidate what can be expected from the new generation
of Earth observation systems. As a bistatic Radar technique, spaceborne GNSS-R
is particularly of interest since it utilizes L-band microwave signals that, unlike
optical sensors, are not limited by cloud coverage or daytime and, compared to,
e.g., Ku-band and C-band, provide better penetration through rain or even severe
weather conditions. Moreover, relatively inexpensive small-satellite constellations
that utilize GNSS-R signals or, in a broader view, L-band SoOP can provide a high
temporal sampling of abrupt weather hazards.

1.3 Research Objectives and Research Questions
The availability of worldwide permanent GNSS stations for remote sensing ap-
plications, the brisk pace of the enhancements in the GNSS signal transmitters
and receiving equipment, and the possibility of having low-cost high-competence
GNSS-based Earth-observing small satellites, raise several research demands as
well as data exploitation issues. This thesis focuses on some of the demands and
issues. Regarding the data exploitation issues, the focus will be on well-recognized
GNSS-derived tropospheric products from the analysis of direct GNSS signals in
a ground-based setting. Concerning the relatively new GNSS-based remote sens-
ing technique, i.e., GNSS-R, the thesis will focus on the assessment and quality
improvement of GNSS-R observations, as well as introducing possible new applic-
ations based on the recent spaceborne observations. The objectives of this thesis
can be briefly described as follows:

• Objective 1: To contribute to promoting the exploitation of established
GNSS-derived remote sensing data products

The estimates of Zenith Total Delays (ZTD) associated with the direct GNSS
signals is a byproduct of GNSS data processing. The estimated ZTD in-
cludes information about the water vapor content of the troposphere. Water
vapor is a major greenhouse gas with a significant impact on the earth’s cli-
mate [26]. The retrieved water vapor content of the atmosphere from the
observation of direct GNSS signals at ground-based stations has been iden-
tified as one of the reference data for GCOS (Global Climate Observing
System) Reference Upper-Air Network (GRUAN) [38].
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A simple way of evaluating the long-term behavior of water vapor content
of the troposphere is to estimate the linear trend of the time series. The wa-
ter vapor can be characterized by GNSS-derived Precipitable Water Vapor
(PWV). The accuracy of the estimated PWV trends for climate analysis de-
pends on the homogeneity of the PWV time series [2]. Hardware or software
changes can impose some inhomogeneities to the GNSS PWV time series.
Such inhomogeneities, sometimes discernible as abrupt jumps in the time
series, have to be detected and eliminated. Since some climatic effects such
as heat waves can also introduce abrupt changes, a delicate homogenization
process should be developed to extract the artificial jumps without affecting
climate-related changes. A widely used approach to find inhomogeneities
in a GNSS time series is to use a reference time series for the comparison.
Such reference time series are assumed to be homogeneous which could be
a questionable assumption. Any robust homogenization approach should
take into account these issues. Objective 1 of this thesis can be articulated
through the following Research Questions (RQ):

– RQ 1.1: In the presence of climate-related changes or possible in-
homogeneities in the reference time series, how can we detect and cor-
rect inhomogeneities in GNSS-derived tropospheric products?

– RQ 1.2: What could be the impact of homogenization on inhomogen-
eous GNSS datasets for a climate application?

• Objective 2: To contribute to the enhancement of the developing class
of GNSS-derived remote sensing data products

In addition to the atmospheric time series, the worldwide network of per-
manent GNSS stations has enormous potential for producing remote sensing
data products based on the observation of reflected signals. For instance, the
stations in coastal regions with a possible field of view toward the sea can
receive sea-reflected GNSS signals. Different pieces of information related
to the sea surface, specifically the sea surface roughness and sea-level vari-
ations, can be retrieved from these stations. The stations utilize an almost
uniform setup based on a standard geodetic receiver and a Right-Handed
Circular Polarization (RHCP) zenith-looking antenna. However, reflecto-
metry observations could have different performances in different scenarios
based on the polarization and orientation of the antenna. Investigation of
these scenarios provides insights both to enhance the measurements and in-
troduce new applications in spaceborne configuration. Toward this goal, the
thesis focuses on sea surface characterization with the following research
questions:
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– RQ 2.1: How can we enhance the performance of the ground-based
GNSS-R measurements for sea surface characterization?

– RQ 2.2: What could be the prospect for future ground-based GNSS-R
stations?

• Objective 3: To demonstrate novel applications of the new-generation
of spaceborne GNSS remote sensing measurements

The GNSS satellites are designed to provide the users with continuous nav-
igation service on and near the Earth’s surface, including LEO satellites. The
ubiquitous GNSS signals with complete coverage of the Earth’s surface offer
the opportunity to build a passive Earth-observing system for all-weather,
day and night operation. Unlike the traditional heavy and costly remote
sensing satellites, GNSS-R sensors can be used with small satellites because
of the low-demanding instrumentation. In a passive configuration, reflected
GNSS signals from the Earth’s surface together with their direct counter-
parts can be collected and processed by a GNSS-R sensor. This method can
derive different geophysical parameters of the Earth’s surface, which can be
used in different scientific applications such as climate and environmental
monitoring. Spaceborne GNSS-R can be implemented on a constellation of
inexpensive CubeSats to provide high spatiotemporal resolution data with
global coverage and a short revisit time. This new generation of observa-
tions can be used to study the atmosphere’s interactions with the ocean or
land. Such novel applications demand pioneering research to demonstrate
their feasibility and draw further attention to the scientific community. To-
ward this ambition, the following research questions are considered to be
addressed in this thesis:

– RQ 3.1: How can the new-generation of GNSS measurements from
spaceborne reflectometry be used for climate and environmental mon-
itoring?

– RQ 3.2: What could be the prospect for future spaceborne GNSS-R
missions and applications?

1.4 Research Approach
This section provides an overview of the datasets, processing schemes, and data
analysis used in this thesis.

Research questions RQ 1.1 and RQ 1.2 are investigated using a dataset including
GNSS-derived PWV time series obtained from over 200 stations in Germany. This
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dataset is accompanied by a reference dataset generated using a numerical weather
model. To address RQ 1.1, a change detection method has to be developed to
perform the offset detection task in the presence of seasonal components, high-
frequency variations (noise), and data gaps. The performance of the detection
method will be assessed using simulated time series with randomly inserted arti-
ficial offsets. The approach minimizes the impact of the reference time series to
ensure that no inhomogeneity is transferred to the GNSS time series. To help the
homogenization approach decide whether a detected change is an inhomogeneity
or a false alarm, the GNSS time series, the reference time series, and their differ-
ence have to be investigated independently. The decision on each case can be made
based on the presence of the change in the mentioned three time series. Regarding
RQ 1.2, to check possible quality improvements made by applying the developed
homogenization approach, the trends of PWV time series before and after homo-
genization are estimated and compared to those from the reference dataset.

To address the research questions RQ 2.1 and RQ 2.2, a one-year dataset from a
coastal GNSS-R experiment at Onsala Space Observatory in Sweden is obtained.
The dataset includes raw observations made by a dedicated GNSS-R receiver
which concurrently collects reflected signals from three antennas with different
polarizations and orientations. According to the focus of this thesis on sea surface
characterization, the performance of the GNSS-R observations for retrieving sea
surface roughness and sea level is assessed. The performance assessment is carried
out based on different variables, e.g., polarization and orientation of the antenna,
presence of wind, and precipitation. In response to RQ 2.2, the assessment results
are then used to provide an outlook on future experiments and stimulate further
research.

Regarding RQ 3.1, a dataset of spaceborne GNSS-R observations made by a con-
stellation of micro-satellites launched by NASA is used. This thesis aims to utilize
the new-generation GNSS-based observations for possible applications over the
ocean and land. In doing so, the data is collocated with some match-up data-
sets for justification and verification purposes. In reply to RQ 3.2 and based on
the findings from the investigation of both ground-based and spaceborne GNSS-R
measurements, a possible design for future spaceborne GNSS-R sensors compat-
ible with CubeSats specifications is introduced.

1.5 Structure of the Dissertation
This dissertation comprises five chapters. The introduction in the current chapter
provided an overview of the topic and described the motivation, research ques-
tions, and research objectives. A short description of the research approach is also
included in Chapter 1. In the second chapter, a brief explanation of the theoretical
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background is provided. Chapter 3 presents an overview of the results and a sum-
mary of the papers included in this dissertation. Chapter 4 provides the concluding
remarks together with an outlook for future research topics. A list of the references
is provided after Chapter 4. The last chapter comprises the publications associated
with this thesis.
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Chapter 2

Conceptual Foundations

2.1 A brief overview of the Global Navigation Satellite
Systems (GNSS)

The Global Navigation Satellite Systems (GNSS) provide users on or near the
Earth’s surface with the services to determine the accurate position and time. The
concept of satellite-based positioning is based on observing distant objects with
known positions, similar to the traditional resection process that has been histor-
ically used for quite a long time. In this process, the distances of an object with
an unknown position to some objects with known positions are measured and used
to calculate the unknown position. For a thorough description of GNSS, the op-
eration concepts and components, as well as an introduction on the applications,
readers are referred to e.g., [33, 24, 54].

The distance measurement in the satellite-based positioning is carried out through
electromagnetic waves or GNSS signals. The frequencies of the signals are in
the part of the L-band spectrum, which resides between about 1.2 and 1.6 GHz,
corresponding approximately to 25 and 19 cm wavelengths, respectively. The as-
signed frequency range provides an adequate setting for the signals to propag-
ate through the atmosphere and reach the user at almost any weather condition.
The coexistence of GNSS signals from several independent constellations, e.g.
the US Global Positioning System (GPS), the Russian GLObal NAvigation Satel-
lite System (GLONASS), European Galileo, Chinese Beidou, Japanese Quasi-
Zenith Satellite System (QZSS), and Indian Regional Navigation Satellite System
(IRNSS) increases the number of the observations. The high number of observa-
tions makes a positive contribution to the position accuracy, availability, integrity,
and continuity of the GNSS services [24].
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Most GNSS satellites use a near-circular Medium Earth Orbit (MEO) to provide
global coverage. However, some of the satellites are in Inclined Geosynchronous
Orbits (IGSO), or Geostationary Orbits (GEO) for regional applications [33]. The
GPS satellites use L1 (1575.42MHz) and L2 (1227.6 MHz) frequencies as carrier
signals. Different codes are modulated on the carrier signals for Standard and
Precise Positioning Services (SPS and PPS). Authorized users can use PPS based
on an encrypted Precise (P) code modulated on both L1 and L2. Civilian users
have access to SPS by utilizing Coarse/Acquisition (C/A) code available only on
L1. A new civil signal (L2C) on L2 and a new military signal (M) on L1 and L2
are implemented within the GPS modernization program. Additionally, the new
L5 signal with the frequency of 1176.45 MHz has been implemented on some of
the GPS satellites since May 2010 [33].

The GLONASS satellites transmit signals within two bands: Ll, 1602 - 1615.5 MHz,
and L2, 1246 - 1256.5 MHz. A new generation of the satellites in this constella-
tion has a new link, i.e., L3, with a frequency of 1202.025 MHz. Galileo satellites

Table 2.1: An overview of the operational constellations of Global Navigation Satellite
Systems (GNSS) [33]. The orbit types of the satellites are Medium Earth Orbit (MEO),
Geostationary orbit (GEO), and Inclined Geosynchronous Orbit (IGSO).

System GPS GLONASS Galileo BeiDou QZSS IRNSS/NavIC

Orbit MEO MEO MEO MEO,
IGSO, GEO

GEO, IGSO GEO, IGSO

Nominal
satellites 24 24 30 27, 3, 5 1, 3 3, 4

Orbit
inclination 56◦ 64.8◦ 56◦ 55◦ 43◦ 29◦

Initial
service 1993 1993 2016 2012 2018 2018

Origin USA Russia Europe China Japan India

Frequency
(MHz) L1 1575.42

L2 1227.60
L5 1176.45

L1 1602.00
L2 1246.00
L3 1202.025

E1 1575.42
E5a 1176.45
E5b 1207.14
E6 1278.75

B1 1561.098
B2 1207.14
B3 1268.52

L1 1575.42
L2 1227.60
L5 1176.45
LEX 1278.75

L5 1176.45
S 2492.028
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utilize three frequency bands, i.e., E1 (centered on 1575.46 MHz), E6 (centered
on 1278.75 MHz), and E5 (centered on 1191.795 MHz), to provide three levels
of service called the Open Service (OS), the Public Regulated Service (PRS),
and the Commercial Service (CS) [33]. BeiDou satellites provide open and au-
thorized services using three frequency bands, including B1 (1561.098 MHz),
B2 (1207.14 MHz), and B3 (1268.52 MHz). A new generation of this constel-
lation called BeiDou-3 is designed to transmit modernized signals at the L1/E1
and L5/E5 bands as well as the BeiDou B3 frequency [33]. Table 2.1 provides an
overview of the operational GNSS constellations. The studies conducted within
this thesis are mainly based on the GPS L1 and L2 frequencies.

2.2 Signal specifications
The propagation of transmitted GNSS signals through space is described by Max-
well’s theory. Using Maxwell equations (see e.g. [29]), the fundamental wave
equations are as follows [36]:

∇
2E = εµ

∂ 2E
∂ t2 (2.1)

∇
2B = εµ

∂ 2B
∂ t2 (2.2)

where E and B are the electric and magnetic fields, respectively, the operator ∇2

is vectorial Laplacean, t is time, and the constants ε and µ respectively denote the
electrical permittivity and magnetic permeability of the medium through which the
signals propagate. A solution to 2.1 can be described by the following equation
[36]:

E(r, t) = E0 cos(k.r− k ct +φ0), k = k n0 (2.3)

where r = (x,y,z) is the position vector, E0 identifies the strength of the electrical
field, k denotes wave vector, k = 2π

λ
is wave number, λ refers to the wavelength, n0

is a unit vector showing the direction of propagation, c is the speed of light, and φ0
denotes zero-phase offset. If E0 and k are perpendicular, which is usually the case
regarding the satellite navigation signals, then the wave is a transverse wave. Mag-
netic wave B follows similar considerations. The magnetic and electrical fields are
both orthogonal to each other, as well as the propagation direction denoted by n0.

If the electric field or magnetic field oscillates within a plane along k, the elec-
tromagnetic wave has linear polarization (Figure 2.1, left). The propagation of
electromagnetic waves through the ionosphere or Earth magnetic field can alter
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Figure 2.1: Linearly (left) and circularly (right) polarized waves.

linearly polarized waves to elliptically or circularly polarized waves [24]. This is-
sue has been addressed for the navigation signals by using a circular polarization
design.

To create a circularly polarized electromagnetic wave, two perpendicular electric
waves with similar wave vectors (k) and strengths (||E0||) can be superposed while
the zero-phase offsets (φ0) differ by 90◦ [36]. The strength of this electrical field
at a given location r over time exhibits a circular variation (Figure 2.1, right).
A clockwise rotation of the wave, when looking into the propagation direction,
indicates a Right-Handed Circular Polarization (RHCP), and a counter-clockwise
rotation is associated with a Left-Handed Circular Polarization (LHCP). All GNSS
satellites transmit the navigation signals with RHCP. This setting avoids possible
power losses due to orientation mismatch of the incoming electromagnetic field,
and the receiving antenna [36].

All GNSS signals are transmitted with a modulated characteristic binary sequence
called Pseudo-Random Noise (PRN) code at a typical rate of 1 to 10 MHz with a
repetition period of a few milliseconds to seconds [33]. The modulation scheme
used in GPS satellites is illustrated in Figure 2.2. The PRN code can be used as an
identifier to separate the signals with the same frequency from different satellites.
The modulated signals include the time of transmission and other required inform-
ation encapsulated in the data messages to derive the satellites-receiver ranges and
the position of the satellites.

Calculating the ranges is based on the estimation of the time delay between the
received signal and the transmission time. To estimate the time delay, the receiver
correlates the received signal with a local replica of the satellite’s PRN code. Be-
sides the time delay, another factor also influences the correlation, i.e., the Doppler
effect. The effect is caused due to the relative satellite-receiver movement, which
introduces a frequency shift in the GNSS signals known as Doppler frequency.
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Figure 2.2: A schematic representation of phase modulation of data message and ran-
ging code layers on GPS carrier signals, originally presented by [24]. The parameter as is
the modulation amplitude.

Therefore, the correlation of the PRN replica with the received signal is a function
of the code delay and Doppler shift. The receiver searches for the code delay and
Doppler shift that produce the maximal correlation value. The detection can be
done by producing a delay-Doppler Map (DDM) in the receiver. The DDM re-
veals the variation of correlation value at different code-delays and Doppler shifts
(Figure 2.3).

GNSS receivers can make the following measurements using the received signals
[33, 24]:

• Code range or Pseudorange: A measure of the delay between the signal
reception and transmission time based on the receiver clock which can be
scaled by the speed of light to yield the so-called Pseudorange. This meas-
urement estimates the distance traveled by the signal from the satellite to the
receiver.

• Carrier phase: Besides the PRN replica, a local oscillator in the receiver
generates a signal with a frequency similar to the incoming carrier signal.
Any deviation between the generated and incoming signals results in a beat
frequency and a beat phase. A measure of the beat phase can be used to
retrieve the phase of the satellite signal. Measurement of the carrier phase
can precisely report on the change in the pseudorange.
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Figure 2.3: An exemplary Delay-Doppler Map (DDM), that is generated in typical GPS
receivers (image source: [24]).

• Doppler frequency: A measure of the Doppler frequency provides informa-
tion about the range-rate or line-of-sight velocity.

2.3 Receiver architecture
A conceptual block diagram of a typical GPS receiver architecture is shown in Fig-
ure 2.4. The components depicted in the figure are further elaborated in Figure 2.5
to Figure 2.7. The components perform the essential parts of the signal processing
procedure on the user side. The variables used in the figures are as follows: ar is
the amplitude of the incoming signal at the receiver antenna, A is the amplitude of
the received signal in the receiver, d and c are respectively the modulated data mes-
sages and PRN code as functions of time (t) and the path delay (τ), fL1 is the GPS
L1 frequency, fD is the Doppler frequency, and fIF is the intermediate frequency.
The hat symbol (•̂) is used to show an estimation of the respective parameter, e.g.,
f̂D indicates an estimation of fD. The variable ϕ0 is the initial phase of the signal
when it arrives at the receiver antenna, ϕIF is the initial phase of the intermediate
frequency, ∆ϕ = ϕ0 −ϕIF and δϕ = ∆ϕ − ∆̂ϕ are used for the phase differences,
and TCI is the coherent integration time that can be from a few milliseconds usually
up to 20 milliseconds.
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Figure 2.4: The fundamental components of a typical GPS receiver including the Radio
Frequency (RF) front-end, Analog to Digital Converter (ADC), In-phase/Quadrature
(I/Q) sampling unit, and correlators.

The antenna intercepts incoming signals from any GPS satellites in view and feeds
the receiver with a mixture of all intercepted signals (Figure 2.5). Before start-
ing the signal processing procedure, a Low-Noise Amplifier (LNA) increases the
strength of the captured signals at the antenna. The receiver front-end shown in
Figure 2.5 includes several band-pass filters, a local oscillator, and a mixer to
provide a signal at a much lower frequency compared to the carrier frequency. The
down-converted signal with a lower frequency is called Intermediate Frequency
(IF) and has a frequency that is appropriate for the digitization of the signal in the
Analog to Digital Converter (ADC).

Figure 2.5: A block diagram of the signal processing steps in the receiver frond-end,
produced based on the description presented in [54].
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The digitized signal from the ADC contains the navigation data message, d(t−τ),
and PRN codes, c(t− τ), of different GPS satellites. To retrieve PRN code delay
and the navigation data, the trigonometric term of the signal, i.e., the cosine term,
needs to be wiped off. For this purpose, the exact frequency and phase of the digit-
ized signal are required. The frequency is slightly different from the IF frequency
due to the Doppler effects, which are unknown and are different for different GPS
satellites. Therefore, the receiver cannot completely eliminate the trigonometric
term, which results in a remaining residual frequency. The residual frequency
can introduce some slow-varying oscillation in the signal that can affect the cor-
relation value between the PRN replicas and the digitized signal. The receiver
uses an In-phase/Quadrature (I/Q) method (Figure 2.6) to address this issue. The
method provides two outputs in separate I/Q channels to allow preserving correla-
tion power through the following trigonometric equation:

[M cos(•)]2 +[M sin(•)]2 = M2 (2.4)

Figure 2.6: A block diagram of the signal processing steps during In-phase and Quadrat-
ure (I/Q) sampling. The ADC refers to the analog to digital converter, produced based on
the description presented in [54].

The I/Q samples are duplicated to many channels to feed parallel correlators. Each
channel can be dedicated to correlating the signal against one specific PRN code.
An estimate of the code delay and Doppler shift is applied in each correlator before
calculating the correlation between the replica and I/Q samples. For every pair of
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the code-delay and Doppler shift estimates, one correlation output is produced.
The correlation outputs for a range of different code-delays and Doppler shifts can
form the DDM as shown in Figure 2.3. After forming the DDM, the peak value
of the correlation in the DDM is detected by the receiver, and the corresponding
delay and Doppler are retrieved. The retrieved delay and Doppler values are used
to provide the fundamental GPS observables by the receiver, i.e., pseudorange,
Doppler frequency, and carrier phase. The peak value of the correlation sum in the
DDM can provide an estimate for the received signal strength. More details about
the signal processing scheme in the receiver can be found in, e.g., [33, 24, 54].

Figure 2.7: A block diagram of a correlator channel in the receiver, produced based on
the description presented in [54].

2.4 Interference of the direct and reflected signals
The received signal in the receiver can be a compound signal generated by the in-
terference of the direct signal and some reflections from nearby surfaces. In this
case, the contribution of reflected signals can affect the peak correlation power
in the DDM. The interference of the reflections with direct signals is considered
as an error source in positioning and navigation applications. Nevertheless, this
phenomenon is utilized in the GNSS-Reflectometry (GNSS-R) technique to char-
acterize the surface the signals are reflected from. For instance, reflections from
sea surface can be collected and processed to retrieve sea surface height or sea
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state.

In this thesis, we use a dedicated reflectometry receiver with multiple antenna in-
puts. The details about this receiver and the experimental site can be found in
[21, 28, 44]. The first antenna input of this receiver is called the master link. The
master antenna is used for tracking direct signals similar to typical GPS receivers
with the procedure described in section 2.3. The other antennas are called slave
links and can be used to capture reflections from the target surfaces. In the follow-
ing, we investigate the effect of reflected signals on the power of received signals
in the master and slave antennas. We use the complex numbers system to simul-
taneously work with the outputs of I/Q channels in a unified formulation. The real
part of the complex numbers is used for the in-phase channel and the imaginary
part for the quadrature channel. In this sense, the symbol j indicates the imaginary
unit ( j2 =−1).

As illustrated in Figure 2.8(a) and Figure 1 in [34], the intercepted direct and re-
flected signals in the master antenna can be expressed by:

Ac = Ad +Ar (2.5)

Ace jϕc = Ad e jϕd +Ar e j(ϕd+ψ) (2.6)

where Ad , Ar, and Ac are respectively the amplitude of direct, reflected, and com-
pound signals. Correspondingly, the phase values for these signals are ϕd , ϕr, and
ϕc. The phase difference between the direct and reflected signals is represented by
ψ . The phase of the direct signal comprises several components, i.e., the travel-
ing path from the GNSS satellite to the receiver (including atmospheric refraction)
denoted by ϕρ , phase wind-up shown by ϕw, and Phase Center Variations (PCV)
indicated by ϕpcv:

ϕd = ϕρ +ϕw +ϕpcv (2.7)

The receiver tracks the phase of the compound signal in the master channel. After
tracking, the compound signal will have only an in-phase component as it is shown
in Figure 2.8(b). In this case, the quadrature component which is expressed by the
imaginary part in Equation 2.6 will be vanished, resulting in:

[Ace jϕc =Ade jϕd +Are j(ϕd+ψ)].e− jϕc (2.8)

Ac =Ade j(ϕd−ϕc)+Are j(ϕd+ψ−ϕc) (2.9)

=Ade− jδϕ +Are j(ψ−δϕ) (2.10)

=e− jδϕ .(Ad +Are jψ) (2.11)
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Figure 2.8: Phasor representation of the In-phase (I) and Quadrature (Q) components
of the received direct and reflected GNSS signals at the receiver: (a) before tracking the
phase of the compound signal (generated by the interference of the direct and reflected
signals) in the master channel, (b) after tracking the phase of the compound signal in the
master channel. The same value of the tracked phase in the master channel is applied to
the slave channel and represented in (c) a simplified model and (d) a model including the
phase contributions from other factors, e.g., possible baseline between the master and
slave antennas. Panels (a) to (c) are reused from [44].

where the in-phase (I) and quadrature (Q) components of the master channel output
are:

Im = Ad cos(δϕ)+Ar cos(ψ −δϕ) = Ac (2.12)

Qm = −Ad sin(δϕ)+Ar sin(ψ −δϕ) = 0 (2.13)

with subscript m referring to the master channel. From Figure 2.8(b), the value of
the phase difference between the direct and compound signals (δϕ) can be derived
using:

tan(δϕ) =
sin(δϕ)
cos(δϕ)

=

Ar sin(ψ)
Ac

Ad+Ar cos(ψ)
Ac

=
Ar sin(ψ)

Ad +Ar cos(ψ)
(2.14)
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The following equation can be used to calculate e− jδϕ :

e− jδϕ =cos(δϕ)− j sin(δϕ) (2.15)

=
Ad +Ar cos(ψ)− j Ar sin(ψ)

Ac
=

Ad +Ar e− jψ

Ac
(2.16)

The Signal-to-Noise Ratio (SNR) observations, similar to geodetic receivers’ SNR,
can be worked out by applying the law of cosines in Figure 2.8(b):

A2
c = I2

m = A2
d +A2

r +2Ad Ar cosψ (2.17)

As can be seen from the latter formula, the SNR value does not depend on δϕ . In
contrast, the in-phase component of the master channel, before squaring, depends
on δϕ and should be accounted for in the analysis.

The phase rotation applied to the master channel to track the phase of the com-
pound signal is concurrently applied to the slave channels. A tilted orientation
would be favorable for the slave antennas since they are usually utilized to capture
reflections from land or sea surfaces. Such an orientation can amplify the received
reflections by assigning higher antenna gains to the reflected signals. Depending
on the polarization of the tilted antenna, the intercepted direct and reflected sig-
nals would have different magnitudes. The effect of polarization of the reflected
signals in association with the polarization design of the slave antenna is discussed
in section 2.4.1. Figure 2.8(c) depicts the phasor diagrams for the slave channel.
The amplitudes of the direct and reflected signals are changed due to the antenna
gain factor. For simplicity, this panel does not show the other affecting factors,
including the baseline effects between master and slave antennas, the effect of dif-
ferent phase wind-ups, and the phase center offset and variation. These effects are
summarized by εd and εr for the direct and reflected signals, respectively (see Fig-
ure 2.8(d)). Therefore, the compound signal in the slave channels can be expressed
in the following form:

A′c e j∆ϕ = A′d e− j(δϕ+εd)+A′r e j(ψ−δϕ−εr) (2.18)

A′c e j∆ϕ = e− jδϕ .(A′d e− jεd +A′r e j(ψ−εr)) (2.19)

A′c
2
= I2

s +Q2
s (2.20)

=A′d
2
+A′r

2
+2A′d A′r cos(ψ + εd− εr) (2.21)
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where the prime symbol ′ is used to distinguish the amplitudes in the slave channel
from those in the master channel. The formulation introduced in this section only
accounts for RHCP reflected signals. A possible contribution from LHCP reflected
signals is discussed and formulated in the following section.

2.4.1 Ellipticity and polarization of the reflected signals

Here, the direct signals are considered to be pure RHCP signals. However, the
polarization of direct GPS signals can be slightly elliptical. According to the GPS
documentation (IS-GPS-200M), the ellipticity of GPS L1 signal is below 1.2 dB
for Block IIA satellites and 1.8 dB for Block IIR/IIR-M/IIF/III/IIIF satellites. Re-
garding the L2 signal, the ellipticity shall be no worse than 3.2 dB for Block II/IIA
satellites and 2.2 dB for Block IIR/IIR-M/IIF and GPS III/IIIF satellites. These el-
lipticity limits are considered to be valid over the angular range of ±13.8 degrees
from the GPS satellite’s nadir.

The nearly circular polarization of direct GPS signals can significantly change
upon reflection. Consequently, reflected GPS signals can generally be regarded as
elliptically polarized signals with RHCP and LHCP components. Common geo-
detic antennas have an RHCP design. These antennas are configured in a way
that the possible LHCP component of the incoming signal is suppressed. For re-
flectometry receivers with multiple antenna inputs, an RHCP design with upward
orientation (or slightly tilted from the zenith) is usually considered for the master
antenna, similar to that of geodetic antennas. This setting assigns higher antenna
gains to the incoming direct signals and facilitates the signal tracking processes.
However, while an RHCP antenna almost mitigates the possible LHCP component
of the direct signals, the signature of the LHCP component of reflected signals can
be clearly visible at certain incoming angles for some of the geodetic antennas.
Figure 2.9 shows the gain patterns of an RHCP antenna used in this thesis in two
different orientations. The left panel is related to the zenith-looking orientation
used as the master antenna, and the right panel shows the side-looking orientation,
i.e., a tilt of 90 degrees with respect to the zenith, used as a slave antenna. The co-
polarization gain of the antenna, which indicates reception performance for RHCP
signals, is shown by blue color, and the cross-polarization reception, i.e., LHCP
signal, is shown by red color. Dashed lines show the gain values associated with
reflected signals.

As can be seen from Figure 2.9, the cross-talk gain of the antenna, i.e., the LHCP
reception gain, can be significant for angles below -20◦ with respect to the zenith-
looking antenna’s ground plane. To account for the cross-talk component in the
received signal at the receiver, Equation 2.6, which follows the simplified repres-
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Figure 2.9: An exemplary antenna gain pattern for Righ- and Left-Handed Circular
Polarization signals (RHCP and LHCP) referred respectively here as co- and cross-
polarization receptions with respect to the RHCP design of the direct signals. Left panel
is related to a zenith-looking orientation for the antenna and right panel shows a horizon-
looking orientation. The gain values are retrieved from [39].

entation of the reflected signal in Figure 2.8(c), can be elaborated as:

Ace jϕc = Ad e jϕd +Ar+ e j(ϕd+ψ+ )+Ar− e j(ϕd+ψ− ) (2.22)

where Ar+ and Ar− are the amplitudes of the co-polarization (RHCP) and cross-
polarization (LHCP) components of the reflected signal, respectively. Different
factors contribute to the phase of the reflected signals. The direct-reflected signals
phase difference for the co- (ψ+) and cross-polarization (ψ−) components of the
reflected signal can have the following elements:

ψ+ = ψδρ +ψw+
+ψR+ +ψδpcv+ (2.23)

ψ− = ψδρ +ψw− +ψR− +ψδpcv− (2.24)

with ψδρ being the phase due to the extra path traveled by the reflected signal as
shown in Figure 2.10(a). ψw+

and ψw− are the phase wind-up effects (see e.g.,
[8]) for co- and cross-polarization reflected signals, respectively. ψR+ and ψR−
are the phase changes due to the Fresnel reflection coefficients for co- and cross-
polarization reflected signals, respectively. The formulas do not include any phase
changes due to the sea surface roughness. Similar to the PCV parameter for the
direct signal, the reflected signals at the antenna would manifest different phase
delays based on the angle of reception. The corresponding effect, which is shown
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in Figure 2.10(b), is denoted by ψδpcv+ and ψδpcv− for the RHCP and LHCP com-
ponents of the reflected signal, respectively. An exemplary PCV pattern for GPS
L1 signal in an RHCP antenna is depicted in Figure 2.11.

Figure 2.10: (a) The extra path traveled by the reflected signal in a ground-based GNSS-
Reflectometry setting, (b) the Phase Center Variations (PCV) of the antenna for the direct
and reflected signals. The parameter ρ is used for the signal path with subscript sat, sp,
and rcv respectively denoting the satellite, reflection point, and receiver. δH is the height
difference between the reflecting surface and the receiver antenna, and e refers to the
elevation angle of the satellite. The variables ϕpcv and ψδ pcv are the phase residuals due
to the PCV for the direct and reflected signals, respectively.

Figure 2.11: An example of the antenna Phase Center Offset and Variation (PCO and
PCV) for GPS L1 signal in millimeter (image source: [35]).
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An analysis of the parameters in Equation 2.22 is given as follows, starting with the
amplitudes Ad ,Ar. The amplitudes of the received direct and reflected signals in
the receiver from the master antenna vary due to several factors, one of which is the
antenna gain factor. Moreover, the receiver applies an Automatic Gain Controller
(AGC) factor to adjust the received signal power. The AGC factor would be similar
for each antenna input. These two factors, i.e., the antenna gain and AGC, will be
indicated by F and k, respectively. The factor k is applied to the compound signal;
therefore, it is the same for the direct and reflected signals. We keep using the
subscript d and r to refer to the direct and reflected signals and the symbols+ and−
to denote the co- and cross-polarization components, respectively. Based on this:

Ad = k Fd Ud (2.25)

Ar+ = k Fr+ Ur+ (2.26)

Ar− = k Fr− Ur− (2.27)

where Ud and Ur are respectively the amplitudes of the direct and reflected signals
immediately before reaching the antenna. Assuming that the gain and AGC values
are available, the only unknown parameters will be Ud and Ur.

For ground-based GNSS-R with low reflector heights, one can assume that the
amplitude of the direct signal before reaching the reflection point and before being
intercepted by the antenna is almost the same. In this case, the amplitude of signal
before and after reflection can be related through the following equation:

Ur+ = S(e,σ ,λ ) R+(e,ε)Ud (2.28)

Ur− = S(e,σ ,λ ) R−(e,ε)Ud (2.29)

where S is a function that translates the random surface roughness to a dampening
coefficient between 0 and 1. Here, the effect of roughness is assumed to be inde-
pendent from the polarization. The standard deviation of the reflecting surface is
considered as a measure of surface roughness and is indicated by σ . The elevation
angle of the satellite with respect to the reflecting surface is denoted by e. The
function S also depends on the wavelength of the carrier signal (λ ) and reads [37]:

S(e,σ ,λ ) = exp(−1
2
(2π)2

λ 2 σ
2 sin2 e) (2.30)

In Equation 2.28 and Equation 2.29, reflectivity of the surface and polarization
change due to reflection are described by Fresnel reflection coefficients denoted
by R. This factor is a function of the permittivity (ε) and elevation angle (e) and
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has the following forms [11]:

R‖ =
εr sine−

√
εair εr− (εair cose)2

εr sine+
√

εair εr− (εair cose)2
(2.31)

R⊥ =
εair sine−

√
εair εr− (εair cose)2

εair sine+
√

εair εr− (εair cose)2
(2.32)

with εr being the permittivity of the reflecting medium, R‖ denoting the reflection
with the polarization parallel to incidence plane, and R⊥ indicating the reflection
polarization perpendicular to the plane. The incidence plane, shown in Figure 2.12,
is defined as a plane that contains the surface normal and the propagation vector
of the incoming wave (wavevector). The coefficients R‖ and R⊥ (see Figure 2.13)

Figure 2.12: A sketch showing the incidence plane as well as the parallel and perpendic-
ular components of the incoming and reflected waves. The figure is reused from [8].

can be combined to yield co- (R+) and cross-polarization (R−) forms of the Fresnel
coefficients with respect to the incoming RHCP signals [11]:

R+ = 1
2(R‖+R⊥) (2.33)

R− =
1
2(R‖−R⊥) (2.34)

Figure 2.14 shows the variation of the co- and cross-polarization coefficients (left
panel) and amount of power losses due to reflection (right panel) over different
elevation angles for three reflecting surfaces. Among the three surfaces, the power
loss in the RCHP component of the reflected signal from water (solid blue line in
Figure 2.14) is the highest, and from dry soil is the lowest (solid brown line in the
figure). This pattern is the opposite of the LHCP component (the dotted lines).
Figure 2.15 and Figure 2.16 show the power loss variations due to the RHCP and
LHCP Fresnel coefficients as a function of seawater salinity and temperature.
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Figure 2.13: Real (Re) and imaginary (Im) parts of the parallel (left) and perpendicular
(right) components of the Fresnel reflection coefficients for water, wet and dry soil. The
imaginary parts of the permittivity for wet and dry soil are not considered here.
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Figure 2.14: The RHCP and LHCP components of the Fresnel reflection coefficients
with values ranging from 0 to 1 (left) and corresponding power losses in decibel (dB)
(right) for water, wet and dry soil.

