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Abstract
When conducting case studies of carbon capture plants, the current solutions that
exist are both tedious and time consuming. In order to speed up this process, a
neural network model can be trained on data produced by a conventional simu-
lation tool, and then in turn perform the case study. The neural network model
was created using CO2Sim and keras/tensorflow and had a mean average percent-
age error of 3.8103%, and returned both plant specifications and economic data
that are within the bounds of what one would expect when compared to existing
literature.
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Sammendrag
Dagens metoder for å gjøre en parameterstudie av et karbonfangstanlegg er ofte
en treg prosess som krever mye innsats og manuell input. For å gjøre denne pros-
essen mindre arbeidskrevende ble et neuralt nettverk konstruert i keras/tensorflow
og trent på data produsert av CO2Sim. Modellen hadde en MAPE på 3.8103%, og
både responsvariablene og den økonomiske analysen gav verdier som var innen-
for det man skulle forvente når man sammenlignet med verdier fra eksisterende
forskning.
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1 Introduction
According to NASA, 2015 and 2020 [1] are tied for the warmest years on record,
with the last seven years being the seven warmest years ever recorded. If dras-
tic measures are not taken, the 1.5 degree goal outlined in the Paris Agreement
seems more and more like optimistic fiction. The capture of CO2 via aqueous
amines currently respresents one of the more mature ways to remove carbon from
circulation.

When conducting case studies of different carbon capture plants, the current way
of doing it involves using simulation programmes like OGT’s Protreat or Aspen
Plus. Often these programmes only allow you to study the effect of changing
a single parametre, making a comprehensive case study a time consuming and
tedious process. In order to streamline this process, a surrogate model of a carbon
capture plant was created using a neural network. This surrogate model takes a
.csv file with the inputs and returns another .csv file with the responses, greatly
reducing the time it would normally take to conduct a similar case study in a
traditional process simulation tool. The neural network model should also be
used to perform a cost analysis on the resulting carbon capture plant, in order to
better understand how the different factors affect the final capital and operating
expenditure.
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2 Theory

2.1 CO2 absorption
While direct-from-air carbon capture has been talked about and even trialled [2],
the most efficient way of controlling the amount of CO2 in the atmosphere is by
not emitting it at all. Naturally this is not always possible, and removing CO2
from flue gas can allow us to cut the carbon emissions drastically in a feasible
way. First of all, the flue gas usually has a higher partial pressure of CO2, which
makes the capture process more efficient [3]. And secondly, the post combustion
capture process allows us to concentrate the economic investment where it will
make the biggest impact, i.e. at the point of emission.

CO2 is absorbed in the aptly named absorber column, usually by aqueous amines.
The advantage of aqueous amines, is that the process can be easily reversed, most
often by either shifting the temperature, or the pressure. What this means in prac-
tice is that the CO2 absorption itself releases energy, whilst the CO2 desorption
requires energy. The regenerated solution is then returned to the absorption col-
umn where the process is repeated. There is however an energy penalty related to
regenerating the aqueous solution, usually somewhere in the ballpark of 30% of
the energy originally produced by the power plant [4]. Of course this figure can be
reduced by rigorous experimentation and improvement through innovation. An-
other great advantage that the amine scrubbing method has is that it can more
readily be retrofitted to an already existing plant [5].

In figure 1 a simplified flow diagramme of the absorption process can be seen. At
first, the CO2-rich flue gas is fed into the bottom of the absorber column. Here
it meets the lean amine absorbent, usually sprayed from the top of the column
through a packing to maximize the surface interface area. In the stripper column,
the rich amine solution is sprayed from the top of the column, where it meets
heated steam from the reboiler, this then reverses the reaction and releases the
CO2. Which is subsequently removed from the top of the column. The condenser
makes sure that the aqueous amine solution is returned to the column. In the bot-
tom of the stripping column, the reboiler adds the heat necessary for the reversion
reaction to occur. The lean aqueous amine solution is also removed from the bot-
tom of the column, and a heat exchanger is used to minimize the heat wastage
by heating the rich amine solution coming from the absorber column. The lean
amine is then pumped back into the absorption column.
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Figure 1: A process flow diagramme of an CO2 absorption model

There are two main mechanisms [6] for aqueous absorption of CO2, physical and
chemical. Physical absorption is when the CO2 is dissolved whithin the solvent
itself, and chemical absorption is when chemical agents are added to the solvent
that react with the absorbed CO2 and thus removing it from circulation and further
facilitating physical absorption of CO2. For the purposes of this work, the system
uses a combination of both physical and chemical absorption.

2.1.1 Monoethylene amine

MEA or monoethylene amine is an organic compound with the chemical formula
of HOCH2CH2NH2. Normally, it is mixed with water to form aqueous MEA.
Aqueous MEA is today the most common way of scrubbing CO2 from flue gas [3].
Bihong et al. 2015 [7] concludes that the zwitterion mechanism is the most prob-
able path of CO2 absorption into aqueous MEA. The Zwitterion mechanism first
reacts amines and cO2 to form zwitterions, then the intermediary reacts with a
base to form carbamate. The reactions are given in equation 1 and 2.

CO2 +RNH2 <=> RNH+
2 COO− (1)

13
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RNH+
2 COO−+RNH2 <=> RNHCOO−+RNH+

3 (2)

The aqeuous MEA is capable of absorbing a large amount of CO2 before becom-
ing saturated. The most common way of quantifying the amount of CO2 in the
aqueous amine is through the loading α .

α =
mole of CO2 carrying species
mole of NH2 carrying species

(3)

2.2 Design of process equipment
2.2.1 Absorption columns

Columns are used for a multitude of different purposes, among them are distilla-
tion, liquid-liquid extraction and gas absorption. Of these only absorption is of
any relevance to the capture of CO2. In this thesis, only packed columns will be
considered.

In an absorption column, the gas and liquid travel counter-flow through the col-
umn. The flue gas enters sideways at the lower end of the column, and travels
upward towards the top of the column. The amine wash enters the column from
the top-side of the column and travels downwards through the packing. The pack-
ing serves mainly three purposes [8]:

• Provide a large interfacial area between the gas and liquid

• Ensure low resistance to fluid flow

• Promote uniform fluid distribution across both the packing surface and col-
umn cross-section

This then allows the mass exchange between the gas and the liquid to reach it’s
fullest potential. Structured packings are the most common packing for gas ab-
sorption [9], they consist of bundles of corrugated metal, plastic or ceramic sheets
that may or may not be perforated.

When designing absorption columns, there are a few main considerations; the
type of the packing and the height and width of the column. The dimensions of

14
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the column, or rather the dimensions of the packed part of the column, is the main
deciding factor for how much mass transfer can take place..

When modelling gas absorption in a column, certain assumptions are often made
to simplify the process. One of the more common simplifications is to assume that
the gas flow rate through the column does not change as the solute is absorbed by
the liquid phase. This assumption holds true if the concentration of the solute in
the gas phase is low enough, say 10% [8]. When this is true, one can combine the
equations 4 and 5 in order to find the necessary height of the packing.

Z =
Gm

KGaCt

∫ y1

y2

dy
y− ye

(4)

Z =
Lm

KLaCt

∫ x1

x2

dx
xe− x

(5)

• Z = the required height of the packing

• Gm = molar gas flow rate per unit cross-sectional area

• Lm = molar liquid flow rate per unit cross-sectional area

• a = interfacial area per unit volume

• P = pressure

• Ct = total molar concentration

• y1 & y2 = the gaseous molar fractions of the solute in the bottom and top of
the column

• x1 & x2 = the liquid molar fractions of the solute in the bottom and top of
the column

• ye = equilibrium concentration of the solute on the gas phase

• xe = equilibrium concentration of the solute on the liquid phase

If the assumption of similar gas flow throughout the column does not hold because
of a too large concentration of solute, the column must be broken up into sections
that individually have approximately the same gas flow rate. Desorption is the
same process as absorption only in reverse, and the same design methods apply.
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2.2.2 Heat exchangers

The general equation for heat transfer across a surface [8] is:

Q =UA∆Tm (6)

Q being the heat transfer rate, U the overall heat transfer coefficient and Tm being
the temperature difference, the driving force. The primary objective when design-
ing heat exchangers is to determine the area needed to facilitate the necessary heat
transfer. For heat exchange across a typical heat exchanger can be expressed as:

1
UO

=
1

hO
+

1
hod

+
doln(do

di
)

2kw
+

do

di
· 1

hid
+

do

di
· 1

hi
(7)

The variables are:

• U = the overall heat transfer coefficient [Wm−2K−1]

• ho = outside fluid film coefficient

• hi = inside fluid film coefficient

• hod = outside dirt/fouling coefficient

• hid = inside dirt/ fouling coefficient

• kw = thermal conductivity of the tube wall material

• di = tube inside diameter

• do = tube outside diameter

There are however ways top determine the overall heat transfer coefficient empir-
ically, so that one does not need to individually model the fouling. Values can
either be found through experiments, or taken from already existing literature.

The most common and most inexpensive type of heat exchanger is the shell and
tube exchanger. It consists, as the name implies, of a shell, and a tube. In essence
it is a bundle of tubes enclosed by a shell, with both shell and tube each being
connected to an inlet and an outlet. The advantages are numerous and include [8]:
well established construction techniques, easy maintenance and high surface area
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to volume ratio.

When sizing and estimating cost of heat exchangers, the area needed to facilitate
the heat transfer is the single most important factor. When finding the driving
force (temperature) for a common counter-current heat exchanger, the logarithmic
mean temperature [8] is used as a stand in. The equation given in equation 9 relates
the heat Q to the other factors used to design the heat exchangers.

Tm =
(T1− t2)− (T2− t1)

ln(T1−t2
T2−t1

)
(8)

Q =UATlm (9)

Reboilers are simply heat exchangers that use a hot medium to warm another
fluid. Therefore the design considerations are quite the same as when designing
ordinary shell & tube heat exchangers. The only difference is that the hot flow is
usually steam, and the inlet and outlet temperatures are usually known.

When designing and sizing condensers, the most common way of doing so is as
a common shell & tube heat exchanger [8]. One notable difference is that a wider
baffle spacing is used to accomodate the condensed liquid, with typically lB =
Ds. [8] Because of the heat transfer coefficient of the condensate would generally
be lower than that of the material of the tubes, a correction factor hc is generally
used. When the condensing flow is inside the tubes of the heat exchanger

(Hc)s = 0.76KL · [
ρL(ρL−ρV )g

µLΓh
] (10)

In equation 10, KL is the condensate thermal conductivity, rhoL and ρV are the
densities of the liquid and vapour flow, µL is the condensate viscosity, g is the
gravitational acceleration constant and Γh is the tube loading, or the condensate
flow per unit length of tube. As might be expected, when creating a surrogate
model based on another model, the information necessary to calculate the exact
correction factor may not necessarily be availible. And for this purpose Sinnot &
Towler [8] gives us the approximate value of 0.8 that may be used in a pinch.
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2.2.3 Compressors

When designing and sizing compressors, the most important feature is the power
required for the compression work. Also, every pump or compressor has a effi-
ciency rating that relates the power input to the actual compression work done by
the compressor. When in doubt, Sinnot & Towler [8] tells us to use an effiiency
rating of 0.7. The equation 11 taken from Geankoplis [10] relates the flow rate (Q),
fluid density (ρ), the pressure head (H) and efficiency (η) to the power required
(P).

