
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Fredrik Bakke
Segal Spaces in H

om
otopy Type Theory

Fredrik Bakke

Segal Spaces in
Homotopy Type Theory

Master’s thesis in Mathematical Sciences
Supervisor: Rune Haugseng
December 2021

M
as

te
r’s

 th
es

is

Fredrik Bakke

Segal Spaces in
Homotopy Type Theory

Master’s thesis in Mathematical Sciences
Supervisor: Rune Haugseng
December 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

Homotopy type theory is a foundational language for doing homotopy invariant math-
ematics, hence one would expect it to be a natural environment in which to study
(∞, 1)-categories. However, it is currently an open problem to formulate such objects in
this type theory. As an alternative, we may consider an extension of this type theory
with a basic notion of strict directed shapes we dub simplicial homotopy type theory.
The basic objects of homotopy type theory can be understood as ∞-groupoids. Cor-
respondingly, the basic objects of simplicial homotopy type theory can be understood
as simplicial ∞-groupoids. Inside this extension, we have simple axiomatizations of
(∞,1)-precategories and (∞,1)-categories semantically corresponding to Segal spaces
and Rezk spaces, also known as complete Segal spaces. Since all constructions in this
theory are homotopy invariant, it presents a natural environment in which to study these
objects.

We take a ground up approach and subdivide the thesis into three main parts. First,
we study homotopy type theory itself and many of its facets. We then move on to the
study of simplicial homotopy theory which is a natural area to interpret the two type
theories in. Finally, having laid the proper foundation, we present simplicial homotopy
type theory and study (∞,1)-category theory inside of it. In particular, internalizing
certain lifting properties and fibrations.

The original work in this thesis lies in the connecting of ideas, general elaboration on
simplicial homotopy type theory, as well as in the internalization of some concepts from
(∞,1)-category theory in classical mathematics into this type theory.

i

ii

Acknowledgements

I extend my deepest gratitude to my supervisor for giving me the opportunity to
write this thesis. It has been an incredible learning experience that would not have been
possible without him. His continued guidance and feedback have also been invaluable in
shaping this thesis.

I would also like to thank all of the authors who make their amazing work freely
available and selflessly contribute to free online resources.

Last but not least, I would like to thank my partner for her unconditional love and
support. And her unending patience with me throughout the writing process. Without
her, I would surely have gone insane this year.

Fredrik

iii

iv

Contents

Introduction 1

I Homotopy Type Theory 3

1 Proof relevance and constructivity 3

2 Syntax 7

3 Martin–Löf type theory 9

3.1 Type construction . 10

3.1.1 Π-types . 10

3.1.2 Σ-types . 13

3.1.3 The empty, unit and boolean type 15

3.1.4 Identity types . 16

3.2 Extensions of Martin–Löf type theory . 18

4 Types are ∞-groupoids 20

4.1 Functions are functors . 23

5 Higher inductive types 25

5.1 The interval type . 26

5.2 Function extensionality . 27

5.3 The circle type . 29

6 The universe type and univalence 30

6.1 Univalence . 30

6.2 Functions are fibrations . 33

II Simplicial Homotopy Theory 35

7 Simplicial sets 36

7.1 Directed simplices . 36

7.2 Simplicial sets . 38

7.3 The nerve construction . 40

7.4 Kan complexes . 43

8 Homotopical categories 45

9 The lifting problem 49

9.1 Weak factorization systems . 52

v

10 Model categories 55
10.1 The model structure . 55
10.2 Fibrancy . 59
10.3 Homotopies . 60
10.4 Reedy model structure . 65

11 Models of type theory 67

12 Simplicial spaces 70
12.1 Segal spaces . 73
12.2 Rezk spaces . 74

III Simplicial Homotopy Type Theory 77

13 Defining simplicial type theory 78
13.1 Cubes . 80
13.2 Topes . 81
13.3 Shapes . 84
13.4 Extensions . 85

14 Relating shapes and types 88
14.1 Properties of extension types . 88
14.2 Extensionality of extensions . 91
14.3 Arrows . 92

15 Category theory in simplicial homotopy type theory 95
15.1 Segal types . 95
15.2 Isomorphisms and Rezk types . 101
15.3 Some categorical constructions . 103

16 Fibrations and families 107
16.1 The lifting problem . 108
16.2 Absolute lifting . 112
16.3 Comma representability . 115
16.4 Cocartesian families . 116

References 121

vi

Introduction

The thesis is subdivided into three main parts: homotopy type theory, simplicial homotopy
theory, and simplicial homotopy type theory.

In the first part we survey homotopy type theory taking a formal approach akin
to [UF13, Appendix A.2]. This is a foundational theory of mathematics, posing as an
alternative to for instance set theory. In type theory, the basic objects are terms and
types, resembling the notions of elements and sets from set theory. We first discuss the
philosophy of constructive mathematics and the principle of proof relevance, and its
manifestation as “propositions as types.” We then lay out the basic syntax and type
constructions. After this, we display the weak ∞-groupoid structure carried by types
and demonstrate the homotopy invariance of internal constructions. Hence, in this sense
homotopy (type theory) is a (homotopy type) theory. We also visit the concept of higher
inductive types, which are inductively defined types with higher-dimensional homotopical
structure. In particular, we use the examples of an interval type and circle type as
motivation for discussing core concepts of the type theory. Finally, we axiomatize a type
of types and discuss the univalence axiom due to Voevodsky [Voe14].

In the second part we survey simplicial homotopy theory. We first define simplicial
sets, and consider a range of constructions on them. Simplicial sets have a multitude
of uses to us. Firstly, they may be used as an alternative model of the homotopy
theory of topological spaces through the Kan–Quillen model structure [Qui67]. And
secondly, we may faithfully interpret categories as certain simplicial sets. Hence simplicial
sets pose a unifying framework for doing category theory and for doing homotopy
theory. So, in particular, they are a good starting point for defining and studying (∞, 1)-
categories [Rez01; Joy08; DK80]. We go into particulars on the theory of model categories,
but first discuss homotopical categories, the lifting problem, and weak factorization
systems taking inspiration from [Rie20]. We apply this to understand the homotopy
theory of ∞-groupoids as Kan complexes and the homotopy theory of (∞,1)-categories
as Rezk spaces. We connect this to the semantics of both homotopy type theory [KL18]
and later simplicial homotopy type theory [RS17].

Finally, in the third part we study simplicial homotopy type theory as first introduced
in [RS17]. We define it as a type theory with three layers. The first two express an
intuitionistic first-order logic of strict directed shapes. and on top of this we place the
homotopy type theory as laid out in Part I, but with additional types of relative functions
from shapes into types. We then establish the basic properties of these relative function
types and the simplicial ∞-groupoid structure of types. After this, we study the internal
(∞,1)-category theory. Finally, in the last section, taking inspiration from [BW21] and
[RV21], we study certain lifting properties and fibrations in simplicial homotopy type
theory.

We assume the reader is well-acquainted with category theory and the homotopy
theory of topological spaces. It is also advantageous, but not necessary, for the reader to
be familiar with foundational mathematics and enriched category theory.

1

2

Part I

Homotopy Type Theory

Homotopy type theory is a recent development in foundational mathematics due to
insights connecting Martin–Löf dependent type theory1 to homotopy theory. It extends
this type theory by interpreting types as homotopy spaces and by equipping it with
higher inductive types and the univalence axiom.

We will begin by discussing the philosophy of intuitionistic type theory and then
present the basic type-theoretic framework. This framework is based on principles that
make it distinct in flavor from set theory and classical logic. In particular, we will look
at the principle of proof relevance, a manifestation of it: propositions as types, and the
philosophy of constructivism.

We will then present a formal view of this type theory, define the basic type formers
and discuss their defining rules both in prose and with inference rules. We will take an
approach resembling that of [UF13, Appendix A.2], although we do not immediately
assume an internal type of types.

Most important to the homotopy interpretation is the identity or equality type, which
houses the paths of a type. Using the identity type, we will define the weak ∞-groupoid
structure on types. With this reading all functions may be understood as continuous
functions.

With this established we shall look at constructions called higher inductive types.
These are inductively defined types with generators on their identity types and give a
framework for doing synthetic homotopy theory inside the type theory. In particular, we
will use the motivating examples of the interval and the circle type to introduce function
extensionality and homotopy levels of types.

Finally, we will axiomatize a type of types and discuss the univalence axiom. This
axiom has a multitude of interpretations and consequences. For instance, due to the
principle of univalence, the formulation of 1-category theory in homotopy type theory is
arguably more natural than the set-theoretic counterpart. In contrast to the set-theoretic
formulation, the natural form of identification in homotopy type theory is isomorphism,
which in many cases is a better-suited form of identification.

1 Proof relevance and constructivity

Intuitionistic type theories are proof relevant theories. meaning that whenever a claim of
truth is made, it must be accompanied by a proof. Moreover, proofs are first-class citizens
and may be manipulated just like any other mathematical object. This is a powerful
idea which, in addition to manifesting as propositions as types, is also fundamental in the
interpretation of types as homotopy spaces.

1Also known as intuitionistic type theory or constructive type theory although these terms are also
used to refer to broader classes of type theories.

3

Unlike set theory, which is built on a logical framework of first-order propositional
logic, this correspondence of propositions as types allows us to define and work with
propositions directly inside of type theory, hence there is no need for an underlying logic.

The type-theoretic analogues of sets and elements are respectively called types and
term. A proof of the inhabitedness of a type A is simply a term of that type a ∶ A. From
a logical viewpoint, one would interpret this as proof that A is true. Similarly, a proof of
the proposition “A implies B” is a method of constructing a term of B given a term of
A, i.e. it is a function term A→ B.

It is a remarkable fact that every proposition may be encoded as a type in this way.
For instance, to encode the proposition “A is not inhabited” one forms the function type
A→ 0 where 0 denotes the empty type. The only way to construct a function from A
to 0 is if A is itself empty, in which case there is exactly one such function. Another
example, to prove that two terms x, y ∶ A are equal, one must define an element of the
identity type x =A y, a type we will define later.

We are purposefully vague with certain ideas in this section, appealing instead to the
intuition of the reader. We will talk in terms of propositions, as what we discuss specializes
to the theory of intuitionistic propositional logic. But one may as well exchange the word
“proposition” with “type.”

Constructivity

A proof-relevant theory stipulates that the proof itself is relevant to the statement it
proves. A claim of truth is accompanied by a proof, and this claim may not be acted upon
constructively unless we have access to the proof. For example, a claim of the existence
of some object is typically accompanied by a construction of it, and the particular
construction itself is relevant to the result. When we want to use the existence of this
object in a later statement, we may find use for the specific construction described in the
previous proof as well.

In classical logic, on the other hand, proofs are not as relevant to the statement
they prove, as they give no other content to it than to demonstrate its mere validity.
This issue is founded on the fact that classical logic assumes non-constructive axioms.
Consider for instance the classical formulation of the axiom of choice.

Axiom 1 (Axiom of choice (AoC)). For every family of merely inhabited2 sets {Si}i∈I
there exists a choice function

f ∶ {Si}i∈I →⋃i∈I Si

such that f(Si) ∈ Si for all i ∈ I.

This axiom gives no method for constructing such a choice function. The axiom
postulates only its mere existence. Hence the axiom is non-constructive, and we cannot

2The notion of “mere inhabitance” of a set coincides with the usual notion of inhabitance in classical
logic, but this phrasing alludes to what makes the axiom non-constructive.

4

extract any computational meaning from it.3

Though this axiom is widely accepted, it is not unheard of to question the validity of
the axiom of choice. Not just due to its non-constructivity but also because it leads to
well-known paradoxes such as the Banach-Tarski paradox. However, as constructivists,
we have to go a step further and rid ourselves of the assumption of the law of excluded
middle. This boils down to separating the notions of negation and complement of a
proposition.

Definition 1.1 (Negation and complement). Let p be a proposition. The negation of
p, written ¬p is the proposition

¬p ∶= p→ �

where � is the trivially false proposition. We can intuitively read ¬p as “assuming p leads
to a contradiction.” Other readings are “p is refuted” or “p is false” although note that
these readings are in terms of provability. The complement of p on the other hand is a
proposition p satisfying

p ∨ p is true, and p ∧ p is false.

In constructive logic, such a proposition may not provably exist, and so one has to
fall back to the weaker notion of negation in the general case.

Remark 1.2. If the complement p exists it is also the negation ¬p.

The converse of this statement is not provable in general without the following axiom.

Axiom 2 (Law of excluded middle (LEM)). For every proposition p, we have

p ∨ ¬p is true.

The law of excluded middle gives the mathematician a very powerful tool, the proof
by contradiction: “If one assumes ¬p holds and from it derive a contradiction, then one
may conclude that p is true.” In logical notation,

Axiom 3 (Double negation law). ¬¬p→ p is true.

Again, like with the axiom of choice, a proof by contradiction is non-constructive. If
for instance one proves that some object exists by this kind of proof by contradiction, the
rationale is that it must exist because it can’t not exist. Hence constructivism requires us
to reject both of these axioms. As a particular consequence, there may be propositions
for which we cannot deduce either p or ¬p, called undecidable propositions. We can
however say something weaker, namely that we cannot deduce that neither p nor ¬p hold.

Proposition 1.3. The law of excluded middle is not refuted,

¬(p ∨ ¬p) is false.
3For constructive mathematics, however, the natural way to prove inhabitedness is by giving a

construction of an inhabitant. Formulating the axiom using this notion of inhabitedness, the choice has
already been made by hypothesis. As a consequence, a constructive reformulation of the axiom of choice
is actually a derivable fact.

5

In the course of the proof, we perform two proofs of negation, one nested inside the
other. Note that the only way to prove ¬p is to assume p and from it derive a contradiction.
This does not assume the law of excluded middle, it is just the defining property of
negation. What is not allowed is proving that ¬p is false and from it concluding that p is
true.

Proof. We begin by assuming ¬(p∨¬p) for the sake of reaching a contradiction. To reach
a contradiction it suffices to prove ¬p. To prove ¬p we must assume p and from it derive
a contradiction. If p is true then we in particular have p ∨ ¬p, which contradicts our
initial assumption of ¬(p ∨ ¬p). Hence we reached a contradiction and so ¬p must be
true. This again contradicts the initial assumption, hence ¬(p ∨ ¬p) must be false.

Digression 1.4 (Modality). From a higher point of view, we may understand double
negation as a modality, a certain mode of logic, under which we recover classical logic
inside of constructive logic: the law of excluded middle does not hold constructively, but
it does classically. There are other modalities we can consider inside of Martin–Löf type
theory. Specifically, we have one which preserves slightly more information than double
negation, the (−1)-truncation. With this modality, we may formulate weak versions,
but faithful to the classical axioms, of the law of excluded middle as well as the axiom
of choice which we may assume without breaking proof relevance nor consistency with
homotopy type theory.

We end this section with a proof of Diaconescu’s Theorem, a relevant result from
classical logic.

Theorem 1.5 (Diaconescu’s Theorem)
The axiom of choice implies the law of excluded middle.

Proof adapted from [Bau13]. Take any proposition p and consider the set 2 = {0, 1} with
the following two subsets

A = {x ∈ 2 ∣ p ∨ (x = 0) } B = {x ∈ 2 ∣ p ∨ (x = 1) }.

Both subsets are inhabited as 0 ∈ A and 1 ∈ B, and their union is 2, so we may apply
the axiom of choice to get a choice function f ∶ {A,B} → 2 with f(A) ∈ A and f(B) ∈ B.
Now let us consider all possible instances of such a choice function. In each case we will
prove the proposition in the corresponding cell. The rows represent the value f(A) takes,
and the columns represent the value f(B) takes.

