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Summary

Process modeling using first-principle equations has existed for centuries as
a methodology to represent and analyze real-world processes. In time with
increasing computing power and sensor data availability, data-driven model-
ing for processes has gained attention. Even though data-driven modeling, or
machine learning, has shown remarkable results in fields such as image clas-
sification and speech recognition, it has yet to be adopted as the preferred
approach for process modeling. Arguably, this is due to the long history of
first-principles modeling, along with the inherent black-box nature of data-
driven models. The latter causes a lack of model explainability, which, in turn,
can result in distrusting the predictions originating from data-driven models.
Furthermore, disregarding physical laws that have been acknowledged for cen-
turies to model processes can seem irrational.

Hybrid, or gray-box, modeling is a methodology with a vision to utilize all avail-
able knowledge, both physics and data, to model processes. It combines first-
principle equations with data-driven techniques and is especially intriguing for
inherent complex processes where the physical behavior is partly unknown or
challenging to model with first principles. One such process is the petroleum
production system. The multiphase flow rate through the production system
is challenging to model with required precision using first principles due to
uncertain subsurface properties and complex dynamic behavior. Furthermore,
available sensor data is often limited or of low quality. Therefore, a hybrid
modeling approach seems of significant importance to models predicting the
multiphase flow rates as it attempts to exploit all available information to its
full extent.

The work leading to this thesis has explored hybrid solutions for virtual flow
metering. A virtual flow meter (VFM) is a soft-sensor that utilizes process
models and already existing sensor measurements, such as pressures and tem-
peratures, to compute the multiphase flow rate at strategic locations in a
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Summary

petroleum asset. The main part of this thesis is a collection of six peer-reviewed
papers, three journal publications, and three conference publications. In addi-
tion to the paper collection, this thesis introduces the topic of hybrid modeling
for virtual flow metering to provide context to the publications. The main
contributions of the six publications can be summarized as follows: firstly,
a framework for simultaneous estimation of all parameters in a model with
varying degrees of hybridity has been proposed. Secondly, six hybrid VFM
model types were developed from real and historical production data from a
petroleum asset. Thirdly, several hybrid model properties such as explainabil-
ity, scientific consistency, flexibility, and accuracy have been examined. Lastly,
two methods, one to include uncertainty in the modeling, and one to address
the inherent nonstationarity of the underlying process to sustain the long-term
VFM performance, have been proposed.

The key takeaway of the work leading to this thesis is that hybrid modeling
is challenging, yet, also essential for obtaining high accuracy VFMs in certain
scenarios. The contributions have shown that the task of balancing learning
from physics and learning from data is nontrivial, and if incautious, the hybrid
model can exploit the disadvantages of both the mechanistic and data-driven
modeling domain instead of the advantages. On the other hand, the results
also showed that for processes with unknown or unmodeled physics, a hybrid
model can offer improved performance over a mechanistic model, and with
little available process data, a hybrid model can obtain a higher performance
than a data-driven model. Moreover, in the presence of nonstationarity and
little data, frequent updating of a hybrid VFM has shown essential to sustain
the prediction accuracy over time.

From the results, it is believed that hybrid modeling can be generalized to other
applications and can offer improved performance over a mechanistic and data-
driven approach. Furthermore, the solution for hybrid modeling presented in
this thesis can be conveniently integrated with existing mechanistic process
models in the industry. Naturally, the domain of hybrid modeling for virtual
flow metering has not been fully explored. The most promising future research
direction is combining hybrid modeling with methods that enable learning from
more than one petroleum well at a time.
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1 | Introduction

This chapter will firstly present the motivation and research objective behind
the work leading to the completion of this thesis. Thereafter, a summary of
the contributions leading to this thesis is given together with the list of original
publications. Lastly, the remainder of this thesis will be outlined.

1.1 Motivation

For centuries, humans have tried to describe real-world objects with abstract
representations (Schichl, 2004). In the modern world, such representations are
otherwise known as models. Some of the older, well-known, prestigious models
are, for instance, the solar system movement model by Ptolemy around 150
AD, Newton’s laws of motion derived in the 17th century, and Einstein’s the-
ories on relativity published at the beginning of the 20th century. With the
introduction of computers in the late 1940s, numerical simulation of mathemat-
ical models evolved to play a vital part in, for example, industrial applications
(Guillaume, 2018). Furthermore, with increasing computing power, research
on automatic discovery of models by inference on data escalated (Ghahra-
mani, 2015). Presently, with numerical simulation tools, increasingly complex
processes can be represented, their response to changes in process conditions
analyzed, and the model used in control and optimization of the process in
question (Gravdahl and Egeland, 2002).

The oil and gas industry is one of many industries where process models and
digital computing technologies have been one of the keys to success (Guo et al.,
2007). The petroleum production system consists of the reservoir, wells, flow-
lines, separators, pumps, and transportation pipelines, and examples of models
exist for all components (Jansen, 2015). Reservoir models are used to simulate
the response of the reservoir to petroleum depletion and play an important
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Introduction

role in long-term production strategies, including drilling schedules and deci-
sions regarding injection rates and target production flow rates (Foss et al.,
2018). Other models can aid in the short-term, daily control and optimization
of petroleum production or provide situational awareness and flow assurance.
A type of model called a virtual flow meter (VFM) can monitor the multi-
phase flow rate at strategic locations in a petroleum asset (Toskey, 2012) and
is useful for many of the above-mentioned engineering problems. With today’s
global dependency on petroleum production, in addition to an increasing focus
on phasing out non-renewable energy sources, the importance of extracting as
much petroleum as possible from already existing assets becomes evident. To
this end, high accuracy VFMs yielding information about the multiphase flow
rate over time can become useful also for long-term optimization strategies.

Nevertheless, a particular troublesome challenge of modeling the multiphase
flow rate in petroleum production systems is the often high uncertainty in
the available information (Jansen, 2015; Monteiro, Chaves, et al., 2017). For
instance, describing the flow rates in detail using first-principle equations is
challenging due to uncertain subsurface characteristics and complex dynamic
behavior. Furthermore, available sensor data are often limited and of low qual-
ity and may even fall out in periods (Corneliussen et al., 2005). Therefore, to
design high accuracy VFMs, all available knowledge should be combined and
utilized to its full potential. A modeling methodology where first-principle
equations are combined with machine learning (ML) techniques to exploit
available data is referred to as hybrid, or gray-box, modeling. Although hybrid
process models have existed since the 1990s, with application to a fed-batch
bioreactor as one of the first examples (Psichogios and Ungar, 1992), hybrid
models for VFMs have emerged only recently (Bikmukhametov and Jäschke,
2020a). The work behind this thesis has contributed to the development of
hybrid VFMs. The top-level research objective can be stated as follows:

Research Objective

Develop and examine hybrid model solutions suitable for virtual flow
metering applications.

1.2 Contributions

The top-level research objective presented in Section 1.1 has a wide scope with
numerous possibilities. Therefore, the work leading up to this thesis has not

2



1.3. Publications

covered the whole scope but has focused on some specific research directions.
The main part of this thesis is a collection of peer-reviewed papers. The
contributions of the papers are elaborated on in Chapter 3, while a summary
is given here:

• A framework for simultaneous estimation of all parameters in hybrid
models has been proposed.

• In total, six different hybrid VFM model variants have been developed
using historical production data from the asset Edvard Grieg. Their
performances have been compared with the performances of mechanistic
and data-driven VFM models.

• Several model properties such as explainability, scientific consistency, and
flexibility have been investigated, where the hybrid models have been
compared to mechanistic and data-driven models.

• A method to include epistemic and aleatoric uncertainty in VFM mod-
eling has been proposed.

• A method to address the inherent nonstationarity of the process and sus-
tain the long-term prediction performance of VFMs has been proposed.

1.3 Publications

Six publications have been written as a result of the work on this thesis. Below
is a list of the original publications ordered A-F chronologically by the date
of publication. Of the six, three are conference papers, and three are journal
papers. In Paper C, the candidate contributed to a major part of the visualiza-
tion and analysis of the results, and the write-up of the paper. One additional
paper was written in the duration of the Ph.D. but is not directly relevant to
the top-level research objective in the thesis. Paper E is accepted but has not
yet been published, while Paper F is submitted for possible publication.

Conference publications

Paper A M. Hotvedt, B. Grimstad, and L. Imsland (2020). “Developing a
Hybrid Data-Driven, Mechanistic Virtual Flow Meter - a Case Study”. In:
IFAC-PapersOnLine 53 (2), pp. 11692–11697
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Paper B M. Hotvedt, B. Grimstad, and L. Imsland (2021). “Identifiability
and physical interpretability of hybrid, gray-box models - a case study”. In:
IFAC-PapersOnLine 54 (3), pp. 389–394

Paper E M. Hotvedt, B. Grimstad, D. Ljungquist, and L. Imsland (2022b).
“When is gray-box modeling advantageous for virtual flow metering?” In:
Accepted for publication in IFAC-PapersOnLine

Journal publications

Paper C B. Grimstad, M. Hotvedt, A.T. Sandnes, O. Kolbjørnsen, and L.
Imsland (2021). “Bayesian Neural Networks for Virtual Flow Metering: An
Empirical Study”. In: Applied Soft Computing 112 (1)

Paper D M. Hotvedt, B. Grimstad, D. Ljungquist, and L. Imsland (2022a).
“On gray-box modeling for virtual flow metering”. In: Control Engineering
Practice 118 (1)

Paper F M. Hotvedt, B. Grimstad, and L. Imsland (2022). “Passive learning
to address nonstationarity in virtual flow metering applications”. In: Submitted
to Expert Systems with Application for possible publication

Additional publications written in the duration of the PhD

M. Hotvedt, S. O. Hauger, F. Gjertsen, and L. Imsland (2019). “Dynamic
Real-Time Optimisation of a CO2 Capture Facility”. In: IFAC-PapersOnLine
52, pp. 856–861

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 will introduce
background material that has been relevant for the work on the top-level re-
search objective. Section 2.1 will introduce process modeling in general and
describe the differences of mechanistic, hybrid, and data-driven models. Sec-
tion 2.2 will describe how process models are usually trained using available
process data. Section 2.3 will present the concept of virtual flow metering and
the challenges related to modeling. Thereafter, Chapter 3 will elaborate on
the contributions that have led to the completion of this thesis. Chapter 4
will discuss the choices made in the research, reflect on the generalizability
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of the results to different applications, and outline future promising research
directions for hybrid VFMs. Finally, Chapter 5 gives the original publications,
reformatted to fit the format of this thesis.
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2 | Background

This chapter will introduce relevant background material of the work leading
to this thesis. Section 2.1 will introduce process modeling, with a classification
of model types into mechanistic, hybrid, and data-driven models. Section 2.2
will continue by describing how process models can be learned, or trained,
using available process data. Thereafter, Section 2.3 will introduce virtual
flow metering in petroleum production systems and discuss challenges related
to these models.

2.1 Process modeling

According to the English dictionary, a physical process is a phenomenon that
is either sustained or characterized by gradual changes through a series of
states. It can be naturally occurring, like the decay of food or photosynthesis,
or constructed, such as the boiling of water or extraction of hydrocarbons from
a reservoir. Typically, a process is linked to an apparatus such as a distillation
column, heat exchanger, or compressor and can be characterized by its mass,
energy, and momentum bounds (Mikleš and Fikar, 2007).

Process modeling is the act of expressing a process with a mathematical model
(Mikleš and Fikar, 2007). The model will have an output, or target, variable,
which is the process quantity of interest, and inputs, which are remaining pro-
cess conditions. The output will be related to input variables through mathe-
matical equations. Take the boiling of water as an example. The output can
be the temperature of the water, while the pressure, the effect of the heater,
and the surrounding temperature are examples of inputs. An exhaustive classi-
fication of process models is challenging due to the many characteristics (Zen-
dehboudi et al., 2018). For instance, the models can be differentiated by the
degree of spatial variation, linearity, time-dependency, or determinacy. One of
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Background

the more common classifications is time-dependency, separating models into
dynamic and steady-state. In steady-state models, the rate of change of the
process variables with respect to time is zero, and the mass, energy, and mo-
mentum of the output variable at two points in time are conserved (Gravdahl
and Egeland, 2002). In other words, there is no accumulation in the system,
for example, of mass. Conversely, dynamic models allow the process variables
to change with time, accounting for accumulation. In this work, classifica-
tion with regard to the degree of dependency on prior knowledge or process
data has been the main focus. Models with a structure developed from prior
knowledge such as first-principles are defined as mechanistic models, whereas
models with a structure determined by inference on data are referred to as
data-driven, or ML, models (Solle et al., 2016). The intersection of the two
model types is called hybrid, or gray-box, models. In literature, hybrid models
are also a term used for models combining discrete and continuous process
dynamics. Such models are not considered in the thesis. An illustration of the
classification is shown in Figure 2.1.

Figure 2.1: Overview of process model types classified according to the depen-
dency on prior knowledge or process data. In mechanistic models, the structure
is built from prior knowledge, such as first-principles, whereas in data-driven
models, the structure is determined from inference on data.

The model types have different properties that generally make one advanta-
geous over another in different scenarios. Some of these are summarized in
Table 2.1, where the definitions of the concepts are given below. Naturally,
there will always exist exceptions where one model type does not cohere with
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the expectations given in Table 2.1. For instance, mechanistic models are
known for their high scientific consistency as a natural result of being based
on physical laws. However, the scientific consistency will likely be limited to
the range at which any model assumptions or simplifications are valid.

Table 2.1: Selected properties of the mechanistic, hybrid, and data-driven
models.
Property Mechanistic Hybrid Data-driven

Prior knowledge High Medium Low
Data demand Low Medium High
Explainability High Medium Low
Flexibility Low Medium High
Extrapolation power High Medium Low
Scientific consistency High Medium Low
Computational burden High Medium Low
Maintenance cost High Medium Low

Definition 2.1.1 (Explainability). Explainability is the ability to describe, or
reason about, the cause of the model response to a given input (Linardatos
et al., 2020).

Definition 2.1.2 (Flexibility). Flexibility is the ability to adapt to arbitrar-
ily complex patterns in data. This concept is also known as model capacity
(Goodfellow et al., 2016).

Definition 2.1.3 (Extrapolation power). The extrapolation power is the abil-
ity of the model to accurately predict the process response to new and previ-
ously unobserved conditions outside the bounds of the already observed con-
ditions (Hahn, 1977).

Definition 2.1.4 (Scientific consistency). A model is scientifically consistent
if the response to a given input is in line with the physical principles of the
process it represents (Roscher et al., 2020).

Definition 2.1.5 (Computational burden). The computational burden is the
time spent on the evaluation, or computation, of the model response to a given
input (excluding model training).

Definition 2.1.6 (Maintenance cost). The maintenance cost is the time and
effort spent on model updating to ensure an acceptable accuracy.
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2.1.1 Mechanistic modeling

In mechanistic models, the equations are derived from first principles such as
the mass, energy, and momentum balance equations, with possible empirical
closure relations (Solle et al., 2016). Therefore, deriving a mechanistic model
requires a thorough understanding of the process’ physical behavior. The ter-
minology white-box, see Figure 2.1, is used as a reference to the prior knowledge
of the internal structure of the model. This is contrary to a black-box model
where the structure is hidden from the developer or difficult to analyze. Mech-
anistic models can be developed before the start-up of the process and require
no process data before deployment (Zendehboudi et al., 2018). Typically, the
parameters have a physical interpretation that simplifies the specification of
prior values. For example, modeling the inflow-outflow relationship of a water
tank, one model parameter is the water density. If the water is fresh, the den-
sity should have a value of approximately 1000kg m−3. On the other hand, in
practice, some process data are used to tune or calibrate the model parameters
to better fit the measurements.

Due to the transparency of white-box models, the explainability is high. In
other words, given a change in input or parameter value, it is often possi-
ble to deduce the model response from inspection. As the model is based on
physical laws, the scientific consistency is high. The aforementioned is also
the reason for the commonly observed high extrapolation power to previously
unseen process conditions. Nevertheless, not all industrial problems are easily
formulated with first principles, for instance, due to unknown physical phe-
nomena (Cherkassky and Mulier, 2007). The exact solution can be challenging
to obtain even for simple process models and can often lead to a high computa-
tional burden. Indeed, simplifications and assumptions of the process physics
are commonly necessary for a mechanistic model to be computationally fea-
sible in real-time applications (Willard et al., 2020). Therefore, mechanistic
models typically lack flexibility, and process-model mismatch commonly exists,
causing low model prediction accuracy.

Ironically, many of today’s well-established first principles originally emerged
from experimental studies with the inference of data. This is called empirical
modeling and is a data-driven modeling methodology (Zendehboudi et al.,
2018). One example is the ideal gas law, which describes the relationship
between the amount of substance of a gas and its pressure, temperature, and
volume (Moran et al., 2014).
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2.1.2 Data-driven modeling

Data-driven models are derived solely from available process data and require
no prior knowledge about the process (Solle et al., 2016). Typically, the equa-
tions are generic without any attempt at capturing the underlying physics of
the process, and the parameters do not have a physical representation. The
motivation behind is to make data-driven models applicable to many types of
problems, from image recognition to prediction of the growth rate in a fed-
batch bioreactor. Typically, algorithms for training data-driven models can be
differentiated into four: supervised, unsupervised, semi-supervised, and rein-
forcement (Hastie et al., 2009). In the first category, measurements of the out-
put variable are available, and the model is learned by iteratively adjusting its
parameters such that the error between the model output and measurements is
small. Examples of such models are linear regression models or decision trees.
In the second category, measurements of the output are not available, and the
model learns from patterns in the input data only. Examples of algorithms are
K-means clustering or Principle Component Analysis. In the third category,
the models are trained using a combination of data with and without measure-
ments of the output. In the last category, the model attempts to learn a set
of sequential decisions to take to reach a specified goal. The optimal decisions
are learned by receiving rewards (Sutton and Barto, 2018). Reinforcement
learning is typically utilized for teaching a computer to play a game.

In this work, only supervised learning algorithms are considered for developing
process models. To give examples of typical models, the linear model and the
neural network model for regression will be presented mathematically below.
For simplification, the steady-state versions will be considered. The linear
regression model with output ŷ ∈ R, inputs x ∈ Rd, is given by:

ŷ = wTx+ b (2.1)

where the model parameters consist of a weight vector w ∈ Rd and a bias
b ∈ R. The fully connected, feed-forward neural network is represented by the
following set of equations using ŷ ∈ R and x ∈ Rd:

Input layer: z(1) = x

Hidden layer(s): z(l+1) = a(W (l)z(l) + b(l)), l = 1, . . . , L

Output layer: ŷ = W (L+1)z(L+1) + b(L+1),

(2.2)

where L is the number of layers in the network and the parameters consists of
the weights W and biases b on each layer. The a : Rd → Rd is the activation
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function, for instance, the rectified linear unit (ReLU) a(z) := max(0, z),
where the max operator is applied element-wise for each element in z. Observe,
with no hidden layers in the network, the model is equal to the linear regression
model.

In time with increased computational power and process sensor availability,
data-driven modeling has gained attention and is becoming a popular method-
ology in many process industries (Cherkassky and Mulier, 2007). Due to the
models’ generally high flexibility, arbitrarily complex, or unknown, physical
phenomena can be captured as long as these are reflected in the available
data. This is highly advantageous for complex processes where the physical
behavior is not completely understood. Furthermore, the development and
maintenance cost of data-driven models are often lower than for mechanistic
models (Solle et al., 2016). Additionally, after development, the computational
burden is typically low and fixed, which makes the models suitable for utiliza-
tion in real-time applications. Hence, data-driven modeling is a powerful tool
that has provided high accuracy models in many cases and has even surpassed
human abilities in some application areas (Liu et al., 2019).

Nevertheless, some of the disadvantages of this model type hamper the method
of becoming an industry standard. For instance, the inherent black-box na-
ture causes a lack of explainability, which in turn can result in model distrust
(Willard et al., 2020). Furthermore, the model is generally only valid in the
domain of the data it has been exposed to. They are data-hungry and sensitive
to the quality of the data. If not careful, the models can adapt to undesired
patterns, such as noise, and can struggle with extrapolation to unseen process
conditions (Prada et al., 2018). The aforementioned is also a cause of the com-
mon low scientific consistency. Naturally, the advantages and disadvantages of
data-driven models vary between model types. Simple regression models have
low flexibility, yet, typically higher explainability, and vice versa (Zendehboudi
et al., 2018).

2.1.3 Hybrid modeling

Hybrid models attempt to combine the advantages of the mechanistic and data-
driven models while diminishing their disadvantages, in a sense, combining the
best of both worlds. In particular, there is a desire to create models with
high explainability and scientific consistency while retaining the flexibility to
adapt to complex or unknown physical phenomena. Although some of the first
examples of hybrid modeling appeared in the 1990s (Psichogios and Ungar,
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1992; Kramer et al., 1992; Su et al., 1992; Johansen and Foss, 1992), the field
of research did not escalate until recent years (Karpatne et al., 2017), likely due
to the evolution of data-driven modeling methodologies. Today, some claim
that hybrid modeling is the key to success in the process industry (Qin and
Chiang, 2019; Willard et al., 2020).

The space of possible combinations of mechanistic and data-driven models is
infinite and can be placed on a gray-scale from mechanistic to data-driven
models, see Figure 2.2. Approaching hybrid modeling from either side of the
scale, the left side can be thought of as enhancing mechanistic models with ML
and the right side as guiding data-driven models with physics (Willard et al.,
2020).

Figure 2.2: Gray-scale of hybrid models ranging from mechanistic to data-
driven models.

On the left side of the gray-scale, the models are based on first-principles equa-
tions but utilize data-driven techniques for different purposes. For instance,
certain parameters in the mechanistic model can be estimated using a data-
driven model, see Figure 2.3a. An example of this type of model can be found
in Psichogios and Ungar (1992), where the growth rate of a fed-batch bioreac-
tor is modeled with a neural network. Another example is a model where the
process-model mismatch of a mechanistic model is attempted captured with a
data-driven model. For instance, the model in Bikmukhametov and Jäschke
(2020a) where the error of a mechanistic model for multiphase flow rates is
captured with a neural network.

On the right side of the gray-scale in Figure 2.2, the models are based on data-
driven solutions but use physics in some form to improve the predictions. Pop-
ular naming conventions for these types of models are physics-informed ML,
physics-guided ML, physics-aware AI, and theory-guided data science (Willard
et al., 2020; Karpatne et al., 2017). One example is a data-driven model with
feature engineering. Here, additional inputs to the data-driven model are de-
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signed using first principles. Figure 2.3b illustrates this model. An example of
utilization is found in Yin et al. (2021) where a convolutional neural network
with feature engineering is used to classify eye-tracking data. Another example
is a data-driven model with a physics-guided loss function, where the deviation
between known physical process behavior and the model output is penalized in
the optimization problem. In Pukrittayakamee et al. (2009), a physics-guided
loss function is used to train a neural network for a potential-energy surface
and corresponding force fields.

(a) Mechanistic model parameter (θ̂MM ) estimation with a data-
driven model.

(b) Feature engineering with first principles used as input (x′) to
a data-driven model (DM).

(c) Ensemble model combining a mechanistic (ŷMM ) and data-
driven (ŷDM ) model output.

Figure 2.3: Hybrid model types. Abbreviations used are mechanistic model
(MM) and data-driven model (DM). a) Mechanistic model parameter estima-
tion with a data-driven model, b) feature engineering with a first-principles as
input to a data-driven model c) Ensemble model combining a mechanistic and
data-driven model. Model inputs are x, and the output is ŷ.

Examples of models that can be placed in the middle of the scale are ensemble
models. Here, at least two types of models are developed for the same process.
The output of the ensemble model is a more or less intelligent combination of
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its sub-models, for instance, a weighted average. Figure 2.3c illustrates this.
In Baraldi et al. (2014) an ensemble model combining mechanistic and data-
driven models are used to predict the degradation of choke valves in offshore
oil platforms.

Although hybrid modeling seems promising, several pitfalls are imaginable.
Instead of exploiting the best of both worlds, the model can easily become
the worst of both worlds. Therefore, a pertinent integration of the mechanistic
and data-driven component is essential and is not a trivial exercise. In Sansana
et al. (2021), advice on how to choose an appropriate hybrid model structure
is given. These are strongly influenced by the available mechanistic model for
the process. For instance, if the mechanistic model yields a high process-model
mismatch, a structure on the right side of the gray-scale should be chosen, as it
increases model flexibility. On the other hand, if the mechanistic model offers
a behavior close to the process with few simplifications needed, a hybrid model
structure on the left side of the gray-scale should be chosen, mainly because
of the generally higher extrapolation power and scientific consistency of such
models.

2.2 Model learning

Model learning is the task of utilizing data to aid in mathematical modeling and
the estimation of parameters in these models (Beck and Arnold, 1977). Model
learning is also referred to as system identification. The act of estimating
model parameters using data is also referred to as parameter estimation or
model training (Hastie et al., 2009).

Consider a stochastic process P to generate a stream of observations S =
{(x1, y1), (x2, y2), . . . , (xt, yt), . . .}, where xt ∈ Rd are the process conditions
and yt ∈ R is the desired process quantity at time t. In general, the set S can
be thought of as a realization of P governed by a generative model (Oliveira
et al., 2021):

pt(x, y) = pt(y | x)pt(x). (2.3)

In (2.3), pt(x) is the marginal distribution of the process conditions, and pt(y |
x) is the conditional distribution of the desired process quantity. The index t
indicates that the distributions can be time-variant.

A common approach to process modeling is to use an inductive method to
learn a steady-state approximation of the true and generally unknown condi-
tional distribution pt(y | x) using a fixed dataset of ND historical observations:
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D = {(xt, yt)}NDt=1. Although dynamic models are often better-suited to rep-
resent the behavior of nonstationary processes, they are generally of higher
computational complexity and have higher development and maintenance cost
(Granero-Belinchón et al., 2019). Therefore, dynamic models can be challeng-
ing to utilize in real-time applications. Furthermore, many real processes are
slowly varying, making the steady-state assumption reasonable under normal
operation. In the remainder of this section, steady-state model learning will
be the focus. Under steady-state assumptions, the generative model in (2.3) is
time-invariant: p(x, y) = p(y | x)p(x). Naturally, theory regarding parameter
estimation of dynamic models exists in literature (Schittkowski, 2002). Some
popular approaches are the Kalman Filter (Kalman, 1960) and the moving
horizon estimator.

A typical form of the steady-state approximation of the conditional distribution
p(y | x) is

ŷt = fθ(xt) + εt, εt ∼ N (0, σ2ε ), (2.4)

where fθ is the parametric model of the mean, θ are the model parameters,
and εt is measurement noise with zero mean and variance σ2ε . The (2.4) is
steady-state because ŷt is conditioned on xt for a given t and not at previous
time-steps, and θ and σ2ε are time-invariant. For (2.4), the assumption of
independent and identically distributed (i.i.d) variables is used (Hastie et al.,
2009). Furthermore, (2.4) assumes homoscedastic measurement noise. This
means that the noise is independent of the signal being measured (Woodward
et al., 1998). The opposite is heteroscedasticity. For instance, define ȳt as
the true value of the desired quantity being measured. A heteroscedastic noise
term would be a function of the true value: εt(ȳt), whereas homoscedastic noise
is not, as defined in (2.4).

Typically, a model with a high generalization power is desired (Goodfellow et
al., 2016). With high generalization power, the model yields a high prediction
accuracy on previously unobserved process conditions that are not represented
in the training data D. For models with high flexibility, this can be nontrivial,
especially if the data is noisy or exhibits unusual undesired patterns. If the
model adapts to undesired data patterns, it is said to be overfitted. Take
Figure 2.4 as an example. Let xt = 0, ..., 3π. The true underlying process is
a sine-wave. However, the device measuring the sine-wave is corrupted with
normally distributed measurement noise. Mathematically, the true conditional
distribution of the process generating the observations in Figure 2.4 is given
by

yt = sin(xt) + ε, ε ∼ N (0, 0.52). (2.5)
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Figure 2.4: Example of modeling a sine-wave. Two identical data-driven mod-
els with high flexibility have been used to approximate the true process. The
blue curve is the output from a model that is intentionally overfitted to the
available data, while the orange curve is the output from a model that is in-
tentionally underfitted.

Two identical steady-state data-driven models fθ are trained to capture (2.5),
see Figure 2.4. The models are neural networks with five hidden layers and 500
nodes in each layer, yielding models with high flexibility. The two models give
different outputs because the learning algorithm used to train the two models
is different. The model yielding the blue curve is intentionally overfitted to the
historical data. This can be observed as the model has adapted not only to the
sine-wave but also to the measurement noise. The model yielding the orange
curve is intentionally underfitted. Therefore, the model is barely capturing the
wavy behavior of the sine. The details around the learning algorithm will be
described in the following sections.

2.2.1 The parameter estimation problem

The parameter estimation problem can be phrased as an optimization problem

θ̂ = arg max
θ

J, (2.6)

where θ̂ ∈ RPθ are the parameter estimates, and J is the objective function
that generally describes a metric of model fit to the available process data.
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In the data-driven modeling domain, J is often called a loss function and is
typically minimized instead of maximized (Hastie et al., 2009). Maximization
can easily be converted to minimization by minimizing −J . An alternative to
phrasing the problem as an optimization problem is the utilization of Monte
Carlo sampling (Luengo et al., 2020). However, such techniques will not be
described further.

Approaching model learning from a Bayesian perspective, the prior probability
distribution of the model parameters p(θ) can be updated to a posterior param-
eter distribution after observing data. The posterior parameter distribution is
given by

p(θ | D) =
p(D | θ)p(θ)

p(D)
. (2.7)

The p(D | θ) is called the likelihood function and is given by (2.4) and p(D)
is called the evidence. Conditional models like (2.4) are commonly trained
with maximum likelihood estimation (MLE) or maximum a posteriori (MAP)
estimation. In MLE, the parameters are found by maximizing the mode of
the likelihood function, whereas in MAP estimation the mode of the posterior
parameter distribution is maximized. Bayes law, together with the MAP and
MLE parameter estimates, are visualized in Figure 2.5. The MLE problem can
be derived as

θ̂MLE = arg max
θ

p(D | θ) = arg max
θ

log p(D | θ). (2.8)

By using the i.i.d. assumption, which states that the observations in D are in-
dependent of each other and identically distributed, the log-likelihood function
of the model in (2.4) can be written as

log p(D | θ) = log

ND∏

t=1

p(yt | xt,θ) =

ND∑

t=1

log p(yt | xt,θ),

=

ND∑

t=1

log

[
1√

2πσ2ε
e
(yt−fθ(xt))

2

2σ2ε

]

= −
ND∑

t=1

1

2σ2ε
(yt − fθ(xt))

2 −ND log
√

2πσ2ε ,

(2.9)
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Figure 2.5: Visualization of Bayes law. The prior parameter distribution is up-
dated to a posterior distribution with the likelihood of the model. In maximum
likelihood estimation, the estimated parameters are the mode of the likelihood
function (θ̂MLE). Using maximum a posteriori estimation, the estimated pa-
rameters are the mode of the posterior distribution (θ̂MAP).

resulting in the estimation problem

θ̂MLE = arg max−
ND∑

t=1

1

2σ2ε
(yt − fθ(xt))

2 −ND log
√

2πσ2ε︸ ︷︷ ︸
constant

,

= arg min

ND∑

t=1

1

2σ2ε
(yt − fθ(xt))

2 .

(2.10)

If the estimation problem is divided by ND and by assuming a constant noise
level σε = const., the MLE problem is equal to the nonlinear least squares
(NLS) estimation problem. The NLS is a common approach in both the mech-
anistic and data-driven modeling domains. From (2.10), it is seen that the only
concern of the MLE is to minimize the squared deviation between measure-
ments and predictions. Hence, the model can be easily overfitted to undesired
attributes of the data, as for one of the models in Figure 2.4. To counter-
act this effect, the models can be trained with maximum a posteriori (MAP)
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estimation

θ̂MAP = arg max
θ

p(θ | D) = arg max
θ

p(D | θ)p(θ)

p(D)

= arg max
θ

log p(D | θ) + log p(θ)− log p(D)︸ ︷︷ ︸
constant

.
(2.11)

If the priors on the parameters are assumed to follow a Gaussian distribution
θi ∼ N (µi, σ

2
i ), i = 1...Pθ, the log-prior parameter distribution is given as

log p(θ) = log

Pθ∏

i=1

p(θi) = −
Pθ∑

i=1

1

2σ2i
(θi − µi)2 − Pθ log

√
2πσ2i . (2.12)

Inserting (2.9) and (2.12) into (2.11), the MAP estimation problem becomes

θ̂MAP = arg max
θ

log p(D | θ) + log p(θ),

= arg max
θ
−

ND∑

t=1

1

2σ2ε
(yt − fθ(xt))

2 −ND log
√

2πσ2ε︸ ︷︷ ︸
constant

−
Pθ∑

i=1

1

2σ2i
(θi − µi)2 − Pθ log

√
2πσ2i︸ ︷︷ ︸

constant

,

= arg min
θ

ND∑

t=1

1

σ2ε
(yt − fθ(xt))

2 +

Pθ∑

i=1

1

σ2i
(θi − µi)2 .

(2.13)

Observe, MAP estimation is a trade-off between minimizing the squared errors
and parameter deviation away from its respective prior mean value. If (2.13)
is multiplied by the factor σ2ε /ND and the prior parameter distribution is equal
for all parameters with mean value µi = 0 and σi = σ, (2.13) is equal to a the
NLS with `2-regularization, a common approach in the data-driven modeling
domain. With a mean parameter value equal to zero, the `2-regularization
penalizes large parameter values, preventing a data-driven model from adapt-
ing to arbitrarily patterns in the data, in other words, preventing overfitting.
The regularization factor, which from the MAP estimation problem is given by
λ = σ2ε /NDσ

2, is typically used as a tuning constant to determine the degree
of regularization. The neural networks in Figure 2.4 are trained with NLS
estimation. For the overfitted model, parameter regularization is excluded,
whereas for the underfitted model, λ = 0.1. The effect of `2-regularization
on the optimal parameter value is illustrated for the two-dimensional space
in Figure 2.6. The solid ellipses illustrate the contours of the NLS where the
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optimum is given at θ̂NLS . The dotted ellipses illustrate the contours of the
`2-regularization of the parameters, where the optimum value for the NLS with
regularization θ̂NLS,`2 will depend on the size of the regularization factor λ.
For large λ, the optimum will be drawn towards the center of the ellipses.

Figure 2.6: Visualization of the effect of `2-regularization in 2D-space on the
nonlinear least squares estimation problem. The solid ellipses represent the
contours of the NLS problem with the optimum in the center. The dotted
ellipses represent the contours of `2-regularization, where the optimal value for
NLS with regularization will change depending on the regularization factor λ.

A disadvantage with the MLE and MAP as described above is that the result of
the estimation problem is point estimates of the parameters only, disregarding
uncertainty. Naturally, there exist methods that estimate the full posterior
parameter distribution and not just the mode. Examples are Markov Chain
Monte Carlo methods (MCMC) or Variational Inference (VI) (Blei et al., 2017).
These methods are of higher computational complexity than MAP estimation,
and a detailed description will not be given here.

2.2.2 Solving the estimation problem

Regardless of the chosen type of estimation problem, it must be solved. There
exist many methods to solve (2.6). For linear, deterministic models, the exact
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solution can often be calculated. Consider the linear model

ŷt = xTt θ, (2.14)

for which maximum likelihood will be used to estimate the parameters. Collect
all measured inputs and outputs from D in the design matrix X ∈ RND×Pθ
and the vector y ∈ RND , respectively. The MLE for the linear model becomes

θ̂ = arg min
θ

(y −Xθ)T (y −Xθ) . (2.15)

The solution to (2.15) is given by

∇θ (y −Xθ)T (y −Xθ) = 0,

=⇒ 2XTXθ − 2Xy = 0,

=⇒ θ̂ = (XTX)−1XTy,

(2.16)

and a unique solution exists ifXTX has full column rank (Nocedal andWright,
2006).

On the other hand, for highly complex, highly nonlinear models, exact solu-
tions to (2.6) are challenging to obtain. Therefore, iterative, gradient-based,
numerical optimization algorithms are commonly used (Bishop, 2006). The
general formulation for such algorithms is given by (Bengio, 2012)

θ̂(k+1) = θ̂(k) − γ(k)M(B(k), θ̂(k)), k = 1, .., E (2.17)

where E is the number of iterations or steps taken towards the optimal value,
γ is the learning rate or step-size,M is the set of equations calculating the step
direction, and B is a minibatch consisting of a set of observations extracted
from D. Any parameter of the learning algorithm that is not included in
θ is called a hyperparameter, for instance, γ, E, and |B|. Several of the
hyperparameters are essential to obtain a good model fit to data. For instance,
if the step-size is too large, the learning algorithm can diverge, and an increase
in the average error is typically observed (Bengio, 2012). If the step-size is too
small, the learning problem can fail to converge in the given iterations, resulting
in underfitting. A possible solution to determine an appropriate learning rate
is to introduce a learning rate scheduler that adapts the learning rate at each
iteration according to a criteria (Bengio, 2012). The number of iterations E
can also significantly influence the result of model learning. A too large or
small E can result in the model being overfitted or underfitted, respectively.
A typical approach to select E is the regularization method early stopping
(Goodfellow et al., 2016). Early stopping monitors the error on a subset of
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the historical data called the validation data and terminates the training if
the model error on the validation data increases significantly compared to the
error on the remaining historical data. Furthermore, the choice of method
to calculate the step-direction M can affect the convergence of the learning
algorithm.

In the ML domain, first-order optimization algorithms are commonly applied
(Goodfellow et al., 2016). In these methods, the step direction is calculated by
using first-order derivative information of the objective function. For instance,
in minibatch gradient descent (GD)

M = ∇θJ(B(k), θ̂(k)), (2.18)

Stochastic gradient descent (SGD) is applied if the minibatch consists of only
one observation. Minibatch GD and SGD are among the most popular methods
in ML for solving (2.6) because of their high computational efficiency in large-
scale problems, such as text classification (Bottou et al., 2018). A disadvantage
is that they can struggle to converge for highly nonlinear domains with several
local minima. An example of this is illustrated in Figure 2.7. The objective
function J has several local minima in parameter space. If the parameters are
initialized at θ0, GD and SGD can end up in the wrong minimum, dependent
on the hyperparameters of the learning algorithm. Therefore, other gradient
descent methods have been developed to counteract this effect, for instance,
Adam, which utilizes momentum (Kingma and Ba, 2015). As an analogy,
consider a ball rolling down the hill from the starting point θ̂(0) in Figure 2.7.
Using the momentum the ball has at the bottom of the first local minimum
(θ̂(S)GD), it can continue past the hilltop and continue towards the second local
minimum (θ̂Adam). Other popular gradient descent methods in the ML domain
are AdaGrad and Adadelta, where both utilize adaptive learning rates (Tan
and Lim, 2019).