P =
ṁρgH

3.6 ·103η
(11)

The most common type of compressor is the single stage, centrifugal pump [8].
Other pump types are used of there are special considerations, like a high pressure
head, or small flow rates of additives.

2.3 Cost estimation
Chemical plants mostly exist to turn a profit, or in the case of carbon capture, to
be as economical as possible. In order to ensure this, a reliable cost estimate is
necessary. Estimating the cost of complex process equipment is an art to itself, and
there are multiple resources and engineers who have dedicated their professional
lives to the betterment of this discipline. For the purposes of this thesis, cost
functions from Sinnot & Towler [8] were used to estimate the purchasing cost of
the equipment. The cost curves are given in table 1 and are on a US Gulf Coast
basis in January 2010 US dollars. With the exception of the pressure vessels
and the structured packing all the equipment is given as the cost of purchasing in
carbon steel.

Ce = a+b ·Sn (12)

The cost estimates given above in table 1 are only for the equipment itself. There-
fore there are multiple factors that need to be accounted for to ensure a correct
price estimate. In order to ascertain that the estimates are consistent the same
source is used for all steps of the cost estimation, with the notable exception of
inflation and currency conversion data. This is because there are newer and more
up to date sources available, for instance from the Bureau of Labor Statistics and
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Items Sizing Unit a b n
Centrifugal Compressor kW 580000 20000 0.6

Pressure Vessel 304SS Vertical kg 17400 79 0.85
Pressure Vessel 304SS Horizontal kg 12800 73 0.85

Mellapak 250y 304SS m3 0 7600 1
Heat Exchangers Shell&Tube m2 28000 54 1.2

Reboiler m2 29000 400 0.9

Table 1: The cost curves of the relevant process equipment

the SSB.

The purchase cost of individual pieces of equipment are only a small part of the
total cost of the plant. In addition to the equipment itself, several other factors
also play a role in determining the total cost.

• Equipment erection.

• Piping, including isolation and painting.

• Electrical, power and lighting.

• Instruments and process control systems.

• Provisions for utilities like steam and cooling water.

• Site preparation.

In addition to these costs, one must also consider the rising cost of everything, the
price of the equipment in stainless steel instead of carbon steel and the added cost
of building the plant in another part of the world that is not the US Gulf coast.

To account for inflation, Sinnot & Towler gives us the following expression to
calculate the added cost.

Cost in year B = Cost in year A · Cost index year A
Cost index year B

(13)

In order for the final prices to be correct, the equipment purchasing cost must
take into account the material. The cost curves from Sinnot & Towler gives the
price in carbon steel. This is done because carbon steel is generally the least
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Material Cost Factor
304 stainless steel 1.3
316 stainless steel 1.3
321 stainless steel 1.5

cast steel 1.1

Table 2: The material costs of certain alloys compared to carbon steel

Major equipment, total purchase cost Factor
Equipment erection, fer 0.3

Piping, fp 0.8
Instrumentation & control, fi 0.3

Electrical, fel 0.2
Civil, fc 0.3

Structures & buildings fs 0.2
Lagging & paint fl 0.1

Table 3: The installation factors

expensive option, but one must also take into account that carbon steel is often not
the optimal choice of material. And stainless steel is often better because of it’s
inert nature. The cost factors relative to carbon steel are given in table 2.

The typical installation factors for a fluid-fluid processing plants are given in table
3 and are from Sinnot & Towler [8].

When estimating the cost, the most common error is overestimating the cost of
installation by applying the above factors to the cost of the purchased equipment
in stainless steel. They should be multiplied by the purchasing cost in carbon
steel, and to account for this, one should use the expression in equation 14. M
is the number of equipment pieces, Ce,i,A is the purchase cost of equipment i in

Additional costs Factor
Offsite 0.3

Design & engineering 0.3
Contingency 0.1

Table 4: The cost factor for building out the plant site
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carbon steel and the rest are the cost factors given in table 3.

C = Σ
i=M
i=1 Ce,i,A[(1+ fp) fm +( fer + fel + fi + fc + fs + fl)] (14)

C = Σ
i=M
i=1 Ce,i,A[(1+ fp)+( fer + fel + fi + fc + fs + fl)/ fm] (15)

If the purchased equipment already is priced in the correct alloy (not carbon steel),
then equation 15 should be used instead.

2.4 Statistical modelling
Statistical modelling is the use of mathematical and statistical methods and models
in order to classify or predict results. For this work, a neural network model will
be used.

2.5 Neural Networks
Neural networks are often surrounded in a mystic aura, however they are nothing
more than non-linear statistical models. They can be used for both regression and
classification, making them extremely versatile. Which no doubt has contributed
greatly to their current popularity. They derive their name from the fact that they
are connected in a similar manner to neuron cells in a human brain [11].

In figure 2 a simplified model of a neural network can be seen. It has a single
hidden layer, consisting of three neurons. It also has three inputs and a single
response. The blue circles marked ”1” are the bias nodes. A single neuron works
by taking in an input, multiplying it by a neuron weight, applying an activation
function to this and then adds a bias term (the nodes marked ”1” in figure 2). The
total sum of this is then passed to the next layer in the network. The role of the
bias is equivalent to that of the intercept in a linear expression, and must not be
confused with the model bias that is discussed in section 2.5.2. It also ensures that
all of the neurons have something to pass on to the next layer and thus avoiding
so called ”dead neurons”.

The process done by a single perceptron is given in equation 16.
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Figure 2: A simple neural network with three inputs, one response and a single
hidden layer with three perceptrons.

Out put = Activation Function(Σ(Weights · inputs)+bias) (16)

The neural network is a so called black box model, and as such there is no way to
deduce the physical meaning of the weights [12]. This means that while a neural
network may approximate a model very accurately, one must always be careful to
ensure that the model returns good data

2.5.1 Activation functions

As mentioned in the segment above, activation functions are an integral part of
neural networks. Activation functions are usually expressed as σ . If one wanted
to model linear trends, the function f (x) = ax+ b could be used as the neuron
activation. This would turn the model into a linear regression model, this is of
course not mathematically interesting, but it does serve as an example of how
activation functions work. For real-world scenarios, the norm is to use non-linear
functions, with the sigmoid function, given in equation 17, rectified linear unit
or ReLU, given in equation 18 and the hyperbolic tangent, given in equation 19
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Figure 3: A plot of the rectified linear unit

being amongst the most common ones [13].

σ(x) =
1

1+ e−x (17)

σ(x) =
{

0 for x < 0
x for x≥ 0 (18)

σ(x) =
e2x−1
e2x +1

(19)

In figure 3 a plot of the ReLU activation function can be seen. From prior expe-
rience the ReLU function is almost always the correct answer when it comes to
regression. It’s great versatility comes from the fact that it does not activate all
the functions at once, allowing a ReLU based model to approximate non-linear
trends. And from the fact that it is so simple, keeping the model from becoming
too complex and ensuring a fast training period.

2.5.2 Bias-variance trade-off

Overfitting is a common problem in statistical modelling. When a model has been
overfitted, it will most likely result in the model performing very well on the data
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Figure 4: An illustration of overfitting. Picture by Ignacio Icke, distributed under
a CC BY-SA 4.0 license.

it has been trained on, but performing deficiently when presented with new data.
Therefore, one must deliberately make it so that the model performs poorer on the
training data in order for it not to also learn the noise present in every dataset. In
figure 4, the green model has been overfitted to the training data. The black model,
while undoubtedly performing poorer on the training data has better understood
where the true boundary between the blue and red dots is. And would presumably
perform better on new data. Overfitting was a constant problem plagueing neural
networks back in their infancy, and one of the early ways of combatting it was
stopping the training process early [11], and simply praying that this was enough.
Luckily, newer and more sophisticated methods have been developed since.

The two most common ways of avoiding overfitting today are through regulariza-
tion and dropout. Dropout is essentially randomly choosing a set percentage of
the neurons in a layer, and then setting their output to zero and thus stopping the
weight and bias from being updated. The other way is through regularization, this
method works by adding a penalty term to the cost function of the neuron output.
This is expressed in equation 20, where R(θ) is the original cost function, and
λJ(θ) is the penalty term. λ is a tuning parameter and J(θ) is the expression
from equation 22 or 21.
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R(θ)+λJ(θ) (20)

J(θ) = Σi|W |i (21)

J(θ) = ΣiW 2
i (22)

The two most common ways to regularize are L1 and L2 regularization. They are
quite similar, with the difference being that L1 adds a single W-term to the error
function as shown in equation 21, and L2 adds a W 2-term as shown in equation 22.
They differ in that L1 will estimate around the median of the data, while L2 will
estimate around the mean of the data [13]. And this can greatly affect the accuracy
of the final model, depending on how the data is distributed.

2.5.3 Training neural networks

The most common, and often the best method of training a neural network is
by simple backpropagation. Backpropagation, which is shorthand for backwards
error propagation works by matching known response variables to the input vari-
ables, and then computing the sum of an error function. The weights and biases
are then updated along the gradient of this error function, and then the process is
repeated until the desired accuracy is reached. The cost function is often the mean
square error (MSE), given in equation 23, or the mean absolute percentage error
(MAPE), as given in equation 24. The advantage that the MAPE may have over
the MSE is that it allows the model error to be trained evenly across all parame-
tres, and not potentially minimizing the error of one variable to the detriment of
others.

MSE =
1
N

Σ
K
i=1(yi− ŷi)

2 (23)

MAPE =
1
N

Σ
K
i=1
|(yi− ŷi)|

yi
(24)

In order to find the gradient of the loss function, an optimization algorithm must
be chosen. The most natural choice is the gradient descent. Gradient descent finds
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the gradient by following the gradient of the cost function down the steepest slope,
and in this way finding the minimum of the cost function. In order to limit the rate
of change of the weights, one can implement a constraint called the learning rate.
A too high learning rate will make the weights fluctuate and produce an unstable
model. While a too low learning rate will maybe get stuck in a local minimum.
Gradient descent [11] can be expressed as done in equation 25.