Now that all the elements of Equation 2.22 are described, we can use the formula
for forward modeling of SNR observations. For this purpose, each term in Equa-
tion 2.22 is constructed separately and is shown in Figure 2.17. The actual SNR
observations are taken from a ground-based GNSS-R setup at Onsala, Sweden,
using a dedicated GNSS-R receiver [28]. An estimated sea surface roughness of
σ = 6 cm for the whole observation interval is used in the simulation. For the
calculation of ψδρ sea level measurements from the nearest tide gauge are used.
The amplitude of the direct signal before reaching the antenna (Ud) is considered
to be almost constant over the interval.
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Figure 2.15: Power loss due to the co-polarization (RHCP) Fresnel reflection coefficient
as a function of seawater salinity and temperature for different elevation angles.

Figure 2.16: Power loss due to the cross-polarization (LHCP) Fresnel reflection coeffi-
cient as a function of seawater salinity and temperature for different elevation angles.
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Figure 2.17: Reconstruction of different components of SNR observations from a zenith-
looking antenna based on Equation 2.22: (a) contribution of the direct signal, (b) the
RHCP component of the reflected signal, (c) the LHCP component of the reflected sig-
nal, (d) the phase of the compound signal, and (e) combination of the components (dotted
line) overlaid on the actual observations (green line). The blue and red lines in panel (a)
to (c) refer to the in-phase and quadrature components of the signals.
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2.5 Direct and reflected GNSS signals for remote sensing
GNSS signals as sources of opportunity are being utilized for several remote sens-
ing applications. The general concept behind the GNSS remote sensing is based
on investigating the effects of geophysical phenomena that alter the signal charac-
teristics. The remote sensing observations used in this thesis are basically made by
investigating the following phenomena:

• the excess path due to the refraction of direct GNSS signals in the tropo-
sphere,

• the variation in the strength of reflected GNSS signal due to sea surface
roughness, and

• the change of polarization, phase and frequency of GNSS signals in connec-
tion to the reflection geometry.

This section describes some of the relevant conceptual foundations for the spe-
cified remote sensing applications.

2.5.1 Monitoring the troposphere using GNSS signals

The troposphere is the lowest layer of Earth’s atmosphere with the highest dens-
ity. It is part of the neutral atmosphere that, in contrast to the ionosphere, com-
prises electrically neural gases [49], including water vapor and dry gases. The
neutral atmosphere induces some changes in the propagation of the GNSS signals
by altering the speed and bending the signal [30]. Also, this effect introduces an
adverse impact on some GNSS applications, e.g., positioning, navigation, and re-
flectometry; it can be utilized for the remote sensing of the atmosphere. Since the
delay caused by the neutral atmosphere is mainly due to the troposphere, the delay
is usually referred to as GNSS tropospheric delay [30].

Troposphere modeling and mapping functions

A commonly used expression for the total GNSS tropospheric delay has hydro-
static (due to dry gases) and wet components and reads [14, 32]:

∆ρt(e) = ∆ρ
z
h Mh(e)+∆ρ

z
w Mw(e) (2.35)

This formula estimates the total delay (∆ρt) at elevation angle (e) based on the
hydrostatic and wet delay in the zenith direction. The delays are respectively de-
noted by ∆ρ

z
h and ∆ρz

w. To map the zenith delays to the elevation angle direction,
two separate mapping functions for the dry (Mh) and wet (Mw) parts are used. The
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mapping functions are elevation angle dependent and each one can be distinctly
formed by their corresponding coefficients a, b, and c in the following equation
[22, 32]:

M(e) =

1+
a

1+
b

1+ c

sin(e)+
a

sin(e)+
b

sin(e)+ c

(2.36)

Two types of tropospheric delay models with their corresponding mapping func-
tions are mainly in use. The first type includes empirical models. For instance, the
following two equations can be used to estimate the hydrostatic [47, 14, 32] and
wet [6, 32] components of the delay:

∆ρ
z
h =

0.0022768 p
1−0.00266 cos(2φ)−0.28×10−6 h

(2.37)

∆ρ
z
w = 10−6 (k′2 +

k3

Tm
)

Rd ω

gm (κ +1)
(2.38)

with p being the pressure, φ the latitude, and h the ellipsoidal height of the obser-
vation point. The parameters k′2 and k3 are refractivity constants estimated from
laboratory experiments [7]. ω is water vapor pressure, Tm is weighted average
of temperature based on water vapor pressure weights, κ is water vapor decrease
factor, Rd is the specific gas constant for dry constituents, and gm is the mean
gravity of Earth [32].

The tropospheric delay for any observation point can be estimated using empirical
models with few input parameters. However, despite the high-precision estimation
of hydrostatic zenith delays in the above approach, the zenith wet delay values
would be less precise. Higher precision can be achieved by using the second type
of tropospheric models, which are based on the ray-tracing approach using data
from Numerical Weather Models (NWMs) [52, 32]. Ray tracing can be defined as
the reconstruction of the signal path through different media [53].

The parameters of mapping functions can be derived from climatological models,
or NWMs [53]. In the empirical tropospheric models, the parameters a, b, and c are
based on empirical functions, while in the models based on NWMs, the parameter
a is estimated based on the information from NWMs [32].
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GNSS-derived tropospheric data product

The tropospheric effect on GNSS signals can be used to monitor the highly-variable
component of the neutral atmosphere, i.e., water vapor. First, the Zenith Total
Delay (ZTD, ∆ρ

z
t ) is calculated through data processing of GNSS stations along

with other unknowns, such as the station coordinates. Then, by having a precise
model of the Zenith Hydrostatic Delay (ZHD, ∆ρ

z
h), e.g., from Equation 2.37, the

Zenith Wet Delay (ZWD, ∆ρz
w) can be estimated:

∆ρ
z
w = ∆ρ

z
t −∆ρ

z
h (2.39)

The ZWD estimates can be translated to Precipitable Water Vapor (PWV) using a
conversion factor, Q [6]:

PWV =
∆ρz

w

Q
(2.40)

Q = 10−6 Dw Rw (k′2 +
k3

Tm
) (2.41)

with Dw being the density of liquid water and Rw the specific gas constant for water
vapor. The parameters k′2 and k3 are laboratory-estimated constants [7]. Tm is the
water vapor weighted mean temperature in Kelvin. An example of GNSS-derived
PWV time series for a permanent station in Germany is shown in Figure 2.18.
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Figure 2.18: An example of Precipitable Water Vapor time series from a permanent
GNSS station in the southeast of Berlin (latitude: 52.4097, longitude: 13.6022).

Homogeneity of GNSS-derived tropospheric time series

GNSS-derived PWV data provide accurate and high temporal resolution measure-
ments even in severe weather conditions [26]. This has made the GNSS PWV data
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one of the reference data for GCOS (Global Climate Observing System) Reference
Upper-Air Network (GRUAN) [38]. However, the GNSS-derived PWV time series
can include abrupt changes and inhomogeneities due to different reasons, primar-
ily associated with upgrading or modifying the hardware or software in GNSS
stations. Since not all the hardware or software changes are well-documented in
the stations’ log files, a homogenization method for detecting and correcting un-
documented changes is necessary.

The GNSS-derived PWV time series, F = ( f1, f2, ..., fN), fi ∈R,i = 1,2, ...,N, can
be considered as a linear combination of different components:

F =

FSSA+ε︷ ︸︸ ︷
Ft +Fi +Fc +Fs+Fn (2.42)

where Ft , Fi, Fc, Fs, and Fn are secular trend, inhomogeneities (mean shifts), cyclic,
seasonal, and noise components, respectively. The goal of homogenization is to
detect and correct Fi. The workflow of the homogenization method developed in
this thesis is shown in Figure 2.19.

Figure 2.19: homogenization workflow (reused from [26])

This method utilizes Singular Spectrum Analysis (SSA) for retrieving the trend
and inspecting the PWV time series for possible abrupt changes. In Equation 2.42,
FSSA is the extracted SSA trend, and ε is the residuals after subtracting the trend
from the PWV time series. SSA is also used for gap-filling purpose within the data
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preprocessing stage. The following section provides a brief description of SSA.
More details on the theory and applications of SSA can be found in [19] and [18].

Singular spectrum analysis for inspection of GNSS time series

SSA is a time series analysis tool with a wide range of applications such as extract-
ing time series trend, noise mitigation, forecasting, and change-point detection [1].
Here, we use SSA to model temporal variations of PWV time series and extract a
representative trend from the time series. The representative trend is a smoothed,
slowly-varying version of the time series with long-term variations and periodicit-
ies.

The first step in SSA is to construct a trajectory matrix. The matrix is formed using
the elements of the time series. In the following steps, the matrix is decomposed
into its principal components and is reconstructed back using the most important
principal components of the matrix. Finally, SSA rebuilds the time series using the
reconstructed trajectory matrix. These steps are elaborated in the following:

A) Forming the trajectory matrix: By moving a window with the length of L over
the entries of the time series ( fi), the trajectory matrix (X) is constructed:

window→︷ ︸︸ ︷
f1, f2, ..., fL , fL+1, fL+2, ..., fN

X = (xi j)
L,K
i, j=1 =




f1 f2 f3 · · · fK

f2 f3 f4 · · · fK+1
f3 f4 f5 · · · fK+2
...

...
...

. . .
...

fL fL+1 fL+2 · · · fN




(2.43)

with K = N−L+1 and 1< L< K.

B) Decomposition of the trajectory matrix: Singular Value Decomposition (SVD)[56]
of X can be written as:

X = UΣVT (2.44)

with the superscript T being the transpose operator. U and V contain left and right
singular vectors, respectively, and Σ is a diagonal matrix containing the singular
values (σi) of X. Now, the trajectory matrix can be expressed as the sum of its
uncorrelated components (Xi):

X =X1+X2+...+Xd , Xi = σiUiVT
i (2.45)

where d is the index of the smallest non-zero singular value.
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C) Grouping components of the trajectory matrix: In the grouping step a group or
subset of {X1,X2, ...,Xd} is selected in order to create a representative estimation
of the original trajectory matrix (X). The selected subset defines the smoothness
of the final reconstructed time series. If the time series is not dominated by noise,
the first few singular values can generally reflect a significant part of the total
information within the time series. Details about the specific grouping approach
chosen in our homogenization method can be found in [26].

D) Reconstruction of the time series: The selected group of trajectory matrix com-
ponents, denoted by {X1,X2, ...,XI}, are added to reconstruct a matrix associated
with the time series trend.

Xtrend=X1+X2+...+XI=(x̂i j)
L,K
i, j=1 (2.46)

Now, we retrieve the time series trend using the anti-diagonal elements of the trend
matrix (Xtrend). Let L< K, then the trend of the time series G = (g1,g2, ...,gN) is:

gi =





1
i

i
∑

m=1
x̂m,i−m+1 1≤ i< L

1
L

L
∑

m=1
x̂m,i−m+1 L≤ i≤ K

1
N−i+1

N−K+1
∑

m=i−K+1
x̂m,i−m+1 K ≤ i≤ N

(2.47)

where x̂i, j is an entry of the reconstructed trajectory matrix, which estimates the
original element of the time series fi+ j−1. Therefore, the SSA-estimation of the
element fk can be calculated by averaging all x̂i, j satisfying: k = i+ j−1.

We define an index called the Change Magnitude Estimator (CME) or symbolically
ξ , to measure the amount of change around every single epoch of the time series.
Having ξ values, we can detect all the local maxima of the CME diagram, which
indicate the change points and their significance. Figure 2.20 shows the behavior of
the CME index in the presence or absence of a change (mean shift) in a simulated
time series. The CME index can be calculated through:

ξ
2 =





0 i ∈ {1,N}
1

i−1

i
∑

m=1
(x̂m,i−m+1−gi)

2 1< i< L

1
L−1

L
∑

m=1
(x̂m,i−m+1−gi)

2 L≤ i≤ K

1
N−i

N−K+1
∑

m=i−K+1
(x̂m,i−m+1−gi)

2 K < i< N

(2.48)
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Figure 2.20: The application of Change Magnitude Estimator (CME) index based on
Singular Spectrum Analysis (SSA) to a synthetic time series (reused from [26])

The developed SSA-based change detection tool can be applied to PWV time series
or other tropospheric data products. It should be noted that homogenization is a
delicate process and requires sensitive and careful handling. A mistakenly correc-
ted time series for a fake change point introduces an inhomogeneity to the time
series. To avoid such an issue, we apply a zero-difference homogenization ap-
proach. In this approach, we independently apply the developed change detection
method to three time series: 1) the GNSS-derived time series, 2) a reference time
series, 3) the difference time series produced by subtracting the GNSS-derived
measurements from the reference time series. Then the detected change points are
compared for verification, decision-making, and correcting the time series.

A reference data would be necessary in any robust homogenization approach. The
reference time series provides the required information for distinguishing between
inhomogeneities and the changes induced by climate or meteorological effects.
Moreover, the robustness also demands that the homogenization approach cannot
focus only on detecting changes in the difference time series. This is because the
reference data might also contain inhomogeneities which would be misassigned to
the GNSS data product. An available reference dataset for the PWV time series
can be obtained from the NWMs that are released by the European Center for
Medium-range Weather Forecast (ECMWF) [15].

2.5.2 Sea surface characterization using ground-based GNSS-R

A significant portion of the global population inhabits coastal regions where many
economic and transportation activities are hosted. These regions have been prone
to several natural disasters. In the era of climate change consequences, the ne-
cessity of monitoring these regions becomes more vital. Along with previous re-
search on GNSS-R usage for monitoring coastal waters, this thesis contributes to
two essential aspects of sea surface characterization, i.e., sea-level monitoring and
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sea surface roughness estimation. Different factors affecting the performance of
GNSS-R coastal altimetry and surface roughness estimation have been investig-
ated. The formulation and the theoretical background used in these assessments
are described as follows.

The phase variation due to extra path traveled by the reflected signal, ψδρ , in Equa-
tion 2.23 and Equation 2.24 is:

ψδρ = (
2π

λ
)δρ (2.49)

= (
2π

λ
)(ρr−ρd) (2.50)

where λ is the carrier wavelength, ρr and ρd are the path lengths for the reflec-
ted and direct signals, respectively. Figure 2.10(a) shows a simple reflection geo-
metry. In a ground-based setup with low reflector heights, i.e., the height differ-
ence between the antenna phase center and the reflecting surface, the GNSS signals
reaching the antenna and the reflecting surface can be approximately considered
to be parallel. In this case, the extra path traveled by the reflected signal (δρ) can
be approximated by the geometric paths as:

δρg = 2 δHg sine (2.51)

where δρg is the difference between the geometric paths of the direct and reflected
signals, e is the elevation angle of satellite, and δHg is the reflector height based on
assuming the geometric paths shown by dotted lines in Figure 2.21. However, the
actual path difference, δρa, differs from δρg due to tropospheric refraction. The
refraction induces a bending effect on the signals, which changes the elevation
angles at the antenna and reflection points. Moreover, the refraction prolongs the
path, leading to an excess phase.

Different approaches can be used for estimating the tropospheric effect in ground-
based GNSS-R altimetry. For instance, Equation 2.51 can be modified to account
for the bending of the signals [48]:

δρa = 2 δHa sin(e+δe) (2.52)

∆tro = δρa−δρg

≈ 2 δHg cose sinδe (2.53)

with δHa being the actual reflector height, δe the excess of elevation angle due
to the angular effect of the refraction, and ∆tro the tropospheric bending effect on
the interferometric path difference. As can be seen from the formula, the tropo-
spheric effect is a function of the reflector height and elevation angle and is always
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Figure 2.21: The effect of tropospheric refraction on ground-based GNSS-R altimetry.

positive. This means geometric approach in calculation of reflector height, i.e.,
δHg, underestimates the actual reflector height δHa (Figure 2.21). The effect is
larger for low elevation angles and decreases at higher elevation angles. Moreover,
a larger reflector height results in a larger tropospheric effect. The dashed lines
in Figure 2.21 show the tangents to the actual rays. The estimated correction
provided by Equation 2.53 corresponds to considering the dashed lines (the tan-
gents) instead of the actual rays (solid lines), which can lead to overestimation
of the actual reflector height. Moreover, this correction neglects linear refraction
along the propagation path [57]. In contrast, another approach presented by [57]
only considers the linear refraction and ignores the angular effect (the bending) on
the elevation angle. The latter study utilizes Vienna Mapping Function (VMF1)
[9] together with the Global Pressure and Temperature (GPT2w) model [10] to
estimate total tropospheric delay at the antenna and reflection point using Equa-
tion 2.35. The difference between the two delays is multiplied by two to yield the
total tropospheric correction. According to [57], GPS-derived sea levels show a
scale error of 13 mm/m and 15 mm/m respectively for L1 and L2 signals due to
the tropospheric refraction. This correction is added to the calculated geometric
height, δHg.

A widely used approach for estimating δHg is based on the spectral analysis of
SNR observations. To this end, the Doppler frequency shift caused by the inter-
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ference of direct and reflected signals is estimated. This frequency describes the
oscillation pattern observed in the SNR observations, otherwise known as the inter-
ferometric fringes. The following formulation relates the frequency of interference
oscillations to the reflector height:

f =
1
λ

d(δρ)

dt
(2.54)

where f is the interferometric Doppler shift. For simplicity, we introduce and use
the variable x = 2sine/λ in the calculations. The new interferometric frequency,
fx, can be retrieved by [45]:

δρ = λ δHg x

fx =
1
λ

d(δρ)

dx
= δHg + x

d
dx

(δHg) = δHg + x ˙δHg
dt
dx

(2.55)

˙δHg =
d(δHg)

dt
(2.56)

where ˙δHg is the height rate. The sea level retrieval starts with detecting the pre-
dominant interferometric frequency ( fint) in a power spectrum produced by any
spectral analysis. Let us denote the spectral analysis operator as L , then:

P( fx) = L (x,Y ) (2.57)

{Pmax, fint} = max[P( fx)] (2.58)

where P( fx) is the power spectrum retrieved from the spectral analysis, Y is the
SNR observation time series after removing the secular trend, and max is the func-
tion of detecting the maximum value in the spectrum. The frequency correspond-
ing to the detected Pmax, i.e., the maximum power within the power spectrum,
estimates the reflector height:

δHg ≈ fint (2.59)

The approximation sign in the formula is based on the fact that the contribution
of the height-rate, i.e., the second term of Equation 2.55, is not considered in
the height estimation. Equation 2.59 is based on the assumption of ˙δHg = 0. To
account for the height-rate effect on the interferometric oscillation, the estimated
height from Equation 2.59 can be used as an initial value in an iterative solution.
An example of this approach is provided in the following.

Performance assessment of sea surface altimetry

Various setups have been used in GNSS-R experiments for altimetry purposes.
Most of the experiments use a zenith-looking geodetic antenna and geodetic re-
ceiver. This thesis utilizes ground-based GNSS-R observations from a dedicated
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reflectometry receiver called the Occultation, Reflectometry, and Scatterometry
(GORS) receiver [21, 51]. The receiver outputs data streams from multiple anten-
nas at I/Q levels with a 200 Hz sampling rate for GPS L1 and L2 signals. We use
these simultaneous observations for the performance assessment of GNSS-R sea
level measurements in different scenarios.

Within separate studies [40, 45], we applied two different mathematical method
for the spectral analysis (Equation 2.57). The first method, i.e., SSA, was used
in the first study for the performance assessment in the presence of sea surface
roughness. In the second study, we utilized a multivariate spectral analysis tool
for different combinations of the GNSS-R I/Q observations. The method is called
Least-Squares Harmonics Estimation (LS-HE) and can be applied to datasets with
data gaps or unevenly-spaced time series [45]. Besides the harmonic terms with
different periods, LS-HE can include some terms to capture the deterministic trend,
e.g., linear trend. LS-HE has a multivariate formulation, which effectively detects
common-mode signals in a group of time series. This feature enhances the retrieval
of the common interferometric signal in I/Q observations. More details about LS-
HE method can be found in [4, 3, 42, 17].

The dataset used in the two performance assessment studies is acquired from a
receiver with three antennas: one up-looking RHCP antenna as the master link and
two sea-looking antennas with RHCP and LHCP designs as the slave links. Based
on this setup, four sets of observations are formed in the following scenarios:

• A: The I component of the up-looking RHCP antenna (one time series)

• B: I/Q outputs of the sea-looking RHCP antenna (two time series)

• C: I/Q outputs of the sea-looking LHCP antenna (two time series)

• D: The I/Q components of both sea-looking antennas (four time series)

The observation matrices associated with each scenario include the following columns:

A: Y = [I2
m+

]

B: Y = [Is+ , Qs+ ]

C: Y = [Is− , Qs− ]

D: Y = [Is+ , Qs+ , Is− , Qs− ] (2.60)

with subscripts + and − denoting the RHCP and LHCP, respectively. The sub-
scripts m and s refer to the master and slave channels, respectively. For each
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scenario, the analysis is independently done on L1 and L2 observations. The ob-
servation matrices introduced in Equation 2.60 are separately analyzed by LS-HE
method to retrieve the initial estimations of the reflector height. Then, the follow-
ing cost function is iteratively minimized to reach a more precise estimation of the
sea-level by accounting for the height rate [45]:

min
δHg, ˙δHg

N

∑
i
‖Ŷi−ai sin(

4π[δHg +η ]sine
λ

+φi)‖ (2.61)

η =
˙δHg tane

ė
(2.62)

where η is a correction term to compensate the height rate effect, ė is the elevation
angle rate (ė = de/dt), Ŷi is the i-th time series in the observation matrix after
removing the linear trend, N is the number of observations processed by LS-HE,
which is one in scenario A, two in scenarios B and C, and four in scenario D, ai

and φi are the amplitude and phase offset of the interferometric signal in the i-th
observation time series that are estimated by a least-squares analysis.

Sea surface roughness estimation using polarimetric observations

The effect of random sea surface roughness on the reflection power loss can be
described by the model presented in Equation 2.30. One of the studies included
in this thesis [28] utilizes this model to estimate the roughness using the I/Q ob-
servations from an RHCP and an LHCP sea-looking antennas. The model uses
the standard deviation of sea surface height, i.e., σ in Equation 2.30, as an indic-
ator of the sea state. In our study, first the power of direct and reflected signals
are estimated through an approach described by [50]. These estimates (P̂•) can be
calculated by the following equations [28]:

P̂d = Gd P0 (2.63)

P̂r = Gr |R|2 S2 P0 (2.64)

where P0 is the power of the incoming signal at the antenna and at the reflection
point, G is the antenna gain, R is the Fresnel reflection coefficient (Equation 2.33
or Equation 2.34), and S is the surface roughness dampening factor (e.g., Equa-
tion 2.30). The subscripts d and r refer to the direct and reflected signals, respect-
ively. Since P0 is unknown, the power estimates retrieved from the sea-looking
RHCP and LHCP antennas can be converted into power ratio forms [28]:

L+ =
P̂r+

P̂d+

=
Gr+

Gd+

|R+ |2 S2
+
≈ |R+ |2 S2

+
(2.65)

L− =
P̂r−

P̂d+

=
Gr−

Gd+

|R− |2 S2
− ≈ |R− |2 S2

− (2.66)
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The signs + and− are used to refer to the RHCP and LHCP antennas, respectively.
The final values of the two power ratios only depend on the Fresnel coefficients
and roughness. This approximation is made since the boresights of the antennas
are toward the local horizon, i.e., a tilt angle of about 90 degrees with respect to
the zenith. Therefore the direct and reflected signals are intercepted with approx-
imately similar gain factors. It should also be noted that in Equation 2.66, the
estimated power of the direct signal comes from the RHCP sea-looking link. This
is because the LHCP antenna, by design, suppresses the direct RHCP signals. Fi-
nally, it is worth noting that taking the direct signal from different channels can
raise the issue of different AGC values. This issue is not considered in our study
since the AGC values were not recorded during the experiment.

The Fresnel coefficients can be calculated based on the available information about
the permittivity of seawater and satellite elevation angle. Based on this, the stand-
ard deviation of sea surface height (σ ) can be retrieved using the calculated power
ratios from different satellites over a temporal window, e.g., 6 hours. The retrieval
is independently done for L+ , and L− through minimization of the following cost
function:

min
σ

∑
i
( Li−|Ri|2 S2 )2 (2.67)

with min being the minimum function and the index i referring to all of the obser-
vations falling in the common temporal window.

2.5.3 Spaceborne GNSS-R scatterometry for the study of mesoscale
ocean eddies

Spaceborne GNSS-R can provide a new source of observations for the study of the
ocean. High-temporal resolution observations can be made using low-cost small
satellites based on low-power GNSS-R sensors. A relatively large dataset from
the NASA Cyclone GNSS (CYGNSS) mission is obtained and used in this thesis
for a feasibility study of detecting mesoscale ocean eddies in GNSS-R observa-
tions [27]. The study seeks possible signatures of change in the ocean surface
roughness due to the interaction of the eddies with the atmosphere. The main ob-
servation used in our investigation is the Normalized Bistatic Radar Cross Section
(NBRCS) denoted by σ0 . This observation is retrieved from the primary observ-
able of GNSS-R, i.e., the Delay Doppler Map (DDM). A brief description of the
DDM and NBRCS is as follows.

Ordinary GNSS receivers utilize a close-loop scheme [30] for the acquisition and
tracking of direct signals. These receivers find the time delay and Doppler fre-
quency that produce the maximum correlation sum within the generated DDM
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Figure 2.22: (Top) the concept of spaceborne GNSS-R using small satellites, (bottom)
an illustration of a Delay Doppler Map (DDM) and corresponding patches on the ocean
surface.

(Figure 2.3). In contrast, GNSS-R receivers can apply an open-loop scheme [30]
in which predicted values of time delay and Doppler shift are used. The predic-
tion is based on the available information of the geometry and dynamics of the
transmitter, receiver, and reflecting surface.

In a ground-based setup with low reflector height, the delay and Doppler values
associated with the reflected signal are very close to those of the direct signals.
Therefore, in our ground-based studies (see section 2.5.2), in which we used a
reflectometry receiver with an open-loop feature, the time delay, and Doppler shift
were set to a relative value of zero with respect to the direct signal [28, 45]. In
spaceborne setup, however, the delay and Doppler values of the reflected signals
are significantly different from those of the direct signals. The relative values, in
this case, are with respect to the nominal Specular Point (SP). Such spaceborne
receivers measure the power of scattered signals from the oceans or land, based on
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a range of predicted time delays and Doppler shifts [46]. Figure 2.22 illustrates
variation of the measured power in the delay and Doppler domains. The DDM
bins with positive delays are related to the corresponding patches on the reflecting
surface.

As can be seen from Figure 2.22, the DDM is a function of the relative delay
and Doppler. Negative values of the relative delay correspond to the locations
above the surface, from which there is no significant scattered signal [46]. Longer
delays are mapped to iso-delay contours on the surface surrounding the SP. The
iso-Doppler lines intersecting the iso-Delay contours illustrate the variation of the
Doppler frequency shift around the SP. The specular region at the center of the iso-
delay contours has a one-to-one connection to the DDM. For the regions outside
the specular region, there is an ambiguity due to mapping multiple spatial locations
to the same DDM bin [46]. An schematics representation of this ambiguity is
shown in Figure 2.22. The process of generating NBRCS values from the raw
power measurements shown in the DDM in Figure 2.22 is as follows [46]:

According to [58], the power of GPS scattered signals, as represented by [46], is:

Pg,τ̂, f̂ =
PT λ 2

(4π)3

¨

A

GT
x,y σ0 x,y GR

x,y

(RT
x,y)

2 (RR
x,y)

2 La1 La2
Λ

2
τ̂;x,y S2

f̂ ;x,y dx dy (2.68)

with Pg,τ̂, f̂ being the coherently processed scattered signal power, in watts; PT is
the transmitted power, GT

x,y, and GR
x,y are the antenna gains for the transmitter and

receiver, σ0 is the NBRCS, RT
x,y and RR

x,y are the path lengths from the transmitter to
the reflecting surface and from the reflecting surface to the receiver, respectively.
La1 and La2 are atmospheric losses to and from the reflecting surface. Λτ̂;x,y is the
GPS signal spreading function, S f̂ ;x,y is the frequency response of the GPS signal;
and A is the surface integration area, covering the region of diffuse scattering for
each delay Doppler bin. Equation 2.68 provides a forward model that relates the
factors influencing the power of GPS signals to the received signal at the GNSS-R
receiver. Performing the integration expressed in Equation 2.68 over the patches
corresponding to each DDM bin will provide a relationship between the affecting
factors and the power at that specific bin:

Pg,τ̂, f̂ =
PT λ 2ḠT

τ̂, f̂
σ

0 τ̂, f̂ ḠR
τ̂, f̂

Ā
τ̂, f̂

(4π)3 (R̄T
τ̂, f̂

)2 (R̄R
τ̂, f̂

)2 L̄a1 L̄a2
(2.69)

with the overbar symbol (•̄) denoting the effective values corresponding to each
DDM bin. For each DDM bin, the effective scattering area on the reflecting sur-
face is represented by Ā

τ̂, f̂ . Equation 2.69 can be used to calibrate the estimated
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power values for each DDM bin in the receiver for non-geophysical effects. The
CYGNSS dataset used in this thesis offers two separate parameters, which are used
in the calculation of σ0 . The parameters, which are in the form of 11×17 matrices,
include the Bistatic Radar Cross Section (BRCS, σ ), (unnormalized for the effect
of the scattering area), and the estimation of effective scattering area (Ā

τ̂, f̂ )[46].
The NBRCS values can then be calculated from near specular DDM bins, e.g., a
matrix of 3 delay bins × 5 Doppler bins (dashed red line in Figure 2.22):

σ̄0 =
σ̄total

Ātotal
=

∑
N
i=1 ∑

M
j=1 σ̄τi, f j

∑
N
i=1 ∑

M
j=1 Āτi, f j

, N = 3,M = 5 (2.70)

where σ̄τi, f j are the bin-by-bin estimation of BRCS values and Āτi, f j are corres-
ponding effective scattering areas. For more detailed explanation about the CYGNSS
data products and the calibration procedure, we may refer to [46].

The values of NBRCS are mainly governed by three parameters: permittivity
of ocean water (a function of ocean surface salinity and temperature), incidence
angle of GPS signals (or the elevation angle of the transmitter) at the reflection
point, and the ocean surface roughness. The effects of the incidence angle (θ )
and permittivity are packed into the Fresnel reflection coefficients which are dis-
cussed in the previous section. The surface roughness or sea state can be ex-
pressed through different parameters, e.g. Significant Wave Height (SWH), or
Mean Square Slopes (MSS). The following simplified formula makes the connec-
tion between the NBRCS (σ0) and MSS (ξ ) values [46]:

σ0(θ) =
|R(θ)|2

ξ
(2.71)

In our studies [25, 27], we assume that the incidence angle of the signals at the re-
flection point change gradually for successive NBRCS measurements. Therefore,
any sudden change appearing between successive σ0 values can be designated to
parameters other than the incidence angle.

To investigate possible signatures of the oceanic eddies in the σ0 measurements,
we first retrieve the location and radius of the eddies (R) using an ancillary dataset.
Then, a long-enough segment of the σ0 track passing over the eddy is retrieved
from the CYGNSS dataset. Figure 2.23 shows an eddy with an overpass σ0 profile.
To analyze and justify the variation of σ0 profile over the eddies, the CYGNSS
measurements are collocated with some ancillary datasets. Possible signatures of
the eddies can mainly stem from the following phenomena:

• Eddy surface current can interact with the overpass wind field and change
surface stress (Figure 2.24). At high-enough wind speeds (e.g., ≈5 m/s or
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Figure 2.23: An illustration of the CYGNSS GNSS-R σ0 profile over a mesoscale ocean
eddy with the radius of R. The figure is reused from [27].

more), the intensity of GNSS reflections is controlled by two main mech-
anisms: the varying surface stress exerted by wind and the interaction of
surface currents with short waves [27]. At low wind speeds, GNSS-R meas-
urements become more sensitive to the surface state, even to small-scale
roughness modifications. Under favorable conditions, i.e., low-enough wind
speeds, such modifications from eddy surface currents can be detected in
GNSS-R σ0 variations.

Figure 2.24: Variation of surface stress over an eddy due to the interaction of an over-
pass wind field with the eddy-induced surface current. The figure is reused from [27].

• Eddy-induced anomalies in Sea Surface Temperature (SST) can result in
a varying wind field owing to the change in atmospheric boundary layer [31].
GNSS-R σ0 responds to the modified local surface wind under the influence
of marine boundary layer dynamics [27]. Warm-core eddies (Figure 2.25,
left) can enhance the local wind leading to an increase in the surface rough-
ness and an abrupt decrease in the GNSS-R NBRCS values. Cold-core ed-
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dies (Figure 2.25, right) can introduce a dampening effect on wind intensity
due to downward transport of wind momentum. This effect can decelerate
the local wind and create a sharp peak in the σ0 profile over the core region
of the cold-core eddy [27].

Figure 2.25: Schematic representations of warm-core and cold-core eddies (image
source: railsback.org/Oceanography.html.)

• Concentrated surfactants can also enhance the power of reflected GNSS
signals. Biogenic films from natural life (e.g., released from plankton and
fishes) in the ocean can be brought to the surface by the turbulence associ-
ated with the eddies. Where surfactants are concentrated on the surface, the
surfactant molecules can generate a surface tension that inhibits the devel-
opment of Bragg waves [16, 27]. This leads to a suppressed surface rough-
ness, visible on Synthetic Aperture Radar (SAR) images as dark regions
(see Figure 2.26). This is because almost no back-scattering happens for the
Radar signals and they are mainly forward scattered over these regions. For
the GNSS-R concept in bistatic configuration, a boosted forward scattering
over these regions strengthens the power of GNSS reflections, and a sharp
increase in the σ0 values can be seen.

Figure 2.26: (a) A map showing the locations of the SAR images, (b) to (d) three ex-
amples of eddies signature in SAR images from ERS-2 mission (image source: [16]).
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2.5.4 Flood detection and mapping using GNSS reflections

In recent years, the frequency of heavy precipitation and consequently flooding
has significantly increased in many regions all over the world. Figure 2.27 shows a
global prediction for the return period of flooding for the 21st century [23]. Detec-
tion and mapping of flooding events are of particular importance for two phases,
i.e., during flood for emergency management, and after flood, for the assessments
of damages and destruction, land use planning, as well as re-construction stand-
ards [43]. Therefore, providing accurate and timely information about the extent
of floods and destruction is crucial.

Figure 2.27: Global prediction map of flooding return period for 21st century. The gray
lines show the coverage limits of the CYGNSS GNSS-R mission (image source: [23]).

