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Abstract

Survival analysis is the study of data that describes the time
to a particular event. Including several events are often needed
to create a more accurate model of the world and these models
are referred to as multistate models. As survival data often
includes censored data, the hazard function plays a central role
in survival analysis. Heterogeneity in the distributions can be
accounted for by including covariates in a model for the hazard,
and we wish to estimate the effects of these covariates. In
addition, we use Weibull and exponential baseline hazards. We
use a Bayesian analysis approach for our multistate models,
which can be presented as latent Gaussian models (LGMs) by
assigning Gaussian priors to the latent field. The inferential tool
named integrated nested Laplace approximations (INLA) is used
for inference. INLA can be adapted and applied to complex
multistate models, making Bayesian analysis fast and accurate.
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Sammendrag

Levetidsanalyse er studiet av data som beskriver tiden til en
bestemt hendelse. Inkludering av flere hendelser er ofte nød-
vendig for å lage en mer nøyaktig modell av verden, og disse
modellene blir referert til som multistate-modeller. Siden lev-
etidsdata ofte inkluderer sensurerte data, spiller farefunksjonen
en sentral rolle i levetidsanalyse. Heterogenitet i fordelingene
kan gjøres rede for ved å inkludere kovariater i farefunksjonen,
og vi ønsker å estimere effektene av disse kovariatene. I tillegg
bruker vi Weibull og eksponentielle grunnlinjefarer. Vi bruker en
Bayesiansk analysetilnærming for våre multistate-modeller, som
kan presenteres som latente Gaussiske modeller (LGMs) ved å
tilordne Gaussiske priors til det latente feltet. Inferensverktøyet
kalt integrerte nestede Laplace-tilnærminger (INLA) brukes til
å utføre inferens. INLA kan tilpasses og brukes på komplekse
multistate-modeller, noe som gjør Bayesiansk analyse rask og
nøyaktig.
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Chapter 1

Introduction

Survival analysis is the study of data that describes the time
to a certain event. By event we mean occurrences in the life
of individuals that are of interest in scientific studies, for ex-
ample in medicine, biology, or econometrics. Such events can
be death, cancer diagnosis, divorce, the birth of a child, falling
asleep, anything that can be of scientific interest. If an individ-
ual experiences an event of interest, we say that the survival
time is observed (or uncensored), while if the event does not
happen, we say it is censored. In short, censoring refers to in-
complete data by means of unobserved event times. The survival
analysis techniques resemble regression analysis, with the im-
portant distinction that the outcome variable time is always
non-negative and often censored. In fact, ordinary statistical
methods like regression analysis cannot handle right-censored
(and left-truncated) survival data. This is why survival times
requires a different statistical theory which is built upon two
basic concepts; namely the survival function S(t) and the hazard
rate h(t). The survival function gives the expected proportion of
individuals for which the event has not yet happened by time
t. In contrast, the hazard rate gives the limiting probability
of experiencing the event of interest in the short time interval

7



8 CHAPTER 1. INTRODUCTION

[t, t+ dt], given that an individual has not yet experienced the
event of interest by time t. Therefore, the survival function
specifies an unconditional probability, while the hazard rate is
defined by means of a conditional probability.

Usually, survival analysis deals with one event, but some exten-
sions allow us to study situations where one individual is at risk
of experiencing one event or several events. When there are two
or more events that a patient is at risk of experiencing, we call
it a competing risks model. If recurrent events can happen to
the patient, we call it a transient model. We use the umbrella
term multistate models for both the competing risks model and
the transient model since they are survival models with multiple
states. The motivation for this thesis is the survival data on
cardiac arrest in children and adolescents. The way these pa-
tients experience different heart palpitations can be formulated
as a transient model. The patients in this study are observed to
make transitions within the transient model, where some states
are recurring. Additionally, we adapt the cause-specific hazards
analysis, which means competing events may be coded as a cen-
soring event as long as this is done for every competing event
type in turn.

A common goal of survival analysis is to assess the effects of sev-
eral factors on survival. This is also a goal of ours, in addition to
estimating the hazard functions. We assume parametric baseline
hazards for each transition and include covariates through the
Cox model. Since we specify the baseline hazard, which is not
done in the standard Cox model, built-in functions in R cannot
be used for inference. Additionally, adding prior distributions to
the model parameters, thus entering the Bayesian world, makes
inference more complex. Usually, inference for Bayesian models
has to rely on the Markov-Chain Monte-Carlo techniques, which
can be slow to converge and challenging to implement. That
is why we will be characterizing our survival models as latent
Gaussian models (LGMs), which enables us to use the integrated
nested Laplace approximation (INLA) method proposed by Rue,
Martino, and Chopin (2009). This scheme based on Bayesian
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inference is used for its computational efficiency and the abil-
ity to incorporate various modeling elements available in the
accompanying R-INLA package (r-inla.org).

The simple survival model will first be presented in Chapter 2 to
introduce the topic of survival analysis. We then explore more
complex multistate models in Chapter 3. We base our simulations
on the paper by Niekerk, Bakka, and Rue (2019), where they show
how to apply the INLA inferential scheme to a competing risks
model with three competing states and longitudinal observations.
A simplified competing risks simulation study is presented in
Chapter 5.1. Since transient models can be viewed as nested
competing risks, it was necessary to work through and understand
the method on a competing risks model before attempting a more
complex, transient model. A simulation study on a transient
model is presented in Chapter 5.2 in preparation for Chapter 6,
where we tackle real-life data on cardiac arrest patients. Chapter
7 contains the discussion of this thesis.
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Chapter 2

Simple Survival
Analysis

Survival analysis is the study of data that describes the time to
an event. An event can be defined as an experience of interest
and can be of either positive or negative connotation. Typically,
survival analysis is used in the biomedical field, where the survival
times are associated with negative events, such as death or disease
occurrence. However, the survival endpoint can also refer to a
positive event such as skill learned or tumor response. In the first
part of this chapter, we will consider standard single endpoint
survival data, which we will refer to as simple survival analysis.
Then, in Chapter 3, we will consider survival models with several
endpoints and recurring events. Recurring events will be the
main focus of this thesis, but it is essential to present the basic
theory before extending it to more complex models.

The simple survival model can be represented as in Figure 2.1.
From Figure 2.1 we see that state 0 is the initial state, and
state 1 is a terminal event. A terminal state will sometimes be
referred to as “death.” We are interested in the time T that the
individual spends in state 0 before reaching state 1. The time T

11



12 CHAPTER 2. SIMPLE SURVIVAL ANALYSIS

0 1

Figure 2.1: Simple survival model

is the response variable and must be a non-negative continuous
or discrete random variable. The survival function S(t) denotes
the probability that a patient survives longer than time t and is
mathematically expressed as

S(t) = Pr(T > t) = 1− F (t), (2.1)

where F (t) is the cumulative distribution function of T. The
survival function is monotonically non-increasing and right con-
tinuous. At time t = 0, none of the patients have experienced
the event, so S(0) = 1. Often we assume that over time, all
individuals will experience the event of interest, so we write
S(∞) = limt→∞ S(t) = 0. This, however, is not necessarily true
for all clinical studies. Some events do not necessarily happen to
all individuals, like divorce or testicular cancer, so the random
variable T may be infinite. In these situations, we say that the
survival function S(t) will decrease toward a positive value as t
goes to infinity, S(∞) = limt→∞ S(t) = a, a > 0.

We define the cumulative distribution function (CDF), which
can be viewed as the complement to the survival function,

F (t) = P (T ≤ t) =
∫ t

0
f(s) ds (2.2)

where f(·) is the probability density function (PDF). We can
derive the CDF and the PDF from each other from the expression

F ′(t) = f(t). (2.3)
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The following result is used extensively in survival analysis,

f(t) = h(t) · S(t), (2.4)

where h(t) is the hazard function. The hazard function is defined
as

h(t) = lim
∆t→0

P(t ≤ T < t+ ∆t|T ≥ t)
∆t , (2.5)

that is, the instantaneous rate of failure for the patient in the
interval [t, t+ ∆t]. We will discuss the hazard function more in
Chapter 2.2

2.1 Censoring and truncation
The models used in survival analysis allow censored data, which
the standard linear regression cannot handle. Censoring means
that the event is not observed. There are three types of cen-
soring; left-censoring, interval-censoring, and right-censoring.
Left-censoring happens when the event has already occurred
before the start of the study, but we do not know when it hap-
pened. For this reason, left-censored data is usually not included
in a study. Interval-censoring is where the failure time is only
known to have occurred within a specified time interval. Finally,
right-censoring happens when the event has not yet occurred by
the end of the study. For right-censored data, all we know is that
the actual failure time is greater than a particular value, but
not its exact value. We will only be working with right-censored
data, as this is much more prevalent, and will refer to this only
as censoring from now on. We also assume a random censorship
model where the censoring time C is independent of the event
time T , as described by Beyersmann, Allignol, and Schumacher
(2012). For individual i an observed time is recorded as the
event time Ti, while Ci denotes a censored time. Individual i’s
recorded response is presented as
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(Ti ∧ Ci, δi) . (2.6)

which is called the data point yi for that individual. The ∧
notation in Equation (2.6) means that patient i’s recorded time
is either an event time Ti or a censoring time Ci, whichever
comes first. The δi is the indicator of the event happening or
not, taking the value of 1 if the event happened (uncensored)
and 0 if it did not (censored). δ can be written mathematically
as δ = 1(T ≤ C). If, for example, patient i experiences the event
of interest at time Ti = 5, then that patient’s recorded response
is (Ti = 5, δi = 1). If, however, patient i has not experienced
the event of interest at last check-up time t = 5, then promptly
drops out of the study, that patient’s response is (Ci = 5, δi = 0).
Usually, the study is closed at a predetermined fixed time, so
an individual’s event time can be the predetermined censoring
time as the study is closed. Unobserved failure times give us
incomplete observations. However, instead of throwing away
information about a person due to the lack of an event time, we
use all the data we have up until the time of censoring, as it
provides valuable information.

Another type of “incomplete” data comes in the form of trun-
cation. There is only one type of truncation, left-truncation.
We say that data is left-truncated for the patients who enter
the study later than time origin 0. One may also use the term
delayed entry about such data. We denote individual i’s left-
truncated/delayed entry time by Li. This delayed entry time Li
is vital to account for and include in the data, as the hazard for
an event happening at time t may be different at time origin 0
and entry time Li. However, if the hazard function is constant,
left-truncation does not need to be accounted for. Different
hazards will be explained in Chapter 2.2. If an individual expe-
riences the event before their left-truncation time (Ti ≤ Li), this
individual will never enter the study. Individual i is in the study
if there is a left-truncation time Li (the individual has entered
the study), and the maximum recorded time Ti ∧ Ci has not yet
happened. This can mathematically be expressed as
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L < t ≤ T ∧ C.

If an individual i enters the study late, its recorded response by
the end of the study is

([Li, Ti ∧ Ci], δi). (2.7)

2.2 Hazard function
As we have discussed, one cannot always know all failure times
when doing a clinical study. This is because the true event
times are censored, hidden from us. Luckily, hazards remain
undisturbed by censoring and plays a central role in survival
analysis. This is why survival analysis is hazard-based, and
below, the hazard function will be presented and explained.

Assume a patient has survived up to time t. The instantaneous
rate of failure for the patient in the interval [t, t+ ∆t] is called
the hazard function, and is expressed as a limit in the following
way:

h(t) = lim
∆t→0

P(t ≤ T < t+ ∆t|T ≥ t)
∆t (2.8)

Here, we let ∆t approach zero, giving the interpretation of the
hazard of dying at time t. The hazard function has the following
relations with the PDF, CDF, and survival function:

h(t) = f(t)
S(t) = F ′(t)

S(t) = −S
′(t)
S(t) . (2.9)

where the penultimate equality is the result of F (t) = 1 −
S(t) =⇒ d

dtF (t) = d
dt1 −

d
dtS(t) =⇒ F ′(t) = −S′(t). Note

the conditional part of Equation (2.8), which represents the
fact that the hazard rate is defined by means of a conditional



16 CHAPTER 2. SIMPLE SURVIVAL ANALYSIS

probability. Also note that the hazard rate can essentially be
any non-negative function.