In order to update the weights and biases of the model correctly, one must find
the gradient of the error function. The gradient can of course be found by using
the Nabla-operator, as shown in equation 25. Here, b represents the next position,
a represents the current position, γ is the learning rate, whilst the ∇ f (a) is the
direction of descent.

b = a− γ∇ f (a) (25)

The normal way of choosing an optimization algorithm is to read the latest peer
reviewed works, and use the same as them. Cross-referencing different methods
to ensure that the algorithm is actually the best performing. For this thesis, the
adaptive momentum optimizer [14], or ADAM will be used. ADAM is a very new
algorithm, being first introduced in 2015 by Kingma & Ba [14]. This algorithm
builds upon the gradient descent given in equation 25, but also incorporates adap-
tive learning rate and momentum. Adaptive learning rate works by adjusting the
learning rate proportionally to the steepness of the gradient, and momentum adds
a temporal element that hastens the convergence along the steepest gradient de-
scent. A good analogy is that of a bowling ball rolling downwards guided by
gravity. More information about ADAM kan be found in Kingma & Ba 2015 [14].
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3 Simulation of CO2 capture plant
CO2Sim is a rigorous rate-based model developed and validated against data ob-
tained from the Tiller carbon capture pilot project [15]. The data used to train the
model was created in CO2Sim and the data exported as excel .xls files. The model
is fairly standard when considering CO2 absorption plants. With one reboiler, one
stripper and a heat exchanger to maximise the heat recovery. This allows the
model to simulate a wide variety of different plants, but it also restricts the appli-
cability of the model to this single set-up. The data was then imported into python
and a neural network was constructed using the tensorflow library. Cost analysis
was also performed in python.

The input and response variables are given in tables 5 and 6. When choosing both
input and response variables, great care must be taken so that the model returns
actually useful information. For instance, the input data should be information
that is generally known beforehand, like data pertaining to the flue gas and the
desired capture rate. And the response data should then as far as possible describe
the system given the input conditions. The more response variables you want the
model to return, the more data you have to use for training it. If not, the model
may not fully understand all the trends and return less accurate data.

Input variables
Column height [m]

Capture rate [%]
Mole fraction CO2

V/L ratio

Table 5: The input variables of the model

3.1 Assumptions and background for model
In order to simplify the model and make it actually possible to create the training
and validation data within a reasonable time frame, the flue gas flow was assumed
constant at 253 kmolh−1. The reason for this specific choice was mostly arbitrary,
with 253 kmolh−1 being the required gas flow rate for the absorber column flow
speed to reach 2 m/s halfway through the column, with a column diameter of 1m.
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Responses
Reboiler duty [kJ/h]
Solvent lean loading
Solvent rich loading
Sweet gas flow rate

CO2 fraction (top of column)
Mole fraction H2O Sweet gas
Mole fraction N2 Sweet gas

Capture rate CO2 [kg/h]
Condenser duty [kJ/h]

Delta Temperature rich flow [K]

Table 6: The response variables of the model

It was then assumed that scaling the flue gas flow rate and system by a factor
would allow us to approximate many more plants, given that they also have a
column gas flow rate of 2m/s. Other assumptions, such as the source of flue gas
only affects the amount of carbon, and not the content of other components such
as sulphur. This thesis is after all studying the viability of using neural nets to
model carbon capture plants, and not an in-depth study of how MEA degrades.

3.1.1 Creating the training and validation data

As stated above, the data was created using CO2Sim with the MEA Astarita ther-
modynamic package. The data was then imported into R in order to combine and
tidy up everything as CO2Sim returned many hundred .xls files in order to build
the entire dataset. Whilst describing and specifying the entire CO2Sim model may
not be an easy task, but a valiant effort will nonetheless be made. In table 7 the
different units in the simulation model are listed, and a note about their specifica-
tion, design or purpose is included. The heat coefficient values are from Aromada
et al [16]. The way the whole system is interconnected is shown in figure 5 and the
total number of datapoints in the training dataset was 1532.

The dataset was created along the limits given in table 8, with a concerted effort
being made in distributing the data evenly between the extremities. This should al-
low the neural network to better deliver consistent results. It is however important
to remember that the results are greatly affected by the choice of thermodynamic
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Unit Note
Absorption column defined by model input
Desorption column 0.7 of absorption column

Column packing Mellapak 250y
Compressor compresses output to 8 bar

Heat Exchanger approach temperature = 10K
- U = 0.73 kW/m2K

Post HEx cooler duty specified by CO2Sim
- U = 0.73 kW/m2K

Reboiler duty specified by CO2Sim
- Pressure = 1.9 bar
- U = 1.2 kW/m2K

Condenser duty specified by CO2Sim
- U = 1 kW/m2K

Aqueous MEA 12% mol
Con01 Used by CO2Sim to enforce a constant mass flow in the loop

Flash01/Flash02 Completes the system and ensures stability
Mix01/Mix02 Connects streams

Table 7: An overview of the different units in the CO2Sim model
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Figure 5: The model as it was created in CO2Sim

package, and that another package may yield different results. Also, the model is
guaranteed to work on data within the bounds specified in table 8, and that the use
of data outside of these bounds may return inconsistent and erroneous results.
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CO2 percentage in flue gas 3-15 [%]
Column height 10-20 [m]

V/L ratio 1.4-3.7
CO2 capture rate 80-95 [%]

Table 8: The limits of the training data set

3.2 Cost analysis
The purpose of this thesis is not to accurately design a carbon capture plant down
to the most minute detail, but rather to model trends in how certain parametres
affect the cost of capturing CO2. Taxes are not accounted for in the economic
analysis of this model. This is because the plant does not produce anything that
makes a profit. Rather, it is more probably that the government would provide tax
rebates for CO2 capture.

The cost analysis of this thesis is based on the theory presented in section 2.3. A
short summary is presented below in list form in order to aid comprehension of
exactly what factors and parametres are involved.

• Using the cost curves in table 1 to find the purchase cost of the equipment.

• Adjusting the purchase cost of equipment to the correct material using the
factors in table 2.

• Using the installation factors given in table 3 to properly account for the
erection and installation of the equipment.

• Correct the costs for location and inflation.

• Find the consumption of utilities in order to find the operating expenditures
of the plant.

When performing cost analysis, certain parametres are very important to consider
that do not fit neatly into the other categories presented earlier. Therefore they are
given in table 9. The inflation data for the US dollar is given by the US department
of labor, the location factor by Ali et al [17] and the rest by SSB.
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Inflation factor USD (2010-2022) 1.26
Inflation factor NOK (2020-2022) 1.039

Location factor Norway 1.26
Long term rent for new loans 2.3%

Project lifetime 25 years
Depreciation model straight line

Depreciation rate 4%

Table 9: Important parametres for cost analysis

3.2.1 Capital expenditures of the plant

To find the capital expenditures of the plant, the cost curves in table 1 were used to
find the basic cost of all the equipment on a US Gulf Coast Jan. 2010 basis. The
pressure vessels and structured packing are priced in 304 stainless steel, and the
rest in carbon steel. Since the assumption is that the carbon capture is retrofitted
to an already existing plant. The extra cost associated with building up a plant site
is ignored for the cost analysis part.

When finding a cost estimate for the lean/rich heat exchanger, certain assumptions
had to be made in order to simplify the model. To accurately find the log mean
temperature difference of the lean/rich heat exchanger, one would need 4 new
temperatures (the intlet and outlet for the two streams) added to the responses.
When considering the relatively small training dataset, getting 14 response vari-
ables might be pushing the limits of the model too far, as the prediction error of
the condenser duty of the pure CO2 simply refused to go below 70% when all 14
variables were used. So instead, the temperature difference of the lean flow was
used as a variable in the model. Then the log mean temperature differences of
the training dataset were found. The mean of all these values was 10.624, with a
standard deviation of 0.322. This is close enough to assume that the log mean tem-
perature difference is constant throughout the whole dataset. The heat required to
change the temperature of the lean flow to the required temperature was then com-
bined with the duty of the cooler cooling the lean stream into the heat exchanger
to fully specify the system. The heat capacity seems to not change all that much
depending on the loading of the CO2 and can then be assumed constant [18] at 4
kJ/kgK.
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3.2.2 Operating expenditures of the plant

When finding the operating expenditures of the plant, the most accurate and so-
phisticated way is not to use the data from Sinnot & Towler, but rather to find sim-
ilar processes in Norway and use their data for utilities like high pressure steam,
electricity and cooling water. Or to use industry standard tools like Aspens varied
portfolio of chemical engineering tools. Needless to say, the purpose of this thesis
is not to accurately design a carbon capture plant down to the most minute detail,
but rather to model trends in how certain parametres affect the cost of capturing
CO2. As would be expected, the prices for electricity and natural gas to produce
steam fluctuate wildly, and perhaps even more so at this very moment. They do
however provide us with a good estimate for utility cost estimation that we can
then adjust for the change in price. J. Jakobsen et al. [19] gives us utility cost es-
timates from 2017 for steam produced from natural gas, steam produced from a
process and electricity. Everything with a mind on CO2 capture in Norway.

The utility costs given in table 10 are mostly from Aromada et al. 2020 [16], with
the notable exception of electricity and gas prices as these were found from re-
spectively SSB and tradingeconomics.com. The price of steam was found from
the amount of heat required to turn one tonne of 288.15K water into 523.15K
steam. On one hand, producing CO2 to remove CO2 may seem counterintuitive,
especially since the combustion process that produces the flue gas itself should
probably be enough to create enough high pressure steam to power the reboiler.
Since the whole purpose of this thesis is to capture CO2 one can safely assume that
there is some form of combustion process happening, hopefully one that produces
excess heat that can then produce high pressure steam. The exact make-up (with
regards to process/NG) of the steam used to power the reboiler cannot be known
until the all the details about the process that produces the CO2 is known. Until
these factors are known however, this work will assume that all the steam comes
from a gas fired heater and not the main combustion process.

Since the prices of natural gas and electricity fluctuate wildly and today’s prices
are not necessarily relevant for the long term analysis of the financial viability of
CO2 capture. For instance, the electricity prices for the 3rd quarter of 2021 were
used instead of the presumably abnormal prices we are currently seeing, and like-
wise, the gas prices are taken as those of 13th of January. A large industrial plant
like a power plant or refinery would in any case not be beholden to spot energy
prices and would in all likelyhood minimize financial risk by signing long term
contracts.
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Utility Price [2022]
Electricity (Q3 2021) 8.1 [$/MWh]

Natural gas (13.01.2022) 77.78 [$/MJ]
Steam (NG) 67.15 [$/tonne]

Steam (process) 0
Cooling water 0.025 [$/m3]
Process water 0.24 [$/m3]

Labour operator 95 375 [$/year]
Labour engineer 185 794 [$/year]

MEA 1798 [$/m3]

Table 10: The cost of utilities

3.3 Conditioning the CO2 for further transport
Before transporting the gas for either use or sequestration, the gas must be com-
pressed and cooled in order to make it easier to handle. That is unless there is
immediate use for the CO2 at the plant site. This thesis will however assume that
the gas needs to be processed for further transportation. As described in Aro-
mada et al. 2020 [16], the CO2 product stream will be compressed from just above
atmospheric pressure to 151 bar. As the compression is assumed to be adiabatic,
cooling is required for the gas stream not to become too hot for transport. Multiple
intercooling loops in between multistage compressors seem to be the best way to
achieve a transport ready gas. These compressors and coolers would of course be
designed and sized according to the principles of compressors and heat exchang-
ers given in the theory section. Since the main purpose is a financial analysis and
not a complete plant design, the finer details will be left for further study, and for
cost analysis purposes it will be assumed that the compression can be achieved
with three compressors and two cooling loops.