Another approach in addressing nonlinear domains is by introducing second-
order derivative information through second-order optimization algorithms
(Bottou et al., 2018). One example is the Newton method (Nocedal and
Wright, 2006)

M =
[
∇2

θJ(B(k), θ̂)
]−1
∇θJ(B(k), θ̂). (2.19)

where ∇2
θJ is the Hessian matrix. However, the Newton method is rarely used

for complex models due to the computational burden of calculating the Hes-
sian, and particularly the inverse of the Hessian (Goodfellow et al., 2016). On
the other hand, there exist algorithms that approximate the Hessian matrix
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Figure 2.7: An illustration of the possible convergence of (S)GD and Adam.
The objective function is nonlinear with several local minima. Starting the
learning algorithm at θ̂0, (S)GD is likely to converge to the first local minimum,
whereas Adam, which utilizes momentum, likely continues to the next local
minimum.

with first-order derivative information to retain curvature information. Exam-
ples of such methods are the conjugate gradient method, the Gauss-Newton
method, the Levenberg-Marquardt method, and the BFGS method (Nocedal
and Wright, 2006).

For all the model types described in Section 2.1, the model parameters are
uncertain and can be estimated using historical data. As mentioned in 2.1.1,
mechanistic model parameters typically have good prior values, and parameter
estimation is not a requirement. On the other hand, obtaining a good model
fit to data, parameter estimation is often a necessity. For data-driven models,
model learning is essential to obtain acceptable models as the parameters are
typically initialized at random values. Generally, the latter also applies to hy-
brid models as they can have several data-driven model parameters. Naturally,
the number of data-driven and mechanistic model parameters will depend on
the hybrid model structure. Nevertheless, the estimation problem still needs
to handle that the model has two types of parameters with different interpre-
tations and with a varying degree of uncertainty on their prior values.
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2.3. Virtual flow metering

2.3 Virtual flow metering

2.3.1 The petroleum production system

A petroleum production system is the assembly of wells, pipes, valves, chokes,
pumps, separators, and transportation pipelines, which task is to transport
petroleum fluids from the reservoir to the processing facilities (Guo et al.,
2007). A well-equipped, offshore petroleum production system is illustrated
with a simplified drawing in Figure 2.8. Three wells produce a mixture of oil,

Figure 2.8: A simplified, offshore petroleum production system. Three wells
produce a mixture of oil, gas, and water.

gas, and water from the reservoir, where the amount of each phase will depend
on the type of reservoir. The multiphase flow rate through individual wells
is controlled by the production chokes located in the wellheads of the wells.
Upstream and downstream the production choke, the pressure (p) and tem-
perature (T ) are measured. The pressure and temperature are also measured
down-hole, the closest point to the reservoir. Upstream the production choke,
a multiphase flow meter (MPFM) measures the multiphase flow rate through
the choke. The production from the wells is commingled at the manifold and
sent to the production separator for separation into the three phases. Alter-
natively, the flow can be routed through the test separator using the routing
valves.

The production system is nonstationary with time-dependent process condi-
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tions and properties (Guo et al., 2007). For instance, in a crude oil reservoir,
the fraction of oil is high at the beginning of the asset’s life. In time with
reservoir depletion, the fraction of gas, water, or both, typically increases.
The production from large fields goes through two phases: the plateau and
decline phase. In the plateau phase, the production is approximately con-
stant, maintained by gradually opening the production choke valves in the
wells. This will counteract the pressure declination in the reservoir that occurs
as a consequence of depletion (Foss et al., 2018). In the decline phase, the
production chokes are generally fully open, except for wells that produce to
the same pipeline, where some wells must be choked back slightly to maintain
a pressure balance. Therefore, the production will decline in time with the
pressure declination in the reservoir. The nonstationarity of the production
system causes the multiphase flow rate through the system to have a dynamic
nature with both fast and slow transients. The fast transients are caused by
control changes such as the opening of the choke valve and occur in the time
range of minutes to hours (Foss et al., 2018). The slow transients are caused
by the reservoir depletion (Jansen, 2015) and occur in the time range months
to years, dependent on the size of the reservoir.

2.3.2 Flow rate metering

Several efforts in petroleum engineering require knowledge about the multi-
phase flow rate, for example, flow assurance, situational awareness, production
optimization, and reservoir management (Foss et al., 2018). There are several
ways to obtain information about the multiphase flow rate. The traditional
way of measuring the flow rates is through well-testing, either by using a test
separator as illustrated in Figure 2.8 or through deduction testing, where the
production from one well is shut down, and the difference in total production
at the manifold is compared before and after the shutdown. Well-testing typi-
cally provides high accuracy measurements with an error as low as 0.25% and
1% for oil and gas rates, respectively. However, due to the required production
stabilization time, the well-tests are intermittent and infrequent, often with
less than one new well-test per month (Monteiro, Duque, et al., 2020). Fur-
thermore, the test separators are large and require a sufficient amount of space
on the production platform, and deduction testing will result in economical
loss as part of the production is shut down.

Another option is the MPFMs as illustrated in Figure 2.8. These are physical
devices that offer continuous predictions of flow rates. Continuous measure-
ments are useful for many of the above-mentioned engineering problems. Nev-
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ertheless, MPFMs are prone to drift over time and call upon intervention with
failure (Falcone et al., 2013). Intervention requires shutdown of wells and re-
sults in an economical loss. Moreover, compared to well-testing, the accuracy
of MPFMs is lower with an error of approximately 5% (Thorn et al., 2013).

A third alternative is a VFM, a soft-sensor enabling continuous multiphase
flow rate predictions by exploiting mathematical models and already existing
measurements (Varyan et al., 2015). Virtual flow metering is a non-intervening
technology as it avoids the need to install additional physical devices and is,
therefore, easier maintained. Today, many petroleum assets use some form of
VFM technology in addition to physical flow metering, either as a standalone
system or as a backup to an MPFM. There are two main applications of a
VFM: 1) real-time predictions of the flow rate and 2) prediction of missing
historical measurements, either due to failure or lack of physical devices. The
VFM can be developed for any desired component in the production system.
For instance, for the production choke in wells to measure the individual flow
rates or for the manifold to measure the commingled flow rate.

2.3.3 Challenges of virtual flow metering

Developing a mathematical model to predict the multiphase flow rate at strate-
gic locations in the production system is not trivial as there are several sources
for uncertainty, both in the process physics and in the available data. The first
is a particular challenge for mechanistic modeling, while the latter is disadvan-
tageous for data-driven modeling.

Firstly, a tremendous effort has been invested in describing the physics of the
production system in the last decades. Nevertheless, the multiphase flow rates
are challenging to model accurately with first-principles due to its transient and
complex nature and uncertain subsurface properties (Guo et al., 2007). Fur-
thermore, both the governing equations and fluid properties can change with
process conditions and flow regime (Thorn et al., 2013). Therefore, simplifica-
tions and assumptions are necessary to solve the process equations in real-time
applications. Consequently, the model will never be a perfect realization of the
true process, and there will be uncertainties related to both the model struc-
ture and parameters. This type of uncertainty is called epistemic uncertainty
(Hüllermeier and Waegeman, 2021). Due to epistemic uncertainty, it is not un-
common for mechanistic VFMs to have process-model mismatch that tends to
increase with time. Hence, mechanistic VFMs require a high degree of exper-
tise for developing and demand regular calibration to maintain high prediction
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accuracy (Bikmukhametov and Jäschke, 2020b).

Secondly, the available process data are typically subject to several disadvanta-
geous attributes. A particular troublesome artifact is the often poor measure-
ment quality with high noise levels, causing imprecision in measurements and
systematic errors (Antonelo et al., 2017). Some sensors tend to drift in time,
and some may even fall out for longer periods (Antonelo et al., 2009). Impreci-
sion in sensor measurements is referred to as aleatoric uncertainty (Hüllermeier
and Waegeman, 2021). Furthermore, available process data from production
systems commonly resides in the small data regime, which, according to Mishra
and Datta-Gupta (2018), is characterized by low volume, variety, and velocity.
A low volume and low velocity of datasets originating from petroleum pro-
duction systems are due to the often infrequently and intermittently occurring
well-tests. Yet, even for assets with continuous measurements, the issue of low
variety can remain because of how the production systems are typically oper-
ated. For instance, as described above, the production choke valve is gradually
opened to counteract the pressure declination in the reservoir. Consequently,
a characteristic path through the data space as visualized in Figure 2.9 for two
dimensions is typically observed for historical data. The data is taken from a
petroleum production well and scaled to the interval [0, 1]. The coloring indi-
cates time, where the darkest color is the oldest observation. The path spans
a relatively small part of the two-dimensional space and will be even sparser
in higher dimensions. Both the volume and variety of the data could be im-
proved with designed experiments. However, such experiments typically have
a high expense and are not applied (Rackauckas et al., 2021). These known
data challenges have demonstrated a significant impact on the performance of
data-driven VFMs.

Due to the complex physical characteristics of multiphase flow and the data
challenges, hybrid modeling seems like a promising methodology for the virtual
flow metering application. In theory, a hybrid VFM should be able to exploit
data-driven models to increase the flexibility of a mechanistic model, thereby
reducing process-model mismatch resulting from simplifications. Moreover, the
hybrid model should be able to take advantage of physics to avoid adaptation
to undesired artifacts in the available process data. In other words, a hybrid
model will attempt to extract as much information as possible from physics
and data without relying solely on only one of the sources of information. On
the other hand, for the same reasons, hybrid models need to manage the uncer-
tainty in both information sources. Therefore, the balance between learning
from physics and learning from data becomes an important task for hybrid
VFMs. If not careful, the model can easily enhance the worst of both domains
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Figure 2.9: A typically observed path through the data space of a real
petroleum well, here illustrated with historical data of the choke opening and
the pressure in the wellhead. The coloring indicate time where the darkest
points are the oldest observations. The data is scaled to reside in the interval
[0, 1].

instead of the best.

2.3.4 Virtual flow meters in industry and literature

There exist many examples of VFMs in industry and literature. Among the
commercially available VFMs, the leading approach is mechanistic modeling.
Some examples are Prosper, ValiPerformance, LedaFlow, FlowManager, and
Olga (Amin, 2015). Recently, hybrid (Ruden, 2020) and data-driven (Solution
Seeker, 2022) VFMs have emerged on the market.

In the literature, numerous research efforts exist on both mechanistic and
data-driven modeling of a VFM. The most common approach in the literature
is steady-state models, although several of the commercial VFMs mentioned
above offer dynamic as well as steady-state models (Shippen, 2012). One reason
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for this is likely the inherent complex dynamics of multiphase flow, resulting
in a high computational burden, making it challenging to develop dynamical
models suitable for utilization in real-time applications. Another reason can be
due to the process being slowly varying such that the steady-state assumption
can be acceptable for shorter periods in time. An in-depth literature review
on mechanistic and data-driven VFMs can be found in Bikmukhametov and
Jäschke (2020b). In comparison, the research efforts on hybrid VFMs in the
open literature are sparse, although existent. Table 2.2 gives a brief overview
of recent work on hybrid VFMs. Acronyms utilized in the table are NN: neural
network, DM: data-driven model, MM: mechanistic model. The papers listed
are sorted by date of publication. Keep in mind that there can be papers pub-
lished on hybrid VFMs not covered by the table, for instance, if the authors
have used different naming conventions than used in this thesis or have not
realized the hybridity of the model.

Table 2.2: Hybrid virtual flow meters in the literature. Acronyms used are
NN: neural network, DM: data-driven model, MM: mechanistic model.
Paper Description

Xu et al. (2011) Feature engineering in an NN for wet gas meter-
ing

Al-Rawahi et al. (2012) NN to estimate the mixture density of the mul-
tiphase flow

Mohammadmoradi et al. (2018) MM to describe prior knowledge and constraints
of a DM

Bikmukhametov and Jäschke (2020a) Three approaches. 1) Feature engineering in
DM. 2) Capture mismatch between MM and pro-
cess with DM. 3) Ensemble model combining
outputs from several models.

Staff et al. (2020) Feature engineering in DM

Andrade et al. (2022) Data reconciliation constrained by MM

2.3.5 Examples of mechanistic production choke models

As mentioned in Section 2.3.2, a VFM can be developed for most components
in a petroleum asset, for instance, the wellbore and production choke of a
single petroleum well, see Figure 2.10. In the work leading up to this thesis,
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the production choke has been the focus.

Figure 2.10: A simplified, offshore production system of a single petroleum
well along with available sensor measurements for well-equipped wells. The
wellbore is located between the down-hole (dh), the closest sensor location to
the reservoir, and the wellhead (wh). The production choke is located between
the wellhead and the separator, with the downstream choke (dc) as the closest
sensor location to the separator.

The production choke is located between the wellhead and the separator in
the production system see Figure 2.10. An MPFM measures the phasic flows
through the well q = [qoil, qgas, qwat]. The total multiphase flow is given by Q =
qoil + qgas + qwat. Typically, the sensor pairs in the wellhead and downstream
the choke are close to the production choke. The choke is a restriction in
the pipe, illustrated in Figure 2.11, where the area of the choke at the outlet
(Adc) is adjustable with the choke opening u. There are two types of flow

Figure 2.11: A close-up illustration of the production choke. The multiphase
fluid flows through a restriction, where the outlet of the choke (Adc) can be
adjusted with the choke opening.

behavior in a choke, critical and sub-critical (Guo et al., 2007). When the flow
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rate is in the sub-critical zone, the rate is determined by the pressure drop
across the choke. If it is in the critical zone, the flow has reached a maximum
rate through the choke, and a further decrease in the downstream pressure
for a constant upstream pressure will not influence the rate, see Figure 2.12.
Several mechanistic models exist for the production choke, in a varying scale

Figure 2.12: Illustration of the sub-critical and critical boundary of the flow
through a choke for constant upstream pressure (pcwh) and decreasing down-
stream pressure, resulting in an increased pressure drop. In the sub-critical
zone, the flow will increase for increasing pressure drop, while in the critical
zone, the flow has reached a maximum rate and is not influenced by a further
reduction in the downstream pressure.

of complexity in space and time. They are usually developed assuming steady-
state, one-dimensional (lumped) flow since increasing the dimensionality of the
problem requires a numerical solution of the complex Navier-Stokes equations.
These equations are computationally demanding and may not be suitable for
use in real-time optimization (Shippen, 2012). There are several well-known
choke models in literature and industry (Selmer-Olsen, 1995; Sachdeva et al.,
1986; Perkins, 1993; Al-Safran and Kelkar, 2009). Here, two examples of
steady-state mechanistic models for the production choke are given. These
have been the models used in the work leading up to this thesis.

The Kittilsen choke model

The Kittilsen model for multiphase flow through a choke (Kittilsen et al.,
2014) is a one-dimensional (lumped) and steady-state model. The following
assumptions are applied for the multiphase flow rate:
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• no-slip: the gas and liquid travels through the choke with equal velocity,

• incompressible liquid: liquid densities are constant,

• frozen flow: no mass transfers from one phase to another across the choke,

• no gas expansion across the choke,

• thoroughly and homogeneously mixed fluid,

• neglection of momentum effects in the upstream part of the choke.

The equation for the mass flow rate through the choke is given by

ṁ = NcCv(u)
√
Y 2ρ(pwh − pdc), (2.20)

where ṁ is the mass flow rate, Nc is a unit conversion coefficient, Cv is valve
flow coefficient, typically a function of the choke opening (u), ρ is the mixture
density, and Y 2 is given by

Y 2 =

(
1− 1

3

xlim
xTP

)2 xlimpwh
pwh − pdc

, (2.21)

where
xlim = min (xP , xTP ), (2.22)

and
xP =

pwh − pdc
pwh

, xTP =
pwh − pdc
pwh

|critical, (2.23)

where xTP is a constant relating the pressure drop to the upstream pressure in
the critical flow regime. A rule of thumb is that the downstream to upstream
pressure ratio at critical conditions is pdc/pwh ≈ 0.6 such that xTP ≈ 0.4
(Jansen, 2015). With the assumption of thoroughly and homogeneously mixed
fluid, the mixture density can be described with

1

ρ
=
ηgas

ρgas
+
ηoil

ρoil
+

1− ηgas − ηoil

ρwat
, (2.24)

where ρi, ηi, i ∈ {gas, oil,wat} are the phasic densities and mass fractions of
the fluid. It is assumed that no other fluids exist such that

ηgas + ηoil + ηwat = 1. (2.25)

The density of gas is described with the real gas law

ρgas =
Mpwh
ZRTwh

, (2.26)
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where M is the molar mass of gas, R is the universal gas constant, and Z is
the compressibility factor to account for a non-ideal gas. To convert the mass
flow rate to a volumetric flow rate

Q =
ṁ

ρSC
, (2.27)

where SC stands for standard conditions, typically 1atm and 15°C (Interna-
tional Organization for Standardization, 1996).

The valve flow coefficient is associated with the hydraulic performance of a
control valve and is given in [USG min−1 PSI−0.5] (Emerson Automation Solu-
tions, 2017, p. 99). The Cv will vary depending on the opening of the choke. It
is typical to differentiate between three characteristics of the Cv-curve: quick
opening, linear, and equal percentage, see Figure 2.13. In practice, the shape

Figure 2.13: Three typical characteristics of the Cv-curve for a production
choke.

of the curve can deviate from these three.

The Sachdeva choke model

The Sachdeva model is derived from the simplified, one-dimensional, steady-
state mass and momentum balance equations (Sachdeva et al., 1986). By
further assuming
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• no-slip,

• incompressible liquid,

• frozen flow,

• adiabatic gas expansion across the choke: no mass or heat transfers be-
tween the fluid and the surroundings,

• thoroughly and homogeneously mixed fluid,

• neglect of momentum effects in the upstream part of the choke,

the equation for the mass flow rate through the choke is derived

ṁ = CDAdc(u)×
√

2ρ2dcpwh

(
κ

κ− 1
ηgas

(
1

ρgas,wh
− pr
ρgas,dc

)
+

(
ηoil

ρoil
+
ηwat

ρwat

)
(1− pr)

)
,

(2.28)
where pr is the downstream to upstream pressure ratio, κ is the gas expansion
coefficient, and CD is a discharge coefficient commonly introduced to account
for modeling errors. Comparing to the Kittilsen model, the valve flow coeffi-
cient is proportional to the area-function multiplied by the discharge coefficient

Cv(u) ∝ CDAdc(u). (2.29)

Similar to the Kittilsen model, the gas density upstream the choke is given by
the gas law in (2.26) and the mixture density with the homogeneous mixture
density equation in (2.24). The gas density downstream the choke is given by
a polytropic gas expansion

ρgas,dc = ρgas,whp
1
κ
r . (2.30)

Again it is assumed that no other phases than oil, gas, and water exist in the
fluid such that the mass fractions sum to one, as in (2.25).

The model differentiates between critical and sub-critical flow using

pr =

{
pdc
pwh

pdc
pwh
≥ pcritical

pr,c otherwise,
(2.31)

where pr,c ≈ 0.6 (Jansen, 2015). As for the Kittilsen model, the mass flow rate
can be converted to the volumetric flow rate with (2.27).
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2.4 Production dataset from Edvard Grieg

In the work behind this thesis, real, historical production data has been uti-
lized for development and analysis of the VFMs. In most of the work, data
from the asset Edvard Grieg, located in the North Sea at the Norwegian Conti-
nental Shelf (Lundin Energy Norway, 2020), is utilized. The field is an under-
saturated oil field without a gas cap, and started its production in late 2015.

The dataset contains measurements from 10 oil production wells at the asset,
spanning more than five years of production, see Figure 2.14. The wells have
been anonymized and are referred to as W1-W10. These have a variable num-
ber of observations. The production from the wells mostly are mostly oil, with
little water and some gas (Lundin Energy Norway, 2020). In the historical
data, the wellsdo not have gas lift injection.

Figure 2.14: Visualization of the observations for the 10 wells at Edvard Grieg
against time. Some wells have older historical observations than others. Both
multiphase flow meter and well-test measurements are available.

Measurements of the flow rate through the production system is available from
both a MPFM located upstream the choke valve, and well-tests conducted with
a test separator. The input measurements are pressures and temperatures
upstream and downstream the choke valve and the choke valve opening as
visualized in Figure 2.10. Further, the mass fractions of the phasic flows are
calculated using the available MPFM measurements. Ideally, these should be
determined by another model, for instance, a wellbore model as the one in
Kittilsen et al. (2014).

Before the dataset is utilized in model development, several preprocessing steps
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are applied. First, the dataset is compressed using the technology described
in Grimstad, Gunnerud, et al. (2016) to obtain steady-state operating points
suitable for steady-state modeling. Thereafter, the data is passed through a set
of filters that remove faulty measurements. Examples are negative pressures,
choke openings, or flow rates.
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3 | Contributions

The contributions of this thesis, in the form of six papers, have investigated
the top-level research objective presented in Section 1.1. The objective has
a wide scope with many opportunities, and the research leading up to this
thesis has not covered the whole scope. Mostly, the research has focused on
developing steady-state models on the left side of the gray-scale illustrated
in Figure 2.2, with a few exceptions. The data-driven model type utilized
in the hybrid models has been the neural network. The chosen component
for the VFM has been the production choke as illustrated in Figure 2.10. The
remaining production system has not been modeled. First-order gradient-based
optimization using the MAP objective function has been the typical method
to train the VFMs. In five of six papers real and historical production data
from the petroleum asset Edvard Grieg (Lundin Energy Norway, 2020) was
utilized in the development and investigation of the VFM models.

The papers are listed below and the original papers can be found in Section 5.

• Paper A “Developing a Hybrid Data-Driven, Mechanistic Virtual Flow
Meter - a Case Study”

• Paper B “Identifiability and physical interpretability of hybrid, gray-box
models - a case study”

• Paper C “Bayesian Neural Networks for Virtual Flow Metering: An Em-
pirical Study”

• Paper D “On gray-box modeling for virtual flow metering”

• Paper E “When is gray-box modeling advantageous for virtual flow me-
tering?”

• Paper F “Passive learning to address nonstationarity in virtual flow me-
tering applications”

39



Contributions

The main contributions of the papers are listed in Section 1.2, and repeated
here with reference to the relevant papers. An elaboration of the contributions
is given in Section 3.1 (not ordered by the date of publication).

• In Paper A, a framework for simultaneous estimation of all parameters
in hybrid models was proposed.

• In total, in PapersA, B, andD, six different hybrid VFM model variants
were developed using historical production data from the asset Edvard
Grieg. The hybrid model performances were compared with the perfor-
mances of mechanistic and data-driven models.

• In B, D, and E, several model properties such as explainability, scientific
consistency, and flexibility were investigated, where the hybrid models
were compared to mechanistic and data-driven models.

• In Paper C, a method to include epistemic and aleatoric uncertainty in
VFM modeling was proposed.

• In Paper F, a method to address the inherent nonstationarity of the
process and sustain the long-term prediction performance of VFMs was
proposed.

Author statement

In five of six of the papers, the candidate is the first author and have con-
tributed to the main idea of the paper and development of method, has been
responsible for the review of relevant literature, the major part of the coding
and analysis of the results, and has been responsible for the write-up of the
papers. In Paper C, the candidate is the second author and contributed to a
major part of the write-up of the paper, and visualization and analysis of the
result from the simulation study.

3.1 Elaboration on contributions

Paper A

In Section 2.2, it is described that the estimation problem for hybrid models
needs to handle two types of parameters, originating from the mechanistic and
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the data-driven component, respectively. These parameters have a different
interpretation and varying uncertainty on their prior values. Paper A sug-
gested a solution for this problem. A practical and convenient framework for
simultaneous estimation of all parameters using historical input-output data
was developed. With the framework, there was no need to iteratively train the
mechanistic and data-driven model components individually. To accomplish si-
multaneous estimation of the parameters, the Python package PyTorch (Paszke
et al., 2019) was utilized to build and train the models. PyTorch utilizes au-
tomatic differentiation, which handles the calculation of gradients required in
the learning algorithms. Furthermore, the MAP estimation problem in (2.13)
was modified to handle different types of parameters. An advantage with the
developed framework is that models on the complete gray-scale in Figure 2.2,
from purely mechanistic to purely data-driven models can be developed and
trained with the same learning algorithm. The framework was tested by devel-
oping the first hybrid VFM of its kind on real production data from the asset
Edvard Grieg. The VFM was based on the mechanistic Kittilsen choke model
introduced in Section 2.3.5 but represented the Cv-curve with a neural network
to handle a curve different from the three standard characteristics illustrated
in Figure 2.13.

Paper B

Moving a model on the gray-scale in Figure 2.2, from mechanistic towards
data-driven, it generally becomes more flexible. With higher flexibility, the
model can adapt to unknown physical phenomena not included in the mecha-
nistic model due to simplifications, and thus, reduce process-model mismatch.
On the other hand, the model also generally becomes non-identifiable given
the available data. Non-identifiability means that it does not exist a unique
solution to the parameter estimation problem. Consequently, the model can
lose physical interpretability, which is another word for scientific consistency.
Paper B described mathematically and demonstrated with an industrial sce-
nario that MAP estimation as in Section 2.2 with sufficient regularization of the
parameters, can be used to retain the scientific consistency of non-identifiable
models. Furthermore, even for identifiable models, the true parameter values
are challenging to obtain in practice due to both deterministic and stochas-
tic uncertainties. Therefore, Paper B argued that due to increased flexibility
and the ability to retain scientific consistency with sufficient parameter regu-
larization, a hybrid VFM can be a better solution than mechanistic VFMs in
industrial scenarios as a higher prediction accuracy is often achieved.
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Paper D

In Paper D, a more thorough investigation into hybrid models on the left
side of the gray-scale in Figure 2.2 was conducted. Five hybrid VFMs were
compared to a mechanistic and a data-driven VFM. The mechanistic VFM
was the Sachdeva choke model from Section 2.3.5 and the data-driven model a
neural network. The hybrid models in Paper D were developed by examining
and targeting the introduced assumptions and simplifications of the Sachdeva
model. The seven VFM model variants were trained on production data from
10 petroleum wells on the asset Edvard Grieg (Lundin Energy Norway, 2020).
A larger investigation into scientific consistency was conducted for all models.
The results in Paper D were inconclusive concerning the suitability of different
hybrid VFMs. They showed that balancing the task of learning from physics
and learning from data is nontrivial and that the performance of the hybrid
models was highly dependent on the available data, both the quality and the
nonstationarity of the data. Nevertheless, the results indicated that hybrid
VFMs can improve the performance over mechanistic VFMs and have a higher
scientific consistency than data-driven VFMs.

Paper E

In theory, see Section 2.1, hybrid models should exploit the advantages of both
the mechanistic and data-driven modeling domain. Yet, previous research in
Paper A, B, and D showed that this is a nontrivial task, and the superiority of
hybrid models over mechanistic and data-driven models has not been demon-
strated. Therefore, Paper E examined four scenarios in which hybrid models
were expected to excel: 1) under large process-model mismatch between a
mechanistic model and the process, 2) with little available process data, 3)
with an increasing noise level in the data, and 4) in nonstationary process con-
ditions. The study was conducted with synthetic data to have complete control
of the process and conditions. The simulator used to generate the data was an
advanced version of the Sachdeva model in Section 2.3.5, which included slip in
the equations. The results clearly showed that hybrid VFMs are advantageous
in the two first scenarios and indicated a potential advantage in the fourth
scenario.
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Paper C

In Section 2.3.3, epistemic and aleatoric uncertainty are drawn out as two
challenges of modeling VFMs in industrial scenarios. In Paper C, an approach
to include both types of uncertainties in the modeling was described. The
modeling of uncertainty can increase the robustness of the models and thereby
promote trust in the predictions. The model type considered was a probabilis-
tic model called a Bayesian neural network (BNN). The model was trained
using variational inference (VI). The result was a model where the uncertainty
bands on the predictions were obtained. Further, Paper C demonstrated that
the approach obtained more robust models by modeling VFMs on data from
60 petroleum wells. On the other hand, the approach was also more computa-
tionally heavy than MAP estimation and was therefore not pursued further in
the work leading to this thesis. Nevertheless, training hybrid models with VI
is an interesting approach for future research.

Paper F

In Section 2.3.3, another potential challenge of VFM modeling is described:
the inherent nonstationarity of the underlying process. Results from Paper D
showed that the performance of VFMs tended to decrease with time, causing
a poor long-term prediction performance. Therefore, Paper F suggested using
passive learning algorithms as a method to sustain the long-term prediction
accuracy. Passive learning algorithms assumes that the underlying process is
continuously changing, advocating for a periodic updating of the model in time.
Two passive learning algorithms were investigated: periodic batch learning
and online learning. In the two algorithms, the model update frequency is
different. The methods were used to train seven different VFM model types
on 10 petroleum wells at Edvard Grieg. The results showed that frequent
model updating was essential to obtain high long-term accuracy. Compared to
previous work, the prediction accuracy obtained in this work was significantly
improved. Furthermore, the results showed that if process measurements were
intermittent and infrequent, hybrid modeling together with frequent updating
achieved the best sustained long-term performance.
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4 | Discussion

In this chapter, the contributions of the work leading up to this thesis are dis-
cussed. Firstly, the choices and research directions that have been made during
the investigations of hybrid modeling of a VFM are reviewed. Thereafter, a
conclusion of whether or not hybrid VFMs are recommended for utilization in
the industry is given. Lastly, reflections on the applicability of hybrid models
to applications outside virtual flow metering are presented before promising,
future research directions within this topic are suggested.

4.1 Comments on the choices and research directions

As mentioned in Chapter 3, the top-level research question has a wide scope,
and several choices and research directions were taken in the work behind the
contributions of this thesis. To sum up, these are as follows:

• Focusing on developing hybrid models on the left side of the gray-scale
in Figure 2.2.

• The neural network is the only data-driven model examined for utiliza-
tion in the hybrid models.

• The production choke valve has been the chosen VFM component, dis-
regarding the remaining production system.

• Only steady-state models have been considered to model the multiphase
flow rate through the production choke.

• First-order gradient-based optimization algorithms have been the main
choice of learning algorithms.

A short discussion on the items in the list follows below.
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Hybrid models on the left side of the gray-scale

From the perspective of the petroleum engineer, hybrid models with high ex-
plainability and high scientific consistency are generally preferred as these
properties promote trust in the model. Furthermore, hybrid models on the
left side of the gray-scale in Figure 2.2 are easily integrated with existing sim-
ulators in the industry. The above arguments have been the main reason for
focusing on these model types.

Future research could give more thought about the selection of hybrid model
variants using the recommendations from Sansana et al. (2021) as described in
Section 2.1.3. The recommendations state that the variant should be selected
based on the accuracy of the available mechanistic model. In the work behind
this thesis, the utilized mechanistic model of highest accuracy has been the
Sachdeva model described in Section 2.3.5. Most likely, there exist mechanistic
models of higher accuracy that would increase the overall accuracy of the
developed hybrid models. Moreover, recent research on hybrid models on the
right side of the gray-scale have shown promising results also for the VFM
application (Bikmukhametov and Jäschke, 2020b; Staff et al., 2020) and it
would be interesting to deep-dive more into these variants.

The neural network as the data-driven component

The neural network has been the only data-driven model type used in the
hybrid models. The neural network was chosen due to its high flexibility to
adapt to arbitrarily complex patterns in the data. Furthermore, the neural net-
work was easily integrated with the developed framework for hybrid modeling
described in Chapter 3.

In retrospect, examining different data-driven model types should have been
considered. As mentioned in Section 2, VFM modeling is typically performed
in the small data regime. Furthermore, neural networks generally require large
amounts of data in training. Therefore, other data-driven model types could
have offered hybrid models with higher accuracy.

On the other hand, the results in Papers D and F show that hybrid models
with neural networks can achieve high accuracy in industrial scenarios with
appropriate training algorithms. Furthermore, there are many different data-
driven model types to choose from. Hence, to fairly compare different hybrid
model structures against each other, the neural network was kept as the only
data-driven model type used in the hybrid models.

46



4.1. Comments on the choices and research directions

The production choke valve as the VFM component

Throughout the work with this thesis, only the production choke valve has
been considered to model the VFM, while the remaining production system
has been neglected. There are several arguments behind this choice. Firstly,
due to the inherent complex behavior of multiphase flow, mechanistic model-
ing of the production system is challenging and time-consuming in general. If
the research had examined a larger part of the production system, much time
would have passed on first-principle modeling only. For instance, production
choke models are typically based on simplified mass and momentum balance
equations, disregarding energy balance equations. On the other hand, energy
balances can be of more importance for other components in the production
system. Therefore, as the top-level research question of this thesis concerns
hybrid VFM model types, the overhead of time spent on first-principle mod-
eling was avoided. Secondly, real production data for the choke is typically
more available than for other components in the production system. For in-
stance, down-hole sensor measurements tend to be very noisy and biased, and
even non-existing for many wells, making wellbore modeling difficult. Natu-
rally, having data to use in modeling is essential for hybrid models. Hence, the
production choke became the chosen component.

Nevertheless, when investigating the scientific consistency of the hybrid models
in PaperD, it was shown that the available data reflected not only the physical
behavior of a choke but the complete production system. Hence, the inclusion
of a larger part of the production system could be beneficial to the performance
of the hybrid models and should be considered in future research.

Steady-state models

All models developed in this work are steady-state models. The main reason
is, as discussed in Section 2, because of the inherent complex multiphase flow
characteristics, which make it challenging to develop dynamic models suitable
for real-time applications due to the high computational burden. Furthermore,
for the production choke, steady-state models can be suitable in short periods.
Firstly, because the underlying data-generating process is slowly varying, and
secondly, due to the short distance between the inlet and outlet of the choke.
For other components in the petroleum production system, such as pipelines,
dynamics are generally of more importance.

From the results in Paper F, it was seen that even though the nonstationarity
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of the underlying process does influence the performance of the VFM over time,
the long-term performance can be sustained by frequent model training. Hence,
a steady-state model of the production choke can offer adequate performance
and is likely necessary for real-time applications due to the less computational
burden of steady-state models contrary to dynamic models. Indeed, several
commercially available VFMs are based on steady-state models (Amin, 2015;
Bikmukhametov and Jäschke, 2020b).

First-order gradient-based optimization

First-order gradient-based optimization with Adam and the MAP objective
function has been the standard approach to train the VFM models. The MAP
objective function is used as it was easily modified to handle both data-driven
and mechanistic model parameters, as described in Section 3. First-order
gradient-based optimization with Adam was chosen due to previous good expe-
riences with this setup on VFM modeling. Moreover, as mentioned in Section
2.2, utilization of second-order gradient-based algorithms requires the compu-
tation of the Hessian matrix, which can be challenging for complex models and
with much data. The latter is an explanation for the popularity of first-order
methods within the data-driven modeling domain. For these reasons and to
avoid the overhead of time spent on examining different optimization settings,
first-order gradient-based optimization with Adam was kept as the training
method. On the other hand, there are several methods where an approxi-
mation of the Hessian matrix is applied in the learning algorithm to utilize
some form of second-order gradient-based information. Such methods could
be interesting to investigate in future research.

4.2 Conclusion

To conclude upon this thesis, the top-level research objective presented in Sec-
tion 1.1 should be brought back into focus. The contributions of this thesis
show that the hybrid modeling approach is suitable for virtual flow metering
applications. They can provide a higher prediction accuracy than mechanistic
models under process-model mismatch, and generally offer a larger scientific
consistency than data-driven models. Furthermore, the hybrid model types in-
vestigated in this thesis are easily integrated with existing solutions for VFM
in the industry today. However, the task of balancing learning from physics
and learning from data is non-trivial. Even though hybrid modeling should
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exploit the advantages of both the mechanistic and data-driven modeling do-
main, it can easily adapt to the disadvantages of both domains. Hence, one
should inquire whether the added complexity of handling two model types is
worthwhile the possible increase in performance.

On the other hand, the latest work with hybrid VFM shows that utilizing both
physics and data, together with frequent model updating, is essential to sus-
tain the prediction accuracy over time. In particular, in industrial scenarios
where the amount of available data for model development is small. Therefore,
the contributions in this thesis support the recommendation of hybrid models
for VFM in the industry. It is believed that further research into hybrid mod-
eling will return lucrative results concerning the accuracy while retaining the
scientific consistency and explainability of the VFM models.

4.3 Reflection

In this thesis, virtual flow metering has been the application for testing hy-
brid modeling. However, from the contributions in this thesis, it is believed
that hybrid modeling could offer an increased performance of process models
in general. In particular, in scenarios where parts of the process’ physical be-
havior are unknown or challenging to model with first-principles, there is little
available data, or both. Likely, the best type of hybrid model would differ for
the different scenarios.

In literature, there are already several successful applications of hybrid model-
ing to other fields of research, for instance, within chemistry, climate systems,
and biological sciences (Willard et al., 2020). Nevertheless, many industrial
applications still use mechanistic modeling as their preferred strategy for pro-
cess modeling. Therefore, a question remains on what it will take for industries
to adopt hybrid modeling as their preferred strategy. Hopefully, the contribu-
tions of this thesis can spark enthusiasm and promote trust in hybrid modeling
and, in time, aid engineers in exploring hybrid modeling for process systems.

4.4 Future work

The contributions of this thesis have not explored the whole domain of hybrid
solutions to VFM and there are several promising research directions. First of
all, it would be interesting to investigate the right side of the gray-scale in Fig-
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ure 2.2 in more depth, for example, with science-guided neural networks. For
petroleum assets with much available data, it is believed that such approaches
would be beneficial to the VFM performance. Furthermore, a solution for in-
cluding uncertainty into hybrid models, as was done for data-driven models
in Paper C, should be pursued. Offering the uncertainty on the predictions
and not just point estimates can yield more robust models and promote trust.
Moreover, with a probabilistic approach for hybrid modeling, passive learning
methods as investigated in Paper F could be developed further.