The hazard function can alternatively be expressed as the cumu-
lative hazard function,

H(t) =
∫ t

0
h(s) ds = −

∫ t

0

d

ds
[lnS(s)] ds

= −[lnS(s)]t0 = − lnS(t). (2.10)

From this expression we can find another relation between the
survival function and the cumulative hazard function,

S(t) = e−H(t). (2.11)

Details about how we extend the notation when working with
multistate models will be presented in Chapter 3.

2.3 Kaplan-Meier
The Kaplan-Meier (KM) method is a non-parametric method
of estimating the probability of surviving until time t. We say
that the patients currently at risk of experiencing an event under
observation are included in the risk set. The KM estimation of
the survival curve is defined as

Ŝ(t) =
∏
i:ti<t

(
1− di

ni

)
, (2.12)

where ni is the number of subjects in the risk set at time ti,
and di is the number of individuals that experience the event
of interest at this time. In Equation (2.12), information on all
patients (censored and uncensored) is used and combined in the
risk set to estimate the KM curve. They are included in the risk
set if they have not already experienced the event of interest at
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time ti. A new risk set is calculated every time an individual
experiences the event of interest or is included in the study by
a left-truncated time. If an individual experiences the event of
interest, they are removed from the risk set, and the recorded
number of the events increases by one. If a person drops out of
the study, dies from another reason than what is being studied,
or for any other reason is lost to follow up, they are removed
from the subsequent risk set without the number of the event
increasing. Allowing left-truncation implies that the risk set will
not only decline over time but also increase when new individuals
enter the study. The data structure needed to calculate the KM
estimate is ordered failure times.

We conclude this section by presenting an exemplary KM curve in
Figure 2.2. As can be seen, there are two KM curves. The dataset
myeloid of package survival generated these KM curves. This
simulated dataset is based on a trial in acute myeloid leukemia,
where two treatments are being compared; treatment A and
treatment B. The vertical “tacks” represent a censored time. We
will not further detail KM analysis, as we will not demonstrate
it in our simulated studies or real-life data analysis.
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2.4 Cox Regression
In a homogeneous population, the distribution of the time to
event, described by the hazard, is the same for each individual.
Therefore, we can use a standard function for the hazard, which
assumes all individuals have the same hazard. However, it is
often unreasonable to assume all individuals are subject to the
same risk. It is rather reasonable to assume some individuals
have a higher hazard of falling ill than others, based on some
factors. This means we assume a heterogeneous population and
should not assume the same hazard functions for all individ-
uals. Heterogeneity in the distributions can be accounted for
by including covariates in the model for the hazard. In this
model, individuals with the same value of the covariates will
have the same distribution, but usually, the values differ for each
individual. Therefore, we call the hazard function a proportional
hazard function, as we assume the exact shape of the baseline
hazard for all individuals, but the hazards might be scaled for
different values of the covariates.

For this reason, these models are the most common in survival
analysis. These covariates can sometimes help explain the sur-
vival of the patients. We are often interested in how several
covariates affect the survival probability, and we want to use
both categorical and continuous covariates in our model. How-
ever, the Kaplan-Meier curve is only suitable for stratifying the
data with one categorical covariate. In the relative risk model,
we assume that the covariates zi(t) for individual i is related to
the hazard rate h(t) by the following relation:

hi(t) = h0(t) · r(β,Zi(t)), (2.13)

where h0(t) is the baseline hazard, r(β,Zi(t)) is the risk func-
tion, β is the vector of regression coefficients and Zi(t) is the
vector of covariates for patient i. The baseline hazard function
h0(t) corresponds to the hazard of experiencing the event if all
covariates zi equal zero. The baseline hazard can be a function
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of time t, which means the baseline hazard may vary with time
or be constant concerning time.

The commonly used form of the relative risk function is the
exponential function. This is called the Cox regression model,
also called the proportional hazards model, introduced by Cox
(1972). For each individual i, the Cox model takes the form

hi(t) = h0(t) · r(β,Zi(t))
= h0(t) · exp {ηi} (2.14)

Different possible baseline hazard functions will be presented
in Chapter 2.5, but the general case for the Cox model is to
not assume a form for h0(t). We get the basic Cox model when
ηi = βTZi, where β is the vector of regression parameters and
Zi is the vector of observed covariates. By letting the predictor
ηi take the structured additive form

ηi = β0 +
nβ∑
k=1

βkZki +
nf∑
j=1

wijf
(j)(uij) + εi , (2.15)

we are able to include non-linear effects through the covariates
u using functions

{
f (j)(·)

}
, for example group-specific random

effects (frailties). Here β0 is the intercept, and the {βk}s are
the regression coefficients for the fixed effects Z. The wij are
known weights defined for each observed data point yi. Finally,
the εis are unstructured random effects. Frailties are useful to
include in survival analysis when we suspect dependent survival
times in certain clusters or unobserved heterogeneity (see Balan
and Putter (2020) and Niekerk, Bakka, and Rue (2019)). A
reason for including random effects as frailties is that family
members may share environmental and genetic characteristics
which affect their survival times, or we have recurrent events for
several individuals, so it may not be appropriate to treat them
as independent observations.
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Compared to other relative risk models, Cox’s model is commonly
used because of its simple interpretation of the hazard rate ratio
and assumption-free baseline hazard function. It is one of the
most natural forms since it produces only positive values. A
fundamental assumption for the Cox model is that the hazard
functions for the patients should be proportional and not cross,
hence the name proportional hazards model. We are primarily
interested in estimating the regression coefficients β in Cox
regression to see if one group has a relatively higher risk than
another group. We assume equal baseline hazard functions for
all groups, which is why this term cancels out when comparing
two patients:

h1(t)
h2(t) = h0(t) · exp {η1}

h0(t) · exp {η2}
= exp {η1}

exp {η2}

= exp
{

p∑
k=1

βkZ1k −
p∑
k=1

βkZ2k

}
= exp {β1(Z11 − Z21) + · · ·+ βp(Z1p − Z2p)} (2.16)

Say we wish to estimate the effects of a unit increase in one of
the covariates, e.g., covariate Z1. Suppose that Z1 is Age for an
easy understanding. To quantify the effect of an increase of one
year, we add 1 to the covariate value Z1 of patient 1, so patient
1 is one year older than patient 2. The rest of the covariates are
equal for patients 1 and 2. The effect of a unit increase in the
covariate Z1 is:

h1(t)
h2(t) = exp {β1(Z11 + 1− Z21) + · · ·+ βp(Z1p − Z2p)} = exp(β1).

(2.17)

All the other effects reduce to zero, as we can only truly compare
the effect of one covariate if all the others are equal. Hence, the
covariates have a multiplicative effect on the hazard. The Cox
model does not estimate the survival function itself because we
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do not specify the baseline hazard function other than that it
must be non-negative. We will not further detail the basic propor-
tional hazards Cox model, as we will not assume an unspecified
baseline hazard in any of our simulation studies. Instead, we
will be assuming a parametric baseline hazard, the details on
which will be presented in the following section. Still, when
comparing patients with the same parametric baseline hazard,
the interpretation of the effects of the covariates are the same as
for the basic Cox proportional hazards model.

2.5 Parametric baseline hazards mod-
els

From what we saw, we do not get a specification of the intercept,
as the baseline hazard h0(t) is unspecified. It does, however,
allow us to estimate all the other coefficients, so if the interest
lies in hazard ratios, Cox’s model works well. If we want a more
predictive model, we should put a parametric or non-parametric
assumption on the baseline hazard function to improve upon the
model. Specific parametric models have been used repeatedly
throughout the literature on failure time data; the exponential
and Weibull models (see Niekerk, Bakka, and Rue (2019) and
Martino, Akerkar, and Rue (2011)). We will be using both of
these distributions in our simulations and the model building for
the real-life data.

The baseline hazard is an important topic for this thesis, as its
assumed shape will affect the simulations of event times and
the estimated hazard shape of the real-life data. We define
the baseline hazard as the function which captures everything
equal for the patients, had their covariates been zero. Since
Equation (2.15) includes an intercept term, which is equal for
all patients, we will include the intercept term in the baseline
hazard formulation. The only part which is genuinely individual
for each patient is the fixed effects Zi. This may not be the
standard notation for baseline hazards, but we found it helpful to
separate the hazard function into two; one part with information
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about everything equal for all patients, and the other part where
information may differ between patients. Details on how this is
written mathematically is presented below for each of the two
parametric models.

2.5.1 Exponential baseline model
The one-parameter exponential model is obtained when the haz-
ard function is constant over the range of T. A constant hazard
means that the instantaneous failure rate is independent of t, and
is often referred to as the memoryless property of the exponential
distribution. The risk of failure in a time interval of specified
length conditioned on having survived up to the interval is the
same for all intervals regardless of how long the patient has been
in the study. Since we want to include explanatory covariates
in our models, we will put the exponential assumption in the
baseline hazard, which can be seen in Equation (2.18):

h0(t) = λ0, λ0 > 0 , (2.18)

where λ0 = exp(β0). The complete hazard will look like

h(t) = exp(η), (2.19)

where λ0 of Equation (2.18) is included in η in Equation (2.19)
as an intercept term. We will be using the exponential baseline
model in the simulation studies as well as in the real-life data
analysis.

2.5.2 Weibull baseline model
The Weibull model is a generalization of the exponential model
and allows for a power dependence of the hazard on time. The
baseline hazard will look like

h0(t) = αtα−1λ0, α, λ0 > 0, (2.20)
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where α is a hyperparameter that decides the shape, and λ0 =
exp(β0). We are not necessarily interested in estimating α, and
it shall be referred to as a nuisance parameter or hyperparameter.
Basing our model on the Cox proportional hazard model and
using the Weibull baseline hazard function, our model is now:

h(t) = αtα−1 · exp {η} (2.21)

where λ0 from the baseline hazard of Equation (2.20) is included
in η as an intercept term, like in the exponential model presented
above. Using a Weibull baseline hazard assumes that all pa-
tients have the same time-varying baseline hazard. By including
exp(ηi), which is different for each individual i = 1, . . . , N , we
say that the shape of the hazard for each patient is similar up
to a constant. The shape remains the same but multiplied by
the constant term exp(ηi).

2.5.3 Likelihood function for censored survival
data

As with most statistical models, we want to determine how
likely our data is given our parameters. The likelihood function
expresses this. Given N patients with lifetimes governed by a
survival function S(t) with associated density function f(t) and
hazard function h(t), we can express each patient’s contribution
to the likelihood function. If patient i experiences the event of
interest at time ti, then its contribution to the likelihood function
is

Li = f(ti) = h(ti) · S(ti).