3.4 Neural network model
The model was built using keras/tensorflow with the Python interface. For a neural
network with N observations, p predictors, M hidden units and L training epochs,
the model the number of operations given in equation 26.
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Figure 6: A flow diagramme of the model construction and training process

Noperations = Ω(N · p ·M ·L) (26)

One can therefore see that the model has the potential to become rather large, this
is however only a problem with super complex models with multiple recursive
layers that are used for large data mining operations and image analysis. For the
purposes of this thesis, it would be almost impossible to make a large unwieldy
model that would take too long to train or propagate. As the main bottleneck
would nonetheless be loading in the tensorflow library.

A flowsheet of how the model construction and training process can be seen in
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figure 6. First the base model must be selected, then that model must be used to
produce the training and validation datasets. Further it is very important that the
input and output are the the same respective domains. Therefore they must be
normalized/standardized. Next, the basic structure of the neural network model
must be preliminarily determined. This neural network must then be trained on
the data, and then validated against an independent dataset. If the accuracy is
not good enough, the training parametres must be changed until the accuracy is
adequate.

3.5 Parametre adjustment
Since statistical modelling and by extension neural networks is a highly empirical
field. One cannot know with certainty what parametres are the best choice for
the model in advance, and the best way for determining these parametres is by
trial and error. Naturally, an exhaustive study of all the possible combinations of
parametres would take too long and be outside the scope of this work. As such,
certain choices have already been made in the name of keeping things simple.
These choices are either explained in this section, or in the results section, and
comprise things such as limiting the activation function to only the most com-
monly used functions or assuming that the model does not need more than 175
neurons per layer.

The best way to find out what parametres fit the model best, is to try everything.
And then cross validate against an independent validation data-set. As for the
assumption that a shallow neural network is sufficient for approximating this spe-
cific model.

3.5.1 Choice of loss function

When choosing a loss function of a neural network, the most common thing to do
would be to use the MSE, or mean squared error, as given in equation 23. In this
case however, one must also take into account that the inputs and responses often
vary greatly in scope, and that while some are fractions between 0 and 1, others
are large duties in the scale of multiple million watts. Therefore using the MAPE,
or the mean average percentage error as given in equation 24, may counteract
some of this error, as the MAPE uses the relative error of every variable and may
as such avoid the bias of minimizing the error of large values to the detriment of
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smaller ones. As a matter of fact, since the values have been normalized, this may
already be enough. Nonetheless, both loss functions will be tested.

3.5.2 Normalizing and/or standardizing the data

When training a neural network, it is very important that the input and output are
the the same domains. Data that varies widely in scope would require the neural
network itself to compensate and may lead to poorer accuracy. By normalizing or
standardizing the data, one can avoid this incurred penalty and hopefully improve
the model. Normalization is given by equation 27, the process transforms the vari-
ables to lie between 0 and 1 depending on the relative size of the untransformed
variable.

Xnormalized =
X−Xmax

Xmax−Xmin
(27)

In equation 28 [20], the method for normalization is given. x is the value to be
normalized, µ is the average of the variable and s is the sample standard deviation.

f (x) =
1

s
√

2π
e−

1
2 (

x−µ

s )2
(28)

Both these methods will be used for both the input and response data, and whichever
method performs the best will be used.

3.5.3 Epochs and batch size

When training a neural network, one must also specify the number of iterations,
or epochs, the algorithm should run. Normally the only real problem that can be
encountered is that you train the model for too few epochs, and this concern has
to be balanced against the need for a quick training period. When training, the
model rarely improved beyond 1200 epochs, and as such, the model was specified
to 1500 epochs just to be on the safe side.

A batch is merely a group of observations used together when training an epoch.
Having a small batch size is easier computationally, but can introduce erratic and
unpredictable patterns into the model. Subsequently, a batch size of 120, an inter-
mediate size was chosen, mainly as a compromise.
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3.5.4 Validating the model

When validating the model, an independent dataset was used. The constraints used
are the same as for the training dataset, but care was taken so that the input values
would be different and the model would have fresh data to benchmark against.
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4 Results and discussion
In this section, the results will be presented and discussed. Since there are a great
many variables, only the most important variables will be focussed on in the name
of presenting a concise and comprehensive argument.

4.1 Choosing model parametres
As mentioned earlier, finding the optimal model parametres is a tedious process
that is best done by trial and error. The parametres to determine are: number
of layers, number of neurons in each layer, the regularization method and the
activation function. The results were subsequently plotted to make it easier to
comprehend and view. In figure 7a the MAPE of the responses are plotted against
the number of perceptrons in each layer, and in figure 7b the relative error of the
condenser duty was plotted against the number of perceptrons. The reason that the
condenser duty has been singled out in this way can easily be seen by viewing the
y-axis of figure 7b, this specific response value proved to be very finicky and great
care had to be taken in order for it to return a value with reasonable accuracy. From
the total picture provided in figure 7, three layers with 75 perceptrons each then
reasonable balances the need for overall accuracy with the special considerations
needed for the condenser value response.

The next parametre to determine is the method for regularization and the learning
rate. Here a combination of both with a learning rate of 1e-6 is the best option and
successfully negates the effects of overtraining.
In table 11 the different MAPE of the selected activation functions are given. The

sigmoid and the ReLU are the two best performing, and either would probably do
fine. The ReLU does perform slightly better though, and as such is the one chosen
for the model.

Activation function MSE
tanh 0.050216

sigmoid 0.040004
softplus 0.084304
ReLU 0.038148

Table 11: The MSE of the different activation functions tried

When training the model, care was also taken to choose the correct metric of
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(a) Relative error (b) Residual error

Figure 7: The MAPE plotted against the number of perceptrons in one layer, two
layers and three layers

Figure 8: The learning rate plotted against the MAPE for L1, L2 and a
combination of both
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measuring the error. Using the MAPE often allows the training to minimize the
error of all the responses, but this time, using the MAPE for training gave wildly
inconsistent and erring results. To the point that taking the average would not
accurately represent the chaotic results. Using the MSE as error function however
gave very good results, and as such it was selected as the error function of the
model.

4.2 Validation errors
In order to validate and assess the accuracy of the model, the MAPE of the dif-
ferent responses of the validation dataset were found. The average MAPE of the
training dataset was also found, but since it is not really all that mathematically
interesting the focus will instead be on the MAPE of the validation dataset. All
these values are given in table 12. As mentioned in section 4.1, the condenser
duty did indeed prove to be slightly less accurate when compared to the other val-
ues. However, after successfully negating the effects of overtraining by the use of
regularization, the MAPE of this response variable is down to a much more man-
agable 7.653%. The other response values are all rather impressive with regards
to accuracy. Lastly the average error of the training dataset is just above 0.2%.
Which, whilst not a surprise, also speaks to the accuracy of the model.

The fact that regularization had such a profound impact on the accuracy of the
model seems to suggest that there was some noise in the data used to train the
model. That, or the model itself failed to properly understand all the intricacies of
the data, and a little regularization was just what was needed to remove the noise
from the model itself. The old adage ”never look a gift horse in the mouth”, may
perfectly summarise what should be done, as ascribing physical value to the train-
ing parametres of a neural network model, if even possible, rarely accomplishes
anything of value.

4.3 Model training
When training the model, each epoch took roughly 500 microseconds to train,
with the whole model taking approximately 45 seconds. As expected, the main
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Response variable MAPE
Reboiler duty 0.042175

HEx cooling duty 0.007927
Solvent lean loading 0.021172
Solvent rich loading 0.010085
Sweet gas flow rate 0.000445

CO2 fraction stripper top 0.021557
Sweet gas composition H2O 0.045977
Sweet gas composition N2 0.010485

CO2 captured 0.003053
Condenser duty 0.07653

∆T Rich 0.002727
Average 0.038103

Training average 0.002293

Table 12: The different MAPE of the response variables

bottleneck is accessing and retrieving the information and not executing the cal-
culations. Propagating a dataset with 100 observations takes approximately 4 sec-
onds, so it can be stated with confidence that the model is both complex enough
to understand the data it has been trained on, but not so complex as to become
sluggish. In figure 9 the accuracy and loss of the function has been plotted against
the number of epochs trained. Although it seems that the loss function quickly
reaches it’s minumum, that is not the case as can be seen in the model accuracy
plot. Here, one can see that especially the validation accuracy improves up until
about epoch 1200.

4.4 Plotting the responses of the model
In order to effectively evaluate if the model is accurate enough or not, just using
the mean average percentage error may not provide the entire picture. For this
purpose, three small data samples were produced by CO2Sim and then compared
to the data predicted by the model. The three first values were fixed, whilst the
V/L ratio, because of the nature of how CO2Sim produces it’s data was left for
the program to decide. The reason this specific data was chosen was simply to
provide a varied data pool of different samples.
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Figure 9: The accuracy and loss of the model plotted against the number of
epochs trained
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Figure 10: The specific reboiler duty plotted against the V/L ratio for the first
variable combination. Predicted & CO2Sim data.

The simplest and most straightforward thing to do would of course be to simply
plot the responses against a chosen input parametre, but that would leave out valu-
able context. So for that purpose, it was decided that the specific reboiler duty in
MJ/kgCO2 and the relative residual error of that value would be plotted instead.
The choice of specific reboiler duty then also allows us to examine both the accu-
racy of the reboiler duty and the accuracy of the CO2 capture rate in [kg/h].

Variable Value 1 Value 2 Value 3
Column Height 14 16 18

Capture rate 0.8 0.85 0.95
CO2 percentage 10 10 5

V/L ratio viewable in plot viewable in plot viewable in plot

Table 13: The parametres of the inputs used

The specific reboiler duties seem reasonable when comparing them to Sakwat-
tanapong [21] et al. 2005 and Canepa [22] et al.2015 values of respectively 4.7
MJ/kg and 4.2 MJ/kg. The values predicted by the model seem at least reason-
able, and the fact that they are slightly different can probably be explained by the

44



Master Thesis
TKP4900
Fall 2021

Figure 11: The specific reboiler duty plotted against the V/L ratio for the second
variable combination. Predicted & CO2Sim data.