Another interesting direction is to develop hybrid models for utilization in
control and optimization strategies. For instance, hybrid VFMs could be used
to predict the flow rates over time, which thereafter could be used as input
to reservoir optimization. Hopefully, high accuracy VFM models could aid in
more accurate reservoir optimization enabling extraction of as much petroleum
as possible from existing reservoirs. Another option is to develop hybrid models
to use directly in control and optimization applications. For this, models must
be developed for which control variables can be inferred from desired flow rates.

Nevertheless, the most promising direction for hybrid VFMs is believed to be
the inclusion of data-driven models that enable learning across wells, for in-
stance, multi-task learning models. Such methods would significantly increase
the available data that a model can learn from while still exploiting the known
physics of the process.
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Developing a Hybrid Data-Driven, Mechanistic Vir-
tual Flow Meter - a Case Study
M. Hotvedt1, B. Grimstad2, and L. Imsland3

1,3Engineering Cybernetics Department, NTNU, Trondheim, Norway
2Solution Seeker

Abstract: Virtual flow meters, mathematical models predicting production flow
rates in petroleum assets, are useful aids in production monitoring and optimization.
Mechanistic models based on first-principles are most common, however, data-driven
models exploiting patterns in measurements are gaining popularity. This research in-
vestigates a hybrid modeling approach, utilizing techniques from both the aforemen-
tioned areas of expertise, to model a well production choke. The choke is represented
with a simplified set of first-principle equations and a neural network to estimate the
valve flow coefficient. Historical production data from the petroleum platform Ed-
vard Grieg is used for model validation. Additionally, a mechanistic and a data-driven
model are constructed for comparison of performance. A practical framework for de-
velopment of models with varying degree of hybridity and stochastic optimization of
its parameters is established. Results of the hybrid model performance are promising
albeit with considerable room for improvements.

Keywords: hybrid modeling, virtual flow metering, petroleum production systems

1 Introduction

For a petroleum asset to succeed economically, the operators have to make crucial
decisions regarding optimization of the asset. Knowledge regarding the multiphase
flow rates in the asset is therefore of high importance. The flow rates may be obtained
with deduction well testing, test separators and multiphase flow meters (MPFM),
however, these methods are costly and MPFMs call for well intervention upon failure
(Marshall and Thomas, 2015). An alternative is virtual flow meters (VFM) that take
advantage of measurements to describe the input-output relationship of a system with
a mathematical model (Toskey, 2012).

There are several types of VFM models. Dependent on the amount of available
process data and prior knowledge of the system, the types may be placed on a scale
ranging from mechanistic models (M-models) derived from first-principles, to data-
driven models (DD-models), which are generic mathematical models fitted to input-
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output data (Stosch et al., 2013), see Figure 1. Often, the two extremes are called
white-box and black-box models, with reference to the extent of prior knowledge
about the system, for example physical interpretation of parameters and relationship
between variables. The models in between are hybrid models (H-models) or gray-box
models, which utilize modeling techniques from both fields and have a mixture of
physical and non-physical parameters.

In this research, an H-model of a well production choke is developed using historical
production data from the petroleum platform Edvard Grieg (Lundin Energy Norway,
2020). In addition, an M-model and a DD-model are developed for comparison of
performance. A practical framework facilitating development of models with varying
degree of hybridity and stochastic optimization of model parameters is constructed
and conveniently enables future research into the field of hybrid modeling. Back-
ground into VFM modeling and the contributions of this research is given in Section
2, the three model types of the production choke is presented in Section 3, the prac-
tical framework is outlined in Section 4, the Edvard Grieg case study is presented in
Section 5, before simulation results and a conclusion is given in Sections 6 and 7.

2 Background

2.1 Virtual flow meter modeling approaches

The most common way to model VFM in today’s oil and gas industry are with M-
models, where some well known commercial VFM are Olga, K-Spice and FlowManager
(Bikmukhametov and Jäschke, 2020). A great advantage with M-models is their
way of representing prior knowledge through the use of first-principles, which leads
to interpretable parameters and usually good extrapolation abilities. However, in
order for M-models to be computationally feasible, model simplifications are usually
a necessity and plant-model mismatch is unavoidable (Solle et al., 2016). Additionally,
in complex processes, unknown physical relations are ofttimes present and difficult
to capture. VFM with DD-models have shown promising performance suitable for
real-time monitoring, without the need of prior knowledge about the system (AL-
Qutami et al., 2018). Further, unknown phenomena may be captured if reflected in the
process measurements. However, DD-models are data hungry (Figure 1), they struggle
with extrapolation in unseen operational settings, parameters generally lack physical
interpretation and incorporating process constraints may be challenging, although
existent dependent on the DD-method (Pitarch, Sala, and Prada, 2019). Several
industrial and academic M- and DD-models are reported in (Mokhtari and Wlatrich,
2016; Balaji et al., 2018; AL-Qutami et al., 2018; Bikmukhametov and Jäschke, 2020)
and references therein.

An in-between solution designed to utilize the best of both worlds are H-models. First,
notice that the expression "H-models" is widely used in literature for other concepts
than combinations of M- and DD-models. Further, one should differ between a hybrid
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Figure 1: Range of VFM models from mechanistic to data-driven, white-box to black-
box.

Figure 2: Illustration of hybrid model variants. Serial H-models (type 1) and parallel
H-models (type 2).

model development procedure and a hybrid model in application. To clarify, most
M-models use real data for parameter estimation. Thus, these models are hybrid in
their development procedure, however, after development, parameters are fixed, and
the model in application is an M-model. Likewise, a DD-model trained on generated
data from an M-model would be hybrid in development, although not in application.
Therefore, in this article, we define an H-model as follows:

Definition 2.1: Hybrid model

A hybrid model combines equations from first-principles with generic mathe-
matical structures, both in model development and application.

Following the definition, an H-model is fundamentally categorized in two ways, se-
rial or parallel, see Figure 2. Examples of serial models are online (that is, at each
new state) parameter estimation with a DD-model (1a), a DD-model to capture un-
known physical phenomena or modeling errors (1b) and physical equations utilized
to construct specialized features as input to the DD-model, called feature engineering
(1b). A parallel H-model (type 2) would be achieved if a composition of M- and
DD-submodels are connected or used in an ensemble model. Naturally, combinations
of the two fundamental ways will also be an H-model. Expectantly, compared to
an M-model, the H-model should have an increased ability to capture unknown phe-
nomena, yet have better interpretability than a DD-model through the inclusion of
prior knowledge and physical parameters. Generally, the DD-part in the H-model
will be smaller (in terms of number of parameters) than in a DD-model and should
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thus require fewer data samples to obtain a satisfactory approximation of the process
(Psichogios and Ungar, 1992), see Figure 1.

2.2 Hybrid models in literature

Some of the earliest reported H-models are within the field of chemistry (Psichogios
and Ungar, 1992; Kramer, Thomsom, and Bhagat, 1992). However, H-models for
VFM are rare although some examples exist in literature. For instance, Xu et al.
(2011) used feature engineering in a neural network for wet gas metering. Although
feature engineering has shown to boost DD-models, choosing appropriate features is
challenging (Sutton and Barto, 2018). Al-Rawahi et al. (2012) estimated the mixture
density of multiphase flow using a neural network. However, the neural network
required the underlying primary measurements from a MPFM, which may not be as
readily available as other measurements. Additionally, MPFM are known to require
frequent calibration and may yield high measurement error in-between calibrations
(Falcone et al., 2013). Although not a VFM, Baraldi et al. (2014) used an ensemble
H-model to detect degradation of production choke valves.

2.3 Contributions

The contributions of this research are two-fold:

• A practical and convenient framework to facilitate development of models with
varying degree of hybridity and stochastic optimization of the model parameters.

• A hybrid VFM model for production chokes, developed and validated utiliz-
ing real historical production data with readily available measurements such as
pressures, temperatures and choke openings.

It must be specified that the main ambition of this research has been to establish a
convenient framework for development and utilization of hybrid models. In addition,
this research attempts to highlight that H-models may offer advantages over M- and
DD-models. Therefore, only one type H-model (type 1a) with parameter estimation
using a neural network in an existing M-model has been developed. However, a
notable feature with the framework is that, regardless of the hybrid model structure,
the model may be trained requiring only measurements of the output variable.

3 Choke models

A production choke may be illustrated as in Figure 3, where the volumetric oil flow
rate, Qo, will be estimated using nearby measurements; pressures (p), temperatures
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Figure 3: Illustration of the well production choke

(T ) and choke opening (z). Three model types have been developed, M-, H- and
DD-model. In short notation, these are represented with ŷξ = fξ(xξ;θξ) where ξ ∈
{m,h, dd}, ŷξ = Qe

o is the estimated oil flow rate, fξ are the set of model equations,
xξ are the input measurements and θξ are learnable model parameters. In the model
development, also called training procedure, an optimization algorithm finds the θξ
that minimizes the deviation between estimated (Qe

o) and existing measurements
(Qm

o ) of the volumetric oil flow rate, see Section 4. The following Sections (3.1, 3.2,
3.3) briefly explain the three model types and Table 1 gives an overview of inputs
and parameters to the three models and highlights the difference between the M- and
H-model, in this case the form of the Cv-curve.

3.1 Mechanistic model

The M-model is from (Kittilsen, Fjalestad, and Aasheim, 2014), chosen for its sim-
plicity, and described with the equations (1)-(7). More widespread choke models exist
(e.g. Sachdeva, Hydro, Al-Safran, see (Haug, 2012) and references therein) and should
be experimented with in future work.

Qo =
woṁ
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[
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h

]
(1)
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√
Y 2ρm(p1 − p2)

[
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h
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Two important assumptions are those of frozen flow and incompressible liquid; the
mass phase fractions, w = [wg, wo, ww] and liquid densities ρo and ρw are constant
in a given operating point (ST for standard conditions). For this model, the valve
flow coefficient; Cv(z), is determined with linear interpolation between a given set
of test points, which are usually from lab-experiments with water, yet calibrated to
the multiphase flow once in place. Further nomenclature may be found in (Kittilsen,
Fjalestad, and Aasheim, 2014). The learnable model parameters are chosen to be
θm = [ρo, ρw, a], where a allows the Cv(z) to be shifted; Cv,new(z) = aCv,old(z).

3.2 Data-driven model

The DD-model is a fully-connected, feed forward neural network (NN) with the Rec-
tified Linear Unit (ReLU) as activation function on each layer. See e.g. (Balaji et al.,
2018) for description of neural networks. The learnable parameters are the weights
and biases on each layer, θdd = [Wdd, bdd].

3.3 Hybrid model

The H-model (type 1a, Figure 2) is represented with the same equations as for the
M-model (1)-(7), but with the Cv obtained from a fully-connected, feed forward, NN
with ReLU as activation function on each layer. The mass fractions were included as
inputs to the NN in an attempt to have the Cv-curve reflect well-specific properties.
Thus, the learnable parameters are θh = [ρo, ρw,Wh, bh].

Table 1: Overview of parameters and inputs and overview of the Cv-curve form
M-model H-model DD-model

θ ρo, ρw, a ρo, ρw, Wh, bh Wdd, bdd
x [p1, p2, T1, z, wg, wo] [p1, p2, T1, z, wg, wo] [p1, p2, T1, T2, z, wg,

wo]
Cv(x

′) Linear int. x′
m = [z] NN x′

h = [z, wg, wo] n.a

4 Modeling framework

To easily investigate different model types, a practical framework utilizing machine
learning techniques is constructed1. The framework enables a smooth transition be-
tween training a fully M-model to a fully DD-model. It consist of several parts and
will be defined in the following.

1We have utilized PyTorch, but other possibilities exist such as TensorFlow.
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Figure 4: The forward pass illustrated for the three model types

4.1 Defining the model

This part enables a convenient way to implement models with varying degree of
hybridity. Firstly, the model parameters must be defined, either as single, learnable
parameters, as for the physical parameters, or as NN’s with weights and biases. Thus,
a model will effortlessly move on the gray-scale (Figure 1) dependent on the defined
parameters. Thereafter, the forward pass, the propagation of input data through the
model, will be defined as a computational graph, enabling access to the model deriva-
tives through automatic differentiation. The forward pass for the different models is
illustrated in Figure 4. A particularly appealing property with this framework is that
measurements of the Cv are not required as the model is trained on the output, Qo.

4.2 Defining the optimization problem

Once the model is defined, a general optimization problem to find the θξ that min-
imizes deviation between the model estimates ŷξ = Qe

o,ξ = fξ(xξ;θξ) where ξ ∈
{m,h, dd} and the measurements y = Qm

o may be set up as

θ̂ξ = argminθξ J(θξ,λξ)

= argminθξ

(
1
n

∑n
i=1

(
y(i) − fξ(x(i)

ξ ;θξ)
)2

+ 1
n

∑p
j=1 λj,ξ(θj,ξ − µj,ξ)2

) (8)

The first term in eq. (8) is the mean square error (MSE) and the second is an
`2-regularization term with regularization factors λi. For the physical parameters,
the goal of regularization is to penalize deviation of the parameters from a prior
(expected) value, µi, and maximum a posteriori (MAP) estimation has been set up
to automatically calculate the λi factors, see Section 4.3. For the NN parameters,
common practice is followed and µi is set to zero. If Qm

o are available from different
measurement sources, additional MSE terms may be added and weighted according
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to the uncertainty in the measurement source. In this research, only measurements
from a MPFM has been utilized.

The framework solves the optimization problem in eq. (8) using iterative gradient-
based optimization. The update formula may be stated as follows

θk+1
ξ = θkξ − αkM(xk

′
ξ ;θkξ ,λξ) (9)

where αk is the learning rate (or step-size), xk
′
ξ is a subset of the data samples and

M is the set of equations calculating the step direction. Different algorithms may
be selected, such as stochastic gradient descent (SGD), Adam among others (Bottou,
Curtis, and Nocedal, 2018). Stochastic gradient-based optimization algorithms has
the advantage of being well suited for large scale models, either in terms of large data-
sets or many parameters, where other optimization algorithms utilizing linesearch may
be to computationally expensive (Bengio, 2012). In SGD,M = ∇θJ̃(x;θ

k,λ), where
∇J̃ may be calculated with different number of samples (batch size). Knowing which
optimization algorithm yields the best result is challenging as it might be problem
dependent. Therefore, the framework promote investigation of different optimization
algorithms. In this research, Adam is used for all models.

4.3 Calculation of regularization parameters

The λi regularization factors for the physical parameters may be automatically cal-
culated through MAP estimation. If one assumes a model of the form

y = f(x; θ) + ε ε ∼ N (0, σ2
ε ) (10)

the MAP estimation may be set up as follows utilizing Bayes’ rule, where (X, y) is
the collection of data points

θ̂MAP = argmaxθ (log p(y|X, θ) + log p(θ)) (11)

If one additionally assumes independent Gaussian priors of the parameters θi ∼
N (µi, σ

2
i ), the MAP estimation will result in, after some rearrangements,

θ̂MAP = argminθ

(∑n
i=1

(
y(i) − f(x(i); θ)

)2

+
∑p
i=1

σ2
ε

σ2
i
(θi − µi)2

) (12)

Dividing by n and setting λi = σ2
ε /σ

2
i , the MAP estimation will be the same as the

estimate in eq. (8). The σi may be determined based on physical bounds and if σε
is known, λi is automatically calculated. In practice, σε must be tuned, however, the
number of coefficients to determine decreases.
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5 Case study - Edvard Grieg

Historical production data from Edvard Grieg has been utilized in the model develop-
ment procedure and to analyze performance of the models. In addition to pressures,
temperatures, and choke opening (see Figure 3), measurements from a MPFM located
upstream the choke restriction was used for training the model, keeping in mind that
MPFM measurements may be faulty and require frequent calibration (Falcone et al.,
2013). Future work should include well-tests which in general have higher accuracy
than MPFM measurements. The production data are from 10 oil wells, yielding a
total of 30 models, over a period of 1248 days. Consequently, the assumption of
constant physical parameters may be a rough approximation and future work should
consider updating the models at certain intervals in time to account for changes in
the true process.

The data was preprocessed in two steps before performing modeling. First, the raw
production data was processed by Solution Seeker’s data squashing technology (Grim-
stad et al., 2016). The data squashing algorithm partitions the data into intervals of
steady-state operation. The data in each interval is then compressed to mean val-
ues using statistics suitable for time-series data. The result is a compressed data set
of steady-state operating points, suitable for steady-state modeling. In the second
preprocessing step, samples considered invalid, such as samples with unrealistically
large well head pressures or negative flow rates, were removed and some samples were
slightly modified, for instance small negative flow rates, where measurement noise was
the likely cause of error. The second step resulted in a variable number of samples
per well, in the range 612-2175. Further, the mass fractions were calculated using
MPFM flow rates and standard densities. In an industrial setting, the mass fractions
are often calculated from sparse well-test samples, thus to mimic this setting, a mass
fraction update time of 30 days was employed, using an average of the last 20 samples.

The data set of each well was divided into two, training (75%) and test (25%), where
15% of the latest training data was used as a validation set to decide upon the hyper-
parameters in the training procedure. An ambition was for the three model types to
generalize well across all wells of the asset. Consequently, the same set of hyperparam-
eters was used for a model type, instead of individual tuning of each model type for
each well. However, one should expect a lower overall error by individual tuning due
to dissimilar well operating conditions and variable sample numbers, and this should
be considered in future work. The average root mean square error (RMSE) and av-
erage mean absolute error (MAE) of the 10 wells were monitored and the best set of
hyperparameters was chosen based on the minimum obtained averages. However, if
prominent overfitting occurred in a well for a set of hyperparameters, that is, if the
validation error increased when the training error decreased towards the end of train-
ing, the next best set of hyperparameters was chosen. Practical recommendations
from (Bengio, 2012) was followed in the tuning process.

For all models, the learning rate (α) was thoroughly experimented with as this often
is the most important hyperparameter to tune (Bengio, 2012). Further, for the M-
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model, the physical parameters had to converge within the specified bounds, thus,
the number of epochs (E), that is, the number of loops through the training set,
and σε were tuned thereafter. For the H-model, both physical and NN parameters
had to be found. However, E may be high and the NN architecture (width/depth)
large without leading to overfitting of the NN as long as regularization of the NN
parameters is applied (Bengio, 2012). Hence, E was set sufficiently high and σε
adjusted for convergence of the physical parameters within bounds, the width/depth
was set to 20/2 and combinations of α and the NN regularization factor, λi,nn, were
tested. For the DD-model, the same recommendations were followed. The E was set
high and combinations of α and λi,nn investigated. The width/depth was set to 70/2.
Lastly, the batch size (B) is often tuned independently of the other hyperparameters
(Bengio, 2012) and was thus tuned last. Even though considerable effort was put into
fair tuning of the three models, a Bayesian optimization approach will be investigated
in the future to avoid (non-intentional) advantage to either model.

An overview of the final hyperparameters are given in Table 2. Observe that the M-
model required a larger σε than the H-model for the physical parameters to converge
within specified bounds, indicating that the H-model accounts for some of the mea-
surements noise with the DD-part. Further, the best performance for the H-model
was obtained with a low batch number, however, only small differences in average
error lead to this choice.

Table 2: Overview of the final model hyperparameters
M-model H-model DD-model

E 5000 2000 2000
B 150 32 150
α 0.01 0.01 0.01
σε 25 10 -
λi,nn - 0.01 0.001
width/depth - 20/2 70/2

6 Simulation results

The simulation results are shown in Figure 5, where the RMSE and MAE of the
test set for the 10 wells are illustrated, and Figure 6 which is a cumulative deviation
plot (CDP) (Corneliussen et al., 2005) indicating the accuracy of the developed VFM
models, that is, how many of the test points fall within a certain deviation from the
measurement. There are several interesting observations to be made from the results.
Firstly, notice the extreme outlier that is present in the DD-model performance in
Figure 5. The outlier is caused by one of the wells which had an operational setting
very different from the setting in the training set. As mentioned in Section 2, DD-
models may struggle with extrapolation in unseen operational settings which may
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Figure 5: Boxplot overview with median for the three model types across the 10 wells.

explain the outlier. In that case, the results indicate that the H-model has preserved
some of the extrapolation power of the M-model which do not have the extreme
outlier. However, despite the H-model obtaining the lowest errors for some of the
wells, the M-model performs better than the H-model due to less spread between
the quartiles. Now, the only difference between the two models is the form of the
Cv-curve. This indicates that our prior belief of the Cv-curve in the M-model was
good and that no flexibility was added to the H-model by having the Cv as an NN.
Naturally, these results are preliminary and further investigations are necessary. In
particular, different H-model variants may better leverage the advantages of both M-
and DD-models.

Generally, the results show a higher error than expected. Other studies have reported
almost 90% performance for 20% deviation in the CDP (e.g. (AL-Qutami et al.,
2018)), whereas in this paper about 70% performance for 20% deviation is achieved.
There may be several causes for the large error. Firstly, preprocessing of the data
could be improved by for instance further outlier removals. In addition, MFPM mea-
surements was used for mass fraction calculation and in training despite a possibility
of being faulty in between calibrations. Further, the mass fractions was updated every
30 days to mimic an industrial setting, however, in training, continuous mass fraction
updates could be utilized. Hence, future work should include measurement sources
with higher accuracy, such as well-tests, and analyze performance with continuous
mass fraction updates. Secondly, the model types were generalized across all wells
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Figure 6: Cumulative deviation plot of all test samples across the 10 wells.

and improved results would most likely be achieved with individual tuning. Further,
utilization of a more accurate mechanistic choke model or optimization of additional
physical parameters may decrease the error in the M- and H-model. Thirdly, the
number of days for which the models are used in prediction should be taken into
account. For some of the wells, the test set covered more than 200 days, whereupon
the true process could have changed significantly and the models lack validity. Fu-
ture work should consider online training of the models at regular intervals in time.
Nonetheless, the main goal of this research was not to find exceptional models, but
to illustrate that an H-model may offer advantages over M- and DD-models and to
establish a framework for convenient future research.

7 Conclusion

Results in Section 6 indicate that hybrid modeling is promising and may offer advan-
tages over both mechanistic and data-driven modeling. However, results are prelimi-
nary and there is considerable room for improvements. Future work should put more
effort into preprocessing of the data set, analysis of the mass fraction calculation in-
fluence on performance and inclusion of well tests in training and validation. Further,
individual tuning of each well should be investigated and the models should be tested
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with different data sets, for instance from other petroleum assets. Last but not least,
future work should explore different hybrid model variants, for which the presented
framework is convenient and highly suitable.
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2Solution Seeker

Abstract: Model identifiability concerns the uniqueness of uncertain model param-
eters to be estimated from available process data and is often thought of as a prereq-
uisite for the physical interpretability of a model. Nevertheless, model identifiability
may be challenging to obtain in practice due to both stochastic and deterministic un-
certainties, e.g. low data variability, noisy measurements, erroneous model structure,
and stochasticity and locality of the optimization algorithm. For gray-box, hybrid
models, model identifiability is rarely obtainable due to a high number of parameters.
We illustrate through an industrial case study – modeling of a production choke valve
in a petroleum well – that physical interpretability may be preserved even for non-
identifiable models with adequate parameter regularization in the estimation problem.
To this end, in a real industrial scenario, it may be beneficial for the model’s predic-
tive performance to develop hybrid over mechanistic models, as the model flexibility
is higher. Modeling of six petroleum wells on the asset Edvard Grieg using historical
production data show a 35% reduction in the median prediction error across the wells
comparing a hybrid to a mechanistic model. On the other hand, both the predictive
performance and physical interpretability of the developed models are influenced by
the available data. The findings encourage research into online learning and other
hybrid model variants to improve the results.

Keywords: Gray-box, hybrid model, identifiability, interpretability, choke modeling

1 Introduction

Mathematical modeling of physical processes is an important aspect of many engineer-
ing fields and may aid in the analysis and prediction of a process response to changes
in state and control variables. Therefore, a model should be a good representation
of the underlying process. However, during mathematical modeling, there is often a
compromise between complexity and intractable models (Zendehboudi, Rezaei, and
Lohi, 2018). Usually, a higher model complexity yields a better representation of
the process but is harder to solve. Another trade-off is how much prior knowledge
should be incorporated into the model and how much should be learned from process
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Figure 1: Gray-scale of mathematical models, ranging from mechanistic to data-driven
models.

data. Typically, mathematical models may be placed on a gray-scale ranging from
mechanistic to data-driven models, or, from white- to black-box models respectively,
see Fig. 1.

Mechanistic models are built from first-principle equations, with possible empirical
closure relations, and require considerable understanding of the physical behavior of
the process. These models are often of high complexity and call for simplifications
to be computationally feasible. Data-driven models are constructed from generic
mathematical equations fitted to process data and require no prior knowledge about
the process. These model types have a high degree of flexibility, which is the ability
to adapt to arbitrarily complex patterns in data. Therefore, contrary to mechanistic
models, data-driven models may capture unmodeled or unknown process behavior
as long as these are reflected in the available data. However, data-driven models
are data-hungry and require the data to be sufficiently rich to represent the process
behavior appropriately. If care is not taken, overfitting is a frequent outcome resulting
in poor extrapolation power to future process conditions (Solle et al., 2016). As a
result of using first-principle equations, mechanistic models are typically better at
extrapolation.

Hybrid modeling combines mechanistic and data-driven modeling techniques and at-
tempts to preserve the advantages while diminishing the disadvantages of the two
approaches. There are several ways to construct hybrid models and much literature
on the topic (e.g. Psichogios and Ungar (1992), Kramer, Thomsom, and Bhagat
(1992), Xu et al. (2011), Zendehboudi, Rezaei, and Lohi (2018), Bikmukhametov and
Jäschke (2020), and Hotvedt, Grimstad, and Imsland (2020)). Hybrid modeling may
be approached from either side of the gray-scale in Fig. 1. Models on the white side
of the gray-scale typically have a higher degree of interpretability than models on the
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black side. In literature, there are numerous definitions of, and several aspects con-
nected to interpretability. According to Roscher et al. (2020) is interpretability the
ability to present a model in understandable terms to a human. The focus in this arti-
cle is on the aspect physical interpretability. A model will be physically interpretable
if 1) its output behavior is in line with existing physical principles, and 2) any model
parameter representing a physical quantity has a physically feasible value. From a
process analysis perspective, physically interpretable models are of great value as the
models are often better at extrapolation and the analysis of the model response to
changes in variables is simplified. This promotes trust in the model. To this end, this
article will focus on hybrid models on the white side of the gray-scale in Fig. 1. A
mechanistic model is used as a baseline and a data-driven model is inserted to increase
model flexibility.

According to Deconinck and Roels (2017), a prerequisite to obtaining physically in-
terpretable models is model identifiability. With this property, uncertain model pa-
rameters may be uniquely determined from the available process data (Goodfellow,
Bengio, and Courville, 2016). However, when a model is moved on the gray-scale
from mechanistic towards data-driven, the number of parameters increases and the
model generally becomes non-identifiable given the available data. This is particu-
larly the case for deep neural networks which are often designed to have a complexity
above the interpolation threshold. Furthermore, identifiability is influenced by both
stochastic uncertainties, e.g. noisy data and stochasticity of the estimation problem,
and deterministic uncertainties, e.g. erroneous model structure and local optimization
algorithms, making most models non-identifiable in practice. For these reasons, in the
data-driven modeling domain, a common practice is to seek a model that generalizes
well and has a high degree of flexibility, rather than seeking identifiable models. On
the other hand, data-driven models typically have non-physical parameters. Ensuring
unique parameter values are therefore not as important as for hybrid and mechanistic
models where there exist physical parameters whose values should be physically con-
sistent to obtain physically interpretable models. Identifiability and interpretability
have been topic for many studies, e.g. (Brun, Reichert, and Künsch, 2001; Raue et al.,
2009; Deconinck and Roels, 2017; Brastein, Sharma, and Skeie, 2019), but few have
studied this for hybrid, gray-box models.

This article will study the identifiability, physical interpretability, and predictive per-
formance of a mechanistic and a hybrid petroleum well production choke valve model.
The first two concepts are investigated through a synthetic case study where we have
perfect information about the underlying process. Thereafter, the two latter concepts
are examined in an industrial scenario where real and historical production data from
six petroleum wells on Edvard Grieg (Lundin Energy Norway, 2020) are utilized in
the model development.
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2 Parameter estimation problem

For all models on the gray-scale, parameter estimation is essential to obtain adequate
model predictions of the process. Consider a dataset D = {xi, yi}ni=1 with n obser-
vations of the process state and control variables xi ∈ Rd, also called explanatory
variables, and target variable yi ∈ R. Assume the process to be described by

yi = f(xi;φ) + εi, εi ∼ N (0, σ2
ε ), (1)

where ŷi = f(xi;φ) is a general steady-state model with parameters φ ∈ Rm, and
εi is normally distributed measurement noise. In general, the parameter estimation
problem may be posed as an optimization problem

φ∗ = arg min
φ
J(y, ŷ), (2)

where J is a scalar, non-negative objective function, and y, ŷ ∈ Rn are the observa-
tions of target variable measurements and estimates respectively. A common approach
to solving the estimation problem is through least squares estimation, which is equiv-
alent to maximum likelihood estimation (MLE) of the model in (1). Denoting the
design matrix by X ∈ Rn×d with rows Xi,∗ = xi, the MLE may be written compactly
as

φ∗MLE = arg min
φ

(y − f(X;φ))
>

(y − f(X;φ)) . (3)

This is a nonlinear, nonconvex optimization problem that generally has several solu-
tions, which all fulfill

∇φJMLE = −2∇φf(X;φ)>(y − f(X;φ)) = 0. (4)

If the sensitivity matrix

∇φf(X;φ)|φ =
[
∂f
∂φ1

(X) ... ∂f
∂φm

(X)
]
|φ (5)

has full column rank for all φ, we may say that the problem is identifiable and there
exist a unique solution to (3). Nevertheless, determining the rank of (5) for the
general nonlinear problem is nontrivial.

The sensitivity matrix is highly influenced by the span, or variability, of X, and
uncertainty in the measurements of the explanatory variables. If the model is non-
identifiable, a natural approach is to increase the variability of X. However, for
petroleum production systems this is not trivial as the production data is influenced
by the operational practices of the operator. Further, designed experiments are of-
ten unaffordable due to the operation of the asset at a non-optimal operating point.
Other approaches to obtain identifiability of non-identifiable over-parameterized mod-
els are parameter ranking methods (Chan and Hansen, 1992) and parameter reduction
methods (White, 2003). The first method estimates the parameters that are most in-
fluential to the model output while fixing the remaining parameters at constant prior
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values. The latter method removes redundant parameters. Nevertheless, in a real-life
setting, the underlying process and parameter values are unknown, and fixing param-
eters at constant values may lead to bias estimates. For hybrid models, many of the
parameters are non-physical. Therefore, finding redundant parameters or good priors
to fix the less influential parameters is challenging.

On the other hand, even if the sensitivity matrix has full rank, identifiability may be
influenced by other aspects. For instance, for highly nonlinear, non-convex problems,
iterative, stochastic, and local optimization algorithms are often required to solve the
estimation problem in reasonable time (Bottou, Curtis, and Nocedal, 2018). The
stochasticity and locality of these algorithms may prevent model identifiability. For
instance, with stochastic gradient descent (SGD) the parameters are updated with

φk+1 = φk − αkMk(yk, ŷk), (6)

where α ≤ 1 is the learning rate andM is a stochastic gradient commonly calculated
using a subset or mini-batch of the data samples. When a model increases in com-
plexity, both in terms of model parameters and available process data, batch SGD
methods scale better and are computationally feasible (Bottou, Curtis, and Nocedal,
2018). The totality of these issues implies that model identifiability is challenging to
obtain in practice for complex models, and the physical interpretability of the model
may be easily lost.

An alternative approach to counteract the loss of physical interpretability in non-
identifiable models is using parameter regularization in the estimation problem. Reg-
ularization of the parameters is achieved by setting up maximum a posterior (MAP)
estimation of the parameters, instead of MLE. MAP estimation attempts to find the
mode of the posterior probability distribution of the model parameters given the data
D

φ∗MAP = arg max
φ

p(φ|D). (7)

Through utilization of Bayes’ theorem and assuming normally distributed parameter
priors φi ∼ N (µi, σ

2
i ), i ∈ {1, ..,m}, the optimization problem

φ∗MAP = arg minφ

[
(y − f(X;φ))

>
(y − f(X;φ))︸ ︷︷ ︸

MLE

+ (φ− µ)>Π(φ− µ)︸ ︷︷ ︸
parameter regularization

]
, Π = diag(

σ2
ε

σ2
1
, ..,

σ2
ε

σ2
m

)

(8)

is derived. In short, MAP estimation is a trade-off between minimizing the deviation
between model estimates and measurements, and penalization of the deviation of the
parameters away from their prior mean value µ. This type of regularization method is
called Tikhonov or `2-regularization and is referred to as a shrinking method (Hastie,
Tibshirani, and Friedman, 2009). Dependent on Π, `2-regularization may make the
MAP problem nonsingular with one unique solution when the MLE problem is not.
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To see this, consider the linear case where

ŷ = f(X;φ) = Xφ. (9)

The solutions of MLE in (3), and MAP in (8), for (9) are respectively

φ?MLE =
(
X>X

)−1
X>y,

φ?MAP =
(
Π +X>X

)−1 (
X>y + Πµ

)
.

(10)

The MAP solution adds a diagonal, positive definite matrix to X>X before inversion.
Dependent on Π, the MAP problem may be nonsingular even if the X>X does not
have full column rank. If the elements in Π are set sufficiently high, the MAP solution
approximate to

φ?MAP ≈ µ. (11)

This indicates the importance of good parameter priors. An appropriate selection of
Π will allow parameter deviation away from the prior mean value while keeping the
parameters within a feasible range, thereby preserving physical interpretability. The
same results may be obtained (locally) for the general nonlinear system through a
first-order Taylor approximation of f .

In this study, MAP estimation is used to train the mechanistic and hybrid models.
For hybrid models, the parameter regularization term in (8) is divided into two, one
each for the physical and non-physical parameters. For the physical parameters, the
prior parameter distributions {µi, σ2

i }mi=1 need to be specified. The variance of the
parameters may be determined using physical bounds. Notice, if σ2

i →∞ then Π ≈ 0,
and the MAP estimation becomes an MLE problem in practice. The same effect may
be achieved by setting σ2

ε small. Ideally, σ2
ε should be determined prior to training,

however, it may be used as a regularization tuning constant. For the non-physical
parameters, common practice is to penalize large parameters by setting the same prior
µi = 0 and Π = λI on all parameters (Goodfellow, Bengio, and Courville, 2016). The
optimizer Adam (Kingma and Ba, 2015) is utilized for all models. A hyperparameter
search with Bayesian Optimization (Klein et al., 2017) is used to find λ and the
learning rate α in (6).

3 Choke models

A petroleum well production choke valve may be illustrated as in Figure 2. Available
sensor measurements are typically pressures (p) and temperatures (T ), upstream (1)
and downstream (2) the choke valve, and choke openings (u). In parameter estimation,
measurements of the model output, in this research the oil volumetric flow rate, (QO),
is also required, for instance from a multiphase flow meter or test separator. The mass
fractions are treated as known and as inputs to the model. The mechanistic model
used in this study is taken from Sachdeva et al. (1986). The choke model is developed
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Figure 2: The petroleum well production choke valve with available measurement
sensors.

from the combined steady-state mass and momentum balance along a streamline and
the equation for the mass flow rate through the choke is given as

ṁ = CDA2(u)

(
2ρ22p1

(
κ
κ−1ηG

(
1

ρG,1
− pr

ρG,2

)

+
(
ηO
ρO

+ ηW
ρW

)
(1− pr)

))1/2

,

(12)

where A is the flow area of the choke, typically a nonlinear function of u, ρ is the
mixture density, ηi, ρi, i ∈ {G,O,W} are the mass fractions and densities of gas,
oil, and water, respectively, κ is the adiabatic gas expansion coefficient, pr is the
downstream to upstream pressure ratio, and CD is a discharge coefficient commonly
introduced to account for modeling errors. The oil volumetric flow rate in standard
conditions is obtained with

QO =
ηOṁ

ρO,ST
. (13)

In model development, Sachdeva et al. (1986) assumes 1) the upstream gas density
may be described with the real gas law

ρG1 =
p1MG

Z1RT1
, (14)

where MG is the molar mass of gas, Z is the gas compressibility factor, and R is
the universal gas constant, 2) the gas expansion across the choke may be assumed
adiabatic

1

ρG,2
=

1

ρG,1

(
p1
p2

) 1
κ

, (15)

3) the liquid is incompressible such that the oil and water densities remain constant
across the choke, and 4) the mixture density may be assumed homogeneous

1

ρ
=
ηG
ρG

+
ηO
ρO

+
ηW
ρW

, ηW = 1− ηG − ηO. (16)
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The Sachdeva et al. model distinguishes between sub-critical and critical flow1 through
the choke restriction by defining the pressure ratio as

pr =

{
p2
p1

p2
p1
≥ pr,c

pr,c otherwise
(17)

For multiphase flow, a rule of thumb for the critical pressure ratio is pr,c ≈ 0.6 (Jansen,
2015).

In this article, the Sachdeva et al. choke model will be referred to as the mechanistic
model (MM) and we specify the model parameters as

φMM = [ρO, ρW , κ,MG, pr,c, CD]. (18)

To hybridize the MM, we introduce a neural network (NN) into the model equations.
The NN is a collection of layers, where each layer, i ∈ {1, ..K}, outputs (zi) a trans-
formation of the inputs (zi−1). We use a piece-wise linear transformation with weights
Wi and bias bi, and the rectified linear unit (ReLU) as activation function, a.

zi = a(Wizi−1 + bi)

= max{0,Wizi−1 + bi}, i ∈ {1, ...K} (19)

In this research, the flow area function of the outlet, A2(u), will be represented with
a neural network

A2 = g(u;φDD), (20)

where the choke opening is used as input to the network and the network parameters
are the collection of weights and biases on all layers φDD = {(W1, b1), ..., (WK , bK)}.
The rest of the mechanistic equations from the MM remain as before. One may think
of this model design as a way to alleviate the MM assumption of the shape of the
area function. Naturally, relaxation of other MM assumptions such as the real gas
law or adiabatic gas expansion is another possible model design. We incorporate the
constant discharge coefficient CD into the above function such that the remaining
physical parameters of the HM are

φHM = [ρO, ρW , κ,MG, pr,c]. (21)

4 Case study - synthetic data

In this case study, we investigate the identifiability and interpretability of the MM
and HM presented in Section 3. To have perfect information about the underlying
process, we generate noise-free, synthetic data of the oil volumetric flow rate through

1Critical flow through a choke occur when a reduction in p2 for a fixed p1 does not increase the
flow rate (Jansen, 2015).
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the choke with the MM from Section 3. A set of realistic combinations of the inputs x
taken from two anonymous petroleum fields are used. If the model is identifiable, we
should expect the physical parameters to converge to the true underlying parameter
values of the data-generating process without regularizing the parameters.