However, if patient i is censored, all we know is that its lifetime
exceeds ti. The contribution of a censored observation to the
likelihood function is

Li = S(ti).
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We want to combine both cases in the likelihood contribution
and do so by introducing the event indicator δi, which takes
the value 1 if patient i experiences the event of interest or 0
otherwise;

Li = [h(ti) · S(ti)]δi [S(t)]1−δi . (2.22)

From Equation (2.22) we see that S(t) is included whether δi
equals 0 or 1, so we can safely move S(t) outside any parentheses.
The complete likelihood function for censored data is then

L =
N∏
i=1

Li =
N∏
i=1

[h(ti)]δiS(t). (2.23)

Taking the log and recalling that S(t) = exp(−H(t)) we get

logL =
N∑
i=1

[δi · log h(ti)−H(t)]. (2.24)

Given a Weibull hazards model, the log-likelihood is as in Equa-
tion (2.25).

logL =
N∑
i=1

[
δi log(αtα−1

i exp(ηi))− tαi exp(ηi)
]

=
N∑
i=1

[δi(logα+ (α− 1) log ti + ηi)− tαi exp(ηi)] (2.25)

Given an exponential hazards model, the log-likelihood is as in
Equation (2.26).
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logL =
N∑
i=1

[δi log(k · exp(ηi))− kt · exp(ηi)]

=
N∑
i=1

[δi(log k + ηi)− kt · exp(ηi)] (2.26)

2.5.4 Semi-parametric model
As this thesis was motivated by the real-life data on cardiac
arrest among adolescents where not much data was available,
we propose a fully parametric approach. However, one can as-
sume a non-parametric baseline hazard with the parametric Cox
model, resulting in a semi-parametric model. A semi-parametric
approach relies more on the observed data, meaning we would
have needed a substantial amount of data to get good results.
It is, however, possible to use a semi-parametric approach for
survival data with INLA. The method relies on splitting the
time axis into a finite partition and assuming the baseline hazard
constant in each time interval. This model is referred to as
the Cox model with piecewise log-constant baseline hazard. It
also typically involves using a random-walk model as a prior
for smooth realizations. More details can be found in Martino,
Akerkar, and Rue (2011).
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Chapter 3

Multistate models

Up until now, we have thought of the event as only one absorbing
state. However, there may be several events a patient is exposed
to in the real world that we are interested in modeling. The events
may be absorbing or non-absorbing states, meaning terminal
or non-terminal events. In the case where there are several
terminal states, we call the models competing risks models and
these models are the simplest multistate models. We are also
interested in the models that have a terminal event following
a non-terminal event, and we wish to study the dependency
between these. In addition, there may be several non-terminal
events between which the patient may transition, which we
call transient models. Exploring these transient models will be
this thesis’s primary goal, as there already exists a paper on
competing risks with example simulations (see Niekerk, Bakka,
and Rue (2019)). However, the competing risks model will still be
presented to form a baseline understanding of Bayesian inference
for survival analysis with competing risks. We also present a
competing risks simulation study in Chapter 5.1. This way,
we get an easier transition and a more intuitive understanding
of Bayesian inference on the lesser worked-through transient
models.

27
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3.1 Competing risks
Competing risks (Hoel (1972), Moeschberger and David (1971),
Altshuler (1970)) is the simplest extension from the single event
model we first start learning about in survival analysis. In
competing risks models, we model several competing events.
Transitions between the initial state and the competing risks
states are considered. There is no moving between the events, as
the events are all terminal. The patients are at risk of multiple
terminal events, assuming that these events are mutually exclu-
sive. That means the patient is at risk of any of these events
until one event occurs, then the risk of all other events is zero.
Here, the risk of each event is dependent on the assumption of
surviving all other events.

Figure 3.1 graphically explains how a patient can go from the
initial state 0 to one of two terminal states 1 or 2, with hazard
functions h01 and h02, respectively.

0

2

1

h02

h01

Figure 3.1: Two competing risks

This figure can of course be extended to include J terminal
states, creating J cause-specific hazards h0j , j = 1, . . . , J . The
one-sided arrows show that once a patient has ended up in one
of the terminal states, they cannot return to the initial state.
Note that the notation hlj has been used, where the l placement
refers to the from state and the j placement refers to the to
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state. As there is no other starting state than 0 in a competing
risks model, l = 0. Note that we could have used the notation
h1 and h2 for the cause-specific hazards of going to state 1 or
state 2, respectively. It will, however, be useful with specific
notation when moving onto transient models where one may go
from different states than 0. Thus, we incorporate the same
notation for competing risks as for transient models.

An important topic in multistate modeling is censoring by a
competing event. A difficulty in multistate theory is the assump-
tion of independent censoring. Since we are modeling several
risks compared to a simple survival model, censoring becomes
informative. If an individual experiences event type 1, it cannot
experience event type 2 and vice versa. This is because both
events are terminal. The event 0→ 1 is then observed for that
specific individual, while 0→ 2 will be censored. The censoring
is because event 1 happened first, and hence it is no longer inde-
pendent. Beyersmann, Allignol, and Schumacher (2012) explain
that there are primarily two different approaches to competing
risks analysis; (1) the cause-specific hazard approach (Prentice
et al. (1978)) and (2) the subdistribution approach (Fine and
Gray (1999)). Since we incorporate covariates in our models, we
call them the proportional cause-specific approach and the pro-
portional subdistribution approach. Both modeling approaches
have advantages and disadvantages. The proportional cause-
specific approach assumes right-censoring and left-truncation to
be independent, where the censoring and truncation can depend
on covariates included in the model. The data is incorporated
through a predictor term for each cause-specific hazard function.
In contrast, the proportional subdistribution approach assumes
that the competing risks data are subject to random censoring
only, where the censoring may not depend on covariates. Here,
the data enters the model through a predictor term in each of
the cumulative incidence functions (CIFs), the marginal cumula-
tive probability of experiencing the specific event. Discussions
about which approach to take is an ongoing debate. Taking
the approach of Niekerk, Bakka, and Rue (2019) along with
the algorithm of Beyersmann, Allignol, and Schumacher (2012),
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we use the proportional cause-specific hazard analysis method.
More on this topic will be discussed in Chapter 7. For now, all
we need to know is that the method of cause-specific hazards
works and is the way we will be conducting all analyzes in this
thesis.

The notation for competing risks observations is similar to what
we saw in Chapter 2, but we expand the δi indicator to δij to
include information about the specific state the patient has moved
to. We shall see it used in Equation (3.12). The competing risks
process moves out of the initial state 0 at time T ,

T := inf{t > 0 | Xt 6= 0}. (3.1)

In the two-state competing risk model in Figure 3.1, the compet-
ing risks process is either in state 1 or in state 2 at event time T
and is denoted by the cause of failure

XT ∈ {1, 2}. (3.2)

We account for right-censoring and left-truncation as explained
in Chapter 2 in the following manner,

([L, T ∧ C],1(T ≤ C) ·XT ), (3.3)

where the status indicator 1(T ≤ C) ·XT ∈ {0, 1, 2} equals 0 if
the observation was censored.

The cause-specific hazards are defined in a similar manner as the
hazard function defined in Chapter 2.2 (Moore (2016)), except
now we are including the risk that exactly cause j is happening:

h0j(t) = lim
∆t→0

P(t ≤ T < t+ ∆t,XT = j | T ≥ t)
∆t . (3.4)

We shall be using the parametric form of the Cox model for our
cause-specific hazard functions, so we write
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h0j(t | η0j ,θ0j) = h0
0j · exp(η0j), (3.5)

where η0j is as in Equation (2.15), and the vector of hyperpa-
rameters θj depends on the parametric form of the baseline
cause-specific hazard h0

0j (e.g. the shape parameter α of the
Weibull model) (Niekerk, Bakka, and Rue (2019)).

The cause-specific hazard function for individual i is written

h0j;i(t | η0j
i ,θ

0j) = h0
0j · exp(η0j

i ). (3.6)

We often do not write the hazard function as h0j(t | η0j ,θ0j)
simply because it is quite extensive. However, in this thesis
the hazard function always conditions on the η function and the
hyperparameters (θ0j) even when we only write h0j(t). Assuming
the basic form of the linear predictor of Equation (2.15) and p
covariates, for each individual i, the linear predictor for transition
0→ j is

η0j
i = β0j

0 + β0j
1 Z1 + · · ·+ β0j

p Zp. (3.7)

Using the competing risks model from Figure 3.1 as an example,
there are two linear predictors as there are two cause-specific
hazard functions. Each hazard function may have different
parameter estimates, which is why we must be specific with the
notation.

We write H0j(t) for the cumulative cause-specific hazards

H0j(t) :=
∫ t

0
h0j(u) du. (3.8)

All cause-specific hazards should completely determine the
stochastic behavior of the competing risks process. Adding all
the cause-specific hazards from Equation (3.5) gives the all-cause
hazard due to the additivity of probabilities. Mathematically,
this is expressed as
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h0·(t) =
J∑
j=1

h0j(t), (3.9)

and the interpretation is the hazard of experiencing any event
at time t. We also write

H0·(t) :=
∫ t

0
h0·(u) du

=
J∑
j=1

H0j(t), (3.10)

for the cumulative all-cause hazard.

The survival function P (T > t), or S(t), of the waiting time T
in the initial state 0 is a function of all the cause-specific hazard
functions and is written

S(t) = P (T > t) = exp(−
∫ t

0
h0·(u) du)

= exp(−H0·(t)). (3.11)

The interpretation of the survival function for a competing risk
is the probability of surviving any event past time t. The likeli-
hood function for competing risks models is similar to that of a
simple survival model, but we expand it to take into account J
competing risks for N individuals. We denote the cause-specific
hazards for cause j = 1, . . . , J as in Equation (3.5). The likeli-
hood function for the observed event times t = {t1, . . . , tN} with
event indicators δij , i = 1, . . . , N, j = 1, . . . , J is:
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L(η,θ|t) = π(t|η,θ)

=
N∏
i=1

J∏
j=1

h0j;i(ti|η0j
i ,θ

0j)δi;0j exp
(
−
∫ ti

0
h0j
i (u|η0j

i ,θ
0j)du

)
,

(3.12)

where di;0j is an indicator if individual i died from cause 0→ j
(Niekerk, Bakka, and Rue (2019)).

We simulate a competing risks model with two competing risks
for patients with fixed covariates in Chapter 5.1. We show how
well the predefined parameter values are estimated using INLA
as our inferential scheme and how well it captures the true hazard
function. INLA will be presented in Chapter 4 where we will
discuss how it can be used in survival models.

3.2 Semi-Competing risks
In the statistical literature, data that arise when the observation
of the time to some non-terminal event is subject to some terminal
event are referred to as semi-competing risks data. Figure 3.2 is
a semi-competing risks model. Compared to the competing risks
model, the semi-competing risks model includes a non-terminal
state and allows a transition from the non-terminal state 1 to
the terminal state 2. This type of model is also known as the
Illness-Death model, where the patients are at risk of falling
ill, dying without illness, or dying after illness, and is of great
importance in biostatistics.

The general Illness-Death model differentiates between three
hazards; the hazard of illness, the hazard of death without illness,
and the hazard of death with illness. We will not look further
into this multistate model, but it is a stepping stone to working
with transient models.



34 CHAPTER 3. MULTISTATE MODELS

0
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1

h02

h01

h12

Figure 3.2: Semi-competing risks model, three states

3.3 Transient models
While competing risks refer to several competing terminal events,
models with non-terminal events out of which one can transition
are referred to as transient models (Kay (1982), Scheike and
Zhang (2007)). For example, Figure 3.3 is a typical transient
model, sometimes referred to as the Illness-Death model with
recovery. We will use the model in Figure 3.3 when simulating a
transient model as well as analyzing the real-life data.

0

2

1

h01

h02

h12
h10

Figure 3.3: Transient model, three states
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Here, the disease is curable as transitions between states 0 and 1
are possible in both directions. The clue with transient models
is to view them as nested competing risks (Beyersmann, Allignol,
and Schumacher (2012)). Instead of viewing the model in its full
complexity, only consider the individual’s possible risks given
their state. Take, for example, Figure 3.3, and let us say we are
following patient i who begins in state 0. They risk going to
state 1 or state 2 (like in the case of the competing risk in Figure
3.1). Say they end up in state 1, which is a transient state. The
risk they now face is going back to state 0 or to state 2. This
is simply another competing risks situation. Patient i can go
between these two competing risks situations until they end up
in terminal state 2, out of which there are no transitions.

Even though the notation for transient models is similar to that
of competing risks, we present them as there are slight differences.
Now, the notation for the hazard functions is

hlj(t | ηlj ,θlj) = h0
lj · exp{ηlj}. (3.13)

In the case of Figure 3.3, there are four different cause-specific
hazard functions. The cumulative cause-specific hazards can be
calculated similarly as in Equation 3.8. Since only two of the
three states in our transient model are transient states, we have
two all-cause hazards; one all-cause for the hazard out of state 0
and one out of state 1.

h0·(t) =
J∑
j=1

h0j(t), (3.14)

h1·(t) =
J∑
j=1

h1j(t). (3.15)

The cumulative all-cause hazards and survival functions are
found similarly as in Equations (3.10) and (3.11), respectively.
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Usually, a multistate model is assumed to be a time-
inhomogeneous Markov process (Beyersmann, Allignol, and
Schumacher (2012)), where the future development of the
process only depends on the current state. We also take into
account the time t0 the individual entered their current state.
This is sometimes referred to as a clock-forward model, as
opposed to a clock-reset model. The clock-reset model, also
known as the time-homogeneous Markov model, resets the time
when a transition has been made and only depends on the
length of the time interval, not the interval itself. This is best
explained by an example. Consider a patient who starts in state
0 at time 0. This patient is either transitioning to state 1 or 2,
which is a competing risk experiment with transitions hazards
h01(t) and h02(t). If the patient enters state 2, the experiment
stops as state 2 is a terminal state. However, if the patient
enters state 1 at time t0, i.e., Xt0 = 1, a second experiment
follows. Another competing risks experiment is carried out,
with transition hazards h10(t) and h12(t), t ≥ t0, i.e., in the
clock-forward model we only consider the transient hazards for
values t with t ≥ t0.