Figure 12: The specific reboiler duty plotted against the V/L ratio for the third
variable combination. Predicted & CO2Sim data.
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Figure 13: The CO2 fraction plotted against the V/L ratio for the first variable
combination. Predicted & CO2Sim data.

thermodynamic package used by CO2Sim, and differences in plant configuration.
Now of course, this is exactly as expected since the whole model is predicated on
the fact that CO2Sim is an accurate representation of a carbon capture plant.

Obviously, there are more response variables than just the reboiler duty and the
CO2 capture rate [kg/h]. Since the fraction of CO2 at the top of the stripper column
is also an important factor when it comes to designing both the stripper column
and the subsequent condenser. Therefore it was decided that this response value
should also be examined closer. These results can be seen in figure 13 to 15. Here
one can see that the predicted results generally line up with with the values from
CO2Sim, with the largest discrepancy being in figure 15 at about 6%.

From the results plotted in figure 10 to 15 one can already begin to see what
plant configurations would work and which do not. At the 5% [mol] inlet, a
column height of 18m is not optimal at all. This is probably because of the heat
required to maintain the temperature throughout the column, and a shorter column
would better serve the requirements of this plant. The heat from the reboiler also
evaporates a lot of water compared to the other set-ups which again requires more
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Figure 14: The CO2 fraction plotted against the V/L ratio for the second variable
combination. Predicted & CO2Sim data.

Figure 15: The CO2 fraction plotted against the V/L ratio for the third variable
combination. Predicted & CO2Sim data.
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Figure 16: The specific reboiler duty plotted against the column height Predicted
& CO2Sim data.

cooling in the condenser, further increasing the cost of carbon capture.

Lastly, the effect the column height has on the specific reboiler duty should also be
analyzed. For the purposes of this case study, a new set of limits was found, and
then run through the model in order to produce two comparable datasets. These
limits are given in table 14

Variable limits
Column height 10-20

Capture rate 0.85
CO2 percentage 12.5

V/L ratio 2.3

Table 14: The limits of the column height case study

4.4.1 Plotting the residuals of the validation set

Indeed, there are other values than the ones analyzed in the previous section, but
going into as thorough detail with every one of them would perhaps provide too
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Figure 17: The relative residual error plotted against the V/L ratio for the rich
loading & lean loading and condenser duty

much detail without actually providing clarity and insight to how the model ac-
tually behaves. Therefore, for the sake of expediency and simplicity, the relative
residual errors of the condenser duty, the lean loading and lastly the rich loading
would be plotted against the V/L ratio. Also, the MAPE of all the variables would
also be plotted against the V/L ratio The V/L ratio was chosen simply because
simply because it is convenient, and no other special reason. After all, it is the
y-axis, not the x-axis that is of interest. The data used was the validation dataset
that was used to find the optimal model parametres.

The MAPE for the first three variables can be seen in figure 17. Here, the pre-
diction accuracy is quite good for all three variables, even for the previously trou-
blesome condenser duty behaves very nicely with none of the relative residuals
exceeding 7.5% error. This is presumably because the specific model used to pre-
dict these values is slightly different than the one used to find the MAPE of every
variable in table 12, even though it was trained with the exact same parametres
and data. It is very good however, that the relative error rarely exceeds ±0.05%.

The MAPE for the rest of the variables can be seen in figure 18. The picture
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Figure 18: The relative residual error plotted against the V/L ratio for the rest of
the responses

this plot paints is not as rosy as the one from figure 17, but it is nonetheless not
too bad. The largest error here is about 35%, it is important to remember that it
is only one value out of many. The vast majority of the responses are within a
10% margin of error. It is also important to remember that the most important
response variables have all been analyzed and found to be very accurate, and that
the offending value probably is a one time case from one of the other response
variables. Also, when using the data provided in table 12, none of the response
variables are repeat offenders when it comes to bad accuracy, and the outlier is
most likely not a systematic problem with the model.

4.5 Economic analysis
When analysing the economic viability of the model a coal fired power plant [23]

with an output of 250MW was used as the basis for calculations. The power plant
has a flue gas flow rate of 354 m3/s and a molar percentage of CO2 of 12.5 %. For
simplicity’s sake, Norwegian prices were used, even though it is utterly improba-
ble that a coal fired power plant be built in Norway. The purpose of this thesis is
after all to determine the viability of using neural nets to model carbon capture,
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and this hypothetical coal fired plant allows us to view how certain parametres
affect the cost of capturing CO2 in broad trends. Just like in the previous section
on plotting the model responses, one must have an input dataset for the model to
work on. And in this case study, the inputs are given in table 15. Also, as in the
previous section, the cost is given as $/ton CO2 in order to give some context to
the results.

Variable Value 1 Value 2 Value 3
Column Height 20 20 10-20

Capture rate 0.9 0.8-0.95 0.9
CO2 percentage 12.5 12.5 12.5

V/L ratio 1.6-3.5 2.3 2.3

Table 15: The parametres of the inputs used

First out is the effect of the V/L ratio has on the cost of CO2 removal. The cost
per tonn of CO2 removed can be seen in figure 19. As one can see, the V/L ratio
does indeed have an effect on the cost, with the most glaring instance being the
much higher costs at lower V/L ratios. For the rest of the V/L ratios, the results
are reasonable. The results make sense, as with a lower V/L ratio, one would need
a much larger difference between lean and rich loading. This requires a lot of en-
ergy to achieve. On the other hand, a higher V/L ratio, and thus a lower difference
between lean and rich loading requires less energy to regenerate the solution. But
sooner or later, the energy advantage is outweighed by the requirements of heat-
ing so much flow, and a larger Capex required to accommodate for the increased
flow rate. The next variable was the capture rate. These results can be seen in
figure 21. Here one can see again that it is the cost of steam that decides single-
handedly decides if the configuration is economically feasible or not. There is a
slight Capex penalty associated with the higher capture rates, but again, they are
all but nullified by the cost of steam. These results also make sense, as there is
generally an increased cost associated with upping the capture rate. Both when
it comes the the increased reboiler duty required to regenerate the CO2 from the
amine solution and the larger Capex required to handle the increased duty.

Lastly, the effect of the column height on the cost should also be examined. Here,
one can see that after a while, the lessened energy requirements that come with a
taller column are balanced out by the larger Capex costs of the taller column. This
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Figure 19: The cost per ton plotted against the V/L ratio

Figure 20: The cost per ton plotted against the capture rate
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Figure 21: The cost per ton plotted against the column height

is as expected, since sooner or later the height of the column would be too high to
absorb the limited amount of CO2 in the flue gas stream.

When it comes to economic analysis, Li [24] et al.2016 gives a value range of 75.1
$/tonn to 86.4 $/tonn whilst Ali [17] et al.2019 gives us a value range of 50 C/tonn
to 128 C/tonn. These literature values might seem at the lower end of what the
model is predicting, but now it is important to remember that the abnormally high
current prices for natural gas are incorporated into the prices the model is predict-
ing. So when taking this into account, the costs should be quite comparable.

4.6 Further work
The model produced in this thesis should allow us to optimize a carbon capture
plant with regards to capital expenditure and cost per tonn CO2 removed. A
method such as response surface method may be used to find the minimum of
the cost per tonn price, or for that matter the minimum of a weighted average be-
tween the cost per ton and the total capital expenditure. This is important since
not everyone can access the credit necessary to build the plant to the specifications
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necessary to minimize the cost per ton, and a compromise solution may have to
be used instead. Also, using a more sophisticated method for cost analysis would
allow the model do more than predict trends in pricing. Namely it would allow the
model to be used for accurate cost analysis and thus make the model more useful
for equipment design.

Svendsen et al.2013 [25] shows that the column diameter can have a significant
effect on the operating expenditures of a plant and that depending on the con-
centration of CO2 in the flue gas. It could then be interesting to implement the
diameter of the two columns into the model as an input variable, and model this
aspect of the process too. It should also be noted that an alternative to CO2Sim
should be considered, as the single most time consuming part of this thesis was
creating the dataset. And producing many multiple amounts of the data used in
this thesis would take a prohibitively long time.
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5 Conclusion
For this master thesis, a neural network model was created upon the basis of
CO2Sim carbon capture simulation software. The neural network was built in
Python using the keras/tensorflow package. A cost analysis was also performed
on a coal fired power plant with an output of 250 MW in order to examine the
effects of the input variables on the capital and operating expenditures.

As demonstrated in section 4, the model performed admirably when it came to the
chosen 11 response variables, with an mean average percentage error of 3.8103%.
The condenser duty was the variable with the highest MAPE, but this was only
7.653% and perfectly within the range of what should be considered reasonable.
Even the cost analysis estimates were mostly within the expected interval as found
in literature. The discrepancy in the cost analysis can be explained by the current
prices of natural gas as they do somewhat inflate the estimates of the operating
expenditures.

The neural network model takes approximately four seconds to propagate a case
study file with 100 datapoints, which is a lot faster than the hours it would take
compared with a traditional simulation tool. This then means that the surrogate
model was both accurate enough, and as fast as one would expect of a neural
network model. Thus providing a compelling alternative to the already existing
solutions.
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A Appendix

A.1 Training the neural network
This is the code for training the surrogate model. The code takes the training data
and the validation data as input. And subsequently saves the neural network as a
.h5 file. The code also prints the accuracy and training parametres.

#Import libraries

from keras.models import Sequential

from keras.layers import Dense

from tensorflow.keras import regularizers

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import MinMaxScaler

from numpy import loadtxt

from keras.wrappers.scikit_learn import KerasRegressor

from sklearn.model_selection import cross_val_score

from sklearn.pipeline import Pipeline

# load dataset for both input var and response var

input_dataframe = loadtxt("combinput_final.csv", delimiter=",

", skiprows=1)

response_dataframe = loadtxt("combresponse_final.csv",

delimiter=",", skiprows=1)

#Importing the validation dataset

input_validation = loadtxt("input_validation_final.csv",

delimiter=",", skiprows=1)

response_validation = loadtxt("response_validation_final.csv"

, delimiter=",", skiprows=1)

#Standardizing the input dataset

scalerNormal = StandardScaler ()

scalerNormal.fit(input_dataframe)

input_dataframe = scalerNormal.transform(input_dataframe)

#Standardizing the response dataset

scalerMinMax = MinMaxScaler ()

scalerMinMax.fit(response_dataframe)

response_dataframe = scalerMinMax.transform(

response_dataframe)

#Transforming the validation data

input_validation = scalerNormal.transform(input_validation)
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response_validation = scalerMinMax.transform(

response_validation)

#Defining the keras model

model = Sequential ()

model = Sequential ()

model.add(Dense(75, activity_regularizer=regularizers.l1_l2(

l1=1e-6, l2=1e-6), input_dim=4

, activation='relu'))
model.add(Dense(75, activity_regularizer=regularizers.l1_l2(

l1=1e-6, l2=1e-6), activation=

'relu'))
model.add(Dense(75, activity_regularizer=regularizers.l1_l2(

l1=1e-6, l2=1e-6), activation=

'relu'))
model.add(Dense(11, activation='linear '))