0 1

0 p ¬p
1 ☇ p

(i) For the diagonal entries observe that we have an element of one of the subsets for
which p ∨ (x = y) is true but x ≠ y. Hence it must be the case that p is true.

6

(ii) For the top right case we may prove ¬p. If p were to be true, then A and B would
consist of the same elements and so A = B by the axiom of set extensionality, but
f(A) ≠ f(B), a contradiction.

(iii) Lastly, the bottom left instance cannot occur. We would have p by the same
argument as for the diagonal. So by the previous argument, we reach a contradiction.

If you are curious to learn more about constructive mathematics, I can recommend
viewing Andrej Bauer’s lecture [Bau13], in which he motivates the usage of constructivism
and presents a few entertaining albeit less informative aspects of the theory.

2 Syntax

In this section, we will elaborate on the basic syntax we use to present type theory. We
will try to build the formalism from the ground up, assuming little background knowledge.
We will follow the naming and style conventions of [RS17] and [UF13]. However, for a
full treatment of the formal theory, we refer the reader to for instance [SU06], and for
a better syntactic presentation of homotopy type theory, we refer the reader to [UF13,
App. A].

What is type theory? Type theories are loosely related formal systems in which
terms and types replace the fundamental roles played by elements and sets from set
theory. A type theory is commonly presented syntactically as a collection of rules formed
out of judgments. The judgments needed for an informal presentation of Martin–Löf type
theory as in [UF13] are only the following two:

a ∶ A The expression a is a term of type A.
a ≡ a′ ∶ A The expressions a and a′ are judgmentally equal as terms of A.

The first judgment expresses the type-theoretic analog of the typical relationship between
an element and a set, although we have yet to explain when A is a type. One difference
from set theory is that we do not consider a a term unless it may be judged to be a term
of a specific type. In set theory on the other hand one usually considers, for instance,
the number 1 to live by itself, but also to be a member of the natural numbers, the reals,
and so on.

The second judgment expresses a syntactic notion of equality. If terms are judgmentally
equal, or definitionally equal, it will mean that the language itself does not distinguish
between them. This is generally a stricter notion than “a and a′ behave the same in
every regard.”

For our presentation we also want to have syntax for judging expressions to be types
and for judging expressions to be equal types.

A type The expression A is a type.
A ≡ A′ type The expressions A and A′ are judgmentally equal as types.

7

You might wonder how it could have been possible to judge expressions to be types
without additional syntax. Without a type judgment, we would have to be able to judge
A to be a type with a judgment of the form A ∶ U for some type U . Meaning that we
would need a type of all types. A naive formulation would allow us to judge U ∶ U .
However, as is familiar from naive set theory, this makes the theory inconsistent. Hence
the only alternative is to have a larger type U ′ in which U resides. Of course, this only
shifts the problem one step over, and so to make this consistent we need an unbounded
hierarchy of universes

A ∶ U0 ∶ U1 ∶ U2 ∶ . . . ∶ Un ∶ Un+1 ∶ . . . ,

we need turtles all the way down. This means that without type judgments, our logic
needs to be at least of ω’th-order. We wish to have the opportunity to restrict ourselves
to finite orders, hence we need the additional syntax.

Furthermore, although it is possible to develop informal homotopy type theory with
only the judgments presented, we wish to take a formal approach. In the formal approach,
we use a syntax for hypothesized terms, and every judgment is made in context of
hypotheses. We use the judgments

Γ ctx Γ ⊢ A type Γ ⊢ A ≡ A′ type Γ ⊢ a ∶ A Γ ⊢ a ≡ a′ ∶ A.

In the formal presentation, the rules of the type theory may be formulated as
inference rules. These are collections of hypothesis judgments τi under which we may
conclude another judgment τ , denoted

τ1 . . . τn

τ
.

Inference rules are then applied in a formal procedure where we build derivation
trees by composing and pairing inference rules. The leaves of a derivation tree are its
hypotheses and the root yields its conclusion.

As a preliminary example, the following derivation tree is valid in Martin–Löf type
theory

p ∶ A ×B
pr1 p ∶ A

(×-elim)

in1 pr1 p ∶ A +B
(+-intro) hence (p ∶ A ×B) ⊢ (in1 pr1 p ∶ A +B).

In general, derivation trees may only be finitely deep but are in fact allowed to be
infinitely wide.

Alternative presentations. There are alternative ways to present a type theory. One
may for instance model type theories using special categories. We will discuss this more
in Section 11. This is a well-suited environment for doing general type theory.

8

Another approach wildly different in flavor is presenting a type theory as a special
programming language called a proof assistant. In this presentation, a program written in
the language is a collection of judgments, usually complicated by abstractions and special
syntax. The successful compilation, also referred to as type checking, of such a program is
a verification that all judgments are well formed, i.e. that they may be derived using the
inference rules specified by the language. Hence the implementation of the compiler, or
type checker, serves as a specification of the type theory. Instances of such programming
languages include Agda, Coq and Lean.4 Of these, Agda implements a direct extension
of Martin–Löf type theory, while Coq and Lean are based on a closely related dependent
type theory called the Calculus of Inductive Constructions. In particular, homotopy type
theory may be implemented in all three.

3 Martin–Löf type theory

We now define Martin–Löf dependent type theory using the syntax defined in the previous
section.

Contexts. We start by defining the contexts. These are dependent lists of variables we
call free terms. They are free in the sense that their only restriction is the type they
inhabit. The definition is an inductive one, using the below inference rules. We note that
context juxtaposition is denoted using commas.

() ctx
(ctx-empty)

Γ ⊢ A type

Γ, x ∶ A ctx
(ctx-extension)

Γ, γ,Λ ctx

Γ, γ,Λ ⊢ γ
(ctx-var)

The first rule states that we may always form an empty context. The second states
that given a well-formed type A in context Γ, we may extend this context with a new
free term or free variable of type A (where we label this term with a symbol that
does not appear elsewhere, so as to avoid variable capture). The final rule states that we
may conclude any hypothesis of a well-formed context.

Hence a general context is a list of free terms

(x1 ∶ A1, . . . , xn ∶ An),

where each typeAi may depend on the prior variables. We may writeAi asAi(x1, . . . , xi−1)
to emphasize this fact, although we note that this is the default mode of operation.

A basic tool for symbolically manipulating expressions is the substitution operation.
Given a free term x ∶ A in context Γ, and an expression τ in the same context, then given
some other term Γ ⊢ a ∶ A we may substitute all instances of x in τ with a, denoted
τ[a/x]. More generally, for n such terms, we denote the simultaneous substituion of
all n terms as τ[a1, . . . , an/x1, . . . , xn] and note that this may not be equal to any series

4Agda: wiki.portal.chalmers.se/agda, Coq: coq.inria.fr, Lean: leanprover.github.io

9

https://wiki.portal.chalmers.se/agda
https://coq.inria.fr
https://leanprover.github.io

of sequential substitutions of these terms, as any of the terms a1, . . . , an, x1, . . . , xn may
appear as parts of any of the terms a1, . . . , an.

In addition we have structural rules of weakening and cut. However, these rules are
admissible: in every instance they are applicable, their conclusion is already derivable (a
metatheoretical result). So their explicit assumption is unnecessary, and we decline to
elaborate on them.

3.1 Type construction

We define types in the style of natural deduction. We categorize the inference rules for
each kind of type into the following five categories.

Formation. Describing when we may form a type of this kind.

Introduction. Describing when we may construct a term of this type.

Elimination. Describing the operations we may perform on terms of this type.

Computation. Describing how the elimination rules relate to the introduction rules.

Uniqueness. Describing how eliminators involving this type are identified uniquely.

Although a type does not need to have rules in all five categories.

3.1.1 Π-types

We begin by defining the Π-types, first in prose and then in syntactic terms. These
types are also called dependent function types or dependent product types. This
choice of naming will soon become clear. We call their terms dependent functions or
Π-terms.

Π-formation: Given a type A and a family of types x ∶ A ⊢ B type5 then we may form
the Π-type ∏x∶AB.

Π-introduction: Given for every x ∶ A a term b ∶ B, we may construct the function term
(x ↦ b) ∶ ∏x∶AB. This is our lambda notation, expressing that x is mapped to b.
This rule is sometime refered to as lambda abstraction or simply abstraction.

Π-elimination: Given a term f ∶ ∏x∶AB and a term a ∶ A, one may apply f to a to
obtain a term f(a) ∶ B[a/x]. This rule is also called application.

Π-computation: If a dependent function is defined using the lambda expression x↦ b,
then the term we obtain from the elimination rule is b with a substituted for x,

(x↦ b)(a) ≡ b[a/x].

5I.e. the type B depends on x ∶ A, which we could have written explicitly as B(x).

10

Π-uniqueness: A dependent function is judgmentally determined by its values

f ≡ (x↦ f(x)).

Now for the syntactic presentation. These are just formalized versions of the previously
stated rules, and may be considered equivalent by the reader.

Γ ⊢ A type Γ, x ∶ A ⊢ B type

Γ ⊢ ∏x∶AB type
(Π-form)

Γ, x ∶ A ⊢ b ∶ B
Γ ⊢ (x↦ b) ∶ ∏x∶AB

(Π-intro)

Γ ⊢ f ∶ ∏x∶AB Γ ⊢ a ∶ A
Γ ⊢ f(a) ∶ B[a/x]

(Π-elim)
Γ, x ∶ A ⊢ b ∶ B Γ ⊢ a ∶ A

Γ ⊢ (x↦ b)(a) ≡ b[a/x] ∶ B[a/x]
(Π-comp)

Γ ⊢ f ∶ ∏x∶AB

Γ ⊢ f ≡ (x↦ f(x)) ∶ ∏x∶AB
(Π-uniq)

Figure 1: Dependent product rules

This family of types plays many central roles. Logically, a term of such a type proves
“for each x in A, we have B(x)” and hence plays the role of the universal quantifier. Set
theoretically, the type is the product of a family of types indexed over A. Categorically,
they are generalized internal homs. And homotopically, they describe the type of sections
of a fibration.6

Thanks to the Π-type we do not need to define a non-dependent function type
separately, denoted A→ B, since we recover them as a special case of Π-types in the case
that B does not depend on x ∶ A. Non-dependence may be expressed as

Γ, x ∶ A ctx Γ ⊢ B type

A→ B type

Example 3.1 (Examples of function terms). The most basic example of a Π-term is the
identity function

idA ∶≡ (x↦ x) ∶ A→ A,

where we use the relational symbol ∶≡ for definition, meaning that we define the left-hand
side to be judgmentally equal to what is on the right-hand side. We read it as idA is
defined to be (x↦ x).

This term may be constructed in any context using the deduction tree

Γ ⊢ A type

Γ, x ∶ A ctx
(ctx-extension)

Γ, x ∶ A ⊢ x ∶ A
(ctx-var)

Γ ⊢ (x↦ x) ∶ A→ A
(Π-intro).

6Although this last fact is not as trivial.

11

As we can see already in this simplest case, writing out the deduction trees is rather
tedious and generally little additional information besides verifying that judgments are
well-formed. From now on, we will refrain from writing out the deduction trees in full.
Instead, we will only mention specifics of which inference rules are applied in select cases,
and trust the reader to infer the particulars of a deduction themselves in general.

We can also construct a curried non-dependent function composition operation of
type

− ○ − ∶ (B → C) → ((A→ B) → (A→ C))

defined as

− ○ − ∶≡ (g ↦ (f ↦ (x↦ g(f(x)))))

When we have defined binary products, the type signature of −○− will be equivalent to
the perhaps more familiar ((B → C)×(A→ B)) → (A→ C) using the usual product-hom
adjunction. So it is mostly a matter of taste how we choose to define it. It has become
the norm among type theorists however to prefer curried definitions.

Further conflating these viewpoints we will use the following shorthand for iterated
abstraction:

− ○ − ≡ (g, f, x↦ g(f(x))).

And similarly, when evaluating a curried function, say h ∶ A→ (B → C), we may write
h(a)(b) as h(a, b). Lastly, we define our arrow-notation to associate to the right, so the
type of − ○ − may be written as

(B → C) → (A→ B) → A→ C.

The composition operation may be generalized to the dependent case in the following
manner. Given type families x ∶ A ⊢ B type and x ∶ A,y ∶ B ⊢ C type, then we may define
the composition operation

(g, f, x↦ g(x, f(x))) ∶
⎛
⎝ ∏(x∶A)

∏
(y∶B(x))

C(x, y)
⎞
⎠
→ ∏
(f ∶∏(x∶A)B(x))

∏
(x∶A)

C(x, f(x)).

Although note that now we need to feed x ∶ A to g as well to keep track of the appropriate
codomain.

In the presence of the inference rules for the Π-types, the elimination rule may be
formulated internally, meaning we may construct it as a term of a type. For instance,
the non-dependent eliminator may be typed as a curried evaluation function

eval ∶≡ (f, x↦ f(x)) ∶ (A→ B) → A→ B,

which may be read as the following tautology: “to define a function from A to B it suffices
to give a function from A to B.” But of course, we are still relying on the elimination
principle for function types. This demonstrates a useful fact, however: type eliminators
may be internalized as function terms.

12

In the presence of a universe type U (as we will formalize in Section 6), function
terms also internalize the notion of type families. Namely, the type family x ∶ A ⊢ B type
is equivalently a function term B ∶ A→ U . Note: even in the absence of a universe type
we will abusively denote type families in this way. Note that when we take this viewpoint,
substitution instead becomes evaluation.

3.1.2 Σ-types

We now define the Σ-types. These are also called dependent sums or types of
dependent pairs. We use the symbol Σ for this class of types, as they may be
understood as sums indexed over A.

Σ-formation: Given a type A and a family of types B ∶ A→ U then we may form the
Σ-type ∑x∶AB(x).

Σ-introduction: Given a term a ∶ A and a term b ∶ B(a) then we may construct the
term (a, b) ∶ ∑x∶AB(x).

Σ-elimination: The dependent eliminator for Σ-types states that to construct a depen-
dent function out of a Σ-type

f ∶ ∏(p∶∑x∶AB(x))C

one must admit for every a ∶ A and b ∶ B(a) a construction of a term of C. I.e. we
need a function term

f ′ ∶ ∏
(a∶A)

∏
(b∶B(a))

C

Hence the elimination rule may be read as stating that the Σ-type is freely generated
by the dependent pairs. Writing out the internal eliminator in full, we get

ind(∑x∶AB(x)) ∶
⎛
⎝ ∏(a∶A)

∏
(b∶B(a))

C
⎞
⎠
→ ∏
(p∶∑x∶AB(x))

C.

Σ-computation: The computation rule states that when a function f is constructed
using Σ-elimination as just defined, then applying it to a pair (a, b) yields the
judgmental equality

f((a, b)) ≡ (f(a))(b).

There is no uniqueness rule for the Σ-type.

Under the propositions as types interpretation, a term of ∑x∶AB(x) can be read as
a proof that there exists an x ∶ A such that B(x) is true. Hence this is our analog of
the existential quantifier. Set theoretically, the Σ-type may be interpreted as a disjoint
sum indexed over A. Categorically, it generalizes products in the same way that Π-types
generalize internal homs. And homotopically, Σ-types describe total spaces.