Table 1 gives the true parameter values of the data generating process and the prior
parameter distributions used for initialization and regularization of the physical model
parameters. The neural network depth and width in the HM are chosen 3× 100, and
the non-physical parameters are initialized with He-initialization (He et al., 2015).
Due to the stochastic nature of the optimization algorithm, the models are trained
several times, and the median mean absolute error (MAE), absolute percentage error
(MAPE), and parameter values are reported. The errors are calculated using an
independent test set. Initially, we set σε small to obtain Π ≈ 0, resulting in negligible

Table 1: Values of the true parameters and the prior mean and standard deviation.
φ True µ σ

ρO 760 800 33.3
ρW 1010 1025 8.33
κ 1.30 1.32 0.033
MG 0.021 0.027 0.003
pr,c 0.55 0.6 0.067
CD 1.0 0.9 0.25

regularization. It turns out that neither the MM nor the HM obtains convergence of
the physical parameters to the true underlying values, see the two first columns of
Table 2. Furthermore, some of the parameters converge to physically infeasible values.
On the other side, through experimentation, it was found that fixing the value of CD
in the MM at its true value resulted in the convergence of the remaining parameters
to their true value. Nevertheless, in a real-life setting, the true underlying parameter
values are unknown and the process will never be perfectly represented by a model.
Further, the available data is often limited. Therefore, in particular for hybrid models
with a large number of non-physical parameters, a better approach may be to include
all uncertain parameters in the estimation problem instead of fixing some of them and
use parameter regularization to ensure the preservation of the physical interpretability
of the model. The two last columns of Table 2 illustrates the results of the MM and
HM with sufficient regularization of the model parameters. The learned HM area
function with and without regularization is illustrated in Fig. 3. Observe how the
curve is close to that of the MM, thereby retaining the physical interpretability of the
model. Pay in mind, it was not expected that the HM should obtain a lower error
than the MM as the underlying model structure is perfectly known and matches the
MM. In a practical case, one should expect an overall decrease in error due to the
increased model flexibility of the HM.
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Table 2: The median error and parameter values of the MM and HM without regu-
larization for the synthetic data.

Without reg. Without reg. With reg. With reg.
MM HM MM HM

MAE 0.0 0.2 0.0 0.1
MAPE 0.0 0.4 0.0 0.1

ρO 979 737 777 772
ρW 1302 976 1027 1025
κ 1.31 1.30 1.30 1.30
MG 0.028 0.021 0.022 0.022
pr,c 0.55 0.55 0.55 0.55
CD 0.88 n.a. 0.99 n.a.

Figure 3: The neural network area function in the HM for different degree of regular-
ization. The mechanistic area function is illustrated for reference.

5 Case study - Edvard Grieg

In this case study, the physical interpretability and predictive performance are inves-
tigated for petroleum production choke valve models developed using real production
data. We use historical data from six petroleum wells on the asset Edvard Grieg
(Lundin Energy Norway, 2020) and train the MM and the HM for each well. The
data have been preprocessed in two steps. Firstly, the processing technology in (Grim-
stad et al., 2016) is used to produce a compressed data set of steady-state operating
points suitable for steady-state modeling. Secondly, a set of filters are applied to
remove significant outliers such as negative pressures or flow rates. For each well,
the historical data is split into training and test data, using the three latest months
as test data. This is to mimic an industrial case where the model is used to predict
future flow rates.

As in Section 4, the physical parameter initial values are drawn from prior parameter
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normal distributions, see Table 1, and regularization is applied to enforce convergence
of the physical parameters within feasible bounds. As before, the models are trained
several times due to the stochasticity of the estimation problem. Table 3 gives the
minimum, median, and maximum MAE, MAPE, and parameter values across the
six wells grouped on model type. Fig. 4 illustrates the learned neural network area
function in the HM for the six wells.

Table 3: The minimum, median, and maximum error and parameter values for the
six wells, grouped on model type.

MM HM

min med. max min med. max

MAE 3.4 8.8 19.9 2.3 4.8 11.5
MAPE 7.3 14.0 68.3 2.3 9.1 47.8

ρO 608 719 812 634 682 707
ρW 1025 1025 1025 1025 1025 1025
κ 1.29 1.33 1.49 1.33 1.35 1.36
MG 0.027 0.033 0.041 0.029 0.037 0.045
pr,c 0.48 0.66 0.93 0.65 0.68 0.88
CD 0.72 0.84 0.91 n.a. n.a. n.a.

Figure 4: The neural network area function in the HM for the different wells. We see
that there are large individual differences for each well.

First of all, notice that the results indicate a significant reduction in prediction error
comparing the HM to the MM. Also notice that the values for the physical parame-
ters mostly stay feasible, with some exceptions. On the other hand, there are large
variations in the errors for each individual model. The overall best performing model
is an HM with 2.3% MAPE whereas the overall worst performing model is an MM
with 68.3% MAPE. Furthermore, observe from Fig. 4 that some of the learned area
functions are in line with the expected physical trend (an increase in the opening
gives an increase in area) whereas other converges to zero.

There may be multiple causes for the large variations. Firstly, if the available data
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are noisy, faulty, or lacking, the model performance and physical interpretability may
be influenced. Investigations of the dataset show that for the wells where the learned
neural network area function converges to zero, there are lacking measurements of the
choke opening in certain operating regions. Pretraining the neural network could be
beneficial in such situations. Further, inappropriate data may easily lead to overfitting
of the model parameters and commonly results in poor predictive performance on
unseen data.

Secondly, the model structure may be inappropriate. The baseline mechanistic model
is a simplified model and may not capture physical effects equally well in all flow
regimes and operating conditions. Mechanistic models with higher complexity or
models that include effects of the remaining production system such as the wellbore,
would likely decrease the error. Further, in this research, the HM only alleviates the
mechanistic model assumption of the area function shape. Other assumptions that
could be alleviated are for instance the real gas law, the homogeneous mixture density,
or the adiabatic gas expansion. Yet, introducing additional data-driven elements could
influence model interpretability and should be carefully considered.

Lastly, the utilized process data originate from a non-stationary process, the reservoir.
Therefore, using three months as test data in which the model and parameters remain
constant may be inappropriate and may cause large prediction errors. Updating the
model more frequently, for instance in an online learning fashion, would likely improve
the performance.

6 Conclusion

This study argues that model identifiability is challenging to obtain in practice due to
both deterministic and stochastic uncertainties. In particular in situations where the
underlying process is complex and highly nonlinear, as is the case in petroleum pro-
duction systems, and where the available data is limited. Even though identifiability
is often thought of as a prerequisite for obtaining physically interpretable models, we
have illustrated through an industrial case study that physical interpretability may
be preserved for non-identifiable hybrid models by the inclusion of sufficient regular-
ization of the model parameters in the estimation problem. Further, hybrid models
may improve the predictive performance compared to a mechanistic model due to
the increased model flexibility. This is demonstrated in a case study on real produc-
tion data from six petroleum wells on the asset Edvard Grieg. The hybrid model
decreases the median MAPE across the six wells by 35% compared to a mechanistic
model while staying physically interpretable. On the other hand, the study shows
that the predictive performance and the physical interpretability are influenced by
the available data, and there are large variations in the results on a well-level. Future
research should look into other hybrid model variants and online learning to improve
predictive performance and physical interpretability. Certainly, any general conclu-
sions cannot be drawn as we have only experimented with two different model types
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and with historical data from one petroleum field. Experimentation with data from
other wells and fields would greatly benefit the results in this study.
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Abstract: Recent works have presented promising results from the application of
machine learning (ML) to the modeling of flow rates in oil and gas wells. Encour-
aging results and advantageous properties of ML models, such as computationally
cheap evaluation and ease of calibration to new data, have sparked optimism for the
development of data-driven virtual flow meters (VFMs). Data-driven VFMs are de-
veloped in the small data regime, where it is important to question the uncertainty
and robustness of models. The modeling of uncertainty may help to build trust in
models, which is a prerequisite for industrial applications. The contribution of this
paper is the introduction of a probabilistic VFM based on Bayesian neural networks.
Uncertainty in the model and measurements is described, and the paper shows how
to perform approximate Bayesian inference using variational inference. The method
is studied by modeling on a large and heterogeneous dataset, consisting of 60 wells
across five different oil and gas assets. The predictive performance is analyzed on
historical and future test data, where an average error of 4-6% and 8-13% is achieved
for the 50% best performing models, respectively. Variational inference appears to
provide more robust predictions than the reference approach on future data. Predic-
tion performance and uncertainty calibration is explored in detail and discussed in
light of four data challenges. The findings motivate the development of alternative
strategies to improve the robustness of data-driven VFMs.

Keywords: Neural Network, Bayesian Inference, Variational Inference, Virtual Flow
Metering, Heteroscedasticity

1 Introduction

Knowledge of multiphase flow rates is essential to efficiently operate a petroleum pro-
duction asset. Measured or predicted flow rates provide situational awareness and
flow assurance, enable production optimization, and improve reservoir management
and planning. However, multiphase flow rates are challenging to obtain with great
accuracy due to uncertain subsurface fluid properties and complex multiphase flow
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dynamics (Jansen, 2015). In most production systems, flow rates are measured using
well testing. While these measurements are of high accuracy, they are intermittent
and infrequent (Monteiro, Duque, et al., 2020). Some production systems have multi-
phase flow meters (MPFMs) installed at strategic locations to continuously measure
flow rates. Yet, these devices are expensive, and typically have lower accuracy than
well testing. An alternative approach is to compute flow rates using virtual flow
metering (VFM). VFM is a soft-sensing technology that infers the flow rates in the
production system using mathematical models and ancillary measurements (Toskey,
2012). Many fields today use some form of VFM technology complementary to flow
rate measurements. There are two main applications of a VFM: i) real-time predic-
tion of flow rates, and ii) prediction of historical flow rates. The second application
is relevant to the prediction of missing measurements due to sensor failure or lacking
measurements in between well tests.

VFMs are commonly labeled based on their use of either mechanistic or data-driven
models (Timur Bikmukhametov and Johannes Jäschke, 2020). Both model types
can be either dynamic or steady-state models. Mechanistic VFM models are derived
from prior knowledge about the internal structure of the process (Solle et al., 2016).
Physical, first-principle laws such as mass, energy, and momentum-balance equations,
along with empirical closure relations, are utilized to describe the relationship between
the system variables. Mechanistic modeling is the most common approach in today’s
industry and some commercial VFMs are Prosper, ValiPerformance, LedaFlow, Flow-
Manager, and Olga (Amin, 2015).

In contrary to mechanistic models, data-driven models exploit patterns in process
data and attempt to find relationships between the system variables with generic
mathematical models. In other words, data-driven models attempt to model the pro-
cess without utilizing explicit prior knowledge (Solle et al., 2016). In recent years,
there has been an increasing number of publications on data-driven VFMs (Timur
Bikmukhametov and Johannes Jäschke, 2020). The developments are motivated by
the increasing amount of sensor data due to improved instrumentation of petroleum
fields, better data availability, more computing power, better machine learning tools
and more practitioners (Balaji et al., 2018). Additionally, data-driven VFMs may re-
quire less maintenance than a mechanistic VFMs (T. A. AL-Qutami, Ibrahim, Ismail,
and Ishak, 2017b). Even so, commercial data-driven VFMs are rare. This is arguably
due to the following data challenges, which must be overcome by data-driven VFMs:

1. Low data volume

2. Low data variety

3. Poor measurement quality

4. Non-stationarity of the underlying process

The first two challenges are due to data-driven methods, especially neural networks,
being data-hungry, and require substantial data volume and variety to achieve high
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accuracy (Mishra and Datta-Gupta, 2018). Petroleum production data do not gener-
ally fulfill these requirements. For petroleum fields without continuous monitoring of
the flow rates, new data is obtained at most 1-2 times per month during well testing
(Monteiro, Duque, et al., 2020), yielding low data volume. For fields with continuous
measurements, the data volume may be higher, yet, the second challenge of low vari-
ety remains. Low data variety relates to the way production systems are operated and
how it affects the information content in historical production data. The production
from a well is often kept fairly constant by the operator, in particular during plateau
production, i.e., when the production rate is limited by surface conditions such as the
processing capacity. When a field later enters the phase of production decline, the
operator compensates for falling pressures and production rates by gradually opening
the production choke valves. This can introduce correlations among the measured
variables which are unfortunate for data-driven models. A common consequence of
modeling in the small data regime is overfitting which decreases the generalization
ability of the model, that is, the models struggle with extrapolation to unseen oper-
ating conditions (Solle et al., 2016). Nonetheless, one should be able to model the
dominant behavior of the well and make meaningful predictions close to the observed
data if care is taken to prevent overfitting (T. AL-Qutami et al., 2018).

The third challenge, poor measurement quality, highly influences the predictive abil-
ities of data-driven VFMs. Common issues with measurement devices in petroleum
wells include measurement noise, bias, and drift. Additionally, equipment or com-
munication failures may lead to temporarily or permanently missing data. Common
practices to improve data quality include device calibration, data preprocessing and
data reconciliation (Câmara et al., 2017). In model development, methods such as
parameter regularization and model selection techniques prevent overfitting of the
model in the presence of noisy data. However, some of the above issues and practices
may be challenging to handle in a data-driven model.

Lastly, the underlying process in petroleum production systems, the reservoir, is non-
stationary. The pressure in the reservoir decreases as the reservoir is drained and the
composition of the produced fluid changes with time (Foss, Knudsen, and Grimstad,
2018). Time-varying boundary conditions make it more difficult to predict future
process behavior for data-driven VFMs as they often struggle with extrapolation.
As mentioned above, methods to prevent overfitting to the training data in model
development may (and should) be utilized to improve extrapolation abilities to the
near future, and frequent model updating or online learning would contribute to better
predictive abilities for larger changes in the underlying process.

As the above discussion reflects, data-driven VFMs are influenced by uncertainty.
Both model (epistemic) uncertainty and measurement (aleatoric) uncertainty are
present (Hüllermeier and Waegeman, 2021). The first type originates from the model
not being a perfect realization of the true process and there are uncertainties related
to the model structure and parameters. The latter type is a cause of noisy data due
to imprecision in measurements (Gal, 2016). Accounting for uncertainty is impor-
tant to petroleum production engineers as they are often concerned with worst- and
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best-case scenarios. Further, information about the prediction uncertainty may aid
the production engineers to decide whether the model predictions may be trusted.
According to a recent survey (Timur Bikmukhametov and Johannes Jäschke, 2020),
uncertainty estimation must be addressed by future research on VFM.

The motivation of this paper is to address uncertainty by introducing a probabilistic,
data-driven VFM based on Bayesian neural networks. With this approach, epistemic
uncertainty is modeled by considering the weights and biases of the neural network
as random variables. Aleatoric uncertainty can be accommodated by a homoscedas-
tic or heteroscedastic model of the measurement noise. This allows the modeler to
separately specify priors related to the two uncertainty types. This can be beneficial
when having knowledge of the measurement devices that produced the data modeled
on.

Historically, the difficulty of performing Bayesian inference with neural networks has
been a hurdle to practitioners. We thus provide a description of how to train the
model using variational inference. Variational inference provides the means to per-
form efficient, approximate Bayesian inference and results in a posterior distribution
over the model parameters (Blei, Kucukelbir, and McAuliffe, 2017). The method
has shown promising results in terms of quantifying prediction uncertainty on other
problems subject to small datasets and dataset shift (Ovadia et al., 2019). We also
consider maximum a posteriori estimation, which serves as a non-probabilistic refer-
ence method. Although it computes a point estimate of the parameters, as opposed to
a posterior distribution, it more closely resembles the maximum likelihood methods
used in the majority of previous works on data-driven VFM. The reference method
enables us to investigate if a probabilistic method, i.e. variational inference, may
improve robustness over a non-probabilistic method. We test the proposed VFM by
performing a large-scale empirical study on data from a diverse set of 60 petroleum
wells.

The paper is organized as follows. In Section 2 we briefly survey related works on data-
driven VFM, with a focus on applications of neural networks. This section also gives
some relevant background on probabilistic modeling. In Section 3 we describe how flow
rates are measured and the dataset used in the case study. The probabilistic model
for data-driven VFM is presented in Section 4 and in Section 5 we discuss methods for
Bayesian inference. The case study is presented in Section 6 and discussed in Section
7. In Section 8 we conclude and give our recommendations for future research on
data-driven VFM based on our findings.
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2 Related work

2.1 Traditional data-driven modeling

In literature, several data-driven methods have been proposed for VFM modeling,
for instance, linear and nonlinear regression, principal component regression, random
forest, support vector machines and the gradient boosting machine learning algorithm
(Zangl, Hermann, and Schweiger, 2014; Bello, Ade-Jacob, and Yuan, 2014; Xu et al.,
2011; T. Bikmukhametov and J. Jäschke, 2019). One of the most popular and promis-
ing data-driven methods for VFM are neural networks (NN). In (Zangl, Hermann, and
Schweiger, 2014), the oil flow rate from three wells was modeled using NNs, and an
error as low as 0.15% was reported. However, well-step tests were used to generate
data with sufficient variety, and the time-span of the data covered only 30 hours. The
three studies, (S. M. Berneti and Shahbazian, 2011; Ahmadi et al., 2013; Hasanvand
and S. Berneti, 2015), investigated NNs for the oil flow rate from a reservoir using
data samples from 31-50 wells. All used a neural network architecture with one hidden
layer and 7 hidden neurons. In the two first, the imperialist competitive algorithm
was used to find the NN weights. All of the three studies reported a very small mean
squared error, of less than 0.05. Yet, the data was limited to a time-span of 3 months
and did not include measurements of the choke openings of the petroleum wells. This
will strongly affect the future model performance when reservoir conditions change
and the choke openings are adjusted.

A particularly noticeable series of studies on VFM and NN, using historical well
measurements with a time-span of more than a year, are (T. AL-Qutami et al., 2018;
T. A. AL-Qutami, Ibrahim, Ismail, and Ishak, 2017a; T. A. AL-Qutami, Ibrahim, and
Ismail, 2017; T. A. AL-Qutami, Ibrahim, Ismail, and Ishak, 2017b). In (T. A. AL-
Qutami, Ibrahim, Ismail, and Ishak, 2017a), the oil and gas flow rates were modeled
using two individual feed-forward NN, with one hidden layer and 6 and 7 neurons
respectively, and with early stopping to prevent overfitting. An error of 4.2% and
2.3% for the oil and gas flow rates were reported. In (T. A. AL-Qutami, Ibrahim,
Ismail, and Ishak, 2017b), a radial basis function network was utilized to model
the gas flow rate from four gas condensate wells, and the Orthogonal Least Squares
algorithm was applied to find the optimal number of neurons (≤ 80) in the hidden
layer of the network. The study reported an error of 5.9%. In (T. A. AL-Qutami,
Ibrahim, and Ismail, 2017; T. AL-Qutami et al., 2018), ensemble neural networks
were used to excel the learning from sparse data. In the first, the neural network
architecture was limited to one hidden layer but the number of hidden neurons was
randomly chosen in the range 3-15. Errors of 1.5%, 6.5%, and 4.7% for gas, oil, and
water flow rate predictions were achieved. The second paper considered 1-2 hidden
layers with 1-25 neurons. Errors of 4.7% and 2.4% were obtained for liquid and gas
flow rates respectively.
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2.2 Probabilistic modeling

A common approach in today’s industry and literature is to study the sensitivity of the
model to changes in parameter values, thus to a certain extent approaching epistemic
uncertainty, e.g. (Bieker, Slupphaug, and Johansen, 2007; Fonseca, Gonçalves, and
Azevedo, 2009; Zangl, Hermann, and Schweiger, 2014; Monteiro, Chaves, et al., 2017;
Monteiro, Duque, et al., 2020). By approximating probability distributions for some
of the model parameters from available process data and using sampling methods to
propagate realizations of the parameters through the model, a predictive distribution
of the output with respect to the uncertainty in the parameter may be analyzed.

Probabilistic modeling offers a more principled way to model uncertainty, e.g. by
considering model parameters and measurement noise as random variables (Ghahra-
mani, 2015). With Bayesian inference, a posterior distribution of the model output
is found that takes into account both observed process data and prior beliefs of the
model parameters (Hastie, Tibshirani, and Friedman, 2009). The result is a predictive
model that averages over all likely models that fit the data and a model that offers a
natural parameter regularization scheme through the use of priors. This is in contrast
to traditional data-driven modeling where the concern is often to find the maximum
likelihood estimate (Ghahramani, 2015). Although probabilistic models and Bayesian
inference are well-known in other fields of research, probabilistic VFMs are rare, yet
existent (Lorentzen, Stordal, Nævdal, et al., 2014; Lorentzen, Stordal, Luo, et al.,
2016; Luo et al., 2014; Bassamzadeh and Ghanem, 2018).

The following series of studies, (Lorentzen, Stordal, Nævdal, et al., 2014; Luo et al.,
2014; Lorentzen, Stordal, Luo, et al., 2016), constructed a mechanistic, probabilistic
model of the flow rate in petroleum wellbores. A method for probabilistic, data-driven
models is Bayesian neural networks (BNNs). BNNs are similar to traditional neural
networks but with each parameter represented with a probability distribution (Hastie,
Tibshirani, and Friedman, 2009; Polson and Sokolov, 2017). Bayesian methods have
shown to be efficient in finding high accuracy predictors in small data regimes and in
the presence of measurement noise without overfitting to the data (Snoek, Larochelle,
and Adams, 2012). Further, Bayesian methods lend themselves to online model up-
dating and could quickly improve the model’s predictive ability when introduced to
new operating regions. Yet, there are disadvantages with probabilistic modeling and
Bayesian inference. Except in special cases, inferring the posterior probability dis-
tribution of the model consists of solving intractable integrals and inference is slow
for large datasets (Blei, Kucukelbir, and McAuliffe, 2017). However, methods for
approximation of the posterior distribution exist such as Markov Chain Monte Carlo
(MCMC) sampling and variational inference (VI). Comparing these two approxima-
tion methods, VI has shown to scale better to large datasets and inference tends
to be faster. Additionally, it simplifies posterior updating in the presence of new
data. Nevertheless, the approximation with VI is in most cases bounded away from
the true distribution, whereas MCMC methods will in principle converge towards the
true distribution (Blei, Kucukelbir, and McAuliffe, 2017). A challenge for data-driven
probabilistic models, such as Bayesian neural networks, is that the model parameters
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are generally non-physical, and setting the parameter priors is nontrivial. Despite
neural networks being among the more popular data-driven methods for VFM mod-
eling, to the extent of the authors’ knowledge, there has been no attempt at using
BNNs for VFM. There are, however, examples of BNNs being used for data-driven
prediction in similar applications (Liu et al., 2012; Humphrey et al., 2016).

3 Flow rate measurements and dataset

A petroleum production well is illustrated in Figure 1. Produced fluids flow from the
reservoir, up to the wellhead, and through the choke valve. The choke valve opening
(u) is operated to control the production from the well. The fluids thereafter enter
the separator which separates the multiphase flow into the three single phases of oil,
gas, and water q = (qoil, qgas, qwat). On well-instrumented wells, pressure (p) and
temperature (T ) is measured upstream and downstream the choke valve.

To separator

Choke valve

F
ro

m
 r

es
er

v
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r

MPFMP/T sensor P/T sensor

Gas

OilWater

Test separator

Figure 1: Sensor placement in a typical production well. A MPFM measures multi-
phase flow rates in the well. During well testing, single phase flow rates are measured
with high accuracy after fluid separation.

The two main devices to measure multiphase flow rates in a well are the multiphase
flow meter (MPFM) and test separator, both illustrated in Figure 1. MPFMs are
complex devices based on several measurement principles and offer continuous mea-
surements of the multiphase flow rate. Unfortunately, MPFMs have limited operation
range, struggle with complex flow patterns, and are subject to drift over time (Cor-
neliussen et al., 2005). Additionally, PVT (pressure-volume-temperature) data are
used as part of the MPFM calculations and should be accurate and up-to-date for
high accuracy MPFM measurements. On the other hand, well-testing is performed
by routing the multiphase flow to a test separator whereby the separated flows are
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measured using single-phase measurement devices over a period of time (typically a
few hours). Compared to the MPFM, well tests are performed infrequently, usually
1-2 times a month (Monteiro, Duque, et al., 2020).

Normally, measurements of the multiphase flow rate obtained through well-testing
have higher accuracy than the measurements from the MPFMs. This is due to the
use of single-phase measurement devices in well-testing. According to (Corneliussen
et al., 2005; Marshall and Thomas, 2015), the uncertainty, in terms of mean abso-
lute percentage error, of well tests, may potentially be as low as 2% and 1% for gas
and oil respectively, whereas MPFM uncertainty is often reported to be around 10%.
The error statistics are calculated with respect to reference measurements. For mea-
surements of pressure, temperature, and choke openings, we assume that the sensors’
accuracy is high, typically with an uncertainty of 1% or less, and measurement error
in these measurements are therefore neglected.

The flow rates are often given as volumetric flow rates under standard conditions, e.g.
as standard cubic meter per hour (Sm3/h). Standard conditions make it easier to
compare to reference measurements or measurements at other locations in the process
as the volume of the fluid changes with pressure and temperature. Flow rates may be
converted from actual conditions to standard conditions using PVT data (Krejbjerg
et al., 2019). If the density of the fluid at standard conditions is known, the standard
volumetric flow rate may be converted to mass flow rate, and the phasic mass fractions,
η = (ηoil, ηgas, ηwat), may be calculated. We assume steady-state production, frozen
flow, and incompressible liquid such that the phasic volumetric flow rate and mass
fractions are constant through the system, from the reservoir to the separator.

3.1 Dataset

The dataset used in this study consists of 66 367 data points from 60 wells producing
from five oil and gas fields. The dataset was produced from raw measurement data
using a data squashing technology (Grimstad et al., 2016). The squashing procedure
averages raw measurement data in periods of steady-state operation to avoid short-
scale instabilities. The resulting data points, which we refer to as measurements
henceforth, are suitable for modeling of steady-state production rates.

For each well we have a sequence of measurements in time. The time span from the
first to last measurement is plotted for each well in Figure 2a. The figure shows that
the measurement frequency varies from a handful to hundreds of measurements per
year. There are 14 wells with test separator measurements, for which the average
number of measurements is 163. The other 46 wells have MPFM measurements,
and the average number of measurements is 1393. The 60 wells are quite different
from each other in terms of produced fluids. Figure 2b illustrates the spread in mass
fractions among the wells.

In the following, we model the multiphase flow through the production choke valve,
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Figure 2: The number of measurements is plotted against the time span from the first
to last measurement in (a). The average gas and water mass fraction is shown for all
wells in (b).

a crucial component in any VFM. We consider ideal conditions, in the sense that all
measurements required by a reasonable choke model are available (Hotvedt, Grimstad,
and Imsland, 2020). For each well, we collect the corresponding measurements in a
dataset D = {(xi, yi)}Ni=1. We will only consider one well at the time and simply
refer to the dataset as D. The target variable is the total volumetric flow rate,
yi = qoil,i + qgas,i + qwat,i ∈ R, measured either by a test separator or a MPFM. The
explanatory variables,

xi = (ui, p1,i, p2,i, T1,i, T2,i, ηoil,i, ηgas,i) ∈ R7,

are the measured choke opening, the pressures and temperatures upstream and down-
stream the choke valve, and the mass fractions of oil and gas. No experimental set-up
was used to affect the data variety; for example, we did not consider step well tests
as in (Zangl, Hermann, and Schweiger, 2014).
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4 Probabilistic flow model

Consider the following probabilistic model for the total multiphase flow rate:

yi = zi + εi

zi = f(xi,φ)

si = g(zi,ψ)

εi ∼ N (0, s2i )




i = 1, . . . , N,

φ ∼ p(φ) =

Kφ∏

i=1

N (φi | ai, b2i ),

ψ ∼ p(ψ) =

Kψ∏

i=1

N (ψi | ci, d2i ),

(1)

where yi is a measurement of the multiphase flow rate zi subject to additive measure-
ment noise εi. The nonlinear dependence of zi on xi is approximated by a Bayesian
neural network f(xi,φ) with weights and biases represented by latent (random) vari-
ables φ. The neural network is composed of L functions, f = f (L) ◦ · · · ◦ f (1),
where f (1) to f (L−1) are called the hidden layers of f , and f (L) is the output layer
(Goodfellow, Y. Bengio, and Courville, 2016). A commonly used form of a hidden
layer l is f (l)(x) = ReLU(W (l)x + b(l)), where the rectified linear unit (ReLU) op-
erator is given as ReLU(z)i = max{zi, 0}, W (l) is a weight matrix, and b(l) is a
vector of biases. For regression tasks the output layer is usually taken to be an affine
mapping, f (L)(x) = W (L)x + b(L). The layer weights and biases are collected in
φ = {(W (l), b(l))}Ll=1 to enable the compact notation f(xi,φ). With a slight abuse of
this notation, an element φi of φ represents a scalar weight or bias for i ∈ {1, . . . ,Kφ},
where Kφ is the total number of weights and biases in the neural network. The dis-
tinguishing feature of a Bayesian neural network is that the weights and biases, φ,
are modeled as random variables with a prior distribution p(φ).

We assume the noise to be normally distributed with standard deviation g(zi,ψ) > 0,
and we consider different functions g of zi and latent variables ψ. We discuss the priors
on the latent variables, p(φ) and p(ψ), in the subsequent sections. The probabilistic
model is illustrated graphically in Figure 3.

Given φ, ψ and explanatory variables x, the conditional flow rate z = f(x,φ) and a
measurement y is generated as

y | z,ψ ∼ N (y | z, g(z,ψ)2). (2)

The flow rate measurement y is subject to epistemic (model) uncertainty in f(x,φ)
and aleatoric (measurement) uncertainty via g(z,ψ). We differ between homoscedas-
tic and heteroscedastic measurement noise. Heteroscedasticity is when the structure
of the noise in a signal is dependent on the structure of the signal itself and is more
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Samples

Figure 3: A probabilistic graphical model for flow rates. Random variables are in-
scribed by a circle. A gray-filled circle means that the random variable is observed.
The dependence zi → εi indicates that the noise is heteroscedastic, while the depen-
dence ψ → εi indicates that the noise model is learned from data.

difficult to capture (Woodward, Alsberg, and Kell, 1998). Homoscedasticity is the
lack of heteroscedasticity.

The flow model in (1) is a quite generic regression model, but it restricts the modeling
of the measurement noise. The model allows the noise to be heteroscedastic, with the
noise level being a function of the flow rate z, or homoscedastic for which the noise
level is fixed. In the latter case, g(z,ψ) = σn, where σn is a fixed noise level. If
the noise level is unknown, it can be learned with the following homoscedastic noise
model:

g(zi,ψ) = exp(ψ1),

ψ1 ∼ N (c1, d
2
1),

(3)

where ψ1 is a normally distributed latent variable and the noise level is log-normal.
The exponential ensures that g(zi,ψ) > 0.

The homoscedastic noise model in (3) may be unrealistic for flow meters with a
heteroscedastic noise profile. As described earlier, the uncertainty of the flow rate
measurement is often given in relative terms. To model this property of the data,
we augment (3) with a multiplicative term to get the following heteroscedastic noise
model:

g(zi,ψ) = exp(ψ2) · |zi|+ exp(ψ1),

ψ1 ∼ N (c1, d
2
1),

ψ2 ∼ N (c2, d
2
2),

(4)

where ψ1 and ψ2 are normally distributed latent variables1. Both exp(ψ1) and exp(ψ2)
are log-normal, and are hence strictly positive. It follows from |z| ≥ 0 that the noise
standard deviation g(z,ψ) > 0.

1We assume that we have one flow rate instrument for each well. Yet, several instruments may
be handled by having separate noise models for each instrument.
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4.1 Prior for the noise model, p(ψ)

The prior for the noise model is assumed to be a factorized normal

p(ψ) =

Kψ∏

i=1

N (ψi | ci, d2i ), (5)

where Kψ = 1 for the homoscedastic noise model in (3) and Kψ = 2 for the het-
eroscedastic noise model in (4).

The accuracy of an instrument measuring flow rate is commonly given as a mean
absolute percentage error (MAPE) to a reference measurement. More precisely, the
expected measurement error is specified as

Ey | z

[ |y − z|
|z|

]
= Er, (6)

where y is the measurement, z > 0 is the reference measurement, and Er is the
MAPE, e.g. Er = 0.1 for a MAPE of 10%. We wish to translate such statements to
a prior p(ψ).

Assuming a perfect reference measurement z, normal noise ε, and an additive noise
model y = z+ε, we obtain from (6) a noise standard deviation g(z) =

√
π/2Er|z|. We

recognize this as the first term in the heteroscedastic noise model (4). We derive prior
parameters of ψ2 ∼ N (c2, d

2
2) that correspond to a log-normal distribution exp (ψ2)

with mean
√
π/2Er by solving:

c2 = log(
√
π/2Er)− d22/2, (7)

where we can adjust the variance d22 to express our uncertainty in the value of Er.

The specification of a relative measurement error Er cannot be translated directly to
a fixed noise level, as required by the homoscedastic noise model in (3). However, we
can obtain a reasonable approximation by using the above procedure. If we set z = z̄,
where z̄ is the mean production of a well, we can calculate prior parameters for ψ1 as
follows:

c1 = log(
√
π/2Er z̄)− d21/2. (8)

We express our uncertainty about the noise level by adjusting the variance d21.

4.2 Prior for the neural network weights, p(φ)

We encode our initial belief of the parameters φ with a fully factorized normal prior

p(φ) =

Kφ∏

i=1

N (φi | ai, b2i ), (9)
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where Kφ is the number of weights and biases in the neural networks f . We assume a
zero mean for the weights and biases, that is ai = 0, as is common practice for neural
networks. One interpretation of the prior standard deviations is that they encode
the (believed) frequencies of the underlying function, with low values of b inducing
slow-varying (low frequency) functions, and high values inducing fast-varying (high
frequency) functions (Gal, 2016). While this interpretation can give us some intuition
about the effect of the prior, it is not sufficiently developed to guide the specification
of a reasonable prior. We refrain from learning the prior from the data (as with
empirical Bayes) and therefore treat b as hyperparameters to be prespecified.

For deep neural networks it is common practice to randomly sample the initial weights
so that the output has a variance of one for a standard normal distributed input
(Glorot and Yoshua Bengio, 2010; He et al., 2015). For example, He-initialization
(He et al., 2015) is often used for neural networks with ReLU activation functions.
With He-initialization, the weights of layer l are drawn from the distribution N (0, σ2

l )

with σl =
√

2/nl, where nl is the number of layer inputs. The weights in the first
hidden layer are initialized with σl =

√
1/nl since no ReLU activation is applied to

the network’s input. With layer biases set to zero, this initialization scheme yields a
unit variance for the output.

The objective of weight initialization is similar to that of prior specification; a goal
in both settings is to find a good initial model. In this work, we use the standard
deviations bi = σl as a starting point for the prior specification (for weight i in layer l
of a ReLU network). We call this the He-prior. The resulting standard deviations can
then be increased (or decreased) if one believes that the underlying function amplifies
(or diminishes) the input signal.

Figure 4 shows the effect of b on the predictive uncertainty of a Bayesian neural net-
work. With a common prior standard deviation (same for all weights), the output
variance is sensitive to the network size (depth and width). This sensitivity compli-
cates the prior specification, as illustrated for different network depths in the figure.
The He-prior retains a unit output variance for different network sizes.

4.3 A fully factorized normal prior on the latent variables

The prior of model (1) is a fully factorized normal distribution, p(φ)p(ψ). To simplify
the notation in the rest of this paper we collect the latent variables in θ = (φ,ψ) ∈
RK , where K = Kφ +Kψ. This allows us to state the prior on θ as p(θ) = p(φ)p(ψ),
where

p(θ) =

K∏

i=1

N (θi | µ̄i, σ̄2
i ), (10)

with means µ̄ = (µ̄1, . . . , µ̄K) = (a1, . . . , aKφ , c1, . . . , cKψ ) ∈ RK and standard de-
viations σ̄ = (σ̄1, . . . , σ̄K) = (b1, . . . , bKφ , d1, . . . , dKψ ) ∈ RK . The total number of
model parameters (µ̄ and σ̄) is 2K.
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Figure 4: Prediction uncertainty (two sigma) for different priors bi = σ̄ on a neural
network’s weights. Two networks are trained on a dataset D = {(0, yi)}100i=1, where
yi ∼ N (0, σ2

n) and the noise level σn = 0.1 is known. The figure shows that the
epistemic (model) uncertainty is explained away for x = 0 and increasing with the
distance to x = 0. Away from the data, the increase in epistemic uncertainty depends
on the prior variance and network depth.

5 Methods

We wish to infer the latent variables θ of the flow rate model in (1) from observed data.
With Bayesian inference, the initial belief of θ, captured by the prior distribution p(θ)
in (10), is updated to a posterior distribution p(θ | D) after observing data D. The
update is performed according to Bayes’ rule:

p(θ | D) =
p(D |θ)p(θ)

p(D)
, (11)

where p(D) is the evidence and the likelihood is given by

p(D |θ) =

N∏

i=1

p(yi |xi,θ). (12)

The log-likelihood of the model in (1) is shown in A.1.

From the posterior distribution, we can form the predictive posterior distribution

p(y+ |x+,D) =

∫
p(y+ |x+,θ)p(θ | D)dθ (13)

to make a prediction y+ for a new data point x+.