Spaceborne GNSS-R as an emerging remote sensing technique has the potential to
be used for flood detection and mapping. This technique has specific features that
can provide a robust solution for flooding applications. The L-band frequency used
for the satellite navigation systems creates a measuring tool, which is almost in-
sensitive to severe weather conditions or heavy precipitation. The instrumentation
used for the GNSS-R sensors is relatively low-cost and low-power. This makes the
GNSS-R sensors to be a suitable choice for small satellite technology. Therefore,
an inexpensive constellation of small satellites with GNSS-R payloads can make a
spaceborne global Earth monitoring system with high temporal resolution. Since
2017, the NASA CYGNSS mission has provided spaceborne GNSS-R observa-
tions over tropical regions. The coverage of this mission is marked in Figure 2.27
by gray lines. With the constellation of eight satellites, the mission delivers an
average revisit time of about seven hours. This thesis includes the application of
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the CYGNSS dataset to flood detection and mapping during torrential rain in 2020
in the southeastern part of Iran, mainly over Sistan and Baluchestan province [43].

As discussed in the previous section, the peak power of each DDM generated by
the GNSS-R receiver, includes several non-geophysical factors which should be
accounted for. The following equation relates the factors to the coherent compon-
ent of the power for the received GNSS reflected signals [13]:

PR =
PT GT

4π(RT +RR)2
GRλ 2

4π
Γ (2.72)

where PT is the transmitted RHCP power, GT is the gain of the transmitter antenna,
RT and RR are the lengths of the transmitter to reflection point and reflection point
to receiver paths, respectively, GR is the gain of the receiver antenna, λ is the GPS
wavelength (≈0.19 m), and Γ is the Surface Reflectivity (SR).

For the simplicity of calculation, we can work in decibel (dB) scale. For conversion
to dB scale, e.g., for a power value of P, the following formula can be used:

PdB = 10log10(P) (2.73)

Then, the surface reflectivity in dB scale can be calculated by [13]:

ΓdB = PR
dB−PT

dB−GT
dB−GR

dB−20logλ +20log(RT +RR)+20log(4π) (2.74)

There are following variables in the CYGNSS Level-1 (L1) data that can be used
for the calculation of SR:

• ddm_snr is the SNR value in dB scale, which is the ratio of DDM peak
power to the noise floor. SNR value is proportional to PR

dB.

• gps_tx_power_db_w (PT
dB)

• gps_ant_gain_db_i (GT
dB)

• sp_rx_gain (GR
dB)

• tx_to_sp_range (RT )

• rx_to_sp_range (RR)

By retrieving the above-mentioned variables from the CYGNSS L1 data, we can
calculate a value that in magnitude is not equal to SR but it is directly proportional
to Γ [13]:

ΓdB ∝ SNRdB−PT
dB−GT

dB−GR
dB−20logλ +20log(RT +RR)+20log(4π)

(2.75)
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Detection of flooded areas is done by applying a certain threshold to the calculated
Γ values. This means the SR-proportional values (right side of Equation 2.75)
above a specific limit are considered to be associated with inundated or partially
inundated areas [13, 43]. This approach stems from the fact that the presence of
water significantly changes the permittivity of the reflecting surface. The differ-
ence in reflection power losses due to different permittivities of dry soil and water
are depicted in Figure 2.14, right panel.

Several issues can affect the accuracy of flood detection using GNSS-R measure-
ments. The transmitting power of GPS satellites (PT ) can be different for different
GPS blocks and can also decay due to aging. Inaccurate information about the
transmitter antenna gain or the attitude of the satellite can be another error source.
The issue of attitude determination is also valid for the receiver satellite. The atti-
tude determination errors can be translated to incorrect gain value for the receiving
antenna and misinterpreted as a geophysical effect. Another issue is related to the
combined effect of incidence angle and topography of the reflecting surface. We
apply a data preparation procedure to reduce some of the impacts of the mentioned
issues. The key items of the data preparation procedure are as follows:

• Calibration of transmitting power biases: GPS satellites in different blocks
or with different ages might have different transmission powers. This vari-
ation introduces some biases compared to the approximated values of the
transmitter power and should be taken into account during the analysis. Dif-
ferent GPS PseudoRandom Noise (PRN) codes also contribute to the biases
[43]. To address this issue, we calibrate the SNR values of different GPS
satellites (SNRdB) using empirically estimated biases, which can be found
in [43].

• Filtering high incidence angles: high incidence angles can influence the
coherent reflection from the surface. Therefore, we have removed all the
observations with incidence angles above 65 degrees in our study [43].

• Removing poor quality observations: each observation made by CYGNSS
satellites is accompanied with a quality control flag, which is a number in-
dicating possible issues related to that specific observation. We eliminate all
the observations with quality flags indicating the following issues: S-band
transmitter powered up, spacecraft attitude error, black body DDM, DDM
is a test pattern, the direct signal in DDM, and low confidence in the GPS
Equivalent Isotropically Radiated Power (EIRP) estimate [43].

• Additional filtering: the CYGNSS observations with SNRdB below 2 dB or
with receiving antenna gains beyond the range of 0 to 13 dB are removed
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from the analysis after [12].
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Results

This chapter briefly presents the main results of this dissertation. In addition, the
connections of the papers of this dissertation with the raised research questions in
Section 1.3 are also explained.

3.1 Overview
The thesis aims to contribute to quality improvement of the GNSS data products
and investigate novel applications of the GNSS remote sensing measurements for
climate and environmental monitoring. Towards this goal, the following papers are
delivered to address the referred research questions:

Paper A presents a new approach for homogenizing GNSS-derived tropospheric
products. The homogenization approach is successfully applied to simulated and
real datasets (−→RQ 1.1). The process of water vapor trend retrieval is shown to be
significantly improved after applying the homogenization approach (−→RQ 1.2).

Paper B describes the results of estimating sea surface roughness based on the
GNSS-R observations in different polarizations. In this paper, the polarization-
dependent results are verified against the local wind. Moreover, the effect of
nearby coastlines on the measurements is also investigated. The results of this
paper suggest that using fully-polarimetric GNSS-R observations can enhance the
sea surface roughness estimation (−→RQ 2.1). In paper C, the possible impact of
precipitation on GNSS-R observations in terms of seawater permittivity and sea
surface roughness is investigated. This study investigates the effect using polar-
imetric GNSS-R observations and shows that the effect of rain is discernible in
the roughness measurements (−→RQ 2.1). Similar reflectometry observations are
analyzed for sea-level monitoring in paper D. This paper investigates the possible
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effects of sea surface roughness on sea-level measurements. The results confirm
that the surface roughness, or sea state, has a degrading impact on the sea sur-
face height estimation (−→RQ 2.1). Paper E describes the roles of polarization and
orientation of the antenna as well as using signals with different wavelengths for
sea level measurements. This study elucidates which configuration can improve
the performance of GNSS-R sea-level measurements (−→RQ 2.1). Based on these
studies, a favorable setup for a coastal GNSS-R station is suggested to use a tilted
antenna towards the reflection zone to assign the maximal gain to the reflected sig-
nals (−→RQ 2.2). Using two antennas with different polarization and combining the
results can enhance the quality of measurements (−→RQ 2.2). The multi-frequency
feature should be considered for a GNSS-R station since it significantly increases
the number of observations leading to more robust sea surface characterization
(−→RQ 2.2).

Paper F for the first time reports on a possible application of spaceborne GNSS-R
for observing mesoscale ocean eddies. The signatures of these oceanic features in
the Normalized Bi-static Radar Cross Section (NBRCS) observations are invest-
igated in this study. The results show that under certain conditions, spaceborne
GNSS-R can observe the eddy-induced roughness change caused by the interac-
tion between the atmosphere and ocean over the eddies (−→RQ 3.1). In Paper G
the spaceborne observations of surface reflectivity are used to detect and map a
flooding event during torrential rain. The observations have a revisit time of about
7 hours, making the technique a suitable candidate for natural hazard monitoring
purposes. The results of this study confirm the successful detection of inundated
areas (−→RQ 3.1). Based on the results achieved from the studies mentioned above,
a GNSS-R CubeSat concept is proposed to perform high-resolution observations
over selected regions (−→RQ 3.2). A description of the proposed CubeSat concept
is included in Chapter 4.

3.2 Papers of the dissertation
This section provides a short description of the content, methodology, results and
the contribution of the authors in each paper of this dissertation.

3.2.1 Paper A: Towards a Zero-difference Approach for Homogeniz-
ing GNSS Tropospheric Products

Content

Long-term GNSS-derived tropospheric products, e.g., Precipitable Water Vapor
(PWV) time series, are among the established GNSS remote sensing data products.
However, the data might contain some inhomogeneities that challenge its valid-
ity for climate or meteorological applications. The origin of the inhomogeneities
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could be related to hardware or software changes in the GNSS station. This paper
presents a novel homogenization approach. The approach is equipped with an off-
set detection method based on Singular Spectrum Analysis (SSA) to detect abrupt
changes as the indicator of possible inhomogeneities. Since some climatic or met-
eorological effects can also introduce similar sudden changes, any homogenization
approach needs some ancillary data or a reference time series, e.g., from numerical
weather models, to prevent the miscorrection of these effects. The reference time
series, however, can also have some inhomogeneities. The proposed approach in
this study can distinguish the origin of the detected changes and safely correct the
GNSS-derived tropospheric time series. The performance of the offset detection
method developed in this study is assessed using simulations. The impact of homo-
genization is also demonstrated by applying the approach to a nationwide GNSS
dataset consisting of 214 stations over Germany.

Research Method

The methodology of this paper includes detection of offsets (mean shifts), verific-
ation of the origin of the offsets, and correction of the verified inhomogeneities.
The offset detection method developed in this study is based on the SSA technique.
This technique creates a vector subspace using the elements of the time series. In
doing so, SSA uses a sliding window to gradually role over the time series elements
and form a matrix called trajectory matrix. The principal components of this mat-
rix are used to retrieve a representative trend of the time series. The issue of data
gaps is also addressed using the SSA technique. A change estimator parameter
is defined to measure the distribution of the time series around the representative
trend. The possible candidates for the change points exhibit themselves by large
values of the change estimator parameter. Finally, the validity of this detection is
checked using a statistical test.

The study uses reference time series from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim reanalysis dataset to distinguish the
origin of a detected offset. For each GNSS station, the developed offset detection
method is independently applied to three time series, and the results are used to
verify the origin of the offsets. The three time series are the GNSS PWV time
series, ERA-Interim PWV time series, and the difference. The detected changes
in the difference time series can be connected to inconsistencies in the GNSS time
series, ERA-Interim time series, or abrupt changes due to climatic effects. The
decision about correcting the detected change for each case is made based on: 1)
the appearance of the offsets in the three time series, 2) their time index, and 3) the
values of the mean shifts.
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Figure 3.1: An exemplary inspection of inhomogeneities by applying the detection
method to the difference (top), ERA-Interim (middle) and GNSS (bottom) PWV time
series. The data is related to Saarbrücken GNSS station in Germany (49.22°N, 7.01°E)
(reused from [26]).

Results

The performance of the offset detection method for PWV time series is assessed
using a Monte Carlo simulation. The assessment results reports on a success rate
of 81.1% for detecting mean shifts with values between 0.5 and 3 mm. The GNSS-
derived PWV dataset over Germany is investigated for possible inhomogeneities
and systematic changes. The dataset is homogenized by identifying and correcting
96 inhomogeneous time series containing 134 detected and verified mean shifts.
In total, 45 changes out of 134 accounting for approximately 34% of the offsets
are undocumented in the log files of the GNSS stations. The process of detec-
tion and classification of the detected change for each case is demonstrated for an
exemplary GNSS station in Figure 3.1.
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Figure 3.2: The impact of applying the proposed homogenization approach to a GNSS
PWV dataset consist of 214 stations in Germany. A comparison of the fitting linear
trends of the ERA-Interim and the GNSS PWV time series show significant improve-
ments after the homogenization (reused from [26]).

The figure shows different cases in which the origin of the offsets are different. As
can be seen from the figure, possible changes induced by climatic or meteorolo-
gical effects can be identified using the developed method. To show the possible
impact of homogenization on a GNSS dataset, the linear trends from the GNSS and
ERA-Interim PWV datasets are estimated and compared. The result of this ana-
lysis is summarized in Figure 3.2 which highlights significant improvements after
the homogenization process. The correlation between the two sets of the trends is
increased by 39% after correcting the mean shifts in the GNSS data.
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3.2.2 Paper B: On the Response of Polarimetric GNSS-Reflectometry
to Sea Surface Roughness

Content

The paper describes the remote sensing of sea surface roughness using a coastal
GNSS-R station over a period of one year from January to December 2016. The
station is equipped with three antennas which are connected to a dedicated reflec-
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tometry receiver. Besides an up-looking RHCP antenna which tracks the satellites,
the station uses two side-looking antennas with RHCP and LHCP design to col-
lect sea-reflected GNSS signals. The study estimates the power of direct and re-
flected signals at each epoch from interferometric observations of the sea-looking
antennas. The power estimates are analyzed to infer the surface roughness as an
indicator of sea state. The methodolgy used in this study precisely calculates the
power by accounting for the impact of the reflection geometry. To this end, the sea
level information from the nearest tide gauge is obtained and the elevation angle
of the satellite is estimated using a ray tracing algorithm. The roughness estim-
ates based on RHCP (co-polarization), and LHCP (cross-polarization) antennas
are verified against wind speeds obtained from the nearest meteorological station.
The effect of using observations with different polarization as well as combination
of the RHCP and LHCP observations is also discussed in the paper. The analysis
reveals the impact of wind direction and surrounding coastlines on the GNSS-R
measurements.

Research Method

The study investigates the response of GNSS-R observations at different polariza-
tions to the sea surface roughness during different wind conditions. The interfer-
ence of the direct and sea-reflected GNSS signals is intercepted by two antennas
with RHCP and LHCP designs. The captured compound electromagnetic signal
is processed by the receiver to produce interferometric patterns at In-phase and
Quadrature (I/Q) levels. The I/Q output streams are used to estimate the power of
direct and reflected signals. These power estimates are converted to power ratios
and are inverted to sea surface roughness measurements using a geophysical model
function. To enhance the quality of roughness retrieval, information about the per-
mittivity of seawater and sea level is needed. The required information is provided
by collocating the main dataset with sea surface temperature, salinity, and tide
gauge data. The inversion process is individually applied to RHCP, LHCP, and the
combined dual-polarization observations. The roughness estimates are validated
against the wind data which is obtained from the nearest meteorological station.

Results

The results of sea surface roughness estimation from both RHCP (Figure 3.3 (a))
and LHCP (Figure 3.3 (b)) antennas show successful retrievals over the one-year
period of the analyzed dataset. However, the cross-polarization observations show
more sensitivity to the roughness variations. The retrievals from the cross-polarization
link can detect wind speeds as low as about 1 m/s, while co-polarization obser-
vations are mainly insensitive to wind speeds below 2 m/s. The dependency of
cross-to-co-polarization power ratios to sea state variations (Figure 3.3 (c)) reveal
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Figure 3.3: Left column shows the results of the roughness retrievals from: (a) co-
polarization, (b) cross-polarization, and (c) cross-to-co-polarization power ratios cal-
culated using one-year coastal GNSS-R observations at Onsala, Sweden. Right column
highlights the Sensitivity of roughness measurements to wind directions. The correla-
tion of wind speeds with (a) co-polarization, (b) cross-polarization, and (c) cross-to-co-
polarization roughness retrievals is shown as a function of wind direction (reused from
[28]).
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Figure 3.4: Results of a fully polarimetric solution for the estimation of sea surface
roughness at a coastal GNSS-R station in Onsala, Sweden. The results are related to a
time span of one-year from January to December 2016. (a) Roughness estimates against
different wind speeds overlaid with the first-order polynomial. (b) Dependence of the
roughness retrievals on the direction of wind fields (reused from [28]).

that the state-of-the-art model need an enhancement. The roughness measurement
exhibit a clear dependence on the wind direction (Figure 3.3, right column). This
effect is associated with different fetch lengths and the nearby complex coastlines.
This justifies the observed maximal impact of sea-breeze on the GNSS-R measure-
ments compared to the offshore winds. A full-polarimetric solution for roughness
retrieval is presented in this study (Figure 3.4), which reports noticeable enhance-
ments with respect to both co- and cross-polarization results.
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3.2.3 Paper C: Remote Sensing of Precipitation using Reflected GNSS
Signals: Response Analysis of Polarimetric Observations

Content

This paper investigates the effect of precipitation on ground-based GNSS-R obser-
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vations with different polarizations. The analysis first examines possible variation
of reflection power loss due to precipitation based on theoretical models. This fol-
lows with an empirical assessment based on a long-term coastal GNSS-R dataset.
The dataset is collocated with ancillary information about water temperature, sa-
linity, wind conditions, rain rate and rain duration. Power estimates from RHCP
and LHCP observations are sought to find the evidence of theoretically anticipated
signatures. The detected variations of sea surface roughness and salinity at differ-
ent rain rate are discussed in the study and an exemplary case is also demonstrated.

Research Method

The methodology of this research includes a theoretical evaluation of permittiv-
ity change during different rain rates. The evaluation uses available models to
predict the salinity change due to the accumulation of fresh water on the sea sur-
face at different rain rates and over different time spans. The simulated salinity
changes together with a selected range of temperature values are used to estim-
ate the amount of power loss associated with the sea-reflected GNSS signals. The
simulation is followed by processing of a real GNSS-R dataset which is collected
by a dedicated reflectometry receiver with dual-polarization antenna support. The
observations from either of the two links, i.e. RHCP and LHCP antennas, are pro-
cessed to estimate the power of direct and reflected signals. The power estimates
are converted to power ratios and are used within an inversion process to calculate
the surface roughness and salinity in the presence of rainfall. To exclude the im-
pact of wind, the study selects periods during which the wind was blowing from
the land side with the speed of less than 5 m/s. Using this setup, the fetch limitation
of coastal waters helps to mitigate the wind effect.

Results

The results of power analysis during rainfall over a calm sea shows that notice-
able drops can happen in both RHCP and LHCP reflections (Figure 3.5). These
power drops become larger at higher elevation angles suggesting the presence of
roughness change due to precipitation. For instance, at an elevation angle of 45◦,
the average LHCP power drops by about 5 dB (Figure 3.5(c)). This power loss
can also be discerned through the change of I/Q correlation sums amplitude in
visual inspection. A comparison of the retrieved average power from the RHCP
(Figure 3.5(a)) and LHCP (Figure 3.5(c)) observations suggests that the cross-
polarization observations exhibit higher sensitivity to rainfall compared to the
RHCP observations. Analysis of standard deviation of surface heights as a meas-
ure of roughness reports on a steady increase with the rain rate (Figure 3.6(a)). At
rain rates higher than 10 mm/h a decline is observed in the derived surface salinity
(Figure 3.6(b)).
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Figure 3.5: (a) RHCP and (c) LHCP power ratios and in different cases, during rain
events, at rates higher than 0.2 mm/h, and at no rain along with model-simulated (b)
RHCP and (d) LHCP power ratios at different standard deviations of surface heights
σ . Average and maximum rain rates of the data during rainfall are 1.5 and 23.0 mm/h,
respectively (reused from [5]).

Figure 3.6: Obtained values of (a) standard deviation of sea surface heights σ and (b)
SSS along with simulated SSS at different rain duration D versus rain rate. The average
values and standard deviations are shown in red (reused from [5]).
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3.2.4 Paper D: A Performance Assessment of Polarimetric GNSS-R
Sea Level Monitoring in the Presence of Sea Surface Roughness

Content

This paper appraises the performance of sea level measurements derived from
ground-based GNSS-Reflectometry observations during different sea states. The
GNSS-R observations which are used to retrieve sea surface height are obtained
from a dedicated GNSS-R receiver with three links. The master links uses an up-
looking RHCP antenna and two slave links use RHCP and LHCP antennas. The
tilted seaward antennas are meant to capture the sea reflections with the highest
gain value while the up-looking antenna is simulating the antenna orientation in
an ordinary geodetic GNSS station. To analyze the effect of wind, the GNSS-R
dataset is collocated with wind measurements from a nearby meteorological sta-
tion. The study validates the GNSS-R derived sea surface heights against the tide
gauge measurements which is about 300 meters away. The Root Mean Squared
Error (RMSE) and bias of the measured sea level with respect to the tide gauge is
then evaluated based on different wind speed ranges.

Research Method

The ground-based sea level measurements is based on the analysis of interfero-
metric fringes which are results of the interference of direct and reflected GNSS
signals. To extract these fringes, the study utilizes SSA technique. This technique
can effectively separate different components of the GNSS-R observations and
provide a clean retrieval of interferometric pattern. The periods of these patterns
are then calculated using a peak detection algorithm. The periods is accompanied
with satellite orbit information to estimate the sea level at each epoch. The epochs
are classified based on sea states using the wind speed information. The GNSS-R
derived sea level anomalies are compared to tide gauge measurements for evaluat-
ing the results at different sea states.
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Figure 3.7: An evaluation of the performance of GNSS-R sea level measurements
at different sea state based on the observations from RHCP and LHCP antennas with
zenith-looking and sea-looking orientations. The panels show the results from the zenith-
looking RHCP (a), sea-looking RHCP (b), and sea-looking LHCP (c) antennas. The blue
bars show the bias of the GNSS-R measurements with respect to the tide gauge over each
wind speed range. The red bars are the associated RMSE values (reused from [41]).

Results

This study suggests that the height estimates from the sea-looking LHCP antenna
provide higher level of accuracy compared to both up- and sea-looking RHCP
antennas. The RMSE of GNSS-R water levels compared to the nearest tide gauge
measurements are 2.8 and 3.9 cm for the sea-looking LHCP and RHCP antennas,
respectively, and 4.7 cm for the zenith-looking RHCP antenna. The corresponding
correlation coefficients of the measurements pairs are 97.63, 95.02, 95.35 percent,
respectively. The paper reports on a degrading impact of sea surface roughness on
all types of the GNSS-R observations. The impact is prominent both in the bias
and RMSE of the measurements with respect to the tide gauge data (Figure 3.7).

64



Chapter 3 – Results

It is noteworthy that the estimated biases in this experiment could be different from
other similar setups. This stems from the fact that the wind effect on coastal regions
depends on the location of the station and wind direction. Therefore, different
directions of wind can induce different impact on a coastal GNSS-R experiment.
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3.2.5 Paper E: Polarimetric GNSS-R Sea Level Monitoring using I/Q
Interference Patterns at Different Antenna Configurations and
Carrier Frequencies

Content

In this paper, the performance of GNSS-R monitoring of sea surface height based
on different scenarios is evaluated. The flexible setup used in the GNSS-R ex-
periment allows a multi-parameter evaluation in terms of frequency of the signals,
polarization and orientation of the antennas, as well as the impact of temporal
averaging. The quality of final sea level products based on each satellite Pseu-
dorandom Noise (PRN) is determined for either of L1 and L2 GPS frequencies.
The study also includes quality assessment of multi-frequency, dual-polarization
GNSS-R data products. The evaluation uses an ancillary dataset including tide
gauge measurements. The ancillary dataset also provides wind data which is used
to examine the impact of wind on each GNSS-R data product.

Research Method

The methodology of sea level retrieval in this study is based on the estimation of
interferometric frequency in the ground-based GNSS-R observations. To this end,
the Least-Squares Harmonic Estimation (LS-HE) method is applied to a dataset of
one year over 2016 for retrieving the interferometric frequency and calculating the
height of reflecting surface. The LS-HE method can be simultaneously applied to
estimate the frequency of interest in multiple sets of observations in the presence
of data gaps or unevenly spaced data. The GNSS-R dataset includes I/Q output
streams from each antenna. This gives the opportunity of using multiple series in
the LS-HE analysis to boost the spectral analysis process. Using a sliding window,
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the LS-HE spectral analysis is partially applied to the time series of the reflection
events from each GPS PRN. The size of this window is set to a minimum of 15-min
but it is flexibly extended to 30-min to include at least two interferometric periods.
The estimated heights from different satellites are combined by calculating the
median value of the estimations.

Results

The results show that the combination of observations from L1 and L2 frequen-
cies (L12) from a sea-looking LHCP antenna provides the best performance. Re-
garding the comparison of the products based on L1 and L2 frequencies, the L2
observations generally provides a lower degree of accuracy most likely suffering
from fewer observations. In terms of antenna orientation, a seaward tilting with the
angle of 90 degrees with respect to the zenith, optimizes the antenna again for cap-
turing the sea-reflected signals and magnifies interferometric patterns. Concerning
the polarization, the analysis confirms that while the RHCP antenna can be readily
used for grazing angles altimetry, using an antenna with LHCP design is the right
choice for capturing the reflections at higher elevation angles.
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Figure 3.8: Time series of sea level anomalies derived from a one-year GNSS-R dataset
(left panels), and zoomed views of a 2-day window (right panels), overlaid on the tide
gauge (TG) measurements. The antennas used for the measurements are: (A) up-looking
RHCP, (B) sea-looking RHCP, (C) sea-looking LHCP, and (D) sea-looking RHCP and
LHCP. The lines with different colors show the estimates from different frequencies, i.e.,
L1 (blue), L2 (green), and combined L1 and L2 or L12 (red) (reused from [44]).

Figure 3.8 compares the sea level retrievals based on four different scenarios. Us-
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Table 3.1: The root mean square deviation (ε) and correlation coefficient (ρ) based on
one-year GNSS-R sea level measurements compared to nearby tide gauge measurements.
The values are based on different averaging windows for four measurement scenarios.
Scenario A is based on observations from a zenith-looking RHCP antenna, scenario B
includes observations from a seaward-oriented RHCP antenna, scenario C shows the res-
ults from a sea-looking LHCP antenna, and scenario D combines the observations from
the RHCP and LHCP antennas. For each scenario, the columns L1, L2, and L12 respect-
ively indicate the sea level measurements using the GPS L1, L2 carrier frequencies as
well as their combined solution in the averaging step. The table is reused from [44].

Win = 6 h L1 L2 L12

εA (cm) 4.6 5.7 4.1
ρA 0.963 0.943 0.969
εB (cm) 4.2 5.7 3.1
ρB 0.968 0.948 0.982
εC (cm) 2.4 3.6 2.4
ρC 0.990 0.977 0.990
εD (cm) 2.4 3.8 2.3
ρD 0.990 0.973 0.990

Win = 3 h

εA (cm) 6.1 7.8 5.7
ρA 0.940 0.901 0.946
εB (cm) 5.3 7.1 4.4
ρB 0.951 0.923 0.967
εC (cm) 3.2 4.0 3.0
ρC 0.982 0.972 0.984
εD (cm) 3.1 4.2 3.0
ρD 0.983 0.970 0.984

Win = 1 h

εA (cm) 8.6 10.4 8.14
ρA 0.893 0.847 0.901
εB (cm) 7.4 9.1 6.6
ρB 0.912 0.884 0.930
εC (cm) 4.7 5.3 4.5
ρC 0.964 0.954 0.967
εD (cm) 4.6 5.4 4.5
ρD 0.965 0.952 0.967

Win = 15 min

εA (cm) 11.7 12.1 10.3
ρA 0.827 0.811 0.854
εB (cm) 9.3 10.9 8.7
ρB 0.870 0.846 0.886
εC (cm) 5.8 6.4 5.6
ρC 0.946 0.935 0.949
εD (cm) 5.6 6.3 5.6
ρD 0.948 0.837 0.949

67



Chapter 3 – Results

age of different averaging windows can also affect the quality of final products.
The RMSE values of GNSS-R sea levels from the LHCP sea-looking antenna com-
pared to collocated tide gauge measurements are 2.4, 3.0, 4.5, 5.6 cm for 6, 3, 1,
and 0.25-hour window size, respectively. The performance assessments of the
measurement scenarios based on different averaging windows are summarized in
Table 3.1. The investigation of wind effect on the accuracy of GNSS-R sea level
measurements reports lower degree of accuracy during higher wind speeds. The
RMSE value of the products can be more than 2 times larger in wind speeds above
14 m/s compared to calm sea surface, i.e., during wind speeds below 2 m/s. How-
ever, the final L12 sea level estimates show a better tolerance against the degrading
effect of wind speeds.
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3.2.6 Paper F: First Evidence of Mesoscale Ocean Eddies Signature
in GNSS Reflectometry Measurements

Content

This paper demonstrates the feasibility of detecting mesoscale ocean eddies in
spaceborne GNSS-R measurements of ocean surface roughness. The Normalized
Bi-static Radar Cross Section, or NBRCS (σ0) measurement, is considered as the
indicator of ocean roughness. The σ0 measurements is obtained from NASA Cyc-
lone GNSS (CYGNSS) mission, which has eigth micro-satellites in orbit. Several
match-up datasets from the Aviso eddy trajectory atlas, Ocean Surface Current
Analysis Real-time (OSCAR) data, and ECMWF Reanalysis-5 (ERA-5) products
are collocated with the main dataset for verification and justification purposes. The
study analyzes the variations of σ0 over the eddies and looks for possible responses
to the eddy-induced roughness changes over the ocean surface. A statistical ana-
lysis is applied to the CYGNSS profiles in 2017 to detect repeatable patterns in the
profiles with prominent signatures of these oceanic features. The observed patterns
are discussed based on the potential contributing factors.
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Research Method

The initiation of this research is based on visual inspections of the spaceborne
roughness measurements over the prominent eddies. The eddies leave strong sig-
natures on Sea Surface Temperature (SST) and surface current. The visually ob-
served behaviors of the NBRCS profiles show noticeable changes over the central
region or the edges of the eddies. The repeatability of the observed patterns are
investigated through the following approach.

The Aviso trajectory atlas is first used to retrieve the dynamic position and radius
of the documented eddies. The CYGNSS track passing over the eddies are ex-
tracted from the level-1 data product of the CYGNSS. The extracted parameters
are position of the specular points, time of the observations, and the NBRCS val-
ues. All the match-up datasets are spatio-temporally interpolated according to the
position and epoch of the specular points. The interpolated match-up parameters
include near-surface ocean current from OSCAR dataset, as well as surface wind-
field, SST, Sensible Heat Flux (SHF), and turbulent surface stress field from ERA-
5. These data products offer a possibility to discuss potential interactions of the
geophysical parameters with the GNSS-R σ0. The CYGNSS σ0 profiles over the
ocean eddies can exhibit different types of fluctuations, i.e., linear and non-linear
variations in different scales. The Principal Component Analysis (PCA) method
is applied to the CYGNSS profiles to reduce the dimensionality of the dataset and
extract the main nonlinear σ0 anomalies over the eddies. The PCA-reconstructed
σ0 profiles are then correlated with the observed patterns to check the similarities.

Results

Based on the findings of this study, under certain circumstances, two types of
prominent anomalies can be observed in the GNSS-R σ0 profiles in response to
the eddies. The observed anomalies are single-jump pattern at the eddy center or
double-jump at the eddy edges. The sudden increase of σ0 in both of the patterns
is significant enough to be easily discerned in the GNSS-R measurements.

Figure 3.9 shows a CYGNSS track overpassing three eddies. The σ0 profile in-
cludes successive single-peak patterns. The track at the core regions of the first
two eddies show a sudden increase in σ0 , which again drops to its initial level
once the track moves off the center. The third eddy however exhibits a peak at the
boundary regions.

Figure 3.10 shows a CYGNSS track that covers three cyclonic eddies. The track
passes over the edge of the first eddy at which the profile keeps the high σ0 values
almost at the same level when moving over the eddy edges and again drops to lower
values once it leaves the eddy’s outer regions. The track sweeps the central region
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Figure 3.9: A CYGNSS track overpassing three mesoscale eddies on 29 June 2017,
20:45. The top panel displays SST, surface wind (white arrows) and current (blue cones).
In the middle, instantaneous SHF as well as surface stress (blue arrows) are visualized.
The profiles in the bottom panel include CYGNSS σ0 along with the wind and current
velocity, instantaneous SHF and surface stress magnitudes (reused from [27]).

of the second eddy and σ0 responds with a low central values and two sharp peaks
at the edges. A similar behavior can be observed over the third eddy, however
with less prominent peaks. Besides the exemplary cases, the overall analysis of all
profiles in 2017 reports on strong inverse correlations of σ0 with the sensible heat
flux and surface stress over mesoscale ocean eddies.
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Figure 3.10: A CYGNSS track overpassing three mesoscale eddies on 4 June 2017,
08:11. The top panel displays SST, surface wind (white arrows) and current (blue cones).
In the middle, instantaneous SHF as well as surface stress (blue arrows) are visualized.
The profiles in the bottom panel include CYGNSS σ0 along with the wind and current
velocity, instantaneous SHF and surface stress magnitudes (reused from [27]).

3.2.7 Paper G: Evaluation of CYGNSS Observations for Flood De-
tection and Mapping during Sistan and Baluchestan Torrential
Rain in 2020

Content

This paper evaluates a remote sensing application of spaceborne GNSS-R obser-
vations for the detection of a flooding event and mapping the affected areas. The
main dataset used for the evaluation is obtained from the level-1 data product of
NASA CYGNSS mission during a heavy rain in January 2020 over south-eastern
part of Iran. The selected study area faces a high risk of flood, proven by sim-
ilar events during recent years and needs continuous monitoring. The forward-
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scattered GNSS signals are exploited to calculate the surface reflectivity using the
bistatic radar equation. The flooded areas are detected based on the analysis of
the derived reflectivity. For the verification purpose, the study uses Moderate-
Resolution Imaging Spectroradiometer (MODIS) images.

Research Method

The main parameter of interest used in the analysis was the delay doppler map
SNR, which was retrieved from the level-1 data product of NASA CYGNSS mis-
sion. First, a data preparation procedure was applied to remove outliers and dis-
card low-quality data. In the next step, inverse bistatic radar formula was used
to calculate the corrected SNR, which was closely related to surface reflectivity
and hydrological conditions. The corrected SNR values were calibrated and inter-
polated to a regular grid over the study area. After calibration and gridding, the
corrected SNR was verified with the MODIS optical image. A threshold of about
11 dB or more could be distinguished between the inundated and noninundated
areas in the regions of interest. Finally, the flood-affected areas were mapped on
Google Maps.

Results

This study demonstrated the potential of timely spaceborne GNSS-R observations
over land for detecting and mapping floods. The investigation specifically focuses
on a flood occurred in Sistan and Baluchestan province of Iran where a heavy rain
in mid-January 2020 caused a destructive flood. The analysis estimates the in-
undated area to be about 19,644 km2 (Figure 3.11). Many cities, roads, and other
infrastructures were affected by the flood in these regions. The results indicate the
regions close to depression, lakes, and coastal areas are at a high risk of flood-
ing in this province (Figure 3.12). This study confirms that CYGNSS data is of
value for hydrological investigations, particularly flood detection in the Sistan and
Baluchestan province. Despite a relatively short revisit time of CYGNSS observa-
tions, the spatial resolution of the data products needs to be improved for mapping
purposes. This issue could be addressed in future missions by, e.g., increasing
the number of onboard processing channels, as well as by processing the reflected
signals from other GNSS constellations such as GLONASS, Galileo, and BeiDou.
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Funding acquisition, M.R. and H.N.; Investigation, M.R. and M.H.; Methodology,
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Figure 3.11: The outcome of interpolation process for the corrected SNR over the period
of three days from 13 January to 15 January 2020. (A) Representation of the CYGNSS
measurements along the satellite tracks, (B) the interpolated data at 0.1◦ × 0.1◦ grid
points using the natural neighbor interpolation method (reused from [43]).

Figure 3.12: The georeferenced optical satellite imagery of the flood from MODIS (13
January 2020) overlaid by the corrected signal to noise ratio derived from CYGNSS ob-
servations (13 January to 15 January 2020). The regions labeled A, B, and C show signi-
ficant SNR anomalies (reused from [43]).
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Chapter 4

Conclusions and Outlook for
Future Research

This chapter provides a summary of conclusions based on the research conducted
in this dissertation. The chapter also includes some insights about complementary
future researches.