13

Digression 3.2 (Induction and recursion). The motivation behind using the symbol
ind for the dependent eliminators is because they may be interpreted as principles of
induction. Likewise, non-dependent elimination rules may be interpreted as principles
of recursion. For types where one expects to see some form of induction or recursion,
these principles will in fact coincide with them (up to equivalence). For instance, had we
defined the type of natural numbers N, its induction principle would be exactly what you
would expect: to construct a dependent map from N to a type family P ∶ N→ U it suffices
to provide a base term at p0 ∶ P (0), and for each n ∶ N, a map P (n) → P (n + 1). Read
under the logical interpretation: to prove the predicate P (n) for every natural number n
it suffices to prove the base case n ≡ 0 and to prove the implication P (n) → P (n + 1).

Γ ⊢ A type Γ, x ∶ A ⊢ B type

Γ ⊢ ∑x∶AB type
(Σ-form)

Γ, x ∶ A ⊢ B type Γ ⊢ a ∶ A Γ ⊢ b ∶ B[a/x]
Γ ⊢ (a, b) ∶ ∑x∶AB

(Σ-intro)

Γ, p ∶ ∑x∶AB ⊢ C type Γ, x ∶ A,y ∶ B ⊢ c ∶ C[(x, y)/p] Γ ⊢ q ∶ ∑x∶AB
Γ ⊢ ind(∑x∶AB)((x, y ↦ c), q) ∶ C[q/p]

(Σ-elim)

Γ, p ∶ ∑x∶AB ⊢ C type Γ, x ∶ A,y ∶ B ⊢ c ∶ C[(x, y)/p] Γ ⊢ a ∶ A Γ ⊢ b ∶ B[a/x]
Γ ⊢ ind(∑x∶AB)((x, y ↦ c), (a, b)) ≡ c[a, b/x, y] ∶ C[(a, b)/p]

(Σ-comp)

Figure 2: Dependent sum rules

In particular we have projection functions

pr1 ∶≡ ind(∑x∶AB)(x, y ↦ x) ∶ (∑
x∶A

B) → A

pr2 ∶≡ ind(∑x∶AB)(x, y ↦ y) ∶ ∏
(p∶∑x∶AB)

B(pr1 p).

We have the following central construction characterizing the interaction between Π-
and Σ-types:

Theorem 3.3 (Type-theoretic axiom of choice)
Given a type A, a type family x ∶ A ⊢ B type and another type family x ∶ A,y ∶ B ⊢ C type,
then we have a function

ttac ∶ ∏
x∶A

⎛
⎝ ∑
y∶B(x)

C(x, y)
⎞
⎠
→ ∑

(f ∶∏x∶AB(x))
(∏
x∶A

C(x, f(x))) ,

given on Π-terms by ttac(f) ∶≡ (x↦ pr1 f(x), x↦ pr2 f(x)).

14

Proof. having already defined ttac on terms, it remains to verify that everything inhabits
the correct types, which we leave as an exercise.

Under the propositions as types correspondence, this has a notably similar reading to
that of the classical axiom of choice: “If there for every x ∶ A exists an inhabitant y ∶ B(x)
such that C(x, y), then we have a choice function f ∶ ∏x∶AB(x) such that C(x, f(x)) for
every x ∶ A.” This does not contradict constructivity since the hypothesis is stronger
than the classical formulation. The only way to constructively prove that for every x ∶ A
there exists a term y ∶ B(x) such that C(x, y), is to construct such a function. This is in
contrast to the classical formulation where the default is to assume mere existence. In
particular, due to its stronger hypothesis, this theorem does not enable us to prove the
usual classical results that depend on the axiom of choice.

Remark 3.4. The implication formulated in the previous theorem may be promoted to
an equivalence, in which case it may be interpreted as expressing that products distribute
over coproducts.

3.1.3 The empty, unit and boolean type

Let us now define the 0-, 1- and 2-term types, called the empty type 0, unit type 1 and
type of booleans 2 respectively. Under the propositions as types interpretation the two
types 0 and 1 play the roles of the trivial falsity and the trivial truth. Categorically, they
are the initial and terminal objects. The type 2 is also important to us as it allows us to
define binary operations on types internally without the need for additional inference
rules.

These types’ formation rules state that they may be formed in any context. Their
introduction rules state that they have the expected number of terms each, and their
elimination rules state that we need precisely that many terms in the target A to eliminate
out of the corresponding type. Finally, the computation rules tell us that if we mapped
a term x in the source type n to a term a in the target type A, then we recover a
judgmentally when evaluating at x.

15

Γ ctx

Γ ⊢ 0 type
(0-form)

Γ, t ∶ 0 ⊢ A type Γ ⊢ n ∶ 0
Γ ⊢ ind0(n) ∶ A[n/t]

(0-elim)7

Γ ctx

Γ ⊢ 1 type
(1-form)

Γ ctx

Γ ⊢ 0 ∶ 1
(1-intro)

Γ, t ∶ 1 ⊢ A type Γ ⊢ a ∶ A[0/t] Γ ⊢ n ∶ 1
Γ ⊢ ind1(a,n) ∶ A[n/t]

(1-elim)

Γ, t ∶ 1 ⊢ A type Γ ⊢ a ∶ A[0/t]
Γ ⊢ ind1(a,0) ≡ a

(1-comp)

Γ ctx

Γ ⊢ 2 type
(2-form)

Γ ctx

Γ ⊢ 0 ∶ 2 Γ ⊢ 1 ∶ 2
(2-intro)

Γ, t ∶ 2 ⊢ A type Γ ⊢ a0 ∶ A[0/t] Γ ⊢ a1 ∶ A[1/t] Γ ⊢ n ∶ 2
Γ ⊢ ind2(a1, a2, n) ∶ A[n/t]

(2-elim)

Γ, t ∶ 2 ⊢ A type Γ ⊢ a0 ∶ A[0/t] Γ ⊢ a1 ∶ A[1/t]
Γ ⊢ ind2(a0, a1,0) ≡ a0 Γ ⊢ ind2(a0, a1,1) ≡ a1

(2-comp)

Figure 3: Rules for 0, 1 and 2

The reader may verify that the rules corresponding to each category indeed encapsulate
the intended aspect.

Given a type family B ∶ 2→ U we recover the binary product B(0)×B(1) as∏x∶2B(x),
and the binary sum B(0) +B(1) as ∑x∶2B(x). Because of this, we do not need to define
these operations separately.

3.1.4 Identity types

Under the propositions as types correspondence, there should be a type that reflects the
equality of terms. Hence we introduce a family of types that may presently be understood
as only reflecting judgmental equality into the type theory, although as we will shortly
discuss this will not continue to hold in homotopy type theory. These are called the
identity types or (propositional) equality types or type of equality proofs or
path types.

=-formation: Given terms x, y ∶ A, we may form the identity type x =A y.

7Encoding “ex falso quod libet.”

16

=-introduction: Given a term a ∶ A, we may construct the reflexivitiy term, or
constant path at a, refla ∶ a =A a. This rule expresses that if a ≡ a′, then they are
also equal in the sense of the identity type.

=-elimination: Assume given a type family C ∶ ∏(x,y∶A)(x =A y) → U . To construct a
dependent function over the identity types

f ∶ ∏
(x,y∶A)

∏
(p∶x=Ay)

C(x, y, p)

it suffices to consider the case where y is x and p is reflx, i.e. that y ≡ x and p ≡ reflx.
Written out in full, we have the following internal induction principle for identity
types

ind=A ∶
⎛
⎝ ∏(x∶A)

C(x,x, reflx)
⎞
⎠
→ ∏

(x,y∶A)
∏

(p∶x=Ay)
C(x, y, p).

=-computation: In the case that y is x and p is reflx, one recovers the construction
used in the eliminator judgmentally.

ind=A(c, x, x, reflx) ≡ c(x)

The elimination principle of identity types may be read as stating that the identity
types are freely generated by reflexivities, i.e. constant paths, which is also the case in
bare-bones intuitionistic type theory. However, as we shall see in later sections this is
not the case in homotopy type theory. Indeed, a recurring theme will be adding axioms
regarding the identity types. This is the basis for both higher inductive types and the
univalence axiom, but also includes more benign principles like the function extensionality
axiom (functions that are equal on evaluations are equal). These axioms cannot be
formulated in terms of judgmental equality without breaking either the homotopical
interpretation, consistency, or decidability of type checking respectively.

With these additional axioms, the content of the identity types becomes much richer,
and the interpretation of identity terms as paths becomes fruitful. In this interpretation,
we consider terms of a type, e.g. x, y ∶ A, as points, and terms of the identity type
p, q ∶ x =A y as paths between them.

Moreover, by the formation rule, we may form the iterated identity type p =x=Ay q
whose inhabitants are then paths between paths, two-dimensional paths. This type may
or may not be inhabited. For instance, we may imagine the type A being shaped like a
torus, where the two paths p and q are homotopic, while some third path r ∶ x =A y is not:

17

y

x

p qr

Figure 4: Homotopical interpretation of higher identity terms.

To be precise, we will see that the identity types express a weak groupoid structure
of types, and through iterated identity types that types are weak ∞-groupoids. This will
be the focus of the next section. For now, we leave you with the formal inference rules of
the type family and then discuss some possible alternative extensions of the type theory.

Γ ⊢ A type Γ ⊢ a1 ∶ A Γ ⊢ a2 ∶ A
Γ ⊢ a1 =A a2 type

(=-form)
Γ ⊢ A type Γ ⊢ a ∶ A

Γ ⊢ refla ∶ a =A a
(=-intro)

Γ, x1 ∶ A,x2 ∶ A,p ∶ x1 =A x2 ⊢ C type
Γ, y ∶ A ⊢ c ∶ C[y, y, refly/x1, x2, p] Γ ⊢ a1 ∶ A Γ ⊢ a2 ∶ A Γ ⊢ q ∶ a1 =A a2

Γ ⊢ ind=A((y ↦ c), a1, a2, q) ∶ C[a1, a2, q/x1, x2, p]
(=-elim)

Γ, x1 ∶ A,x2 ∶ A,p ∶ x1 =A x2 ⊢ C type Γ, y ∶ A ⊢ c ∶ C[y, y, refly/x1, x2, p] Γ ⊢ a ∶ A
Γ ⊢ ind=A((y ↦ c), a, a, refla) ≡ c[a/y] ∶ C[a, a, refla/x1, x2, p]

(=-comp)

Figure 5: Identity rules

3.2 Extensions of Martin–Löf type theory

An important class of types we may include in our type theory are the W-types as is
done in [UF13]. These are the types of well-founded trees. They may be compactly
characterized as mathematical structures with a well-behaved induction principle. Notable

18

examples of W-types include the natural numbers, the integers, finite sets, and lists.
However, these constructions are not needed for our considerations and we omit them
from the type theory at present.

We would also like to mention that there are multiple notable extensions of intuition-
istic type theory. One has Homotopy type theory (HoTT) which extends intensional
type theory (ITT) with higher inductive types (HIT) and the univalence axiom (UA)

HoTT = ITT +HIT +UA.

Higher inductive types are types which introduce new terms to their path types. For
their path types to still make sense, their elimination principles must take into account
the new path terms that have been introduced. Univalence is a principle that identifies
the equivalence of types with the equality of types. This axiom has many facets, some of
which we will visit in a later section. Types act like abstract spaces in homotopy type
theory and it gives rise to an intuitionistic theory of weak ∞-groupoids.

Another notable extension is Extensional type theory (ETT) which extends
intensional type theory with equality of reflection (ER) and uniqueness of identity proofs
(UIP)

ETT = ITT +ER +UIP.

Equality of reflection states that from an identity term, we may deduce judgmental
equality. And uniqueness of identity proofs state that all identity proofs of a given
identity type are themselves equal.

Types in this theory may not have higher-dimensional structure due to UIP, so they
act like sets. Hence extensional type theory is an intuitionistic theory of sets. However,
as a consequence of equality of reflection type checking is undecidable.

As a further extension, we can construct a classical type theory, in which we addi-
tionally assume the law of excluded middle and the axiom of choice. This type theory
expresses a classical theory of sets which is as strong as Zermelo-Fraenkel set theory with
the axiom of choice [Wer97]. However, we lose the benefits of a constructive setting by
assuming these axioms by default. Instead, when working in an intuitionistic setting we
may selectively choose to assume these axioms when needed, while still maintaining the
possibility for constructive proofs elsewhere.

In closing, we give a summarizing table taken from [UF13, p. 15], which outlines the
correspondences between types, logic, sets and spaces.

19

Types Logic Sets Homotopy

A type proposition set space
a ∶ A proof element point
B(x) predicate family fibration
b(x) ∶ B(x) conditional proof family of elements section
0, 1 �, ⊺ ∅, {∅} ∅, ⋆
A +B A ∨B disjoint union coproduct
A ×B A ∧B set of pairs product
A→ B A⇒ B set of functions function space

∑(x∶A)B(x) ∃(x∶A)B(x) disjoint sum total space

∏(x∶A)B(x) ∀(x∶A)B(x) product space of sections

x =A y equality A
∆→ A ×A AI ↠ A ×A

Table 1: Summary of basic type, logic, set and homotopy correspondences.

4 Types are ∞-groupoids

In this section, we will demonstrate that the identity type endows types with a weak
∞-groupoid structure. Furthermore, we will see that all constructions in Martin–Löf
type theory are homotopy invariant : we cannot construct objects internally which do
not respect equality.

We begin by making precise the groupoid structure carried by the identity types.

Lemma 4.1. Given a type A and terms x, y, z ∶ A, there is a binary operation

− − ∶ (x =A y) → (y =A z) → (x =A z)

called path composition, i.e. the identity relation is transitive.

To familiarize ourselves with arguments applying identity elimination, we are particu-
larly meticulous with this first proof, leaving nothing to the imagination of the reader.
After this proof however, we will usually reduce arguments such as this one into single
sentences.

Proof. To apply identity elimination we need to construct a dependent map where the
terms x, y and z are free:

∏
x,y,z∶A

((x =A y) → (y =A z) → (x =A z)) ,

but we also need to slightly rearrange the arguments:

∏
x,y∶A

((x =A y) →∏
z∶A

((y =A z) → (x =A z))) .

This type satisfies the hypothesis of the identity eliminator of (x =A y) which in this
case states that to construct a map ∏x,y∶A ((x =A y) → C(x, y)) for some type family

20

C ∶ A→ A→ U (since C does not depend on the particular equality proof used), it suffices
to define it in the case that y is x and the equality proof p ∶ x =A y is reflexivity reflx. I.e.
it suffices to define a map ∏x∶AC(x,x). In our case, C(x, y) is (y =A z) → (x =A z), and
so the problem reduces to defining a function

reflx − ∶ (x =A z) → (x =A z).

But here the identity function does the trick.
To define − − as to satisfy the hypothesis of the lemma, where x, y and z are fixed,

we may define it as the following abstraction

− − ∶≡ p, q ↦ ind=A((r ↦ r), x, y, p, z, q).

Remark 4.2. Our proof of transitivity gives us the computation rule reflx q ≡ q. If we
had applied the same path induction argument to the second identity type, we would
have gotten the computation rule p refly ≡ p. One may also write a proof employing
path induction twice, which only admits the computation rule reflx reflx ≡ reflx. This
demonstrates an issue with our proof-relevant theory. Since the theorem depends on its
proof, one may have to consider not only the theorem but also its proof in applications.
And though the statement of the theorem is the same, different proofs may give different
computational rules. This is a violation of what they in computer science call the principle
of separation of specification and implementation, meaning that one should only need
to understand the specification of a program to interface with it. This is a somewhat
unfortunate consequence of proof relevance and the usage of computation and uniqueness
rules.