The posterior in (11) involves intractable integrals that prevents a direct application
of Bayes’ rule (Blei, Kucukelbir, and McAuliffe, 2017). In the following sections, we
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review two methods that circumvent this issue, namely maximum a posteriori (MAP)
estimation and variational inference. With MAP estimation inference is simplified
by considering only the mode of p(θ | D), and with variational inference the posterior
distribution is approximated. In the latter case, we can form an approximated predic-
tive posterior distribution by replacing the posterior in (13) with its approximation.
Statistics of this distribution, such as the mean and variance, can be estimated using
Monte-Carlo sampling (Gal, 2016).

5.1 MAP estimation

With maximum a posteriori (MAP) estimation we attempt to compute:

θ̂MAP = arg max
θ

p(θ | D), (14)

where θ̂MAP is the mode of the posterior distribution in (11). For the model in (1)
with a fixed and constant noise variance σ2

n and σ̄2
i is the (prior) variance of θi, we

have that
θ̂MAP = arg max

θ
log p(D |θ) + log p(θ)

= arg min
θ

1

2σ2
n

N∑

i=1

(yi − f(xi,θ))
2

+
K∑

i=1

1

2σ̄2
i

θ2i ,
(15)

From (15), we see that MAP estimation is equivalent to maximum likelihood estima-
tion with L2-regularization (Hastie, Tibshirani, and Friedman, 2009).

While MAP estimation allows us to incorporate prior information about the model,
it provides only a point estimate θ̂MAP and will not capture the epistemic uncertainty
of the model. To obtain a posterior distribution of θ we consider the method of
variational inference.

5.2 Variational inference

With variational inference, the posterior in (11) is approximated by solving an opti-
mization problem, cf. (Blei, Kucukelbir, and McAuliffe, 2017). Consider a variational
posterior density q(θ |λ), parameterized by a real vector λ. The objective of the
optimization is to find a density q? = q(θ |λ?) that minimizes the Kullback-Leibler
(KL) divergence to the exact posterior, i.e.

λ? = arg min
λ

DKL (q(θ |λ) ‖ p(θ | D)) . (16)

A direct approach to solve (16) is not practical since it includes the intractable pos-
terior. In practice, the KL divergence is instead minimized indirectly by maximizing
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the evidence lower bound (ELBO):

L (λ) := log p(D)−DKL (q(θ |λ) ‖ p(θ | D)) (17)
= Eq [log p(D|θ)]−DKL (q(θ |λ) ‖ p(θ)) , (18)

where the expectation Eq [·] is taken with respect to q(θ |λ). From the ELBO loss
in (18), we see that an optimal variational distribution maximizes the expected log-
likelihood on the dataset, while obtaining similarity to the prior via the regularizing
term DKL (q(θ |λ) ‖ p(θ)).

5.2.1 Stochastic gradient variational Bayes

Stochastic gradient variational Bayes (SGVB) or Bayes by backprop is an efficient
method for gradient-based optimization of the ELBO loss in (18), cf. (Diederik P
Kingma and Welling, 2014; Blundell et al., 2015).

Suppose that the variational posterior q(θ |λ) is a mean-field (diagonal) normal dis-
tribution with mean µ and standard deviation σ. Let the variational parameters be
λ = (µ,ρ) and compute σ = log(1 + exp(ρ)), where we use an elementwise softplus
mapping to ensure that σi > 0.

The basic idea of SGVB is to reparameterize the latent variables to θ = h(ζ,λ) =
µ + log(1 + exp(ρ)) ◦ ζ, where ◦ denotes pointwise multiplication and ζ ∼ N (0, I).
With this formulation, the stochasticity of θ is described by a standard normal noise
ζ which is shifted by µ and scaled by σ. The reparameterization allows us to compute
the gradient of the ELBO (18) as follows:

∇λL (λ) = ∇λEq [log p(D|θ)]−∇λDKL (q(θ |λ) ‖ p(θ))

= Eζ [∇θ log p(D |θ)∇λh(ζ,λ)]−∇λDKL (q(θ |λ) ‖ p(θ)) (19)

The expectation in (19) can be approximated by Monte-Carlo sampling the noise:
ζi ∼ N (0, I) for i = 1, . . . ,M . If we also approximate the likelihood by considering
a mini-batch B ⊂ D of size B ≤ N , we obtain the unbiased SGVB estimator of the
ELBO gradient:

∇λL (λ) ' ∇λL̂(λ) :=
N

B

1

M

M∑

i=1

∇θ log p(B |θ)∇λh(ζi,λ)

−∇λDKL (q(θ |λ) ‖ p(θ)) .

(20)

An advantage with the SGVB estimator in (20) is that we can utilize the gradi-
ent of the model ∇θ log p(B|θ) as computed by back-propagation. When both the
variational posterior and prior are mean-field normals, as is the case for our model,
DKL (q(θ |λ) ‖ p(θ)) can be computed analytically as shown in A.2.
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In Algorithm 1 we summarize the basic SGVB algorithm for mean-field normals and
Monte-Carlo sample size of M = 1. We finally note that for variables represent-
ing weights of a neural network, we implement the local reparameterization trick in
(Diederik P. Kingma, Salimans, and Welling, 2015) to reduce gradient variance and
save computations (not shown in Algorithm 1).

Algorithm 1 Basic implementation of SGVB for mean-field normals (M = 1)
Require: data D, model p(D,θ) = p(D |θ)p(θ), parameters λ = (µ,ρ), learning

rate α.
1: repeat
2: Sample mini-batch B from D
3: Sample ζ ∼ N (0, I)
4: θ ← µ+ log(1 + exp(ρ)) ◦ ζ
5: Compute ∇λL̂(λ) using (20)
6: λ← λ+ α∇λL̂(λ)
7: until no improvement in ELBO
8: return λ

6 Case study

The goal of the case study was to investigate the predictive performance and gener-
alization ability of the proposed VFM. The study was designed to test the predictive
performance on historical data and on future data, which reflect the two main appli-
cations of a VFM. If the models generalize well, a similar performance across all wells
for each model type should be expected on both historical and future data. To cast
light on the data challenges in Section 1, the results differentiate between wells with
test separator and MPFM measurements, which have different measurement accuracy
and frequency. The prediction uncertainty of the models was also analyzed and the
effect of training set size on prediction performance was investigated.

The probabilistic flow rate models in Section 4 were developed using the dataset
described in Section 3.1. The conditional mean flow rate, f(x,φ), was modeled
using a feed-forward neural network. Three different noise models were considered:
a homoscedastic model with fixed noise standard deviation g(z,ψ) = σn = const., a
homoscedastic model with learned noise standard deviation (3), and a heteroscedastic
model with learned noise standard deviation (4). For each of the three model types
and the 60 wells in the dataset, the neural network was trained using the SGVB
method in Section 5.2.1. These models will be referred to by the label VI-NN. For
comparison, a neural network for each of the 60 wells was trained using the MAP
estimation method in Section 5.1. For these models we considered the measurement
noise to be homoscedastic with a fixed noise standard deviation (σn). We label these
models as MAP-NN. The He-prior was used for the hidden layers to initialize and
regularize the parameters, see Section 4.2. For the noise models, we set the priors as
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described in Section 4.1, differentiating between wells with MPFM and test separator
measurements.

(a) Architecture of BNN

(b) Composition of f(x,φ)

Figure 5: The architecture of the BNNs used in this study is illustrated in (a). Prob-
abilistic computations are colored grey. Variables φ and ψ are drawn from the ap-
proximate posterior and used to compute the conditional mean flow rate, f(x,φ), and
noise standard deviation, g(z,ψ). The composition of f(x,φ) with four layers (three
hidden) and φ = {(W (l), b(l))}4l=1 is shown in (b). Fully connected blocks perform
the operation FCl(x) = W (l)x+ b(l).

A schematic representation of the Bayesian neural network is shown in Figure 5. The
network architecture was fixed to three hidden layers, each with 50 nodes to which
we apply the ReLU activation function (Glorot, Bordes, and Yoshua Bengio, 2011).
Using practical recommendations in (Y. Bengio, 2012), the network architecture may
be large as long as regularization is used to prevent overfitting. The Adam optimizer
(Diederik P. Kingma and Ba, 2015) with the learning rate set to 0.001 was used to
train all networks. Early stopping with a validation dataset was used to determine an
appropriate number of epochs to train the models to avoid overfitting (Goodfellow, Y.
Bengio, and Courville, 2016). The hyper-parameters were chosen by experimentation
and using best practices. The models were implemented and trained using PyTorch
(Paszke et al., 2019).

6.1 Prediction performance on historical data

To examine the predictive performance on historical data, a three months long period
of contiguous data located in the middle of the dataset, when ordered chronologically,
was set aside for testing. The rest of the data was used to train the models. During
model development, a random sample of 20% of the training data was used for model
validation. The performance of each model type across the 60 wells was analyzed.

Publications

104



Table 1 shows the P10, P25, P50 (median), P75, and P90 percentiles of the MAPE
across all wells. Detailed results which differentiate between test separator and MPFM
measurements are reported in B, Table 4.

Table 1: Prediction performance in terms of mean absolute percentage error on his-
torical test data. The percentiles show the variation in performance among all wells.
Method and model P10 P25 P50 P75 P90

MAP-NN fixed homosc. 1.8 2.8 5.1 8.3 16.0
VI-NN fixed homosc. 1.4 2.6 4.8 8.5 12.8
VI-NN learned homosc. 1.3 2.4 5.3 8.4 13.3
VI-NN learned heterosc. 1.7 3.5 5.9 9.7 11.5

The results show that the four model types achieve similar performance to each other
for the 75th and lower percentiles. The median MAPEs (P50) lie in the range 4-6%.
A comparison of the 90th percentile performance indicates that models trained by
variational inference are more robust in terms of modeling difficult wells. Regardless
of the model type used, there are large variations in the performance on different
wells, as seen by comparing the 10th and 90th percentiles. The best performing
model achieved an error of 0.3% for one of the wells. Yet, some models obtain an
unsatisfactory large error. The overall worst-performing model (MAP-NN) achieved
an error of 72.1% for one of the wells.

The cumulative performance of the four models is plotted in Figure 6. The cumulative
performance plot shows the percentage of test points that fall within a certain percent
deviation from the actual measurements (Corneliussen et al., 2005). The figure shows
that the models perform better on wells with MPFMmeasurements than on wells with
test separator measurements. Again, similar performance of the four model types is
observed.

6.2 Prediction performance on future data

The last three months of measurements were used to test the predictive performance
on future data. The rest of the data was used to train the models. During model devel-
opment, a random sample of 20% of the training data was used for model validation.
Table 2 shows the percentiles of the MAPE for the different models on all 60 wells.
Detailed results which differentiate between MPFM and test separator measurements
are given in B, Figure 5.

Similarly to the case with historical test data, the performance of the four model
types is comparable for the 50th and lower percentiles. The median MAPEs (P50) lie
in the range 8-13%. For all model types, the 25% best-performing models achieved
a MAPE of less than 6%. The best performing model obtained a MAPE of 1.1%
on one of the wells. This is in line with some of the best reported results in the
literature; see Section 2.1. Nevertheless, for each model type there is a large variation
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Figure 6: Cumulative performance of the four models on historical test data. The
cumulative performance is shown for wells with (left) MPFM and (right) test separator
measurements.

Table 2: Prediction performance in terms of mean absolute percentage error on future
test data. The percentiles show the variation in performance among all wells.
Method and model P10 P25 P50 P75 P90

MAP-NN fixed homosc. 3.7 5.6 12.4 24.1 40.0
VI-NN fixed homosc. 4.0 5.6 9.6 18.2 29.3
VI-NN learned homosc. 4.0 6.0 8.9 22.5 32.5
VI-NN learned heterosc. 4.0 5.0 9.2 15.7 24.3

in performance among wells. The overall worst performing model achieved a MAPE
of 48.7%.

Comparing the performance for either the 75th or 90th percentile again indicates that
models trained by variational inference are more robust in terms of modeling difficult
wells. In this regard, the heteroscedastic VI-NN performs particularly well compared
to the other model types.

As seen from the cumulative performance plot in Figure 7, the four model types have
similar performance to each other. The exception is the heteroscedastic VI-NN, which
outperforms the other model types for wells with test separator measurements. As
seen in the case of historical test data, the models perform better on wells with MPFM
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measurements than on well with test separator measurements.
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Figure 7: Cumulative performance of the four models on future test data. The cu-
mulative performance is shown for wells with (left) MPFM and (right) test separator
measurements.

6.3 Comparison of performance on historical and future data

A comparison of the MAPEs on historical and future data is illustrated in Figure
8. The plots differentiate wells with MPFM and test separator measurements. In
general, the prediction error is larger on future test data than on historical test data.
There is also a larger variance in the performance on future test data. This indicates
that it is harder to make predictions on future data, than on historical data. Further,
observe that the errors are smaller for the wells with MPFM measurements than for
the wells with test separator measurements in both the historical and future test data
case.

6.4 Uncertainty quantification and analysis

In contrary to the MAP-NN models, the VI-NN models quantify the uncertainty in
their predictions. To study the quality of the prediction uncertainty, we generated
a calibration plot for the three different noise models using the test datasets from
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Figure 8: Comparison of performance on historical and future data for the different
models. The box plots differentiate between wells with multiphase flow meter and test
separator measurements. The boxes show the P25, P50 (median), and P75 percentiles.
The whiskers show the P10 and P90 percentiles.

Section 6.1 and 6.2; see Figure 9. The plot shows the frequency of residuals lying
within varying posterior intervals. For instance, for a perfectly calibrated model,
20% of the test points is expected to lie in the 20% posterior interval centered about
the posterior mean. In other words, the calibration curve of a perfectly calibrated
model will lie on the diagonal gray line illustrated in the figures. The calibration of
a model may vary across wells. To visualize the variance in model calibration, we
have illustrated the (point-wise) 25th and 75th percentiles of the calibration curves
obtained across wells.

On historical data, the models trained on test separator measurements seem to be best
calibrated. The models trained on MPFMmeasurements overestimate the uncertainty
in their predictions. On future data, the results are reversed. The models trained on
MPFM measurements are better calibrated and the models trained on test separator
measurements all underestimate the prediction uncertainty. Overall, the calibration
improves when the noise model is learned. This is seen clearly when comparing the
fixed homoscedastic noise to the learned heteroscedastic noise model. The results are
summarized in Table 3, which shows the coverage probabilities for the 95% posterior
interval (using the point-wise median in the calibration plots).
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(c) MPFM, future
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(d) Separator, future
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(e) MPFM, historical
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(f) Separator, historical
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(g) MPFM, future
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(i) MPFM, historical
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(j) Separator, historical
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(k) MPFM, future
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Figure 9: Calibration plots for fixed homoscedastic noise (a-d), learned homoscedastic
noise (e-h), and learned heteroscedastic noise (i-l). Wells are grouped by measurement
device, multiphase flow meter or test separator, and the calibration on historical test
data (Section 6.1) and future test data (Section 6.2) are shown. The median frequency
is shown as a dashed line for each posterior interval (x-axis). The 25th and 75th
percentiles (colored bands) show the variation in calibration across wells. A perfectly
calibrated model would lie on the diagonal line y = x.

6.5 Effect of training set size on prediction performance

When analyzing the prediction performance of the four model types in Section 6.1 and
6.2, it was noticed that the prediction error tended to decrease as the training set size
increased. This is illustrated in Figure 10, which shows the MAPEs for the different
models and corresponding regression lines with negative slopes. This tendency is gen-
erally expected of machine learning models. On the other hand, previous studies such
as (T. AL-Qutami et al., 2018), indicate that model performance does not necessarily
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Table 3: Coverage probability (95%)
Case Method and model Test sep. (%) MPFM (%)

Future prediction VI-NN fixed homosc. 37.5 99.5
VI-NN learned homosc. 81.0 87.7
VI-NN learned heterosc. 92.3 90.0

Historical prediction VI-NN fixed homosc. 92.4 100.0
VI-NN learned homosc. 98.5 99.1
VI-NN learned heterosc. 100.0 97.2

improve when including data that is several years old. To closer inspect this effect,
we compared models developed on successively larger training sets.
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Figure 10: The plot shows the mean absolute percentage error of the four models on
historical and future test data for all wells. A regression line for each model shows
the tendency of the error as the number of training points varies.

To allow for an interesting range of dataset sizes a subset of 21 wells with 1200 or
more MPFM measurements was considered. In a number of trials, a well from the
subset and an instant of time at which to split the dataset into a training and test
set, were randomly picked. Keeping the test set fixed, a sequence of training sets of
increasing size was generated. The training sets were extended backwards in time
with data preceding the test data. The following training set sizes were considered:
150, 200, 300, . . ., 1100, where the increment is 100 between 300 and 1100. A MAP-
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NN model was developed for each of these training sets, using early stopping and
validating against the last 100 data points. The test set size was also set to 100 data
points, spanning on average 90 days of production.

Denoting the test MAPE of the models by E150, E200, E300, ..., E1100, we computed
relative MAPEs

Rk =
Ek
E150

, for k ∈ {150, 200, 300, . . . , 1100}. (21)

The relative errors indicate how the performance develops as the training set size
increases, with a baseline at R150 = 1. The result of 400 trials is shown in Figure 11.
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Figure 11: Relative test errors of the MAP-NN model for increasing training set sizes.
Shown are the medians and 50% intervals of 400 trials.

7 Discussion

In Section 1 some of the challenges faced by data-driven VFMs were discussed. These
were: (1) low data volume, (2) low data variety (3) poor measurement quality, and
(4) non-stationarity of the underlying process. Here we discuss the results in light of
these challenges. All results are discussed in terms of MAPE values.

No widely used standard exists for VFM performance specification or requirements.
Thus, the following performance requirements have been set by the authors to as-
sess the commercial viability of a VFM: 1) predictive performance in terms of mean
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absolute percentage error on test data of 10% or less, and 2) robustness in terms of
achieving the above predictive performance for at least 90% of wells. While these
simple requirements lack a specification of the test data, we find them useful in the
assessment of VFM performance. A VFM failing to meet these requirements would
not be practical to use in industrial applications.

7.1 Performance on historical and future test data

First, we discuss the concern about the non-stationarity of the underlying process.
This means the distribution of values seen during training is not necessarily the same
as the distribution of values used for testing. The effect of this is best observed when
comparing the performance on historical and future data, see Table 1 and 2 and Figure
8. Looking at the upper and lower percentiles, we see the different models achieve
performance in the range of 1-16% error on historical data and 3-40% error on future
data. Since the strength of data-driven models lies with interpolation, rather than
extrapolation, it is natural that the performance is worse on the future data case.
Considering the VFM performance requirement of 10% MAPE for 90% of the wells,
the performance is not acceptable for the historical or for the future data case. This
indicates that the robustness of the models is inadequate for use in a commercial VFM.
For real time applications, frequent model updates are likely required to achieve the
VFM performance requirement. This raises the technical challenge of implementing
a data-driven modeling approach.

The study on dataset size in Section 6.5 further explores the development of data
distributions and the effect older data has on future prediction errors. The result,
seen in Figure 11, indicates that additional data is only valuable up to a certain point,
after which older data will no longer be useful when predicting future values. The
point where this happens will naturally vary between wells. For the wells included
here, this happens at 600 data points on average, for which the additional data is
approximately 18 months or longer into the past. Looking at Figure 10, we again
see the trend that wells with more data perform better, but only up to a certain
point. We remark that insufficient model capacity would have a similar effect on the
performance. However, we find this to be unlikely in this case study due to the high
capacity and low training errors of the neural networks used.

At this point we remark that, for two observations D1, D2 ∈ D, we model conditional
independence (D1 ⊥⊥ D2 | θ). While the observations result from preprocessing
measurement data in a way that removes transients and decorrelates observations, we
cannot guarantee independence due to the non-stationary process. With dependant
observations, the modeling assumption of conditional independence is not satisfied
since the models lack temporal dependencies. This is also true for most, if not all
published models for data-driven VFM. Models that include temporal dependencies
may be better suited to learn from past data.

A second concern raised was related to small data regimes, both in terms of data
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volume and data variety. The results mentioned above also illustrate the effect of
small data. Looking at Figure 10, higher variance in performance is seen among wells
with less than 700 data points. This is concerning because many of the wells, in
particular those with test separator measurements as their primary source of data,
have very few data points. Based on the median MAPE values in Figure 8, also given
in Table 4 and 5, models trained on MPFM data outperforms the models trained on
test separator data. This indicates that data quantity may outweigh data quality in
the small-data regime. The difference in performance is also evident in the cumulative
performance plots, see Figure 6 and 7.

The wells that lie in the top quarter of performance achieved MAPE values comparable
to the earlier works discussed in Section 2.1. However, this performance seems difficult
to achieve for the full set of wells. The difficulty in generalizing a single model
architecture to a broad set of wells is troublesome for the potential commercialization
of data-driven VFM.

7.2 Noise models

The last concern raised was poor data quality. In particular uncertainty in flow rate
measurements, and potential gross errors in MPFM measurements.

The three different noise models perform similarly in terms of MAPE, on both his-
torical and future data. The only exception being the learned heteroscedastic noise
model, which performed better than the others on historical and future test data case
when judged by the 90th percentile. This is believed to be because the heteroscedastic
error term gives the objective function some added robustness towards large errors.

From the calibration plots in Figure 9, we see that learning the noise model improves
the calibration. The calibration curves for models trained on MPFM data generally
lie above the curves for models trained on test separator data, both for historical
and future predictions. This means that models trained on MPFM measurements are
less confident in their predictions, even though they are trained on more data. It was
suspected that models trained on MPFM data would reflect the increased uncertainty
present in these measurements, but this is difficult to observe from the results. It is
worth noting that the MPFM models are tested on MPFM data, so any systematic
errors present in the MPFM measurements themselves will not be detected.

Because the models have potentially large prediction errors, especially for future data,
it is desirable that the model can assess its performance. The coverage probabilities
reported in Table 3 give us some confidence in the uncertainty estimates for the
learned noise models, especially for the historical cases.

Neither the homoscedastic or heteroscedastic noise models in (3) and (4), respectively,
can capture complex noise profiles that depend on the flow conditions x. As most
flow meters are specialized to accurately measure flow rates for certain compositions
and flow regimes, this is a potential drawback of the models. We leave it to later
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works to address such limitations, but note that with few adjustments the flow model
in (1) can accommodate heteroscedasticity of a rather general form.

7.3 Bayesian neural networks

As stated in Section 1, setting the priors on the parameters in the model is not a trivial
task. In several papers, the Kullback-Leibler divergence term of the ELBO loss in
(18) is down-weighted to improve model performance due to poor priors (Wenzel
et al., 2020). This remains a research question, however, in Section 4.2 one way of
approaching prior specification in BNNs is described. The difficulty of setting priors
combined with small data sets may make it difficult to successfully train models of
this complexity. Still, the results are reasonable in the historical data case, and the
estimated uncertainty is still better than only relying on point estimates.

8 Concluding remarks

MAP estimation and VI for a probabilistic, data-driven VFM was presented and
explored in a case study with 60 wells. The models achieve acceptable performance
on future test data for approximately half of the studied wells. It is observed that
models trained on historical data lack robustness in a changing environment. Frequent
model updates are therefore likely required, which pose a technical challenge in terms
of VFM maintenance.

Of the presented data challenges, the non-stationary data distribution is the most
concerning. It means that models must have decent extrapolating properties if they
are to be used in real-time applications. This is inherently challenging for data-driven
approaches, and limits the performance of all the models considered in this paper. Of
the models explored here, VI provided more robust predictions than MAP estimation
on future test data.

The BNN approach is promising due to its ability to provide uncertainty estimates.
Among these models, the heteroscedastic model had the best performance, indicat-
ing that a heteroscedastic model can be advantageous for flow rate measurements.
However, it is challenging to obtain well-calibrated models due to the difficulty of
setting meaningful priors on neural network weights, and the fact that priors play a
significant role in small data regimes. As a result, the uncertainty estimates provided
by the BNNs should be used with caution.

8.1 Recommendations for future research

We would suggest future research on data-driven VFM to focus on ways to overcome
the challenges related to small data and non-stationary data distributions. Advances
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on these problems are likely required to improve the robustness and extrapolation
capabilities of models to be used in real-time applications. We believe promising
avenues of research to be: i) hybrid data-driven, physics-based models that allows for
stronger priors; ii) data-driven architectures that enables learning from more data,
for instance by sharing parameters between well models; iii) online learning to enable
frequent model updates; and iv) modeling of temporal dependencies, for example
using sequence models, to better capture time-varying boundary conditions.
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A Derivations

A.1 Log-likelihood of the flow rate model

The log-likelihood of the flow model in (1) with parameters θ = (φ,ψ) on a dataset
D = (X,y) = {(xi, yi)}Ni=1 is given by

log p(y |X,θ) =
N∑

i=1

log p(yi |xi,θ)

=
N∑

i=1

logN (yi | f(xi,φ), g(f(xi,φ),ψ)2)

= −N
2

log(2π)−
N∑

i=1

log g(f(xi,φ),ψ)− 1

2

(
yi − f(xi,φ)

g(f(xi,φ),ψ)

)2

.

(22)

With a homoscedastic noise model g(z,ψ) = σn = const., the log-likelihood simplifies
to:

log p(y |X,θ) = −N
2

log(2πσ2
n)− 1

2σ2
n

N∑

i=1

(yi − f(xi,φ))
2
. (23)

A.2 Kullback-Leibler divergence term, DKL (q(θ |λ) ‖ p(θ))

Let the approximation q(θ |λ) and prior p(θ) be mean-field normal distributions of
the random variables θ ∈ RK . Assume that the approximation is parameterized with
λ = (µ,ρ), where µ is the mean and σ = log(1 + exp(ρ)) is the standard deviation
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of q. Then, the Kullback-Leibler divergence is given as:

DKL (q(θ |λ) ‖ p(θ)) = Eq [log q(θ |λ)− log p(θ)]

= Eq

[
K∑

i=1

log q(θi |λi)− log p(θi)

]

=
1

2
Eq

[
K∑

i=1

− log(2πσ2
i )−

(
θi − µi
σi

)2

+ log(2πσ̄2
i ) +

(
θi − µ̄i
σ̄i

)2
]

=
1

2



K∑

i=1

−2 log
σi
σ̄i
− 1

σ2
i

Eqi
[
(θi − µi)2

]
︸ ︷︷ ︸

=σ2
i

+
1

σ̄2
i

Eqi
[
(θi − µ̄i)2

]



=
1

2

K∑

i=1

[
−1− 2 log

σi
σ̄i

+
1

σ̄2
i

Eqi
[
(θi − µ̄i)2

]]

=
1

2

K∑

i=1

[
−1− 2 log

σi
σ̄i

+

(
µi − µ̄i
σ̄i

)2

+

(
σi
σ̄i

)2
]

(24)

B Results

Table 4: Prediction performance on historical test data for each well group. Reported
values are the P10, P25, P50, P75, and P90 percentiles for the statistics root mean
square error (RMSE) and mean absolute percentage error (MAPE).
Well group Method and model RMSE MAPE %

All MAP-NN fixed homosc. 0.4, 0.7, 1.1, 1.7, 3.0 1.8, 2.8, 5.1, 8.3, 16.0
VI-NN fixed homosc. 0.3, 0.5, 1.0, 2.1, 3.0 1.4, 2.6, 4.8, 8.5, 12.8
VI-NN learned homosc. 0.3, 0.5, 1.0, 2.0, 3.0 1.3, 2.4, 5.3, 8.4, 13.3
VI-NN learned heterosc. 0.4, 0.6, 1.2, 1.9, 3.0 1.7, 3.5, 5.9, 9.7, 11.5

Test sep. MAP-NN fixed homosc. 0.4, 0.8, 1.5, 1.7, 3.0 3.1, 5.7, 7.2, 11.1, 16.2
VI-NN fixed homosc. 0.5, 0.8, 1.6, 2.2, 4.3 2.8, 4.9, 7.9, 11.3, 13.2
VI-NN learned homosc. 0.6, 1.1, 1.7, 2.1, 3.1 3.9, 5.8, 8.1, 12.3, 16.4
VI-NN learned heterosc. 0.5, 1.0, 1.7, 2.1, 3.9 3.7, 5.1, 9.5, 11.4, 12.2

MPFM MAP-NN fixed homosc. 0.3, 0.6, 1.0, 1.6, 2.8 1.8, 2.4, 4.5, 8.1, 14.3
VI-NN fixed homosc. 0.3, 0.4, 1.0, 1.9, 2.9 1.3, 2.3, 4.1, 7.7, 11.5
VI-NN learned homosc. 0.3, 0.4, 0.7, 1.6, 3.0 1.2, 2.0, 4.1, 7.3, 11.7
VI-NN learned heterosc. 0.4, 0.5, 1.2, 1.5, 2.9 1.3, 3.1, 5.1, 8.6, 10.8
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Table 5: Prediction performance on future test data for each well group. Reported
values are the P10, P25, P50, P75, and P90 percentiles for the statistics root mean
square error (RMSE) and mean absolute percentage error (MAPE).
Well group Method and model RMSE MAPE %

All MAP-NN fixed homosc. 0.8, 1.2, 2.1, 4.0, 6.1 3.7, 5.6, 12.4, 24.1, 40.0
VI-NN fixed homosc. 0.6, 1.1, 1.8, 3.5, 5.2 4.0, 5.6, 9.6, 18.2, 29.3
VI-NN learned homosc. 0.7, 1.2, 1.9, 3.3, 5.5 4.0, 6.0, 8.9, 22.5, 32.5
VI-NN learned heterosc. 0.6, 1.1, 1.7, 3.1, 4.5 4.0, 5.0, 9.2, 15.7, 24.3

Test sep. MAP-NN fixed homosc. 0.8, 1.0, 1.6, 3.0, 6.7 3.9, 6.2, 18.1, 28.8, 41.1
VI-NN fixed homosc. 0.3, 1.0, 2.1, 3.2, 8.0 5.2, 9.5, 14.6, 31.4, 40.9
VI-NN learned homosc. 0.6, 1.3, 1.9, 3.6, 5.9 6.6, 7.8, 15.5, 31.6, 35.9
VI-NN learned heterosc. 0.4, 1.2, 1.6, 2.3, 2.9 5.1, 6.0, 10.6, 18.6, 21.6

MPFM MAP-NN fixed homosc. 0.9, 1.2, 2.4, 4.2, 5.7 3.7, 6.2, 12.2, 23.0, 30.2
VI-NN fixed homosc. 0.8, 1.3, 1.8, 3.5, 4.6 4.0, 5.3, 8.3, 15.0, 24.6
VI-NN learned homosc. 0.7, 1.1, 1.9, 3.1, 5.2 3.4, 4.9, 8.0, 17.5, 28.1
VI-NN learned heterosc. 0.7, 1.0, 1.8, 3.3, 4.6 3.8, 4.7, 8.9, 14.9, 24.5
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On gray-box modeling for virtual flow metering
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Abstract: A virtual flow meter (VFM) enables continuous prediction of flow rates in
petroleum production systems. The predicted flow rates may aid the daily control and
optimization of a petroleum asset. Gray-box modeling is an approach that combines
mechanistic and data-driven modeling. The objective is to create a computation-
ally feasible VFM for use in real-time applications, with high prediction accuracy
and scientifically consistent behavior. This article investigates five different gray-box
model types in an industrial case study using real, historical production data from
10 petroleum wells, spanning at most four years of production. The results are di-
verse with an oil flow rate prediction error in the range of 1.8%-40.6%. Further, the
study casts light upon the nontrivial task of balancing learning from both physics
and data. Therefore, providing general recommendations towards the suitability of
different hybrid models is challenging. Nevertheless, the results are promising and
indicate that gray-box VFMs can reduce the prediction error of a mechanistic VFM
while remaining scientifically consistent. The findings motivate further experimen-
tation with gray-box VFM models and suggest several future research directions to
improve upon the performance and scientific consistency.

Keywords: Gray-box, virtual flow meter, multiphase flow, neural network

1 Introduction

To optimally control a petroleum asset and maximize the recovery of oil and gas,
it is necessary to have an adequate understanding of the behavior of the petroleum
production system. This consists of the reservoir, wells, flowlines, pipelines, and
separators. Commonly, a mathematical model of the flow through the production
system is developed as an aid to information gathering and analysis of the system
response to changes in control variables. Such a model is often referred to as a
virtual flow meter (VFM) (Toskey, 2012). A VFM aims to continuously predict the
multiphase flow rates (mixture of gas, oil, and water) at strategic locations in the asset,
for instance in individual wells. The characteristics of multiphase flow represents a
particular challenge to prediction. Several types of VFM models exist, ranging from
mechanistic to data-driven, thus, from white-box to black-box, respectively (Prada
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et al., 2018). Depending on the prior knowledge about the system and the available
process data, one model type can be more suitable than others, see Figure 1.

Figure 1: The range of model types from mechanistic, white-box models to data-
driven, black-box models and a few of their characteristics.

1.1 Virtual flow meter models

Mechanistic models are based on prior knowledge about the process and utilize first-
principle laws, with possible empirical closure relations, to describe the relationship
between the process input, internal, and output variables (Shippen, 2012). Contrar-
ily, data-driven models require no prior knowledge of the process, and rather exploit
patterns in available process data to describe the input-output relationship. There-
fore, data-driven models often lack scientific consistency. A model may be considered
scientifically consistent if the output of the model is plausible and in line with existing
scientific principles (Roscher et al., 2020). Although this concept is hard to quantify
and dependent on the user’s scientific knowledge, it is an important characteristic
as it promotes trust in the model. As mechanistic models are derived from physical
laws, their scientific consistency is high. On the other hand, assumptions and sim-
plifications of the process physics are typically necessary for a mechanistic model to
be computationally feasible and suitable for use in real-time control and optimization
applications (Solle et al., 2016). Accordingly, mechanistic models often lack flexibil-
ity, which is the ability to adapt to unknown and unmodeled physical phenomena.
Oppositely, due to the generic structure of data-driven models, the flexibility is high
and the models may adapt to arbitrary complex physical behavior as long as this is
reflected in the available data. Yet, data-driven models are data-hungry and sensitive
to the quality and variability of the data. If care is not taken, overfitting of the model
to data is a frequent outcome that results in poor extrapolation abilities to future
process conditions (Solle et al., 2016).
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Gray-box models, or hybrid models, are a combination of mechanistic and data-
driven models. The goal is to achieve a computationally feasible model that have a
high flexibility and a scientifically consistent behavior. There exist numerous ways
of constructing hybrid models. According to Willard et al. (2020), gray-box models
can be divided into two domains: 1) data-driven modeling to advance first-principle
models, or 2) utilization of first principles to guide data-driven models. The two
domains correspond to either side of the gray-scale illustrated in Figure 1 and will be
referred to as the white-to-gray and the black-to-gray approach. Taking VFM as an
example, a white-to-gray model is obtained if a mechanistic model is used as a baseline
whereupon data-driven models are inserted to replace assumptions or simplifications.
For instance, a common approach to estimate the density of gas in a mechanistic model
is with the real gas law. Instead, if this relation is described with a data-driven model,
a white-to-gray VFM model is obtained. Another example is to introduce a data-
driven model to capture the error between the output of the mechanistic model and
corresponding measurements, see an example in Timur Bikmukhametov and Johannes
Jäschke (2020b). In general, the data-driven models may substitute any factors or
terms in the mechanistic model. An example of a black-to-gray VFM model is if
first principles are exploited to calculate additional features to be applied as input
to a data-driven model. This is commonly referred to as feature engineering. A
different approach is a division into natural submodels, for instance individual wells
in an asset, describe each with a data-driven model and combine the output using
first-principle laws. The two approaches can also be juxtaposed. For instance, both
a mechanistic and a data-driven model can be developed to predict the multiphase
flow rate and the model outputs combined in an ensemble model. Independent of the
gray-box model type, measures should be taken to determine an appropriate degree
of influence the mechanistic and data-driven part should have on the model output.
In other words, there should exist a pertinent balance between learning from physics
and learning from data. For instance, if the available process data are inaccurate,
the mechanistic part of the model should influence the gray-box model output the
most. If the process exhibits unknown behavior, the data-driven part should have
the greatest impact. Desirably, the gray-box model should learn as much as possible
from both physics and data.

1.2 Literature review

The literature reports substantial research on mechanistic and data-driven modeling
of VFMs (Amin, 2015; Zangl, Hermann, and Schweiger, 2014; AlAjmi, Alarifi, and
Mahsoon, 2015; T. A. AL-Qutami, Ibrahim, and Ismail, 2017; T. A. AL-Qutami,
Ibrahim, Ismail, and Ishak, 2017a; T. A. AL-Qutami, Ibrahim, Ismail, and Ishak,
2017b; T. AL-Qutami et al., 2018; Omrani et al., 2018; T. Bikmukhametov and
J. Jäschke, 2019; Ghorbani et al., 2018). An extensive review is found in Timur
Bikmukhametov and Johannes Jäschke (2020a). Some well-known commercial mech-
anistic VFMs are Olga, LedaFlow, FlowMananger, ValiPerformance, and Prosper. In
the study by Amin (2015), it was found that all the above-mentioned commercial
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mechanistic VFM achieved an error less than 5% and 10% for the prediction of oil
and gas flow rates, respectively. The noticeable series of studies on data-driven VFM
by T. A. AL-Qutami, Ibrahim, and Ismail (2017), T. A. AL-Qutami, Ibrahim, Ismail,
and Ishak (2017a), T. A. AL-Qutami, Ibrahim, Ismail, and Ishak (2017b), and T.
AL-Qutami et al. (2018) achieved errors of 1.5%, 4.2%, and 4.7% on the predictions
of gas, oil, and water flow rates, respectively.

Despite recent emerging tools for hybrid, gray-box modeling, such as gPROMS
(Siemens Process Systems Engineering, 2021), and even a commercially available
hybrid VFM: TurbulentFlux (Ruden, 2020), little literature on the performance of
gray-box VFMs exist. TurbulentFlux reports an error of 4% on multiphase flow rate
predictions over two months for one of the tested wells. However, the robustness in
performance for different wells is not reported. Furthermore, as no reference model
is tested on the available data it is difficult to conclude whether the hybrid model
performs better than alternative approaches. Nevertheless, some examples exist in
the literature (Xu et al., 2011; Al-Rawahi et al., 2012; Kanin et al., 2019; Timur Bik-
mukhametov and Johannes Jäschke, 2020b). Most of these studied different gray-box
approaches on synthetic data, either as an experimental set up in a test rig (Xu et al.,
2011) or a multiphase flow loop (Al-Rawahi et al., 2012), or using lab data available
online (Kanin et al., 2019). The study in Timur Bikmukhametov and Johannes
Jäschke (2020b) investigated several hybrid VFM variants on real production data,
with a large focus on the black-to-gray modeling approach. However, their results
were based on process data from only one subsea well and the modeling approach
could benefit from a deeper study of more petroleum wells.