4.1 Practical Contribution
The remote sensing techniques based on the analysis of direct and reflected GNSS
signals have been considered for several applications. The GNSS-derived remote
sensing data products can be used for sounding the atmosphere, monitoring the
earth surface and the interaction of the atmosphere with the ocean or land. For
instance, the GNSS direct signals are utilized for monitoring the water vapor con-
tent of the troposphere as an essential climate variable. Moreover, the relatively
new technique of utilizing GNSS reflected signals in a passive configuration has
provided a new source of observations for different remote sensing applications.
Ground-based GNSS-R stations have been exploited to provide measurements of
different geophysical parameters, e.g. sea level, soil moisture, snow depth, ice
coverage and concentration.

Although the GNSS-based observations provide a wide verity of remote sensing
measurements, practical usage of the data have to be more promoted. In doing
so, some of possible issues hindering practical utilization of these products were
investigated in this thesis. Furthermore, the performance of some of the meas-
urements were assessed within exemplary applications. The new-generation of
GNSS-based observations from spaceborne GNSS-R technique were also demon-
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strated to be useful for the study of atmospheric interactions with the ocean and
land.

In the following, it is discussed how this thesis contributed to achieving the previ-
ously stated objectives and addressing the associated research questions:

• Objective 1: To contribute to promoting the exploitation of established
GNSS-derived remote sensing data products
The thesis has focused on a well-known GNSS-derived dataset, i.e. the
ground-based tropospheric delays and precipitable water vapor, which could
potentially be used for climate and meteorological applications (e.g. [2]).
Homogeneity of the data products is an essential prerequisite for these ap-
plications. Therefore, detecting and correcting inhomogeneities specially
those originating from undocumented hardware or software changes is in-
evitable. Since most of the available homogenization approaches utilize a
reference data for detection, the homogenized GNSS data can be prone to
the inhomogeneities in the reference data. Through one of the studies con-
ducted in this thesis, a novel approach has been proposed which minimizes
such cases of contamination from the reference data. The study also covers
several other homogenization-related issues such as: avoiding any miscor-
rection of climate-related changes, dealing with possible data gaps, detecting
changes in the presence of seasonality and high-frequency component of the
time series, and addressing detected changes without any documentation in
the stations log files.

X RQ 1.1: In the presence of climate-related changes or possible in-
homogeneities in the reference time series, how can we detect and
correct inhomogeneities in GNSS-derived tropospheric products?
Concerning the detection of inhomogeneities which are characterized
by mean shifts in the GNSS time series, a new data-driven offset de-
tection method has been developed in this thesis. The method is based
on Singular Spectrum Analysis (SSA) and can detect mean shifts ran-
ging from 0.5 to 3 mm in PWV time series with 81.1% success rate.
SSA is also adopted in this study to predict possible missing data in
the presence of seasonality. Unlike most of the other homogenization
methods, which subtract a reference time series from the GNSS PWV
time series, the detection method can be directly applied to the ori-
ginal time series in the presence of high-frequency component of the
time series. This feature helps to avoid any contamination from the
reference PWV time series but raises the issue of miscorrection of cli-
matic or meteorological changes. To distinguish any climate-induced
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changes, the method is independently applied to the GNSS and the
reference time series. Using the fact that the offsets associated with
a climatic or meteorological effects happen at the same time and with
similar magnitudes, the approach leaves such changes uncorrected.

X RQ 1.2: What could be the impact of homogenization on inhomo-
geneous GNSS datasets for a climate application?
The PWV time series can be used to estimate the trends of atmospheric
water vapor, which is an indicator of warming climate. To demonstrate
the impact of homogenization, the developed approach in this thesis
was applied to a nation-wide GNSS-derived PWV dataset over Ger-
many. Among 214 time series that were evaluated by the developed
approach, 96 inhomogeneous time series with 134 detect and verified
changes were identified. About one third of the changes could not be
supported by any documented hardware or software changes in the sta-
tions log files. After homogenizing, the overall pair-wise correlation of
the PWV trends from GNSS time series and the reference time series
was significantly improved by 39%.

• Objective 2: To contribute to the enhancement of the developing class
of GNSS-derived remote sensing data products

The remote sensing measurements based on ground-based GNSS-R obser-
vations have been developing in recent decades. The methodological im-
provement for observing different geophysical parameters of interest is still
the topic of lots of undergoing research. Towards contributing enhancement
of these measurements, this dissertation has devoted several studies to eval-
uate the performance of the measurements based on different scenarios. The
studies are carried on based on a one-year dataset (January to December
2016) from a GNSS-R experiment conducted by German Research Center
for Geosciences (GFZ) at Onsala, Sweden. The instrumentation setup at this
station provides flexibility to investigate different potentials of ground-based
GNSS-R observations.

X RQ 2.1: How can we enhance the performance of the ground-based
GNSS-R measurements for sea surface characterization?
Regarding the characterization of sea surface using GNSS-R measure-
ments, this dissertation has focused on three parameters: sea surface
roughness, precipitation over the sea surface, and sea level anomalies.
In one of the studies, the analysis of reflection power is used for the
roughness retrieval. The results show that the sea surface roughness
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measurements made by the GNSS-R station can measure the rough-
ness associated with very low wind speeds with sensitivity to wind
direction at a coastal setup. Using a Left-Handed Circular Polarization
(LHCP) antenna (with a dedicated reflectometry receiver) can increase
the sensitivity of the measurements compared to the Right-Handed Cir-
cular Polarization (RHCP) antennas. A fully-polarimetric solution, i.e.
by utilization of both RHCP and LHCP observations can noticeably
enhance the quality of the results.
Another investigation of this dissertation suggests that precipitation
can leave its signature on the roughness or salinity of sea surface under
certain conditions. This impact can influence the GNSS-R measure-
ments and can reduce the observed reflection power by up to about
5 dB. Sensitivity of LHCP observations to the precipitation impact is
found to be higher compared to RHCP observations. The analysis also
shows that standard deviation of the surface height, as an indicator of
roughness, monotonically increases with the rain rate. The GNSS-R
estimated surface salinity can also sense a rain-induced decline at rain
rates above 10 mm/h.
The performance of GNSS-R sea level measurements is also assessed
through two studies. The first study investigated the behavior of the
sea level measurements error and bias under different roughness con-
ditions. Evaluation of the measurements obtained from an up-looking
and two sea-looking antennas reports on an almost uniform quality for
the measurements from each antenna at wind speeds from 0 to 8 m/s.
At higher wind speeds all the three sets of measurements show a signi-
ficant wind-dependent degradation in the quality of retrieved sea levels.
This is manifested through both the Root Mean Squared Error (RMSE)
and bias values of the measurements with respect to the nearest tide
gauge. Overall, the seaward-tilted LHCP antenna shows the best per-
formance with an RMSE of 1.7 to 2.7 cm for winds ranging from 0 to
11 m/s and 3.7 to 21.9 cm for higher winds up to 30 m/s.
Another performance assessment of sea level measurements has been
conducted to investigate the role of observing system variables. These
variables include the polarization and orientation of the antenna, as
well as the frequency of the reflected signals. Moreover, possible
improvements due to combination of different types of observations
are evaluated. The results show that the combination of observations
from L1 and L2 frequencies (L12) from a sea-looking LHCP antenna
provides the best performance. Regarding the comparison of the products
based on L1 and L2 frequencies, the L2 observations generally provides
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a lower degree of accuracy most likely suffering from fewer observa-
tions. In terms of antenna orientation, a seaward tilting with the angle
of 90 degrees with respect to the zenith, optimizes the antenna agains
for capturing the sea-reflected signals and magnifies interferometric
patterns. Concerning the polarization, the analysis confirms that while
the RHCP antenna can be readily used for grazing angles altimetry,
using an antenna with LHCP design is the right choice for capturing
the reflections at higher elevation angles. Usage of different averaging
windows can also affect the quality of final products. The RMSE val-
ues of GNSS-R sea levels from the LHCP sea-looking antenna com-
pared to collocated tide gauge measurements are 2.4, 3.0, 4.5, 5.6 cm
for 6, 3, 1, and 0.25-hour window size, respectively. The final L12 sea
level estimates show an increased tolerance against high wind speeds.

X RQ 2.2: What is the prospect for future ground-based GNSS-R sta-
tions?
The ground-based GNSS-R technique can be used for real-time or
near real-time monitoring of different geophysical parameters. Data
streams are available from numerous permanent GNSS stations with
possibility of receiving reflection from land or sea. These data stream
can be used for e.g., monitoring soil moisture variations, and sea sur-
face characterization. However, permanent GNSS stations use stand-
ard geodetic receivers with RHCP up-looking antenna. Based on the
studies carried on in this dissertation, utilization of an LHCP antenna
or tilting antenna towards the reflecting surface can enhance the per-
formance of reflectometry measurements. Therefore, a potential fu-
ture permanent station can be a combined geodetic and reflectometry
station. Such stations can utilize several antennas for direct signals
tracking as well as reflectometry purposes.
An exemplary configuration has been established by German Research
Center for Geosciences (GFZ) at Onsala Space Observatory in Sweden,
where a zenith-looking antenna simultaneously feeds a geodetic and a
reflectometry receiver by an antenna splitter. Up to three antennas with
RHCP or LHCP design can be installed at such station to capture and
process reflections from the surrounding areas.

• Objective 3: To demonstrate novel applications of a new-generation of
GNSS remote sensing measurements
In recent years, several spaceborne missions with dedicated GNSS-R pay-
loads are designed and launched for Earth observations. The most famous
missions are the UK TechDemoSat-1 (TDS-1) and NASA Cyclone GNSS
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(CYGNSS). The availability of spaceborne GNSS-R observations has opened
up the opportunity of exploring new possible applications within the sci-
entific community. The applications introduced by the community are as-
sociated with different geophysical parameters over the ocean, land, and
cryosphere.

X RQ 3.1: How can the new-generation of GNSS measurements from
spaceborne reflectometry be used for climate and environmental mon-
itoring?
Mesoscale ocean eddies are among the important features of the ocean
that play an active role in ocean-atmosphere interactions. Spaceborne
GNSS-R technique can provide a new source of observations to im-
prove understanding of the dynamics of these oceanic features. A
study of this dissertation demonstrated that the eddies can leave their
signature on the spaceborne GNSS-R observations. The signature is
characterized by the change in the ocean surface roughness due to the
interaction of the eddies with atmosphere. The study reports on two de-
tected patterns in the CYGNSS profiles of Normalized Bi-static Radar
Cross Section (NBRCS) over the eddies. In addition, strong negative
correlations between both surface heat flux, and surface stress with the
NBRCS are observed over the eddies.
In addition to the remote sensing of the eddies, timely GNSS-R ob-
servations over the land can be used to monitor natural hazards and
severe weather conditions due to climate variations. Another study
included in this thesis is dedicated to evaluating the potential of space-
borne GNSS-R observations from NASA CYGNSS mission for flood
detection and mapping. The study shows that the Signal to Noise Ratio
(SNR) observations from CYGNSS can effectively detect the presence
of flooding events and retrieve the associated inundated areas.

X RQ 3.2: What is the prospect for future spaceborne GNSS-R mis-
sions and applications?
The passive instrumentation used for spaceborne GNSS-R sensors are
relatively low-cost, low-power, and low-mass. This feature makes
GNSS-R a perfect match for CubeSats. The idea of using dedicated
GNSS-R CubeSats is being pursued by several international research
teams. However, several challenges have to be addressed to produce
remote sensing data products based on the scientific demands. Record-
ing reflected GNSS signals at rawest possible level in space creates
several opportunities for improvements in, e.g., on-board processing
scheme, calibration procedure, and spatial or temporal resolution of
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the observations. Moreover, feasibility of some new applications could
be investigated. Finally, dual-polarization observations are foreseen to
be provided by some of future missions, which can initiate new applic-
ations and research topics in the community.

4.2 Future Research
On the basis of the research conducted in this dissertation, the following research
topics are proposed for the enhancement of the GNSS-derived remote sensing data
products and to introduce new applications:

• Real-time ground-based GNSS-R measurements in practice: Based on
the availability of real-time observations from permanent geodetic GNSS
stations, several GNSS-R data products related to land or sea can now be
generated. Therefore, national authorities or private companies can initiate
generating low-cost high-gain byproducts from the already available data
streams. This can initiate the usage of the products and development of the
processing algorithms. For instance, in the presence of multi-constellation
multi-frequency observations, a unified approach for processing the concur-
rent reflectometry observations can be pursued to simultaneously retrieve
any possible geophysical parameters of interest. This can turn the stations to
Multi-purpose GNSS stations which can perform new remote sensing tasks
in addition to serving several established applications including positioning
and navigation, timing, and geodynamics.

• New-generation of permanent GNSS stations: This dissertation com-
prises several studies based on the dual-polarization GNSS-R observations.
As the results elucidate the superior performance of polarimetric observa-
tions with tilted antennas, a new-generation of permanent stations can be
considered for future networks of Continuously Operating Reference Sta-
tions (CORS). These stations can be equipped with both LHCP and RHCP
antennas to maximize the outcome of the reflectometry observations. For
this purpose, a new receiver design is needed to support multiple antennas
and simultaneously provide both regular and reflectometry data streams.

• Fully-polarimetric reconstruction of GNSS reflected signal: The dataset
used in this thesis for the analysis of ground-based GNSS-R observations
can be used to improve the understanding of the ellipticity of GNSS reflected
signals based on the variations of different geophysical parameters.

• Multi-frequency Polarimetric observations from GNSS-R CubeSats: Space-
borne GNSS-R is a novel remote sensing technique. Most of its applica-
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tions are under development or need more research to be mature enough for
practical implementation on CubeSats. Having raw-level signal recording in
dual-polarization mode provides invaluable polarimetric dataset as a found-
ation for methodological improvements of the applications and for paving
the way for routine operations. A promising improvement in the spatio-
temporal resolution of the GNSS-R observations can be achieved by includ-
ing other GNSS constellations, i.e. Russian GLONASS, European Galileo,
and Chinese BeiDou systems.
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Abstract
A data homogenization method based on singular spectrum analysis (SSA) was developed and tested on real and simulated 
datasets. The method identifies abrupt changes in the atmospheric time series derived from Global Navigation Satellite Sys-
tem (GNSS) observations. For simulation and verification purposes, we used the ERA-Interim reanalysis data. Our method 
of change detection is independently applied to the precipitable water vapor (PWV) time series from GNSS, ERA-Interim 
and their difference. Then the detected offsets in the difference time series can be related to inconsistencies in the datasets or 
to abrupt changes due to climatic effects. The issue of missing data is also discussed and addressed using SSA. We appraised 
the performance of our method using a Monte Carlo simulation, which suggests a promising success rate of 81.1% for detect-
ing mean shifts with values between 0.5 and 3 mm in PWV time series. A GNSS-derived PWV dataset, consisting of 214 
stations in Germany, was investigated for possible inhomogeneities and systematic changes. We homogenized the dataset 
by identifying and correcting 96 inhomogeneous time series containing 134 detected and verified mean shifts from which 
45 changes, accounting for approximately 34% of the offsets, were undocumented. The linear trends from the GNSS and 
ERA-Interim PWV datasets were estimated and compared, indicating a significant improvement after homogenization. The 
correlation between the trends was increased by 39% after correcting the mean shifts in the GNSS data. The method can be 
used to detect possible changes induced by climatic or meteorological effects.

Keywords GNSS tropospheric products · Homogenization · Singular spectrum analysis (SSA) · Precipitable water vapor 
(PWV) · Offset detection

Introduction

Global Navigation Satellite System (GNSS) signals are 
affected by the earth’s atmosphere. The delayed signals 
limit the high-precision positioning and navigation applica-
tions, but the error can be exploited to study different parts 

of the atmosphere, including the water vapor. Monitoring 
the atmospheric water vapor is important since it is a major 
atmospheric greenhouse gas with significant impact on the 
earth’s radiative balance (Sinha and Harries 1997). It can 
generally act as a warming amplifier so that the cycling rate 
of water vapor reduces with the warming climate (Schneider 
et al. 2010). High-temporal resolution observations and an 
increasing number of satellites have turned GNSS into a 
promising measuring tool for investigating the variability 
of the water vapor, especially in the presence of a dense 
network of permanent stations.

Owing to the high temporal resolution, the accuracy of 
products, and the capability of making measurements even 
in severe weather conditions, the retrieved water vapor con-
tent of the atmosphere from ground-based GNSS observa-
tions has been identified as one of the reference data for 
GCOS (Global Climate Observing System) Reference 
Upper Air Network (GRUAN, Ning et al. 2016). Precipita-
ble water vapor (PWV) from GNSS has increasingly been 
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used for climate research (Gradinarsky et al. 2002; Nilsson 
and Elgered 2008; Wang et al. 2016; Alshawaf et al. 2017). 
The accuracy of the estimated climatic trends using GNSS 
PWV depends on the homogeneity of the analyzed time 
series (Alshawaf et al. 2018; Klos et al. 2018). For differ-
ent reasons such as hardware or software changes, the data 
might contain inhomogeneities (temporal jumps or offsets). 
Such artifacts should be detected and eliminated through a 
delicate homogenization process without affecting climatic 
abrupt changes.

By definition, a homogeneous climate time series can 
only contain the variations caused by weather and climate 
(Venema et al. 2012). The main sources of inhomogene-
ity in GNSS-derived PWV data are instrumental changes 
or software settings of the GNSS station, e.g., antenna 
change, radome installation or removal, and cut-off angle 
setting (Vey et al. 2009). Most of the changes stem from the 
technological advancements, which make it unavoidable to 
update the hardware in GNSS stations. Therefore, GNSS-
derived PWV time series are likely to have inhomogeneities, 
especially in the longer time series that would be used for 
climate studies. The changes are usually documented in the 
stations’ log files, but the documentation might be incom-
plete or missing for some of them. Change in the measure-
ment conditions and the surrounding area of the station such 
as urbanization and growth or removal of vegetation might 
also affect the homogeneity of the time series. In the case 
of not using a reprocessed dataset, the change of processing 
software or procedure is another possible source of inhomo-
geneity. The external measurements that are used to obtain 
PWV from GNSS data processing, such as air pressure and 
temperature can pass their heterogeneity to the derived PWV 
time series. It should be noted that the mentioned reasons of 
inhomogeneity are generally not documented in the station’s 
log file. Therefore, finding a pragmatic solution for detec-
tion and verification of undocumented changes during the 
homogenization process is inevitable.

Different approaches have been introduced to check the 
homogeneity of GNSS products. For instance, Rodionov 
(2004) proposed a sequential algorithm which introduced 
a statistic entitled the Regime Shift Index (RSI) coupled 
with the Student’s t test to enhance detection of a regime 
shift. The Penalized maximal t test has widely been used for 
data homogenization (Jarušková 1996; Wang et al. 2007; 
Ning et al. 2016; Balidakis et al. 2018). Wang (2008), Ning 
et al. (2016), Klos et al. (2017), and Van Malderen et al. 
(2017), considered lag-1 autocorrelation in time series of 
first-order autoregressive noise. To support the detection of 
multiple change points in a time series, Wang (2008) pro-
posed an empirical approach based on a stepwise testing 
algorithm. Ning et al. (2016) applied an iterative adapted 
version of penalized maximal t test to the monthly PWV 
time series, which helps in avoiding the difficulty of change 

point detection in the presence of high temporal variations 
and noise in the daily PWV data.

The “Data homogenization” activity of the sub-working 
group WG3 of COST ES1206 Action has assessed various 
statistical tools for homogenization using a synthetic bench-
mark dataset. The simulated dataset was based on the dif-
ference between GNSS-derived PWV time series and the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF) reanalysis data (ERA-Interim) (Van Malderen 
et al. 2017). Using the difference time series can facilitate 
the detection of slight changes, but it is difficult to interpret 
the origin of the detected changes. Ning et al. (2016) vali-
dated detected change points using more than one reference 
dataset (e.g., VLBI, DORIS). Therefore, the verification pro-
cess is left inconclusive in the case of not having another 
reference data set for a station. The latter study shows the 
possibility of the presence of inhomogeneities in the ERA-
Interim dataset. The study reveals the need for having an 
independent verification procedure of any reference data. 
Van Malderen et al. (2017) preferred not to consider absolute 
statistical homogenization methods as practical approaches, 
owing to the problem of reliability, even though they confirm 
that ERA-interim might have its own inhomogeneities.

We develop and apply an approach to detect abrupt 
changes in an undifferenced time series. GNSS-derived 
PWV time series, in addition to the probable inconsistencies, 
contain the effects of climate or meteorological variabilities. 
Therefore, at least one reference dataset is required, e.g., 
ERA-Interim, to distinguish whether the offsets are caused 
by climate or meteorological effects or by inhomogenei-
ties. We developed a method of offset detection in PWV 
time series, which is independently applicable to GNSS 
and ERA-Interim PWV data as well as their difference. 
This is performed by analyzing the time series variations 
with respect to a representative model. For this purpose, we 
exploit the singular spectrum analysis (SSA) as a subspace-
based technique, which makes use of empirical functions 
derived from the data to model the time series in a pre-
specified level of details. SSA is a non-parametric method 
that does not need any statistical assumptions such as sta-
tionarity of the series or normality of the residuals (Hassani 
and Thomakos 2010). Even in the presence of periodicity 
and noise, SSA can offer an adequate estimation of the time 
series based on setting a few arguments (such as window 
length). It can be used for trend extraction and extrapolation 
(Alexandrov 2008; Modiri et al. 2018), periodicity detection, 
seasonal adjustment, smoothing, noise reduction (Ghil et al. 
2001; Golyandina et al. 2001) as well as change point detec-
tion (Escott-Price and Zhigljavsky 2003).

After a brief description of the datasets in the next sec-
tion, we sketch out the SSA technique at the beginning of 
the methodology section, which continues by introduc-
ing our approach for homogenization. That section also 
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comprises details of the offset detection method, as well as 
preprocessing and verification procedures. The performance 
assessment based on applying the method to simulated data 
is followed by a real GNSS dataset homogenization in the 
results section. A summary of the conclusions of this study 
is provided in the last section.

Dataset

We use a PWV near real-time dataset produced by the Ger-
man Research Centre for Geosciences (GFZ). The dataset 
has a temporal resolution of 15 min with a delay of about 
30 min and an accuracy of 1–2 mm (Li et al. 2014). The 
PWV time series are calculated from the Zenith Total Delay 
(ZTD) derived at GNSS stations of the German SAPOS net-
work in PPP mode.

The GNSS-derived PWV can be obtained from the wet 
part of the ZTD, the Zenith Wet Delay (ZWD), via the con-
version factor Q:

where the ZHD is the Zenith Hydrostatic Delay (ZHD) esti-
mated by the Saastamoinen model (Saastamoinen 1972) 
using measurements of surface pressure. The conversion 
factor is computed using (Askne and Nordius 1987):

where �w and Rw are the density of liquid water and the spe-
cific gas constant for water vapor. The k ′

2
 and k 3  are constants 

estimated from laboratory experiments (Bevis et al. 1994) 
and Tm is the water vapor weighted mean temperature in 
Kelvin.

Near real-time GNSS tropospheric time series are likely 
to contain more cases of inconsistencies compared to the 
time series from a post-processed dataset that utilizes a con-
sistent strategy and settings for the processing. Therefore, 
choosing the near real-time dataset gives us the opportunity 
of encountering and addressing more cases of inhomogenei-
ties. We apply our homogenization approach to a selected 
dataset of near real-time GNSS-derived PWV time series 
at 214 permanent GNSS stations from 2010 to 2016. See 
Fig. 10 for the location of the stations.

The proposed homogenization method utilizes a refer-
ence dataset which contains a priori information about 
abrupt changes that are not inhomogeneities. Here we use 
ERA-Interim PWV time series as the reference to provide 
the required information about climatic and meteorologi-
cal effects. The ERA-Interim dataset, released by ECMWF, 

(1)ZWD = ZTD − ZHD

(2)PWV =
ZWD

Q

(3)Q = 10−6�wRw

(
k′

2
+

k3

Tm

)

is a global atmospheric reanalysis product covering a time 
span of about 40 years from 1979 onwards. It provides grid-
ded data products with a spatial resolution of approximately 
79 km including a wealth of 3-hourly information of surface 
parameters describing weather, ocean-wave and land-surface 
conditions, as well as 6-hourly upper-air parameters cover-
ing the troposphere and stratosphere. The vertical resolution 
includes 60 model layers with the top of the atmosphere 
located at 0.1 hPa (Dee et al. 2011). For verification of the 
detected inhomogeneities as well as performance assessment 
of the proposed method, we will also simulate a test dataset 
based on the ERA-Interim time series.

The undifferenced PWV datasets, i.e. GNSS and ERA-
Interim, compared to their difference exhibit different noise 
characteristics. Figure 1 depicts the pattern of natural vari-
ability of PWV from GNSS, ERA-Interim, and the differ-
ence time series at a station in Berlin, Germany. For each 
day of this annual pattern, the standard deviation of PWV 
is calculated using the values of the same day in 15 years 
of GNSS, ERA-Interim, and the difference time series. As 
expected, during hot months the variations reach the maxima 
while lowest variations happen in the cold season. We have 
higher variability in the undifferenced time series compared 
to significantly lower variability in the difference time series. 
We will consider these aspects of the time series for select-
ing appropriate sensitivity threshold during offset detection.

Singular spectrum analysis

In our homogenization approach, filling data gaps and 
method of change point detection are based on SSA. This 
technique is a general time series analysis tool, which has 
been used for a wide range of applications such as trend 
extraction, noise mitigation, forecasting and change-point 
detection (Alexandrov 2008). For more information about 
SSA and its main steps, readers are referred to, e.g., Goly-
andina et al. (2001) and Ghil et al. (2001).

Fig. 1  PWV yearly variation pattern at a GNSS station in Berlin, 
Germany
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To model the variations of a time series into a representa-
tive trend, we use the SSA technique. By the term trend, we 
mean a smoothed slowly-varying version of a time series that 
comprises long-term variations and periodicities. SSA builds a 
specific matrix using the time series entries, then decomposes 
the matrix to its principal components and finally reconstructs 
the time series using the most important principal components 
of the matrix.

A s s u m i n g  t h e  t i m e  s e r i e s 
F = (f1, f2,… , fN), fi ∈ ℝ, i = 1, 2,… , N , SSA at the first 
step which is called the embedding step forms a trajectory 
matrix (�) by moving a window over the entries of the time 
series, as follows:

where L is the window length, K = N − L + 1 and 1 < L < K. 
Next, the singular value decomposition (SVD) is applied to 
the trajectory matrix, i.e.,

with the superscript T being the transpose operator. � and 
� contain left and right singular vectors, respectively, and 
� is a diagonal matrix containing the singular values (�i) of 
�. Now, the trajectory matrix can be written as the sum of 
its uncorrelated components (�

�
):

By selecting a proper group of {�
�
,�

�
,… ,�

�
}, which is 

called the grouping step, we can create a representative esti-
mation of the original trajectory matrix (�) that will finally 
be used for the trend extraction:

The trend values are calculated by averaging the anti-diago-
nal entries of �

�����
. Let L < K , then the trend of time series 

G = (g1, g2,… , gN) is:

window→

f1, f2,… , fL , fL+1, fL+2,… , fN

(4)
� =

(
xij

)L,K

i,j=1
=

⎡
⎢⎢⎢⎢⎢⎣

f1 f2 f3 ⋯ fK
f2 f3 f4 ⋯ fK+1

f3 f4 f5 ⋯ fK+2

⋮ ⋮ ⋮ ⋱ ⋮
fL fL+1 fL+2 ⋯ fN

⎤⎥⎥⎥⎥⎥⎦

(5)� = ���
�

(6)� = �
�
+ �

�
+⋯ + �

�
, �i = �i��

�
�

�

(7)
{

�
�����

= �
�
+ �

�
+⋯ + �

�
=(x̂ij)

L,K

i,j=1

�
��������

= �
�+� + �

�+� +⋯ + �
�

(8)gi =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1

i

i∑
m=1

x̂m,i−m+1 1 ≤ i < L

1

L

L∑
m=1

x̂m,i−m+1 L ≤ i ≤ K

1

N−i+1

N−K+1∑
m=i−K+1

x̂m,i−m+1 K ≤ i ≤ N

where x̂i,j is an estimation of the element fi+j−1 of the original 
time series.

Homogeneity check

GNSS-derived tropospheric time series, e.g., PWV or 
ZTD, can generally be considered as a linear combina-
tion of different components. Assuming the time series 
F = (f1, f2,… , fN), fi ∈ ℝ, i = 1, 2,… , N  is given by the 
sum of five components, i.e.

where Ft , Fi, Fc, Fs, and Fn represent the group of low to 
high-frequency components comprising secular trend, inho-
mogeneities (mean shifts), cyclic, seasonal, and noise com-
ponents, respectively. The cyclic part involves fluctuations, 
e.g. due to extreme meteorological events, which might be 
repeated but cannot be called periodic. FSSA, the extracted 
SSA trend, estimates the sum of the first four components 
and leaves the residuals �. We focus on detecting mean shifts 
stored in Fi. Based on the occurrence rate of the documented 
changes in the log files of the GNSS stations, we consider 
Fi to be a non-periodic step function. Encountering periodic 
inhomogeneities with approximately similar magnitudes is 
considered as an unlikely situation and is not focused on in 
this study. The SSA trend, owing to its smoothing feature, 
would not perfectly model the step function in the immediate 
vicinity of jumps. We assume that by choosing an appro-
priate window length, singular values and corresponding 
singular vectors, the SSA can capture almost all the informa-
tion stored in the first four components, except Fi in close 
proximity to the abrupt changes. We will use this assumption 
for detecting the position of change points.

Figure  2 shows a flowchart of the homogenization 
approach we have developed to detect change points and cor-
rect the GNSS tropospheric time series. It mainly comprises 
three stages. The first stage, the preprocessing, starts with 
identifying and eliminating outliers followed by applying 
SSA to fill the gaps, and modeling and removing the sea-
sonal component. In the next stage, we use the SSA-based 
method to detect change points. The last stage is devoted to 
the verification of detected change points and correcting the 
GNSS time series.

Preprocessing

Addressing data gaps is also performed using the SSA tech-
nique. The first step in applying SSA is the choice of the 
window length. According to Golyandina and Zhigljavsky 
(2013), the largest window length that would provide the 

(9)
{

F = Ft + Fi + Fc + Fs + Fn

� = Ft + Fi + Fc + Fs − FSSA
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most detailed decomposition is L ≃ N∕2. For periodic time 
series with a dominant period of T , the smallest choice for 
the window length would be L = T . Selecting such a win-
dow length would maximize the correlation between the 
columns of the trajectory matrix. This, in turn, leads to a 
more efficient decomposition. For the window lengths larger 
than T , they suggest to choose L so that it is close to N∕2, 
and L∕T  is an integer, although it dramatically increases the 
processing time. In the PWV time series with a dominant 
annual component, we use a 365-day window length that 
produces the maximum average correlation between col-
umns of the trajectory matrix.

Finding the change points is based on the assessment of 
variations with respect to the representative trend of the time 
series. Missing data might lead to an erroneous analysis of 
the variations. Figure 3, using a real PWV time series, gives 
an idea about how data gaps can make the estimated SSA 
trend unrepresentative. The time series shown in the figure 
contain a data gap of about 1 year. The top panel is produced 
just by taking out the missed values and applying SSA to the 
remaining data. It can clearly be seen that the trend of the 
time series around the gap area is wrong. The bottom panel 
is the result of filling the data gaps in the same PWV time 
series. To generate such a trend, we chose a 365-day window 
length in the embedding step and five singular values (and 
vectors) in the grouping step. The reasons for selecting this 
setting for the grouping step is discussed in the next section.

We apply SSA iteratively to predict missing values based 
on the temporal correlation present in the data. Kondrashov 

and Ghil (2006) and Golyandina and Zhigljavsky (2013) pro-
vide more details about the application of SSA to gap filling. 
Before starting the iteration, the missing values are replaced 
by initial values calculated using a Fourier series containing 
bias, linear trend, annual and semi-annual terms which are 
shown in black line in Fig. 3 (bottom). Having the initial 
values calculated, we apply SSA to compute the trend from 
which new estimates of the missing values for the next itera-
tion are extracted. In GNSS tropospheric products, the sea-
sonal component dominates the behavior of the time series. 
Therefore, for detecting slight changes in the time series, 
dominant periodicities should be modeled and eliminated.

Detecting change points

The reconstructed trajectory matrix in the grouping step 
contains useful entries that can indicate abrupt changes in 
the time series. Considering the chosen window length, up 
to L-adjacent columns of the trajectory matrix directly con-
tribute to the calculation of the trend values. Figure 4 (top) 
schematically highlights involving elements of �

�����
 in cal-

culation of the i-th trend value.
The dispersion of the anti-diagonal elements of �

�����
 can 

reveal the fluctuations of the time series around the trend. 
Therefore, we define the change point as a point at which the 
original distribution of the time series with respect to the trend 
in its vicinity is being changed. For this reason, a quantity 
is needed by which we can observe how the spread of anti-
diagonal elements is being squeezed or stretched. The impact 
of a change on the anti-diagonal elements can be seen in Fig. 4
(bottom). Each anti-diagonal element is an estimation for the 
trend values. Therefore, more dispersion corresponds to more 
error in the estimation of the trend by each column of �

�����
. 

Fig. 2  Homogenization workflow
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SSA trend after gap filling
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Fig. 3  Effect of data gaps on the SSA trend extraction. The trend 
extraction ignoring data gaps (top), trend extraction after applying 
gap filling (bottom). The black line shows the Fourier series estima-
tion of the time series, which is used as initial values for iterative SSA 
gap filling
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Consequently, while the averages of anti-diagonals produce the 
trend values, gi in (8), their standard deviations quantify the 
perturbations of the time series with respect to the trend and 
could be used as an indicator of a change point.

We define the Change Magnitude Estimator (CME) index, 
represented by �, to evaluate the amount of change at every 
single epoch of the time series. Therefore, the local maxima of 
the CME diagram indicate the change points and their signifi-
cance. The CME index is calculated using the entries of each 
anti-diagonal of �

�����
 as:

(10)�2
i
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 i ∈ {1, N}

1

i−1

i∑
m=1

(
x̂m,i−m+1 − gi

)2
1 < i < L

1

L−1

L∑
m=1

(
x̂m,i−m+1 − gi

)2
L ≤ i ≤ K

1

N−i

N−K+1∑
m=i−K+1

(
x̂m,i−m+1 − gi

)2
K < i < N

To define a change point, we need the magnitude of change 
and the time index, i.e., the temporal location in the time 
series. Our first aim is to find the temporal location of the 
change points. It should be noted that properly timing the 
offsets is important. The timing uncertainty may affect the 
long-term linear trend determination. Particularly, shifts at 
the beginning and end of the time series will have more 
weight on the linear trend estimation (Williams 2003).

The grouping step or selecting proper singular values 
and vectors for trend extraction has a significant impact 
on the results of change point detection. Including more 
singular values and vectors in the reconstruction of the 
trajectory matrix corresponds to more sensitivity to slight 
local variations of the time series and will result in false 
alarms, i.e. a point is reported as a change point by mis-
take. Including fewer singular values, however, would 
reduce the accuracy of finding the temporal location of 
change points. Therefore, we complete the procedure of 
selecting singular values in two steps. The first step is 
finding the region of maximum curvature in the singular 
values spectrum and the second step is selecting the sin-
gular values with a minimum �T value, defined as follows:

where �T is the overall CME calculable using the residual 
trajectory matrix, �

�
, and sd is the standard deviation of all 

entries of the matrix. The matrix �
�
 is formed by subtracting 

trend values (gi) from the corresponding anti-diagonals of 
�

�����
. We use �T to select a proper set of singular values and 

vectors. Figure 5 illustrates the behavior of the CME index 
with and without having a change (mean shift) in a synthetic 
time series. Application of �T as a threshold is shown in the 
figure. Its application in selecting singular values can be 
seen in Fig. 6.

The residuals after the trend estimation might contain 
autoregressive noise, which in turn might affect the CME 
values. False alarms induced by this effect can be reduced 
by setting �T as a threshold. We then justify and enhance 
the estimated positions of our detected offsets by applying 
a t test to symmetric intervals around the time index of the 
candidate change points.