Note that movements within a multistate model generate ‘in-
ternal’ left-truncation (Beyersmann, Allignol, and Schumacher
(2012)), which does not happen in a competing risks model. Say,
individual i moves from state 0 to state 1 at time ti = 0.5. Since
state 1 is transient, individual i experiences the competing risks
of state 0 and state 2 but does not start from time 0 but rather
from time ti = 0.5. From this viewpoint, individual i has en-
tered the study at a delayed time, and time ti = 0.5 will be the
left-truncation time, referred to as Li = 0.5.

Another difference between a competing risks model and a tran-
sient model is the number of transitions/hazard functions. In a
competing risk model, the initial state is not considered a compet-
ing state. Since there is only one transition per competing state,
the number of competing states and transitions are the same. In
a transient model, we have additional transitions. Using Figure
3.3 as a reference, we have two additional transitions compared
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to Figure 3.1; the transition from state 1 to 0 and the transition
from state 1 to state 2. This turns state 0 into a competing
state once a patient is in state 1. Just as in the competing risks
chapter, the notation hlj has been used to prevent any confusion
about which transition we write about. Again, the l placement
refers to the from state and the j placement refers to the to
state.

The likelihood for a transient time-inhomogeneous Markov model
is almost the same as for a competing risks model, except we
use the notation lj and integrate from t0 instead of 0:

L(η,θ|t) = π(t|η,θ)

=
N∏
i=1

∏
lj

hlj;i(ti|ηlji ,θ
lj)δi;lj exp

(
−
∫ ti

t0

hlj;i(u|ηlji ,θ
lj)du

)
.

(3.16)

Pay special attention to lj here, as it refers to the specific
transitions in a transient model. For example, in the model
from Figure 3.3, we take the product over lj ∈ {0 → 1, 0 →
2, 1 → 0, 1 → 2}, meaning four different transitions with four
possibly different baseline hazard assumptions. In Chapter 5.2,
we simulate a three-state transient model for patients with fixed
covariates and show how well our chosen inferential scheme
handles this complex multistate model in terms of parameter
estimation and computing time.

Beyersmann, Allignol, and Schumacher (2012) raises the concern
about dependency in transient models, as an individual may
contribute more than one observed transition of the same type.
The concern is that the individual contributes a “cluster of
dependent data” to the analysis. However, they note that the
concern disappears if we follow the time-dynamic perspective
of the generating Algorithm 2 of Chapter 5.2 and since we rely
on the time-inhomogeneous Markov assumption. We can then
safely proceed with our simulations in Chapter 5.
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Chapter 4

Inferential scheme

This chapter is heavily based on the papers by Martino and
Riebler (2019) and Martino, Akerkar, and Rue (2011).

We wish to use Bayesian inference to analyze multistate time-to-
event data. However, Bayesian inference often relies on Markov
chain Monte Carlo (MCMC) techniques which require interac-
tion from the user to diagnose convergence and accuracy of the
estimates and often carry a high computational cost. The In-
tegrated nested Laplace approximations (INLA) approach is a
deterministic paradigm for Bayesian inference in latent Gaus-
sian models (LGMs) introduced in Rue, Martino, and Chopin
(2009). The main benefit of using INLA instead of the much-used
MCMC techniques is computational. Furthermore, INLA is fast
even for large, complex models and does not suffer from slow
convergence and poor mixing. As we shall see, we can present
the latent field in our hierarchical model as a latent Gaussian
field, resulting in a latent Gaussian model (LGM) and thus use
the INLA scheme to approximate the posterior distribution for
the model parameters. The methodology of INLA will be briefly
explained in this chapter, but the interested reader is directed
to Rue, Martino, and Chopin (2009) and Martino and Riebler
(2019) for more details.

39



40 CHAPTER 4. INFERENTIAL SCHEME

4.1 Bayesian inference and hierarchical
models

Bayesian inference is a method of estimating model parameters,
different from the frequentist inference method usually taught
in entry-level statistics courses. In the frequentist world it is
usually assumed that data is generated from some fixed, unknown
parameter. Let us call this parameter x, e.g., x = (µ, σ) in the
Gaussian distribution or x = λ in the Poisson distribution. A
typical inference method for estimating the value of x based
on data for frequentists is the maximum likelihood estimation
(MLE), which uses the likelihood of the observed data. The
likelihood gives the chance that each possible parameter value of
x produces the data that has been observed. The likelihood is
used in both frequentist and Bayesian statistics and is expressed
as

L(x|data) = f(data|x) =
N∏
i=1

f(datai|x) , (4.1)

where the i.i.d. assumption holds, N is the number of data points,
and datai is each data point. The MLE is the x that maximizes
the likelihood. This method uses only the observed data available,
giving little room for adding previous knowledge about the model
parameters. Frequentist statistics also depend on events being
repeatable and interpret probability as the long-run frequency
of repeatable experiments. However, in Bayesian statistics, the
parameters x are random variables with a distribution. In the
Bayesian world, we are often interested in finding the posterior
distribution π(x|data) of our parameters given the data, which
we can use to obtain different summary statistics of interest. The
posterior distribution is a probability distribution representing
our updated beliefs about the parameters after seeing the data.
If we already have some prior knowledge about the distribution
and parameters that generate the data before seeing the data,
it can be used to improve the posterior distribution. The prior
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knowledge about parameters usually comes from experience or
past experiments and is denoted π(x). However, we can also use
Bayesian inference if we do not have any prior knowledge. We can
include uninformative priors in the calculation of the posterior
distribution and still be in the Bayesian world (Gamerman and
Lopes (2006)).

Using the general Bayesian formula, we get that the expression
for the posterior distribution is

π(x|data) = f(data|x) · π(x)
π(data) , (4.2)

where the denominator π(data) =
∫
f(data|x) · π(x) dx and

can be seen as a normalizing constant. Sometimes π(data) is
difficult to calculate, and we ignore it by saying that the posterior
distribution is proportional to the likelihood times the prior;

π(x|data) ∝ f(data|x) · π(x) . (4.3)

Hierarchical models are common in Bayesian statistics and are
structured, typically, in three levels. The first level is the like-
lihood, the second level is called a latent field x, and the third
level is the hyperpriors. Latent means to be hidden or concealed,
and the field x is called latent since it is only observed through
the data y. Letting the data be represented by y, the latent field
by x and any hyperparameters by θ, we define the hierarchical
model as:

1. the likelihood π(y|x,θ) ,

2. the prior distribution π(x|θ) ,

3. the hyperprior distribution π(θ).

From the expressions above, we find the joint posterior distribu-
tion
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π(x,θ|y) = π(y|x,θ)π(x|θ)π(θ)
π(y) (4.4)

As in Equation (4.3), we can write the posterior as a proportion,

π(x,θ|y) ∝ π(y|x,θ)π(x|θ)π(θ). (4.5)

Equation (4.5) is usually not available in closed form, which is
why we need computational tools to approximate it. MCMC
techniques are usually used in the Bayesian setting, but we
propose the INLA scheme to perform the calculations faster.

4.2 Latent Gaussian models and INLA
All hierarchical models have a latent field. The characteristic
of LGMs is that the latent field x is assumed to have Gaus-
sian density conditional on some hyperparameters θ, so that
x|θ ∼ N (0,Q−1(θ)) (Rue, Martino, and Chopin (2009)). Here,
Q is the precision (inverse of covariance) matrix of the latent
Gaussian field. The data y are assumed to be conditionally in-
dependent given the latent field x and, possibly, some additional
hyperparameters in the likelihood. The data y is actually only
dependent on the latent field x through the linear predictor ηi.
The general form of the linear predictor is presented in Equation
(2.15), but we write it here again,

ηi = β0 +
nβ∑
k=1

βkzki +
nf∑
j=1

wijf
(j)(uij) + εi .

The linear predictor ηi connects the data to the latent field.
Hence, we can also add ‘complicated’ components in the models
(e.g., frailty effects), which results only in a trivial change in
the Gaussian part of the model. The LGM is completed by
also assuming some prior density for the hyperparameters θ.
The hyperparameter α from the Weibull likelihood is assigned a
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penalized complexity (PC) prior (Simpson et al. (2017) and van
Niekerk, Bakka, and Rue (2021)), which is a robust prior easily
accessed in R-INLA. This prior penalizes departure from a base
model and, for this reason, earned its name.

To sum up, the three levels of the LGM are

y|x,θ1 ∼
∏
i

π(yi|ηi,θ1)

x|θ2 ∼ N (0,Q−1(θ2))
θ = [θ1,θ2] ∼ π(θ)

The posterior distribution then reads:

π(x,θ|y) = π(y|x,θ)π(x|θ)π(θ)
π(y) (4.6)

where π(y|x,θ) is referred to as the likelihood, π(x|θ) is the
distribution of the latent field given the hyperparameters, π(θ) is
the prior density of the hyperparameters and π(y) is the marginal
likelihood.

Again, we can write the posterior density as a proportion,

π(x,θ|y) ∝
∏
i

π(yi|ηi,θ)π(x|θ)π(θ) (4.7)

where we can take the product over all individual likelihood con-
tributions since they are assumed to be conditionally independent
of each other.

For INLA to be effective, we require the latent field x to be
endowed with some conditional independence. That is, if two
elements of the field are conditionally independent given all the
others, then the corresponding entry of the precision matrix is
equal to zero:
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xi ⊥ xj |x−ij ⇐⇒ Qij = 0,

where the notation “−ij” refers to “all elements other than i and
j.” Hence, the latent field takes the form of a Gaussian Markov
Random Field (GMRF) (Rue and Held (2005))

π(x|θ) ∝ |Q(θ)|1/2 exp
{
−1

2xTQ(θ)x
}
∼ N(0,Q−1(θ)).

(4.8)

Given the structure of the GMRF the precision matrix Q(θ)
is sparse, therefore making computations considerably faster.
INLA does not estimate π(x,θ|y), but rather π(xl|y) and π(θk|y)
i.e. the posterior marginals for the latent parameters and hyper-
parameters, respectively. Theoretically, these are

π(xl|y) =
∫
π(xl|θ,y)π(θ|y) dθ (4.9)

π(θk|y) =
∫
π(θ|y) dθ−k (4.10)

To be able to integrate these expressions, INLA approximates
π(θ|y) for a certain θk and use the new approximated π̃(θk|y)
instead. This is where the Laplace approximation part of INLA
enters. Then, posterior marginals for the latent variables π̃(xl|y)
are computed via numerical integration:

π̃(xl|y) =
∫
π̃(xl|θ,y)π̃(θ|y)dθ

≈
K∑
k=1

π̃(xl|θk,y)π̃(θk|y)∆k (4.11)
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where θk are points accurately chosen in the θ space and ∆k are
integration weights.

Summing up, INLA can be applied to LGMs that fulfill the
following assumptions:

1. Each data point yi depends only on one of the elements
of the latent field x, namely the linear predictor ηi, so the
likelihood can be written as

y|x,θ1 ∼
∏
i

π(yi|ηi,θ1)

2. The size of the hyperparameter vector θ = [θ1,θ2] is small
(<20). This is necessary for the integral in (4.10) to be
computationally feasible, which is used further in (4.11).
The size of the latent field x can be large (103 − 105).

3. The latent field x is endowed with some conditional in-
dependence properties, resulting in a GMRF which has a
sparse precision matrix Q(θ2).