1.3 Contributions

This research contributes to the field of gray-box VFM modeling with an in-depth
study of five white-to-gray VFM models of a petroleum production choke valve. A
mechanistic and data-driven model is developed for comparison of the performance
and scientific consistency. The study is a significant expansion of the work done in
Hotvedt, Grimstad, and Imsland (2020) and Hotvedt, Grimstad, and Imsland (2021).
The number of tested gray-box models is increased, the complexity of the model
components is higher, and data from more wells are included. The VFM models are
developed for 10 petroleum wells at Edvard Grieg (Lundin Energy Norway, 2020).
Real, historical production data are used in the model development, thus no experi-
mental setup or simulator is required for data acquisition. With data from 10 wells,
the robustness of the modeling approaches can be investigated to a certain extent. The
results in this research are in respect to the VFM application, and the generalizability
to other application areas is not considered.
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2 Production choke valve models

A production system is illustrated in Figure 2, from the down-hole, the closest mea-
surement point to the reservoir, to the separator. The volumetric flow rate from
several wells are commingled and the total production from the asset is separated
into three phases, oil (QO), water (QW ), and gas (QG), at the separator. The pro-
duction choke valve is located in the wellhead of the production system. The choke is a
key element in the daily control and optimization of a petroleum production system.
By adjusting the choke opening, the multiphase flow rate through the production
system can be controlled to maximize production while meeting operational require-
ments such as production capacity constraints. In this research, only the production
choke is modeled. This results in lesser model complexity and avoids the utilization
of down-hole sensor measurements. For assets where down-hole measurements are
lacking or faulty, this is advantageous. Naturally, for assets with good down-hole
measurements, the VFM can be expanded.

Figure 2: Illustration of the production system, from the down-hole (DH) to the
separator. The production choke valve is located in the wellhead. Typically available
measurements are indicated.

To model the choke for individual wells, the following measurements are required:
the choke opening (u), the pressures (p) and temperatures (T ) located upstream
(1) and downstream (2) the choke valve, and measurements of the flow rate (q).
Measurements of the phasic flow rates in individual wells q = (qO, qG, qW ) can be
obtained from well tests, for instance using a test separator, or multiphase flow meters
(MPFMs) if these are available. Furthermore, the phasic fluid mass fractions are
required. Ideally, these should be calculated with a different model for each new
sample, for example using a simplified wellbore model as in (Kittilsen, Fjalestad,
and Aasheim, 2014). Nevertheless, in this research, the mass fractions are treated
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as measurements, calculated using the flow rates from the MPFM in the previous
measurement sample. Consequently, the utilized mass fraction will lag behind the
true mass fractions. However, under the assumption of a slowly time-varying process,
the mass fractions should not change significantly between each sample.

2.1 Mechanistic production choke model

Several mechanistic models exist for the production choke, in a varying scale of com-
plexity in space and time. Mechanistic choke models are usually developed assuming
steady-state, one dimensional (lumped) flow since increasing the dimensionality of the
problem requires a numerical solution of the complex Navier-Stokes equations. These
equations are computationally demanding and may not be suitable for use in real-time
optimization (Shippen, 2012). There are several well-known choke models in litera-
ture and industry (Selmer-Olsen, 1995; Sachdeva et al., 1986; Perkins, 1993; Al-Safran
and Kelkar, 2009). In this research, the Sachdeva model is used as the baseline model
for hybridization. The Sachdeva model is one of the less complex models as it intro-
duces many assumptions and simplifications. Expectantly, introducing data-driven
elements into the mechanistic model should increase the flexibility of the model and
possibly supersede some of the simplifications. The exception is distributed effects in
space and time as the Sachdeva model is assumed lumped and steady-state.

The Sachdeva model is derived from the combined mass and momentum balance
equations (Jansen, 2015, p. 107):

dp

ds
+ ρv

dv

ds
= 0, (1)

ṁ = A1v1ρ1 = A2v2ρ2, (2)

in which s is the position along a streamline, ρ is the fluid mixture density, v is
the fluid mixture velocity, ṁ is the mass flow rate, and A is the area of the choke
valve. Positions (1) and (2) indicate the inlet and outlet, respectively. By integrating
Equation (1) between location (1) and (2) and introducing several assumptions, for
example:

• no-slip: the gas and liquid travels through the choke with equal velocity,

• incompressible liquid: liquid densities are constant along s resulting in the oil
and water densities being independent of the process conditions,

• frozen flow: no mass transfers from one phase to another across the choke
resulting in constant mass fractions independent of process conditions,

• adiabatic gas expansion across the choke: no mass or heat transfers between the
fluid and the surroundings,
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• thoroughly and homogeneously mixed fluid,

• neglect of momentum effects at (1) due to A2 � A1, yielding v22 � v21 ,

a model for the mass flow rate through the choke valve is obtained (see Sachdeva
et al. (1986) for complete derivation):

ṁ = CDA2(u)×√
2ρ22p1

(
κ

κ− 1
ηG

(
1

ρG,1
− pr
ρG,2

)
+

(
ηO
ρO

+
ηW
ρW

)
(1− pr)

)
,

(3)

ρG,1 =
p1MG

ZRT1
, (4)

ρG,2 = ρG,1p
1
κ
r , (5)

1

ρ2
=

ηG
ρG,2

+
ηO
ρO

+
ηW
ρW

, (6)

ηG + ηO + ηW = 1. (7)

Here ρi, ηi, i ∈ {G,O,W} are the phasic densities and mass fractions, respectively,
MG is the molar mass of gas, and pr is the downstream to upstream pressure ratio.
The gas expansion coefficient κ is in this article treated as a constant but is in practice
a function of pressure and temperature, κ = κ(p1, p2, T1, T2). The gas compressibility
factor Z is calculated using the correlation in (Sutton, 1985). The discharge coefficient
CD is commonly introduced to account for modeling errors. The area of the choke is
a function of the choke opening A2 = A2(u) since the choke is adjustable.

The model differentiates between critical and subcritical flow using

pr =

{
p2
p1

p2
p1
≥ pr,c

pr,c otherwise
(8)

In short, critical flow is a phenomenon where the mass flow rate through the choke is
not increasing for decreasing downstream pressure p2 and fixed upstream pressure p1.
A rule of thumb for the critical flow boundary pr,c for multiphase flow with a mixture
of gas, oil, and water is pr,c ≈ 0.6 (Jansen, 2015). The volumetric flow rate may be
obtained using the mass flow rate and the mixture density in standard conditions (SC),
typically 1 atm and 15◦C (International Organization for Standardization, 1996). In
this research, the model output is the oil volumetric flow rate:

qO =
ηOṁ

ρO,SC
, (9)
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Mathematically, the mechanistic model (MM) in (3)-(9) is described with the generic
function f that predicts the oil volumetric flow rate for the input measurements x
and the set of model parameters φMM :

ŷMM = qO,MM = f(x;φMM ) ∈ R, (10)

x = (p1, p2, T1, T2, u, ηG, ηO) ∈ R7, (11)

φMM = (ρO, ρW , κ,MG, pr,c, CD) ∈ R6. (12)

The φMM are components in the model which are considered constant due to certain
assumptions or simplifications. For instance, as described above, the oil and water
densities are constant parameters due to the assumption of incompressible liquid.

2.2 Hybridization of the mechanistic model

To hybridize the MM, any of the factors or terms in (3)-(9) can be substituted with
a data-driven model (DM). Approaching the hybridization from a physical point of
view, some of the mechanistic model assumptions or simplifications can be imprecise,
yielding an erroneous physical behavior. For instance, in low temperature and high-
pressure conditions, the real gas law relation in (4) may be inaccurate. Instead of
using a different, and possibly more complex, mechanistic relation such as van der
Waals equation of state, the hybrid model utilizes a DM to substitute the real gas law.
Presumably, by learning the gas density relation from patterns in the measurements
only, a relation that is suitable for the process and adaptable to the current conditions
is obtained. Taking another example, the adiabatic gas expansion equation in (5) as-
sumes that no heat or mass transfer occurs between the system and surroundings,
yet, in practice, both exist. If the available measurements reflect these physical phe-
nomena, a DM substituting (5) should, to some extent, be able to implicitly capture
the effect of, for instance, heat transfer on the flow rate, even without measurements
of the ambient temperature. Similarly, most of the assumptions listed above may be
replaced with a data-driven model to account for erroneous physics. Consequently,
the model should be more generic and suitable for utilization in a larger range of
process conditions. Nevertheless, data-driven models are generally only valid in the
domain of the data they have been exposed to. Hence, if the system is exposed to pre-
viously unseen process conditions, the hybrid models will likely have to be retrained
or recalibrated to adapt to the new data.

There is an abundant number of hybridization options of the mechanistic model.
Therefore, only a few of the simplifications and assumptions of the baseline model
are investigated. Further, numerous combinations of these simplifications are viable,
and for simplicity, only one simplification is considered at the time. Thereby, five
hybrid model (HM) variants are developed, each addressing and substituting one of
the following simplifications with a DM:
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1. The area function, A2(u)

2. The upstream gas density function, replacing (4)

3. The adiabatic gas expansion function, replacing (5).

4. The homogeneous mixture density function, replacing (6).

5. An additive error model to capture structural errors of the MM

Mathematically, the inserted DM is defined by

ŷDM = g(xDM ;φDM ) ∈ R, (13)

where xDM ⊆ x depends on the HM variant, and φDM are a set of nonphysical
parameters defining the structure of the DM. For the interested reader, if there exist
measurements of what the DM represents, for example, density measurements, these
may be incorporated into the model development by the means of prior parameter
specification.

The HM is defined as a combination of the MM and DM by:

ŷHM = qO,HM = h(xHM ;φHM ) ∈ R, (14)

where xHM ⊆ x and the hybrid model parameters φHM is all of φDM but not
necessarily all of φMM since some are redundant when introducing the DM in the
MM. For instance, replacing (4) with a DM, the parameter MG is no longer needed
in the equations.

The five HMs may be illustrated with the following figures, variant 1-4 in Figure 3a,
here φ′MM ⊆ φMM , and HM variant 5 in Figure 3b. It should be noted that the
framework used to develop the gray-box models are not restricted to the variants in
Figure 3b. For instance, only small changes to the model are necessary to implement
black-to-gray VFM models.

The applied data-driven model for all the hybrid model variants is a fully connected,
feed-forward neural network. Naturally, other data-driven methods may be applied
such as regression trees or support vector machines. Nevertheless, as mentioned in
Section 1, neural networks are flexible and can adapt to arbitrarily complex patterns
in data. Furthermore, the neural network is easily integrated into a model develop-
ment framework where the model parameters are found with maximum a posteriori
estimation and stochastic gradient-based optimization. This will be introduced in Sec-
tion 3. In short, a feed-forward neural network is a collection of L layers, represented
with the following equations:

Input z0 = xDM

Hidden layer(s) zi = ai(Wizi−1 + bi), i ∈ {1, .., L− 1}
Output layer zL =WLzL−1 + bL

(15)
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(a) HM 1-4 (b) HM 5

Figure 3: Illustration of the five hybrid model variants. (a) Hybrid model variant 1-4,
(b) Hybrid model variant 5: additive error model.

At each layer, the inputs are transformed with a linearly affine function with weight
matrixWi and bias bi and sent through an activation function a. The rectified linear
unit activation function has been used, which is the elementwise maximum operator
ReLU(zi) = max{0, zi}. This results in the neural network being a set of piecewise
linear equations. The nonphysical parameters of the network are the collection of
weights and biases on all layers φDM = {(W1, b1), . . . (WL, bL)}.

3 Parameter estimation of hybrid models

Regardless of the location of the model on the gray-scale in Figure 1, the uncertain
model parameters should be estimated from data. For a fully mechanistic model,
good prior values on the parameters often exist and parameter estimation is not
a requirement, although usually a necessity, for high accuracy model predictions.
For a fully data-driven model, parameters are initialized randomly and parameter
estimation is a requirement. Thus, the latter argumentation applies to hybrid models.
Parameter estimation is also referred to as model training.

3.1 Maximum a posteriori estimation

Consider a dataset D = {xi, yi}ni=1 with n measurements of the process explanatory
variables xi = (xi,1, . . . xi,d) ∈ Rd, and target variable yi ∈ R. Assume the process to
be described by the following measurement model

yi = h(xi;φ) + εi, εi ∼ N (0, σ2
ε,i) i ∈ {1, .., n}, (16)

where ŷi = h(xi;φ) are the model predictions of the target variable, with model pa-
rameters φ ∈ Rm and normally distributed measurement εi with zero mean and vari-
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ance σ2
ε,i. Observe that this measurement model can incorporate output measurement

from different devices, if available, by changing σ2
ε,i appropriately for measurement i.

Even synthetic data generated with mechanistic simulators may be included in this
approach.

In parameter estimation problems, the parameters φ of the model h will be inferred
using the available data D. This can be done using Bayesian inference where the prior
parameter distribution p(φ) is updated to a posterior parameter distribution:

p(φ | D) = p(D |φ)p(φ)
p(D) . (17)

Equation (17) includes intractable integrals (Blei, Kucukelbir, and McAuliffe, 2017)
and approximation techniques are commonly required for a numerical solution. In
this research, maximum a posteriori (MAP) estimation is applied.

In MAP estimation, only the mode of the posterior distribution is considered and the
parameters are found with the following optimization problem:

φ?MAP = argmax
φ

p(φ | D) = argmax
φ

[
log p(D |φ) + log p(φ)

]
, (18)

where log p(D |φ) is called the loglikelihood of the model. By further assuming nor-
mally distributed parameter priors φi ∼ N (µi, σ

2
i ), i ∈ {1, ..,m} the following opti-

mization problem may be derived (Bishop, 2006):

φ∗MAP = argmin
φ

[
n∑

i=1

1

σ2
ε,i

(yi − f(xi;φ))2 +
m∑

i=1

1

σ2
i

(φi − µi)2
]
. (19)

In short, MAP estimation is a trade-off between minimizing the error between target
variable predictions and measurements and minimizing parameter deviation from the
prior mean µ. By setting a constant noise level σ2

ε = const., the MAP estimation
is equal to maximum likelihood estimation (MLE) with `2-regularization, a common
approach in the data-driven modeling domain (Goodfellow, Bengio, and Courville,
2016). The variance of the parameters and measurement noise determine the degree
of regularization. In Hotvedt, Grimstad, and Imsland (2021), it was shown that MAP
estimation is necessary for a hybrid model to obtain plausible and physically consistent
values of the physical model parameters after estimation. Further, regularization
must be used to avoid overfitting of the model and ensure adequate generalization
performance (Goodfellow, Bengio, and Courville, 2016).

A different perspective of the MAP estimation problem is that it balances learning
from physics and learning from data. With softer regularization, achieved by setting
flat, noninformative prior parameter distributions σi → ∞, the data will have a
large influence on the estimation outcome. This is because the regularization terms
are down-weighted in optimization. The same effect is achieved with a small noise
variance, implying that the measurements are accurate. With harder regularization,
the opposite effect is achieved where the physics, in this case, the parameter priors,
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will have a higher influence on the estimation outcome and the adaption to data
down-weighted in the optimization.

For the HMs in Section 2, the MAP objective function is divided into three terms,
the MLE and two parameter regularization terms, one each for the physical and
nonphysical parameters. In this research, only MPFM measurements are used and
thus:

φ∗MAP = argmin
φ

n∑

i=1

(
yi − h(xi,HM ;φHM )

)2

+ σ2
ε

[
m1∑

i=1

(
φi,MM − µi,MM

σi,MM

)2

+

m2∑

i=1

(
φi,DM − µi,DM

σi,DM

)2
]
.

(20)

Here m1 and m2 is the number of physical and nonphysical parameters, respectively.

3.2 Priors on the physical parameters

For the physical model parameters, good prior values of the mean µi,MM often exist.
For instance, for freshwater density µρw ≈ 1000 kg/m3. The parameter variances
may be set to reflect the uncertainty in the prior mean value. If the assumption
of normally distributed parameters is exploited, the variance may be approximated
using the absolute maximum and minimum values of the parameters and calculating
the 6σ band of the distribution,

σi,MM =
max (φi,MM )−min (φi,MM )

6
, (21)

for which the probability of obtaining values outside the band is ≈ 0.03%. For harder
regularization of a specific parameter, the variance may be decreased, resulting in a
sharper distribution, and the opposite for softer regularization.

3.3 Priors on the nonphysical parameters

Finding priors for the nonphysical parameters in the model is not trivial. However, He-
initialization is recommended for neural networks with ReLU as activation function
(He et al., 2015). With He-initialization, each element in the weight matrix on each
layer Wi, i ∈ L (see Section 2) is initialized from a normal distribution with mean
and variance

µDM = 0, σ2
DM =

(√
2

ml,i

)2

), i ∈ 2, ..L, (22)

where ml,i are the number of inputs on layer i. On the first layer, no activation

function is applied to the inputs and σ2
DM =

(√
1/ml,1

)2
).
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On the other hand, for the hybrid models where the neural network represents a
mechanistic relation, more informative priors for the nonphysical parameters are found
by pretraining the network on synthetic data generated with the mechanistic relation
in question. The obtained values of the weights and biases of the pretrained network
are used as the µDM when training the final model. However, the the network is
trained on synthetic data only and it assumed that the updated prior parameter
means are just as uncertain as before. Therefore, the parameter variances in (22) are
utilized. If real measurements of the variable existed, such as density measurements,
these could be used in the pretraining.

3.4 Priors on the measurement noise

In an industrial setting, a common measure of the error of a measurement device
is the mean absolute percentage error (MAPE), comparing the measured signal to
a known reference value yref . Following the derivation in Grimstad, Hotvedt, et al.
(2021), the MAPE may be translated into the variance of the measurement noise with

σ2
ε =

(√
π

2
α|yref |

)2

, (23)

where α is the MAPE, for instance α = 0.1 for 10% MAPE. In this study, the reference
value is not known and the variance of the measurement noise is approximated by
using the available data. Because the MAP estimation in (20) assumes a constant
noise level σ2

ε = const., the mean value of the measured target variable in the training
data is used as the reference value, yref = 1/n

∑n
i=1 yi. As mentioned in Section 3.1,

in practice the σ2
ε may be adjusted to influence the degree of regularization on the

parameters.

4 Case study

The case study develops the five listed white-to-gray VFM models in Section 2 for
10 petroleum wells on Edvard Grieg (Lundin Energy Norway, 2020). Edvard Grieg
is an asset on the Norwegian Continental Shelf and consists of under-saturated oil
without a gas cap. The asset is relatively new where production commenced in 2015.
The wells, hereafter referred to as W01-W10, are well-instrumented with available
measurements of the explanatory variables defined in (11). An MPFM located in the
wellhead of each well provides measurements of the volumetric flow rate. The models
are trained with MAP estimation introduced in Section 3 using real, historical pro-
duction data from the 10 wells. The number of data samples per well is unequal and
spans approximately 1.5-4 years. No additional experimental or synthetic data are
considered. For comparison, the Sachdeva model in Section 2, and a fully connected
feed-forward neural network, are implemented. Two aspects of the models are inves-
tigated. First, the predictive performance in terms of accuracy is analyzed in Section
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4.1. Thereafter, the scientific consistency is examined in Section 4.2. Considerations
for improvements in future work are discussed in Section 4.3.

The datasets for each well are preprocessed in two steps. First, the processing tech-
nology in Grimstad, Gunnerud, et al. (2016), is utilized to generate a compressed
dataset of steady-state operating points suitable for steady-state modeling. Secondly,
a set of filters are applied to remove data samples that likely originate from erroneous
sensor data, such as negative pressures or choke openings. The dataset is split into
training and test set according to time to mimic an industrial setting where the de-
veloped models are used to predict the future responses of the process. The test set
consists of the three latest months of the data samples. The regularization method
early stopping (Goodfellow, Bengio, and Courville, 2016) is utilized to train the mod-
els. This algorithm monitors the error on a validation dataset during model training
to find the appropriate number of loops through the training data, called epochs, to
train the model without overfitting. The validation data is 20% of the training data,
extracted in randomly chosen chunks, each chunk representing data samples from two
chronological weeks. Due to the stochasticity of the training algorithm, the early
stopping algorithm is run several times, and the average number of epochs is used to
train the final model. The optimizer Adam (Kingma and Ba, 2015) is applied with
mini-batches, and the learning rate is α = 10−4.

An overview of the seven implemented models is found in Table 1. The table illus-
trates which mechanistic model parameters φ′MM ⊆ φMM , are present in the model,
which factor or term is replaced by a neural network g, and which measurements
xDM are used as input to the data-driven element. For short, the hybrid models are
named HM(?), where ? is the factor or term the neural network substitutes. The
fully mechanistic and the fully data-driven model are referred to as the MM and the
DM respectively. For all neural networks, the network depth and width are set to

Table 1: An overview of the developed models of the production choke valve: five
hybrid, one fully mechanistic, and one fully data-driven model.
VFM model φ′

MM g(xDM ;φDM ) xDM

MM ρO, ρW , κ,MG, pr,c, CD n.a. n.a.
HM(A2) ρO, ρW , κ,MG, pr,c Area function u
HM(ρG,1) ρO, ρW , κ, pr,c, CD Upstream gas density p1, T1
HM(ρG,2) ρO, ρW ,MG, pr,c, CD Gas expansion p1, p2, T1, T2
HM(ρ) ρO, ρW , κ,MG, pr,c, CD Mixture density p1, p2, T1, T2, ηG, ηO
HM(ε) ρO, ρW , κ,MG, pr,c, CD Additive error p1, p2, T1, T2, ηG, ηO
DM n.a. Oil flow rate p1, p2, T1, T2, u, ηG, ηO

3 × 100. The size may be excessive for some of the models. Nonetheless, following
recommendations from (Bengio, 2012) the size can be set arbitrarily large as long
as regularization is employed to prevent overfitting. For the HM(A2), HM(ρG,1),
HM(ρG,2), and HM(ρ), the neural networks are pretrained with synthetic data before
utilized in the final model. For each of the final 70 choke models (for 10 wells and 7
model types), the parameters are initialized using the prior parameter distributions
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described in Section 3.2 and 3.3. The variance of the measurement noise σ2
ε is calcu-

lated assuming a MAPE of 10% and following the procedure in Section 3.4. A trick
is utilized to enforce the positivity of the physical model parameters. A temporary
parameter S is learned instead of the real parameter φ, and the transformation

φi = exp (Sφi + ζ), for i = 1, ..,m, (24)

is used to obtain the real parameter value. Here ζ is a small constant to avoid
vanishing gradients in the optimization problem.

4.1 Predictive performance

In Figure 4, the mean absolute percentage error (MAPE) is calculated for each choke
model and illustrated in a box plot comparing the different model types. Table 2 shows
a detailed view of the MAPEs for the individual choke models. For the interested
reader, the predicted volumetric flow rates are illustrated together with the measured
flow rate (downscaled) in A, Figure 1.
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Figure 4: Box plot of the mean absolute percentage error for each model across all
wells. The horizontal line in the box is the median performance.

There are several interesting observations to make. Firstly, the median errors are
large for all model types and not at the level with the reported errors in literature,
see Section 1. Figure 4 shows that the DM is the only model achieving a median
MAPE below 10%, though barely with 9.4%. Secondly, the results indicate that
moving the model on the gray-scale from white to gray does improve the average
performance significantly, see Table 2. The MM achieves an error of 17.2% against

D. On gray-box modeling for virtual flow metering

137



10.3% for the best HM. However, comparing the HMs to the DM with an error of
10.4%, there is only a small improvement. Thirdly, large variations in performance
for the different choke models are observed in Table 2. For instance, for W01, all
the model types perform excellently and are on the level with the reported errors in
the literature (less than 4% MAPE). Yet, for W02, the performance is unsatisfactory
for all model types. The large differences in performance may also be observed by
looking at the cumulative deviation plots in Appendix A, Figure 2. This plot shows
the percentage of test points that fall within a certain percentage deviation from the
true value (Corneliussen et al., 2005).

Table 2: Mean absolute percentage error for the individual choke models. The best
performing choke model is highlighted in bold.

MM HM(A2) HM(ρG,1) HM(ρG,2) HM(ρ) HM(ε) DM

W01 4.7 3.1 1.8 2.4 2.0 4.9 2.4
W02 28.9 16.7 11.2 19.7 14.4 18.0 17.7
W03 20.8 9.3 18.2 16.7 16.1 22.6 15.7
W04 5.7 18.5 11.6 15.5 13.7 13.6 18.5
W05 8.3 11.9 12.5 22.0 16.1 17.4 3.6
W06 40.6 20.9 6.5 9.9 9.3 38.9 3.7
W07 30.7 2.3 4.8 5.5 5.7 6.0 2.1
W08 5.1 5.2 7.7 10.7 3.2 2.4 3.2
W09 12.7 12.8 11.6 12.3 8.8 13.9 21.5
W10 14.7 19.2 22.5 16.3 13.6 21.9 15.8

Across wells 17.2 12.0 10.9 13.1 10.3 16.0 10.4

There are several factors that may cause the observed prediction accuracy of the
different models. Three of these will be discussed in the following. Section 4.1.1 will
focus on the impact model simplifications may have on the accuracy, Section 4.1.2
will elaborate on the task of balancing learning from physics and learning from data,
and Section 4.1.3 discusses the likely influence of available data.

4.1.1 The possible impact of model simplifications

First of all, it must be kept in mind that only the production choke valve is modeled,
and any effects of the remaining production system on the multiphase flow, such as
the wellbore, are disregarded. It is believed that the average predictive performance
would improve by modeling a larger part of the production system. Second of all,
several assumptions and simplifications are introduced in the baseline mechanistic
choke model. Dependent on process conditions, flow regimes, and fluid composition,
these may be appropriate to describe the physical behavior of the flow through the
choke in some wells but imprecise in others. For instance, observe how the HM(A2)
for W03 has a much better performance than any of the other model types. This
may indicate that the mechanistic area function is poorly calibrated for this well
in the other model types. For W01, HM(ρG,1) has the best performance and may
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suggest that the assumption of the real gas law is inadequate. Naturally, these are
only indications and the results could benefit from a deeper analysis of the suitability
of different hybrid models in different cases.

4.1.2 The nontrivial task of balancing learning from physics and data

With adequate design and training, the HMs were expected to exploit both physics
and data to their full extent and thereby perform better than non-hybrid models.
Certainly, on a well level, six wells perform better with an HM. However, seen from
Table 2, wells W04-W07 perform better with either a mechanistic or a data-driven
model. This may cast light upon the nontrivial task of balancing learning from physics
and data. The HM may be too simplistic, and consequently, not flexible enough
to capture complex physical behavior. Likewise, the data-driven elements may be
erroneously influenced by the data. Hence, an appropriate approach to control the
influence of the mechanistic and data-driven component is yet to be discovered, at
least for the white-to-gray hybrid model types investigated in this research.

4.1.3 The influence of the available data

As neural networks have the power to adapt to arbitrarily complex patterns in the
data, the large MAPEs seen for many of the DMs may indicate that the quality of the
available data is inadequate. Real, historical production data are used in both model
training and testing. It is not uncommon that production data are noisy and biased,
which complicates the modeling process and may yield an unfair indication of pre-
dictive performance for some models. Naturally, different model types or estimation
techniques exist which to a greater extent exploits uncertainty in the model param-
eters and measurements. On the other hand, such methods require specifications
of uncertainty that are not easily available, and the resulting models are usually of
higher complexity. Further, it is believed that the large error for several of the choke
models is mainly caused by the datasets originating from the underlying, nonstation-
ary process. In time with the reservoir being depleted, the pressure in the down-hole
will decrease. If the goal is to maintain a steady production rate, the operators must
increase the choke opening. Extracting the test dataset chronologically may therefore
result in a set of process conditions that are substantially different from the conditions
seen in the training dataset. If so, a steady-state model like the baseline mechanistic
model or a standard neural network will not be able to capture the slowly varying,
underlying changes.

Figure 5 illustrates this issue. Shown is the upstream pressure p1 versus the choke
opening u for approximately the same oil volumetric flow rate. The coloring indicates
time, the lightest colors are the latest time samples. Notice that for some wells (for
example W05, W06, W07), the coloring is grouped, indicating that in time, different
process conditions are required to maintain the volumetric oil flow rate. Naturally, the
flow rate will also depend on other variables such as the mass fractions. Nevertheless,
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Figure 5: Upstream pressure versus choke opening in time for approximately the same
volumetric oil flow rate. Dark colors are the earliest time samples, whereas the light
colors are the latest and are included in the test set.

in a nonstationary situation, using three months of test data and assuming the model
parameters to be constant and representative for the physical behavior during three
months may be inappropriate. It may also discredit the high accuracy prediction
potential of the models. Using the developed models to predict the process response
only one week ahead greatly increases the accuracy, see the comparison of three
months prediction against one-week predictions in Figure 6.

4.2 Scientific consistency

One consideration of a model is the performance in terms of accuracy, another is
the scientific consistency. Inconsistent physical behaviors may cast doubt about the
trustworthiness of the models and cause the generalization abilities to be poor. First,
the outputs from the neural networks in the hybrid models are investigated. Figures
7a and 7b shows the output from the neural network in HM(A2) and HM(ρG,1),
respectively, as a function of one of the inputs, for three of the wells. The results
are diverse. In some of the choke models, the output of the neural network has a
trend coherent with the expected physical behavior, illustrated with the mechanistic
relation. This is seen for W01. However, notice that some of the other curves go
to zero or explode, illustrating scientific inconsistency. This effect has also been
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Figure 6: Box plot comparing the mean absolute percentage error for each model
across wells using three months of data in black (right box) and one week of data in
gray (left box).

observed for the HM(ρG,2) and the HM(ρ). There are two likely explanations for the
nonphysical behaviors. Firstly, the behavior may be influenced by the lack of data or
erroneous data. For instance, for W03, data are lacking for choke openings greater
than 40%. Secondly, due to the high capacity of neural networks, the data-driven
part of a hybrid model may capture any modeling error and not just the factor or
term the network was intended to represent. For instance, even though the HM(A2)
had the best performance for W03 of all models, the area function is not in line with
the expected physical behavior. This indicates that the learned neural network area
function may have captured other modeling errors than just a poorly calibrated area
function.

Additionally, a short sensitivity study is conducted to investigate the scientific con-
sistency of the output of the seven implemented VFM models. The choke models
trained on data from W01 are examined for which all models achieved a good per-
formance, see Table 2. Five test points are randomly picked from the test dataset,
the choke opening u and the upstream pressure p1 are individually perturbed and the
responses in the oil volumetric flow rate qO are investigated. Under the assumption of
constant process conditions and considering the production choke as an isolated unit
without the influence of the rest of the production system, the oil flow rate should be
expected to 1) increase with increasing choke opening, and 2) increase with increasing
upstream pressure. The sensitivity study is presented in Figure 8.

Most of the models seem to mimic the expected physical behavior except for the DM,
for which the oil flow rate decreases with increased pressure above a certain threshold.
This effect is caused by the DM being influenced by the available data to a larger
degree than the other model types, and that the available data reflects the behavior
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Figure 7: The learned neural network area function in (a) H(A2) (b) H(ρG,1), and for
three of the wells, illustrated together with a typical mechanistic curve (black, solid).
Also shown are the training and test data points for each well.

of the complete production system and not only the choke. This can be explained
in more detail by looking at the correlation plot of the available measurements in
the dataset corresponding to W01, see Figure 9. Observe the negative correlation
between the oil flow rate qO and the upstream pressure p1. By looking at the choke
as an isolated unit this correlation contradicts the expected physical behavior. On
the other hand, additionally considering the wellbore, the observed correlation has a
scientific explanation: increased pressure in the wellhead may result in a decreased
pressure drop in the wellbore and a decreased oil flow rate. Nevertheless, if the
goal of the modeling was to develop a choke model, the DM would be considered
scientifically inconsistent. These results reflect upon both the positive and negative
nature of models with high flexibility. They may adapt to any behavior seen in the
available data, thus also erroneous data. On the other side, this sensitivity study is
small and only conducted for one well. Conclusions on the scientific consistency of
the general gray-box model cannot be made. Nevertheless, the results motivate the
use of gray-box VFM models if scientific consistency is of importance to the end-users
of the models.

4.3 Suggestions for improvements in future work

From the results presented in Section 4 there are several aspects that can be investi-
gated to improve upon both the prediction accuracy and the scientific consistency of
hybrid models in future work.
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Figure 8: Sensitivity analysis of the different models for W01. Five initial points
are picked at random, marked with diamond, and the response of the volumetric oil
flow rate when perturbing the choke opening u (upper) and the upstream pressure p1
(lower) is illustrated.

Firstly, only a few simplifications and assumptions are investigated as hybridization
options in Section 2.2 although numerous exist. It is likely that other hybrid model
types may be better at balancing the task between learning from physics and learning
from data. Further, different types of data-driven models or other mechanistic choke
models may yield better performances for these wells. There is also the question raised
in Section 4.1.1 on the suitability of different hybrid models in different cases. One
approach in this direction is to utilize an advanced simulator to generate synthetic
data, in which process conditions and other characteristics can be controlled.

Secondly, Section 4.1.3 discussed the influence of the available data on the prediction
accuracy and pointed out noisy and biased measurements, together with nonstation-
ary process conditions as influential factors. A future research path is to experiment
with different estimation methods or model types that exploits knowledge regarding
the uncertainty in parameters and measurements. Some examples are variational in-
ference as estimation method, state estimation techniques such as the Kalman Filter
(Kalman, 1960), or probabilistic models. In case of nonstationary process conditions,
time dependent models may be utilized. Yet, such models greatly increase the com-
putational complexity and may not be suitable for real-time applications. Another
possibility is online learning, a learning method that may improve upon future pre-
dictive performance without adding complexity to the models.

Lastly, in Section 4.2, the scientific consistency of the gray-box models were discussed
and several issues raised. Several possible approaches may be investigated to improve
upon the scientific consistency. Firstly, a stronger regularization of the priors obtained
from the pretrained neural networks could possibly result in the network replicating
the mechanistic relation to a higher degree, whilst avoiding capturing other modeling

D. On gray-box modeling for virtual flow metering

143



p1 p2 T1 T2 u G O qO

p 1
p 2

T 1
T 2

u
G

O
q O

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 9: A visualization of the correlation between the explanatory variables and
the target variable measurements in the dataset corresponding to W01.

errors. Secondly, the inclusion of additional data-driven elements in a gray-box model,
for instance, an error term, could enable the original data-driven element to capture
the proposed physics only. Thirdly, the utilization of methods that enables learning
from datasets across wells, for instance transfer learning or multitask learning, may
positively change the results as more data are exploited.

5 Concluding remarks

This article contributes towards the development of gray-box virtual flow meters in
the petroleum industry. The focus has been on white-to-gray box models where a
mechanistic model is used as a baseline and data-driven elements inserted to increase
model flexibility. The choke valve of 10 petroleum wells has been modeled using real
production data spanning at most four years of production.

The results are diverse with a prediction accuracy is in the range of 1.8%-40.6%,
and no recommendations towards the suitability of different gray-box models may be
drawn. The results cast light upon the nontrivial task of balancing learning from
both physics and data. It is believed that the accuracy is strongly influenced by
nonstationarity in the available data. Nevertheless, the results indicate that gray-
box models may outperform a mechanistic and a data-driven model if an appropriate
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balance between the model components is identified. In particular, the gray-box
modeling approach seems to increase the accuracy compared to mechanistic models
and may improve the scientific consistency compared to data-driven models.

While the gray-box modeling approaches are tested on 10 different wells, these wells,
while being fairly typical offshore wells, are hardly representative for all wells. There-
fore, a direct generalization of the results to other assets is difficult. Assuredly, the
results could benefit from a deeper analysis of gray-box modeling on wells with signif-
icantly different characteristics. Furthermore, the research has studied the approach
with VFM as application, and generalization to other application areas is inadmissible
without further experimentation. On the other side, the gray-box modeling approach
itself should apply to any process systems where both physical equations and process
data exist.

To this end, the results reported in this study are promising, albeit, the true potential
of gray-box modeling is yet to be discovered. For example, hybrid modeling could
yield great potential in the small data regime, where data-driven models are known to
struggle. Several interesting research directions exist for future consideration. Among
these are online learning and multi-task learning.
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Figure 1: Illustration of the (downscaled) volumetric oil flow rate for each of the well
and all models. Shown in dotted black are the measured flow rate from the multiphase
flow meter. Notice, for some of the wells all models have adequate prediction accuracy,
whilst for other wells, some model predictions are unsatisfactory.
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Figure 2: Cumulative performance of choke models grouped on the model types. The
black dotted line shows the median performance across wells.
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When is gray-box modeling advantageous for virtual
flow metering?
M. Hotvedt1, B. Grimstad2, L. Imsland1, and D. Ljungquist3

1Engineering Cybernetics Department, NTNU, Trondheim, Norway
2Solution Seeker
3TechnipFMC

Abstract: Integration of physics and machine learning in virtual flow metering
applications is known as gray-box modeling. The combination is believed to enhance
multiphase flow rate predictions. However, the superiority of gray-box models is yet
to be demonstrated in the literature. This article examines scenarios where a gray-box
model is expected to outperform physics-based and data-driven models. The exper-
iments are conducted with synthetic data where properties of the underlying data
generating process are controlled. The results show that a gray-box model yields
increased prediction accuracy over a physics-based model in the presence of process-
model mismatch, and improvements over a data-driven model when the amount of
available data is small. On the other hand, gray-box and data-driven models are sim-
ilarly influenced by noisy measurements. Lastly, the results indicate that a gray-box
approach may be advantageous in nonstationary process conditions. Unfortunately,
model selection prior to training is challenging, and overhead on gray-box model
development and testing is unavoidable.