(11)�T = sd(�
�
)

(12)�
�
=

⎡
⎢⎢⎢⎢⎢⎣

x̂1,1 − g1 x̂1,2 − g2 ⋯ x̂1,K − gK

x̂2,1 − g2 x̂2,2 − g3 ⋯ x̂2,K − gK+1

x̂3,1 − g3 x̂3,2 − g4 ⋯ x̂3,K − gK+2

⋮ ⋮ ⋱ ⋮
x̂L,1 − gL x̂L,2 − gL+1 ⋯ x̂L,K − gN

⎤⎥⎥⎥⎥⎥⎦

Fig. 4  Involving elements of the reconstructed trajectory matrix in 
the calculation of the i-th trend value (top) and worsening estimation 
precision of the anti-diagonals of �

�����
 in the vicinity of a change 

point at time index =400 (bottom)
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Veri�cation and correction

After detecting the position of mean shifts (jumps), we esti-
mate the magnitude of the offsets in the three time series of 
each station, i.e., ERA-Interim, GNSS, and the difference 
time series. The magnitude of each offset is calculated using 
the difference between the mean values of the left and right 
sides of the offset. After manual verification of the detected 
offsets, we correct the verified offsets within the GNSS time 
series by constructing and then subtracting the step function 
Fi in (9). It should be noted that the step function does not 
change the overall mean value of the GNSS time series after 
the correction.

The procedure of finding and verifying inhomogeneities 
is demonstrated using the real data of the station in Saar-
brücken, Germany (Fig. 7). Data gaps, seasonality and outli-
ers have been addressed in the three time series, and then we 
applied our SSA-based offset detection method to find the 
position of change points.

As can be seen in Fig. 7, the time series contain three 
different cases of change points. The first case consists of 
the offsets, which are seen in the GNSS and the difference 
time series within a six-month time window with almost the 
same magnitude. If there is no shift in the ERA-Interim time 
series; we correct the GNSS time series using the time index 
and mean shift obtained from the difference time series.

The second case includes the mean shifts, which are 
seen in GNSS and ERA-Interim with almost the same 

time index and magnitude. These shifts might be due to 
a phenomenon sensed by both datasets, e.g., climatic or 
meteorological effects. In this case, even if due to differ-
ent sensitivities some slight changes are transferred to the 
difference time series, the GNSS data are left uncorrected.

The third case is the changes which happen in all 
three time series (difference, GNSS and ERA-Interim) 
at approximately the same epochs with quite different 
mean shifts. If the sum of the mean shifts in the GNSS 
and ERA-Interim data equals to the shift in the difference 
time series, the GNSS time series is corrected using the 
mean shift obtained from the GNSS. As a special case in 
this station, we have an antenna and radome change and, 
at the same time, a non-systematic event (maybe a climatic 
signal) has happened. In this case, we search for the same 
signal in the nearby stations. If we find the same signal, 
we correct the GNSS data using the shift obtained from 
the difference time series.

Fig. 5  Behavior of CME (�) index for a synthetic time series: without 
any mean shift (top), with an artificial offset at time index=400 (bot-
tom)

Fig. 6  Selecting singular values for change point detection using the 
synthetic time series from Fig.  5. Finding the maximum curvature 
region on the singular values spectrum (top), minimizing the overall 
CME that makes the extracted SSA trend representative (middle), the 
effect of selected singular values on the accuracy of detection and the 
number of false alarms (bottom)
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Results

We use a test and a real dataset to evaluate the developed 
method for detecting possible inconsistencies and homog-
enizing tropospheric products. The impact of homogeniza-
tion of GNSS data is shown through a comparison of linear 
trends and internal consistency of datasets.

Test dataset

We performed a Monte Carlo simulation to evaluate the per-
formance of our method. This simulation is based on the 
ERA-Interim dataset at 400 points distributed over Germany 
from 2002 to 2017. This choice assumed that the ERA-
Interim time series are less likely to contain inhomogenei-
ties. We randomly inserted 2.1 × 105 offsets in 7 × 104 time 
series. To create new cases in each iteration, the time series 
were altered by adding newly generated random offsets. 
However, these time series contain possible abrupt changes 
due to climatic or meteorological conditions. In every itera-
tion process, about 200 time series out of 400 were randomly 
selected for imposing synthetic offsets and the remaining 
were left unchanged. We added in average 6 offsets with 

a maximum of 10 offsets (upper limit) that randomly have 
different magnitudes between 0.5 and 3 mm with a negative 
or positive sign in every time series. The distribution of the 
inserted changes into the time series is done randomly such 
that separation between two successive changes is at least 
1 year. Different classes are considered for summarizing the 
results. Based on these classes, the test results are arranged 
in Table 1. For each case, the Mean Absolute Error (MAE) 
of detection for the time index, MAE�, and the mean shift, 
MAE�, are estimated as follows:

where �i and �i are the true values, �̂i and �̂i are the estimated 
values of the time index and the magnitude of mean shift, 
respectively. e�

i
 and e�

i
 denote the detection errors in terms of 

the time index and the magnitude, respectively, and n is the 
total number of successfully detected offsets.

The left side of Table 1 explains how successful the 
method is in finding the time index of change points. Three 

(13)

⎧⎪⎨⎪⎩

e�
i
= �̂i − �i, MAE� =

1

n

n∑
i= 1

|||e�i
|||

e�
i
= �̂i − �i MAE� =

1

n

n∑
i= 1

|||e�i
|||

Fig. 7  Sample result of change 
detection in the difference 
(top), ERA-Interim (mid-
dle) and real GNSS (bot-
tom) PWV time series for 
the station in Saarbrücken, 
Germany (latitude=49.22°, 
longitude=7.01°). The range of 
vertical axis for the difference 
time series (ΔPWV) is reduced 
to improve the visibility
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criteria of 182, 91, and 30 days are chosen for the time index 
to calculate the number of successful detections. Beyond 
each chosen criterion, e.g. ||e� || > 30days for the detection cri-
terion of 30 days, we define the method to be unsuccessful. 
It should be noted that the simulation study could not be car-
ried out using the difference data. The difference time series 
contain much less background noise, which leads to higher 
accuracy in detecting mean shifts. Our goal for applying the 
method to the original dataset (ERA-Interim or GNSS) is 
to justify the detected mean shifts in the differenced time 
series. Table 1 shows a success rate of 81.1% with MAE 
of about 28 days in detecting time index and 0.26 mm for 
estimating mean shift.

The right side of Table  1 shows how successful the 
method performs in estimating the magnitude of offsets. 
The method successfully detected most of the offsets bigger 
than 1 mm while about half of the inserted changes with a 
magnitude of 0.5–1 mm are retrieved. Figure 8 depicts a 
performance overview of the change detection method in 
terms of the magnitude and the time index of offsets.

Real GNSS-derived PWV data

We applied our homogenization method to a GNSS PWV 
dataset consisting of 214 stations in Germany over a 7-year 

timespan (2010–2016). We did not use a reprocessed dataset 
since we aimed to detect all possible different changes in 
the dataset. A sensitivity threshold for the detection proce-
dure, which is the slightest change detectable by the method, 
can be chosen based on the time series characteristics dis-
cussed in the dataset section. The sensitivity of detection has 
been set to 0.2 mm for the difference PWV time series and 
0.5 mm for both ERA-Interim and GNSS PWV time series.

We first applied the method to identify all possible mean 
shifts in the GNSS, ERA-Interim, and the difference time 
series (ERA-Interim minus GNSS) without considering sta-
tions log files. Then, the log files of the GNSS stations were 
checked to find any support for the detected changes. Next, 
we manually inspected the detected offsets and corrected 
GNSS time series using the verified offsets. As mentioned 
earlier, climatic or meteorological effects can also induce 
changes in the time series. This type of changes must be left 
uncorrected. If changes are detected at more than one sta-
tion in the same sub-region, only those having a documented 
event in the log file, e.g., hardware change, are corrected.

The detected change points and corresponding mean 
shifts are listed in the supplementary material. In total, 140 
change points were detected of which 134 were related to the 
mean shifts in the GNSS time series and 6 shifts were more 
likely to be originating from ERA-Interim data. Amongst all 
detected changes in the GNSS dataset, 45 of them (~34%) 
are not supported by the documented changes in the sta-
tion log files. The detection accuracy,MAE� , based on the 
documented changes in the GNSS dataset is approximately 
30 days.

Linear trends

We apply linear regression to PWV time series of GNSS sta-
tions to evaluate the impact of homogenization on the trend 
value. It should be noted that the scope of this research is not 
the trends themselves; therefore, the readers are referred to 
e.g. Alshawaf et al. (2018) and Klos et al. (2018) for detailed 
discussion about trend estimation in GPS tropospheric time 
series. Estimations of the linear trends were carried out for 
homogenized and not-homogenized GNSS time series. Fig-
ure 9 shows the trends before and after correction of mean 
shifts together with trends obtained from the ERA-Interim 
data. Note that no correction was implemented on the 

Table 1  Success rate of the proposed method based on different thresholds of detection

Detection crite-
rion (day)

Success rate (%) MAE� (day) MAE� (mm) Detection crite-
rion (mm)

Success rate (%) MAE� (day) MAE� (mm)

||e� || ≤ 182 81.1 27.9 0.26 0.5≤||�i
||≤1 45.9 51.5 0.23

||e� || ≤ 91 74.6 18.8 0.25 1<||�i
||≤2 86.0 30.9 0.25

||e� || ≤ 30 62.0 12.4 0.24 2<||�i
||≤3 97.4 18.7 0.27

Fig. 8  Overview of the detection performance of the SSA-based 
method for detecting change points in PWV time series based on a 
Monte Carlo simulation. The mean absolute errors of the time index 
and the magnitude of the detected offsets are marked with red dots on 
the axes and are associated with a success rate of 81.1%. The promi-
nent peak of the histogram indicates the highest occurrence frequency 
of the simulation results with ||e�|| ≈ 0.05 mm and ||e� || ≈ 13 days
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ERA-Interim dataset. The figure highlights a clear improve-
ment in the consistency between the GNSS and ERA-
Interim datasets after homogenization. The lower part of 
the figure shows the standard error of the linear regression. 
Lower improvements at some stations, e.g. station Hamburg 
with the index 154 (latitude=53.55°, longitude=9.98°), can 
be related to the remaining unverified changes specially at 
the beginning or the end of the time series or at vicinity of 
a gap interval. The unverified changes are the offsets that 
are detected in the difference time series but could not be 
attributed to either of the GNSS or the reference time series.

Regional correlations of the stations were defined and 
calculated to be used for evaluating the internal consistency 
of the GNSS dataset after homogenization. The value of the 
regional correlation for each station is a weighted average 
of all the correlations with other stations. We used Inverse 
Distance Weighting (IDW) for calculating the correlations. 
Figure 10 reflects an improved internal consistency after the 
GNSS data is corrected for the mean shifts. A noticeable 
regional improvement can be seen over the southwest of 
Germany (the right panel of Fig. 10). It should be noted that 
the upgrade or maintenance procedure of adjacent stations 
in a GNSS network might be scheduled and performed con-
secutively within a short period. Thus, similar inhomogenei-
ties might be introduced to the time series of nearby stations 

which could be misinterpreted as non-systematic events if 
they are not documented. The zero-difference approach 
introduced in this study can avoid such a misinterpretation.

Conclusion

A homogenization method based on singular spectrum anal-
ysis (SSA) for detecting and correcting temporal mean shifts 
(inhomogeneities) in GNSS-derived tropospheric time series 
was introduced. To assess the performance of the method, a 
Monte Carlo simulation was performed based on the ERA-
Interim dataset. The result of the Monte Carlo process sug-
gests an overall success rate of 81.1%. The simulation study 
estimates the precision of 28 days and 0.26 mm for detecting 
the position of changes and the mean shifts in the undiffer-
enced time series, respectively.

We used the method to investigate the possible shifts in 
the precipitable water vapor (PWV) time series of 214 GNSS 
stations in Germany. The data was obtained from near real-
time PPP processing over a 7-year timespan (2010–2016). 
The method was independently applied to the GNSS, ERA-
Interim and the difference (ERA-Interim minus GNSS) daily 
time series of each station to find and verify inconsistencies. 
In total, 96 GNSS stations were identified as inhomogeneous 

Fig. 9  Impact of homogeniza-
tion on the fitting linear trends 
of the ERA-Interim and the 
GNSS PWV time series (before 
and after homogenization)

Fig. 10  Regional correlation of 
PWV time series for the ERA-
Interim and the GNSS datasets 
before and after homogeniza-
tion (left), regional correlation 
improvement for each GNSS 
station (right)
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containing 134 mean shifts from which 45 changes (~ 34%) 
were undocumented in the stations’ log files.

The comparison between the retrieved linear trends from 
GNSS and ERA-Interim dataset indicates a significant 
improvement after homogenization. An increase in correla-
tion of 39% is seen for the trends after correcting the mean 
shifts in the GNSS time series.

The proposed method can successfully detect changes 
with and without reference dataset. Since using a reference 
dataset for homogeneity checking tries to make datasets look 
like each other, it might contaminate the target time series. 
Therefore, the homogenization approach discussed here 
would mitigate major inconsistencies and provide a more 
homogenized GNSS time series. The homogenized GNSS 
datasets would be a promising data source for climatic appli-
cations. The capability of the method to find changes in the 
undifferenced time series would also make it a useful tool 
to detect climatic and meteorological signals. The proposed 
method can be applied to other regions and for other mete-
orological parameters such as pressure, temperature as well 
as GNSS coordinate time series.
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On the Response of Polarimetric
GNSS-Reflectometry to Sea Surface Roughness

Mostafa Hoseini , Maximilian Semmling, Hossein Nahavandchi , Erik Rennspiess,

Markus Ramatschi, Rüdiger Haas , Joakim Strandberg , and Jens Wickert

Abstract— Reflectometry of Global Navigation Satellite Sys-
tems (GNSS) signals from the ocean surface has provided a
new source of observations to study the ocean–atmosphere
interaction. We investigate the sensitivity and performance of
GNSS-Reflectometry (GNSS-R) data to retrieve sea surface
roughness (SSR) as an indicator of sea state. A data set of
one-year observations in 2016 is acquired from a coastal GNSS-R
experiment in Onsala, Sweden. The experiment exploits two
sea-looking antennas with right- and left-hand circular polar-
izations (RHCP and LHCP). The interference of the direct and
reflected signals captured by the antennas is used by a GNSS-R
receiver to generate complex interferometric fringes. We process
the interferometric observations to estimate the contributions
of direct signals and reflections to the total power. The power
estimates are inverted to the SSR using the state-of-the-art model.
The roughness measurements from the RHCP and LHCP links
are evaluated against match-up wind measurements obtained
from the nearest meteorological station. The results report on
successful roughness retrieval with overall correlations of 0.76 for
both links. However, the roughness effect in LHCP observations
is more pronounced. The influence of surrounding complex
coastlines and the wind direction dependence are discussed.
The analysis reveals that the winds blowing from land have
minimal impact on the roughness due to limited fetch. A clear
improvement of roughness estimates with an overall correlation
of 0.82 is observed for combined polarimetric observations from
the RHCP and LHCP links. The combined observations can also
improve the sensitivity of GNSS-R measurements to the change
of sea state.

Index Terms— Global Navigation Satellite Systems (GNSS)-
Reflectometry, polarimetric observations, sea state, sea surface
roughness (SSR).
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I. INTRODUCTION

THE characterization and monitoring of sea surface rough-
ness (SSR) are important for understanding air–sea inter-

actions. This parameter is considered as one of the indicators
of the sea state. The difficulty of making direct SSR mea-
surements due to the complexity and random behavior of sea
surface fluctuations has cleared the way for remote sensing
techniques [1]. A robust observation resource of SSR can
be acquired from the reflectometry of the Global Navigation
Satellite Systems (GNSS) signals.

The GNSS-Reflectometry (GNSS-R) is an all-weather oper-
ating technique offering high temporal resolution observations
based on low-cost passive instrumentation. Spaceborne obser-
vations of the surface roughness variations can be related to
the near-surface wind stress [2] and used for the estimation
of wind speed [3]. The anomalies of surface roughness over
mesoscale ocean eddies can reveal the presence of these
oceanic features and the ongoing air–sea interaction [4].

The ground-based GNSS-R setup has been used in several
experimental campaigns for sea state observations. Different
observables are proposed to retrieve SSR or Significant Wave
Height (SWH) as descriptors of the sea state or predictors
of wind speed. The complex delay Doppler Maps (DDMs)
produced from the processing of GNSS reflected signals [5]
can provide several observables. The waveforms extracted
from the DDMs can be fit to a wind-dependent model to
estimate the speed [2]. The volume of the DDMs can be
normalized and directly connected to the sea state [6].

Interferometric observations of the superimposed direct and
reflected signals can be utilized for the sea state estimation.
The coherence time of the observed signal can be modeled
and related to the ratio of SWH and mean wave period [7].
Variability of the sea state can be derived from the analysis
of power loss due to the roughness. The latter approach is
considered in this article for the SSR estimation.

The nature of GNSS signals at the reflection is subject
to polarization change described by the Fresnel equations.
Therefore, the incoming direct signals with right-hand circu-
lar polarization (RHCP) produce composite reflected signals,
including left-hand circular polarization (LHCP) and RHCP
components. This phenomenon offers the opportunity of mak-
ing polarimetric observations. The reflectometry receivers can
be fed by RHCP or LHCP antennas to perform the GNSS-R
measurements. The use of polarimetric observations for
different applications has been considered in several earlier
studies [8]–[11].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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This study aims at investigating the performance of GNSS-R
observations with RHCP, LHCP, and a combination of them
in the SSR estimations. To this end, we use a long-term data
set from a coastal GNSS-R experiment equipped with RHCP
and LHCP antennas. We analyze the impact of the surface
roughness on the interferometric observations of the Global
Positioning System (GPS) signals collected by each of the
antennas during different sea states. The GNSS-R setup used in
this study together with the data set is described in Section II.
The processing flow from receiving signals at the antennas to
deriving the surface roughness, i.e., the geophysical parameter
of interest, is explained in Section III. The processing results
are discussed in Section IV. Section V provides concluding
remarks.

II. DATA

The data set used in this study includes one-year observa-
tions of a ground-based coastal GNSS-R experiment at the
Onsala space observatory (57.393◦N, 11.914◦E) in Sweden.
The station uses a metal structure that is placed on a cliff at
about 3 m above the sea level to accommodate the antennas.
A zenith-looking antenna is used for tracking direct signals.
Sea surface reflections are intercepted by two sea-looking
antennas with RHCP and LHCP designs. The sea-looking
antennas have a tilt angle of about 98◦ with respect to
the zenith, i.e., slightly down-looking. These antennas are,
respectively, optimized for receiving copolarized (CPo) and
cross-polarized (XPo) reflected signals by analogy with the
incoming direct RHCP signals. The boresight of the reflectom-
etry antennas is fixed at about 150◦ azimuth angle to overlook
the sea. Fig. 1 shows the location of the station along the
Sweden coastlines, as well as the top and side views of the
setup.

A GNSS Occultation, Reflectometry, and Scatterome-
try (GORS) receiver [12] is used at the station providing
up to four input links. The first link is connected to the
master channel of the receiver to track the direct signals of
the satellites. The other links are connected to slave channels
for reflectometry purposes. The receiver can process GPS
signals and delivers raw data streams at the sampling rate
of 200 Hz.

Direct and reflected signals from the GPS satellites in view
are captured by the antennas and fed to the master and slave
channels of the receiver. The receiver tracks the satellites by
cross-correlating a replica of their pseudorandom noise (PRN)
codes with the signals received from the master link. Similar
cross-correlations are computed within the slave channels. The
receiver can be instructed to use different delay and Doppler
values in the slave channels. These values are relative with
respect to the master channel. The geometrical configuration
of the setup at Onsala station demands negligible relative delay
and Doppler values. Therefore, the relative delay and Doppler
values for all of the tracked satellites are set to zero. The
correlation sums are provided by the receiver at In-phase and
Quadrature (I/Q) levels. The 200-Hz data stream is downsam-
pled to 0.1 Hz by 10-second integration. The downsampled
observations suffice the required temporal resolution for the

Fig. 1. (Top Left) Top view of the Onsala GNSS-R station located
in southern Sweden. (Top Right) Nearby coastlines. (Bottom Left) Close
eastward. (Bottom Right) Downward photographs from the antennas and the
setup structure. The GNSS-R station is marked with a yellow diamond, and
the yellow circle shows the location of the nearby tide gauge station. The
orange arrow indicates the boresight of the reflectometry antennas.

Fig. 2. Distribution of the reflection points of the GPS satellites over the
sea surface.

processing, due to the small height difference between the
reflectometry antennas and the sea surface [according to (4)].

The data set used in this study covers the period from
January to December 2016. On average, about 44 reflection
events per day from different GPS satellites were recorded
and used for the analysis. Fig. 2 shows the spatial spread of
the reflection tracks of the satellites over the sea surface. The
selected region of the sea surface encompasses specular points
with corresponding elevation angles of up to 55◦.
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Fig. 3. Overview of the ancillary data at Onsala station in 2016. (a) Distribution of wind speeds with respect to wind directions (bin size for the speeds:
5 m/s and sector size for the directions: 10◦). (b) Seawater relative permittivity.

The reflectometry observations in the main data set are
coupled with available ancillary information. Hourly measure-
ments of wind speed and direction are acquired from a nearby
meteorological station. Distribution of wind direction and the
range of wind speeds in 2016 are shown in Fig. 3(a). Sea level
anomalies with a resolution of 1 min are also measured by a
tide gauge station, which is marked with a yellow circle to the
east of the reflectometry station in Fig. 1.

To improve the accuracy of the roughness estimates, rel-
ative permittivity values are calculated and used within the
processing. To this end, we use a model developed by [13]
to describe the dielectric constant of seawater at L-band
frequency as a function of salinity and temperature. The model
utilizes a third-order polynomial that is trained using a set of
accurate measurements at the frequency of 1.413 GHz [14].
The required water temperature values are obtained from the
meteorological station. Due to the lack of in situ salinity
observations, we use daily averages based on nine years of
historical records (2001–2009) from another station that is
about 29 km away. The estimated seawater permittivity at the
Onsala station in 2016 is shown in Fig. 3(b).

III. METHOD

The method used in this study is based on the analysis of
interference fringes caused by the superposition of the direct
and reflected GNSS signals. The superimposed signals gener-
ate a compound electromagnetic field. The field is intercepted
by the antennas and processed by the receiver to generate
output streams in the form of I/Q components. The receiver
output can be represented by a complex time series as

E = Iint + i Qint (1)

where E denotes the complex vector form and Iint and Qint

are, respectively, the I and Q components of the interfero-
metric signal from the receiver output. We process these I/Q
correlation sums (data level 0) to extract the power of direct
and reflected signals and combine them into three power ratios
(data level 1). The estimated power ratios are then inverted to

Fig. 4. Procedure of data processing from the raw interferometric observa-
tions at in-phase and quadrature (I/Q) levels to the final data product of SSR.

SSR (data level 2) using a geophysical model function. The
following description provides detailed information about the
processing procedure shown in Fig. 4.

The observed signal contains contributions from the direct
and reflected signals and can be written, cf. [15], as

Iint + i Qint = (Idir + i Qdir) + (Iref + i Qref) (2)

with the subscript dir and ref denoting the components of the
direct and reflected signals, respectively. Fig. 5 demonstrates
an example of the receiver output from the two slave antennas.
As can be seen in the figure, both the I and Q components
exhibit long- and short-term variations that originated from
different contributors. The long-term slowly varying trend
is governed by variations of the direct signal amplitude,
antenna gain pattern, and the baseline between the master
and slave antennas. The prominent high-frequency oscillations
at the beginning and the end of the time series shown in
the figure are the interferometric fringes. These fringes are
extracted from the compound signal and are investigated in our
analysis. The amplitude of the interferometric oscillations is
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Fig. 5. Examples of in-phase (I) and quadrature (Q) correlation sums of GPS PRN 12 from the two sea-looking antennas used for the reflectometry. The
top figures are related to the copolarization link (RHCP antenna), and the bottom figures show the data from the cross-polarization link (LHCP antenna). The
selected segments shown on the left figures are used for estimating the power of direct and reflected signals. The first-order order polynomial fits in these
segments (dotted lines) indicate the contribution of the direct signals.

the main parameter of interest in the analysis. This parameter
is controlled by several factors. The main factors are the
strength of the incoming direct signal, antenna gain, satellite
elevation angle, dielectric constant of seawater, and SSR. The
methodology of this study is focused on estimating the effect
of the SSR. Therefore, the effects of the other factors are either
modeled or mitigated within the processing flow.

To decompose the compound signal, we estimate and utilize
the frequency of the interference fringes. This frequency is the
Doppler shift caused by the different traveling paths of the
direct and reflected signals and can be calculated, cf. [15], by

δ f = 1

λ

d(δρ)

dt
, δρ = ρref − ρdir (3)

where δ f is the Doppler shift, ρdir and ρref are lengths of the
paths traveled by the direct and reflected signals, respectively,
and λ is the wavelength of the signal carrier. It should be
noted that another Doppler shift could also be found in the
observations due to the baseline [16]. However, the frequency
of the latter shift in the Onsala setup is much lower compared
to the interferometric frequency and would not noticeably
affect the power retrievals. We use the period of interferometric
oscillations to split the I/Q time series into successive segments
from which the power of direct and reflected signals can be
estimated [15]. The reciprocal value of this period, i.e., the
frequency δ f , is related to the geometry of reflection (see
Fig. 6) by

δρ = 2 δH sin(e)

δ f = 2 δH cos(e)

λ

de

dt
(4)

where e is the elevation angle of the tracked satellite and δH
is the height difference between the phase center of the slave
antennas and sea level. From a fast Fourier transform (FFT)

Fig. 6. Geometry of specular reflection and the path difference between the
direct and reflected signals.

analysis, the dominant interferometric period in the observa-
tions is estimated to be around 5 min. Therefore, we use a
time interval of 10 min for the segmentation to include two
complete interferometric periods in each segment.

The separated segments of I/Q samples from the slave chan-
nels are independently processed to retrieve the contributions
of the direct and reflected signals. The first-order polynomial
is used to model the long term variations [see Fig. 5 (Left)].
These variations are attributed to the direct signal and can be
used to estimate the corresponding power

P̂dir = avg( | Îdir + i Q̂dir|2) (5)

where avg denotes the average function and P̂dir is the estimate
of the direct signal power over the segment. The variables Îdir

and Q̂dir are, respectively, the modeled I and Q amplitudes
using the first-order polynomial and can be used to retrieve
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the contribution of the reflected signal ( Îref and Q̂ref ) by

Îref = Îint − Îdir

Q̂ref = Q̂int − Q̂dir. (6)

The retrieved I/Q contributions of the reflected signal over
each segment are processed using a Lomb–Scargle peri-
odogram (LSP) to estimate the power of reflected signals
in a similar approach used by [17] and [15]. According
to (4), a change in the height difference (δH ) results in a
change in the interferometric frequency. The height difference
between the antennas and the sea level over each segment
is obtained from the tide gauge measurements. Therefore,
with the knowledge of the satellite elevation angle from orbit
information, we can precisely extract the power of reflected
signals (P̂ref ) from the periodogram. The estimated powers of
the direct and reflected signals from the described procedure
can be now related to the main involving factors through [18]

P̂dir = Gdir P0

P̂ref = Gref |R|2 S2 P0 (7)

with P0 being the power of the incoming signal at the antenna
(and at the specular point), G the antenna gain factor, R
the complex-valued Fresnel reflection coefficient, and S a
dampening factor due to the reflecting surface roughness.
The power loss due to insufficient delay-Doppler tracking of
reflected signal [15] is ignored since the difference of the
delay/Doppler values for the reflected and direct signals are
negligible in the Onsala configuration.

The Fresnel reflection coefficient describes polarization
states of the reflected signals. The RHCP polarization of
the incoming signal is altered during the reflection. The
reflected signal includes both RHCP and LHCP polariza-
tions. The proportion of each part in the reflected signal is
estimated using Fresnel copolarization and cross-polarization
coefficients. Both of the two coefficients are functions of
elevation angle of the incoming signal and the permittivity
of the reflecting medium [15], [19]

R� = �sea sin e − √
�air �sea − (�air cos e)2

�sea sin e + √
�air �sea − (�air cos e)2

R⊥ = �air sin e − √
�air �sea − (�air cos e)2

�air sin e + √
�air �sea − (�air cos e)2

(8)

where R� and R⊥ denote, respectively, the reflections with the
polarization parallel to incidence plane and perpendicular to
it. These coefficients can be combined to yield copolarization
(Rco) and cross-polarization (Rcross) forms of the Fresnel
coefficients [19]

Rco = 1

2
(R� + R⊥)

Rcross = 1

2
(R� − R⊥). (9)

Fig. 7 depicts the Fresnel coefficients using the estimated
permittivity of seawater at the Onsala station. The shaded areas
show the slight variations of the coefficients based on the
variations of the permittivity on different days of the year.

Fig. 7. Fresnel reflection coefficients calculated using the permittivity of
seawater at the Onsala GNSS-R station. Based on the average permittivity,
the blue and orange lines denote the magnitude of the copolarization and
cross-polarization reflection coefficients in decibels (dB), respectively. The
spread of the shaded areas shows the distribution of the coefficients based on
the variations of local seawater permittivity shown in Fig. 3(b).

The factor S in (7) is a model that relates the standard
deviation of sea surface height (σ ) as a measure of surface
roughness to the resultant power loss. The model is indepen-
dent of the polarization and reads [18]

S = exp

(
−1

2

(2π)2

λ2
σ 2 sin2 e

)
. (10)

We use the introduced Fresnel equations and the roughness
model to invert the observed powers to the SSR measurements.
The unknown parameter P0 can be canceled out by forming
the following power ratios:

Lc = P̂co
ref

P̂co
dir

= Gref

Gdir
|Rco|2 S2

c

Lx = P̂cross
ref

P̂co
dir

= Gref

Gdir
|Rcross|2 S2

x . (11)

The variables Lc and Lx are, respectively, copolarization and
cross-polarization power ratios that are our level-1 observables
through which we estimate the SSR. Lc and Lx are estimated
using the power of reflected signals, i.e. P̂co

ref and P̂cross
ref ,

which are derived from the RHCP and LHCP slave antennas,
respectively. Note that, for both of the ratios, the reference
power in (11), P̂co

dir , is retrieved from the sea-looking RHCP
antenna. Besides, cross-to-copolarization power ratio Lx2c that
is the ratio of Lx to Lc reads

Lx2c = P̂cross
ref

P̂co
ref

= |Rcross|2 S2
x

|Rco|2 S2
c

. (12)

We invert the calculated power ratios to the standard devi-
ation of sea surface height. The inversion is independently
done for Lc, Lx , and Lx2c through solving an optimization
problem. For this purpose, all the power ratios from different
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Fig. 8. Exemplary case of the impact of wind speed on the amplitude of copolarization (CPo) and cross-polarization (XPo) reflectometry observations from
the GPS satellite PRN 1. The observations are associated with a similar range of the satellite elevation angles on two different days. The left and right columns
are associated with periods of low and high wind speeds, respectively. (a) and (b) Direction and speed of the wind. Figures (c) and (d) In-phase and quadrature
components of the copolarization observations that are recorded from the RHCP sea-looking antenna. (e) and (f) In-phase and quadrature components of the
cross-polarization observations that are recorded from the LHCP sea-looking antenna. The reduced intensity of signals on the right figures (d) and (f) during
wind speed of about 18 m/s is remarkable compared with the significantly higher signal amplitudes shown in (c) and (e) during the wind speed of about
1 m/s.

satellites over a common time interval are grouped and used
to minimize the following cost function:

min
σ

∑

i

( Li − |Ri |2 S2 )2 (13)

with min being the minimum function and the index i referring
to all of the observations falling in a common time interval.

IV. RESULTS AND DISCUSSION

We apply the described method to the observed amplitude
anomalies of interferometric signals to measure SSR varia-
tions. In the absence of in situ roughness estimates, we use
the wind speed and wind direction for the analysis.

An exemplary case of the amplitude anomaly is shown
in Fig. 8. The figure demonstrates the copolarization and
cross-polarization reflection amplitudes at two different wind
speeds during the setting period of the GPS satellite PRN 1.
The left column in the figure shows the I/Q components of
the reflected signal during a low wind speed period. A drastic
reduction of the signal amplitude due to a significantly higher
wind speed can be seen in the right column graphs.

The comparison of the amplitudes from the two links
in Fig. 8(c) and (d) with those in Fig. 8(e) and (f) reports

much more powerful cross-polarization reflections. Moreover,
the magnitudes of the in-phase and quadrature components
in the cross-polarization link are varying consistently over
time. On the contrary, the relatively weaker copolarization
reflections exhibit inconsistencies between the magnitudes of
the I and Q components. A prominent case of the inconsistency
occurs at about 17:40 in Fig. 8(c) where the wind field shows
an abrupt direction change. Such inconsistency between I and
Q magnitudes appears in a fading of signal amplitude linked
with a short-term loss of phase coherence. Hence, abrupt
changes in the wind field could result in a loss of phase
coherence.

The results of processing for about 7 × 104 segments
of 10-min intervals in 2016 are summarized in Fig. 9. The
figure shows the distribution of the observed power ratios
against the elevation angle of the satellite. The estimates of
power ratios are overlaid with the roughness model, i.e., (10),
with different σ values. A comparison of the distributions with
the model predictions suggests an overall agreement for all of
the power ratios.

The distribution of the copolarization power ratios
in Fig. 9(a) is mainly scattered around the lowest rough-
ness models, i.e., σ ≤ 10 cm. This can be an indicator of



HOSEINI et al.: ON THE RESPONSE OF POLARIMETRIC GNSS-R TO SEA SURFACE ROUGHNESS 7951

Fig. 9. Distribution of the estimated power ratios from the sea-looking anten-
nas. (a) Copolarization (RHCP). (b) Cross-polarization (LHCP). (c) Cross-to-
copolarization. The solid lines are model predictions based on different values
of standard deviation of sea surface height (σ ). The dashed–dotted line is the
ratio of cross-to-copolarization reflectivity.

Fig. 10. (a) Distribution of noise power estimates against the elevation angle
of incoming signals. (b) Average and standard deviation of the noise power
in different wind speeds.

less sensitivity of copolarization observations to the SSR.
Moreover, two noticeable biases with respect to the model
predictions can be observed for the ratios in Fig. 9(a). The
first bias occurs at very low elevation angles. This bias could
be related to the performance of the roughness model, i.e., over
these angles, the model underestimates the impact of the
roughness for copolarization power ratios. Interestingly, at the
elevation angles below 5◦ where the impact of roughness is
expected to almost disappear, the ratios still reflect the impact
of high sea states.

The estimated power ratios from the cross-polarization link
are shown in Fig. 9(b). These ratios manifest a wider spread
around the models with different values of σ compared to the
copolarization power ratios. The presence of positive power
ratios at elevation angles about 8◦ for both copolarization and
cross-polarization power ratios can be related to the antenna
gain. The antenna gain pattern used in our processing is
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Fig. 11. Results of the roughness retrievals based on the one-year
GNSS-R measurements in 2016 estimated from: (a) copolarization, (b) cross-
polarization, and (c) cross-to-copolarization power ratios.