#Compile the keras model

model.compile(loss='mse', optimizer='adam', metrics=['MSE'])

# fit the keras model on the dataset

history = model.fit(input_dataframe , response_dataframe ,

epochs=1500 , batch_size=150)

# evaluate the keras model

_, accuracy = model.evaluate(input_dataframe ,

response_dataframe)

print('Accuracy: %.5f' % (accuracy*100))

def individual_error_training(n):

residuals = []

difference_array = np.subtract(response_validation[:, n],

response_predicted[:, n])

absolute_array = abs(( difference_array/response_predicted

[:,n]))

residuals.append(absolute_array)

return np.mean(residuals)

#Evaluating the validation data

_, accuracy = model.evaluate(input_validation ,

response_validation)

print('The validation error is: %.5f' % (accuracy*100))
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#Predicting new values from the valdiation data

response_predicted = model.predict(input_validation)

#Rescaling the output

response_predicted = scalerMinMax.inverse_transform(

response_predicted)

response_validation = scalerMinMax.inverse_transform(

response_validation)

#Finding the MAPE the hard way instead of using a for loop

def individual_error(n):

residuals = []

difference_array = np.subtract(response_validation[:, n],

response_predicted[:, n])

absolute_array = abs(( difference_array/response_predicted

[:,n]))

residuals.append(absolute_array)

return np.mean(residuals)

for i in range(11):

print(round(individual_error(i), 5))

import matplotlib.pyplot as plt

#This code snipped prints out the training data

plt.subplot(211)

plt.plot(history.history['accuracy '])
plt.plot(history.history['val_accuracy '])
plt.title('Model Accuracy ')
plt.ylabel('Accuracy ')
plt.xlabel('Epoch ')
plt.legend(['Training ', 'Validation '], loc='lower right ')

# summarize history for loss

plt.subplot(212)

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss '])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch ')
plt.legend(['Training ', 'Validation '], loc='upper right ')
plt.tight_layout ()

plt.show()
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#This line saves the model for later use

model.save('saved_model/model_co2.h5')
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A.2 The code used to perform the sizing of the process equip-
ment

A python function was created for every component in the capture plant in order
to properly size every piece of equipment.

#Creating a function for sizing analysis of each equipment

def cost_analysis_column(input , scaler):

#The input is the height of the column , also assume that

the inlets and outlets are

at the very ends of the

column

#Also assume 5/8'' or ca 1.6cm is a good shell thickness

#remember that the packing is already priced for 304 SS

#For scaling the stripper column , both inputs should be

scaled by 0.7. For the

diameter , it is merely an

approximation that mostly

holds

#based on the average gas flow rate from reboiler at the

different v/l ratio

flow_rate = (7024 * scaler) / 1.12

radius = (( flow_rate / 3600) / (2 * 3.1415)) ** (1 / 2)

Shell_volume = 3.1415 * radius ** 2 * input - (3.1415 * (

radius - 0.016) ** 2 * (

input - 0.032))

Shell_weight = Shell_volume * 7500 # kg/m3

packing_volume = 3.1415 * (radius - 0.016) ** 2 * (input

- 0.032)

packing_cost = packing_volume * 7600

shell_cost = 17400 + 79 * Shell_weight ** 0.85

total_cost = shell_cost + packing_cost

return total_cost

def cost_analysis_hex(VLRatio , tempdiff):

gas_flow = 7600

spec_heat = 4

Q = VLRatio*gas_flow*spec_heat*tempdiff

heat_coeff = 0.500*3600

log_mean = 10.624

area = Q/(heat_coeff*log_mean)

return area

def compressor_analysis(input , scaler):
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# this function takes the v/l ratio as input , efficiency

is set as 0.7

fluid_flow = input * scaler * 7600 # kg/h

power = (fluid_flow * 9.81 * 81.5795) / (3.6 * 10 ** 6 *

0.7)

return power

def cost_analysis_reboiler(duty , vlratio):

new_duty = duty

U = 0.800 * 3600

spec_heat_steam = 2.000 # kj/kgK

spec_heat_amine = 4.000 # kj/kgK

# Finding the necessary flow rate of steam

flow_heat_amine = 7100 * scaler * vlratio *

spec_heat_amine

flow_mass_steam = new_duty / (spec_heat_steam * 15)

temp_in_steam = 525.15

temp_out_steam = 410

temp_out_amine = 395

deltaT_amine = new_duty / flow_heat_amine

temp_in_amine = temp_out_amine - deltaT_amine

deltaT1 = temp_in_steam - temp_out_amine

deltaT2 = temp_out_steam - temp_in_amine

logT = (deltaT1 - deltaT2) / numpy.log(deltaT1 / deltaT2)

area = new_duty / (U * logT)

return numpy.array([area , flow_mass_steam])

def cost_analysis_condenser(duty , co2captured , co2fraction):

U = 1.000 * 3600

new_duty = duty * 1000

flow_rate_gas = co2captured / co2fraction # kg/h

# need to find the molar flow rate of both co2 and h20 in

order to find the amount

of water condensed (by

using vapour pressure of

h2o at 29degrees)

co2_molarflow = co2captured / 44.01 # kmol/h

h20_molarflow = (flow_rate_gas - co2captured) / 18.02 #

kmol/h

# finding amount of water in the gas stream after

condensation

h2o_post_condensation = co2_molarflow / 0.9276316 -

co2_molarflow

h2o_condensed = (h20_molarflow - h2o_post_condensation) *

18.02 # kg/h
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# Thermodynamics of the heat exchanger

specific_heat_gas = co2fraction * 0.918 + (1 -

co2fraction) * 2 # Using

spec heat for co2 gas and

vapour

specific_heat_water = 4.18 # kJ/kgK

enthalpy_phase_change = 2.26 * 1000 # kJ/kg

heat_condensation = h2o_condensed * enthalpy_phase_change

heat_tempchange = new_duty - heat_condensation

# Finding temps

gas_temp_out = 302.15 # K

water_temp_in = 288.15 # K

water_temp_out = 313.15 # k

# need to find the flow of water necessary

flow_water = new_duty / (specific_heat_water * 10)

gas_temp_in = gas_temp_out + numpy.abs(heat_tempchange /

(flow_rate_gas *

specific_heat_gas))

deltaT1 = gas_temp_in - water_temp_out

deltaT2 = gas_temp_out - water_temp_in

Tlm = (deltaT1 - deltaT2) / numpy.log(deltaT1 / deltaT2)

area = new_duty / (U * Tlm)

return numpy.array([area , flow_water])

def HexCooler_analysis(duty , vlratio):

new_duty = duty *1000

gas_flow = 7600 #kg/h

spec_heat = 4 #kJ/kg

water_temp_in = 15 #C

water_temp_out = 40 #C

flow_water = new_duty/(15*4)

amine_temp_in = 119.36 #C

amine_temp_out = amine_temp_in - new_duty/(gas_flow*

vlratio*spec_heat)

deltaT1 = amine_temp_in - water_temp_out

deltaT2 = amine_temp_out - water_temp_in

logT = (deltaT1-deltaT2)/numpy.log(deltaT1/deltaT2)

heat_coeff = 0.500 * 3600

area = abs(new_duty/(heat_coeff*logT))

return numpy.array([area , flow_water])

def compressor2_analysis(co2captured , scaler):

# efficiency is set as 0.7

fluid_flow = co2captured * scaler # kg/h

power = (fluid_flow * 9.81 * 1539.77148) / (3.6 * 10 **
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6 * 0.7) #kW

return power #kW

def CompressorCooler_analysis(co2captured , power):

#assume that all the increases in internal energy come

from the work done by the

compressor

flow_co2_mass = co2captured

#finding the heat of condensation

molar_flow = flow_co2_mass/44.01 #kmol/h

heat_of_condensation = molar_flow * 16.7 * 1000 #kJ/h

duty = heat_of_condensation + 3600 * power #kJ/h

spec_heat_co2 = 0.918 #kJ/kgK

temp_co2_out = 29 #celsius

temp_water_in = 15 #celsius

temp_water_out = 25 #celsius

flow_water = duty/(4.18*10) #kg/h Also assumes that the

power is given in kW and

not kJ/h

temp_co2_in = temp_co2_out + (duty)/(flow_co2_mass*

spec_heat_co2)

deltaT1 = temp_co2_in - temp_water_out

deltaT2 = temp_co2_out - temp_water_in

heat_coeff = 0.5 * 3600 #kJ/h

logT = (deltaT1-deltaT2)/numpy.log(deltaT1/deltaT2)

area = (duty) / (heat_coeff * logT)

return numpy.array([area , flow_water])

def MEA_amount(scaler , height):

flow_rate = (7024 * scaler) / 1.12

radius = (( flow_rate / 3600) / (2 * 3.1415)) ** (1 / 2)

flow = radius ** 2 * 3.1415 * height

holdup = (0.05*flow + 0.7*0.05*flow)/30 #divided by 30

because of an assumed

residence time of 2

minutes

MEA = holdup * 1.4 #add 10\% for every process unit in

the loop

return MEA
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A.3 The code used to predict new data and perform the capital
expenditure analysis

This code takes the .h5 neural network model, the scaling factor and the func-
tions defined in the code above, and returns the capital expenditure as well as the
consumption of all utilities. It then exports this information as .csv files.