Keywords: gray-box, hybrid model, virtual flow metering, neural networks

1 Introduction

Gray-box modeling is a methodology that integrates physics-based modeling with ma-
chine learning techniques in process model development (Willard et al., 2020). The
gray-box models are placed on a gray-scale dependent on the degree of integration,
ranging from physics-based to data-driven models. A common perception is that
physics-based models require little data in development and are more robust to noisy
measurement than data-driven models. This perception arguably stems from the
high extrapolation capabilities demonstrated by many physics-based models (Oerter,
2006). Nevertheless, complex physical phenomena can be challenging to model in de-
tail using first principles, and simplifications are generally necessary for suitability in
real-time control and optimization applications (Roscher et al., 2020). Simplifications
reduce the model capacity and thereby the ability to capture complex physical behav-
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ior. Therefore, physics-based models often have a bias, or process-model mismatch
(Hastie, Tibshirani, and Friedman, 2009).

In contrast, many data-driven models have a large capacity, typically reducing model
bias. Furthermore, some data-driven models are computationally cheap to evaluate
and are therefore suitable for real-time applications. Moreover, they commonly have
lower development and maintenance costs compared to physics-based models (Solle
et al., 2016). On the other side, due to the inherent bias-variance trade-off (Hastie,
Tibshirani, and Friedman, 2009), a large capacity often results in high variance. High
variance causes data-driven models to struggle with extrapolation to future process
conditions and to yield low performance in the small data regime (Roscher et al.,
2020). Gray-box modeling is expected to leverage the complementary and advanta-
geous properties of physics and data to minimize both bias and variance. In other
words, create a model that achieves high performance in the presence of process-
model mismatch, little or noisy data, which extrapolates well to previously unseen
process conditions and is computationally efficient. Gray-box modeling is similar to
introducing strong priors in a data-driven model. In image classification using con-
volutions neural networks, strong priors in terms of parameter sharing resulted in
state-of-the-art performance (Hastie, Tibshirani, and Friedman, 2009).

One application where accurate process models are of high importance is in virtual
flow meters (VFMs): a soft-sensor able to predict the multiphase flow rate in real-time
at convenient locations in a petroleum asset (Toskey, 2012). The standard practice
in the industry today is physics-based models, and several commercial simulators
exist (Amin, 2015). In later years, data-driven VFM models have demonstrated
high performance (T. A. AL-Qutami, Ibrahim, and Ismail, 2017; T. A. AL-Qutami,
Ibrahim, Ismail, and Ishak, 2017a; T. A. AL-Qutami, Ibrahim, Ismail, and Ishak,
2017b; T. AL-Qutami et al., 2018; T. Bikmukhametov and J. Jäschke, 2019; Grimstad
et al., 2021). On the other hand, due to the inherently complex multiphase flow rate
characteristics and that the available data typically resides in the small data regime
(Grimstad et al., 2021), gray-box VFMs have gained increasing attention, see (Timur
Bikmukhametov and Johannes Jäschke, 2020; Hotvedt, Grimstad, and Imsland, 2020;
Hotvedt, Grimstad, and Imsland, 2021; Hotvedt, Grimstad, Ljungquist, et al., 2022)
and references therein. However, superior performance over physics-based or data-
driven models has yet to be demonstrated. This article contributes in this direction
by investigating four scenarios where a gray-box approach is believed to excel over
non-gray-box alternatives. These are formulated as four hypotheses:

Hypothesis 1 Under mismatch between a physics-based VFM and the process, a gray-
box VFM developed from the physics-based VFM achieves higher performance.

Hypothesis 2 With little available data, a gray-box VFM obtains higher performance
than a data-driven VFM.

Hypothesis 3 Increasing the noise level on the data, a gray-box VFM is less influenced
than a data-driven VFM.
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Hypothesis 4 In nonstationary conditions, a gray-box VFM yields higher performance
than a data-driven VFM.

In Hypothesis 1, the increased capacity of the gray-box compared to the physics-
based model is believed to be significant. In Hypothesis 1-3, the decreased capacity
of the gray-box compared to the data-driven model is believed to be decisive. In real
life, available process data can have several uncontrolled characteristics, for instance,
faulty sensor measurements. Such characteristics make it challenging to examine
and conclude on the hypotheses as it is difficult to deduce whether a poor model
performance results from the modeling technique or the available data. This has been
experienced in previous work with gray-box VFMs (Hotvedt, Grimstad, Ljungquist, et
al., 2022). Therefore, in this work, synthetic data designed to explore the hypotheses
are generated by a simulator of a petroleum production choke. In several idealized
experiments, the properties of gray-box production choke models are compared to
physics-based and data-driven models. Hopefully, the results obtained can act as
a guide to when gray-box modeling is likely to be advantageous, also in practical
applications.

2 The simulator

The simulator is a physics-based petroleum production choke valve model. A typical
production choke along with available measurements is illustrated in Fig. 1. The

Figure 1: Illustration of the production choke valve and typically available measure-
ments.

multiphase mass flow rate (a mixture of oil, gas, and water) ṁ through the choke
restriction is calculated using an advanced version of the Sachdeva model (Sachdeva
et al., 1986), where slip effects, allowing the gas and liquid phases to move with
unequal velocity, are included in the model. The slip model is taken from (Al-Safran
and Kelkar, 2009). The model requires measurements of the pressure upstream (p1)
and downstream (p2) of the choke valve, the upstream temperature (T1), the choke
opening (u), and the mass fractions of the phasic fluids η = (ηoil, ηgas, ηwat). The
mass fractions are assumed to sum to one. The volumetric multiphase flow rate
q = qoil + qgas + qwat can be obtained from the ṁ using the η and fluid densities ρ at
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standard conditions (SC) (International Organization for Standardization, 1996):

qi =
ηiṁ

ρi,SC
, i ∈ {oil, gas,wat}. (1)

In the simulator, an area function relates the choke opening to the effective flow area
through the choke A(u). This function will mimic an equal percentage valve, where
an equal increment in u results in an equal percentage changed area. The simulator,
or process, is referred to as P and defined by the notation:

y = f(x;φ) + ε ∈ R, (2)

where the model output is y = q, f is the first principle equations, the input measure-
ments are x = (p1, p2, T1, u, ηoil, ηwat) ∈ R6, and φ are constant model parameters.
Noise is added to q by sampling ε from a probability distribution, for instance, a
Gaussian distribution.

3 Dataset generation

Process P in Section 2 is used to generate three different datasetsDk = {(xt, yt)}Nkt=1, k =
{1, 2, 3}. The index t reflects time. The datasets are designed to investigate the hy-
potheses in Section 1. The sequence of observations in each dataset is sampled from
the joint probability distribution of P: pt(x, y) = pt(y |x)pt(x), where pt(x) is the
marginal distribution of the inputs and the output yt follow the conditional distribu-
tion pt(y |x) expressed with (2). Notice, P is allowed to be nonstationary resulting
in pt1(x, y) 6= pt2(x, y) for t1 6= t2.

Dataset D1 is generated as a best-case scenario to fairly examine Hypothesis 1-3 in
Section 1. Firstly, the process is assumed stationary: pt1(x, y) = pt2(x, y)∀t. Sec-
ondly, the x are independently drawn. This is idealized as measurements in real data
are often strongly correlated (Hotvedt, Grimstad, Ljungquist, et al., 2022). Thirdly,
a large range of common process conditions through the lifetime of a petroleum well
is covered by sampling the inputs from:

p1 ∼ U(30, 70) bar,
p2 ∼ N (22, 0.5) bar,

T1 ∼ N (50, 2) ◦C

u ∼ U(0, 100) %,
ηoil ∼ U(0, 80) %,
ηwat ∼ U(0, 20) %.

(3)

for any t. The p1, u, ηoil, and ηwat are sampled from wide uniform distributions as they
commonly vary much, whereas p2 and T1 vary little, which is mimicked by drawing
from narrow normal distributions. To ensure a sufficient dataset size N1 = 10000
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observations are sampled. Lastly, only normally distributed noise ε ∼ N (0, σ2
ε) is

considered. The included noise levels are σε ∈ {1, 2, 3, 4, 5, 10}, yielding a coefficient
of variation of σε/µ ∈ {0.02, 0.05, 0.07, 0.1, 0.12, 0.24}, where µ is the mean of the
noise-free flow rate measurements. Normally distributed noise is an idealized case as
measurement sensors may comprise different noise types. However, it is interesting to
investigate how the models are influenced by increasing level of idealized noise before
introducing noise of higher complexity. The dataset is randomly separated into a
training and a test dataset with N1,test = 2000. From the training dataset, 20% are
randomly extracted as a validation dataset.

The D2 and D3 mimics two typical real case scenarios where the process is nonsta-
tionary. In this study, only virtual drift is simulated, meaning that nonstationarity is
caused by the marginal distribution pt(x) shifting in time while the conditional distri-
bution pt(y | x) stays constant (Ditzler et al., 2015). Virtual drift is commonly seen
for a petroleum asset. For instance, in time with the reservoir being depleted, the pres-
sure in the reservoir and the upstream part of the choke decreases. If the petroleum
asset is producing on plateau, process engineers increase the choke opening to main-
tain high production rates (Jahn, Cook, and Graham, 2008). Real drift, which is the
opposite of virtual drift, is typically a consequence of substantial mechanical wear of
equipment with time. It is believed that real drift is less prominent than virtual drift
in a petroleum asset and is the reason why real drift is not simulated in this study. In
both datasets, N2 = N3 = 5000 noise-free observations are sampled. The datasets are
split into training and test according to time with N2,test = N3,test = 2000. Hence,
the models will be used to predict future process responses. The validation dataset
consists of the 600 latter training observations ordered by time. Dataset D2 mimics
the depleting reservoir as described above. This scenario is illustrated in Figure 2.
The p1 is decreased in time using an exponential function, whereas the choke opening
is increased in steps of 2.5%. The remaining variables are kept constant for any t:
p2 = 22 bar, T1 = 50◦C, ηoil = 85%, and ηwat = 2%. Dataset D3 mimics a scenario
where the gas-to-oil ratio (GOR) increases with time. This phenomenon typically
occurs when the reservoir pressure drops below the bubble point pressure such that
the gas dissolved in the oil starts to escape (Jahn, Cook, and Graham, 2008). Fig. 3
illustrates the resulting flow rate q and the mass fractions of oil ηoil (green) and gas
ηgas (orange) when the GOR is linearly increased from 200 to 1000. The p1 is the
same as for D2 illustrated in Fig. 2. The remaining variables are kept constant for
any t: p2 = 22 bar, T1 = 50◦C, u = 100%, and ηwat = 2%.

4 Models

Five production choke models have been developed: two physics-based, one data-
driven, and two gray-box models. The models will be described briefly below. More
details can be found in Hotvedt, Grimstad, Ljungquist, et al. (2022). The first physics-
based model is the Sachdeva model, referred to as M, and defined by the short notation
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Figure 2: Illustration of the dataset mimicking typical behavior when the reservoir is
depleted with time.
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Figure 3: Illustration of the dataset mimicking typical behavior when the gas-to-oil
ratio increases. The mass fractions of oil and gas are the green and orange curve,
respectively.
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ŷM = fM(x;φM) ∈ R, (4)

The true area function is kept unknown, and a linear relationship is utilized instead.
Among the φM is the discharge coefficient, which is a multiplicative calibration factor
used to change the magnitude of the area function. In industrial VFMs, additional
calibration factors exist to change the shape of the function. Here, these are excluded
to restrict the capacity of M, enforcing a significant mismatch between P and M.

The second physics-based model is the advanced Sachdeva model used for P, described
in Section 2, referred to as M?. That is, the physical equations of the model are equal
to the simulator, and the true area function is known. However, the true values of
φ in P are kept unknown from M? and φM? must be estimated from data. M? is
defined by

ŷM? = f(x;φM?) ∈ R. (5)

Hence, any process-model mismatch will be a consequence of parameter deviation
away from the true values and not structural mismatches as for the M.

The data-driven model is a fully connected, feed-forward neural network and is se-
lected due to its large capacity. The model D is defined by

ŷD = fD(x;φD) ∈ R, (6)

where φD = {(W1, b1), . . . (WL, bL)} are the weights and biases in the neural network
on each layer l = 1, ..., L. The rectified linear unit is used as activation function.

The two different gray-box models are based on the M. The first is an error model
where a data-driven model attempts to capture additive mismatches between P and
M. This model is referred to as H-E:

ŷH-E = fH-E(x;φH-E)

= fM(x;φM) + fD(x;φD) ∈ R.
(7)

The second hybrid model addresses the unknown area function of P by multiplying
the initial linear function of the M with a neural network: A = AM × AD. Hence,
both the magnitude and shape of the area function may be adjusted. This model is
referred to as H-A:

ŷH-A = fH-A(x;φH-A) = fM(x, AD;φM) ∈ R
AD = fD(x;φD) ∈ R.

(8)

As the neural network in H-A is multiplied with a small value (AM), the capacity of the
H-A is likely smaller than the capacity of H-E. This can be argued by acknowledging
that large outputs from the network in H-A will be less influential on the flow rate
predictions than a large output from the network in H-E.
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For all models i ∈ {M?,M,H-A,H-E,D}, the parameters are estimated using maxi-
mum a posteriori (MAP) estimation:

φ̂i = argmax
φ

p(φi | Dk)

= argmin
φ

[ Nk∑

t=1

1

σ2
ε

(yt − ŷi,t)2

+
m∑

j=1

1

σ2
i,j

(φi,j − µi,ji)2
]
.

(9)

where m is the number of parameters. The priors on the parameters are assumed
normal φi,j ∼ N (µi,j , σ

2
i,j). The optimization problem is solved using stochastic,

iterative, gradient-based optimization with the optimizer Adam (Kingma and Ba,
2015) and early stopping. Details of the training algorithm are given in Hotvedt,
Grimstad, Ljungquist, et al. (2022).

5 Case study

Four experiments (Exp. 1-4) have been conducted to answer the four hypotheses in
Section 1. Below, each experiment will be described, and the results visualized. Due
to stochasticity, the experiments are run several times, called trials. The results of the
trials will be visualized in figures with the median (p50) as a solid line and a shaded
area to indicate the lower (p25) and upper (p75) quantiles.

5.1 Exp. 1 - decreasing dataset size

5.1.1 Description

This experiment examines the performance of the models to a decreasing training
dataset size. Dataset D1 is used for this purpose using the noise-free measurements.
The considered training data lengths are N ∈ {2, 4, 8, 20, 40, 80, 800, 4000, 8000}. The
training data is randomly extracted from D1 in each trial.

5.1.2 Results

The model performance in terms of the mean absolute error (MAE) is visualized as
a function of N in Fig. 4.
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Figure 4: The mean absolute error as a function of the training set size.

5.2 Exp. 2 - increasing noise level

5.2.1 Description

This experiment investigates the robustness of the models to an increasing noise level.
The models will be trained using dataset D1 and the output measurements with the
different noise levels σε.

5.2.2 Results

Fig. 5 shows the relative error as a function of the coefficient of variation σε/µ. The
relative error is calculated by dividing the MAE obtained at one noise level by the
MAE obtained with noise-free measurements. The MAE is calculated using the noise-
free q as the true value. A relative error larger than 1.0 means the model performance
has decreased.
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Figure 5: The relative error as a function of the coefficient of variation for the models.

5.3 Exp. 3 - the depleting reservoir

5.3.1 Description

Dataset D2 is used to analyze the model performances in the nonstationary case of a
depleting reservoir.

5.3.2 Results

The absolute value of the prediction error (AE) in time is visualized for the different
models in Fig. 6. The black, dotted line separates training and test data. Table 1
gives the validation and test MAE for the models.

Table 1: The validation and test mean absolute error in Exp. 3.
M? M H-A H-E D

MAEv 0.1 18.8 2.2 1.3 2.5
MAEt 1.0 24.7 4.3 2.5 2.8
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Figure 6: The absolute error of the model predictions as a function of time for Exp.
3.
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5.4 Exp. 4 - increasing gas-to-oil ratio

5.4.1 Description

Dataset D3 is used to analyze the model performance in the nonstationary case of an
increasing GOR.

5.4.2 Results

Fig. 7 shows the absolute error in time separated into training and test data. Table
2 gives the validation and test MAE.

Table 2: The validation and test mean absolute error in Exp. 4.
M? M H-A H-E D

MAEv 0.2 2.0 3.0 4.9 6.9
MAEt 0.3 1.6 3.4 9.0 12.7
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Figure 7: The absolute error of the model predictions as a function of time in Exp.
4.
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6 Discussion

Firstly, notice from Fig. 4 that for large dataset sizes, only M yields a high process-
model mismatch. For M?, this was expected as there are no structural mismatches
between M? and P. For the other models, the negligible MAE indicates a sufficient
capacity. Observe, only a few observations (N > 80) were required for the D and Hs
to obtain negligible MAE, which suggests that the process is simple to learn. With
real-life, complex processes, a higher number of observations would likely be required
to remove the bias. Secondly, Fig. 4 shows that the error increases the most for
the D when the dataset size decreases, followed by H-E and H-A. This implies that
the D has the largest variance, followed by H-E and H-A, and adapts the most to
the training data, thus, decreasing the generalizability to the unobserved test data.
Fig. 5 shows that the M and M? are robust against an increasing noise level, whereas
the Hs and D are not. This confirms that the Hs and D have a larger variance. On
the other hand, Fig. 5 shows that the Hs barely achieve a better performance than
the D. Moreover, it seems that the H-E has a lower variance than the H-A, which is
conflicting with the results in Fig. 4. However, H-E is designed to capture additive
mismatches, which is the only considered noise influence and may explain the slightly
better performance.

The results from Exp. 1-2 indicates that gray-box models may yield lower variance
than a data-driven model and reduce bias in physics-based models with structural
process-model mismatches. Therefore, in nonstationary conditions, the expectation
is that the Hs will perform better than the D and the M. Figs. 6-7 and Tables 1-2 do
show that at least one H performs better than the D in both experiments and that
it is advantageous with an H when the process-model mismatch of the M is large as
in Exp. 3. The large mismatch in Exp. 3 is a consequence of the available mea-
surements of u making the assumed linear shape of the area function in M of greater
influence than in Exp. 4 where u = 100% ∀t. It should be noted, the U-shaped
curve of the M on the training data in Fig. 6 is due to the objective function in (9),
and the performance on the test data can likely be improved by weighing the recent
observations the most. On the other hand, in Exp. 3, the performance of the D is
comparable with the Hs. In Exp. 4, the discrepancy in performance between the
Hs is large, where the H-A and H-E yield good and poor performance, respectively.
Ideally, the best model could be deduced a priori to training by examining known
process-model mismatches and the capacity of the models. Nevertheless, this showed
nontrivial even for these idealized experiments. For instance, in Exp. 3, the H-A
was expected to perform best as it targets the discrepancy between the linear and
true area function. Nevertheless, H-E yields the best performance, closely followed by
the D. Therefore, model selection must be performed posterior to training using the
performance on the validation dataset. Accordingly, the importance of extracting the
validation dataset representatively increases, for instance, by time for nonstationary
processes. Positively, the results in Tables 1-2 indicate that the errors on the vali-
dation data are illustrative for the model performances on the test data as the best
model yields the lowest error in both experiments. A disadvantage is the increase of
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overhead on model development and testing. The observant reader notices that the
model performances in Figs. 6-7 decrease with time. This is a typical scenario for
steady-state modeling in nonstationary conditions. Utilization of learning methods
for frequent model updating would likely improve the long-term performances. Such
approaches could also handle the existence of both virtual and real drift.

7 Concluding remarks

Overall, the results in this research show that a gray-box approach to VFM can
reduce both model bias and variance compared to a physics-based and data-driven
approach, respectively. From the results and discussions, Hypotheses 1 and 2 from
Section 1 are confirmed. However, the gray-box and data-driven models have com-
parable performances for an increasing data noise level and Hypothesis 3 cannot be
confirmed. The results from experiments in nonstationary conditions showed that
a gray-box model can improve the performance of a data-driven model, hence, con-
firming Hypothesis 4. Moreover, the gray-box model can significantly improve the
performance of a physics-based model under large process-model mismatches. On the
other hand, the results also show that it is challenging to determine prior to model
training which model yields the best performance in different scenarios, and overhead
on model development and testing is unavoidable.

Certainly, the hypotheses were only investigated on synthetic data and generalization
to real life is challenging. In real life, there may be other undesired and unknown
characteristics of the process complicating model development, for instance, increas-
ingly complex and rare physical phenomena or heteroscedastic measurement noise.
Moreover, this work only considers two scenarios of nonstationary process behavior,
although possible scenarios are numerous. Additionally, other gray-box model vari-
ants may yield different results in different scenarios. Nevertheless, the results from
this work indicate that gray-box modeling is advantageous for virtual flow metering
in certain scenarios and can hopefully act as a guide in modeling real processes.
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Passive learning to address nonstationarity in virtual
flow metering applications
M. Hotvedt1, B. Grimstad1, 2, and L. Imsland1

1Engineering Cybernetics Department, NTNU, Trondheim, Norway
2Solution Seeker

Abstract: Steady-state process models are common in virtual flow meter applica-
tions due to low computational complexity, and low model development and mainte-
nance cost. Nevertheless, the prediction performance of steady-state models typically
degrades with time due to the inherent nonstationarity of the underlying process be-
ing modeled. Few studies have investigated how learning methods can be applied to
sustain the prediction accuracy of steady-state virtual flow meters. This paper ex-
plores passive learning, where the model is frequently calibrated to new data, as a way
to address nonstationarity and improve long-term performance. An advantage with
passive learning is that it is compatible with models used in the industry. Two pas-
sive learning methods, periodic batch learning and online learning, are applied with
varying calibration frequency to train virtual flow meters. Six different model types,
ranging from data-driven to first-principles, are trained on historical production data
from 10 petroleum wells. The results are two-fold: first, in the presence of frequently
arriving measurements, frequent model updating sustains an excellent prediction per-
formance over time; second, in the presence of intermittent and infrequently arriving
measurements, frequent updating in addition to the utilization of expert knowledge is
essential to increase the performance accuracy. The investigation may be of interest
to experts developing soft-sensors for nonstationary processes, such as virtual flow
meters.

Keywords: virtual flow metering, nonstationarity, passive learning, online learning,
periodic batch learning, neural networks

1 Introduction

Many real-world, physical processes are nonstationary (Sayed-Mouchaweh and
Lughofer, 2012). To various degrees, process conditions and properties change
with time. Nevertheless, a common assumption in process modeling is time indepen-
dence, leading to stationary, or steady-state, models (Granero-Belinchón, Roux, and
Garnier, 2019). Several arguments militate for the utilization of steady-state models.
Firstly, many processes are slowly time-varying making the stationary assumption
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reasonable for short-term applications. Secondly, steady-state models typically re-
duce the cost of model development and maintenance (Solle et al., 2016). Thirdly,
these models are often less computationally heavy, which can increase the suitability
in real-time control and optimization applications (Gravdahl and Egeland, 2002). On
the other hand, the performance of steady-state models in nonstationary conditions
typically degrade with time and necessitates algorithms that improve the handling of
nonstationarity.

Virtual flow metering (VFM) is a soft-sensor technology that utilizes process models
for continuous prediction of the multiphase flow rate at key locations in a petroleum
asset (Toskey, 2012). In Figure 1, a simplified illustration of the production system
for one petroleum well is given along with typically available sensor measurements
for well-equipped wells. A multiphase flow meter (MPFM) measures the phasic flow
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Figure 1: A simplified illustration of the petroleum production system with typical
sensor placements. A multiphase flow meter (MPFM) measures the phasic flow rates
through the choke valve. Measurements of the phasic flow rates can also be obtained
when the well is tested, using, for instance, a test separator.

rates, q = [qgas, qoil, qwater], through the production choke valve. Under well-testing,
the phasic flow rates can be measured using the test separator. The total multiphase
flow rate through the production system isQ = qgas+qoil+qwater. A typical application
of VFM is as a back-up to the MPFM in case of failure (Varyan, Haug, and Fonnes,
2015).

The underlying process of the VFM comprises the reservoir, wells, pipelines, and pro-
cessing facility. This process is nonstationary with time-varying process conditions
and properties (Guo, Lyons, and Ghalambor, 2007). The multiphase flow rate through
the production system has a dynamic nature with both fast and slow transients. Fast
transients occur with control changes, which induce pressure waves through the sys-
tem, such as the opening of the choke valve (Jansen, 2015). These are in the time
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range of minutes to hours. Slow transients are caused by the reservoir being de-
pleted with time, which in turn results in a pressure declination in the production
system and a decreased production flow rate (Foss, Knudsen, and B. Grimstad, 2018).
These occur in a time range of months to years, dependent on the size of the reser-
voir. Furthermore, as the petroleum asset ages, technologies such as artificial lift
with gas or water are applied to improve production. Other sporadic changes such
as maintenance tasks will also induce transient process behavior. Hence, the natural
approach to VFM is nonstationary models. Several commercial VFMs such as Olga
and LedaFlow are nonstationary (Amin, 2015), and other examples exist in literature
(Holmås and Løvli, 2011; Jordanou et al., 2017). On the other hand, due to the
slow dynamics of the reservoir, steady-state reservoir conditions for a certain time
interval can often be assumed (Shippen, 2012). Furthermore, considering the inher-
ent complex multiphase flow characteristics, which make it challenging to develop
and solve nonstationary VFMs, steady-state VFMs are the most common approach
in literature (T. Bikmukhametov and J. Jäschke, 2019), both for physics-based mod-
els (Shippen, 2012; Varyan, Haug, and Fonnes, 2015) and machine learning (ML)
models (T. A. AL-Qutami, Ibrahim, and Ismail, 2017; T. A. AL-Qutami, Ibrahim,
Ismail, and Ishak, 2017a; T. A. AL-Qutami, Ibrahim, Ismail, and Ishak, 2017b; T.
AL-Qutami et al., 2018; Timur Bikmukhametov and Johannes Jäschke, 2020; B.
Grimstad, Hotvedt, et al., 2021). Nevertheless, studies show that steady-state VFM
models should be updated or recalibrated in time to provide adequate long-term pre-
diction accuracy (Sandnes, Bjarne Grimstad, and Kolbjørnsen, 2021; Hotvedt, B.
Grimstad, Ljungquist, et al., 2022). Several model learning methods exist that at-
tempt to account for nonstationarity without imposing temporal dependencies in the
model. The learning methods can be divided into an active or passive method (Ditzler
et al., 2015). In passive learning, the process is assumed to be continuously changing
and the model is routinely updated with access to new measurements. In active learn-
ing, statistical tests are used to detect significant changes in the process conditions,
whereupon model updating is initiated.

For the VFM application, it is not uncommon that new observations arrive infre-
quently, for example, twice a year or at the most once per month under well-testing
(Monteiro et al., 2020). In such an event, active learning is redundant as the process
conditions and properties are likely to have changed significantly during the elapsed
time, and the model should be updated with each new measurement. For assets
with access to continuous flow rate measurements, such as MPFM measurements, the
VFM models would likely benefit from updating using these measurements in between
well-tests. Nevertheless, in industry, even with frequent access to new measurements,
model learning can occur intermittently due to limited resources or manual, non-
systematic workflows (Koroteev and Tekic, 2021).

To the authors’ knowledge, no studies have investigated the influence of the update
frequency on sustaining the prediction accuracy of steady-state VFM models over
time, hence, obtaining a high long-term performance. This research contributes in
this direction by examining two passive learning methods: periodic batch learning
and online learning. Six VFM models are developed for the petroleum production
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choke valve in 10 petroleum wells on Edvard Grieg, an asset on the Norwegian Conti-
nental Shelf (Lundin Energy Norway, 2020). Real production data spanning five years
are used in the development. The long-term predictive performance is expected to
increase with the frequency of which the models are updated. The best performance
is expected from online learning, for which the models are updated with every new
measurement. For periodic batch learning, the performance is expected to drop as the
frequency is lowered. The rest of the article is structured the following way: section 2
presents relevant theory for steady-state modeling of processes in nonstationary con-
ditions. Thereafter, Section 3 describes the available data and the VFM model types.
In Section 4, the numerical study examining the learning methods is described and
results visualized and discussed. Lastly, Section 5 gives concluding remarks.

2 Steady-state modeling in nonstationary conditions

Consider a stream of observations S = {(x1, y1), (x2, y2), . . . , (xt, yt), . . .}, where xt ∈
Rd represents measured process conditions and yt ∈ R a (dependent) target variable
at time t. In general, the set S can be thought of as a realization of a stochastic process
P governed by a generative model (G. Oliveira, Minku, and A. Oliveira, 2021)

pt(x, y) = pt(y | x)pt(x). (1)

In (1), pt(x) is the marginal distribution of the process conditions, and pt(y | x) is
the conditional distribution of the target, both at time t. The index t indicates that
the distributions may be time-variant, and therefore P may be nonstationary.

In real-time applications of machine learning, like data-driven virtual flow metering,
it is natural to develop models on historical data and test the model performance
on future data. Collect in Da:b = {(xt, yt)}bt=a the sequence of observations with
t ∈ [a, b], and in Da = {(xt, yt)}t=a the single observation at t = a. For a model to
be developed at time t = T , the training dataset is denoted by Dtr = D1:T and the
test dataset by Dtr = DT+1:∞.

Many machine learning models and algorithms are based upon the assumption that
the training and test dataset originate from the same probability distribution; the data
points in S are independent and identically distributed (i.i.d.) (Hastie, Tibshirani,
and Friedman, 2009). When the stochastic process P in (1) is nonstationary, the
i.i.d. assumption is invalidated, as a dataset shift can occur when moving from the
training phase to the test phase. In the following, different types of dataset shifts are
explored, and suitable learning methods to alleviate the effect of nonstationarity on
predictive performance are discussed.
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2.1 Dataset shifts

When P is nonstationary, the joint probability distribution can shift in time resulting
in pt(x, y) 6= pt+τ (x, y) for an arbitrary lapse τ > 0 in time. Using the model in (1)
two types of dataset shifts, also called concept drifts, can occur in time: virtual and
real drift1 (Quiñonero-Candela et al., 2009; Ditzler et al., 2015). With virtual drift,
the marginal distribution shifts in time. That is, pt(x) 6= pt+τ (x) for τ > 0. With
real drift, the conditional distribution shifts in time, such that pt(y | x) 6= pt+τ (y | x)
for τ > 0. Real and virtual drift may happen separately or simultaneously, in any
case shifting the joint distribution with time. Notice, in (Quiñonero-Candela et al.,
2009), several other specialized forms of dataset shifts are discussed.

As an example, consider a process with a conditional distribution

yt = atxt + bt, (2)

with parameters θt = {at, bt}. Two subsequent time instances t = 1 and t = 2 are
examined. The input at t = 1 is sampled from p1(x) ∼ N (0, 1). At t = 2, the
mean changes such that p2(x) ∼ N (3, 1). If the model parameters remain unchanged,
this is virtual drift, and the response in y changes only as a consequence of changes
in the marginal distribution. The scenario is illustrated in Figure 2a. In another
scenario, consider the input distribution to remain unchanged, but the b parameter
of the model to change from b1 = 0 to b2 = 3. The parameter change causes the
conditional distribution in (2) to change, thereby causing real drift, illustrated in
Figure 2b. Notice, in the two scenarios, virtual and real drift cannot be distinguished
by analyzing y only.
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(a) Virtual drift. The marginal distribution
p(x) changes from one time step to another
causing a change p(y | x). The parameters re-
main unchanged.
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(b) Real drift. The marginal distribution p(x)
does not change but p(y | x) changes as a con-
sequence of the changed model parameters.

Figure 2: Dataset shifts illustrated with a) virtual drift and b) real drift.

Virtual drift is commonly seen in the VFM application. For example, in time with
the reservoir being depleted the pressure through the production system decreases.

1Other naming conventions for virtual drift are virtual concept drift, covariate shift, or input
drift. Real drift is also known as real concept drift or output drift.
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At the same time, in the early life of a petroleum asset, the production engineers
can often increase the choke openings to maintain a constant production rate, also
called plateau production (Jansen, 2015). The VFM application can also experience
real drift. Substantial mechanical wear of the equipment in the well can occur with
time, for instance, due to sand production, and can result in a change in the flow rate
even for unchanged process conditions. It is believed that virtual drift is the major
cause of observed dataset shifts in VFMs. However, as Figure 2 illustrates, it can be
difficult to separate between the two types of drifts.

The next section discusses the impact that dataset shifts can have on steady-state
VFM models.

2.2 Parameter estimation of steady-state models

A common approach to steady-state modeling is to use an inductive method to learn
an approximation of the conditional distribution pt(y |x) in (1) from a fixed set of
steady-state observations D1:T . A typical form of the approximation is

ŷt = fθ(xt) + εt, εt ∼ N (0, σ2
ε ), (3)

where fθ is a parametric model of the mean, with parameters θ, and εt is a ho-
moscedastic noise term. The model in (3) is a steady-state model since ŷt is condi-
tioned on xt, and the parameters θ and σε are time-invariant. The i.i.d. assumption
is thus used. Note that, the resulting model is steady-state even though the data used
to learn the model originate from a nonstationary process.

Conditional models, like the steady-state model in (3), are commonly trained us-
ing maximum a posteriori (MAP) estimation. In MAP estimation, the mode of the
posterior distribution p(θ | D) ∝ p(D | θ)p(θ) is maximized. Here, the likelihood
p(D | θ) is given by (3) and p(θ) is a prior on the θ parameters. For a normal prior,
θi ∼ N (µi, σ

2
i ), i = 1, .., Nθ, the optimization problem can be expressed as follows:

θ̂ = argmax
θ

log p(D |θ) + log p(θ)

= argmin
θ

N∑

i=1

1

σ2
ε

(yi − ŷi)2 +
Nθ∑

i=1

1

σ2
i

(θi − µi)2 .
(4)

where N is the number of data points in the training dataset. From (4), it is seen that
MAP estimation is a trade-off between minimizing the squared errors and parame-
ter deviation away from its respective mean value µi. By multiplying the objective
function by σ2

ε /N , the equivalence of MAP estimation to the familiar minimization
of mean squared error with `2-regularization is obtained (I. Goodfellow, Y. Bengio,
and Courville, 2016).

In the machine learning domain, (4) is commonly optimized by first-order gradient
descent methods (Bishop, 2006). These methods update the parameters iteratively

Publications

180



according to the following scheme:

θ̂(k+1) = θ̂(k) − γ(k)M(B, θ̂(k)), k = 1, .., E (5)

where E is the number of iterations or steps taken towards the optimal value, γ is the
learning rate or step-size, andM is the set of equations calculating the step direction.
The B is a set of observations extracted from the training dataset and can be in the
range of one to all observations. Any parameter that is not included in θ is called a
hyperparameter, for instance, γ, E, and |B|.
The above approach to steady-state modeling is susceptible to dataset shifts since the
estimate (optimum) in (4) likely will change with time, resulting in poor test perfor-
mance. When applied to VFM, for which the data is generated by a nonstationary
process, both virtual and real concept drift will negatively influence the long-term
predictive performance. A VFM performance that diminishes with time, has been
documented in several publications (B. Grimstad, Hotvedt, et al., 2021; Hotvedt,
B. Grimstad, Ljungquist, et al., 2022; Sandnes, Bjarne Grimstad, and Kolbjørnsen,
2021). In the following section, passive learning methods are discussed. These meth-
ods can be used to account for dataset shifts in steady-state modeling.

2.3 Passive learning for steady-state models

In passive learning, the process P is assumed to be continuously changing with time,
and model updating is routinely initiated regardless of whether or not dataset shifts
occur. Two methods of passive learning are examined: online learning (OL) and
periodic batch learning (PBL).

At time t = T , an initial parameter estimate is obtained from Dtr = D1:T using the
approach in Section 2.2. The estimated parameters are referred to as θ̂T , and the
resulting steady-state model is given by

ŷt = fθ̂T (xt) + ε, ε ∼ N (0, σ2
ε ). (6)

From this point in time, the two learning methods can be applied. These are visualized
in Figure 3 and are explained in the consecutive sections.

2.3.1 Periodic batch learning

In periodic batch learning, the model in (6) is used to make predictions for τ > 0
time steps Dte

T :τ before it is retrained at t = T + τ . In retraining, the new parameters
θ̂T+τ are estimated using all data observed at that time as training data Dtr

1:T+τ and
the approach in Section 2.2. The procedure is repeated with a period of τ , where the
posterior parameter distribution can be described with

p(θ | D1:T+τ ) ∝ p(D1:T+τ |θ)p(θ), (7)
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Figure 3: One iteration of the periodic batch learning and online learning update
procedure after obtaining the initial parameter estimate. Dtr are training datasets
used in the estimation problem and Dte are test datasets used to test the predictive
capabilities of the model.

An appropriate τ must be determined and can be accomplished by applying a change
or shift detection algorithm offline on historical data. There exist much literature on
shift detection algorithms, see for example Raza, Prasad, and Li (2015) and references
therein. In this research, Hotelling’s T-squared test for two multivariate, independent
samples is used to investigate a null hypothesis stating that no virtual drift is present
in the dataset. The algorithm for determining τ is described in A.

2.3.2 Online learning

In online learning, model updating occur for each new observation that arrives. How-
ever, the posterior distribution at the next time step is updated using only the current
observation as the training data and the posterior distribution at the previous time
step as the prior. For instance, at t = T + 1:

p(θ | D1:T+1) ∝ p(DT+1 | θ)p(θ | D1:T ). (8)

Mathematically, (8) can be derived as follows. With the approach in Section 2.2, the
posterior parameter distribution at t = T + 1 is given by

p(θ | D1:T+1) =
p(D1:T+1 |θ)p(θ)

p(D1:T+1)
, (9)
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where p(D1:T+1) is the proportionality constant in Bayes’ law. Applying the i.i.d.
assumption, the likelihood function of the model and the evidence can be written as

p(D1:T+1 | θ) =
T+1∏

t=1

p(Dt | θ) = p(D1:T | θ)p(DT+1 | θ)

p(D1:T+1) =
T+1∏

t=1

p(Dt) = p(D1:T )p(DT+1),

(10)

respectively. Note that, while the i.i.d. assumption is likely false for a nonstationary
process, it is already used in steady-state modeling. Inserting (10) in (9), the posterior
parameter distribution at t = T + 1 can be written as

p(θ | D1:T+1) =
p(DT+1 | θ)
p(DT+1)

· p(D1:T | θ)p(θ)
p(D1:T )

=
p(DT+1 | θ)
p(DT+1)

· p(θ | D1:T ) (11)

and (8) is obtained.