Lemma 4.3. Given a type A and terms x, y ∶ A, there is a unary operation

(−)−1 ∶ (x =A y) → (y =A x)

called path inversion, i.e. the identity relation is symmetric.

Proof. By the equality elimination rule, it suffices to consider the case where y is x and
the equality proof of x =A y is reflx. But in this case, reflx will do.

Theorem 4.4 (Weak groupoid structure of types)
Let A be a type with terms x, y, z,w ∶ A such that p, q and r are terms of appropriate
identity types. Then we have the following relations.

p p−1 =(x=Ax) reflx (Right inverse)

p−1 p =(x=Ax) reflx (Left inverse)

p refly =(x=Ay) p (Right unit)

reflx p =(x=Ay) p (Left unit)

(p q) r =(x=Aw) p (q r) (Associativity)

Proof. We enumerate the cases, and apply path induction in each case.

21

[RI] By path induction it suffices to consider the case that p is reflx, in which case we
have reflx refl−1

x ≡ reflx reflx ≡ reflx.

[LI] Again, by path induction it suffices to consider the case that p is reflx, in which
case we have refl−1

x reflx ≡ reflx reflx ≡ reflx.

[RU] By path induction, it suffices to consider the case that y is x and p is reflx. But in
this case the equality is definitional.

[LU] By Lemma 4.1 this equality is definitional.

[A] Applying path induction it suffices to consider the case where y is x and p is
reflx. But in this case we have (reflx q) r ≡ q r ≡ reflx (q r) by the proof of
Lemma 4.1.8

This groupoid structure is weak in the sense that equalities stated are generally not
reflexivities, i.e. “on the nose,” but only hold up to paths one level up. For instance, the
following composite of 2-paths witness associativity of path composition:

p q r

q r

p q

(p q) r

p (q r)

Figure 6: Homotopical interpretation of associativity of path composition, where the
gray regions are two-dimensional homotopies.

These higher paths are again subject to the same rules and this pattern continues ad
infinitum. Hence there is an infinite hierarchy of weak groupoid structures, called a weak
∞-groupoid structure. Every type is a weak ∞-groupoid. Luckily, we do not need to
examine this entire infinite structure on types in every consideration, in fact doing so is
impossible internally; we may simply define the level of the structure we need as we go.

Proposition 4.5. (p−1)−1 =(x=Ay) p and (p q)−1 =(z=Ax) q
−1 p−1.

8Notice that had we instead proven Lemma 4.1 by double induction as described in Remark 4.2, we
would have had to apply path induction thrice to apply the same lemma.

22

Proof. To prove the first claim it suffices by path induction to consider the case where y is

x and p is reflx in which case by the proof of Lemma 4.3 we have (refl−1
x)−1 ≡ refl−1

x ≡ reflx.

For the second claim, observe that the right-hand side path composition is well-defined.
By iterated path induction, it suffices to consider the case where z is y is x and q is p is
reflx, in which case we have definitional equality.

As a more interesting property of this groupoid structure, we have commutativity of
higher-order paths, which we state without proof below.

Theorem 4.6 (Eckmann–Hilton, [UF13, Theorem 2.1.6])
The path composition operation on reflx =(x=Ax) reflx is commutative for any x ∶ A.

Even syllepsis, proving that the commutativity proof p q = q p emitted by Eckmann–
Hilton is inverse to the commutativity proof of q p = p q, was recently formalized [Soj21].

4.1 Functions are functors

We might hope that maps respect equality, that they are “well-defined” in the classical
sense. Of course, we have not put many restrictions on the identity type (except for
seemingly stating that it is freely generated by the reflexivities), and one would not
expect functions in general to respect every equivalence relation. But still, equality is
supposed to be the relation which everything respects.

So suppose we have a map f ∶ A → B. In this simplest case, B will not depend on
the argument x ∶ A. So we may ask for functions to satisfy the condition that if we have
x, y ∶ A and a proof that they are equal p ∶ x =A y, that we can construct a proof that f
evaluated at x is equal to f evaluated at y. This is immediately true:

Lemma 4.7 (Action on paths). Given types A and B we have an action on paths

apA,B ∶ ∏
(f ∶A→B)

∏
(x,y∶A)

((x =A y) → (f(x) =B f(y)) (Action on paths)

Proof. By path induction it suffices to consider the case that y is x and that the path of
x =A y is reflx. In this case, we have a path reflf(x) ∶ (f(x) =B f(y)) as desired.

We will usually assume A, B, x and y implicitly and denote apA,B(f, x, y, p) as apf(p).
For a function’s action on paths, we in fact have functoriality:

Theorem 4.8 (Functoriality of functions)
Given functions f ∶ A→ B, g ∶ B → C and paths p ∶ x =A y, q ∶ y =A z, we have the following
equalities:

(i) apf(p q) =(f(x)=Bf(z)) apf(p) apf(q)

(ii) apf(p−1) =(f(x)=Bf(y)) apf(p)−1

(iii) apg ○ apf(p) =(g(f(x))=Cg(f(y))) apg○f(p)

23

(iv) apidA(p) =(x=Ay) p.

Notice how under the homotopy interpretation, this theorem states that functions
preserve paths, that functions are continuous. But this is under no extra assumptions on
them; they are continuous by definition.

f
p

apf(p)

Figure 7: Homotopical interpretation of action on paths. The endpoints of p cannot end
up in different path components in the codomain.

Now, if we instead have a dependently typed map f ∶ ∏x∶A P (x), the above definition
is no longer sufficient. In this case, P may depend on x, so f(x) and f(y) don’t necessarily
have the same type, meaning we cannot form the identity type f(x) = f(y). If x and y
were judgmentally equal, then we would know that the two codomain types are the same
by substitution, but we only have that x and y are propositionally equal. Still, we would
expect P (x) and P (y) to be related in some way, though we do not go as far as to say
the two spaces are the same. We formulate this relation in the following lemma:

Lemma 4.9 (Transport). Suppose that P is a type family over A and that p ∶ x =A y.
Then there is a lift of p, a function

trP (p) ∶ P (x) → P (y),

which transports from P (x) to P (y) over p.

Proof. By path induction it suffices to consider the case where y is x and p is reflx, but
in this case the identity function on P (x) fits.

Now we may formulate the action of dependent functions on paths.

Theorem 4.10 (Dependent action on paths)
Given a family of types P over A, then we have a dependent action on paths

dapP ∶ ∏
(f ∶∏x∶AP (x))

∏
(x,y∶A)

∏
(p∶x=Ay)

(trP (p, f(x)) =P (y) f(y))

24

Proof. Again, by path induction it suffices to consider the case that y is x and p is reflx,
but in this case we have P (x) ≡ P (y) and tr(p, f(x)) ≡ f(x). Hence reflf(x) is a term of
the desired type.

x y

p

P (x) P (y)

tr(p)

f(x) tr(p, f(x))

f(y)

dapf(p)

Figure 8: Homotopical interpretation of transport and dependent action on paths.

5 Higher inductive types

Higher inductive types are constructions that exploit the identity type to construct spaces
with non-trivial homotopical data inside of Martin–Löf type theory.

In addition to having point generators, i.e. term introduction rules, higher inductive
types also have path generators, i.e. introduction rules in their identity types. This
poses a few complications in terms of their type rules. Identity types have predefined
elimination and computation rules, so new constructors on them must be handled by the
elimination and computation rules on the higher inductive type itself. But the elimination
principle on a type is a way to construct functions from that type to another. Thus
only through (potentially iterated) use of the function action on paths may one recover
the higher path structure. Yet the function action on paths is also predefined through
identity elimination, so we cannot postulate syntactic computation rules on it. We can
however add new propositional computation rules, by giving witnesses to them. This is
exactly what we do.

In this section, we survey a few aspects of higher inductive types, defining an interval
and circle type. We use the first to demonstrate the consequences such definitions have
on the type theory itself, and the second to demonstrate homotopy-theoretic aspects of
the type theory.

25

These sections are intended only as a short survey of the concepts, and lacks rigor,
frequently skipping arguments entirely. They do however visit many important concepts
including function extensionality, equivalence, contractibility, and n-truncatedness, which
will all make later reappearances.

5.1 The interval type

The interval I is a higher inductive type with the following introduction rules

0I ∶ I 1I ∶ I seg ∶ 0I =I 1I (I-introduction)

Using a diagramatical rendition, the structure of the interval immediately becomes clear.

0I 1I
seg

Its recursion principle is the following: given a type A such that we have terms
a, a′ ∶ A with a path between them p ∶ a =A a′, then we have a function from the interval
to A with the following computational rules:

recI(a, a′, p,0I) ∶≡ a recI(a, a′, p,1I) ∶≡ a′ aprecI(a,a′,p)(seg) ∶= p.

Notice that the last defining equality is only propositional, meaning that we only
emit a homotopy

η ∶ aprecI(a,a′,p)(seg) = p.

Remark 5.1. The interval covariantly represents the identity type

(I→ A) ≃
⎛
⎝ ∑
(x,y∶A)

x =A y
⎞
⎠

.

We can see this from the fact that a map from the interval to a type A consists of three
pieces of data:

h ∶ 0I ↦ a0 1I ↦ a1 seg ↦ p (propositionally and by aph)

The interval is also contractible, by which we mean

Definition 5.2 (Contractibility). We say a type X is contractible if the following type
is inhabited

isContrX ∶≡ ∑
(x∶X)

∏
(y∶X)

(x =X y).

Which may be intuitively interpreted as proof that “there exists a point x such that for
all points y there is a path to x.” And we say that x is a center of contraction of X.
Note that this choice of paths must depend continuously on x by construction.

Another canonical example of a contractible space, given an inhabited type x ∶X, is
the based path space

∑
y∶X

(x =X y).

26

5.2 Function extensionality

One of the most notable features of intuitionistic type theory as opposed to intuitionistic
set theory is that it makes a distinction between judgmental and propositional equality.
The first can be interpreted as a consequence of our definitions. Precisely, it is the least
equivalence preserved by our computation and uniqueness rules. Because of this, it is
an intensional notion of equality: we give a collection of meanings to a term by how we
define it, and another term is only judgmentally equal to this term if it has the same
definitional meanings. This stands in opposition to the notion of extensional equality, in
which two terms are considered equal if they relate to everything else in the same way.

Let us look at an example. Assume we have defined the following two functions on N:

f(x) ∶≡ 2x and g(x) ∶≡ x + x

They are extensionally equal: they evaluate to the same value for every natural number.
However, their intensional meaning is different: the first function takes the value x and
multiplies it by two. The second function takes the value x and adds x to it. They have
different algorithms, which is part of their intensional meaning.

It may be that it is the intensional meaning we are after, but usually, it is extensional
equality that is desirable. Usually what we mean by a function is what values it takes,
and not how it calculates them. In our current definition of the type theory, this is not
the case. Equality is not extensional on functions. However, this may be expressed as an
axiom.

To define this axiom, we first require a definition of equivalence of types.

Definition 5.3 (Function homotopy). We say that two dependent functions which are
equal on evaluations are homotopic, denoted as the type

f ∼ g ∶≡ ∏
(x∶A)

(f(x) =B(x) g(x)) .

Definition 5.4 (Equivalence). Given two types A and B, we say that they are equivalent
if the following type of homotopy bi-invertible maps is inhabited

A ≃ B ∶≡ ∑
(f ∶A→B)

isEquiv f ≡ ∑
(f ∶A→B)

⎛
⎝ ∑
(g∶B→A)

f ○ g ∼ idB
⎞
⎠
×
⎛
⎝ ∑
(h∶B→A)

h ○ f ∼ idA
⎞
⎠

.

Warning 5.5 (Homotopy coherent equivalences). The critical reader may question
the use of left- and right-inverses instead of a two-sided inverse in this definition. The
reason is that with our definition we receive a better-behaved equivalence type. In
particular, a proof of bi-invertibility contains no more data than the mere truth that it is
bi-invertible: the type of proofs is (−1)-truncated.9 Had we instead defined equivalence
using mutual inverses we would have gotten the notion of quasi-inverses. There is a
subtle issue with this definition. The type of quasi-inverses may have higher non-trivial

9We give a precise definition of this later.

27

data [UF13, Lemma 4.1.1 and Theorem 4.1.3], and if we formulate other axioms in terms
of quasi-inverses we could even make the type theory inconsistent. This is for instance
the case for univalence.

Having defined a homotopy coherent notion of equivalence, we are ready to state the
function extensionality axiom:

Axiom 4 (Function extensionality). Given a type family x ∶ A ⊢ B type and maps
f, g ∶ ∏x∶AB(x), the canonical map

id-to-htp(f, g) ∶ (f = g) → (f ∼ g).

defined by path induction id-to-htp(f, f, reflf) ∶≡ (x ↦ reflf(x)) is an equivalence with
witness

funext ∶ ∏
f,g∶∏x∶AB(x)

isEquiv(id-to-htp(f, g)).

Hence we have the reading: “equality on functions is equality on evaluations.”

To be precise, what we mean by assuming such an axiom is to adjoin the following
inference rule to the type theory:

Γ ⊢ A type Γ, x ∶ A ⊢ B type

Γ ⊢ funext(∏x∶AB) ∶ ∏
f,g∶∏x∶AB(x)

isEquiv(id-to-htp(f, g))
(funext).

In the presence of an interval type, we can in fact prove function extensionality, as
the interval type covariantly represents path types and hence gives us an object to curry
over.

Theorem 5.6
The existence of the interval type implies function extensionality.

Proof. We prove the existence of a map (f ∼ g) → (f = g) and leave the proof that it
defines an inverse to id-to-htp(f, g) as an exercise. Hence we need to construct a function

(∏
x∶A

f(x) =B(x) g(x)) → (f =(∏x∶AB(x)) g)

So let us suppose we have a term h ∶ (∏(x∶A) f(x) =B(x) g(x)). By elimination on the
interval we may define the following function

H ∶≡ (t, x↦ recI(f(x), g(x), h(x), t)) ∶ I→∏
x∶A

B(x).

Notice that we have immediately permuted the arguments x and t. Evaluating H at zero
we compute

H(0I) ≡ (x↦ recI(f(x), g(x), h(x),0I))
I-comp
≡ (x↦ f(x))

Π-uniq
≡ f

and similarly H(1I) ≡ g. But then apH(seg) ∶ f = g is our desired witness.

It may be noted that much of the theory can be developed in the absence of function
extensionality, instead falling back to the weaker notion of function homotopy. This
relation is still a congruence, meaning it is a substitutive equivalence relation.

28

5.3 The circle type

To get a small taste of the synthetic homotopy theory inside homotopy type theory we
take a brief look at a type representing the homotopical circle.

The circle type S1 has the following introduction rules

base ∶ S1 loop ∶ base =S1 base

Its recursion principle states that to construct a function from the circle, one must give a
term x and an identity term p ∶ x =A x.

Hence the recursion principle can be seen as stating that S1 is freely generated by a
base point and a self-loop. It is this free generation that makes the homotopy structure
of the circle type non-trivial.

Definition 5.7 (Loop space). Given a pointed type x ∶X, i.e. a type with a distinguished
point, we define the loop space to be

ΩX ∶≡ (x =X x).

In particular, the loop space itself is canonically pointed with base-point the reflexivity.

It can be shown in homotopy type theory that the loop space of S1 is the integers Z.
For instance, this can be done using univalence and the encode-decode method, a new
method for computing loop spaces and homotopy groups inside of homotopy type theory.

Theorem 5.8 ([UF13, Corollary 8.1.10])
The loop space of S1 is equivalent to Z.