4. The linear predictor ηi depends linearly on the unknown
smooth functions of covariates.

5. The inferential interest lies in the univariate posterior
marginals π(xi|y) and π(θj |y).

4.3 Using INLA in Survival Analysis
We have seen the theory behind Bayesian inference, hierarchical
models, LGMs, and INLA in the sections above. In this section,
we want to connect the theory behind INLA with the topic
at hand; survival analysis. The Cox model has become the
default choice when dealing with continuous time-to-event data
(Andersen and Gill (1982), Wulfsohn and Tsiatis (1997), He et
al. (2016)), which we discussed in Chapter 2. Using Bayesian
methods with Cox-type models allows the use of the full likelihood
to estimate all unknown parameters in the model jointly. Martino,
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Akerkar, and Rue (2011) show that many of the Cox-type models
can be seen as LGMs, which will be summarized below.

We write the likelihood for the ith observation as π(yi|ηi,θ1), to
express how it depends on some structured additive predictor ηi
and, possibly, some hyperparameters θ1. Since we want to allow
left-truncation and right-censoring, we note that an observation
yi looks like ([Li, Ti∧Ci],1(T ≤ C)·XT ) as was seen in Equation
(3.3). The predictor ηi is as in Equation (2.15).

Niekerk, Bakka, and Rue (2019) showed that a competing risks
model fit in the LGM framework. Here, we show how the
competing risks model in Figure 3.1 and the transient model in
Figure 3.3 fit in the LGM framework, using the five steps from
the section above. From the likelihood functions in Equations
(3.12) and (3.16) the first assumption is fulfilled, as the likelihood
functions only depend on x through ηi. The second assumption
is fulfilled since the size of θ is small. We only use a Weibull
and an exponential baseline hazard, so the only hyperparameter
from the likelihood included is the α from Equation (2.21), as
the exponential model does not have any hyperparameters. The
latent field for a competing risks model is presented as

x = {{βljk }, {f
(lj)(·)}, {ηlji }}, (4.12)

which is the same way we write the latent field for a transient
model. Recall that a transient model is a nested competing
risks model. Note that the number of lj transitions is differ-
ent for transient models compared to competing risks models.
We need to include all ηlji functions in the latent field, e.g.,
for the transient model in Figure 3.3 we include the functions
η01
i , η

02
i , η

10
i and η12

i . The latent field in Equation (4.12) is an
LGM by assigning vague Gaussian priors. The third assumption
is also fulfilled as we assume conditional independence between
the elements of x. The fourth assumption is fulfilled as we use
the linear predictor ηi from Equation (2.15), which shows the
linear dependency on the unknown smooth functions. Lastly,
the fifth and final assumption is that the interest lies in the
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univariate posteriors of every element in the latent field and the
hyperparameters, which is fulfilled. If we wish to sample from
the joint posterior, there is a way to do that. We know that
π(x, θ) = π(x|θ)π(θ), so we can first sample from the marginal
posterior of the hyperparameter, θ∗ ∼ π(θ), and use those sam-
ples in the posterior of the latent field x ∼ π(x|θ∗). That way, it
is like sampling from the joint posterior. We do this using the
function inla.posterior.sample().

Above, we reasoned how multistate models could be viewed as
LGMs, making it possible to use INLA to analyze Bayesian mod-
els. Moreover, INLA provides fast and accurate approximations
to the posterior marginals compared to the usual MCMC method.
The following chapter shows the process of simulating survival
data and how we use INLA as the inferential scheme for these
models.
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Chapter 5

Simulation studies

This chapter contains two simulation studies. The simulations
are done in R, and the R-scripts used in this thesis are publicly
available at https://github.com/juliib/Multistate_model
s_with_INLA_master. We simulate in order to show that
the proposed methodology works. That is, the methodology
can recover the underlying data-generating mechanism even in
the presence of right-censoring and left-truncation. Niekerk,
Bakka, and Rue (2019) shows how to simulate a competing
risks joint model with longitudinal data, with INLA as the
inferential scheme. Using that paper as guidance, we also present
a competing risks simulation before presenting a more complex
multistate model; the transient model. Our modeling approach
is the proportional cause-specific hazards model, which was
explained in Chapter 3.

5.1 Competing risks simulation
The first simulation study we will look at is the competing
risks model. Having seen a competing risks simulation analyzed
with the INLA scheme will hopefully make understanding the
transient model simulation easier. The initial state S0 is 0, where
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all patients start at time origin t0 = 0. Every individual stays
in state 0 until another event occurs, whichever comes first of
state 1 or state 2. Figure 5.1 shows a visual representation of the
model. The circles represent the possible states and the pointed
arrow show which transition is possible to which state. Since the
arrows are not double-sided, it shows that both events 1 and 2
are terminal events.

0

2

1

h02

h01

Figure 5.1: Two competing risks

In Figure 5.1 we see the cause-specific hazard functions h01
and h02. The cause-specific hazards are Cox models with dif-
ferent baseline hazards. We assume an exponential baseline for
transition 0→ 1 and a Weibull baseline for transition 0→ 2,

h01 = exp(η01) (5.1)
h02 = h0

02 exp(η02) (5.2)

In Equations (5.1) and (5.2), η01 = β01
0 + β01Z and η02 =

β02
0 + β02Z. The chosen parameters are β01

0 = 1, β01 = [2, 0.4]
and β02

0 = 2, β02 = [0.6, 1]. Z = [Z1, Z2]T , where Z1 ∼ N(0, 1)
and Z2 is Bernoulli(p = 0.5) . Since transition 0→ 2 is Weibull
distributed, the baseline hazard takes the form h0

02 = αtα−1λ0
where α2 = 0.8. As we discussed in Chapter 2 we include every
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term that is equal for all patients in the baseline. That is, we
include λ0 = exp(β01

0 ) in the baseline for h01 and λ0 = exp(β02
0 )

in the baseline for h02. A plot of the baseline hazards can be
seen in Figure 5.2.
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Figure 5.2: Baseline hazards for the competing risks model

The cumulative hazards are expressed as

H01(t) =
∫ t

0
h01(u) du = t · exp(η01)

H02(t) =
∫ t

0
h02(u) du = tα · exp(η02)

We plot the cumulative baseline hazards in Figure 5.3. The
cumulative all-cause hazard is expressed as

H0·(t) = H01(t) +H02(t)
= t · exp(η01) + tα · exp(η02)

To sample from our distribution, we shall use the inversion
method, a popular technique to create samples from a distribution
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Figure 5.3: Cumulative baseline hazards for the competing risks
model

of a continuous variable. We use that F (t) = 1−exp(−H0·(t)) =
u, where u ∼ Unif[0, 1]. Details on the inversion method for
competing risks can be found in Beyersmann, Allignol, and
Schumacher (2012). If we cannot find the inverse of H0·(t)
analytically, we can use the numerical inversion uniroot function
in R. The uniroot function searches the interval from lower
to upper for a root of the function H−1

0· (− ln(1 − u)). Thus,
the collection of simulated t′s replicates our target distribution
of the event times T . We simulate N = 300 patients with the
algorithm presented in detail in Algorithm 1, and present the
following transition matrix:

0 1 2
0 F T T
1 F F F
2 F F F

This matrix shows that patients can go from state 0 to states 1
and 2 but not from state 0 to 0. Since states 1 and 2 are terminal
states, we see that no transition out of those states is possible.
The event time T decides how long a patient is in state 0.
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Algorithm 1 Simulating event times for two competing risks
for each patient j do

1. Simulate values for the covariates Zj
2. Compute cause specific hazards hj01(t), hj02(t)
3. Set starting state S0 to 0
4. Compute the cumulative all-causes hazard H0·(t) =
H01(t) +H02(t)
5. Use uniroot function or invert H0·(t) to simulate an
event time T from F (t)
6. Run a binomial experiment to decide the specific event
that happens at time T . When the starting event state
is S0 = 0 the probability that the event at time
T is to enter state r and not r′ is:

P (XT = r | S0 = 0) = h0r

h0r + h0r′

7. Save event time T , state r and covariates for patient j
in a dataset

end for
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Figure 5.4: Histogram of simulated event times
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ID time event X1 X2

1 0.137 2 -0.841 1
2 0.007 1 1.384 0
3 0.1 2 -1.255 1
4 0.042 2 0.07 1
5 0.004 2 1.711 1
6 0.072 2 -0.603 1

Table 5.1: First six simulated patients with corresponding event
times, event status and covariates.

event
1 2

captured 107 193

Table 5.2: Overview of how many patients went to which state

The first six patients of our dataset are presented in Table 5.1.
Notice that each patient only has one row of information since
each patient can experience only one of the two competing risks.
A histogram of all simulated event times can be seen in Figure
5.4. We look at how many patients each state captures in Table
5.2. State 1 captures 107 patients while state 2 captures 193
patients. For the implementation, we create two datasets, one
per transition. Both datasets have the same amount of rows,
keeping the information of all patients. The first dataset contains
information on transition 0 → 1, creating a status variable
specifying whether the specific transition has been observed.
The same is done for transition 0 → 2. This way, we keep all
observed transitions in their respective datasets, ready to build
a data frame suitable to run R-INLA.

The parameter estimates can be seen in Table 5.3. We present
the true value first, then the estimated mean, estimated 2.5%,
and 97.5% credible intervals (CIs) along with the posterior mode.
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true mean 0.025quant 0.975quant mode
β01

0 1 1.031 0.726 1.316 1.042
β02

0 2 2.031 1.708 2.355 2.03
β01

1 2 1.943 1.725 2.162 1.943
β01

2 0.4 0.49 0.106 0.87 0.492
β02

1 0.6 0.654 0.449 0.863 0.652
β02

2 1 0.881 0.586 1.177 0.88
α 1.2 1.159 1.034 1.292 1.156

Table 5.3: True parameter values and estimated values for the
competing risks model.

The model summary shows that the estimated CIs fit well with
the true parameter values. For convenience, we plot the estimated
CIs for the intercepts, fixed effects, and hyperparameter in Figure
5.5, where the red dots are the true values.

INLA also estimates the hazards, using the function
inla.posterior.sample() to sample from the joint pos-
terior. We sample 1000 samples from the joint posterior and
calculate 1000 hazard estimates, which can be seen in Figure
5.6. As we can see, the true hazard function is well recovered
by the estimations. As this is a simulation, new event times
will be simulated each time we run the code. We repeated this
simulation several times, which led to similar results.

5.2 Transient model simulation
We want to simulate data from the transient model of Figure
5.7. Here, states 1 and 2 are transient, while state 3 is absorbing.
This simulation study is based on the theory we presented in
Chapter 3.3, with the difference that the states are called 1, 2,
and 3 instead of 0, 1, and 2. We define the following transition
matrix for the problem
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Figure 5.5: Estimated credible intervals for all parameters of the
competing risks model. The red dot is the true value.
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Figure 5.6: Estimated hazard functions for the competing risks
model. The red line is the true hazard.
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Figure 5.7: Transient model, three states

1 2 3
1 F T T
2 T F T
3 F F F

This transition matrix is read similarly to the transition matrix
from the Competing Risks simulation in Chapter 5.1. One can
go between states 1 and 2 as many times as possible, but one
can never leave if one enters state 3. This is why all transitions
from state 3 are labeled F.

There are 4 hazards to be estimated. We use the Cox model and
define them for each patient j = 1, . . . , N as

h12:j(t) = h0
12(t) exp(β0

12 + βT12Zj) (5.3)
h13;j(t) = h0

13(t) exp(β0
13 + βT13Zj) (5.4)

h21;j(t) = h0
21(t) exp(β0

21 + βT21Zj) (5.5)
h23;j(t) = h0

23(t) exp(β0
23 + βT23Zj) (5.6)

where h0
lj(t) are baseline hazards. The vector Z consists of two

covariates; Z1 ∼ N(0, 1) and Z2 ∼ Bernoulli(p = 0.5). The
chosen βlj coefficients are: β0

12 = 1.3, β12 = [0.5, 0.5], β0
13 = 0.5,
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β13 = [−0.5, 0.3], β0
21 = 1.1, β21 = [0.2,−0.2] and β0

23 = 0.9,
β23 = [0.4,−0.1].