#Importing the necessary libraries & functions

import tensorflow as tf

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import MinMaxScaler

from numpy import loadtxt , ndarray

import numpy as np

from Functions import cost_analysis_hex

from Functions import compressor_analysis

from Functions import compressor2_analysis

from Functions import cost_analysis_column

from Functions import cost_analysis_condenser

from Functions import cost_analysis_reboiler

from Functions import HexCooler_analysis

from Functions import CompressorCooler_analysis

from Functions import MEA_amount

#finding the correct scalers for inputs and responses

input_dataframe = loadtxt("combinput_final.csv", delimiter=",

", skiprows=1)

response_dataframe = loadtxt("combresponse_final.csv",

delimiter=",", skiprows=1)

scalerNormal = StandardScaler ()

scalerNormal.fit(input_dataframe)

scalerMinMax = MinMaxScaler ()

scalerMinMax.fit(response_dataframe)

#Loading the model

new_model = tf.keras.models.load_model('saved_model/model_co2
.h5')

#Loading new input

input = loadtxt("input_plotting.csv", delimiter=",", skiprows

=1)

#Scaling new input

input_scaled = scalerNormal.transform(input)

#Predicting the responses

responses_scaled = new_model.predict(input_scaled)

#Scaling the responses back
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responses = np.array(scalerMinMax.inverse_transform(

responses_scaled))

#exporting the responses

np.savetxt("responses_economics.csv", responses , delimiter=",

")

print(responses)

#Cost analysis section

scaler = 196.36

#Columns

for i in input[:,0]:

cost_ss_absorber = cost_analysis_column(input[:,0],

scaler)

cost_ss_desorber = cost_analysis_column(0.7*input[:,0],

scaler)

#Heat exchangers

for i in responses[:,0]:

area_hex = cost_analysis_hex(input[:,3], scaler ,

responses[:,10])

cost_cs_hex = 28000 + scaler*54*area_hex **1.2

#Compressors

for i in input[:,3]:

power_compressor1 = compressor_analysis(input[:,3],

scaler)

cost_cs_compressor1 = 580000 + 20000*power_compressor1 ** 0

.6

power_compressor2 = compressor2_analysis(responses[:,7],

scaler)

cost_cs_compressor2 = 580000 + 20000*power_compressor2 ** 0

.6

#Hex Cooler

for i in responses[:,1]:

area_hex2 = HexCooler_analysis(-responses[:, 1], input[:,

3])

cost_cs_hex2 = 28000 + scaler * 54 * area_hex2 ** 1.2

#Reboiler

for i in responses[:,0]:

area_reboiler = cost_analysis_reboiler(scaler , responses[

:,0], input[:,3])

cost_cs_reboiler = 29000 + scaler * 400*area_reboiler[0,:

]** 0.9

#Condenser

for i in responses[:,9]:

area_condenser = cost_analysis_condenser( -responses[:,9]
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, responses[:,8],

responses[:,5])

cost_cs_condenser = 28000 + scaler*54*area_condenser[0,:]

**1.2

#Product cooler

for i in responses[:,8]:

area_CCooler = CompressorCooler_analysis(responses[:,7],

scaler , power_compressor2)

cost_cs_CCooler = 28000 + scaler * 54*area_CCooler[0,:]

** 1.2

#Dividing the cost of the different variables into Cost

carbon steel , Cost stainless

steel , Cost after installation

, Cost after location &

inflation and operating costs

cost_CS = np.array([cost_cs_hex , cost_cs_compressor1 ,

cost_cs_compressor2 ,

cost_cs_hex2[0,:],

cost_cs_reboiler ,

cost_cs_condenser ,

cost_cs_CCooler])

cost_SS = np.array([cost_ss_absorber , cost_ss_desorber])

#Adjusting for material cost

cost_CS = np.multiply(cost_CS , 1.3)

cost_SS = (cost_SS , cost_CS)

cost_SS = np.array(cost_SS)

#Taking into account the different installation factor

f_piping = 0.8

f_rest = 1.4/1.3 #This is essentially the rest of the

installation factors (

excluding the piping)

corrected for the cost of

stainless steel relative to

carbon steel

f_cumulative = 1 + f_piping + f_rest

cost_installed = np.multiply(cost_SS , f_cumulative)

#Adjusting for location data

cost_location = np.multiply(cost_installed , 1.26)

#Adjusting for inflation
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cost_final = np.multiply(cost_location , 1.27)

#Find the consumption of utilities

steam_consumption = np.array([area_reboiler[1,:]])

electricity_consumption = np.array([[power_compressor1], [

power_compressor2]])

coolingwater_consumption = ([[area_condenser[1,:]], [

area_hex2[1,:]], [area_CCooler

[1,:]]])

#Finding the amount of the process fluid , 13% of which is MEA

process_fluid_amount = MEA_amount(scaler , input[:,0])

#Exporting the data for later further cost analysis

np.savetxt("cost_final_columns.csv", cost_final[0], delimiter

=",")

np.savetxt("cost_final_rest.csv", cost_final[1], delimiter=",

")

np.savetxt("steam_consumption.csv", steam_consumption ,

delimiter=",")

np.savetxt("electricity_consumption1.csv",

electricity_consumption[0],

delimiter=",")

np.savetxt("electricity_consumption2.csv",

electricity_consumption[1],

delimiter=",")

np.savetxt("coolingwater_consumption.csv",

coolingwater_consumption[0],

delimiter=",")

np.savetxt("coolingwater_consumption2.csv",

coolingwater_consumption[1],

delimiter=",")

np.savetxt("coolingwater_consumption3.csv",

coolingwater_consumption[2],

delimiter=",")

np.savetxt("process_fluid.csv", process_fluid_amount ,

delimiter=",")
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A.4 The code used to perform the operating expenditure anal-
ysis of the plant

This code imports the .csv files produced above and then performs the cost analy-
sis and plots the results.

1 # Packages
2 l i b r a r y ( g g p l o t 2 )
3 l i b r a r y ( pa tchwork )
4

5 # Reading i n t h e d a t a
6 c o o l i n g w a t e r 01 <− as . m a t r i x ( r e a d . csv ( f i l e =” c o o l i n g w a t e r

consumpt ion . csv ” ) )
7 c o o l i n g w a t e r 02 <− as . m a t r i x ( r e a d . csv ( f i l e =” c o o l i n g w a t e r

consumpt ion2 . csv ” ) )
8 c o o l i n g w a t e r 03 <− as . m a t r i x ( r e a d . csv ( f i l e =” c o o l i n g w a t e r

consumpt ion3 . csv ” ) )
9 e l e c t r i c i t y 01 <− as . m a t r i x ( r e a d . csv ( f i l e =” e l e c t r i c i t y

consumpt ion1 . csv ” ) )
10 e l e c t r i c i t y 02 <− as . m a t r i x ( r e a d . csv ( f i l e =” e l e c t r i c i t y

consumpt ion2 . csv ” ) )
11 c o s t columns <− as . m a t r i x ( r e a d . csv ( f i l e =” c o s t f i n a l columns . csv ”

) )
12 c o s t r e s t <− as . m a t r i x ( r e a d . csv ( f i l e =” c o s t f i n a l r e s t . c sv ” ) )
13 s team <− as . m a t r i x ( r e a d . csv ( f i l e =” s team consumpt ion . csv ” ) )
14 p r o c e s s f l u i d <− as . m a t r i x ( r e a d . csv ( f i l e =” p r o c e s s f l u i d . csv ” ) )
15 i n p u t <− as . m a t r i x ( r e a d . csv ( f i l e =” i n p u t p l o t t i n g . csv ” ) )
16

17 #The p r i c e s o f d i f f e r e n t opex e x p e n d i t u r e s ( From Aromada e t a l .
2020 , o r SSB ) Values i n USD 2020

18 l a b o u r o p e r a t o r = 95375
19 l a b o u r e n g i n e e r = 185794
20 c o o l i n g w a t e r p r i c e = 0 .025
21 p r o c e s s w a t e r p r i c e = 0 . 2 4
22 s team p r i c e = 67 .15 #USD/ ton , u s i n g gas p r i c e s and c o n v e r s i o n

r a t e s 13 / 01
23 e l e c t r i c i t y p r i c e = 0 .081 #kwH u s i n g i n d u s t r i a l p r i c e s Norway 3Q

2021
24 MEA p r i c e = 1798 #m3 d e n s i t y = 1100 kg / m3
25 MEA d e g r a d a t i o n r a t e = 0 .210 #kg / t o n n e co2 from Moser e t a l .

2020
26 p r o c e s s f l u i d c o s t = t ( p r o c e s s f l u i d * 0 . 8 7 * p r o c e s s w a t e r p r i c e +

p r o c e s s f l u i d * 0 . 1 3 *MEA p r i c e )
27

28 # S t a r t add in g t h e d i f f e r e n t c a s e s t o g e t h e r
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29

30 #Capex
31 c o s t <− r b i n d ( c o s t columns , c o s t r e s t )
32 c o s t 1 <− sum ( c o s t [ , 1 ] )
33 c o s t 2 <− sum ( c o s t [ , 2 ] )
34 c o s t 3 <− sum ( c o s t [ , 3 ] )
35 c o s t 4 <− sum ( c o s t [ , 4 ] )
36 c o s t 5 <− sum ( c o s t [ , 5 ] )
37 c o s t 6 <− sum ( c o s t [ , 6 ] )
38 c o s t 7 <− sum ( c o s t [ , 7 ] )
39 c o s t 8 <− sum ( c o s t [ , 8 ] )
40 c o s t 9 <− sum ( c o s t [ , 9 ] )
41 c o s t 1 0 <− sum ( c o s t [ , 1 0 ] )
42 c o s t 1 1 <− sum ( c o s t [ , 1 1 ] )
43 c o s t 1 2 <− sum ( c o s t [ , 1 2 ] )
44 c o s t 1 3 <− sum ( c o s t [ , 1 3 ] )
45 c o s t 1 4 <− sum ( c o s t [ , 1 4 ] )
46

47 c o s t ISBL <− c ( c o s t 1 , c o s t 2 , c o s t 3 , c o s t 4 , c o s t 5 , c o s t 6 , c o s t 7 ,
c o s t 8 , c o s t 9 , cos t10 , cos t11 , cos t12 , cos t13 , c o s t 1 4 )

48

49 c o s t ISBL
50

51 #Opex Based on an assumed 8000 hour run p e r y e a r
52 c o s t e l e c t r i c i t y <− ( e l e c t r i c i t y 01 + e l e c t r i c i t y 02) *

e l e c t r i c i t y p r i c e
53 c o s t s team <− steam / 1000 * s team p r i c e
54 c o s t c o o l i n g w a t e r <− ( c o o l i n g w a t e r 01* c o o l i n g w a t e r p r i c e +

c o o l i n g w a t e r 02* c o o l i n g w a t e r p r i c e + c o o l i n g w a t e r 03 +
c o o l i n g w a t e r p r i c e ) / 1000 #m3 / h

55 l a b o u r c o s t = (6 * l a b o u r o p e r a t o r + l a b o u r e n g i n e e r ) / 8000
56 m a i n t a n e n c e = c o s t ISBL* 0 . 0 3 / 8000 # c o s t p e r hour o f o p e r a t i o n
57 co2 c a p t u r e r a t e = i n p u t [ , 2 ] * 7100 * 0 . 1 8 * i n p u t [ , 3 ]
58 MEA d e g r a d a t i o n = (MEA d e g r a d a t i o n r a t e * co2 c a p t u r e r a t e / 1000) /

1100 * MEA p r i c e # d o l l a r s / hour
59 p r o c e s s f l u i d c o s t = t ( p r o c e s s f l u i d * 0 . 8 7 * p r o c e s s w a t e r p r i c e +

p r o c e s s f l u i d * 0 . 1 3 *MEA p r i c e ) / 8000 # Div ided by 8000 t o f i n d
h o u r l y r a t e based on y e a r l y b leed ' n f e e d o f p r o c e s s f l u i d

60

61

62 opex = r b i n d ( c o s t e l e c t r i c i t y , c o s t steam , c o s t c o o l i n g water ,
p r o c e s s f l u i d c o s t , l a b o u r c o s t , ma in tanence , MEA d e g r a d a t i o n
)

63 opex1 <− sum ( opex [ , 1 ] )
64 opex2 <− sum ( opex [ , 2 ] )