This tells us that this type has a higher non-trivial homotopical structure, a property
which more generally can be formalized using the following notion:

Definition 5.9 (n-truncatedness). We say a type X is n-truncated, or that it is an
n-type, if the inductively defined type is-n-typeX is inhabited:

is-(n + 1)-typeX ∶≡ ∏
x,y∶X

is-n-type(x =X y) is-(−2)-typeX ∶≡ isContrX.

In particular we call (−1)-types propositions and 0-types sets.

Corollary 5.10. The circle S1 is 1-truncated.

Many homotopy-theoretic results have been proven in this synthetic homotopy the-
ory. For instance, using higher inductive procedures we may define homotopy colimits
like homotopy coequalizers, homotopy pushouts, and as a special case suspension. In
particular, we can show πk<n(Sn) ≃ 1 and the existence of the Hopf fibration. Other
results that have been formalized include the long-exact sequence of homotopy groups,
the Van Kampen theorem, and the Blakers-Massey theorem. Whitehead’s theorem does
not hold, however, which can be traced back to the fact that not all (∞,1)-toposes are
hypercomplete.

29

6 The universe type and univalence

In this section, we axiomatize a universe type and present the univalence axiom due to
Vladimir Voevodsky. The univalence axiom captures the mathematician’s intuition that
equivalent things behave the same. Using the identity types of the universe and the fact
that all constructions are homotopy invariant, this idea is very efficiently encoded in the
type theory. As consequences, we look at the interpretation of functions as fibrations
and the universal property of the universe type as an object classifier of small types.

To begin, we axiomatize a universe type in the style of Tarski, assuming closure
under all of the basic type formers. The types viewed as terms of the universe are
really representative codes for their corresponding type. For these codes, we temporarily
introduce a quotation mark notation. After the axiomatization, we immediately forget
this notation and treat terms of U directly as types.

Γ ctx

Γ ⊢ U type
(U-form)

Γ ⊢ A ∶ U
Γ ⊢ t(A) type

(U-elim)
Γ ⊢ “A” ∶ U

Γ ⊢ t(“A”) ≡ A type
(U-uniq)

Γ ⊢ A ∶ U Γ, x ∶ A ⊢ B ∶ U
Γ ⊢ “∏x∶AB” ∶ U Γ ⊢ “∑x∶AB” ∶ U

Γ ⊢ A ∶ U Γ ⊢ a1 ∶ A Γ ⊢ a2 ∶ A
Γ ⊢ “a1 =A a2” ∶ U

Γ ctx

Γ ⊢ “0” ∶ U Γ ⊢ “1” ∶ U Γ ⊢ “2” ∶ U

Figure 9: Rules for the universe type

We note the assumption of closure under the formation of the empty, unit and two-
term type. Equivalently, we could assume closure under binary products, binary sums
and the formation of only the empty and unit type. In a richer type theory one would
naturally include closure under the formation of W-types and various colimits such as
higher inductive types (closure under limits follows from the current closure properties).
However, as we have not defined these in any generality we are left with the current
definition.

6.1 Univalence

When we internalize a universe types, all of the type formers apply as with any other
type, so U itself also becomes an ∞-groupoid. In particular we may define the following
function by path induction:

id-to-eqv ∶ (A =U B) → (A ≃ B) id-to-eqv(reflA) ∶≡ idA .

This directly leads us to the univalence axiom:

30

Axiom 5 (Univalence axiom). The function id-to-eqv is an equivalence

(A =U B) ≃ (A ≃ B).

“Equivalent types may be identified.”

Decomposing a general equivalence, we may separate the univalence axiom into four
principles of natural deduction:

ua-introduction: An introduction rule for identity terms, ua ∶ (A ≃ B) → (A =U B).

ua-elimination: An elimination rule on identity terms, id-to-eqv.

ua-computation: The propositonal computation rule tr(ua(f), x) = f(x).

ua-uniqueness: The propositional uniqueness rule p = ua(tr(p)).

Though of course, the elimination principle holds regardless of the assumption of the
axiom.

Mathematical efficiency. Univalence can be seen as an axiom of mathematical
efficiency. By use of the equality type, when proving a theorem for a particular type, it
allows us to automatically prove that same theorem for all equivalent types by transporting
along the corresponding equality term, instead of having to write individual proofs of
transport along particular equivalences.

Classifying space. As with all constructions in homotopy type theory, we would
expect univalence to have an interpretation in homotopy theory. Indeed, in this sense,
univalence expresses the universe as the classifying space of the disjoint sum of small
homotopy types.

Univalent categories. Another interpretation is that univalence encodes the idea that
sometimes isomorphism and not just equality is the “right” notion of identification. This
aspect of univalence inspires the theory of precategories, which are categories with an
open-ended system of identification. We may impose a univalence condition on them,
identifying isomorphic objects to obtain categories in the terminology of [UF13]. In the
case of univalent categories, one for instance has that equivalences of categories are exactly
the functors which are fully faithful and essentially surjective, without depending on any
formulation of the axiom of choice. The additional liberty that comes with a theory of
precategories is that it leaves this question of identification open to the mathematician.

Let us briefly showcase some elementary consequences of the univalence axiom.

Example 6.1. There is a non-trivial equivalence on 2, the two-term type. Define the
map swap as follows using 2-recursion:

swap ∶ 2→ 2 swap(0) ∶≡ 1 swap(1) ∶≡ 0

Then swap(swap(x)) ≡ x, so swap is an equivalence of types which is its own inverse.

31

Corollary 6.2. The identity type 2 =U 2 is not contractible.

Corollary 6.3. The universe type U is not 0-truncated.

We can also use this example to show the following.

Theorem 6.4 ([UF13, Corollary 3.2.7])
Univalence is inconsistent with the naive interpretation of the law of excluded middle.

Heuristic argument. Interpreting the law of excluded middle directly using the proposi-
tions as types correspondence we get

lem ∶ ∏
X ∶U

X + (X → 0).

This means that we have a function picking out an inhabitant of any non-empty type. In
particular, it must pick out a term lem(2) ∶ 2. Now, by univalence, such a function must
be invariant under equivalences. So in particular, the law of excluded middle must be
invariant under the permutation, swap. However, it may be proven that 0 ≠ 1, and so no
matter which term is chosen by lem we have a contradiction.

To circumvent this incompatibility, we may formulate a restricted law of excluded
middle which more closely resembles the classical formulation (refering back to Digres-
sion 1.4)

lem−1 ∶ ∏
(X,ρ)∶Prop U

X + (X → 0),

where Prop U denotes the type of propositions:

Prop U ∶≡ ∑
X ∶U

is-(−1)-typeX.

In particular, in the context of the previous argument, we see that this formulation
ensures that whichever term lem−1 picks out of an inhabited type is equal to every other
term of that type. Hence our previous argument no longer applies.

This formulation of the law of excluded middle is consistent with univalence, and it
may be noted that many classical arguments depending on the law of excluded apply
with this formulation. Similarly, we may formulate a version of the classical axiom of
choice using a propositional truncation operation which is also consistent with homotopy
type theory.

Another consequence of the univalence axiom is that, like with the existence of an
interval type, we get function extensionality for free.

Theorem 6.5 ([UF13, Theorem 4.9.4])
Univalence implies function extensionality.

32

6.2 Functions are fibrations

In the presence of an internal universe, we may also internalize type families x ∶ B ⊢ P ∶ U
as function terms P ∶ B → U . These satisfy the homotopy lifting property:

Proposition 6.6 (Homotopy lifting property). Given a type family P ∶ B → U , we have
a path lifting map

lift ∶ ∏
(x∶B)

∏
(u∶P (x))

∏
(y∶B)

∏
(p∶x=By)

((x,u) =(∑x∶BP (x)) (y, tr(p, u))) .

Proof. By path induction it suffices to consider the case where y is x and p is reflx,
in which case tr(p, u) computes to u and so we have the canonical equality witness
refl(x,u).

Hence a type family P ∶ B → U contains the data of a fibration with base space B
and total space ∑x∶BP (x). The fiber over b ∶ B is simply P (b). This property may be
extended to all maps of small types via the homotopy fiber construction. Hence as we
will shortly display, maps of small types are fibrations.

Definition 6.7 (Homotopy fiber). Given a map of small types π ∶ E → B we may define
the homotopy fiber family as

fibπ ∶≡ b↦ (∑e∶E(π(e) =B b)) ∶ B → U .

In the presence of a univalent universe, this construction is part of an equivalence be-
tween type families and functions, using mutual inverse constructions called straightening
and unstraightening.

Definition 6.8 (Fibrations and families). We define the type of fibrations and type of
type families in U as

Fib U ∶≡ ∑
B,E∶U

(E → B) and Fam U ∶≡ ∑
B∶U

(B → U).

Hence we define a fibration to be any function between small types.

Theorem 6.9 (Straightening and unstraightening, [UF13, Theorem 4.8.3])
Given a univalent universe U and a small type B we have mutual inverse maps st and
un between fibrations over B and families over B:

stπ ∶≡ (B,fibπ) and unP ∶≡ (B,∑b∶BP (b),pr1)

Fib U Fam U

U .

pr1

st

≃
un

pr1

33

As a consequence, a univalent universe type satisfies the universal property of being
the object classifier of small types.

Corollary 6.10 (Object classifier [UF13, Theorem 4.8.4]). The univalent universe type
is the object classifier of small types with universal fibration

pr1 ∶ ∑
X ∶U

X → U .

By this we mean that for any fibration π or type family P , which correspond to one
another under the straightening-unstraightening construction, the following square is a
pullback10

∑b∶BP (b) ∑X ∶UX

B U .

(b,p)↦(P (b),p)

π pr1

P

10We will give a precise definition of pullbacks in homotopy type theory in Theorem 15.22.

34

Part II

Simplicial Homotopy Theory

In this part, we explore a multitude of facets of objects called simplicial sets. They form
a unifying framework inside of which we may discuss the theory of both categories and
homotopy spaces in full generality. To better understand these objects and the connections
between ideas, we spend much time developing the language of model categories.

We first introduce the simplex category ∆, which is the category of finite ordinals
and order-preserving maps. Geometrically, its objects can be understood as directed
simplexes and its maps as face inclusions and degeneration maps.

We then move to the study of Set-valued presheaves on ∆, called simplicial sets.
Extending this geometric interpretation to all simplicial sets, they provide combinatorial
descriptions of CW-complexes. This interpretation is concretized by the geometric
realization functor. Conversely, topological spaces can be interpreted as simplicial spaces
by means of the singular simplicial complex construction.11 Simplicial sets constructed
in this way satisfy a certain condition we call the Kan condition. It is a remarkable fact,
first proven by Quillen [Qui67], that this condition is part of a model of homotopy types
equivalent to that exhibited by point-set topology. This model forms the motivating
basis for our discussion of many topics in this part, hence we will frequently revisit it in
the context of new ideas.

We can also interpret categories in simplicial sets by means of the nerve construction.
As simplicial sets, they satisfy a condition we call the Segal condition.

After having discussed these fundamental ideas in simplicial sets, we move on to discuss
what we in general terms may consider a homotopy theory. To this end, we introduce the
very general concept of homotopical categories taking inspiration from [Rie20]. Inside
these, we may formulate surprisingly many concepts familiar from homotopy theory,
including the homotopy category, derived functors, and homotopy limits.

Homotopical categories in their full generality exhibit very little structure, and so
are in general unwieldy to work with. When working with richly structured categories
such as the category of topological spaces or the category of simplicial sets, a more
powerful machinery is required. To this end, we introduce the incredibly useful language
of model categories as first introduced by Quillen [Qui67]. These present a well-structured
homotopy theory of the underlying homotopical category by means of classes of fibrations
and cofibrations. To define these, we use the abstraction of weak factorization systems
which we turn our attention to first.

After this, we are ready to define and discuss model categories and their model
structures. In particular, we discuss notions of morphism homotopy which form the basis
for an alternative construction of the homotopy category. In the course of this section,
we visit a series of properties one may have on a model category, including cofibrant
generation, enrichment, reedy model structures, projectivity and injectivity of model

11In fact, these constructions form an appropriate sort of equivalence between the homotopy theories
of the categories.

35

structures, and properness.
Finally, we discuss two applications of the language of model categories and the

Kan–Quillen model structure on simplicial sets. One application is in giving semantics
to homotopy type theory, solidifying our understanding of types as homotopy types and
giving classical homotopy theoretic meaning to theorems in homotopy type theory. The
other application is in formulating the model of Rezk spaces, also known as complete
Segal spaces, for the homotopy theory of (∞,1)-categories. These give semantics to the
type theory we consider in the next part.

There is much more that could be said about everything we discuss in this part,
and we simply cannot cover it all, or even as much as we would like. For the sake
of expedience, we frequently skip the more involved or repetitive arguments, instead
referring the reader to an external source.

If the reader is already familiar with the theory of model categories, the Kan–Quillen
model structure on simplicial sets, the Reedy model structure, and the nerve construction,
they may safely skip to Section 11, in which we discuss models of type theory.

7 Simplicial sets

In this section, we define the simplex category, simplicial sets and discuss various
constructions on these including the nerve construction, geometric realization, and the
singular simplicial complex. The contents are mostly based on [Fri08] and [Ras18].

7.1 Directed simplices

For every n ∈ N (including zero) we define the category [n] as the total order category
given by the finite ordinal of order n

{0 ≤ 1 ≤ ⋅ ⋅ ⋅ ≤ n} ,

meaning that we have the objects 0, . . . , n and we have precisely one arrow x→ y in [n]
if x ≤ y, and otherwise none. These categories constitute the objects of the simplex
category ∆ whose morphisms are order preserving maps. Equivalently, ∆ may be
regarded as the full subcategory of Cat, the category of small categories, consisting of
these objects.

In ∆, the object [n] may be interpreted as a filled n-dimensional directed simplex.
Here are the first few objects depicted as such. Note that every edge is and points from
the smaller to the larger of its vertices.

0 0 1

2

0 1

2 3

0 1

4

2 3

0 1

We have two elementary classes of maps in this category:

36

Definition 7.1 (Elementary face and degeneracy maps). Let n and k be natural numbers
such that k ≤ n. Then we define the following ∆-morphisms

dkx ∶=
⎧⎪⎪⎨⎪⎪⎩

x x < k
x + 1 x ≥ k

∶ [n − 1] → [n] (Elementary face maps)

skx ∶=
⎧⎪⎪⎨⎪⎪⎩

x x ≤ k
x − 1 x > k

∶ [n + 1] → [n] (Elementary degeneracy maps)

These maps again have a concrete spatial interpretation. The elementary face map dk
includes a simplex-face opposite the k’th vertex in its codomain while the elementary
degeneracy map sk collapses the face opposite the k’th vertex.

Lemma 7.2 (Simplicial relations). Elementary face and degeneracy maps satisfy the
following relations

didj = dj+1di if i ≤ j sisj = sjsi+1 if j ≤ i disj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sj−1di i < j
id i = j ∨ i = j + 1

sjdi−1 i > j + 1

.

Proof. This may be verified by direct computation.

Lemma 7.3 (Epi-mono factorization). Every morphism in ∆ may be factored as a finite
composition of elementary degeneracy maps followed by a finite composition of elementary
face maps

f = diu . . . di1sjv . . . sj1 such that for k < k′ we have ik < ik′ and jk ≥ jk′.

Proof. Let f be a morphism from [n] to [m]. The map f may be identified with a
monotone sequence of natural numbers less than m of length n,

0 ≤ f(0) ≤ f(1) ≤ ⋅ ⋅ ⋅ ≤ f(n − 1) ≤ f(n) ≤m.