For the baseline hazards, we choose two Weibull and two expo-
nential models, where one Weibull model is increasing, and the
other is decreasing. We present the following baseline hazards;

h0
12(t) = α1t

α1−1λ12
0 (5.7)

h0
13(t) = α2t

α2−1λ13
0 (5.8)

h0
21(t) = λ21

0 (5.9)
h0

23(t) = λ23
0 (5.10)

where α1 = 0.8, α2 = 1.2, and λlj0 = exp(β0
lj). Other choices

of parameter values are, of course, possible, but we found that
certain parameter values resulted in too extreme hazard functions,
making all the patients experience the terminal event too early.
The chosen values give reasonable hazard rates and simulate
realistic transitions for each patient.
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Figure 5.8: Cause-specific hazards for the transient model.

We plot the baseline hazards in Figure 5.8, while the cumulative
baseline hazards are presented in Figure 5.9. The procedure of
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Figure 5.9: Cumulative cause-specific hazards for the transient
model.

simulating N = 300 patients, with associated event times and
event states can be found in Algorithm 2. A histogram of all
event times can be found in Figure 5.10. We view the head of
the dataset from the R output below. This dataset has all the
information about a patient; ID, Tstart, Tstop, duration, from,
to, status, cov1 and cov2. We might notice in this dataset that
every second line contains the same Tstart and Tstop time as
the row above. We keep track of the events that did not happen
to each patient, which we can see from their status equaling 0.
This is called extending the dataset, and we call the dataset the
extended dataset. In the competing risks simulation of Chapter
5.1, we created two datasets for the two transitions. It gives
the same results whether we separate each transition in their
own datasets or keep all the information in one big dataset with
several rows per transition. They are simply two different ways
of preparing a data frame suitable to run R-INLA.
## id Tstart Tstop duration from to status cov1 cov2
## 1 1 0.0000000 0.6109676 0.6109676 2 1 1 -0.8178465 0
## 2 1 0.0000000 0.6109676 0.6109676 2 3 0 -0.8178465 0
## 3 1 0.6109676 0.8950126 0.2840450 1 2 1 -0.8178465 0
## 4 1 0.6109676 0.8950126 0.2840450 1 3 0 -0.8178465 0
## 5 1 0.8950126 1.7461798 0.8511672 2 1 1 -0.8178465 0
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Algorithm 2 Simulating event times for a transient model with
three states

for each patient j do
1. Simulate values for the covariates Zj
2. Compute cause specific hazards
hj12(t), hj13(t), hj21(t), hj23(t)

3. Simulate a starting state S0 (1 or 2) at time t0 and
create two if statements

4. Compute the cumulative all-causes hazard from state
S0 with starting time t0 (clock-forward model)
• if S0 = 1 then Hj

1.(t, t0) = Hj
12(t, t0) +Hj

13(t, t0)
• if S0 = 2 then Hj

2.(t, t0) = Hj
21(t, t0) +Hj

23(t, t0)
5. Use uniroot function or invert each cumulative all-
cause hazard, simulate an event time T with hazard
computed in step 4
• if j is in state 1: t = H−1

1· (− ln(1− u))
• if j is in state 2: t = H−1

2· (− ln(1− u))
6. Run a binomial experiment to decide the specific event
that happens at time T . When the starting event state
is S0 = 1 the probability that the event at time T is to
enter state j and not j′ is:

P (XT = j | S0 = 1) = h1j

h1j + h1j′

7. Save event time T , state j and covariates for patient j
in a dataset

end for
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## 6 1 0.8950126 1.7461798 0.8511672 2 3 0 -0.8178465 0
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Figure 5.10: Histogram of simulated event times for the transient
model.

Let us look at the event history of 12 randomly chosen patients
in Figure 5.11. The vertical axis on the left of each graph shows
the three possible states for each patient. Some patients are
simulated to start in state 1, others in state 2. Some patients
move directly to state 3, where they cannot leave, and others go
back and forth between states 1 and 2 before finally ending up
in state 3.

For our simulation to be successful, we need enough data per
event. The following table shows the percentage of patients that
move from states 1 and 2. It does not have to be a 50% transition
rate, as long as we see a substantial amount of patients going to
each state. There is reason to believe that fewer patients go from
state 1 to 3, referring to a healthy → dead transition. This is
shown in the transition table by transition 1→ 2 capturing most
of the patients.
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Figure 5.11: Event history of 12 randomly chosen patients

from to percent
1 2 71
1 3 29
2 1 53
2 3 47

The parameter estimates can be seen in Table 5.4. We present
the true value first, then the estimated mean, estimated 2.5%,
and 97.5% credible intervals (CIs) along with the posterior mode.
The model summary shows that the true parameter values fit well
within the estimated CIs. For convenience, we plot the estimated
CIs for the intercepts, fixed effects, and hyperparameters in
Figure 5.12, where the red dots are the true values.

We also sample the joint posterior to estimate the hazard func-
tions and their 95% CIs, like we did in the competing risks
simulation. The estimated hazard functions can be seen in Fig-
ure 5.13. Once again, we see that the estimation well captures
the true hazard function.
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true mean 0.025quant 0.975quant mode
β12

0 1.3 1.215 1.039 1.384 1.219
β13

0 0.5 0.552 0.28 0.808 0.562
β21

0 1.1 1.117 0.929 1.297 1.122
β23

0 0.9 0.899 0.687 1.098 0.905
β12

1 0.5 0.469 0.341 0.598 0.468
β12

2 0.5 0.681 0.446 0.915 0.681
β13

1 -0.5 -0.465 -0.7 -0.239 -0.461
β13

2 0.3 0.307 -0.076 0.681 0.311
β21

1 0.2 0.245 0.102 0.386 0.245
β21

2 -0.2 -0.322 -0.599 -0.047 -0.321
β23

1 0.4 0.461 0.309 0.613 0.46
β23

2 -0.1 -0.201 -0.492 0.089 -0.201
α1 0.8 0.781 0.714 0.851 0.779
α2 1.2 1.15 1.001 1.31 1.146

Table 5.4: True parameter values and estimated values for the
transient model.



64 CHAPTER 5. SIMULATION STUDIES

−0.5

0.0

0.5

1.0

α1 α2 β0
12 β1

12 β2
12 β0

13 β1
13 β2

13 β0
21 β1

21 β2
21 β0

23 β1
23 β2

23

Figure 5.12: Estimated credible intervals for all parameters of
the transient model. The red dot is the true value.

5

10

15

0 1 2 3
time

P
os

te
rio

r 
m

ea
n

state 1 − state 2

0

1

2

3

4

0 1 2 3
time

P
os

te
rio

r 
m

ea
n

state 1 − state 3

0.0

2.5

5.0

7.5

10.0

0.0 0.5 1.0 1.5
time

P
os

te
rio

r 
m

ea
n

state 2 − state 1

0.0

2.5

5.0

7.5

10.0

0.0 0.5 1.0 1.5
time

P
os

te
rio

r 
m

ea
n

state 2 − state 3

Figure 5.13: Estimated hazard functions for the transient model.
The red line is the true hazard.



Chapter 6

Real life data analysis

The motivation behind this thesis is a dataset on cardiac ar-
rest in children and adolescents presented in Nordseth et al.
(2019) and Skogvoll et al. (2020). Here they consider a multi-
state model where patients are observed to transition between
four transient states, where some end up in a terminal state.
Electrocardiogram (ECG) recordings were collected in patients
who received cardiopulmonary resuscitation (CPR) at the Chil-
dren’s Hospital of Philadelphia (CHOP) between 2006 and 2013.
During pediatric CPR, the states the patients may transition
between are pulseless electrical activity (PEA), asystole, ventricu-
lar fibrillation/tachycardia (VF/VT), and return of spontaneous
circulation (ROSC). The terminal state is death. Therefore, the
estimation of hazard rates and covariate effects is of interest. To
perform analysis, Nordseth et al. (2019) first uses the method
of finding the Nelson-Aalen estimator of the cumulative hazard
of specific state transitions over time. Then, numerical methods
were used to find the derivative of the Nelson-Aalen estimator.
Finally, continuous hazard rates for all relevant transitions were
estimated using smoothing splines. Nordseth et al. (2019) do
not investigate any possible state transitions with patient co-
variates, which they incorporate in Skogvoll et al. (2020). We
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propose that the INLA scheme is well suited for this multistate
survival model, where hazard functions can be directly accessed
by adopting a parametric approach, and patient covariate effects
are readily displayed. As multistate models can be viewed as
nested competing risks, we show that INLA works well in the
transient model scheme as well.

6.1 Exploring the dataset
Before we do any analysis, let us familiarize ourselves with
the real-life data. The collected data consists of the following
columns: ID, ini, last, state, entry, to, time, Age, Gen, Mass
and res. ID contains the patients’ ID, ini contains the initial
state when cardiac arrest begins, and the patients’ last recorded
state is stored in last. The column state contains which state
the patient was in at entry, and column to contains which state
the patients moved to at which time. The rest of the columns
in the dataset are Age (age of patients in years), Gen (gender of
the patients coded as 0 or 1), Mass (weight of the patients in
kg), and res (indicates whether the cause of cardiac arrest was
“respiratory” or not). Cardiac arrest due to respiratory issues
can be due to drowning, strangulation, airway obstruction, or
progressive respiratory failure (like in pneumonia), as different
from “circulatory” like in a primary cardiac disease or after
profuse bleeding, or possible “other” causes.

To show the structure of the dataset, we present some example
rows of the original dataset in Table 6.1. The original IDs have
been renamed to protect any privacy. We choose not to include
the columns ini and last due to lack of space in the table, and
the information is already stored in the first row’s state and
the last row’s to of each patient.

In addition to showing a few rows of the dataset, it is helpful
to plot histograms of the covariates. The histograms of the
covariates is presented in Figure 6.1. There are 74 patients
recorded in this study. There are two patients whose covariates
are missing in part, so we only have complete information on
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ID from to entry time Age Gen Mass res
1 3 4 0 93.9 16.92 0 55 1
1 4 5 93.9 243.985 16.92 0 55 1
10 4 5 0 240.051 8.08 1 40 1
10 5 4 240.051 615.273 8.08 1 40 1
10 4 1 615.273 765.878 8.08 1 40 1
10 3 4 0 400.636 14.92 1 48 1

Table 6.1: Example rows of the original dataset.
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72 patients. One patient is missing the covariates Age, Gen, and
Mass, while the other is only missing Mass. We will keep these
patients in the dataset for now, but we make the reader aware
of this deficiency. There are 37 patients with gender coded as
0 and 36 with gender coded as 1. One patient is, as previously
stated, missing its gender coding. There are 28 patients with
res=0, and 46 with res=1, i.e., 46 patients’ cardiac arrest was
due to respiratory issues and not circulatory.

The motivating dataset is a study done on children and adoles-
cents. The World Health Organization (WHO) defines adoles-
cents as those between 10 and 19 years of age, but as we can
see from Figure 6.1 in the Age plot, there are patients older
than that. Disregarding the one patient’s missing age value,
the sample average age is 14.11. The median age is 15. The
sample average weight is 49.51, removing the two patients whose
Mass value was missing. The median weight is 47.3. The lowest
recorded weight is 11.7 kg, and the heaviest weight is 114.0 kg.

The states in this study are presented in Figure 6.2. Since it
is a transient model, several two-headed arrows (transitions)
go between each circle (state). We pay extra attention to the
absorbing state 1, from which there are no transitions. There
are no censored cases in this original dataset, as patients entered
this study after first experiencing signs of a cardiac arrest—every
patient experiences at least one transition to another state.