Fig. 12. Sensitivity of roughness measurements to wind direction. The
correlation of wind speeds with (a) copolarization, (b) cross-polarization, and
(c) cross-to-copolarization roughness retrievals is shown as a function of wind
direction.
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Fig. 13. Demonstration of the impact of wind direction and the complex
coastlines on the SSR over different areas nearby the Onsala GNSS-R station.
The station is shown by a yellow diamond symbol.

estimated based on the interpolation of a few discrete gain
values provided by the antenna datasheet. The gain pattern
is assumed to be symmetric in terms of the azimuth angle.
At the boresight of the tilted antennas, the specularly reflected
signals from the satellites at elevation angles around 8◦ (the
dotted gray line in Fig. 6) are collected at the highest possible
gain. At this configuration, the gain can dramatically change
with the change of the satellite azimuth angle. Therefore,
possible uncertainties within the interpolated gain pattern
could produce positive power ratios.

Fig. 9(c) shows the distribution of cross-to-copolarization
power ratios with respect to the reflectivity difference
calculated from the Fresnel equations. Having the
polarization-independent roughness model described by (10),
we expect to have a roughness-free power distribution
from (12). The power distributions, however, indicate
wide variations around the dashed line in Fig. 9(c),
i.e., the line of the reflectivity difference. This indicates the
polarization-dependence of the roughness effect.

The plots of Fig. 10 show the estimates of noise power cal-
culated from the quadrature component of the zenith-looking
antenna [15]. As can be seen in Fig. 10(a), higher noise
powers occur at lower elevation angles where the power of
copolarization reflection is prominently high. This makes the
tracking of the direct signals more difficult compared to higher
elevation angles where both the reflectivity power loss (see
Fig. 7) and roughness effect suppress the reflection power.
Fig. 10(b) presents the statistics of noise power estimates
against different wind speeds. No prominent dependence on
sea state can be observed in the variations of noise power
described by the standard deviation values. The unaffected
noise power here in a coastal setup is in contrast to sea-

Fig. 14. Results of the full polarimetric roughness retrievals based on the
one-year GNSS-R measurements in 2016. (a) Roughness estimates against
different wind speeds overlaid with the first-order polynomial. (b) Dependence
of the roughness retrievals on the direction of wind fields.

state-dependent noise from the ship measurements described
in [15]. However, an insignificant rise of noise power with the
increasing wind speed can be seen in our measurements.

The level-2 product of SSR measurements against different
wind speeds and wind directions is depicted in Fig. 11.
The standard deviation of surface height is the measured
parameter describing the SSR. In general, the anomalies of
the roughness estimates derived from the copolarization and
cross-polarization observations are well connected to the vari-
ations of wind speed. The overall correlations of the roughness
products with wind speed are about 0.76 for the copolarization
and cross-polarization links. However, an analogy between the
behavior of the results in Fig. 11(a) and (b) reveals noticeable
discrepancies.

Fig. 11(a) includes observations that are mapped to zero-
roughness. This is particularly the case for most of the winds
blowing from 0◦ to 90◦ azimuth angles. Besides, the roughness
measurements in the figure exhibit wind direction dependence
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Fig. 15. Exemplary time series of SSR estimates from GNSS-R measurements in December 2016. (a) Roughness retrievals from the copolarization (CPo)
and cross-polarization (XPo) measurements. (b) Roughness retrievals from a full polarimetric solution, i.e., combination of CPo and XPo measurements.

patterns. A bias can be seen in the copolarization measure-
ments, which indicates that the corresponding observations are
mostly not responsive to the wind speeds below 2 m/s. The
values of σ derived from the copolarization link are mainly
below 9 cm.

The roughness estimates from the cross-polarization antenna
present better performance compared to the copolariza-
tion link. The distribution of the roughness retrievals
against different wind speeds shows a higher sensitivity of
cross-polarization measurements to the sea state.

The dependence of the roughness retrievals to the wind
direction can be distinguished from the clustered pattern
in Fig. 11(b). The lowest dependence can be seen for the
north to the east winds. In contrast, south and west winds
have triggered clearer responses in the results. As can be
seen in the figure, the linear fit to the data reveals a bias
in the roughness retrievals, which could be partly attributed
to the signal processing procedure in the receiver. The sig-
nals received by the two sea-looking antennas are processed
within two separate channels. Therefore, different Automatic
Gain Controller (AGC) factors are applied to the received
signals. In the calculation of cross-polarization ratios (11),
the reference power of the direct signal is estimated from the
copolarization link. Therefore, the cross-polarization power
ratios could be affected by different AGC values. This bias
is shown more clearly in the cross-to-copolarization rough-
ness measurements [see Fig. 11(c)]. The retrievals shown
in Fig. 11(c) present an overall correlation of about 0.35 with
wind speeds despite the expectation of having almost no
correlation. This implies that the effect of roughness in the
cross-polarization observations is more pronounced.

The mean absolute errors associated with the roughness
retrievals are listed in Table I. The error estimates are calcu-
lated based on the residuals of the optimized solution for (13).
The retrievals from the cross-polarization link are associated

TABLE I

MEAN ABSOLUTE ERROR VALUES ASSOCIATED WITH

THE ROUGHNESS RETRIEVALS SHOWN IN FIG. 11

with smaller error values. However, the errors increase with the
rise of wind speed for the copolarization and cross-polarization
roughness retrievals.

The impact of wind direction on the roughness retrievals is
shown in Fig. 12. The correlation of the retrieved SSR with
the direction at which the wind is blowing is shown in a polar
coordinate system. The copolarization and cross-polarization
roughness estimates are highly correlated with the winds
blowing from the range of south-southeast to north, i.e., from
150◦ to 360◦. The winds with the directions falling in the range
of 10◦–90◦ are almost ineffectual to produce strong responses
in the observations.

The different performance of the roughness retrievals with
respect to the wind direction can be related to the location
of the station. From the wind distribution shown in Fig. 3(a),
it can be recognized that the north–northeast wind is a major
direction of the wind in this area. However, this direction
and the wind fields with the direction from 15◦ to 135◦ do
not stimulate prominent roughness in the sea surface. When
the wind is blowing from land, i.e., during the “offshore
or land breeze,” there is no fetch for wind-driven waves
at the coast. Thus, the roughness will not increase. Using
wind speed ancillary data as a proxy for roughness may be
difficult in fetch-limited areas. Roughness and wave spectrum
are also constrained by shallow water in coastal areas. The
coastal effect on roughness is observed in synthetic aperture



HOSEINI et al.: ON THE RESPONSE OF POLARIMETRIC GNSS-R TO SEA SURFACE ROUGHNESS 7955

radar (SAR) data [20] and is well known in the ocean wave
modeling community [21]. Conditions change when the wind
is blowing from the sea (south, west, and north–west). Winds
from these directions, i.e., the “onshore or sea breeze,” can
produce developed sea states and, thus, maximal roughness.
However, even the roughness developed by these winds could
be suppressed by the complex coastlines surrounding the
station and nearby small islands. Fig. 13 shows three regions
with different sea states. The developed sea state in region C
is partly transferred to region B, and a calmer condition can
be seen in region A compared to the regions B and C.

We combine the observations from the two sea-looking
antennas to assess the performance of a full polarimetric
solution to (13). The results are presented in Fig. 14. The full
polarimetric roughness estimates have an overall correlation
of about 0.82 with wind speeds. The results manifest almost
no bias compared to Fig. 11(a) and (b). Fig. 14(b) reports
on the improved sensitivity to wind-driven roughness for
all wind directions. The figure shows that the roughness
responses to the wind fields from the azimuth of 165◦ to
345◦ are almost entirely identified by the polarimetric GNSS-R
observations.

Fig. 15 demonstrates exemplary time series of the
reflectometry-derived SSR from the copolarization and
cross-polarization power ratios in December 2016. Both the
time series in Fig. 15(a) represent high correlations with the
wind speed variations. Fig. 15(b) illustrates the time series
of full polarimetric roughness estimates with enhancements
compared to the copolarization and cross-polarization time
series.

V. CONCLUSION

We have investigated the response of GNSS reflectometry
observations to the SSR during different wind conditions.
A coastal GNSS-R experiment has been used to assess the
performance of polarimetric observations for estimating the
roughness. Two sea-looking antennas with copolarization and
cross-polarization designs with respect to the polarization
of incoming direct signals are used in the experiment. The
processing results from both antennas show successful rough-
ness retrievals over the one-year period of the analyzed data
set. However, stronger manifestations of the SSR can be
seen in the cross-polarization measurements. The left- and
right-handed polarized components of reflected signals are
affected differently by SSR. Wind speeds as low as about
1 m/s are detected in cross-polarization retrievals, whereas
significant copolarization retrievals occur mainly for wind
speeds above 2 m/s. The effect of sea state can be seen in the
cross-to-copolarization power ratios, which is not expected.
This reveals the need for an enhancement in the state-of-
the-art model. A clear dependence on the wind direction, due
to different fetch lengths and the nearby complex coastlines,
is observed in the roughness estimates. The winds blowing
from the open-sea areas have shown the maximal impact on
the roughness values compared with the winds blowing from
land. A full-polarimetric solution has been also tested for
roughness retrieval. The results show noticeable improvements
compared to the copolarization or cross-polarization results.

The full-polarimetric retrievals show an increased sensitivity
to wind speeds from all directions.
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ABSTRACT 

Monitoring coastal sea level has gained a large socio-
economic and environmental significance. Ground-based 
Global Navigation Satellite System Reflectometry (GNSS-R) 
offers various geophysical parameters including sea surface 
height. We investigate a one-year dataset from January to 
December 2016 to evaluate the performance of GNSS-R 
coastal sea levels during different sea states. Our experiment 
setup uses three types of antenna in terms of polarization and 
orientation. A zenith-looking antenna tracks Right-Handed 
Circular Polarization (RHCP) direct signals and two sea-
looking antennas capture both Left-Handed Circular 
Polarization (LHCP) and RHCP reflections. The Singular 
Spectrum Analysis (SSA) is used for extracting 
interferometric frequency from the data and calculating the 
heights. The results indicate that the height estimates from the 
sea-looking antennas have better accuracy compared to the 
zenith-looking orientation. The LHCP antenna delivers the 
best performance. The yearly Root Mean Square Errors 
(RMSE) of 5-min GNSS-R L1 water levels compared to the 
nearest tide gauge are 2.8 and 3.9 cm for the sea-looking 
antennas and 4.7 cm for the zenith-looking antenna with 
correlations of 97.63, 95.02, 95.35 percent, respectively. Our 
analysis shows that the roughness can introduce a bias to the 
measurements. 

Index Terms — Global Navigation Satellite Systems-
Reflectometry (GNSS-R), Costal Altimetry, Singular 
Spectrum Analysis (SSA) 

1. INTRODUCTION

The characterization and accurate estimation of coastal 
waters can contribute to understanding the climate and 
environmental changes. This is also essential since a large 
population live in coastal areas and can be affected by 
associated natural disasters. Moreover, these areas are 
involved in substantial economic and trading activities. The 

sea level also is a key parameter for defining vertical datum 
in geodesy. 

Spaceborne Radar Altimeters (RA) and traditional Tide 
Gauges (TG) are the common instruments for sea-level 
monitoring. There are limitations associated with these 
techniques. The TG is pointwise and can be affected by 
vertical motions. The RA is restricted by its spatiotemporal 
resolution and lower performance over coastal areas [1].  

Besides positioning, navigation and timing, the Global 
Navigation Satellite System (GNSS) has been used for plenty 
of other applications including monitoring of the 
environment. GNSS-Reflectometry as a novel remote sensing 
technique utilizes GNSS reflected signals from the earth 
surface to study various parameters and phenomena, e.g. sea-
level [1], sea surface roughness [2], soil moisture [3], flood 
[4], sea ice [5], ocean eddies [6], precipitation [7],  wind 
speed [8], and several other applications. 

   The potential of ground-based GNSS-R for the sea-level 
altimetry has been investigated by several studies using 
zenith-looking Right-Handed Circular Polarization (RHCP) 
antennas with geodetic receivers. These studies are mainly 
considered the observations from low elevation angles. 
Investigating the performance of GNSS-R technique based 
on different polarizations and orientations of the antennas is 
desirable. 

   We designed three scenarios based on zenith- and sea-
looking orientations as well as Left- and Right-Handed 
Circular Polarization (LHCP and RHCP). Besides, the effect 
of different wind speeds on the quality of the results is 
evaluated. 

Among several spectral analysis methods, e.g. Lomb-
Scargle periodogram [9], Least Squares Harmonic Estimation 
(LSHE) [10], we utilize Singular Spectrum Analysis (SSA) 
[11, 12] as a nonparametric and well-elaborated method for 
the times series analysis. The SSA is an effective method for 
retrieving different components of a signal. Here, SSA is used 
to extract the interferometric frequency, generated from the 
interference of the direct and reflected GNSS signals. 



2. DATA AND METHODOLOGY

The dataset used in this study is the correlation sums at In-
phase and Quadrature (I/Q) levels produced by the dedicated 
GNSS Occultation, Reflectometry, and Scatterometry 
(GORS) receiver [2, 5] from three antennas: a zenith-looking 
and two sea-looking antennas with a 98⸰ tilt with respect to 
zenith. The antennas are installed at about 3 meters above the 
sea surface level. We collocate two ancillary datasets from
the nearest meteorological station and a tide gauge located
about 300 meters away from the GNSS-R station.     

The methodology of this study is focused on estimating
sea levels during different wind speeds. The frequency of 
interferometric oscillations in the I/Q time series is related to
sea level as follow [2]:

𝛿𝜌 = 2 𝛿𝐻 𝑠𝑖𝑛(𝑒) , 𝛿𝑓 =
2 𝛿𝐻 𝑐𝑜𝑠(𝑒)

𝜆
.
𝑑𝑒

𝑑𝑡
(1)

where  𝛿𝜌 is the path difference between the direct and 
reflected signals, 𝑒 is elevation angle of the tracked satellite, 
𝛿𝐻 is the height between the antenna and sea surface, 𝜆 is the 
signal wavelength and 𝛿𝑓 is the interferometric frequency 
which is retrieved using SSA. 
Briefly, the methodology contains three main steps illustrated
in Figure 1. The first step includes the data preparation 
described by [2]. The second or key step focuses on applying 
SSA to the time-series of each PRN over reflection events.
For detailed Information about SSA, readers could refer to 
[11].The retrieved interferometric signal is then inverted to 
the sea level estimate. We finish this step by outlier removal 
and finding the median of the sea surface height in the step of 
5 min with a temporal window of 3 hours. In the final step,
we evaluate the estimated sea surface heights with respect to
the tide gauge observations and different wind speeds.   

             

Fig. 1 Methodology flowchart based on the Singular Spectrum 
Analysis (SSA).

3. RESULTS AND DISCUSSION

The results of the SSA-based sea level retrievals from the 
GNSS-R dataset are presented and discussed in this section. 
Figure 2 shows an example of applying SSA to I/Q 
time series to extract the interferometric fringes. The method
can simultaneously mitigate other irrelevant components. As 
seen in the figure, the applied method can effectively reveal 
the amplitude variations of the interferometric signal. The 
detected peaks in the bottom panel of Fig. 1 is used to 
estimate the period of interest for the calculation of height 
according to (1).

Fig. 2 - Top panel: an example of the in-phase / quadrature (I/Q) 
time series from GPS PRN 12 on May 02, 2016. Bottom panel: the 
result of retrieving interferometric fringes from the I/Q correlation 
sums using Singular Spectrum Analysis (SSA). The dark and light 
blue separate the in-phase and quadrature samples, respectively. The 
dots in the bottom panel show the detected peaks after applying 
SSA. The dashed lines illustrate the estimated amplitude.

Figure 3 shows the distribution of sea level anomalies 
from GNSS-R against tide gauge observations. The 
measurements from the sea-looking LHCP antenna shown on 
the right panel represent the best performance compared to 
both zenith-looking and sea-looking RHCP antennas. The 
larger errors from the zenith-looking antenna in the left panel 
compared to the midel panel shows that the change of the 
antenna orientation towards the sea improves the accuracy of 
the GNSS-R sea level measurements.



 

 

    

Fig. 3 – Comparisons of GNSS-R sea level measurements with respect to tide gauge data. The GNSS-R measurements are based on the 
application of Singular Spectrum Analysis (SSA) to the observations from the antennas in different polarizations, i.e. Right- and Left-Handed 
Circular Polarization (RHCP and LHCP), and two orientations, i.e. zenith-looking and sea-looking. The left panel shows the results of the 
zenith-looking RHCP antenna, the middle panel is associated with the sea-looking RHCP antenna, and the right panel depicts the 
measurements from the sea-looking LHCP antenna. The red lines overlaid on the plots show the one to one relationship. 

To evaluate the possible impact of sea surface roughness 
on the sea level measurement, we use the collocated wind 
measurements. Figure 4 gives an overview of the impact of 
different sea states on the accuracy of the measurements. The 
figure shows that as the wind speed increases, the accuracy 
of the retrieved sea level degrades for all the antenna 
configurations. The investigation also reveals that the wind 
speeds can impose a bias in the measurements. The bias, in 
turn, has a contribution to the accuracy.  

It should be noted that the limited fetch at a coastal GNSS-
R experiments can partially shield the nearby sea surface 

against some wind directions. As reported by [2], this can 
result in different sea surface roughness for wind speeds from 
different directions. The roughness estimates from the latter 
study based on the same dataset is used here to evaluate 
possible dependency between the roughness and the GNSS-
R sea level retrievals. The top panel in Fig. 5 provides an 
overview of roughness estimates against different wind 
speeds and directions. A delicate dependency between the 
height measurement errors and the roughness estimates can 
be seen in the bottom panel of Fig. 5.   
 

Fig. 4 - A performance assessment of GNSS-R sea level measurements at different ranges of wind speed. The sea level measurements are 
based on the application of Singular Spectrum Analysis (SSA) to the observations from the antennas in different polarizations, i.e. Right and 
Left Handed Circular Polarization (RHCP and LHCP), and two orientations, i.e. zenith-looking and sea-looking. The left, middle, and right 
panels show the results from a zenith-looking RHCP antenna, a sea-looking RHCP antenna, and a sea-looking LHCP antenna, respectively. 
The blue bars show the bias of the two datasets, i.e. the GNSS-R and tide gauge data, over each wind speed range. The red bars depict the 
Root Mean Squared Errors (RMSE) of the GNSS-R sea level measurements with respect to the tide gauge observations. The number of 
observations over each wind speed range is shown by green lines.  



 

 

 

 
Fig. 5 - Top panel: the estimates of sea surface roughness in terms 
of standard deviation of height. The estimates are obtained from 
[2]. Bottom panel: the distribution of GNSS-R sea level 
measurement errors with respect to the sea surface roughness.  
 

4. CONCLUSION 
 

The results of sea level measurements from GNSS-
Reflectometry observations in a coastal experiment are 
presented in this study. To retrieve these measurements, we 
applied Singular Spectrum Analysis (SSA) to the in-phase 
and quadrature observations from three antennas with 
different polarizations and orientations. Comparison of 
collocated tide gauge observations with the GNSS-R sea 
level retrievals from different antenna polarizations and 
orientations reports an overall Root Mean Square Error 
(RMSE) ranging from 2.8 to 4.7 cm for a period of one 
year, i.e. from January to December 2016. The 
measurements from a seaward-tilted Left-Handed 
Circulation Polarization (LHCP) antenna showed the best 
performance for sea level monitoring. The presence of 
measurement biases during different wind speeds were 
detected in the analysis. However, the reported biases 
could be different for other GNSS-R experiments since the 
location of our setup is surrounded by complex coastlines. 
These coastlines can minimize the impact of winds for 
some of the directions.  
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Polarimetric GNSS-R Sea Level Monitoring using
I/Q Interference Patterns at Different Antenna

Configurations and Carrier Frequencies
Mahmoud Rajabi, Mostafa Hoseini, Hossein Nahavandchi, Maximilian Semmling, Markus Ramatschi, Mehdi

Goli, Rüdiger Haas, Jens Wickert

Abstract—Coastal sea level variation as an indicator of climate
change is extremely important due to its large socio-economic
and environmental impact. The ground-based Global Navigation
Satellite System (GNSS) reflectometry (GNSS-R) is becoming
a reliable alternative for sea surface altimetry. We investigate
the impact of antenna polarization and orientation on GNSS-
R altimetric performance at different carrier frequencies. A
one-year dataset of ground-based observations at Onsala Space
Observatory using a dedicated reflectometry receiver is used.
Interferometric patterns produced by the superposition of direct
and reflected signals are analyzed using the Least-Squares
Harmonic Estimation (LS-HE) method to retrieve sea surface
height. The results suggest that the observations from GPS L1
and L2 frequencies provide similar levels of accuracy. However,
the overall performance of the height products from the GPS L1
show slightly better performance owing to more observations.
The combination of L1 and L2 observations (L12) improves
the accuracy up to 25% and 40% compared to the L1 and L2
heights. The impacts of antenna orientation and polarization are
also evaluated. A sea-looking Left-Handed Circular Polarization
(LHCP) antenna shows the best performance compared to
both zenith- and sea-looking Right-Handed Circular Polarization
(RHCP) antennas. The results are presented using different
averaging windows ranging from 15-minute to 6-hour. Based on
a 6-hour window, the yearly Root Mean Square Error (RMSE)
between GNSS-R L12 sea surface heights with collocated tide
gauge observations are 2.4, 3.1, and 4.1 cm with the correlation
of 0.990, 0.982, and 0.969 for LHCP sea-looking, RHCP sea-
looking, and RHCP up-looking antennas, respectively.

Index Terms—Global Navigation Satellite Systems-
Reflectometry (GNSS-R), Coastal Sea Level Monitoring,
Polarimetric GNSS-R, Altimetry, GPS, GNSS, L-Band Remote
Sensing, Least-Squares Harmonic Estimation (LS-HE)

I. INTRODUCTION

SEA surface level is a key parameter in many scientific
disciplines, including geology, geodesy, oceanography and
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archaeology which could contribute to recognizing climate
and environmental variation. Modern civilization could be
affected by major and minor changes in sea surface level
due to global warming and natural causes such as floods,
tsunami and volcanoes [1]. The information about sea surface
level is also vital due to the large population, economic
and commercial activities in coastal areas. In addition, sea
surface level is essential to defining vertical datum (geoid) and
consequently, measuring and understanding Earth’s geometric
shape. Therefore, it is essential to monitor sea surface level
using accurate and reliable methods.

Two prevalent methods have been used for sea level mon-
itoring, traditional tide gauges, and spaceborne radar altime-
ters. These methods have some limitations. The tide gauge
measurements are point-wise and also affected by subsidence,
tectonics and human activities [1]. Close to the coastal area,
data accuracy of the radar altimeters is degraded due to the
effect of the land on its large footprint, and the corrections
which are applied for geophysical effects. Consequently, we do
not have reliable and accurate spaceborne radar observations
in the coastal area besides the limitation on the spatiotemporal
resolution of this method [2].

Global Navigation Satellite Systems (GNSS) were designed
primarily for providing positioning, navigation, and timing
services. The GNSS signals are also being used for numerous
remote sensing applications of the Earth’s surface and atmo-
sphere, in addition to its primary aim. GNSS-Reflectometry
(GNSS-R) as a state-of-the-art remote sensing technique, uses
reflected GNSS signals to retrieve and investigate numerous
geophysical parameters and phenomena over the Earth’s sur-
face (land, ocean, and ice). GNSS-R is a multi-static radar
technique in the L-band range of the electromagnetic signals,
which works in all weather conditions, day and night, and is
ideal for measuring or detecting many variables and natural
events, such as sea level [3], sea surface roughness [4], ocean
eddies [5], sea ice and snow depth [6], flood [7], precipitation
[8], wind speed [9] .

Ground-based GNSS-R can act as a multi-purpose sensor,
which has drawn attention over the past decades. The method
is an alternative option for traditional tide gauges for monitor-
ing sea surface level in coastal areas. A GNSS-R sensor can
cover a wider area of the sea surface and collect additional use-
ful data from the reflecting surface, e.g. sea surface roughness
and ice coverage. Tide-gauges measurements can be affected
by local vertical displacements and require extra procedures to
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connect the measured relative sea level to the global reference
frame. In contrast, coastal GNSS-R stations can monitor and
correct the local vertical displacements and provide sea level
measurements in the global reference frame. The concept of
sea surface level monitoring using GNSS-R was conceived
in 1993 [3] and applied for ground-based GNSS-R stations
signals in 2000 [10]. Afterward, the performance and relia-
bility of the method have been studied in several cases, e.g.
[11, 12, 13, 14, 15, 16, 17].

Most of the ground-based GNSS-R altimetry experiments
have used an up-looking geodetic antenna and ordinary sur-
veying receiver based on the Signal to Noise Ratio (SNR)
observations of the Global Positioning System (GPS). In
addition, various configurations have been considered in differ-
ent studies in terms of antenna orientation, polarization, and
receiver type. For example, Santamaria-Gomez and Watson
[18] used three weeks of SNR data in Spring Bay, Australia,
from a side-looking GNSS Right-Handed Circular Polarization
(RHCP) antenna to improve the SNR altimetry performance
compared to a zenith-looking antenna. Padokhin et al. [19]
used a four-day dataset obtained from a side-looking and a
zenith-looking geodetic antenna to investigate the influence of
the antenna layout and the impact of wind waves on GNSS-
R altimetry. Alonso-Arroyo et al. [20] utilized three-month
data based on a tilted antenna to see how the reflected GNSS
signals were affected by coastal sea state. Rodriguez-Alvarez
et al. [21] and Hongguang et al. [22] also used a single side-
looking antenna for sea level altimetry.

A few studies have utilized dedicated reflectometry receivers
with tilted antennas. For example, Semmling et al. [23] use
an Occultation, Reflectometry, and Scatterometry (GORS) re-
ceiver. Liu et al. [24] reports a monthly RMSE of 4.37 cm with
respect to tide gauge observations using GPS L1 and a tilted
Left-Handed Circular Polarization (LHCP) antenna [24]. The
latter study uses phase observations during coherent reflection
events which limits the measurements to the reflection at low
elevation angles or during lower sea states. Fran Fabra et al.
[25] used coherent differential phase between direct and both
LHCP and RHCP reflected signals for the retrieval of absolute
ellipsoidal heights over sea ice. Lifeng Bao et al. [26] to
improve precision and spatial resolution of GNSS-R altimetry
used one up-looking geodetic GNSS receiver, one downward
LHCP antenna, and an atomic clock.

This study aims to give an inter-comparison overview of
GNSS-R altimetry observations recorded using different an-
tenna designs and carrier frequencies. Compared to the typical
geodetic installations, the tilted antenna orientation coupled
with different polarizations strengthens the power of captured
interferometric patterns. This can prolong the detectability
of these patterns at higher elevation angles. A multivariate
spectral analysis method is used here to take the advantage
of available concurrent observations. Moreover, the quality of
the observations made by each satellite Pseudo Random Noise
(PRN) is assessed.

We design different scenarios for the investigation using
a dedicated reflectometry receiver under similar conditions,
i.e. the same processing method, antenna model, location and
weather conditions. The variable parameters in the scenarios

are antenna polarizations and orientations, as well as carrier
frequency of the signal. The analysis includes the impact of
different wind speeds and averaging windows. A relatively
long-term dataset from a coastal GNSS-R station with special
design and unique features, which is established by the Ger-
man research center for geosciences (GFZ) is used. The Least-
Squares Harmonic Estimation (LS-HE) method is used for
spectral analysis and finding the frequency of interferometric
signals. The interferometric or compound signal is generated
as a result of interference of direct and reflected signals. The
frequency observations of the interferometric signals are used
to calculate sea surface height. The LS-HE method has the
capacity of multivariate formulation and is not limited to
integer frequencies and evenly spaced data [27]. The rest of
this paper is organized as follows. The study area and dataset
are presented in Section 2. The methodology and mathematical
concepts are described in Section 3. The discussion of data
processing and the results are explained in Section 4. Finally,
the paper is finalized by a conclusion in Section 5.

II. DATA AND SITE

We use a one-year dataset from January to December
2016 obtained from a dedicated GNSS-R site installed and
operated by GFZ. This is one of the two GNSS-R stations at
Onsala Space Observatory in Sweden (57.393◦N, 11.914◦E).
The observations with elevation angles between 5 and 40
degrees are selected for the investigation. Besides the GNSS-R
observations, we use two ancillary datasets including the wind
and sea level measurements from a close by meteorological
station and a traditional tide gauge. Both are operated by
the Onsala Space Observatory and located at about 300 m
distance from the GNSS-R station. Figure 1 shows the study
area, reflection points for different PRNs, and a picture of the
station antennas and their orientations. A schematic view of the
experiment setup and an example of the receiver outputs for
satellite PRN 3 during a reflection event is shown in Figure 2.

The station antennas are installed on a concrete foundation
with an approximate height of 3 meters from the sea surface.
Three types of antennas are installed at the station, one is up-
looking and the two others are sea-looking. The up-looking
antenna is RHCP and assigns higher gain values to direct GPS
signals for acquisition and tracking purposes. The sea-looking
antennas with RHCP and LHCP designs are considered for
tracking sea reflected GPS signals at two different polariza-
tions. The tilt angle between the up-looking and sea-looking
antennas is 98◦. Usage of a single side-looking antenna would
cause difficulty to continuously track the direct signals due to
significant contributions from the reflected signals. Therefore,
an upright antenna needs to be used as the master link for the
tracking. It should be noted that the side-looking antennas can
partially block the reception of reflections in the up-looking
antenna. Therefore, the up-looking antenna used at Onsala
station might not provide exactly equivalent configuration
compared to a single isolated upright antenna.

A GORS receiver [28] with four antenna inputs is utilized
in the experiment. The first input is dedicated to the master
channel of the receiver and is connected to the up-looking



0196-2892 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2021.3123146, IEEE
Transactions on Geoscience and Remote Sensing

MANUSCRIPT SUBMITTED TO IEEE TGRS, RAJABI ET AL. 3

Fig. 1. (A) The red point on the map shows the Onsala GNSS-R station in the southwest of Sweden which the experiment setup
is installed there. (B) The scatter plot of the refl ection points over the sea surface. The colors show the GPS PRN numbers
related to the refl ection tracks. (C) The experiment setup and antenna orientations (up- and sea-looking).

Fig. 2. A schematic view of the GNSS-R experiment setup on the left. The right graphs illustrate example time series of the
in-phase and quadrature correlation sums from each antenna in GPS L1 and L2 bands. The graphs are related to a refl ection
event on December 5, 2016 from the GPS PRN 3. The specular point is denoted by ” sp” .

antenna. The second and third inputs are used for the slave
channels and are connected to the sea-looking antennas.

According to [29] the signal processing fl ow in the dedi-
cated refl ectometry receiver can be briefl y described as follows
(See Figure 3 for a schematic representation of the receiver
architecture). The received signal, i.e. Ed + Er in Figure 3,
after digitization in the receiver can be written as:

s(t) = AD(t− τ)C(t− τ) cos(2π(fIF + fD)t+ ϕ) (1)

with s(t) being the received signal, A the amplitude, D and C
respectively the modulated navigation data and the PRN code,

t the time, τ the code delay, fIF an intermediate frequency,
fD the Doppler frequency shift, and ϕ is an initial phase. The
receiver generates the following models of the carrier signal at
In-phase and Quadrature (I/Q) levels in the master channels:

in-phase : cos(2π(fIF + f̃D)t+ ϕ̃)

quadrature : sin(2π(fIF + f̃D)t+ ϕ̃) (2)

where f̃D and ϕ̃ are estimated Doppler frequency and initial
phase which are produced by a closed-loop tracking process in
the receiver. After multiplying the received signal by the two
models and applying a low pass filter, the results are correlated
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Fig. 3. A schematic diagram of the dedicated GNSS-
Refl ectometry receiver architecture used in this study.

with the PRN code of the satellite. The navigation data is then
demodulated to yield a phasor (γm) as the output of the master
channel [23]:

γm(τ̃) = e−jδϕ[Ad +Are
jkδρΛ(∆τ)] (3)

where τ̃ is the delay of direct signal which is estimated
within the closed-loop tracking process, j is the imaginary
unit (j2 = −1), δϕ is the phase difference between the
compound and direct signals, the amplitudes of the direct and
refl ected signals are Ad and Ar, respectively, and k = 2π/λ is
the carrier wavenumber with λ being the carrier wavelength.
Figure 4 shows phasor representations of the direct, refl ected,
and compound signals with the refl ectometry relative phase

ψ = k δρ. The parameter ∆τ denotes the time delay due
to the excess path (δρ) traveled by the refl ected signal com-
pared to the direct path. The function Λ(∆τ) is triangular
auto-correlation function with the properties: Λ(0) = 1 and
Λ(τ) = Λ(−τ). Under successful operation of the phase lock-
loop (Fig. 4-B), the amplitude of the signal is completely
tracked in the in-phase component of the master channel,
Im [29]. Therefore, the quadrature component of the master
channel, Qm, vanishes and the signal SNR can be calculated
by squaring Im, expressed by:

A2
c = I2

m = A2
d +A2

r + 2AdAr cos(kδρ) (4)

where Ac is the amplitude of the compound signal. The SNR
value expressed in (4) is similar to the SNR observations from
geodetic receivers described in [30]. The parameter δρ will be
later used for the sea level retrieval (see section III).

For the slave channels, the receiver can be steered through
an open-loop scheme using external inputs for tracking the
signals intercepted by the slave antennas. The external inputs,
δfD and δτ , are relative values with respect to the reference
values τ̃ and f̃D. The parameter δfD is used during carrier
wipeoff and δτ for the code correlation in the slave channel.
The slave channel output can be expressed by:

γs(τ̃ + δτ) = e−j δϕ[A′d Λ(δτ) +

A′r e
j k δρ Λ(δτ −∆τ)] (5)

where subscript s refers to the slave channels. A′d and A′r
are respectively the amplitudes of direct and refl ected signals
in the slave channel. The amplitudes of direct and refl ected
signals are different in the master and slave channels, mainly
because of the different antenna gains. Figure 4-C shows
a simplified phasor representation of direct, refl ected, and
compound signals in the slave channel.

The low refl ector height at the Onsala GNSS-R station
with respect to the sea surface results in δfD ≈ 0 and
δτ ≈ ∆τ ≈ 0. Therefore, the receiver outputs for the slave
channels at I/Q levels can be simplified to:

γs = A′c e
j∆ϕ = Is + jQs

= e−jδϕ[A′d +A′r e
j k δρ] (6)

where ∆ϕ is the slave-master phase difference and A′c is the
amplitude of the compound signal in the slave channel. The
I/Q components of the slave channel output can be written as:

Is = A′d cos(δϕ) +A′r cos(k δρ− δϕ)

Qs = −A′d sin(δϕ) +A′r sin(k δρ− δϕ) (7)

The first terms of (7) are related to the contribution of the
direct signal while the second terms comprise the effect of the
refl ected signal:

Is = Id + Ir

Qs = Qd +Qr (8)
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Fig. 4. The phasor diagrams of direct, refl ected, and compound
signals respectively denoted by subscript d, r, and c in the in-
phase/quadrature (I/Q) axes: (A) before and (B) after tracking
the phase of the compound signal in the master channel. The
phasor diagram shown in (C) is related to the slave channel.
The angle ψ is the refl ectometry-relevant phase, δϕ is the
phase difference between the compound and direct signals,
and ∆ϕ is the phase of the compound signal in the slave
channel. The phase shifts due to baseline between the master
and slave antennas and different carrier phase wind-up effects
for the up-looking and side-looking antennas are not included
in the figure.

The direct signal terms, i.e. Id and Qd, can be extracted e.g. by
fitting a low-order polynomial. The amplitude and frequency
of the interferometric patterns in the refl ected signal terms, i.e.
Ir and Qr, can be determined through different spectral analy-
sis or modeling methods. The LS-HE method, which is further
described in the next section, can simultaneously model the
direct signal effects and retrieve period of the interferometric
oscillations from the I/Q samples. The amplitude of the direct,

refl ected, and compound signals in the slave channels can be
respectively calculated by:

A′d
2 = I2

d +Q2
d

A′r
2 = I2

r +Q2
r

A′c
2 = I2

s +Q2
s

= A′d
2 +A′r

2 + 2A′dA
′
r cos(kδρ+ φ0) (9)

where φ0 is an initial phase shift. The original output of the
GORS receiver is based on 5-millisecond coherent integration,
i.e. 200 Hz sampling rate. In this study, the 200 Hz correlation
sums are down-sampled using a 10-second (0.1 Hz) integration
at I/Q levels for each of the antennas.