Let i1, . . . , iu be the numbers which are not in this sequence in rising order, and let
j1, . . . , jv be the indices at which f does not increase, f(j) = f(j + 1) in decreasing order,
then we may verify the result by direct computation.

Corollary 7.4. The elementary face maps form a generating set for the monomorphisms
of ∆, and the elementary degeneracy maps form a generating set for the epimorphisms.

We may also interchange the roles of face and degeneracy maps of the previous lemma.

Corollary 7.5 (Mono-epi factorization). Every morphism in ∆ may be factored as a
finite composition of elementary face maps followed by a finite composition of elementary
degeneracy maps.

Proof. Apply the previous lemma and then interchange face and degeneracy maps using
the simplicial relations in an inductive procedure.

37

As another particular consequence, the categorical structure on ∆ is completely
determined by the elementary face and degeneracy maps. Hence in categorical consid-
erations, it suffices to examine what happens at the elementary face and degeneracy
maps. This manifests itself in the following common diagrammatic depiction of ∆, where
right-pointing arrows are elementary face maps and left-pointing arrows are elementary
degeneracy maps:

[0] [1] [2] ⋯s0
d1

d0

Construction 7.6 (Geometric simplex realization). We have a functor ∣−∣ which takes
n-dimensional directed simplices and embeds them as topological n-dimensional simplices
in Rn

∣−∣ ∶ ∆→ Top, [n] ↦ {(x1, . . . , xn) ∈ Rn ∣ 0 ≤ xn ≤ ⋅ ⋅ ⋅ ≤ x1 ≤ 1} .

7.2 Simplicial sets

Having familiarized ourselves with the simplex category, we now move on to study
Set-valued presheaves on it, simplicial sets. While a seemingly innocuous idea, these
objects are incredibly versatile. Particularly important to us, they may be used to define
models of ∞-groupoids and (∞,1)-categories. We begin by discussing the basics and
giving some fundamental examples.

Definition 7.7 (Simplicial Set). A simplicial set is a functor

∆op → Set.

They form the objects of the category of simplicial sets sSet whose morphisms are natural
transformations. We will denote X([n]) as Xn for X a simplicial set.

As with ∆, we may think of X in terms of what happens under the face and degeneracy
maps, which are now reversed.

X0 X1 X2 ⋯s0
d0

d1

We call X0 the vertices or 0-simplices of X, and X1 the directed edges or arrows
or 1-simplices of X. In generality we call Xn the n-simplices of X.

Example 7.8 (Represented12 simplicial sets). The Yoneda embedding of ∆ into sSet
constitutes an important class of simplicial sets called the standard n-simplexes,
denoted ∆n

∆n ∶= Hom∆(−, [n]).
As a bonus, by the Yoneda lemma, we get bijections HomsSet(∆n,X) ≅ Xn natural in
both [n] and X.

12We use this wording as opposed to representable to emphasize the constructive aspect: the representing
object is specified.

38

Other central examples of simplicial sets are the boundary, horns, and spine of the
standard simplices:

Example 7.9 (Boundary, horns, and spine). Given a natural number n we may define
the following simplicial subsets of the standard n-simplex ∆n:

∂∆n The boundary ∂∆n is the simplicial subset only missing the nondegenerate n-cell
of ∆n.

Λnk Given a natural number k such that 0 ≤ k ≤ n, then the k’th horn Λn
k of ∆n, is

the simplicial subset of ∆n consisting of all but the k’th (n − 1)-dimensional faces
of ∆n.

Spn The spine Spn of ∆n is the simplicial subset consisting of only the directed edges
between consecutive vertices 0→ 1,1→ 2 up to (n − 1) → n.

In particular we have the inclusions

Spn Λnk ∂∆n ∆n(∗)

where Spn ↪ Λn
k exists when n > 2 or n = 2 and k = 1 in which case we may note that

Sp2 = Λ2
1. We can draw the 3-horn of ∆3 as follows, imagining its faces to be opaque:

2 3

0 1 .

It has the same vertices and edges as ∆3, but the front face is removed and the interior
is hollow. The spine of ∆3 on the other hand is the following simplicial subset

2 3

0 1 .

The interpretation of simplicial sets as spaces is easily substantiated through their
interpretation as combinatorial descriptions of CW-complexes. This is what the geometric
realization functor does for us:

Construction 7.10 (Geometric realization and singular complex). We have a left Kan
extension of the geometric simplex realization functor ∣−∣ ∶ ∆op → Top along the Yoneda
embedding ∆op → sSet which gives us a geometric realization for all simplicial sets

∣−∣ ∶ sSet→ Top.

This funtor takes a simplicial set and interprets it as a combinatorial description of a
CW-complex:

∣X ∣ ∶= ∐
n∈N

(∣[n]∣ ×Xn)/∼

39

Where ∣[n]∣ is the geometric realization of the directed n-simplex as in Construction 7.6
and ∼ is the equivalence relation generated by (fp, x) ∼ (p, fx) for all morphisms f in ∆.
This construction has a right adjoint known as the singular simplicial complex functor:

S● ∶ Top→ sSet defined levelwise as the sets of continuous functions Sn(X) ∶=X ∣[n]∣

and with the obvious face and degeneracy maps.

Proposition 7.11. The category sSet is cartesian closed.

Proof. This is just a special case of the fact that all Set-valued presheaves are cartesian
closed. See for instance [RV21, Example A.1.4 (iii)].

And so in particular sSet is enriched over itself. In fact, since (co)limits in a presheaf
category over a (co)complete category are determined degreewise, we have the following
descriptions of the product and exponential:

Definition 7.12 (Products and internal homs in sSet). Given simplicial sets X and Y ,
then their product and exponential may be defined degreewise to be

(X × Y)n =Xn × Yn and (Y X)n = HomsSet(∆n ×X,Y).

7.3 The nerve construction

Categories may be interpreted as certain simplicial sets under the nerve construction.
Under this construction, their objects are understood as vertices, and morphisms are
understood as directed edges:

Definition 7.13 (Nerve construction N). Given a small category C, the nerve con-
struction is the composite presheaf

HomCat(i(−),C) ∈ Ob(sSet),

where i is the inclusion of the simplex category ∆ into Cat. This construction can be
understood levelwise as

(N C)n = HomCat([n],C)

i.e. (N C)0 are objects of C, (N C)1 are arrows and in general (N C)n are sequences
of composable morphisms of length n in C. Note that the size condition ensures that
HomCat([n],C) is a (small) set for every n.

Now, by precomposition it is clear what the elementary face and degeneracy operations
do: the face operation dk composes a pair of morphisms at the k’th position while the
degeneracy operation sk inserts an identity morphism. Explicitly, given 0 ≤ k ≤ n we may

40

describe them on arrows between consecutive vertices as follows

dN Ck (f)(i ≤ i + 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(i ≤ i + 1) i < k
f(i ≤ i + 2) i = k
f(i + 1 ≤ i + 2) i > k

∶ C[n] → C[n−1]

sN Ck (f)(i ≤ i + 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(i ≤ i + 1) i < k
id i = k
f(i − 1 ≤ i) i > k

∶ C[n] → C[n+1].

As a functorial construction, the nerve also has a defined action on functors F ∶ C → D.
This simplicial map is understood as just levelwise postcomposition

N Fn = F ○ − ∶ C[n] → D[n].

A natural question is to ask when a simplicial set may be obtained as the nerve of a
category. For any simplicial set X we have a restriction map

HomsSet(∆n,X) → HomsSet(Spn,X)

Equivalently, this map may be constructed using the obvious bijection

X1 ×X0 ⋅ ⋅ ⋅ ×X0 X1 ≅ HomsSet(Spn,X)

and the following cone

Xn

X1 X1 ⋯ X1 X1

X0 X0 ⋯ X0 X0

⋯
dn−1

2 dn−2
2 d0 d2d

n−2
0

dn−1
0

d1 d0 d1 d0 d1 d0

noting that

dn−i−1
2 di0(x0

f0→ . . .
fn−1→ xn) = fi.

Hence commutativity of the cone is witnessed by the fact that coinciding vertices of
consecutive edges agree. For instance, in the case of n = 2 this is the cone in the below-left
diagram whose commutativity expresses that for any 2-cell σ ∈X2 the middle vertex may
be expressed as two composites of face maps as depicted below-right

X2

X1 X1

X0

d0 d2

d1 d0

d0d2σ = v1 = d1d0σ

v0 v2 .

d0σd2σ
σ

41

Now, for the nerve of a category this restriction map is in fact an bijection for each n,
a property we call the Segal condition.

N Cn ≅ N C1 ×
N C0

. . . ×
N C0
N C1 = HomC ×

ObC
. . . ×

ObC
HomC (Segal condition for N C)

This is witnessed by the fact that any composite of morphisms is unique for a category.
In dimension 2 it is witnessed by the fact that a composite of two morphisms is unique.
And in dimension 3 we may build up a horn of the 3-simplex from its spine in two distinct
ways by taking composites of consecutive edges. This corresponds to the fact that given

three morphisms x
f
→ y

g
→ z

h→ w we may either take the composite h ○ (g ○ f) or the
composite (h ○ g) ○ f , hence uniqueness is witnessed by associativity of the composition
operation. All higher-order conditions follow from these. In fact, building up horns in
this way gives us an alternative equivalent condition:

Proposition 7.14. The restriction maps HomsSet(∆n,X) → HomsSet(Spn,X) are
bijections for all n if and only if the restriction maps HomsSet(∆n,X) → HomsSet(Λnk ,X)
are bijections for the inner horns, i.e. all n and k where 0 < k < n.

Proof. The Segal condition yields the bijections for all inner horns immediately since for
0 < k < n we have an inclusion Spn ↪ Λnk which we may restrict along. The converse may
be shown inductively by building up inner horns from spines. For a full proof see for
instance [Lur09, Proposition 1.1.2.2].

Remark 7.15. We should not expect the inner horn condition to hold for the outer
horns. For instance, in the case of n = k = 2, this would imply that every diagram of the
following form admit a completion

y

y x

f

i.e. that all morphisms are right invertible.

We note that not all simplicial sets satisfy the Segal condition:

Example 7.16 (Non-example for Segal condition). The simplicial set X generated by
the following data

X0 = {v} X1 = {s0(v)} X2 = {σ, s2
0(v)} di(σ) = s0(v),

which may be envisioned as a sphere with a distinguished point, does not satisfy the
Segal condition for n = 2. Observe that X1 ×X0 X1 = {(s0(v), s0(v))} has cardinality 1
while X2 has cardinality 2 (recall from Lemma 7.2 that s1s0 = s0s0). Hence we may also
conclude that there is no (1-)category which “looks like” a sphere.

42

However, the Segal condition is enough to ensure that our simplicial set is the nerve of
a category. Let sSetSegal denote the full subcategory of sSet whose objects are simplicial
sets which satisfy the Segal condition.

Theorem 7.17 ([Ras18, Theorem 1.27 and 1.28])
The nerve functor restricted to sSetSegal is an equivalence.

Proof. See [Ras18, Theorem 1.27 and 1.28].

7.4 Kan complexes

We take a quick detour to discuss groupoids, categories in which all morphisms are
invertible, in the context of the nerve construction. This is for the sake of introducing
Kan complexes which give a model of ∞-groupoids in simplicial sets.

We’re perhaps not doing the groupoids justice by describing them as particular
categories. It was suggested by Vladimir Voevodsky that groupoids are more fundamental
to mathematics than categories. As he writes in [Voe14], it is not categories, but groupoids
which are “sets in the next dimension.” While categories are in fact “partially ordered
sets in the next dimension.” This was one of the key insights that led him to consider
homotopy-theoretic foundations rather than category-theoretic ones. As he remarked,
not all natural mathematical constructions are functorial. However, all meaningful
mathematical constructions are preserved under their appropriate notion of equivalence.
Ulrik Buchholtz in [Buc18] gives the example of the commutative center of a group. This
is arguably a natural construction to perform on a group, but it is not functorial. It is
however preserved under equivalences: isomorphic groups have isomorphic centers.

The following table suggests a general scheme.

Dimension Sets Partial orders Spaces

0 sets partial orders discrete spaces
1 groupoids categories 1-truncated spaces
2 2-groupoids (2,1)-categories 2-truncated spaces
n n-groupoids (n,1)-categories n-truncated spaces
∞ ∞-groupoids (∞,1)-categories spaces

For any given category there are two canonical groupoids to consider, respectively con-
structed as the left and right adjoints to the inclusion functor of groupoids into categories.
These are called the groupoidal localization and core of the category respectively.

Gpd Cat

Core

Loc

⊢
⊢

Explicitly, the core of a category C is characterized as the maximal subgroupoid contained
in C, while the groupoidal localization of C is the minimal groupoid containing C. For

43

instance, the core of the free-standing morphism category 2 (earlier referred to as [1]) is
the discrete two-object category 2, while the groupoidal localization is the free-standing
isomorphism category I (the indiscrete two-object category if you will).

Remark 7.18 (Classifying space). Interpreted as spaces, categories are equivalent to
their groupoidal localizations. By this, we mean that they are weakly homotopy equivalent
under the geometric realization of their nerve

B C ∶= ∣N C∣.

This composite construction is called the classifying space of the category.

We may characterize nerves of groupoids similarly to how we characterized nerves
of categories. Using the horn description as in Proposition 7.14 we note that since all
morphisms are invertible in a groupoid we also have bijections of hom-sets at the outer
horns Λ2

0 and Λ2
2. From this, it follows that we have bijections of hom-sets for all horns

in dimensions 2 and up:

Proposition 7.19. A simplicial set X is the nerve of a groupoid precisely if the restriction
maps

HomsSet(∆n,X) → HomsSet(Λnk ,X)

are bijections for all horns Λnk where n > 1.

If we relax this condition to only requiring these restriction maps to have left inverses,
we get the notion of a Kan complex :

Definition 7.20 (Kan Complexes). A simplicial set X is a Kan complex if the
restriction maps

HomsSet(∆n,X) → HomsSet(Λnk ,X) (Kan condition)

are surjections.13

This relaxation ensures that every composite is still witnessed by some filler, but now
this filler may no longer be unique. It may however relate to other fillers by even higher
fillers and so on.

Example 7.21. For any topological space X, the singular simplicial complex S●(X) is
a Kan complex.

Example 7.22. The standard simplexes ∆n are not Kan complexes except at n = 0.

Kan complexes form a model of ∞-groupoids in simplicial sets. Using the adjunction
between geometric realization and singular complexes it may be shown that they model
the homotopy types of spaces. Hence we are justified in calling Kan complexes simply

13In constructive mathematics this condition is strictly weaker than the condition that these restriction
maps admit left inverses, i.e. sections. Their equivalence requires the axiom of choice.

44

spaces. Moreover, Kan complexes model the types of homotopy type theory [KL18]
creating a direct link between the type theory and classical homotopy theory. Lastly,
Kan complexes are the underlying objects in the theory of simplicial spaces, which gives
us a model for the homotopy theory of (∞,1)-categories called Rezk spaces. All of this
will be made more precise in the course of the next sections using the powerful language
of model categories.

8 Homotopical categories

In this section, we elaborate on what we may in the most general terms consider a
homotopy theory. Unlike theories such as topology or category theory, which can be
concisely and completely described as the study of certain kinds of structures and certain
kinds of maps, homotopy theory has taken on a multitude of meanings throughout its
lifetime and does not in its full generality refer to the study of any one given structure.
Classically, it has meant the study of homotopies in topology: paths between points in
spaces. But homotopy theory has grown to encompass much more than just this.