When providing advanced life support (ALS) in cardiac arrest,
the patient may alternate between four clinical states: ventricu-
lar fibrillation/tachycardia (VF/VT), pulseless electrical activity
(PEA), asystole, and return of spontaneous circulation (ROSC).
At the end of the resuscitation efforts, either death has been
declared or sustained ROSC obtained. PEA and asystole are
related cardiac rhythms in that they are both life-threatening
and unshockable cardiac rhythms (“Pulseless Electrical Activ-
ity Asystole” (n.d.)). There may be a subtle movement away
from the baseline (drifting flat-line), but there is no percepti-
ble cardiac electrical activity. A “flat-line” is reserved for the
asystole definition, but PEA includes a flat line as well as any
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1: DEAD

3:VFT

5:ROSC

2:ASY 4:PEA

Figure 6.2: The original model. Transient states and a terminal
state.

other wave. Ventricular fibrillation (VF) and pulseless ventricular
tachycardia (VT) are life-threatening cardiac rhythms that result
in ineffective ventricular contractions (“Ventricular Fibrillation
and Pulseless Ventricular Tachycardia” (n.d.)).

Let us take a closer look at some patients. We start with patient
3. Table 6.2 shows all recorded information we have on this
patient. This patient’s initial state was 4 at time t = 0. At the
time t = 126.342 (a little over two minutes), the patient enters
state 5 and stays there until time t = 559.487 (around 9 minutes
into the study) when the patient moved back to state 4. The
patient, however, only stays in state 4 until time t = 1000.172
(almost 17 minutes since entry) when the patient eventually
survives in state 5, where they maintain a palpable pulse.

We look at another patient, patient 6 in Table 6.3. This patient
was initially in state 4 and moved back and forth between states
4 and 5 until time t = 1150 (around 19 minutes after entry)
when they entered state 2. From here, they enter state 1 at time
t = 1264 (21 minutes) and unfortunately never leave that state.

Note that in the real-life dataset, no patient’s initial state is state



70 CHAPTER 6. REAL LIFE DATA ANALYSIS

ID from to entry time Age Gen Mass res
3 4 5 0 126.342 13.5 1 45 1
3 5 4 126.342 559.487 13.5 1 45 1
3 4 5 559.487 1000.172 13.5 1 45 1

Table 6.2: Information about patient 3

ID from to entry time Age Gen Mass res
6 4 5 0 20 16.17 1 39.9 1
6 5 4 20 356 16.17 1 39.9 1
6 4 5 356 421 16.17 1 39.9 1
6 5 4 421 785 16.17 1 39.9 1
6 4 2 785 1150 16.17 1 39.9 1
6 2 1 1150 1264 16.17 1 39.9 1

Table 6.3: Information about patient 6.

5. In addition, all patients enter this study at time t = 0. Then as
they transition through different states, internal left-truncation
is generated.

6.2 Recode to three states
Given the complexity of the original model, we choose to reduce
the number of states from five to three. We were advised to
combine states 2 and 4 into state 2 and delete state 3 altogether.
The original dataset had 74 patients and contained information
about each transition that happened. We first recoded all states
4 into state 2. The problem that arose was that some rows went
from 2 to 2 because they previously had gone from 4 to 2 or
2 to 4. We made a function that searched through each row
going from 2 to 2 per distinct person ID and only kept the last
recorded time and discarded the redundant rows. Since we were
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recommended to delete state 3 altogether, we deleted all rows
where the patient went from 3 in this step. We do not delete the
rows going to 3 yet, because the next step was to expand the
dataset to keep all the censored cases. If, for example, a patient
went from 2 to 3 with status 1 (the event happened), we would
like to record all the events that did not happen (with status 0).
We had to add two rows for this exemplary patient; a row where
the patient went from 2 to 1 with status 0 and a row where the
patient went from 2 to 5 with status 0. If we had deleted all
rows where patients went to state 3, we would have lost valuable
censoring information, which would have biased the survival
probability. After expanding the dataset, we could delete all
rows going to 3. The new, modified dataset only contains states
1, 2, and 5. The times associated with each transition and the
covariates for the patients are still, of course, included in the
dataset. Figure 6.3 shows the three states and their respective
hazard functions.

5:ROSC

1:DEAD

2:PEASY

h51

h52

h21
h25

Figure 6.3: Transient model, three states

In theory, transition 5→ 1 is possible, but there were no occur-
rences in the dataset. We keep the transition arrow in Figure 6.3
for the sake of theory. Because we use an extended dataset, there
are rows where the from column is 5 and the to column is 1, but
the status variable is always 0 for those rows. Since there were
no occurrences of 5→ 1, we do not include this transition at all
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5 2 1
5 0 29 0
2 120 0 149
1 0 0 0

Table 6.4: Number of observations per transition.

ID from to entry time status
1 2 5 93.9 243.985 1
1 2 1 93.9 243.985 0
10 2 5 0 240.051 1
10 2 1 0 240.051 0
10 5 2 240.051 615.273 1
10 5 1 240.051 615.273 0

Table 6.5: Example rows of the new, modified dataset.

in the data frame used in R-INLA. That is, we cannot assume a
parametric shape for the hazard function h51 to enter the R-INLA
code. Hence, there are only three remaining hazard functions:
h52, h25 and h21.

A table with the numbers of observations for each transition
can be viewed in Table 6.4. We present example rows of the
new, modified dataset in Table 6.5. We omit including covariates
for ease of presentation. Now there is an additional column
status, which indicates whether the transition happened or not.
Especially, we see that patient 1’s first original row is deleted,
where they originally went from 3→ 4. State 4 was also recoded
as state 2, so now the only transition for patient 1 is 2 → 5
with status= 1. The time is also left-truncated. An additional
row is added since patient 1 was at risk of experiencing a 2→ 1
transition, which did not happen. This row’s status indicator
is therefore 0.
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ID from to entry time status
28 2 5 207.733 593.58 1
28 2 1 207.733 593.58 0
28 5 1 593.58 611.059 0
28 5 2 593.58 611.059 0
28 2 5 633.882 690.072 0
28 2 1 633.882 690.072 0
28 2 5 980.455 2485.051 1
28 2 1 980.455 2485.051 0
28 5 2 2485.051 2574.85 1
28 5 1 2485.051 2574.85 0

Table 6.6: Patient 28 in the new, modified dataset.

Another thing to notice about this new, modified dataset is
that some patients’ journey through the states are inconsistent.
This is explained best with an example. We follow patient 28
in Table 6.6. We once again omit including covariates for ease
of presentation. We observe patient 28 go from 2→ 5 at time
t = 593.580. The next five rows contain censored information,
as the patient did not experience those transitions (status =
0). Then, we observe the patient again making a 2→ 5 at time
t = 2485.051. Suddenly, the patient is back at state 2, without
having observed any transition back to state 2. This can be
explained by looking at the original dataset for patient 28 (the
original dataset for 28 is not presented). It can be seen that
the patient transitioned back and forth into state 3, eventually
from 3→ 2, which was deleted altogether. That is how patient
28 came back to state 2 without that information being kept in
the new, modified dataset. Recoding the dataset to three states
instead of five cost us some consistency, but it was necessary to
simplify the model.
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6.3 Preparing the dataset for INLA
Using the original scale of the event times and covariates Age
and Mass makes R-INLA crash. For numerical stability, it is
generally better to have smaller numbers. Therefore, we first
divide all entry and event times by 60 to make seconds into
minutes. Then, we scale them to take values between 0 and 1.
We do this by finding the largest observed event time in minutes
and dividing all time entries by that maximum number. Finally,
to reduce the size of the covariate values, we standardize them.
Standardization is a common process of putting covariates on
the same scale and is attained by subtracting the mean and
dividing by the standard deviance for each observed value of the
covariate. For example, for each patient i in the dataset, the
standardization of covariate Age is attained in the following way:

Agei −mean(Age)
sd(Age) (6.1)

Standardizing covariate Mass is done with the same procedure.
The binary covariates Gen and res do not have to be standardized.
We use the mean age 14.11, and the standard deviation 4.5. The
mean mass is 49.52, and the standard deviation is 23.41. The
standardized covariates along with the scaled entry and event
times now replace the unstandardized and unscaled values in the
dataset, now called the standardized dataset. The standardized
dataset is a 298× 12 data frame, consisting of the columns ID,
initial, last, from, to, entry, time, Age, Gen, Mass, res and
status. Note that all 5 → 1 censorings are included in this
standardized dataset, but we omit including this transition in
the preparation dataset for INLA.

When fitting the R-INLA model, a challenge was figuring out
which parametric assumptions to make for each of the three
transitions 5 → 2, 2 → 5, and 2 → 1. In this thesis, we limit
ourselves to the Weibull and the exponential baseline functions.
We tried different model combinations and present three of them.
A summary table presenting which model uses which parametric
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Model 1 Model 2 Model 3
h52(t) Weibull Exponential Exponential
h25(t) Weibull Weibull Exponential
h21(t) Weibull Weibull Weibull

Table 6.7: Parametric assumptions used in the different models.

assumption is presented in Table 6.7.

6.3.1 Model 1
Choosing only Weibull models for all the baseline hazards (called
model 1 from now on) results in the following hazard specifica-
tions:

h52(t;Z) = α52t
α52−1 exp(η52),

h25(t;Z) = α25t
α25−1 exp(η25),

h21(t;Z) = α21t
α21−1 exp(η21),

where ηlj = βlj0 + βljAgeZAge + βljGenZGen + βljMassZMass + βljresZres.
The summaries of the estimated model parameters can be seen in
Table 6.8. Figure 6.5 shows a plot of the estimated 95% CIs. The
estimated hazard rate for all transitions is presented in Figure
6.6.

Immediately, we see from Figure 6.5 that all credible intervals
for transition 5 → 2 are larger than the others. This is due
to the smaller number of transitions from 5→ 2, compared to
2→ 5 and 2→ 1. There are only 29 rows of information in the
5 → 2 data frame, and 23 of those are observed events. As a
comparison, there are 120 rows of information in the 2→ 5 and
2→ 1 data frames, where 52 and 41 events occurred, respectively.
The CI for β52

Gen is also much wider than the others. It can be
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due to there being almost twice as many observations for the
gender-coded as 0 when status=1 than for the gender-coded as
1 when status=1. For status=1, there are eight observations
of Gen=1 and 14 observations of Gen=0.
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Figure 6.4: Posterior density for the three Weibull hyperparame-
ters.

Note that the α52 and α25 values are centered around 1, as can
be seen in Figure 6.4. This can point to the baseline hazards
for h52 and h25 being exponential models (a Weibull model with
α = 1 is the exponential model). The CI bands of the estimated
hazard for h52 are also quite large. In hopes of reducing the CIs
for transition 5→ 2, we present an analysis using the exponential
baseline model for transition 5→ 2, which we call model 2. We
also present a model where in addition to transition 5 → 2,
transition 2→ 5 is exponential, called model 3.