In general, having access to the I/Q outputs gives the op-
portunity of looking at the signal in a 3D sense and retrieving
the phase of interferometric signal and the coherence state
[24]. In this study, we directly utilize the I/Q outputs. Both
of the components encompass the oscillating interferometric
patterns regardless of the coherency of the refl ection. This
feature in both of the I/Q components is used here to detect
the corresponding Doppler residual in a multivariate approach
as described below.

III. METHOD

The methodology of this study contains three main stages
(Fig. 5). The first stage is the data preparation through which
the time series associated with each refl ection event are cre-
ated. In the second stage, we focus on finding the interferomet-
ric frequency using multivariate LS-HE in different scenarios.
The frequency (L1/L2) and polarization (RHCP/LHCP) of the
refl ected signals as well as the orientation of the antenna (up-
/sea-looking) are variable factors in these scenarios.

Four main scenarios for the estimation of the sea surface
heights are designed as follow, each one using L1 and L2
separately: (A) using the I components of the up-looking
RHCP antenna (one time series), (B) using the I/Q components
of the sea-looking RHCP antenna (two time series), (C) using
the I/Q components of the sea-looking LHCP antenna (two
time series), (D) using the I/Q components of the both sea-
looking antennas (four time series). In addition, the sea surface
heights are estimated by combining the retrieved heights from
L1 and L2 for each main scenario for possible improvement.
Consequently, the sea surface heights are retrieved in 12 differ-
ent solutions. These products make it possible for us to assess
the performance of polarimetric GNSS-R in different antenna’s
angle plus the performance of L1, L2, and combination of
them (L12). The parameter of interest in the LS-HE analysis
is the period of the interferometric signals.

The time series of the refl ection events are divided into
smaller segments by considering a time window. The time
window for retrieving this periodic pattern is set to a minimum
of 15 min but it is fl exibly extended to 30 min until it includes
at least two interferometric periods. It is worth mentioning that
higher antenna height with respect to the sea surface could
have reduce this window size resulting in a better temporal
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Fig. 5. Methodology fl owchart based on the Least Squares
Harmonic Estimation (LS-HE).

resolution. We move the overlapping window and analyze the
segment with a time step of 1-min to cover the whole time
series. The sea surface height is estimated from each segment.

To combine the estimated heights from different satellites
we use an averaging window. For outlier detection, we use
a native MATLAB function that utilizes the median absolute
deviation (MAD) values. All the values beyond three scaled
MAD with respect to the median are considered as outliers.
After outlier elimination, the median value of the estimates
within the averaging window is considered as the final height
estimate. The final estimates are calculated every 5 minutes
with different averaging windows ranging from 15 minutes
to 6 hours (6-hours, 3-hours, 1-hours, and 15 minutes). The
last stage of the methodology is the validation of the GNSS-R
height estimates with the collocated tide gauge observations
at different wind speeds.

A. Least-Squares Harmonic Estimation (LS-HE)

The LS-HE is one of the frequency analysis methods from
the generation of the Fourier spectral analysis. The method
is restricted to neither integer frequencies nor evenly-spaced
time series and can be applied to datasets with gaps. The
LS-HE method can efficiently include a linear trend as a
deterministic part of the model and the covariance matrix as
the stochastic part of the model [31]. One important feature
of the method compared to the least squares spectral analyses
described by earlier studies e.g. [32, 33, 34] is the multivariate
formulation to identify common-mode signals of multiple time
series. This feature has been utilized in scenarios B, C, and D
to enhance retrieval of the common interferometric signal. For
scenario A which includes only one time series, the analysis
becomes univariate. The LS-HE method was presented and

Fig. 6. Schematic geometry of the ground-based GNSS-R
altimetry based on the path difference between the direct and
refl ected satellite signals. ρsat−sp is the distance between the
satellite and specular point, ρsat−rec is the distance between
the satellite and receiver antenna, ρsp−rec is the distance
between the specular point and receiver antenna, e is the
satellite elevation angle, δρ is the extra path of the refl ected
signal compared to the direct signal, and h is the height
difference between the phase center of the antenna and sea
surface.

utilized by [27] for the GPS position time series, then applied
by [35] for the estimation of GNSS-R lake ice thickness and
here is introduced for GNSS-R altimetry. For more information
about the theory of LS-HE, we may refer to [36, 27, 31].

B. Sea surface height calculation

The superposition of direct and refl ected signals constructs
compound signals. The concept of calculating the sea surface
height from the GNSS-R observations is based on the retrieval
of the interferometric patterns in the compound signal. The
LS-HE method used in this study includes individual linear
terms for each of the I/Q components of the master or slave
samples. These linear terms can absorb the effect of direct
signal variations (see (7)). Therefore, the effect of direct signal
and interferometric oscillations can be effectively separated
within the LS-HE analysis. The estimated interferometric
period by LS-HE can then be related to the geometry of the
refl ection as described below.

The difference between the direct and refl ected signals paths
creates a Doppler shift which is in fact the frequency of the
interferometric fringes [28]:

δf =
1

λ

d(δρ)

dt
(10)

δρ = ρ
ref
− ρ

dir
, (11)
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Fig. 7. Examples of observation time series of PRN 26 for one segment which are used to retrieve interferometric period (Tint)
using multivariate LS-HE formulation. (A1) and (B1) show the In-phase and Quadrature components for GPS L1 and L2,
respectively. (A2) and (B2) illustrate the dominant interferometric period retrieved by LS-HE based on different combinations
of the time series.

where ρ
dir

and ρ
ref

are the distance between the satellite and
the antenna for direct and reflected signals, respectively, δf is
the Doppler shift, and λ is the wavelength of the signal carrier.
As shown in Figure 6, δρ can be estimated by:

δρ = 2 h sin(e) (12)

where e is the satellite elevation angle, h is the height
difference between the phase center of the antennas and sea
surface. Let us introduce the variable x = 2 sin(e)/λ. The
interferometric frequency with respect to x denoted by δfx
can be retrieved by:

δρ = λ h x

δfx =
1

λ

d(δρ)

dx
= h+ x

dh

dx
= h+ x ḣ

dt

dx
(13)

with ḣ = dh/dt being the height rate. To account for the
height rate in the height retrieval process, we first calculate
a sea level estimate using the detected interferometric period
(Tint) in the LS-HE analysis:

P (Tx) = LSHE(x, Y )

{Pmax, Tint} = max[P (Tx)]

h ≈ δfx =
1

Tint
(14)

where P (Tx) is the power spectrum, Y is the matrix of
observations, Pmax is the detected maximum power using the
max function. The columns of Y for each scenario include
the following time series:

Solution A: Y = [I2
m]

Solution B: Y = [IRs , Q
R
s ]

Solution C: Y = [ILs , Q
L
s ]

Solution D: Y = [IRs , Q
R
s , I

L
s , Q

L
s ] (15)

with superscript R and L denoting the RHCP and LHCP sea-
looking antennas. Having the sea level estimate h from the LS-
HE analysis and ḣ = 0 as the initial value, we find final values
of h and ḣ through iterative minimization of the following cost
function:

min
h,ḣ

N∑

i

‖Ŷi − ai sin(
4π[h+ δh] sin(e)

λ
+ φi)‖ (16)
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δh =
ḣ tan(e)

ė
(17)

where δh is a correction term to compensate the height rate
effect, ė is the elevation angle rate, Ŷi is the i-th observation
time series after removing the linear trend, N is the number
of observations processed by LS-HE which is 1 in scenario A,
2 in scenarios B and C, and 4 in scenario D, ai and φi are the
amplitude and phase offset of the interferometric signal in the
i-th observation time series that are estimated by least squares
analysis.

It should be noted that the side-looking outputs might be
contaminated by small phase differences. Two possible causes
can be antenna phase center variations [24] and the offset
vectors between the master and slave antennas shown in Fig. 6.
These effects can introduce low-frequency components to the
I/Q outputs. However, at this station these components have
much lower frequency compared to the prominent interfero-
metric fringes [37] and would not significantly affect our sea
level measurements.

IV. RESULTS AND DISCUSSION

A. Data preparation

The data preparation starts with selecting valid observations
which include reflected signals from the sea surface. For this
purpose, the precise location of the specular points is estimated
within a ray tracing algorithm described by [38] which con-
siders earth surface curvature. A spatial mask using a polygon
is then created and applied to the observations to keep the
specular points on the sea surface and filter out the reflections
from land. To decrease atmospheric effect observations with
elevation angles below 5 degrees are excluded. The remaining
atmospheric effect is neglected due to the low reflector height.
The receiver position is calculated by precise analysis of the
direct signals using broadcast ephemerides for the satellite
position. The Earth Gravitational Model (EGM96) is used as
a reference height. For more information we may refer to
[23]. Figure 1-B illustrates the sea-reflected specular points
for different GPS satellites used in this study.

B. Applying the LS-HE

For utilizing the LS-HE method, we use a numerical search
to catch the dominant interferometric signals in each segment.
The step size for searching the interferometric periods is small
for the lower periods and gets larger at higher periods using
the following recursive formula:

Ti = T
i−1

(1 +α
T

i−1

Tmax
) , α = 0.01 , i = 1, 2, ..., Ti ≤ Tmax,

(18)
where T

i
are the trial periods, T

0
and Tmax are the min-

imum and maximum detectable periods in the time window
of the segments based on the Nyquist’s theorem and the α
coefficient allows us to make the initial step bigger and smaller
for frequency searching. We assume the covariance matrix is
the Identity matrix Qy = I for each time series.

Figure 7 shows an example outcome of the LS-HE on
the time series which is generated from a segment of one

event for satellite PRN 26 in L1 and L2 bands. Figure 7-
A1 and B1 show the I and Q components from each antenna
and frequency. Figure 7-A2 and B2 depict the results of
frequency analysis based on the four scenarios for L1 and
L2. As can be recognized from the frequency analysis results
in the figure, the highest power of the interferometric period
belongs to multivariate analysis of time series of both sea-
looking antennas. Slightly lower power can be seen for the
time series of the LHCP sea-looking antenna.

C. GNSS-R height retrieval and evaluation

The RMSE values of GNSS-R height estimates from the
time series of 31 GPS satellites based on different antenna
configurations are summarized in Fig. 8. The heights are
estimated using the median of each PRN’s observations over a
6-hour window and are compared to tide gauge measurements.
The RMSE values shown in this figure are related to individual
performance assessments of each satellite. The analysis shows
that changing the orientation of the antenna towards the reflect-
ing surface can improve Accuracy. This can be recognized by
relatively smaller errors in the estimated heights from the sea-
looking RHCP antenna (Fig. 8-A) compared to the up-looking
RHCP antenna (Fig. 8-B). The sea-looking LHCP antenna
(Fig. 8-C), however, shows a better accuracy compared to the
sea-looking RHCP antenna. The fully polarimetric solution,
i.e. by the combination of the LHCP and RHCP sea-looking
antennas, exhibits the best performance with more consistency
between the L1 and L2 measurements and over all the PRNs.
Discrepancies in the performance of different PRNs shown
in Fig. 8 might be related to various factors including the
performance of the antennas in different azimuth angles in
terms of phase center variations and antenna gain, as well
as satellites Equivalent Isotropically Radiated Power (EIRP)
variations. In the next step, we retrieve the final sea level
products by combining the observations from all the satellites.

The polarization of the antenna can also affect the GNSS-R
height estimation. This can originate from the strength of the
reflected signals in different polarizations. The direct GNSS
signals with RHCP design will have both RHCP and LHCP
components after reflection. The strength of these components
can be calculated from Fresnel equations and are functions of
the elevation angle of satellites and permittivity of the reflect-
ing surface. The power loss due to reflectivity of seawater
at Onsala station [37] suggests that the RHCP component is
the dominant component at very low elevation angles. The
strengths of the RHCP and LHCP components are almost the
same at the elevation angle of about 7 degrees. For higher
elevation angles the LHCP component is the predominant
part of the signal. Therefore, the LHCP antenna can capture
stronger reflections at higher elevation angles. This provides
improved performance for retrieving interferometric periods
from the LHCP time series (Fig. 8-C). The combination of
retrievals from the RHCP and LHCP antennas provide the
best performance as can be seen from Fig. 8-D.

Figure 9 presents estimated sea surface height anomalies,
using the described method based on the scenarios A, B, C,
D. The anomalies are the sea surface heights minus their mean
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Fig. 8. The Root Mean Squared Error (RMSE) values based on the comparison of GNSS-R sea surface heights with the
tide gauge measurements for each GPS Pseudo Random Noise (PRN) numbers from A) up-looking antenna with Right-
Handed Circular Polarization (RHCP), B) sea-looking RHCP antenna, C) sea-looking Left-Handed Circular Polarization (LHCP)
antenna, and D) combined sea-looking RHCP and LHCP antennas. The red bars are RMSE values of the L2 retrieved heights
and the blue bars belong to the L1 retrieved heights. The empty L2 bars are related to the GPS IIR satellites block which do
not transmit the L2C signal. The time step and the averaging window for calculating the heights are 5-min and 6-h.

value calculated separately for each solution. The collocated
tide gauge measurements are overlaid for comparison. The left
panels show the results for the whole dataset (one year) and the
right panels illustrate a closer look over a time span of 2 days.
As shown in the figure, in all of the four scenarios, the height
estimates from the combination of L1 and L2 observations
(L12), closely follow the tide gauge measurements. The height
retrievals from the L1 observations show almost similar perfor-
mance compared to L12, although the L1 results from both of
the sea-looking antennas show noticeable improvements with
respect to the up-looking antenna. The quality of the height
measurements from the L2 observations are slightly degraded
compared to the L1 and L12 measurements, especially for the
RHCP antennas. Considering the fact that not all GPS satellites
transmit L2C signal, the lower quality of L2 observations
in RHCP antennas can adversely impact the final height
retrievals.

We evaluate the final height results using the RMSE values
of the GNSS-R measurements with respect to the collocated
tide gauge. The correlation values of the GNSS-R and tide
gauge measurements are also calculated. Table I shows the
RMSE and correlation values based on the described scenarios
and four different time windows. The height estimates from the
combination of the L1 and L2 observations (L12) provide the
best accuracy and robustness. The L12 solution can improve
the results up to 25% and 40% compared to the L1 and L2,
respectively. The results from L1 observations provide the

closest accuracy with respect to the L12 results. Figure 10
is a visualization of Table I . As seen in the table and figure
the best accuracy is achieved with the 6-hour window in the
mode of L12 using either LHCP antenna or the combination of
the two sea-looking antennas. The results for the combination
of the sea-looking antennas in L12 mode is 2.3, 3.0, 4.5, and
5.6 cm for the window size of 6, 3, 1 hour, and 15 minutes.

The overall improvement of the RHCP sea-looking antenna
compared to the RHCP up-looking antenna in L2 observations
is smaller compared to the L1 results. Despite the fact that
the combination of sea-looking RHCP and LHCP antennas
for each GPS PRN improves the corresponding accuracy
(Fig. 8), the final sea level products from the sea-looking
LHCP antenna (Fig. 10-C) shows almost the same perfor-
mance compared to the combined solution (Fig. 10-D). The
earlier inter-comparison study conducted by [16] at another
GNSS-R station at Onsala has reported to have an RMSE
range of 2.6 to 8.1 cm based on four different SNR-based
methods and the window size of 6 to 8 hours. Compared to our
study,¨the second GNSS-R station uses a geodetic receiver and
an up-looking antenna with approximate height of 4 meters
from the sea surface.

Wind speed is one of the parameters which affects the
accuracy of the sea surface altimetry due to the change of
the sea surface roughness. To assess the impact of wind on
the accuracy of the estimated sea surface heights, the data
are divided based on the Beaufort wind force scale, which
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Fig. 9. Time series of sea surface height anomalies derived from GNSS-R observations at Onsala station for the year 2016
(left panels), and closer looks over a period of 2 days (right panels), overlaid on the collocated tide gauge measurements.
The height measurements are estimated based on the GNSS-R observations from (A) the up-looking RHCP antenna, (B) the
sea-looking RHCP antenna, (C) the sea-looking LHCP antenna, and (D) both sea-looking antennas. The black graph shows
the tide gauge measurements, the blue, green, and red colors are the GNSS-R height estimates from the L1, L2, and combined
L1 and L2 (L12) sea surface heights. The time step and the averaging window for calculating the heights are 5-min and 6-h.

is an empirical scale related to wind speed and observed
conditions at sea or land. The right panels of Fig. 11 show
the yearly RMSE values of the retrieved sea surface heights
compared with tide gauge in different Beaufort wind force
scale for solution C and D. The heights are estimated in 5-
min time step and 6-h averaging window. As seen in the figure
with the increase of the wind speed the accuracy degrades.
This effect is more pronounced in the products related to
L2 signals. Overall, the fully-polarimetric solution (D) shows
slightly better performance compared to solution C. The left
and middle panels of the figure also present the scatter plots of
the GNSS-R sea surface height changes compared to the tide
gauge sea level variations. As seen in the figure the distribution
of the data in L1 and L12 height measurements are better than
L2. The L2 sea level results are more sensitive to possible
low-quality measurements due to fewer observations from the
satellites transmitting L2C signal compared to L1. Generally,
the results show excellent agreement with the tide gauge
measurements in terms of the correlation and distribution. The
solid red and dashed black lines respectively show the fitted
linear line and 1:1 ideal correlation. The best agreement is
related to L12 retrieved heights.

V. SUMMARY AND CONCLUSION

The study presents the results of sea level measurements
using the reflected signals of the Global Navigation Satel-
lite Systems (GNSS) from a coastal experiment at the On-
sala Space Observatory in Sweden. The GNSS-Reflectometry
(GNSS-R) experiment is equipped with three antennas with
different polarizations and orientations. The measurements
are calculated based on the application of the Least-Squares
Harmonic Estimation method to a dataset of one year over
2016. Based on the flexible configuration of the experiment
setup, the effects of polarization, antenna orientation, and the
frequency of the GNSS signals are investigated and discussed.
The dataset is accompanied by two collocated datasets from
the nearest meteorological and tide gauge stations.

Our analysis shows that the best performance can be
achieved by a combination of observations from L1 and L2
frequencies (L12) recorded by a sea-looking Left-Handed
Circular Polarization (LHCP) antenna. Turning the antenna
orientation towards the sea, i.e. a tilt angle of about 90 degrees
with respect to the zenith, maximizes the gain of the antenna
for capturing the reflections and thus stronger interferometric
patterns. The seaward orientation can improve the accuracy of
RHCP sea level results up to 20%, 13%, and 25% respectively
for L1, L2, and L12. This improvement can reach about 48%,
50% and 47% for L1, L2, and L12 if the tilted antenna
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TABLE I: The yearly Root Mean Squared Error (R) and
the correlation (C) values of GNSS-R sea surface heights
with tide gauge measurements based on four averaging win-
dows, two antenna orientations (up-looking and sea-looking),
and two polarizations, i.e. Right- and Left-Handed Circular
Polarization (RHCP and LHCP). Subscript A, B, C, and
D indicate the results from the up-looking RHCP antenna,
sea-looking RHCP antenna, sea-looking LHCP antenna, and
combination of both sea-looking antennas, respectively. L1,
L2, and L12 respectively represent the sea level results of L1,
L2, and combination of L1 and L2 height measurements (in
the averaging step).

Win = 6 h L1 L2 L12

RA (cm) 4.6 5.7 4.1
CA 0.963 0.943 0.969
RB (cm) 4.2 5.7 3.1
CB 0.968 0.948 0.982
RC (cm) 2.4 3.6 2.4
CC 0.990 0.977 0.990
RD (cm) 2.4 3.8 2.3
CD 0.990 0.973 0.990

Win = 3 h

RA (cm) 6.1 7.8 5.7
CA 0.940 0.901 0.946
RB (cm) 5.3 7.1 4.4
CB 0.951 0.923 0.967
RC (cm) 3.2 4.0 3.0
CC 0.982 0.972 0.984
RD (cm) 3.1 4.2 3.0
CD 0.983 0.970 0.984

Win = 1 h

RA (cm) 8.6 10.4 8.14
CA 0.893 0.847 0.901
RB (cm) 7.4 9.1 6.6
CB 0.912 0.884 0.930
RC (cm) 4.7 5.3 4.5
CC 0.964 0.954 0.967
RD (cm) 4.6 5.4 4.5
CD 0.965 0.952 0.967

Win = 15 min

RA (cm) 11.7 12.1 10.3
CA 0.827 0.811 0.854
RB (cm) 9.3 10.9 8.7
CB 0.870 0.846 0.886
RC (cm) 5.8 6.4 5.6
CC 0.946 0.935 0.949
RD (cm) 5.6 6.3 5.6
CD 0.948 0.837 0.949

Fig. 10. The annual RMSE values of the GNSS-R sea surface
height with respect to the tide gauge measurements for up-
looking and sea-looking antennas in four types of window
size to average sea surface heights.

is LHCP. The accuracy supremacy of LHCP measurements
compared to the RHCP measurements can be attributed to
the stronger reflections from the seawater at LHCP. Except
for very low elevation angles, the LHCP component of the
reflected signals is the dominant part. Therefore, while the
RHCP antenna is an appropriate option for grazing angles
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Fig. 11. The left and middle panels illustrate the scatter plots of the GNSS-R height anomalies and tide gauge height anomalies
with respect to the wind speed. The graphs are related to the solutions C and D for L1, L2, and the combination of them (L12).
The time step and the averaging window for calculating the heights are 5-min and 6-h. The fitted line and 1:1 ideal correlation
are shown by the solid red line and dashed black line, respectively. The right panels show the RMSE values between the
obtained GNSS-R heights and tide gauge measurements overlaid by the fraction of the data in red bars.

altimetry, using a LHCP antenna would be inevitable for
higher elevation angles.

The effects of using L1 or L2 carrier frequencies are also
investigated. The results from L2 frequency generally show
a lower degree of accuracy most likely because of fewer
observations (as not all satellites transmit L2C). We combined
the L2 sea level products with the L1 products to form L12
measurements for robustness and enhancement. The size of
the averaging window also is one of the parameters that
affect the accuracy of final products. Longer averaging window
improves the quality of the results. The Root Mean Square
Error (RMSE) between GNSS-R sea surface heights for LHCP
sea-looking antenna with respect to collocated tide gauge
measurements are 2.4, 3.0, 4.5, and 5.6 cm for 6, 3, 1, and
0.25-hour window size, respectively.

The investigation of wind effect on the accuracy of GNSS-
R sea level measurements reports a lower degree of accuracy
during higher wind speeds. The RMSE value of the products
can be two times larger in wind speeds above 11 m/s compared
to calm sea surface during wind speeds below 2 m/s. However,
the final L12 sea level estimates show a remarkable tolerance
against high wind speeds, especially for the combined fully-
polarimetric solution. The multivariate formulation of the
method used in this study shows to be a promising tool for
multi-frequency multi-constellation GNSS-R altimetry.
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Abstract: Feasibility of sensing mesoscale ocean eddies using spaceborne Global Navigation Satellite
Systems-Reflectometry (GNSS-R) measurements is demonstrated for the first time. Measurements of
Cyclone GNSS (CYGNSS) satellite missions over the eddies, documented in the Aviso eddy trajectory
atlas, are studied. The investigation reports on the evidence of normalized bistatic radar cross
section (σ0) responses over the center or the edges of the eddies. A statistical analysis using profiles
over eddies in 2017 is carried out. The potential contributing factors leaving the signature in the
measurements are discussed. The analysis of GNSS-R observations collocated with ancillary data
from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis-5 (ERA-5)
shows strong inverse correlations of σ0 with the sensible heat flux and surface stress in certain
conditions.

Keywords: GNSS Reflectometry; Mesoscale ocean eddies; Bistatic Radar Cross Section; CYGNSS

1. Introduction

Mesoscale ocean eddies can drive atmosphere response at mesoscales mainly through heat
fluxes [1] and they have a local influence on near-surface wind, cloud properties, and rainfall [2].
Analysis of mesoscale eddy-atmosphere interactions from general circulation models suggests
significant intermodel differences mainly stemming from two factors: surface wind strength and marine
atmospheric boundary layer adjustments to mesoscale heat flux anomalies [3]. Several Earth-observing
satellites have been aiding these models for decades with their data products.

Global Navigation Satellite System Reflectometry (GNSS-R) is a relatively new Earth observation
technique for monitoring a large variety of geophysical parameters (see [4,5] for a review). This
technique exploits the GNSS signals of opportunity after being reflected from the Earth’s surface, both
over lands and oceans. The signals are intercepted by low-cost, low-power and low-mass GNSS-R
receivers and are processed to extract geophysical information. These receivers onboard small low
Earth-orbiting satellites offer cost-effective Earth observations with high coverage and unprecedented
sampling rate. Cyclone GNSS (CYGNSS) is the satellite constellation consisting of eight microsatellites
with the main science objective of ocean wind speed monitoring especially during hurricane events,
launched in December 2016 [6].

Ocean monitoring is one of the most mature spaceborne GNSS-R applications, with a proven
capability of surface wind measurement [7–9]. Insignificant level of sensitivity to rain attenuation [10]
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and cost-effective observation frequency are the main advantageous characteristics motivating
researchers to develop new ideas for additional applications over oceans [11–13], and for the
development of future novel GNSS-R missions [14,15].

Remote sensing of oceanic features, e.g., eddies, based on high precision GNSS-R altimetric
measurements, are being pursued. For instance, [16] deduced sea surface topography observations
from the GNSS-R phase measurements onboard the German High Altitude Long Range (HALO)
research aircraft. In an air-borne GNSS-R study, the so-called “Eddy Experiment”, the capabilities
of the technique for ocean altimetry [17] and scatterometry [18] were additionally demonstrated.
Nevertheless, the response of the measurements over mesoscale eddies is not yet characterized and
documented, despite the available large datasets from recent GNSS-R satellite missions.

A high number of observations are provided by CYGNSS offering a possibility to study the
feasibility of observing ocean eddies using GNSS-R measurements. This research focuses on the
GNSS-R scatterometric observations (rather than in an altimetry configuration) and tries to characterize
eddy signatures in those measurements for the first time. The data are empirically analyzed and the
signatures and physical explanations are discussed. Following this introduction, Section 2 describes
the datasets and the method. The results are reported and discussed in Section 3. Finally, concluding
remarks are given in Section 4.

2. Data and Method

Four datasets are used for the analysis covering the period from March to December 2017.
The main dataset consists of the CYGNSS GNSS-R measurements. The eight CYGNSS microsatellites
are dispersed in 35◦ inclined orbits with an altitude of ≈520 km. The onboard GNSS-R receivers are
equipped with distinct channels measuring up to four simultaneous GPS signals after reflection from
the ocean surface [19]. The corresponding data are available at different processing levels. Level 1
(L1) provides a variety of parameters including the calibrated measurements of bistatic radar cross
section (BRCS) as well as the Normalized BRCS (NBRCS) σ0. The L1 data are further processed into
the 10 m referenced wind speed above the ocean surface at Level 2 (L2). For the analysis in this study,
σ0 product is extracted from the Version 2.1 (v2.1) dataset [20,21].

CYGNSS measurements over the documented mesoscale eddies in Aviso’s trajectory atlas version
2.0 are extracted. The atlas is a multi-mission altimetry-derived product with a daily temporal
resolution [22]. Eddy characteristics, including the position and radius, spinning speed, and the type
(cyclonic/anticyclonic) are extracted from the atlas.

Near-surface ocean current estimates from the Ocean Surface Current Analysis Real-time dataset
(OSCAR) are also used in this study [23]. The ocean current data are provided with a spatial resolution
of one-third degree. Nevertheless, they are spatially interpolated along the CYGNSS tracks. Due to
the five-day temporal resolution of the OSCAR dataset, the tracks on those days, on which OSCAR
current estimates are available, are collected for the analysis.

The analysis also uses ancillary data retrieved from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis-5 (ERA-5) product. The ERA5 is a global atmospheric
reanalysis based on an ECMWF model assimilating observations from various sources including
satellite and ground-based measurements [24]. The retrieved parameters include surface wind-field,
Sea Surface Temperature (SST), Sensible Heat Flux (SHF), and turbulent surface stress field. These data
products offer a possibility to discuss potential interactions of the geophysical parameters with the
GNSS-R σ0. The reanalysis measurements are provided hourly with a spatial resolution of 0.25◦. The
estimates are spatiotemporally interpolated along with the CYGNSS tacks being used in the study.

The eddy trajectory atlas detects an eddy as the outermost closed-contour of Sea Level Anomaly
(SLA) encompassing a single extremum [22]. The area enclosed by the contour of maximum
circum-average speed is considered as the eddy radius R. The CYGNSS tracks overpassing the
eddy with a maximum distance of 2R from the eddy center are collected and transformed into a local
coordinate system (Figure 1). The local coordinate system has the origin at the center of the moving
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eddy with x- and y-axes oriented toward geographical east and north, respectively. Observations
marked with a poor quality fl ag in the CYGNSS dataset (L1, v2.1) and tracks with more than 10% data
loss are excluded from the collocated dataset.

The methodology of this study is based on the following steps. First, the signatures in the
CYGNSS σ0 are visually sought. The observed behavior in several cases can be the first evidence on
the possibility of an eddy-left signature in the GNSS-R measurements. This examination is followed by
statistical analyses to quantitatively characterize the signatures. We investigate the collocated dataset
consisting of more than 2.7× 105 NBRCS profiles over ≈ 6000 mesoscale eddies. The profiles in the
along-track coordinate system are normalized using the radius of each eddy and gridded between
−1.1× R to +1.1× R (Figure 1).

Figure 1. A sketch of the gridded GNSS-Refl ectometry profile of Cyclone GNSS (CYGNSS) over an
eddy and the local coordinate system with x- and y-axes oriented toward east and north, respectively.

The visually observed behaviors of the σ0 profiles show noticeable changes over the central
region or the edges of the eddies. These patterns are along with some linear and nonlinear changes
in different scales. To extract the main nonlinear anomalies over the center or at the edges of eddies
within the profiles, linear and small scales fl uctuations of σ0 should be filtered out. We apply Principal
Component Analysis (PCA) [25] to reduce the dimensionality of the dataset while preserving most of
the information within the σ0 profiles. To this end, a data matrix Xm×n is formed using n profiles, each
of which with m gridded observation points. The profiles are centered by subtracting the mean values.
Using Singular Value Decomposition (SVD), the data matrix X can be written as:

X = ULVT (1)

where the columns of U and V are the left and right singular vectors, respectively. L is a diagonal
matrix with non-negative elements, the singular values λ. A proper group of singular values and
corresponding singular vectors is selected to reconstruct the data matrix. Columns of the reconstructed
matrix contain the filtered σ0 profiles. Assuming the set I = {i, i + 1, ..., k} whose elements are the
indices of the selected group, the reconstructed data matrix, X̂ is:

X̂ = Xi + Xi+1 + ... + Xk , Xi = λiUiVT
i (2)

where Ui and Vi are the left and right singular vectors associated with the singular value λi. Columns
of the matrices Xi represent uncorrelated features of the σ0 profiles. The quality of each principal
component (PC) can be measured by:

Λi =
λi

∑d
l=1 λl

(3)

where Λi represents the proportion of total variance explained by the principal component i. The
parameter d (d ≤ min{m, n}) is the number of non-zero singular values.
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The investigation is followed seeking the conditions, in which the σ0 response is more pronounced.
To this end, the correlation coefficient between σ0 and surface sensible heat fl ux is calculated at different
wind speeds. Similarly, the correlation coefficient between σ0 and the mean turbulent surface stress is
obtained in a range of angular differences between the CYGNSS observational track and the turbulent
surface stress. The results are presented in the following section.

3. Results and Discussion

Generally, two prominent anomalies are observed in our investigation as responses of σ0 to the
presence of the eddies: one jump at the eddy center (single-jump behavior) or two jumps at the eddy
edges with a lower value at the center (double-jump behavior). Figure 2 demonstrates the double- (a–c)
and single-jump (d–f) behaviors in different exemplary cases. The sudden increase in σ0 is significant
enough to be easily discerned in the measurements.
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Figure 2. Exemplary cases of GNSS-Refl ectometry σ0 double-jump (a–c) and single-jump
(d–f) behaviors observed in Cyclone GNSS (CYGNSS) tracks.

Additional exemplary cases are shown along with the collocated ancillary data in Figures 3–5. In
Figure 3, clear fl uctuations are repeatedly demonstrated over the eddy edges (similar to Figure 2a–c).
Once the track enters the eddy-affected area, σ0 increases significantly and then drops quickly at the
center followed by another jump once the track leaves the eddy.
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Figure 3. A track of Cyclone GNSS (CYGNSS) overpassing an eddy on 4 July 2017, 12:24. The top-left
panel displays sea surface temperature, surface wind (white arrows) and current (blue cones). On the
top-right, instantaneous surface sensible heat fl ux (SHF) as well as surface stress (blue arrows)
are visualized. The bottom panel profiles CYGNSS σ0 along with the wind and current velocity,
instantaneous SHF and surface stress magnitudes.

Figure 4. A track of Cyclone GNSS (CYGNSS) overpassing three eddies on 4 June 2017, 08:11.
The top panel displays sea surface temperature, surface wind (white arrows) and current (blue cones).
In the middle, instantaneous surface sensible heat fl ux (SHF) as well as surface stress (blue arrows)
are visualized. The bottom panel profiles CYGNSS σ0 along with the wind and current velocity,
instantaneous SHF and surface stress magnitudes, referenced at the center of the middle eddy.
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Figure 4 shows a CYGNSS track which is long enough to overpass three cyclonic eddies. The σ0

behaves similarly to Figures 2a–c and 3. The track does not cross the first eddy center. This causes
an increase in the value of σ0 when it passes the eddy outer lying area. A remarkable fact is that σ0

remains almost at the same level moving over the eddy edges and again drops to lower values once it
leaves the affected region. Reaching the second eddy, the track sweeps also the areas close to the eddy
center and σ0 responds with a lower value at the center and two considerable increases at the edges.
The behavior of σ0 is similar over the third eddy, however, the peaks stand at lower values.

Figure 5 shows another CYGNSS track overpassing three eddies. Similar to Figure 2d–f, σ0 shows
a single peak at the center. The track enters the core region with a sudden increase in σ0 which again
drops to its initial level once the track moves off the center. Similar behavior of σ0 is observed reaching
the central region of the second and third eddies.

Figure 5. A track of Cyclone GNSS (CYGNSS) overpassing three eddies on 29 June 2017, 20:45. The
top panel displays sea surface temperature, surface wind (white arrows) and current (blue cones).
In the middle, instantaneous surface sensible heat fl ux (SHF) as well as surface stress (blue arrows)
are visualized. The bottom panel profiles CYGNSS σ0 along with the wind and current velocity,
instantaneous SHF and surface stress magnitudes, referenced at the center of the second eddy.

Figure 6 shows the PCA results where the first nine principal components of the dataset preserve
more than 95% of the statistical information in the dataset. The PCs represent low to high-fl uctuating
patterns within the profiles. The first PC mainly refl ects the overall linear trend of the σ0 profile. The
other PCs capture the remaining non-linear variations of the profiles over the eddies. We reconstruct
the profiles using the eight components PC2-PC9 and calculate the correlation coefficient of each
reconstructed profile with synthetic templates of the two observed patterns. Since the peaks over the
edges or at the center of the eddies could be slightly displaced from the exact expected location, we
consider up to ±0.1× R lag for the calculation of the correlation.