One reoccurring problem in homotopy theory is the problem of weak identification.
We are given some weak system of identification in a theory, which we call homotopy
equivalences. We wish to consider the structures in this theory only up to the given system
of identification, although the theory itself may express properties richer than what is
recognized by them. This naturally leads us to what we call the theory’s homotopy
theory.

In this setting what we mean by a theory is just any category, and the weak system of
identification will mean a specified subclass of morphisms. We call a category equipped
with such a subclass of morphisms a homotopical category. It is a remarkable fact that
in such a general setting as this we recover many notions recognizable from homotopy
theory. In particular, we will define localizations, homotopical functors, derived functors,
and homotopy limits.

We restrict ourselves to the special case where the distinguished subclass of morphisms
satisfy a closedness property, although everything mentioned in this section is more general.
This is because the literature is most developed with regards to this closedness property,
and generalizing poses no benefit to us in this thesis.

Definition 8.1 (Category with weak equivalences). A category with weak equivalences
is a category C with a subclass of distinguished morphisms W containing the isomorphisms
and satisfying the 2-out-of-3 property: given a commutative triangle in C (using bullets
as anonymous labels for the vertices)

⋅

⋅ ⋅ ,
gf

g○f

if two of its edges are in W then so is the third.

45

The 2-out-of-3 property is one out of many closedness properties we could ask of our
weak equivalences. What all of the closedness properties have in common is that they
generalize some aspect of being an isomorphism.

Lemma 8.2. A class of weak equivalences is a wide subcategory.

Proof. It is closed under composition by the 2-out-of-3 property, and since it contains
the isomorphisms it, in particular, contains the identities on all objects.

Lemma 8.3. Given a category with weak equivalences (C,W) and a small category J ,
then we may canonically endow the functor category CJ with the weak equivalences WJ .

Proof. Natural transformations are determined degreewise.

Sometimes weak equivalences are characterized by being “inverted by a functor”
F ∶ C → A in the sense that they are exactly the morphisms of C mapped to isomorphisms
in A. In other words, that the following is a pullback square

W CoreA

C A .

F ∣W

F

Example 8.4 (Examples of weak equivalences). Some common examples of weak
equivalences and their inverting functors:

(i) Isomorphisms in any category are inverted by the identity functor. We may call
these the discrete equivalences.

(ii) All morphisms in any category are inverted by mapping to the terminal category
C → 1. We call these the indiscrete equivalences.

(iii) Bijections in Top are inverted by the underlying set functor.

(iv) Homotopy equivalences in Top are inverted by transporting to the homotopy
category h(−) ∶ Top→ hTop.

(v) Weak homotopy equivalences in Top are inverted by the fundamental ∞-groupoid
functor Π∞(−), which can for instance be taken to be the singlular complex functor
S●(−) using the model of ∞-groupoids in Kan complexes.

(vi) Chain homotopy equivalences in Ch●A for A an additive category are inverted by
transporting to the homotopy category h(−) ∶ Ch●A → hCh●A.

(vii) Quasi-isomorphisms in Ch●A for A an abelian category are inverted by taking
homology H●(−).

(viii) Weak homotopy equivalences in sSet, meaning maps whose geometric realization is
a weak homotopy equivalence in Top.

46

(ix) Homotopy equivalences in sSet, meaning maps of simplicial sets f ∶ A→ B for which
there exists a map g ∶ B → A and homotopies p ∶ ∆1 ×A → A and q ∶ ∆1 ×B → B
such that p restricts to idA and g ○ f on {0} ×A ≅ A and {1} ×A ≅ A respectively,
and q restricts to f ○ g and idB on the respective endpoints.

Given Example 8.4 (ii), we cannot hope to prove too many interesting properties
of weak equivalences by themselves. It is however a basic idea on which we build more
advanced constructions, which we turn our attention to next.

Definition 8.5 (Homotopical functor). A functor F ∶ C → D between categories with
weak equivalences is said to be homotopical if it maps weak equivalences to weak
equivalences

W V

C D.

F ∣W

F

Example 8.6 (Examples of homotopical functors).

(i) Any functor whose domain is discrete or codomain is indiscrete.

(ii) The geometric realization functor from simplicial sets to topological spaces sends
weak homotopy equivalences to weak homotopy equivalences by definition.

(iii) The functor sending topological spaces to their singular sets in sSet sends weak
homotopy equivalences to weak homotopy equivalences.

For a category with weak equivalences W ⊆ C, we may construct a category C[W−1]
where the morphisms in W have been formally inverted. This can for instance be done
using a calculus of fractions [GZ67]. Such a category satisfies a certain universal property,
known as being the localization of C at W:

Definition 8.7 (Localization). The localization of C at W is a category denoted
C[W−1], or hC when the specified class of weak equivalences is implicit, enjoying the
universal property that for any category A, the category of homotopical functors (C,W) →
(A,CoreA) is isomorphic to the category of functors C[W−1] → A as fibers over C → A in
C/Cat:

W CoreA

C A
≅ C[W−1] A.

Applying this correspondence to the identity functor at C[W−1], we get a localization
functor ι ∶ C → C[W−1] such that the following triangles commute

(C[W−1] → A) ((C,W) → (A,CoreA)).

(C → A)

≅

−○ι

47

When the class of weak equivalences is taken implicitly, we call this category the homo-
topy category of C.

For a homotopical functor F ∶ C → D there is an induced functor between homotopy
categories since postcomposing with the universal functor D → hD sends weak equiva-
lences in C to isomorphisms in hD. When the functor F is not homotopical, however,
the best we can do is take a universal approximation.

Definition 8.8 (Absolute Kan extension). A left Kan extension (L,λ) of F along G,

A′

A B,

L
G

F

λ

is said to be absolute if the whiskered composite along any functor H ∶ B → C, (HL,Hλ),
is a left Kan extension of HF along G.

Definition 8.9 (Derived functors). A left derived functor of F ∶ C → D is a homotopical
functor LF ∶ C → D equipped with a natural transformation λ ∶ LF ⇒ F such that
(dLF, dλ) defines an absolute right Kan extension of dF along c.

C D
F

LF

C D

hC hD

c

F

d
dλ

dLF

If the left derived functor LF exists, then the total left derived functor

LF ∶= dLF ∶ hC → hD

exists by the universal property of localization. The coduals14 of these constructions are
the functor’s right derived functor and total right derived functor.

Particularly central examples of derived functors, when they exist, are the homotopy
limit and homotopy colimit functors.

Definition 8.10 (Homotopy (co)limit, global). Given that all ordinary limits of shape J
in C exist, we have a limit functor lim which is right adjoint to the (already homotopical)
diagonal functor ∆. This functor takes diagrams CJ to their limits in C. The right
derived functor of lim, if it exists, defines the homotopy limit functor

holim ∶= Rlim ∶ CJ → C,

which picks out the homotopy limit of a diagram. Dually, if all colimits of shape J
exist, we define the homotopy colimit functor as

hocolim ∶= Lcolim ∶ CJ → C.
14By codual, we mean the dual construction where the 1-arrows’ orientations remain unchanged, but

the 2-arrows are reversed.

48

Homotopy limits are generally not limits in the homotopy category, but rather
limits universal up to homotopically coherent cones. In particular, their total derived
counterparts are functors h(CJ) → hC, not functors (hC)J → hC.

Remark 8.11 (Simplicial localization). Localizations as presented here suffer from a
certain deficiency. Formally inverting all weak equivalences in a sense destroys too
much information to preserve the full homotopy theory. In particular, one may obtain
equivalent homotopy categories from non-equivalent (in the appropriate sense) homo-
topical categories. To remedy this, we may instead build a homotopy category enriched
in simplicial sets, an (∞,1)-category, called the simplicial localization of W ⊆ C in
which the weak equivalences are only weakly inverted. Instead of introducing formal
inverses in the 1-categorical sense, we introduce formal homotopy inverses. Inverses
that do not compose to the identity on the nose, but are only witnessed as inverses
by higher homotopies. Higher homotopies which again are subject to laws up to even
higher homotopies. The simplicial localization may for instance be constructed using
the hammock localization [DK80]. A remarkable fact is that “every” (∞,1)-category
may be constructed in this way. Hence sometimes (∞,1)-categories are referred to as
homotopy theories (e.g. [Rez01]). We may note that this terminology is consistent with
the definition we outlined at the beginning of this section.

9 The lifting problem

A lifting problem may in general refer to a multitude of things. Indeed, we will see
many kinds of lifting problems in the course of this thesis alone. Examples are Kan lifts,
absolute Kan lifts, absolute lifting diagrams, and perhaps most fundamentally lifts of
cospans. What they all have in common is that they pose a question as to the existence
of a certain kind of factorization of morphisms.

In this section, however, we inspect lifting problems of one specific shape, referred to
as the lifting problem.

Definition 9.1 (Lifting problem). The lifting problem between two morphisms l
and r is the question of whether a commutative square of the following form admits a
diagonal map h maintaining commutativity

⋅ ⋅

⋅ ⋅ .
l rh

If h exists it is called a lift or lifting of l against r. If every lifting problem between l
and r admits a lift, then l is said to have the left lifting property with respect to r
and r is said to have the right lifting property with respect to l.

If such liftings are unique, we say that l is left orthogonal to r, and that r is right
orthogonal to l. As an abbreviation, we say that r is l-orthogonal.

We say an object X has the left lifting/orthogonality property with respect to a
morphism r if the initial inclusion 0 → X has this property, and X has the right

49

lifting/orthogonality property with respect to a morphism l if the terminal projection
X → 1 has this property. As with morphisms, we say X is l-orthogonal if it is right
orthogonal to l.

Example 9.2 (Motivating example for lifting properties). Lifting properties vastly gen-
eralize the motivating example of the classical homotopy lifting and homotopy extension
properties characterizing respectively fibrations and cofibrations in point-set topology:

A X

A × I Y

∼

i0 f and
X AI

Y A.

f

∼ p0

A map of topological spaces f ∶X → Y is a fibration precisely if it has the right lifting
property with respect to the left end-point inclusion i0 ∶ A ≅ A × {0} → A × I for all
topological spaces A. And f is a cofibration precisely if it has the left lifting property
with respect to evaluation at the left end-point p0 ∶ AI → A{0} ≅ A for all topological
spaces A. For specificity, we refer to these maps as Hurewicz (co)fibrations.

Remark 9.3 (Alternative formulation of lifting problem). The morphism l ∈ Hom(a, b)
has the left lifting property with respect to r ∈ Hom(c, d) if and only if the map that
sends lifts to the lifting problem they solve

Hom(b, c) → Hom(a, c) ×Hom(a,d) Hom(b, d)

is a surjection. It has the left orthogonality property if this map is a bijection.

In the case that r is a terminal projection, this alternative formulation has an even
simpler form, since the set of lifting problems is just the set of morphisms Hom(a, c).
In this setting, we remark that we may reformulate the Segal condition, Kan condition,
and many of their related properties in terms of lifting and orthogonality properties. For
instance, the Segal condition is precisely the condition that a simplicial set is orthogonal
to the spine inclusions Spn ↪∆n for all n.

For the remainder of this section, we fix a category C with a distinguished class of
morphisms M having a hypothesized element m. Furthermore, we define L and R to be
the classes of morphisms in C with respectively the left and right lifting property with
regard to all morphisms in M , denoted L ∶= M⧄ and R ∶=M⧄.

Our current goal is to establish as many properties as we can about L and R. For-
tunately for us, these classes are formal duals to one another and so a theorem for one
immediately yields a dual theorem for the other.

Lemma 9.4. The morphism classes L and R are closed under composition.

Proof. By duality we need only consider the case for the morphism class L, so assume
given a lifting problem of gf against m for f, g ∈ L as the solid part of the following

50

diagram

⋅ ⋅
⋅
⋅ ⋅ .

f

a

m

g

b

We attain the diagonal maps by taking the liftings

⋅ ⋅

⋅ ⋅
f

a

mh

bg

and then

⋅ ⋅

⋅ ⋅
g

h

m

b

The dotted arrow now solves our original lifting problem.

Lemma 9.5. The classes L and R contain the isomorphisms.

Proof. By duality, we only consider the first case. Let f be an isomorphism with inverse
f−1 and assume we have a lifting problem f against m. Then we have the following
diagonal

⋅ ⋅

⋅ ⋅ .
f

a

maf−1

b

We may immediately verify that af−1f = a id = a. Moreover, commutativity of the outer
square states that bf = ma, and by precomposing with f−1 we get bff−1 = b = maf−1

which shows that the lower right triangle commutes. Hence we have a lifting and f ∈ L.

Corollary 9.6. The classes L and R are wide subcategories of C.

Having established this basic fact, we move on to show that our lifting classes already
enjoy many stability properties out of the box. As we will shortly see, it is true that L is
stable15 under finite coproducts, pushouts and arbitrary colimits of cotowers. Dually, R
is stable under taking finite products, pullbacks, and arbitrary limits of towers.

Lemma 9.7. The class L is stable under coproducts and R is stable under products.

Proof. By duality it suffices to prove the first claim, so let f and g be members of L and
suppose we are given a lifting problem of f ⊔ g against m. Then we may adjoin either f
or g to the lifting square in the following manner

⋅ ⋅ ⋅

⋅ ⋅ ⋅
f

f⊔g
mf ′ and

⋅ ⋅ ⋅

⋅ ⋅ ⋅
g f⊔g

mg′

yielding the dashed lifts. Hence by the coproduct property we have a unique solution to
the original lifting problem.

15By “being stable under” we mean that if the diagram admits a (co)limit in the ambient category,
then this is an inhabitant of our distinguished subclass.

51

Lemma 9.8. The class L2 is stable under pushout and R2 is stable under pullback
considered as objects of C2.

Proof. By duality we need only consider the first case. So assume given an l ∈ L and f
its pushout. Moreover assume we have a lifting problem of f against m.

⋅ ⋅ ⋅

⋅ ⋅ ⋅
l mf

The dashed arrow exists by the lifting property between l and m, hence the dotted arrow
exists by the pushout property and solves the lifting problem.

Lemma 9.9. The class L is stable under taking colimits of arbitrary cotowers and R is
stable under taking limits of arbitrary towers.

Proof. Again by duality we need only consider the case for L. So assume given a cotower
diagram X ∶ Lω for some limit ordinal ω with a colimit Xω and limiting composite f .
Moreover assume given a lifting problem of f against m

X0 A

Xω B .

f

a

m

b

By well-foundedness of the ordinal we may for any i ∈ ω factor f as the composite

X0 Xi Xω
X(0≤i) fi

. Hence in particular since X(0 ≤ i) ∈ L we have lifting squares

X0 A

Xi B ,

X(0≤i)

a

m

bfi

But by commutativity these diagonal maps constitute a cocone under X and so by the
universal property of the colimit we get a solution to our original lifting problem.

9.1 Weak factorization systems

In this section, we introduce the notion of weak factorization systems building on the
notion of lifting properties introduced in the previous section. These were not in Quillen’s
original vocabulary, but have proven to be a useful abstraction in defining model structures.
Following [Rie09] we will also prove retract stability, a property some authors take as an
axiom (e.g. [DS95]).

Definition 9.10 (Weak factorization system). A weak factorization system16 on a
category C is a pair of distinguished classes of morphisms L and R such that

16We say the factorization system is weak because the lifting morphisms and factorizations are not
generally unique nor do they have any functorial properties. These properties would respectively yield
orthogonal and functorial factorization systems.