73



Master Thesis
TKP4900
Fall 2021

65 opex3 <− sum ( opex [ , 3 ] )
66 opex4 <− sum ( opex [ , 4 ] )
67 opex5 <− sum ( opex [ , 5 ] )
68 opex6 <− sum ( opex [ , 6 ] )
69 opex7 <− sum ( opex [ , 7 ] )
70 opex8 <− sum ( opex [ , 8 ] )
71 opex9 <− sum ( opex [ , 9 ] )
72 opex10 <− sum ( opex [ , 1 0 ] )
73 opex11 <− sum ( opex [ , 1 1 ] )
74 opex12 <− sum ( opex [ , 1 2 ] )
75 opex13 <− sum ( opex [ , 1 3 ] )
76 opex14 <− sum ( opex [ , 1 4 ] )
77

78 c o s t e l e c t r i c i t y
79 c o s t s team
80 c o s t c o o l i n g w a t e r
81 l a b o u r c o s t
82 m a i n t a n e n c e
83 MEA d e g r a d a t i o n
84

85

86 opex h o u r l y <− c ( opex1 , opex2 , opex3 , opex4 , opex5 , opex6 , opex7
, opex8 , opex9 , opex10 , opex11 , opex12 , opex13 , opex14 )

87 opex h o u r l y
88 # F i n d i n g t h e a n n u a l i z e d d e p r e c a t i o n on an assumed 8000 hour

y e a r l y o p e r a t i n g t ime frame
89 r e n t = 0 .023 #% as g i v e n as i n t e r e s t on long te rm f i x e d l o a n s

SSB
90 l i f e t i m e = 25
91 a n n u a l d e p r e c i a t i o n = 0 . 0 4 # Th i s t o s i m u l a t e t h e
92 capex c o s t h o u r l y = c o s t ISBL* 0 .063 / 8000
93 capex c o s t h o u r l y
94

95 t o t a l c o s t h o u r l y = opex h o u r l y + capex c o s t h o u r l y
96

97

98 # F i n d i n g t h e c o s t p e r t o n n e CO2 c a p t u r e d
99 CC h o u r l y = co2 c a p t u r e r a t e / 1000

100 p r i c e t o n <− t o t a l c o s t h o u r l y / (CC h o u r l y * 10)
101 p r i c e opex <− opex h o u r l y /CC h o u r l y
102 p r i c e capex <− capex c o s t h o u r l y /CC h o u r l y
103

104 p r i c e t o n
105 p r i c e opex
106 p r i c e capex
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107

108

109 # P l o t t i n g t h e economics
110 p1 <− g g p l o t ( ) +
111 geom p o i n t ( a e s ( x= i n p u t [ 1 : 6 , 1 ] , y= p r i c e t o n [ 1 : 6 ] ) , c o l o r = ” r e d

” , s i z e =10) +
112 x l a b ( ” Column He ig h t [m] ” ) +
113 y l a b ( ” Cos t $ / t o n CO2” ) +
114 theme ( a x i s . t i t l e = e l e m e n t t e x t ( s i z e = r e l ( 2 ) ) ,
115 a x i s . t e x t = e l e m e n t t e x t ( s i z e = 20) )
116

117 p2 <− g g p l o t ( ) +
118 geom p o i n t ( a e s ( x= i n p u t [ 1 3 : 1 6 , 2 ] , y= p r i c e t o n [ 1 3 : 1 6 ] ) , c o l o r =

” r e d ” , s i z e =10) +
119 x l a b ( ” C a p t u r e Rate [%] ” ) +
120 y l a b ( ” Cos t $ / t o n CO2” ) +
121 theme ( a x i s . t i t l e = e l e m e n t t e x t ( s i z e = r e l ( 2 ) ) ,
122 a x i s . t e x t = e l e m e n t t e x t ( s i z e = 20) )
123

124 p3 <− g g p l o t ( ) +
125 geom p o i n t ( a e s ( x= i n p u t [ 7 : 1 2 , 4 ] , y= p r i c e t o n [ 7 : 1 2 ] ) , c o l o r = ”

r e d ” , s i z e =10) +
126 x l a b ( ”V/ L R a t i o ” ) +
127 y l a b ( ” Cos t $ / t o n CO2” ) +
128 theme ( a x i s . t i t l e = e l e m e n t t e x t ( s i z e = r e l ( 2 ) ) ,
129 a x i s . t e x t = e l e m e n t t e x t ( s i z e = 20) )
130

131 p1
132 p2
133 p3
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The code used to combine and create the training and
validation datasets
Below is the code used to combine the .xls files created by CO2Sim into a single
file.

1 l i b r a r y ( r e a d x l )
2 l i b r a r y ( t i d y r )
3

4 # C r e a t i n g t h e d a t a s e t f o r i n p u t
5

6 r e t u r n i n p u t s <− f u n c t i o n ( i n p u t ) {
7 #Removing t h e u n e c e s s a r y f i r s t column
8 va r0 <− i n p u t [ , − 1 ]
9 va r1 <− c ( va r0 [ 2 , ] )

10 va r2 <− c ( va r0 [ 1 9 , ] )
11 va r3 <− c ( va r0 [ 1 7 , ] )
12 va r4 <− c ( va r0 [ 4 4 , ] )
13 i n p u t <− c b i n d ( var1 , var2 , var3 , va r4 )
14 r e t u r n ( i n p u t )
15 }
16 # C r e a t i n g d a t a s e t f o r r e s p o n s e s
17 r e t u r n r e s p o n s e s <− f u n c t i o n ( i n p u t ) {
18 #Removing t h e u n e c e s s a r y f i r s t column
19 va r0 <− i n p u t [ , − 1 ]
20 va r1 <− c ( va r0 [ 3 0 , ] ) # R e b o i l e r du ty
21 va r2 <− c ( va r0 [ 4 7 , ] ) #Hex du ty
22 va r3 <− c ( va r0 [ 1 0 , ] ) # S o l v e n t l e a n l o a d i n g
23 va r4 <− c ( va r0 [ 1 1 , ] ) # S o l v e n t r i c h l o a d i n g
24 va r5 <− c ( va r0 [ 4 3 , ] ) # Sweet gas f low r a t e
25 va r6 <− c ( va r0 [ 2 9 , ] ) # co2 f r a c t i o n t o p o f column
26 va r7 <− c ( va r0 [ 5 0 , ] ) # Sweet gas comp h2o
27 va r8 <− c ( va r0 [ 5 1 , ] ) #N2 comp swee t gas
28 va r9 <− c ( va r0 [ 2 0 , ] ) # C a p t u r e r a t e
29 var10 <− c ( va r0 [ 4 6 , ] ) # Condenser du ty
30 var11 <− c ( va r0 [ 8 , ] ) # S o l v e n t l e a n temp
31 var12 <− c ( va r0 [ 9 , ] ) # S o l v e n t r i c h temp
32 var13 <− c ( va r0 [ 2 5 , ] ) # R e b o i l e r temp
33 var14 <− c ( va r0 [ 3 3 , ] ) # h e x r i c h t e m p i n
34 var15 <− c ( va r0 [ 3 4 , ] ) # h e x r i c h t e m p o u t
35 var16 <− c ( va r0 [ 3 5 , ] ) # h e x l e a n t e m p i n
36 var17 <− c ( va r0 [ 3 6 , ] ) # h e x l e a n t e m p o u t
37 var18 <− c ( va r0 [ 4 8 , ] ) # Sweet gas temp
38 r e s p o n s e <− c b i n d ( var1 , var2 , var3 , var4 , var5 , var6 , var7 ,

var8 , var9 , var10 , var11 , var12 , var13 , var14 , var15 , var16
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, var17 , va r18 )
39 r e t u r n ( r e s p o n s e )
40 }
41

42

43 # I m p o r t i n g t h e d a t a s e t s
44 my f i l e 0 1 <− d a t a . f rame ( r e a d e x c e l ( ” c o l u m n h e i g h t p l o t 1 0 . x l s ” ) )
45 my f i l e 0 2 <− d a t a . f rame ( r e a d e x c e l ( ” c o l u m n h e i g h t p l o t 1 2 . x l s ” ) )
46 my f i l e 0 3 <− d a t a . f rame ( r e a d e x c e l ( ” c o l u m n h e i g h t p l o t 1 4 . x l s ” ) )
47 my f i l e 0 4 <− d a t a . f rame ( r e a d e x c e l ( ” c o l u m n h e i g h t p l o t 1 6 . x l s ” ) )
48 my f i l e 0 5 <− d a t a . f rame ( r e a d e x c e l ( ” c o l u m n h e i g h t p l o t 1 8 . x l s ” ) )
49 my f i l e 0 6 <− d a t a . f rame ( r e a d e x c e l ( ” c o l u m n h e i g h t p l o t 2 0 . x l s ” ) )
50

51

52 # Apply ing t h e f u n c t i o n s on t h e i n p u t s and r e s p o n s e s
53 i n p u t 0 1 <− r e t u r n i n p u t s (my f i l e 0 1 )
54 r e s p o n s e 0 1 <− r e t u r n r e s p o n s e s (my f i l e 0 1 )
55 i n p u t 0 2 <− r e t u r n i n p u t s (my f i l e 0 2 )
56 r e s p o n s e 0 2 <− r e t u r n r e s p o n s e s (my f i l e 0 2 )
57 i n p u t 0 3 <− r e t u r n i n p u t s (my f i l e 0 3 )
58 r e s p o n s e 0 3 <− r e t u r n r e s p o n s e s (my f i l e 0 3 )
59 i n p u t 0 4 <− r e t u r n i n p u t s (my f i l e 0 4 )
60 r e s p o n s e 0 4 <− r e t u r n r e s p o n s e s (my f i l e 0 4 )
61 i n p u t 0 5 <− r e t u r n i n p u t s (my f i l e 0 5 )
62 r e s p o n s e 0 5 <− r e t u r n r e s p o n s e s (my f i l e 0 5 )
63 i n p u t 0 6 <− r e t u r n i n p u t s (my f i l e 0 6 )
64 r e s p o n s e 0 6 <− r e t u r n r e s p o n s e s (my f i l e 0 6 )
65

66 # Combining and w r i t i n g t o csv
67 i n p u t <− r b i n d ( i n p u t 0 1 , i n p u t 0 2 , i n p u t 0 3 , i n p u t 0 4 , i n p u t 0 5 )
68 r e s p o n s e s <− r b i n d ( r e sponse0 1 , r e sponse 02 , r e spons e03 ,

r e spon se04 , r e s p o n s e 0 5 )
69 w r i t e . c sv ( i n p u t , ” i n p u t v a l i d a t i o n 0 1 . csv ” , row . names = FALSE)
70 w r i t e . c sv ( r e s p o n s e s , ” r e s p o n s e v a l i d a t i o n 0 1 . csv ” , row . names =

FALSE)
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