The analysis reveals that about 12.7% (15.9%) of profiles demonstrate a correlation coefficient of
0.7 or more with the single (double) peak template. We also carried out the same statistical analysis
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over a new set of profiles collected regardless of the presence of eddies. In a reverse approach, the
profiles demonstrating a high correlation with the templates (≥ 0.7) are investigated. About 45% of
these profiles are either located on the eddies (according to the Aviso’s trajectory atlas) or show a high
correlation (≥ 0.7) with the surface current.

Figure 6. Principal components of the profiles and the total variance of the data explained by each
principal component.

Results of the next statistical analysis over the collocated dataset reveal a strong negative
correlation of CYGNSS σ0 observations with both SHF and surface stress under certain conditions.
Figure 7 provides insights into the favorable conditions, in which CYGNSS is more likely to sense
surface stress and SHF over the eddies.

Figure 7. Schematic representation of surface stress change due to the interaction of an eastward
uniform wind with the surface current associated with an anticyclonic eddy (a), Correlation of the
σ0 profiles of Cyclone GNSS (CYGNSS) with anomalies of instantaneous surface sensible heat fl ux at
different wind speeds (b), the impact of different angular distances of the CYGNSS tracks with surface
stress vector on the correlation between the σ0 profiles and mean turbulent surface stress (c).
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Figure 7a illustrates a simplified model of changing surface stress due to the interaction between
the eddy surface current and wind speed. In Figure 7b, the behavior of σ0 is highly correlated with
SHF over the eddies at wind speeds between ≈3 m/s and 7 m/s, where the values of the correlation
coefficients are mainly between −0.8 to −0.95. According to the theory, at high enough wind speed
(≈> 5 m/s), the surface parameter that controls the intensity of GNSS reflections from the ocean
surface, or σ0, is the low-pass mean square slope, MSSLP, of the ocean surface [26]. It is determined
by the part of the wave slope spectrum that resides at wavenumbers smaller than k∗ = k cosθinc/3
where θinc is an incidence angle and k is the wavenumber (2π/λ) of the L-band GNSS signal [27].
The σ0 is inversely proportional to MSSLP. The largest contribution to the MSSLP originates from
the short-wave portion of the spectrum near k∗. From classic works of [28,29], it is known that
there are two main mechanisms affecting that part of the wave spectrum: the varying wind surface
stress and interaction of short waves with the current gradients. At low enough wind speed, the
scattering of GNSS signals does not follow a pure quasi-specular scattering and there is a coherent
scattering component that tends the mechanism to a higher-order Bragg scattering, driven by Rayleigh
parameter [30]. Rayleigh parameter is proportional to waves at any wavenumbers. So, at this regime
of wind speed, GNSS-R measurements could be more sensitive to surface state, even to small-scale
roughness modifications [12]. Figure 7c shows the impact associated with the angular difference of
CYGNSS tracks and surface stress field direction. The direction of the CYGNSS track with respect
to the surface stress vector can increase the sensitivity of σ0 to surface stress anomalies within the
eddies. This means the GNSS-R measurements are highly likely to sense the stress field with a direction
against the moving GNSS-R specular points. It can be also seen that for the absolute angular distances
in the range of about 60 to 180 degrees the wind stress would be more pronounced in the CYGNSS
measurements.

Atmospheric boundary layer change associated with the eddy-induced SST anomalies results
in a varying wind field [31]. The modified local surface wind influenced by marine boundary layer
dynamics [32,33] can partially explain the GNSS-R σ0 patterns. The enhanced local wind over the
warm core of the eddy can lead to the abrupt change in the GNSS-R σ0 values. Since the improvement
in the weather and climate projections require detailed observations and understanding of warm
eddy-atmosphere interactions [34], this possible promising contribution by the GNSS-R technique
should be investigated.

The first cold-core eddy shown in Figure 5 can cause a strong dampening of wind intensity due to
downward transport of wind momentum, decelerating local surface wind. The sharp peak of GNSS-R
σ0 resides at the core region of the eddy where the SST has a lower value. This deceleration could also
happen when a tropical cyclone reaches a strong cold-core eddy. Such eddies can broaden the eye
size of the storm during its passage and reduce its intensity [35]. For instance, an unforeseen rapid
weakening was demonstrated when the category 4 hurricane Kenneth passed over a cold-core eddy
on 19–20 September 2005 [36].

The discussed air-sea interactions over the eddies could explain the response of GNSS-R
observations to SHF at the ocean-atmosphere interface through the modified surface stress. In Figure 3,
a local minimum of ERA5 surface stress values takes place almost over the core region of the eddy.
The peaks of the stress values approximately reside over the rotating current of the eddy. The impact
of the surface stress on the profile of CYGNSS σ0 is evident where sudden fluctuations are seen over
the edges and in the core. Larger SHF values with negative sign, i.e. upward direction of the flux, are
well synchronized with two σ0 minima at -150 and 150 km along with track coordinates.

In Figure 4, the most prominent change in the σ0 profile can be seen over the middle eddy.
The possible signature of this eddy could be explained by a high value of stress approximately at
the eddy center where an increment of upward SHF is observed. The ERA5 could be subjected to
deficiencies in resolving local sudden changes and It seems that it does not reveal the same level of
details over the left eddy as those provided by the CYGNSS measurements. The behavior of σ0 over
the right eddy in this figure can be described by the expected behavior of σ0 at very low wind speeds.
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According to [37], at very low wind speeds (< 2.5 m/s), the bistatic radar cross section is directly
proportional to the roughness (unlike the inverse correlation at higher wind speeds). Therefore, the
clear correspondence between the magnitude of upward SHF and wind speed over this eddy closely
matches the similar pattern in σ0 while the wind speed values are mainly below 2 m/s.

The surface current associated with eddies is another factor that can affect surface stress.
Considering surface stress as a function of wind and ignoring the surface current in the oceanic
numerical modeling, can result in the overestimation of the total energy input of wind to the ocean [38].
Wind stress (τ) can be calculated as [39]:

τ = ρaCD (W −U) |W −U| (4)

where ρa is the density of the air, CD is the drag coefficient, and W and U are the wind and surface
current, respectively.

The behavior of σ0 in Figure 5 can be partially attributed to the modified surface stress at the
eddy currents. Eddy-induced current can amplify or decrease the wind stress (Figure 7a) or alter its
direction which can in turn change the level of σ0 sensitivity to surface stress. Over the left eddy in
Figure 5, the similar directional orientation of the CYGNSS track with respect to the surface stress field
can lead to the weaker impact of stress on the σ0 values (see Figure 7c). Interaction of eddy-induced
current with surface stress can increase the σ0 sensitivity over the edges resulting in lower σ0 values.
Therefore, the vanishing current at the core region would lead to the less pronounced impact of stress
on σ0. Although the stress field over the middle eddy is not as strong, the angular difference of the
CYGNSS track with the stress field intensifies the impact. The strong current velocity on the edges
enhances the stress on the left side and decreases the stress on the right side of the eddy (see Figure 7a),
resulting slightly higher σ0 values on the right edge compared to the left edge. The low magnitude of
SHF over this cold-core eddy together with almost zero current velocity at the center cause a sudden
peak in the σ0 value. The higher SHF magnitudes and stress values between the two eddies keep the
σ0 values at a lower level.

It is worth mentioning that concentrated biogenic films from natural life in the ocean can
potentially play a role in the power of reflected GNSS-R signals. The turbulence associated with
the eddies brings the natural biogenic surfactants released from plankton and fishes to the surface,
where the concentration of the surfactant molecules can generate a surface tension. This phenomenon
could inhibit the development of Bragg waves [40]. Such areas are discerned as dark regions in
the synthetic aperture radar images since the signal is mainly forward scattered rather than being
backscattered. In a bistatic forward scattering configuration, the wide-enough smoothed regions can
increase the power of GNSS signals after reflection from the ocean. Therefore, a dramatic increase in
σ0 over these regions can be expected. The characterization of biogenic surfactants’ role in the signal
forward scattering is recommended for future studies.

4. Conclusions

In this study, it is shown that spaceborne GNSS-R measurements can respond to the existence of
eddies. Different characteristics of eddies can impact the local wind as well as surface stress which
can, in turn, affect GNSS-R measurements. The normalized bistatic radar cross section (NBRCS)
exhibits a clear inverse correlation with surface heat flux and surface stress under certain conditions.
Nevertheless, characterization of the observed signatures requires further study considering other
potential factors such as the effect of biogenic surfactants and the eddy-induced currents in the
surface stress and ocean state. Many factors produce NBRCS changes. The complexity of oceanic and
atmospheric mechanisms controlling the GNSS scattering demands further sophisticated analyses in
future studies. There are still open questions such as the conditions of occurrences or the measurements
specific behaviors over cyclonic or anticyclonic eddies. This study initiates the development of the
novel GNSS-R technique for studying ocean mesoscale eddies, the feasibility of which has been
demonstrated for the first time.
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Abstract: Flood detection and produced maps play essential roles in policymaking, planning,
and implementing flood management options. Remote sensing is commonly accepted as a maximum
cost-effective technology to obtain detailed information over large areas of lands and oceans. We used
remote sensing observations from Global Navigation Satellite System-Reflectometry (GNSS-R) to
study the potential of this technique for the retrieval of flood maps over the regions affected by the
recent flood in the southeastern part of Iran. The evaluation was made using spaceborne GNSS-R
measurements over the Sistan and Baluchestan provinces during torrential rain in January 2020.
This area has been at a high risk of flood in recent years and needs to be continuously monitored by
means of timely observations. The main dataset was acquired from the level-1 data product of the
Cyclone Global Navigation Satellite System (CYGNSS) spaceborne mission. The mission consisted of
a constellation of eight microsatellites with GNSS-R sensors onboard to receive forward-scattered
GNSS signals from the ocean and land. We first focused on data preparation and eliminating the
outliers. Afterward, the reflectivity of the surface was calculated using the bistatic radar equations
formula. The flooded areas were then detected based on the analysis of the derived reflectivity.
Images from Moderate-Resolution Imaging Spectroradiometer (MODIS) were used for evaluation
of the results. The analysis estimated the inundated area of approximately 19,644 km2 (including
Jaz-Murian depression) to be affected by the flood in the south and middle parts of the Sistan and
Baluchestan province. Although the main mission of CYGNSS was to measure the ocean wind speed
in hurricanes and tropical cyclones, we showed the capability of detecting floods in the study area.
The sensitivity of the spaceborne GNSS-R observations, together with the relatively short revisit
time, highlight the potential of this technique to be used in flood detection. Future GNSS-R missions
capable of collecting the reflected signals from all available multi-GNSS constellations would offer
even more detailed information from the flood-affected areas.

Keywords: CYGNSS; flood detection; Sistan and Baluchestan; flood mapping; GNSS-R

1. Introduction

Natural disasters are the reason for many serious disturbances to communities and the environment.
There have been many human, environmental, social, and economic losses, which are beyond the
power of the community to tolerate [1]. Floods have been considered as one of the most catastrophic
events, causing extensive damage to the artificial and natural environment and devastation to human
settlements [2]. Economic losses due to the effects of damaging floods have increased significantly
around the world [3]. Flooding happens when water bodies overflow riversides, lakes, dams, or dikes
in low-lying lands during heavy rainfall [4]. The higher temperature at the Earth’s surface leads to
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increased evaporation and greater overall precipitation [5]. Increased precipitation, although associated
with inland flooding, can also increase the risk of coastal flooding [6].

Flood detection, and subsequently, produced maps, are beneficial in two important phases: During
the flood, when we need emergency management planning, and after the flood, for land use planning,
defining construction standards, and damage assessment [7]. Heavy precipitation has led floods to
occur more frequently in different countries, which have drawn considerable attention over the past
years. There are many regions of Iran affected by floods, for instance, heavy rainfall from mid-March
to April 2019 led to flooding in 28 of 31 provinces, with the most severe flooding occurring in Golestan,
Fars, Khuzestan, and Lorestan [8]. The recent torrential rain in mid-January 2020 in the southeastern
region of Iran caused a devastating flood in the Sistan and Baluchestan province. We investigated the
latter case in this study.

Land surveying and airborne observations are the traditional methods for flood detection,
but when when flood detection is conducted on a large scale, these methods are costly and slow.
Space-based Remote Sensing (RS) can be considered as a practical alternative that provides up-to-date
information from various sensors that have been onboard different satellites. However, there are
some limitations in using RS data products for the study of flooding. For instance, optical RS can
have its limitations during severe weather conditions and during night. Therefore, in some cases
before and after a flood event, the optical RS imagery does not provide the required information [7].
Radar RS in the microwave spectrum can surpass these restrictions because the wave can penetrate
clouds and vegetation and can effectively work at night. Among the several radars RS sensors
currently in operation, Synthetic Aperture Radar (SAR) imagery provides high spatial resolution
data which is typically based on a monostatic configuration. However, the revisit time of satellites
with the configuration of the monostatic radar (single satellites), like SAR, is long (more than one
week) and cannot offer the desirable continuous high temporal resolution for flood detection purposes.
Accordingly, owing to the highly dynamic nature of the flood, SAR images are not used operationally
during floods [9–11].

The primary services of the Global Navigation Satellite System (GNSS) are positioning, navigation,
and timing. Besides, many other applications, including GNSS RS, have been introduced in recent
decades. Measurements made by GNSS RS techniques provide valuable information about different
components of the Earth system. Observations of the GNSS signals passing through the atmosphere
have been employed to study the atmospheric layers and their variabilities [12,13]. GNSS signals
after reflection from the Earth’s surface can also provide information about the reflecting surface.
These reflections have been used to study various parameters of the Earth’s surface and water cycles,
such as snow depth [14], ice height and sea level [15], soil moisture [16], vegetation [17], flood [11,18],
ocean eddies [19], wind speed [20], salinity [21], etc.

Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative technique aimed
at deriving geophysical parameters by analyzing GNSS signals reflected off the Earth’s surface in
a bistatic geometry. This technique is an efficient microwave remote sensing approach that utilizes
transmitted navigation signals as sources of opportunity. Numerous GNSS satellites, including GPS,
Galileo, GLONASS, and Bei-Dou/Compass, are currently transmitting navigation signals based on
spread-spectrum technology. Thus, a constellation of GNSS-R small satellites, at a lower cost compared
to ordinary RS satellites, can provide a much shorter revisit time using low-cost, low-power passive
sensors. Many earlier studies have introduced the applications of GNSS-R on the oceans, land,
and ice [22–24].

The soil moisture, surface roughness, vegetation, and topography are parameters which affect
microwave signals. GNSS-R signals as a bistatic radar are also affected by those parameters [25].
However, GNSS signals are at the L-band, which is ideal for soil moisture and surface water remote
sensing due to the higher capacity to penetrate vegetation compared to shorter wavelengths [16].
In addition, this technique uses the bistatic configuration, which has a lower sensitivity to surface
roughness relative to monostatic [26]. The signals reflected off the surface have a direct relation with
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surface water and moisture content [11]. For example, the rise of soil moisture leads to increase the
signal strength. Using this mechanism could contribute to detecting soil saturation, flooded area,
and inland water.

The Cyclone Global Navigation Satellite System (CYGNSS) mission is a constellation of eight
microsatellites, each with a GNSS-R receiver onboard. The receiver can track and process four GPS
signals simultaneously. The tracked GPS L1 C/A signals after reflection from the Earth’s surface are
used to produce Delay Doppler Maps (DDMs). The overall median revisit time is 2.8 h, and the
mean revisit time is 7.2 h [27]. Theoretically, the footprint of reflection received by CYGNSS is
nearly 0.5 km × 0.5 km. For the ocean, which has a very rough surface, the spatial resolution is
approximately 25 km × 25 km [28,29]. Table 1 shows CYGNSS microsatellite parameters retrieved
from [16,23]. The main mission of CYGNSS is to measure the ocean surface wind speed in hurricanes
and tropical cyclones, so a relatively low orbital inclination was designed for the satellites. CYGNSS
continuously makes measurements over the oceans and provides useful information over the land [29].
CYGNSS offers distinct features compared to other remote sensing techniques such as optical and active
monostatic radar. It uses a passive sensor at the L-band frequency wave, which works in all weather
conditions regardless of the time of the day, i.e., it can penetrate clouds, fog, rain, storms, and vegetation,
and works at night, unlike optical sensors. The CYGNSS constellation of eight microsatellites provides
a relatively short revisit time with global coverage over equatorial regions. The products of CYGNSS
are publicly available over the oceans and land.

Table 1. The Cyclone Global Navigation Satellite System (CYGNSS) satellite parameters.

Parameters Description

Orbit LEO, ~520 km, Nonsynchronous
Period 95.1 min

Spatial Resolution ∼25 km × 25 km (incoherent), ∼0.5 km × 5 km (coherent, theoretical)
Revisit Times 2.8 h median, 7.2 h mean

Polarization of the reflectometry antennas LHCP
Coverage −38 < Latitude < 38 & −180 < Longitude < 180

Type of Data which is relevant Observe GPS L1 C/A signals and Delay Doppler Maps

Radar remote sensing for soil moisture retrieval and surface water detection is common using
both monostatic [7,30] and bistatic geometry. The sensitivity of spaceborne GNSS-R (as a bistatic radar)
to surface water and soil moisture has been widely studied [11,16,18,23,31–33]. Most of the studies
have used observations from ground-based or space-based receivers, e.g., CYGNSS or Technology
Demonstration Satellite-1 (TDS-1). Observational evidence demonstrates that GNSS-R is highly
sensitive to inland surface waters, e.g., lakes and rivers [34].

Sistan and Baluchestan is one of the driest regions of Iran, with a slight increase in rainfall from east
to west, and is a province at a high risk of flooding. The aim of this study was to indicate the capability
of spaceborne GNSS-R for detecting and mapping of flood in the south part of Iran. The methodology
for preparing and processing data is the same as those used described by the authors of [16,18].

2. Study Area

The Sistan and Baluchestan province is located in the east and southeast of Iran (58◦55′–63◦20′ E
longitude and 25◦04′–31◦25′N latitude), bordering Pakistan and Afghanistan, and its capital is Zahedan.
This province is the second largest province in Iran with an area of 180,726 km2 and a population of
about 2.5 million. Figure 1A shows the location of this province on the Maphill Earth map. There is
a depression in the study area known as the Hamun-Jaz-Murian basin, which is part of the central
plateau basin. This basin is located in the southeast of Iran between 56◦17′ and 61◦25′ E longitude and
26◦32′ and 29◦35′ N latitude (Figure 1B). Its total area is about 69,390 km2, of which 44% is mountains.
The depression belongs to Kerman and Sistan-Baluchistan provinces [35]. Figure 1C shows a flooded
region in IranShahr, which is one of the cities in this province.
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Figure 1. (A) The red region shows the location of the Sistan and Baluchestan province in the southeast
of Iran, which is our study area. (B) The Hamun Jaz-Murian depression, which is located between the
Kerman and Sistan and Baluchestan provinces. (C) IranShahr, one of the flooded cities in the study area.

Sistan and Baluchestan is one of the warmest regions in Iran, with a desert climate and an
average daily temperature of 29 degrees centigrade. For several months of the year, it is warm at
temperatures continuously above 25 degrees centigrade, and temperatures sometimes exceed above
40 degrees centigrade. Figure 2 illustrates the average precipitation per day over 20 years. As can be
seen, 0.40 mm/day rainfall is normal during January in the province, but between 10 January and 12
January 2020, this amount is over 100 mm. Figure 3 shows the precipitation rate from 8 January to 13
January 2020.
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Figure 2. Average daily precipitation data collected from three meteorological stations in the Sistan
and Baluchestan province based on the average values of the last 20 years [36].
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Figure 3. Rate of torrential precipitation in the Sistan and Baluchestan province over the period of six
days from 8 January to 13 January, 2020. The maps were generated using the data provided by the
authors of [37].

3. Data Set Description

3.1. CYGNSS data

There are three levels of CYGNSS data products in version 2.1, which represent the second
post-provisional based on calibrated and validated level 1 algorithms. The level 1 (L1) dataset contains
the measurement of surface Normalized Bistatic Radar Cross Section (NBRCS). The level 2 (L2) dataset
includes derived ocean surface wind speed and Mean Square Slope (MSS). The level 3 (L3) dataset
delivers hourly averaged wind speed and MSS on a 0.2 degree × 0.2 degree grid.

We used CYGNSS L1 data as the lowest level of the available data products. The format
of the data is NetCDF (Network Common Data Form). Daily observations of each of the eight
CYGNSS satellites are included in a NetCDF file. Accordingly, there are up to eight files for every
Day Of a Year (DOY). The daily base data is available free of charge on the website of Physical
Oceanography Distributed Active Archive Center (PO. DAAC) of NASA’s Jet Propulsion Laboratory
(JPL) at https://podaac.jpl.nasa.gov. Table 2 shows the main variables of the L1 data [24] which were
used in this study.

Table 2. The Cyclone Global Navigation Satellite System (CYGNSS) data source parameters.

Parameters Description

ddm_snr Delay Doppler Map (DDM) signal-to-noise ratio, in dB
gps_tx_power_db_w GPS transmit power, in dB.

rx_to_sp_range Distance between the CYGNSS spacecraft and the specular point, in meters.
tx_to_sp_range Distance between the GPS spacecraft and the specular point, in meters.

gps_ant_gain_db_i GPS transmit antenna gain. Antenna gain in the direction of the specular point, in dBi

sp_rx_gain Specular point Rx antenna gain. The receive antenna gains in the direction of the specular
point, in decibel isotropic (dBi).

quality_flags Per-DDM quality flags
sp_lat Specular point latitude, in degrees North
sp_lon Specular point longitude, in degrees East

sp_inc_angle The specular point incidence angle, in degrees
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3.2. Satellite Image

Moderate-Resolution Imaging Spectroradiometer (MODIS) is an advanced sensor on the Terra
and Aqua Spacecraft for gathering data through a broad spectrum of electromagnetic waves. Terra was
the first satellite of the Earth Observing System (EOS) program and was launched on 18 December,
1999. It passes north to south over the equator in the morning. Aqua is the second EOS satellite which
carries a MODIS sensor and passes south to north across the equator in the afternoon. Terra and
Aqua MODIS cover the Earth’s surface every one to two days. The sensors onboard these satellites
measure 36 spectral bands from 0.405 µm to 14.385 µm. The data is released by different resolutions,
i.e., 250 m (bands 1–2), 500 m (bands 3–7), and 1000 m (bands 8–36). The MODIS data is accessible
at https://modis.gsfc.nasa.gov and can be used for a significant number of applications in the land,
atmosphere, and, ocean [38]. Figure 4 shows the false-color images of the Sistan and Baluchestan
province (also regions of the Kerman and Hormozgan provinces) before the flood (A) and during
the flood (B). The images were acquired by MODIS (bands 7–2–1) on 8 January and 13 January 2020.
These images were used here for validation purposes.
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the flooding on 8 January 2020, and (B) during the flood on 13 January 2020. The dark blue regions are
the inundated areas. The clouds in the image are shown with light blue which can be distinguished
from the inundated areas [39].

4. Method and Discussion

The methodology in the current paper includes five main steps, as illustrated in Figure 5. The steps
are: (1) Data collection, (2) data preparation, (3) calculating the surface reflectivity, (4) data calibration,
and (5) flood detection and validation. Each step is described as follows.

4.1. The Bistatic Radar Equations

Radar is a system for detecting targets and deriving information such as position, velocity, and
reflectivity signature from the detected objects [40]. It transmits a signal and receives the echo after it
is reflected by a target. The types of radar systems based on the location of the transmitter (TX) and
the receiver (RX) can be divided into colocated or monostatic radars, which measure backscattered
signals, and separated or bistatic radars, which measure forward-scattered signals. The main difference
between monostatic and bistatic radars is the separation of the transmitter and receiver [41]. Figure 6
shows monostatic and bistatic constellation for satellites.
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The CYGNSS and GPS constellations form a bistatic radar system. The GPS satellites transmit
circularly polarized microwave signals which are collected by the CYGNSS reflectometry receivers
after forward-scattering from the Earth’s surface. The scattered signals contain valuable information
about the physical properties of the reflecting surface. Inland waters can be detected by CYGNSS,
assuming a coherent forward-scattering mechanism [33,34,42]. The peak value of coherent scattered
power is defined as [22,23,43]:

Pcoh
RL =

Pt
R Gt Gr

(dts + dsr)
2

(
λ

4π

)2
ΓRL (1)

where Pcoh
RL is the peak value of coherently received power, R denotes the right-handed circular

polarization (RHCP) GPS transmit antenna, and L is related to the left-handed circular polarization
(LHCP) of forward-scattered signals collected by the downward-looking antenna. Pt

R is the transmitted
power, Gt is the gain of the transmitter antenna, Gr is the gain of the receiver antenna, λ is the GPS
L1 wavelength (∼0.19 m), and dts is the distance between the specular reflection point and the GPS
transmitter, while dsr is the distance between the specular reflection point and the GNSS-R receiver and
ΓRL is the surface reflectivity along with the incidence angle. In addition to the mentioned parameters
Pcoh

RL is affected by system noise. Therefore, signal-to-noise ratio (SNR) could be defined as:

SNR =
Pcoh

RL
N

=
Pt

R Gt Gr

(dts + dsr)
2

(
λ

4π

)2 ΓRL

N
(2)

where N is the noise value. Since the magnitude of the SNR is not equal to the reflected power,
the surface reflectivity or corrected SNR along with the incidence angle could be computed using:

SNRc =
ΓRL

N
= SNR

(dts + dsr)
2

Pt
RGt Gr

(4π
λ

)2
(3)

Finally, the SNRc in decibel (dB) is:

SNRc dB = SNRdB + 10 log(
(dts + dsr)

2

Pt
RGt Gr

(4π
λ

)2
(4)

This parameter (SNRc dB) is strongly related to the hydrological conditions of the land
surface [18,34]. In this study, the following CYGNSS L1 variables were used for the calculation
of the surface reflectivity:

- ddm_snr (SNRdB = 10 log(Smax/Navg) with Smax being the maximum value in a single DDM bin
and Navg is the average raw noise counts per-bin

- gps_tx_power_db_w (Pt
R)

- gps_ant_gain_db_i (Gt)
- sp_rx_gain (Gr)
- rx_to_sp_range (dsr)
- tx_to_sp_range (dts)

The parameter λ is the wavelength of the GPS L1 carrier (∼0.19 m). We converted all the values to
the dB scale (some of them were already in dB within the CYGNSS files).

4.2. Data Preparation and Calibration

Before and after using Equation (4), we employed several corrections and data editions and outlier
identification as follows:
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• GPS transmitter bias: GPS transmit powers are approximate estimates with some biases which
should be considered. The main sources of these biases could be unknown transmitting powers of
GPS satellites and the biases in Pt

R associated with GPS pseudorandom noise (PRN) codes [16,44].
We used empirical calibration developed by Chew et al. (2018) for CYGNSS products. Table 3
shows the magnitude of the biases which should be corrected during the estimation of SNRc dB [15].

• Incidence angle: This parameter also affects a coherent reflection when the incidence angles are
above 40 degrees or 50 degrees and was negligible for our purpose [34], but we deleted data with
an incidence angle of more than 65 degrees.

• Quality Control Flags: The Level 1A data product used in this study was refined by applying a set
of quality control flags designed and included in the data to indicate potential problems [27,45].
The specific flags we used were 2, 4, 5, 8, 16, and 17, which were related to S-band transmitter
powered up, spacecraft attitude error, black body DDM, DDM is a test pattern, the direct signal in
DDM, and low confidence in the GPS EIR estimate, respectively. Based on the work by Chew et al.
(2018) on soil moisture, we removed data with those quality flags in this study.

• Additional correction and removal: We removed data with SNRdB less than 2dB and CYGNSS
antenna gain of less than 0 dB or more than 13 dB. These corrections were empirical and are not
standardized, but have been shown to be beneficial [16].

Table 3. Empirical biases in SNRc dB according to pseudorandom noise (PRN).

PRN Bias (dB) PRN Bias (dB) PRN Bias (dB) PRN Bias (dB)

1 1.017 9 1.498 17 0.256 25 0.880
2 0.004 10 −0.783 18 −0.206 26 0.163
3 1.636 11 −0.230 19 −0.206 27 0.409
4 - 12 −1.021 20 0.345 28 −0.712
5 −0.610 13 0.007 21 −0.909 29 −1.032
6 0.24 14 −0.730 22 −0.838 30 0.877
7 −0.709 15 −0.376 23 −0.858 31 −0.562
8 0.605 16 −0.481 24 1.140 32 −0.819

Figure 7 shows the statistical information for corrected SNR using three days of CYGNSS data
during the flood time. Figure 7A shows the calculated surface reflectivity SNR of CYGNSS tracks
before (left side) and after (right side) the data preparation. As can be seen in the middle part of
the figure, some of the measurements that may be misleading were removed. Figure 7B,C show the
distribution of the measurements with respect to the incidence angle and antenna gain. Despite the fact
that the data rectification procedure discarded about 48% of the observations, CYGNSS still provided
enough data to detect the flood. The flooding period continued until 17 January 2020. We analyzed a
dataset consisting of three days of CYGNSS observations to reduce the effect of losing a significant
portion of the data.

4.3. Interpolation

An interpolation process was used here to retrieve a representative grid from the CYGNSS
observation points. As shown in Figure 7A, the data derived from CYGNSS have irregular structures
based on the satellite along-tracks. We used the natural neighbor interpolation method for gridding.
The method was developed by Sibson [46] and is a multivariate interpolation according to Voronoi
tessellation [47]. The principal formula is [48]:

G(x, y) =
∑N

i=1
wi f (xi, yi) (5)

where G is the estimated value at (x, y), wi = Qk/Rk is the weights, and f (xi, yi) is the known data at
(xi, yi), Rk is the area of the initial Voronoi diagram element for point Pk = (xi, yi). Qk is the intersection
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area of Rk and newly constructed element for the point (x, y). Therefore, the method algorithm is the
algorithm to insert an additional point into the existing Voronoi diagram. Figure 8 illustrates the visual
view of the natural neighbor interpolation method.
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For CYGNSS data interpolation over our region of interest, we generated a grid with the resolution
of 0.1◦ along the geodetic longitude and latitude and applied the mentioned interpolation method.
Figure 9 shows the data before and after gridding. As can be seen from the figure, the gridded data is
more sensible compared to the satellite tracks representation. Since SNR was not equal in magnitude to
the SNRc dB, the observations and corrections made in Equation (4) resulted in magnitudes greater than
140 dB (Figure 7A). To see the anomalies of the corrected SNRc dB in a visually reasonable range [11],
140 dB was subtracted from the original SNRc dB values.
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Figure 9. The outcome of the interpolation process for the corrected SNR (SNRc dB) over the period
of three days from 13 January to 15 January 2020. (A) Representation of the CYGNSS measurements
along the satellite tracks, (B) the interpolated data at 0.1◦ × 0.1◦ grid points using the natural neighbor
interpolation method.

4.4. Evaluation and Mapping

As can be seen in Figure 4B, the flood happened in the south and middle part of the Sistan and
Baluchestan province in Iran. Figure 10 shows the flooded regions which were detected by CYGNSS
observations overlaid on the MODIS image (Figure 4B) for verification. The figure contains three
regions with significant SNR anomalies. The regions are labeled A, B, and C.

Region A in Figure 10 belongs to the Hamun-Jaz Murian depression in the southeast of Iran, placed
between the Kerman province and Sistan and Baluchestan province. The shape of the depression or
basin is oblong and enclosed by the mountains. There is a seasonal lake, Hamun, in the middle of the
basin, which has been dry through the recent dry years. Although the Halil and Bampur rivers are the
main sources of feeding for the basin, neither of both bring significant water to the basin to fill this
lake, because the water is used for agricultural purposes on the way [49,50]. Moreover, the recent flood
in January 2020 was unique in terms of flood volume over the last decade. The previous flood in this
region happened in June 2007. Figure 11 demonstrates the capability of CYGNSS measurements in the
detection and mapping of the flood over this depression.

To calculate the flooded areas using corrected SNR, a threshold was used to distinguish inundated
from noninundated areas. A simple threshold method has been used in previous studies with
monostatic and bistatic radars [11,18]. As is seen in Figures 10–13, observations with the values
greater than 11 dB corresponded to the flooded areas. This threshold was used for the detection of
inundation in this study. This value could be different in other regions. The roughness and vegetation
could weaken the signals and change the threshold. The threshold used by [11] was 12dB for the
medium-vegetation density and typical roughness.

As can be distinguished from flooded areas in Figures 11 and 12, the values of corrected SNR more
than 11 dB have a high correlation with the satellite image in the inundated region. However, minor
discrepancies could be related to georeferencing or interpolation errors. The overall evaluation of the
results using the three days of CYGNSS data reports an acceptable performance for flood detection.
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Governments could use flood maps to establish the risk regions, safe evacuation options,
and update the reaction plan. In the absence of promising and accurate flood maps, the development
processes in or nearby the risk area are affected. The community lacks a tool to guide development to
be more secure and to reduce future risks.
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Figure 13. The georeferenced optical satellite imagery of the flood over the cities of Zaboli and Suran
(region C in Figure 10) from MODIS (13 January 2020) overlaid by the corrected SNR derived from
CYGNSS observations (13 January to 15 January 2020). The region includes a river and an inland
water body.

We proceeded to map the detected inundation area. Google Maps was used here as an infrastructure
which provides information about roads, cities, villages, etc. The derived data which shows flooded
regions (data over 11 dB) was mapped on Google Maps. Figure 14 illustrates the three major regions of
flood in Sistan and Baluchestan. Due to the flood in region A, corresponding to the Hamun-Jaz-Murian
basin, the cities close to the basin, i.e., IranShahr, Eslam Abad, and Golmorti, and the roads between
them, were affected. The area of this region is about 8706 square kilometers. Region B, which is close
to the coastline and encompasses a few rivers, many cities, villages, farmlands, and roads, was also hit
by the flood. The area of this region is about 9742 square kilometers. Region C, in close proximity to
the region A, includes a river, an inland lake, and the cities Zaboli and Suran, which were affected.
The area of this flooded region is about 1196 square kilometers. Therefore, based on the estimates from
the CYGNSS observations, about 19644 square kilometers were affected by the flood in the south and
middle parts of the Sistan and Baluchestan province. More severe impacts were seen in the regions
close to the coastlines and nearby rivers.
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5. Summary and Conclusions

We applied the GNSS-R remote sensing technique based on a dataset of spaceborne observations
of reflected GPS signals over the land to detect and map the recent flood in the southeastern part of
Iran. The flood occurred in the Sistan and Baluchestan province after the heavy rain in mid-January
2020. The dataset used was acquired from the data products of the NASA CYGNSS mission. The main
parameter of interest used in the analysis was the delay doppler map SNR, which was retrieved from
the level-1 data product. First, a data preparation procedure was applied to remove outliers and discard
low-quality data. In the next step, inverse bistatic radar formula was used to calculate the corrected
SNR, which was closely related to surface reflectivity and hydrological conditions. The corrected SNR
values were calibrated and interpolated to a regular grid over the study area. After calibration and
gridding, the corrected SNR was verified with the MODIS optical image. A threshold of about 11 dB or
more could be distinguished between the inundated and noninundated areas in the regions of interest.
Finally, the flood-affected areas were mapped on Google Maps. The area of the flooded regions was
estimated to be about 19,644 km2 or 10.8% of the province. Many cities, roads, and other infrastructures
were affected by the flood in these regions. The results indicate the regions close to depression, lakes,
and coastal areas are at a high risk of flooding in this province. This study confirms that CYGNSS data
is of value for hydrological investigations, particularly flood detection in the Sistan and Baluchestan
province. Despite a relatively short revisit time of CYGNSS observations, the spatial resolution of the
data products needs to be improved for mapping purposes. This issue could be addressed in future
missions by, e.g., increasing the number of onboard processing channels, as well as by processing the
reflected signals from other GNSS constellations such as GLONASS, Galileo, and BeiDou.
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