An issue becomes apparent when deriving the MAP estimate for (8)

θ̂T+1 = argmax
θ

[
log p(DT+1 | θ) + log p(θ | D1:T )

]
. (12)

Ideally, the parameter estimation in the previous time step should have provided
both the mean and the variance of the updated posterior parameter distribution
p(θ | D1:T ) ∼ N (µT ,ΣT ). However, MAP estimation gives point estimates of the
mode only. When the likelihood and prior is normal, an estimate of the mean µT = θ̂T
is obtained since the mode and mean coincides, but ΣT remains unknown. Therefore,
the second term in (12) cannot be calculated if MAP estimation is used in each time
step. As discussed in Section 2.2, this term is `2-regularization of the parameters.
According to (I. Goodfellow, Y. Bengio, and Courville, 2016), for some cases, the
algorithm early stopping has a similar effect as `2-regularization. For linear models,
the solution obtained with early stopping equals a solution with `2-regularization
where the regularization term is determined by the number of iterations and step-size
in early stopping (Santos, 1996). Therefore, for the OL algorithm implemented in
this research, the iterative optimization algorithm in (5) uses the posterior parameter
estimate from the previous time step as a starting point but iterates only a few steps
k towards the optimal value. In such a sense, the approach is similar to an early
stopping approach, and will to some degree include parameter regularization.

2.4 Comparison of periodic batch and online learning

There are advantages and disadvantages to both passive learning methods. With OL,
the model can quickly adapt to changes in process conditions. Further, as only new
observations are used, old data may be discarded yielding low memory requirements.
However, it has been shown that some machine learning models such as neural net-
works are prone to catastrophic forgetting when trained using OL (I.J. Goodfellow

F. Passive learning to address nonstationarity in virtual flow . . .

183



et al., 2013; Kemker et al., 2018; Parisi et al., 2019). Catastrophic forgetting is a
situation where the model excessively overfits its parameters to new observations re-
sulting in a decreased performance on previously seen observations. This situation
occurs due to the stability-plasticity dilemma (Wickliffe and Robins, 2005). The neu-
ral network requires adequate plasticity to adapt to new patterns, but too much can
cause the network to forget previously learned patterns. The reverse is true for stabil-
ity. The stability-plasticity of the models is connected to the hyperparameters of the
learning algorithms. With time, the optimal hyperparameters can change. This is a
problem for OL in real-time applications as a hyperparameter search in each iteration
can be infeasible, dependent on the frequency of arrival of new observations. Another
potential issue for the OL is the required complex system integration. The method
will require fast processing capabilities of new observations to account for erroneous
sensor measurements, and model performance monitoring applications are a necessity
to analyze model drift and catastrophic forgetting (Ditzler et al., 2015). Furthermore,
the learning method must be automated as manual, although systematic, handling of
model updating can be impractical in real-time due to limited resources.

PBL addresses catastrophic forgetting as all available observations are used in model
updating. Yet, using this method for each new observation can be impractical in real-
time applications due to a larger training time caused by larger datasets (Kemker
et al., 2018). Therefore, a longer period (τ in (7)) between model retraining can
be required and sudden shifts in the data can be missed. On the other hand, if
the underlying process is slowly changing, a lower update frequency can be sufficient
to capture dominant changes in process conditions. Correspondingly, a manual yet
systematic handling of the learning method including measurement preprocessing,
conducting a hyperparameter search, and the actual model learning can be more
achievable in each iteration. For VFM applications, studies have indicated that the
inclusion of too old data may be redundant and not improve the model performance
significantly (T. AL-Qutami et al., 2018; B. Grimstad, Hotvedt, et al., 2021). Thus,
a windowing strategy can be applied to discard redundant data (Ditzler et al., 2015).

3 Data and models

In this research, six different VFM model types are considered. The data used to
develop the VFMs and examine the effect of the learning methods on the long-term
prediction performance are real production data from 10 wells, W1-W10, on the
Edvard Grieg asset (Lundin Energy Norway, 2020). The available data and the VFM
model types are described in the below sections.
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3.1 Available data

The available process data consists of observations from the M = 10 wells indexed
by j ∈ {1, . . . ,M}. The dataset of well j is {(xt,j , yt,j)}Njt=1, where Nj is the number
of observations, explanatory variables are xt,j = (u, p1, p2, T1, ηoil, ηgas)t,j ∈ R6, and
target variables are yt,j = Qt,j ∈ R. The ηoil and ηgas are the fractions of oil and gas
in the fluid mixture. Ideally, the fractions should be estimated using a different model,
for instance, a wellbore model as in Kittilsen, Fjalestad, and Aasheim (2014). For
simplification, the fractions are approximated using the measured phasic volumetric
flows. Measurements of the target variable, the mixture volumetric flow rate, are from
both well-tests conducted with a test separator, and from the multiphase flow meter
in each well. Commonly, well-test measurements have higher accuracy than MPFM
measurements as MPFM are prone to failure and drift over time (Falcone et al., 2013).
The data from all wells is denoted by D. Each of the datasets is generated using the

Figure 4: Visualization of the occurrence of observations for each well against time.
Some wells have older historical observations than others. Both multiphase flow meter
and well-test measurements are available.

processing technology in B. Grimstad, Gunnerud, et al. (2016). This technology
compresses the data by removing fast transients. However, slow transients can still
be present. Further, the datasets are passed through a set of filters that remove
undesired, illogical measurements, for instance, negative pressures or negative flow
rate measurements. The wells have an unequal number of observations spanning a
different time range, see Figure 4. Some wells have historical observations back to
2016 while others have their first observations in late 2018. Further, there are periods
where observations are lacking for some of the wells represented by white holes in the
data in Figure 4. Here, the well in question can have been shut down, or the sensors
failed. In total, there are 26743 observations from the 10 wells, spanning more than
five years of production history. On average, there is less than one day between each
measurement. The time between well-tests for a well is varying, with more than one
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year at the longest, and less than a day at the shortest.

3.2 Virtual flow meter models

The six different VFMmodels considered range from machine learning, or data-driven,
to physics-based, or mechanistic, models:

1. A linear regression model (LR)

2. A fully connected feed-forward neural network (NN)

3. A multi-task learning model (MTL)

4. A hybrid, gray-box error model (HEM)

5. A hybrid, gray-box area function model (HAM)

6. A mechanistic model (MM)

There are advantages and disadvantages with all model types (Solle et al., 2016;
Hotvedt, B. Grimstad, Ljungquist, et al., 2022). Mechanistic models are built from
physical laws and require little process data in development. Yet, simplifications
and assumptions are often necessary to make mechanistic models computationally
feasible in real-time applications. Hence, model bias or process-model mismatch is
typically encountered. Machine learning models are built from available data only and
require no prior knowledge about the physics of the process. The capacity of machine
learning models vary, where the NN is a typical model with high capacity and the
LR a model with low capacity. High capacity models enable adaptation to arbitrarily
complex physical relationships as long as these are reflected in the data, commonly
reducing model bias. However, due to the inherent bias-variance trade-off of high
capacity models, minimizing the bias results in higher variance (Hastie, Tibshirani,
and Friedman, 2009). Therefore, high capacity models are often influenced by poor
quality data or data located in the small data regime, a situation not uncommon
for the VFM application (B. Grimstad, Hotvedt, et al., 2021). Furthermore, higher
variance typically decreases the generalization abilities to previously unobserved data,
and such models can struggle if used in nonstationary environments where the process
experiences dataset shifts. The hybrid models attempt to utilize knowledge from both
the mechanistic and the data-driven modeling domain to preserve the advantages but
diminish the disadvantages of both methods.

The MTL models are somewhat different from the other model types. This model
type enables learning from a plurality of wells, where each well presents a learning
task. Instead of separately training a model for each well, which can be considered as
single-task learning, the models are simultaneously trained. The advantage of using
multi-task learning is two-fold. First, it allows for parameter sharing among models
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which can drastically improve data efficiency and predictive performance in the small-
data regime. This is analogous to an MM whose equations are shared among wells.
Second, compared to single-task learning, simultaneous training can lessen the effort
and computational cost of developing models when the number of wells becomes large.

In the following sections, a mathematical description of the six VFM models is intro-
duced. In addition to these, a benchmark model used to compare the performance of
the models is described.

3.2.1 Benchmark model

A simple benchmark model predicts the flow rate to be the same as the last observed
flow rate. Consider chronologically ordered observations {y1,j , . . . , yNj ,j} for well j so
that yt,j is observed after yt−1,j . The prediction from the benchmark model is

ŷt,j = yt−1,j , t = 1, .., Nj , j = 1, ...,M. (13)

Note that with this model the prediction is independent of the explanatory variables
xt,j . Further, if the petroleum production is on plateau, resulting in each new obser-
vation deviating little from the previous, the benchmark model has the potential of
high accuracy.

3.2.2 Linear regression model

The linear regression model fits a multidimensional line to the observed data. The
functional form is given by f (LR)

θ : Rd → R and is evaluated for a given x as

ŷ = wTx+ b. (14)

The model parameters consist of a weight vector w ∈ Rd and a bias b ∈ R, θ =
{(w, b)}.

3.2.3 Feed-forward neural network model

In general, the feed-forward neural network is a set of nonlinear regression lines. It
has a functional form f

(NN)
θ : Rd → R. For a neural network with L hidden layers

and one output layer, the parameters are θ = {(W (l), b(l))}L+1
l=1 , where W (l) and b(l)

are the weights and biases of layer l, respectively. The dimensions of W (l) and b(l)
determine the width of layer l.

In this work, the rectified linear unit (ReLU) activation function is used as the non-
linearity in the hidden layers (Glorot, Bordes, and Yoshua Bengio, 2011). The ReLU
function is denoted by a : Rd → Rd, a(z)i := max(0, zi), where the max operator is
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applied element-wise for i = 1, . . . , d. This makes the neural network a set of piecewise
linear regression lines. The evaluation of model f (NN)

θ (x) for a given x is

z(1) = x

z(l+1) = a(W (l)z(l) + b(l)), l = 1, . . . , L

ŷ =W (L+1)z(L+1) + b(L+1).

(15)

3.2.4 Multi-task learning model

A MTL formulation introduces a new semantics of the model parameters compared
to the NN in Section 3.2.3. Let α denote parameters that are shared among tasks
(here wells), and let βj ∈ RP be P task-specific parameters for wells j = 1, . . . ,M .
The parameters of the MTL model for M wells are collected in θ = {α,β1, . . . ,βM}.
When processing a data point xt,j of well j, the model must select the corresponding
task-specific parameters, βj . The selection can be made by introducing an encoding
of tasks. Let ej be an indicator vector of dimensionM , with all zeros, except for a one
in position j. By stacking the task-specific parameters in a matrix B with columns
B∗,j = βj , a selection can be made by performing the multiplication βj = Bej .

A simple MTL model is obtained by utilizing the selection mechanism described
above. First, βj is selected using the encoding ej . Next, xt,j and βj are fed through
a residual neural network with shared parameters α. In this work, a residual neural
network with pre-activation is used to allow for an identity mapping of the task-
specific parameters (He et al., 2016). The resulting model is a simplified version of
the MTL choke model introduced in (Sandnes, Bjarne Grimstad, and Kolbjørnsen,
2021).

The functional form of the MTL model is f (MTL)
θ : Rd × {0, 1}M → R, where the

second argument is the task encoding vector. The evaluation of f (MTL)
θ (x, ej) for a

data point x of well j, is performed as follows:

βj = Bej ,

ŷ = gα(x,βj),
(16)

where gα is a residual neural network with L residual blocks given by

z(1) =W (0,1)x+W (0,2)βj + b
(0),

r(l) =W (l,2)a(W (l,1)a(z(l)) + b(l,1)) + b(l,2), l = 1, . . . , L,

z(l+1) = r(l) + z(l), l = 1, . . . , L,

ŷ =W (L+1)z(L+1) + b(L+1).

(17)

The weights and biases in (17) are collected in α and are shared among the M wells.
These parameters can be learned from all the data in D.
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3.2.5 Mechanistic model

The mechanistic choke model is taken from Sachdeva et al. (1986). The equations
are developed from the steady-state mass and momentum balance equations for one-
dimensional flow along a streamline. In short notation, the mechanistic model is
given by f (MM)

θ : Rd → R with parameters θ = {ρoil, ρwat, κ,Mgas, pcr, CD}, and the
equation for the volumetric flow rate through the choke is given by:

ŷ = Q =
ṁ

ρSC

=
CDA2(u)

ρSC
×
√

2ρ22p1

(
κ

κ− 1
ηgas

(
1

ρgas,1
− pr
ρgas,2

)
+

(
ηoil
ρoil

+
ηwat

ρwat

)
(1− pr)

)
,

(18)
Details regarding the model are found in Hotvedt, B. Grimstad, Ljungquist, et al.
(2022).

3.2.6 Hybrid error model

This model uses the mechanistic model in Section 3.2.5 as a baseline but inserts
a neural network as introduced in Section 3.2.3 to capture the error between the
mechanistic model output and measurements, or the process-model mismatch. The
functional form of the model is given by f

(HEM)
θ : Rd → R with parameters θ =

{θMM,θNN}, where the physical model parameters are the same as given in Section
3.2.5: θMM = {ρoil, ρwat, κ,Mgas, pcr, CD}, and the neural network parameters are
the weights and biases on each layer of the network as described in Section 3.2.3:
θNN = {(W (l), b(l))}L+1

l=1 . The evaluation of HEM for a data point x is described by

ŷ = f
(HEM)
θ (x) = f

(MM)
θMM

(x) + f
(NN)
θNN

(x) (19)

3.2.7 Hybrid area function model

This model also uses the mechanistic model in Section 3.2.5 as a baseline. However,
the mechanistic relation for the area function A2(u)

(MM) is manipulated by multi-
plying with a neural network. This may be interpreted as replacing the discharge
coefficient CD from the MM with a neural network. Accordingly, f (HAM)

θ : Rd → R
with parameters θ = {θMM,θNN}, where θMM = {ρoil, ρwat, κ,Mgas, pcr} and θNN =

{(W (l), b(l))}L+1
l=1 . The evaluation of f (HAM)

θ for data point x is as follows:

A2 = A2(u)
(MM) × f (NN)

θNN
(x)

ŷ = f
(HAM)
θ (x) = f

(MM)
θMM

(x, A2)
(20)

Note, the complete vector of explanatory variables is used as input to the area function
network and not just the choke opening u. This is due to the expectation of the

F. Passive learning to address nonstationarity in virtual flow . . .

189



effective flow area being dependent on the characteristics of the fluid flowing through
the choke, which cannot be captured with just u.

3.3 Prior parameter distribution

All the VFM models except the benchmark model need specification of the prior
parameter distributions θi ∼ N (µi, σ

2
i ). For the data-driven model parameters θNN,

He-initialization is utilized, which is recommended for neural networks with ReLU as
activation function (He et al., 2015). For the mechanistic model parameters θMM,
typical values for the mean µi is commonly known. For instance, a typical value for
the density of freshwater is 1000kg/m3. The variance may be estimated using the
known bounds of the parameter in question. Details on prior parameter specification
in gray-box models may be found in Hotvedt, B. Grimstad, Ljungquist, et al. (2022).

4 Numerical study

Online learning and periodic batch learning as described in Section 2.3, are used
to train the six models in Section 3.2, for the 10 wells, using the data described
in Section 3.1. All VFM models except the LR are implemented using the Python
framework PyTorch (Paszke et al., 2019). The LR is implemented with the Python
framework scikit-learn (Pedregosa et al., 2011) using the stochastic gradient descent
linear regressor to allow for training the model with online learning. As mentioned in
Section 2.3.2, the `2-regularization term cannot be calculated for the online learning
method. However, for the hybrid and mechanistic models, an important factor is that
the model parameters with a physical interpretation θMM stay within feasible bounds.
Therefore, `2-regularization with the initial priors is applied for these parameters.

The numerical study considers two cases. In Case 1, all available data, both MPFM
and well-test measurements are utilized in training. The initial parameter estimate is
obtained with historical data before the 1st of January 2019, while the data after this
point in time is used to test the learning methods, see Figure 4. This split of data
is referred to as the initial split. In Case 2, the models are trained using well-test
measurements only. To ensure a sufficient amount of training data, the initial split is
applied on the 1st of January 2020, see Figure 4.

Two analyses are conducted before the learning methods can be applied: 1) estimation
of the PBL update frequency and 2) a search for optimal hyperparameters in the
learning methods. These analyses are given in Section 4.1 and 4.2, respectively, and
are applied on the initial training data. From the outcome of the analyses, the models
are trained with the learning methods, and the result for the two cases is given in 4.3
and 4.4, respectively.
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4.1 Update frequency estimation for periodic batch learning

To estimate a suitable update frequency, Algorithm 1 in A with significance level
α = 0.05 is used on the initial training data from Case 1. This data is split into
two new datasets at time 01.07.2018. The six months of observations leading up
to 01.01.2019 are used as the test dataset. From Figure 4, it is seen that W3 does
not have observations in the time range suggested. Therefore, the well is excluded
from the analysis. In Figure 5, the HT 2 statistic for each observation in the test
dataset is illustrated for four of the wells. The coloring indicates whether or not
a shift is detected for the observation. W1 and W2 are the two wells of the nine
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Figure 5: The Hotelling’s T-squared statistic with α = 0.05 for each of the observation
in the test dataset. The coloring indicates if the test observation is detected as a shift
(SD: shift detection).

examined with the longest period before a shift is detected, approximately after five
months. W8 and W9 are the wells with the shortest period before a shift is detected,
approximately after two weeks. Accordingly, different wells can have different optimal
update frequencies, and it is likely to change during the lifetime of the petroleum asset.
To simplify model learning, all wells are trained using the same update frequency.
Therefore, the PBL is tested with a two weeks update frequency. The results are
compared to a PBL with an update frequency of 6 months to examine the potential
benefit of more frequent updating.
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4.2 Hyperparameter search

For the periodic batch learning approach, a hyperparameter grid search for the learn-
ing rate is conducted testing γ ∈ {10−1, 10−2, 10−3, 10−4, 10−5}. Early stopping is
applied to determine the appropriate number of iterations E. For all VFM models
except the LR, the optimizer Adam is applied. This optimizer have shown results
in previous research on VFM modeling (Hotvedt, B. Grimstad, and Imsland, 2020;
Hotvedt, B. Grimstad, and Imsland, 2021; Hotvedt, B. Grimstad, Ljungquist, et al.,
2022; B. Grimstad, Hotvedt, et al., 2021). For the LR, Adam is not an option and
the model is trained with SGD, yet, with the learning rate scheduler

γ(k) =
γ(0)

ka
(21)

where γ(0) is the initial learning rate, k is the iteration number, and a is a constant,
see (5).

For the online learning approach, the hyperparameter grid search is extended to
γ ∈ {5 × 10−1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−10}. Notice, γ = 10−10

means close to negligible updating. As online learning processes only one sample
at a time, early stopping cannot be applied. Therefore, the hyperparameter search
includes experimentation with the number of iterations E ∈ {1, 10, 20}. For all models
except the LR, the optimizers SGD and Adam are examined. For the LR, the learning
rate scheduler (21) along with a constant learning rate is investigated.

The best combination of hyperparameters is chosen as the set that minimized the
mean absolute percentage error (MAPE) across the wells for each model type. The
resulting hyperparameters for Case 1 and Case 2 can be seen in Tables B1 and B2,
respectively.

4.3 Results of Case 1

In this case, both MPFM and well-test measurements are utilized in training. The
box plot in Figure 6 shows the distribution of performances for the wells in terms of
the MAPE grouped on the model type and learning method. The reported MAPE
for one well is calculated using the predictions on all observations in the initial test
set. The models are compared to the benchmark model. Table 1 gives an overview of
the average MAPE across the wells for each model, and the last column presents the
average MAPE of the learning methods across all wells and models. For the interested
reader, Table C1 gives a detailed overview of the MAPEs for each well and model.
There are several interesting observations.

Firstly, as expected, the results clearly show that the model error decreases with
an increased update frequency. On average, all models achieve a lower prediction
error with PBL every second week compared to PBL every six months. With the
OL, the average error decreases further with all models achieving an average error
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Figure 6: The distribution of average error for each well, grouped for the models and
learning methods. The models are trained with all available measurements. Compared
to the performance of the benchmark model. The boxes show the P25, P50 (median),
and P75 percentiles. The whiskers show the P10 and P90 percentiles.

Table 1: Average mean absolute percentage error across the wells for the models
and learning methods trained on both MPFM and well-test measurements. The last
column is the average MAPE across all wells and models.

Learning method LR NN MTL HEM HAM M All

PBL 6 months 16.8 12.4 8.3 14.2 12.4 18.1 13.7
PBL 2 weeks 14.2 10.5 5.0 10.9 8.7 15.7 10.8
OL 6.2 3.2 2.9 3.4 2.1 4.2 3.7

of less than 7%. The overall best average performance across wells is achieved with
OL on the HAM. The low MAPEs indicate that with access to frequently arriving
measurements such as MPFM measurements, and allowed to learn continuously from
them, the learning problem is relatively simple and a complex model is not necessary
to achieve high VFM accuracy. This is supported by the good performance of the
Benchmark which outperforms nearly all models trained with PBL. On the other
hand, a disadvantage with the Benchmark is that it cannot be used for sensitivity
analyses or in production optimization.

Secondly, from Table C1 it is observed that there are large differences in the error
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reduction for each well when the update frequency is increased. For instance, for W9
and most models, the error is greatly reduced going from the PBL 6 months to the
OL. On the other hand, for W1 the reduction is not as prominent. This is likely
related to whether or not the data generating distribution shifts with time. In Figure
7, the Hotelling’s T-squared statistic is plotted for W1 and W9 using Algorithm 1
on the initial training and test data. Figure 7 indicates that it is unlikely that W1

0

20

H
T

W1
SD False SD True

2019-01
2019-04

2019-07
2019-10

2020-01
2020-04

2020-07
2020-10

2021-01
2021-04

Date

0

500

1000

H
T

W9

Figure 7: The Hotelling’s T-squared statistic for W1 and W9 comparing each ob-
servation from 01.01.2019 and forward with time to the training data containing the
historical data before 01.01.2019. As seen, for W1 most observations are not detected
as shifts. Whereas for W9, all observations towards to end are marked as a shift.

experiences dataset shifts. On the other hand, for W9 it can be observed that the
data likely shifts with time. Therefore, the results in Table C1 indicate that OL is
better at tracking the local optimum of the learning problem when it changes with
time.

Another figure that illustrates the benefit of updating the model more often is Figure
8, where the prediction error is visualized against time. The error is calculated as
a rolling absolute mean error with a window size of 14 days. The shaded regions
visualize the 25 and 75 percentiles of the errors across the wells. Notice that the
PBL seems to yield a cyclic high and low accuracy. The average error increases with
time up until model updating where the average error is reduced, naturally after some
delay due to the rolling window. This is best observed for the PBL 6 months, but
also to some extent for the PBL 2 weeks.
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Figure 8: The rolling absolute mean error across the wells against time for the models
and learning methods. The window size used to calculate the error is 14 days. The
shaded region illustrates the 25 and 75 percentiles of the errors across the wells. The
vertical lines illustrate where the models are updated for the PBL 6 months and PBL
2 weeks.

4.4 Results of Case 2

In this case, the models are trained on well-test measurements only, see the observa-
tions colored orange in Figure 4. Figure 9 illustrates the distribution of MAPEs for
the wells. Table 2 gives an overview of the average MAPE across the wells. Table C2
reports the MAPE for each well, model, and method. First of all, notice the signifi-
cantly different results obtained for this case compared to Case 1. In Case 1, a trend
of decreased error for increased update frequency is observed. Here, the difference in
performance is negligible for many models and for other models the error increases
going from PBL to OL. The observed results are likely related to the elapsed time be-
tween each new well-test, illustrated in Figure 10 by a stacked histogram. Notice that
many of the wells have several tests that are more than a month apart. Furthermore,
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Figure 9: The distribution of mean absolute percentage error (MAPE) for each well,
grouped for the models and learning methods. Here the models are trained using
well-test measurements only. Compared to the performance of the benchmark model.
The boxes show the P25, P50 (median), and P75 percentiles. The whiskers show the
P10 and P90 percentiles.

Table 2: The average mean absolute percentage error across the wells for the models
and learning methods trained on well-test measurements. The last column is the
average MAPE across all wells and models.

Learning method LR NN MTL HEM HAM M All

PBL 6 months 43.2 40.7 12.1 17.9 18.3 21.8 25.7
PBL 2 weeks 37.1 31.1 9.6 24.5 16.7 20.5 23.3
OL 44.3 31.4 10.5 18.7 11.6 17.7 22.4

eight of ten wells have the majority of tests occurring with a frequency lower than 14
days, see Table C3. In such situations, the frequency of model updating is equal for
PBL 2 weeks and OL, and the only difference between the two is how the updating
is executed. The low frequency of well-tests is also likely the cause of the decreased
Benchmark performance compared to Case 1. With a lower frequency, the process
conditions can have changed significantly in-between well-tests and two chronological
flow rate measurements are likely uncorrelated. The intermittent time between well-
tests also makes it challenging to obtain good hyperparameters. If well-tests occur
frequently, the model will likely require small parameter updates, and opposite for
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infrequently arriving well-tests. Non-optimal hyperparameters can explain the overall
poorer average performance for all models and methods than for Case 1.
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Figure 10: The elapsed time between new well-tests for each well present in the
dataset. Keep in mind that the bins in the histogram have different sizes, from one day
to three months of elapsed time. Observe that many of the wells have measurements
occurring more than two weeks apart.

The large MAPEs in Table 2 show that in the presence of infrequent and intermit-
tent measurements, the learning problem is not trivial and a more complex model
than, for instance, the Benchmark, is required to obtain an adequate performance.
Nevertheless, the comparable performance of the LR and NN indicate that choosing a
data-driven model with higher complexity is not the solution to increased performance
in this case. Likely, the amount of data available is too small for high-capacity data-
driven models to exploit their capacity. An observation that supports this is that the
NN obtained a significant improved performance in Case 1 where the amount of data
is higher. On the other hand, having physical considerations in the model structure
does seem to be be advantageous for VFM when the amount of data is small. From
Figure 9, the MTL, HEM, HAM, and M, all achieve a median MAPE below 20%
whereas the NN and LR are well above 20%. Another interesting observation is that
learning from several wells as for the MTL seems to yield a more robust approach as
the spread in performances is low.
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5 Concluding remarks

The results in this research show that a high update frequency of steady-state VFM
models is key to sustaining a high performance in nonstationary conditions over time.
In particular, if the frequency of measurement arrival is high. Therefore, for petroleum
assets with access to multiphase flow meters, steady-state VFMs can yield an excellent
performance. Of the two passive learning methods analyzed, online learning achieves
the best average performance with an error of 3.7% across all wells and model types.
This is an error reduction of 73% compared to the average error of periodic batch
learning with an update frequency of 6 months. On the other hand, if the arrival of
new measurements is intermittent and with low frequency, which is a common issue on
assets with well-testing only, the benefit of frequent model updating is small and less
evident. This is likely due to the challenging task of finding good hyperparameters.
The average error increased significantly with online learning achieving an average
error of 22.4% across all wells and model types. However, an interesting observation is
that VFMmodel types with physical considerations seem to offer the best performance
in the presence of little data.

Hence, the results show that online learning seems a promising method to obtain
high accuracy steady-state VFM models, in particular, with frequently arriving mea-
surements. However, the method will also require fast measurement processing ca-
pabilities, model performance monitoring applications, and automatic handling of
the learning process. Therefore, online learning can be challenging to integrate into
existing systems. Likely, an appropriate learning method must be chosen as a trade-
off between accuracy and available resources. With limited resources, periodic batch
learning with frequent model updating, for instance, every second week, can be better
suited in real-time applications.

Although the learning methods in this research are investigated for 10 typical subsea
wells on the Norwegian continental shelf, these are certainly not representative for all
production wells as the multiphase flow characteristics can be very different. There-
fore, it is hard to generalize the results and it would benefit the conclusion if more
wells from different assets are included. Nevertheless, the overall conclusion of this re-
search is that passive learning with frequent model updating can significantly improve
the accuracy of steady-state VFMs in nonstationary environments. The investigation
can be of interests to experts developing soft-sensors, like VFMs.
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A Estimation of the update frequency in periodic
batch learning

Consider the null hypothesis H0 to state that there is no virtual drift present in the
data such that input distribution p(x) does not shift with time. This H0 is also called
the stationary hypothesis. The H1 hypothesis is the alternative hypothesis that there
is a shift in the data. Mathematically:

H0 : pt(x) = pt+τ (x) for all τ > 0

H1 : pt(x) 6= pt+τ (x) for any τ > 0.
(22)

Consider two disjoint datasets D1 and D2 with size N1 and N2 and inputs observations
X1 ∈ Rd×N1 and X2 ∈ Rd×N2 , respectively. The Hotelling’s T-squared statistic
calculates the probability of equal means of the two multivariate input distributions
at a significance level α. The statistic is calculated as

HT 2 = (µ1 − µ2)

(
Σ1

N1
+

Σ2

N2

)−1
(µ1 − µ2)

>, (23)

where µ ∈ Rd is the sample mean vector and the Σ ∈ Rd×d is the sample covariance
matrix of the input. The Hotelling’s T-squared statistic follows the F-distribution
F (d,N1 +N2 − d− 1) (Härdle and Simar, 2012). To estimate an appropriate update
frequency in PBL, the two-sample Hotelling’s T-squared test can be used on available
training data using Algorithm 1

Algorithm 1 Estimation of the update frequency τ in periodic batch learning
Require: data D1:T = {(xt, yt)}Tt=1, significance level α
1: Set D1 = D1:T1 where 1 < T1 < T .
2: for k = 1, ..., T − T1 do
3: D2,k = DT1+k

4: Calculate HT 2 using (23) with D1 and D2,k

5: Calculate F-statistic Fk for HT 2

6: Calculate the critical value Fcrit at significance level α
7: if Fk < Fcrit then
8: Reject H0, shift detected
9: return τ = T1 + k

10: end if
11: end for

The algorithm is subject to false shift detections, or type II error, for instance, if
the observation is faulty or noisy. A workaround is to test additional observations
following with time. If shifts are detected on several subsequent observations, virtual
drift has likely occurred. If the following observations are not detected as shifts, likely,
the detection is falsely reported.
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B Hyperparameter search

Table B1: The training algorithm settings as a result of the hyperparameter search
for training on both MPFM and well-test measurements. For the batch learning
approaches, only the value of the learning rate γ is experimented with. The number
of iterations E for PBL is found with early stopping (E.S.). The (s.) and (c.) for
the LR refers to using the learning rate scheduler in (21) and constant learning rate,
respectively.

Model PBL 6 months PBL 2 weeks OL
γ E O γ E O γ E O

LR (s.) 10−2 E.S. SGD (s.)
10−1

E.S. SGD (c.) 0.5 20 SGD

NN 10−4 E.S. Adam 10−3 E.S. Adam 10−5 20 Adam
MTL 10−4 E.S. Adam 10−3 E.S. Adam 10−6 20 Adam
HEM 10−3 E.S. Adam 10−3 E.S. Adam 10−2 20 SGD
HAM 10−3 E.S. Adam 10−3 E.S. Adam 10−5 20 SGD
M 10−3 E.S. Adam 10−3 E.S. Adam 10−2 10 Adam

Table B2: The training algorithm settings as a result of the hyperparameter search
for training on only well-test measurements. For the batch learning approaches, only
the learning rate γ is experimented with. The number of iterations E for PBL is
found with early stopping (E.S.). The (s.) and (c.) for the LR refers to using the
learning rate scheduler in (21) or constant learning rate, respectively.

Model PBL 6 months PBL 2 weeks OL
γ E O γ E O γ E O

LR (s.) 10−4 E.S. SGD (s.) 0.5 E.S. SGD (s.)
10−3

1 SGD

NN 10−4 E.S. Adam 10−3 E.S. Adam 10−4 20 SGD
MTL 10−5 E.S. Adam 10−5 E.S. Adam 10−5 20 Adam
HEM 10−3 E.S. Adam 10−4 E.S. Adam 10−10 20 SGD
HAM 10−5 E.S. Adam 10−5 E.S. Adam 10−5 20 Adam
M 10−3 E.S. Adam 10−3 E.S. Adam 10−2 10 Adam
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C Additional results from the numerical study

Table C1: Mean absolute percentage errors for all wells and models. The triple of
numbers reported is the error for periodic batch learning every 6 months, periodic
batch learning every 2 weeks, and online learning, respectively.

Well LR NN MTL HEM HAM M

1 9.4, 9.3, 12.5 4.4 4.9, 1.6 3.1, 2.1, 1.7 4.6, 3.6, 2.0 4.4, 3.2, 1.3 4.3, 4.4, 1.7
2 26.0, 21.1, 5.4 16.4, 18.5, 5.8 10.5, 8.7, 5.3 19.4, 20.7, 8.9 18.8, 17.6, 4.5 35.8, 41.2, 10.3
3 12.6, 9.8, 4.0 10.0, 11.7, 7.0 9.8, 4.9, 3.9 10.9, 8.8, 5.0 14.7, 10.2, 2.7 30.1, 11.7, 5.9
4 12.8, 12.0, 8.1 10.4, 9.8, 1.8 7.2, 5.0, 1.8 10.5, 9.2, 2.4 8.1, 7.3, 1.3 5.7, 5.5, 2.3
5 18.6, 16.0, 6.7 8.9, 8.5, 3.2 7.5, 3.3, 2.1 12.6, 9.2, 1.6 10.6, 7.6, 1.4 13.5, 11.5, 1.6
6 17.8, 14.8, 5.3 13.7, 11.1, 2.4 8.6, 5.4, 3.6 19.0, 16.0, 2.3 17.1, 10.3, 1.7 27.4, 23.5, 4.1
7 26.4, 23.8, 5.7 20.5, 12.4, 4.4 11.7, 5.1, 3.1 23.3, 11.9, 2.9 17.3, 9.1, 3.3 20.4, 16.5, 4.3
8 14.7, 12.6, 4.1 11.2, 10.8, 1.9 6.8, 5.5, 2.5 9.6, 7.9, 2.7 7.9, 6.7, 1.7 11.2, 12.8, 5.0
9 10.6, 9.2, 5.3 8.5, 7.7, 2.2 8.3, 5.3, 2.1 10.3, 8.1, 1.7 8.9, 7.4, 1.9 9.7, 12.0, 2.6
10 18.8, 13.7, 4.5 19.9, 9.4, 2.2 9.2, 4.5, 2.7 21.7, 14.1, 3.6 16.4, 7.3, 1.9 23.0, 17.8, 4.5

Table C2: Mean absolute percentage errors for all wells and models trained on only
test separator measurements. The triple of numbers reported is the error for periodic
batch learning every 6 months, periodic batch learning every 2 weeks, and online
learning, respectively.

Well LR NN MTL HEM HAM M

1 26.5, 19.9, 28.9 10.6, 9.3, 10.8 1.9, 2.3, 3.2 4.2, 5.2, 7.9 4.6, 4.0, 1.7 4.3, 6.5, 1.9
2 91.2, 78.8, 64.5 62.0, 66.0, 30.3 27.2, 16.0, 17.7 58.7, 85.6, 49.4 57.7, 49.2, 37.7 78.7, 75.7, 47.7
3 22.2, 20.0, 46.9 79.1, 25.4, 63.6 11.1, 10.7, 14.7 21.6, 46.8, 17.6 14.1, 14.7, 16.5 28.9, 23.8, 51.1
4 32.9, 24.4, 34.8 16.6, 14.7, 18.5 11.0, 10.1, 8.4 12.8, 10.6, 5.3 10.8, 9.9, 7.0 9.9, 10.5, 5.8
5 28.3, 25.4, 26.9 15.1, 9.2, 11.7 4.7, 3.8, 5.3 4.5, 4.9, 3.9 7.2, 10.2, 4.3 7.9, 5.2, 4.9
6 82.0, 60.7, 48.1 72.7, 47.0, 43.7 14.6, 13.8, 11.4 8.6, 11.8, 13.3 11.6, 13.9, 5.4 14.5, 13.1, 8.8
7 43.5, 50.8, 79.5 68.9, 50.4, 51.5 9.3, 6.4, 11.2 11.7, 18.2, 13.7 19.1, 16.0, 18.2 10.8, 14.2, 11.6
8 16.9, 19.0, 30.6 15.8, 21.3, 20.8 6.3, 5.4, 8.3 6.4, 12.2, 10.4 4.7, 5.1, 6.2 12.8, 9.5, 11.1
9 27.7, 22.9, 36.7 27.1, 27.0, 25.7 8.1, 7.2, 8.5 12.3, 9.0, 4.9 17.6, 14.0, 3.3 12.5, 9.9, 4.0
10 60.7, 49.8, 46.1 38.9, 40.5, 37.8 26.3, 20.6, 16.4 38.1, 40.7, 60.7 35.7, 30.3, 15.6 37.8, 36.4, 30.1

Table C3: The percentage of well-tests for a well where the number of days between
two chronological tests resides in the given bins. d=day, w=week, m=month, y=year.

Well < 2w 2w-1m 1m-2m 2m-3m 3m-6m 6m-9m 9m-1y

1 60.9% 10.1% 18.8% 1.5% 7.2% 1.5% 0%
2 46.2% 17.9% 28.2% 0% 5.1% 0% 2.6%
3 36.4% 22.7% 22.7% 13.6% 4.5% 0% 0%
4 64.8% 12.1% 14.3% 5.5% 2.2% 0% 1.1%
5 48.3% 23.3% 16.7% 6.7% 5.0% 0% 0%
6 52.1% 21.9% 19.2% 4.1% 1.4% 1.4% 0%
7 41.7% 25.0% 8.3% 8.3% 8.3% 8.3% 0%
8 45.7% 22.9% 20.0% 2.9% 5.7% 0% 2.9%
9 44.8% 20.7% 27.6% 3.4% 3.4% 0% 0%
10 40.5% 16.2% 32.4% 5.4% 0% 5.4% 0%
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