6.3.2 Model 2
As we have seen, it is fair to assume an exponential model for
the baseline hazard of hazard function h52. We keep the Weibull
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mean 0.025quant 0.975quant mode
β52

0 3.038 1.277 5.026 3.136
β25

0 1.571 1.078 2.024 1.593
β21

0 0.92 0.179 1.595 0.954
β52

Age 0.266 -1.82 2.563 0.228
β25

Age -0.072 -0.435 0.292 -0.072
β21

Age 0.251 -0.166 0.658 0.257
β52

Gen -0.526 -5.115 3.535 -0.441
β25

Gen -0.382 -0.948 0.167 -0.373
β21

Gen 0.07 -0.55 0.692 0.069
β52

Mass -0.257 -1.922 1.25 -0.23
β25

Mass 0.448 0.132 0.753 0.454
β21

Mass -0.299 -0.752 0.133 -0.287
β52

res -0.099 -2.061 1.78 -0.109
β25

res -0.43 -0.994 0.132 -0.43
β21

res 0.605 -0.049 1.304 0.581
α52 0.995 0.902 1.089 0.997
α25 0.937 0.794 1.08 0.942
α21 1.3 1.158 1.476 1.274

Table 6.8: Estimated parameter values for model 1.
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Figure 6.5: Estimated credible intervals for the parameters of
model 1.
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Figure 6.6: Estimated hazard functions for model 1.
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assumption for h25 and h21. The hazard specifications are:

h52(t;Z) = exp(η52),
h25(t;Z) = α25t

α25−1 exp(η25),
h21(t;Z) = α21t

α21−1 exp(η21),

where ηlj is as explained in the section above. Note that we
now have one less α value to estimate. The estimated model
parameters can be seen in Table 6.9. The estimated hazard rate
for all transitions is presented in Figure 6.7.
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Figure 6.7: Estimated hazard functions for model 2

6.3.3 Model 3
For good measure, we present a third model where transitions
5→ 2 and 2→ 5 have an exponential baseline model, and 2→ 1
is Weibull. The hazard specifications are:
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mean 0.025quant 0.975quant mode
β52

0 2.791 1.196 4.272 2.951
β25

0 1.553 1.052 2.014 1.574
β21

0 0.924 0.169 1.613 0.959
β52

Age -0.055 -1.918 1.653 -0.15
β25

Age -0.071 -0.434 0.292 -0.071
β21

Age 0.253 -0.166 0.662 0.258
β52

Gen 0.067 -3.303 3.731 0.341
β25

Gen -0.382 -0.948 0.168 -0.373
β21

Gen 0.07 -0.55 0.693 0.069
β52

Mass -0.026 -1.266 1.325 0.041
β25

Mass 0.447 0.132 0.752 0.453
β21

Mass -0.3 -0.754 0.133 -0.288
β52

res 0.076 -1.491 1.689 0.076
β25

res -0.432 -0.995 0.13 -0.432
β21

res 0.606 -0.049 1.306 0.583
α25 0.927 0.758 1.094 0.937
α21 1.306 1 1.658 1.288

Table 6.9: Estimated parameter values for model 2.
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mean 0.025quant 0.975quant mode
β52

0 3.07 1.8 4.614 2.943
β25

0 1.635 1.162 2.061 1.658
β21

0 0.925 0.167 1.617 0.959
β52

Age 0.302 -0.964 2.067 -0.169
β25

Age -0.072 -0.436 0.292 -0.073
β21

Age 0.253 -0.166 0.662 0.258
β52

Gen -0.635 -4.11 1.81 0.37
β25

Gen -0.384 -0.951 0.165 -0.376
β21

Gen 0.07 -0.55 0.693 0.069
β52

Mass -0.285 -1.565 0.638 0.055
β25

Mass 0.45 0.131 0.756 0.456
β21

Mass -0.3 -0.755 0.133 -0.288
β52

res -0.165 -1.778 1.245 -0.004
β25

res -0.423 -0.987 0.141 -0.422
β21

res 0.606 -0.05 1.307 0.583
α21 1.299 1.005 1.648 1.272

Table 6.10: Estimated parameter values for model 3.

h52(t;Z) = exp(η52),
h25(t;Z) = exp(η25),
h21(t;Z) = α21t

α21−1 exp(η21),

We present the estimated hazard functions in Figure 6.8, and
the parameter estimates are presented in Table 6.10.
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Figure 6.8: Estimated hazard functions for model 3

6.3.4 Comparing models
We could have presented plots similar to Figure 6.5 for models 2
and 3 as well, but we choose to present Figure 6.9 instead. The
reason for this is that all three models estimate the same CIs
for all covariates for transitions 2 → 5 and 2 → 1. The only
transition where the CIs vary is transition 5 → 2. Therefore,
we present the CIs each model generates for each parameter
estimate. This way, we see that the CIs for model 1 is generally
larger than for model 2 and 3. Each model is color-coded, which
can be seen in the plot’s legend. There does not seem to be a
significant decrease between models 2 and 3 in estimating the
CIs.

We will use the two measures deviance information criterion
(DIC) (Spiegelhalter et al. (2002)) and Watanabe-Akaike infor-
mation criterion (WAIC) (Watanabe (2010)) to evaluate and
compare our Bayesian models (Gelman, Hwang, and Vehtari
(2013)). Both are Bayesian measures for complexity and fit,
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Figure 6.9: CIs for transition 5 to 2, compared for each model.

used for comparing complex hierarchical models. R-INLA com-
putes these measures if we tell it to, by including dic=TRUE and
waic=TRUE in control.compute=list(). We compare six mod-
els. Model 1 is the first model we considered, with all Weibull
baseline hazards. Model 2 is the model where we assumed an
exponential baseline hazard for transition 5→ 2, with the rest of
the baseline hazards being Weibull. Model 3 is the model where
we assume exponential baseline hazards for both h52 and h25,
but keep the Weibull baseline for h21. Model 4 does not have
any covariates and only includes an intercept term in the linear
predictor per transition. Model 5 includes the covariate Z25

Mass
only for transition 2 → 5, as it was the only covariate whose
95% CI did not cover 0. Lastly, model 6 includes the covariate
ZMass for all three transitions. Models 4, 5, and 6 use the same
baseline hazards used in model 3. Each model’s DIC and WAIC
values are presented in Table 6.11. Since the general rule is to
choose the model with the smallest DIC and WAIC, we conclude
that model 5 is preferred for this data. More information about
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DIC WAIC
Model 1 -68.37 181.4
Model 2 -84.5 589.97
Model 3 -88.03 -8.55
Model 4 -105.02 -104.67
Model 5 -112.47 -111.67
Model 6 -108.65 -108.94

Table 6.11: DIC and WAIC values for the different models.

the information criteria for Bayesian models can be found in
Gelman, Hwang, and Vehtari (2013).

6.4 Discussing the results
The significance of variables can be deduced by examining the
overlap of their 2.5% and 97.5% posterior estimates with zero.
Figure 6.5 and Table 6.8 can make us question whether the
covariates have any effect on the model at all. All CIs for
the fixed effects parameters, except for β25

Mass, cover 0. If a
parameter’s CI overlaps zero, there is reason to believe the fixed
effect of said parameter to be redundant to the model. Hence,
the real-life data analysis results show that the covariates Gen,
Age, Mass, and res do not significantly influence the hazard rate
for children and adolescents experiencing death after a cardiac
arrest. We did find a small significance in the covariate Mass
for the transition 2 → 5, which is the recoded transition from
PEA/asystole to ROSC. The 95% CI of this covariate did not
cover 0, but it was very close. However, when comparing the
model without covariates to the model with only Z25

Mass included
in Figure 6.11, we saw an improvement in the model in terms
of decreased DIC and WAIC. Note that the “risk of transition”
here is “experiencing the event ROSC,” which has a positive
connotation. Hence, we find that having a higher mass might
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increase the chance of returning to spontaneous circulation, i.e.,
surviving a cardiac arrest. Note that this is a finding from the
recoded dataset from five states to three, and the significance
is barely there. To make any further conclusions about the
specific interpretations of health data would require professional
help. Even though we did not find any significant covariates, one
should be careful saying that these covariates are unimportant
in a larger context, as the results of this analysis are heavily
sample-based. The sample size was small, and a larger portion
of the patients had a respiratory cause for the cardiac arrest
instead of circulatory. We conclude that the small dataset limits
the findings’ generalizability.
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Chapter 7

Discussion

Here we presented INLA as the inferential scheme for complex
multistate models. Building on the work done by Niekerk, Bakka,
and Rue (2019), we showed how we could present multistate
models as LGMs to fulfill the assumptions needed for INLA to be
applied. We presented two fully parametric simulation studies;
a competing risks and a transient model. The simulation studies
showed that the true values were estimated well by using INLA.
The motivation behind this thesis was a dataset on children and
adolescents suffering from cardiac arrest, on which we used our
model. The original five-state multistate model was complex,
so we simplified it to a three-state model. Note that the same
methods described in this thesis can of course be used on the
original five-state model. Due to the amount of data being so
small, the results were uncertain. The covariates included did
not play a significant role in hazard estimation, but we cannot
say these covariates are unimportant in general given the small
dataset. More research needs to be done with a larger dataset
to get valuable results properly.

A semi-parametric model can be used for the hazards if a fully
parametric baseline is unreasonable. The results in Skogvoll et
al. (2020) show that they estimated a hazard function with a

87
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different shape than an exponential or Weibull baseline model
can produce. If there is strong reason to believe a non-parametric
shape for the baseline hazard, we direct the interested reader
to the paper by Martino, Akerkar, and Rue (2011), where they
show that semi-parametric hazard models also can be fit using
INLA.

Throughout the simulations and handling of the real-life data,
we only used fixed effects Zi in the linear predictor η in Equation
(2.15). Extending the linear predictor to include frailty effects
is possible using R-INLA. Including a frailty term means we can
consider dependent failure times generated as conditionally inde-
pendent times given the frailty. We investigated the possibilities
of including such a term in our simulated models and the real-life
data, but due to lack of time, we decided against it. Since we do
not have a frailty term, each row in the dataset is treated as a
new individual. However, since there are repeated events for the
same individual in our datasets, we recognize that including a
frailty term would result in a better model. We highly recom-
mend that this is done in future works and extensions for this
particular application.

We used a Bayesian approach to analyze multistate models and
have mentioned prior distributions. All the Weibull hyperparam-
eters used unspecified PC priors, the default priors in R-INLA.
Researching other prior specifications was not a major focus of
this project, and as the chosen priors gave reasonable results,
we did not find it necessary to change them. However, if more
research is done on Bayesian inference for multistate data re-
garding cardiac arrest in children and adolescents, different prior
specifications can help improve the models.

A great source of confusion throughout the research of this thesis
has been independence between competing risks and random
censoring. I started my research by reading the book Applied
Survival Analysis using R (Moore (2016)) and The Statistical
Analysis of Failure Time Data (Kalbfleisch and Prentice (2002)),
as those were the books provided in my first survival analysis
course. These books were great as a way to refresh key concepts
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in survival analysis but appear confusing once presenting the
topic of competing risks and transient models. In Chapter 9.2
of (Moore (2016)), it is argued that a key assumption about
censoring is that it is independent of the event in question, which
may be questionable in most competing risks applications. They
further show how selecting each event as the primary event and
treating the other as a censoring event leads to biased estimates
of survival curves. This raised an important issue because this
was exactly what I was doing in my simulation of competing
events. At that time, I was following the algorithm of the book
by Beyersmann, Allignol, and Schumacher (2012) and following
the R code from Niekerk, Bakka, and Rue (2019). It seemed
like the entire assumption on which my model was built was
false. After weeks of reading different sections of all three books
and several meetings with my supervisors, we finally seemed
to figure out that there are primarily two different modeling
approaches, namely the cause-specific hazards approach and the
subdistribution hazards approach. Moore (2016) and Kalbfleisch
and Prentice (2002) seem to favor the subdistribution approach,
while Beyersmann, Allignol, and Schumacher (2012) present both.
Beyersmann, Allignol, and Schumacher (2012) argue that the
cause-specific approach is a valid analytic approach, which is the
approach that allows treating each event as the primary event, in
turn, censoring the other competing events. They note that it is
vital to analyze all cause-specific hazards, or the analysis will be
incomplete. This is also the approach Niekerk, Bakka, and Rue
(2019) uses, on which our work is based. Debates surrounding
the choice between the two approaches are still ongoing. The
consensus seems to be that the cause-specific hazards approach
should be chosen for causal inference of covariate effects, which
was one of our main goals.

Beyersmann, Allignol, and Schumacher (2012) also addresses the
interesting question about competing risks being independent
themselves. Let us consider two competing risks only, for ease
of presentation, where at an event time T , either XT = 1 or
XT = 2 occurs. They argue that the concept of statistical
independence does not apply since the different failure causes
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are simply different values of exactly one random variable, XT .
Any further discussion introduces the topic of latent failure times
which we have not touched on in this thesis. The interested
reader is directed to Beyersmann, Allignol, and Schumacher
(2012) (Ch. 5.2.2 and Ch. 7.2) and Moore (2016) (Ch. 9.2.1).

Another theme of discussion throughout the thesis was the
Markov assumption in the illness-death model with recovery.
We use the words “healthy” for state 0, “ill” for state 1, and
“dead” for state 2. The baseline hazard for getting “ill” is as-
sumed to be the same regardless of how many times one has
been ill. One might think this is an over-simplified model, and
the hazard of dying should be greater given that an individual
has been ill several times. We can achieve this by including time-
dependent covariates that carry the information on the number
of times one has been “ill” before or how long one has been
“ill” in the past. However, time-dependent covariates pose some
interpretational challenges addressed in Beyersmann, Allignol,
and Schumacher (2012) (Chapter 11), and is still an ongoing
research field.
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