52

[Fac] Any morphism f may be factored as a morphism in L followed by a morphism in R

⋅

⋅ ⋅ .
r

f

l

[LLC] L is the class of morphisms with the left lifting property with respect to R.

[RLC] R is the class of morphisms with the right lifting property with respect to L.

Remark 9.11 (Self-duality). The notion of a weak factorization system is self-dual.

Example 9.12. Some natural examples of factorization systems.

(i) The monomorphisms and epimorphisms in Set or vice versa.

(ii) n-connected and n-truncated maps in Top.

(iii) Functors bijective on objects and functors bijective on hom-sets (i.e. fully faithful)
in Cat.

All of these examples satisfy the additional property of being orthogonal factorization
systems, meaning that the factorizations and liftings are essentially unique. This condition
is too strict for the kind the factorization systems we are interested in with relation to
model categories, but to motivate them takes a little more effort.

Lemma 9.13. Given a weak factorization system (L,R) on C, the intersection L ∩ R is
exactly the isomorphisms in C.

Proof. By Lemma 9.5 we already know the isomorphisms are contained in L ∩ R. So only
the converse remains.

Let f be in L ∩ R. Then it admits a lifting against itself

⋅ ⋅

⋅ ⋅
f fg

satisfying gf = id and fg = id.

Definition 9.14 (Retract). Let the following be a commutative diagram in a category

A B A ,s r

then we say A is a retract of B, s is a section of r and a split monomorphism, and
r is a retraction of s and a split epimorphism.

Proposition 9.15 (Retract stability). The arrow subclasses L2 and R2 are stable under
retracts.

53

Proof. By duality, we need only show that L2 is stable under retracts. So assume given a
retract f of l and that we have a lifting problem between f and r. By the factorization
property of (L,R) we may factor f as f = fRfL where fL ∈ L and fR ∈ R. Now we may
form the following diagram by slight rearrangements: the rightmost column is the lifting
problem and the left two columns is the retract of f .

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

f

j q

fL

a

r

fLq

l fR

bfR

y

i

x

p b

This yields a lift x of l against fR and a lift y of fL against r. Let φ be the composition
φ = yxi. Then by commutativity we have φf = yxig = yxlj = yfLqj = aqj = a and
rφ = ryxi = bfRxi = bpi = b. Hence φ is a lift of f against r.

Another connection between retracts and lifting properties is the following.

Lemma 9.16 (Retract argument). Assume l = r ○ f has the left lifting property with
respect to r. Then l is a retract of f .

Proof. We use the lifting property of the below left-hand square to obtain a retraction as
displayed below right

⋅ ⋅ ⋅ ⋅ ⋅
↝

⋅ ⋅ ⋅ ⋅ ⋅ .

l

f

r l f l
h

h r

Corollary 9.17. Either class of a weak factorization system determines the other.

Proof. A map f with the left lifting property with respect to R, may be factorized using
the factorization property as l ○ r, where l ∈ L and r ∈ R. Hence by the retract argument
f is a retract of l and so lives in L by retract stability.

To end this section we quote the small object argument, originally due to Quillen.
Most notably for us, it allows us to define weak factorization systems on cocomplete
categories in terms of a class of morphisms satisfying a small object condition, although
it has a multitude of formulations and consequences. To state it we first need to define
the notion of cell complexes.

Definition 9.18 (Cell complex). Let C be a cocomplete category. Then we define the
M-cell complexes cellM to be the class of morphisms in C obtained as transfinite
compositions of pushouts and coproducts of morphisms in M .

54

Example 9.19. Every simplicial set is a cell complex relative to the monomorphisms.

Theorem 9.20 (Small object argument)
Let C be a cocomplete category and assume that the domains of the morphisms in M are
small in an appropriate sense.17 Then every morphism in C factorizes as a morphism in
cellM followed by a morphism in M⧄ and so in particular ((M⧄)⧄ ,M⧄) defines a weak
factorization system in C which we say is cofibrantly generated by M .

Proof. See for instance [Joy08, D.2].

10 Model categories

We are now ready to define model categories. These present an efficient homotopy
theory of the underlying homotopical category via the usage of classes of cofibrations
and fibrations defined using weak factorization systems. Model categories require the
underlying category to be bicomplete (complete and cocomplete) and as a consequence
only present bicomplete (∞, 1)-categories. We do not use them to study ∞-groupoids or
(∞, 1)-categories directly however, but rather to study the (∞, 1)-category of ∞-groupoids
and the (∞,1)-category of (∞,1)-categories.

Instances of categories that admit the structure of a model category include the
category of simplicial sets, the category of topological spaces, of groupoids, of categories
themselves, and the category of sets. In fact, all of these admit multiple non-equivalent
model structures, presenting multiple homotopy theories of the same objects. For instance,
topological spaces admit models of strong and of weak homotopy types. Of prime interest
to us is the Kan–Quillen model structure on simplicial sets, which models the homotopy
theory of ∞-groupoids in which Kan complexes are the fibrant objects.

In the first subsection, we define model structures and model categories, introduce
the basic terminology and give a series of examples of interesting model categories.

We then move on to defining (co)fibrant replacement constructions and homotopies
of morphisms in a model structure using path and cylinder objects. This leads us to the
definition of the homotopy category of a model category giving us an alternative, more
tractable construction of the localization of the underlying homotopical category.

In the final subsection, we define the Reedy structure on indexing-categories and
demonstrate how one may inductively define model structures on presheaf categories on
these taking values in model categories.

Our main sources are [Rie20] and [DS95], although we occasionally use material from
[Joy08, App. D and E], [Lur09, App. A] [RV21, App. C], and [Rie09].

10.1 The model structure

There are many interesting hypotheses we can place on a category and its model struc-
ture.18 We use a slightly non-standard definition for model structures, separating them

17For instance κ-compact for some regular ordinal κ.
18In fact, there is a whole hierarchy of structures one can ask for on the weak factorization systems in

of themselves. See for instance [nLabb].

55

from their underlying category. We place no criteria on the category itself when defining
a model structure, but reserve the title of a “model category” for categories that are
both endowed with a model structure and satisfy the appropriate completeness criteria.

Definition 10.1 (Model structure). A model structure on a category C is a class of
weak equivalences W as in Definition 8.1 together with two additional classes of morphisms
called the fibrations F and cofibrations C such that the pairs (C,W ∩ F) and (C ∩ W,F)
form weak factorization systems.

A little bit of terminology and notation: we call members of F∩ W acyclic fibrations
and members of C ∩ W acyclic cofibrations. Given a model structure, we will use ∼Ð→
to denote weak equivalences, ↠ to denote fibrations, and ↪ to denote cofibrations. For
morphisms belonging to multiple classes, we will use superpositions of these. Moreover, if
the unique map from an object to the terminal object is a fibration, we say that object is
fibrant. Dually, we say the object is cofibrant if the unique map from the initial object
to it is a cofibration. An object which is both fibrant and cofibrant is called bifibrant.

Remark 10.2 (Self-duality). The notion of a model structure is self-dual. If (W,F,C) is
a model structure on M, then (Wop,Cop,Fop) is a model structure on Mop.

Theorem 10.3
If M either admits all pushouts of morphisms in C ∩ W along sections or admits all
pullbacks of morphisms in F ∩ W along retractions, then the class of weak equivalences is
closed under retracts.

Proof adapted from [Joy08, E.1.3]. We write out the proof only under the first complete-
ness hypothesis.

Assume given a weak equivalence w with a retract f . Suppose first that f is a
fibration. Now factor w as w = vu using either weak factorization system, then by the
2-out-of-3 property we have u ∈ C∩W and v ∈ F∩W. We obtain the dashed arrows as shown

⋅ ⋅ ⋅

⋅

⋅ ⋅ ⋅

f

ua

a

u

∼

f

v

∼

t

where t is a lifting of u against f . The top triangles commute, so tua = id, which means
that f is a retract of v. As v ∈ F ∩ W by Proposition 9.15, f is as well and we are done.

Now let us start again with no hypotheses on f . Factor f as f = hg with g ∈ C ∩ W

56

and h ∈ F and construct the indicated pushout which is admitted by hypothesis

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ .

g ∼

e

c

∼

w

g ∼

h d

∼

y

h

b

By Lemma 9.8 the left class of a weak factorization system is stable under pushouts, so
c ∈ C ∩ W. The arrows w and bh form a cone over the pushout square, so there is a unique
morphism d as shown such that dc = w. By the 2-out-of-3 property, d ∈ W. Similarly, ge
and id form a cone over the pushout square, so there is a unique morphism y as shown
above such that yx = id. The lower two squares now display h as a retract of d. As d ∈ W
and h ∈ F, the previous argument shows that h ∈ W. But since g is in W, by the 2-out-of-3
property we have f = hg ∈ W. Thus W is stable under retracts.

A model structure is overdetermined by its classes of cofibrations, fibrations and weak
equivalences.

Theorem 10.4
A model structure on a bicomplete category is uniquely determined by any of the following
data:

(i) Two out of the three classes C, F, W.

(ii) The fibrant objects and either C or F ∩ W.

(iii) The cofibrant objects and either F or C ∩ W.

(iv) The bifibrant objects and any of the classes C, C ∩ W, F, or F ∩ W.

We prove the first case as this one is quite simple, and refer the reader to [Joy21,
Determination] for the remaining cases.

Proof of (i). Using Corollary 9.17 the fibrations are determined as (C ∩ W)⧄. And the
cofibrations are determined as (F ∩ W)⧄ . So it remains to treat the case where only
cofibrations and fibrations are given. We may determine the acyclic cofibrations as F⧄

and acyclic fibrations as C⧄. Every weak equivalence may be factorized as a composite of
an acyclic cofibration followed by an acyclic fibration by either factorization system and
the 2-out-of-3 property, and conversely, every such composite is a weak equivalence. So W

may be obtained as the class of such composites.

Definition 10.5 (Model category). A model category is a complete and cocomplete
category M with a model structure (W,F,C).

57

Remark 10.6. There is some disagreement among authors as to which completeness
criteria are required for model categories. Quillen’s original definition [Qui67] postulates
only finite completeness and finite cocompleteness, and this is also the definition that
Dwyer-Spalinski [DS95] and Joyal [Joy08] uses. We however go with a definition requiring
completeness and cocompleteness under arbitrary limits in line with Riehl [Rie09], Riehl–
Verity [RV21], and Rasekh [Ras18] as every example we will see satisfies this property.

Remark 10.7. W, F and C are wide subcategories of M all closed under retracts viewed
as objects of M2. Moreover F is stable under products and C is stable under coproducts
as objects of M2. Finally, F is stable under pullbacks and arbitrary limits of towers
while C is stable under pushouts and arbitrary colimits of cotowers viewed as objects of
M. Because of the completeness properties satisfied by model categories, we are now
guaranteed that such limits always exist.

Example 10.8 (Kan–Quillen model structure sSetKQ, [Qui67]). Taking the following
classes of morphisms makes sSet a model category.

[W] Weak equivalences are morphisms whose geometric realization are weak homotopy
equivalences.19

[C] Cofibrations are monomorphisms.

[F] Fibrations are Kan fibrations, which can be characterized as having the right lifting
property with respect to all horn inclusions

Λnk X

∆n Y .

∼ f

With respect to this model structure, we readily see that all objects are cofibrant and
that the Kan complexes are the fibrant objects.

We may also construct a model structure for the category of small categories, having
equivalences of categories as its weak equivalences:

Example 10.9 (The model category of categories, [nLabd]). The category of small
categories Cat is a model category with the following classes.

[W] Weak equivalences are the equivalences of categories.

[F] Fibrations are the isofibrations: functors with the right lifting property with respect
to the inclusion of either endpoint into the free-standing isomorphism category I.

[C] Cofibrations are the functors that are injective on objects.

19There are multiple equivalent characterizations of the weak equivalences, including one which does
not rely on any homotopy theory of topological spaces. However, our formulation is the easiest one to
state.

58

Transporting back along the inclusion functor Gpd ↪ Cat, this also endows the
category of groupoids with the structure of a model category.

Example 10.10 (Other examples of model categories).

(i) Any bicomplete category with isomorphisms as weak equivalences, and all morphisms
as both fibrations and cofibrations.

(ii) Set with all maps as weak equivalences, surjections as fibrations, and injections as
cofibrations.

(iii) Set with all maps as weak equivalences, injections as fibrations, and surjections as
cofibrations.

(iv) Top with weak homotopy equivalences as weak equivalences, Serre fibrations as
fibrations, meaning continuous maps with the right lifting property with respect to
the inclusions of n-disks Dn × {0} ↪Dn × I, and as cofibrations, retracts of relative
cell complexes. This is called the Quillen model structure TopQuillen.

(v) Top with homotopy equivalences as weak equivalences, Hurewicz fibrations as
fibrations, and closed Hurewicz cofibrations as cofibrations. The Hurewicz fibrations
are defined by their right lifting property with respect to all continuous maps
X ≅ X × {0} → X × I, and Hurewicz cofibrations are defined by their left lifting
property with respect to all maps into the one-point space X → 1. A closed
Hurewicz cofibration additionally has a closed image. This is called the Strøm
model structure TopStrøm.

10.2 Fibrancy

As already defined, we say an object of a model category M is fibrant if its unique map
to the terminal object is a fibration and that it is cofibrant if the unique map from the
initial object is a cofibration. However, using the factorization systems of the model
category we may see that every object of a model category is weakly equivalent to both
a fibrant and a cofibrant object.

Construction 10.11 ((Co)fibrant replacement). Given any object A in M, we can
factorize the unique map A→ 1 to obtain an acyclic cofibration to a fibrant object FA,
called a fibrant replacement, and dually we may construct a cofibrant replacement
by factorizing the unique map 0 → A to obtain an acyclic fibration from a cofibrant
object CA:

CA

0 A 1

FA

∼

∼

59

Moreover, an arbitrary morphism f lifts to either replacement in a way that preserves
commutativity of the following diagram,

0 CA A FA 1

0 CB B FB 1,

C f

∼

f

∼

F f

∼ ∼

via the following lifts

0 CB

CA A B

∼C f

∼ f

and

A B FB

FA 1.

f
∽

∼

F f

Note that in general these constructions may not be functorial.

By iterated replacement every object may be replaced by a bifibrant one:

CA

0 A 1

FA

∼

∼
↝

CA FCA

0 A 1.

CFA FA

∼

∼

∽

∽

∼

∼

∽
∼

Both candidates CFA and FCA work, and moreover, we have comparison inverse weak
equivalences between them by the lifting properties of the inner square of the above-right
diagram, depicted as dotted arrows.

10.3 Homotopies

In model categories, we may develop notions of homotopy between maps. For these, we
define a notion of path and cylinder objects. These objects generalize path and cylinder
objects from topology, by retaining just enough structure to enable a notion of morphism
homotopy.

Definition 10.12 (Path and cylinder objects). A path object for A is an object pathA
for which there exists a commutative diagram

pathA

A A ×A.

(d0,d1)∼
(id,id)

The path object is good if the map pathA → A ×A is a fibration, and very good if
additionally the weak equivalence A ∼Ð→ pathA is a cofibration.

60

Dually, a cylinder object for A is an object cylA for which there exists a commu-
tative diagram

A +A A.

cylA
(i0,i1)

(id,id)

∼

The cylinder object is good if the map A+A→ cylA is a cofibration, and very good if
additionally the weak equivalence cylA ∼Ð→ A is a fibration.

Note that every object has at least one very good path and cylinder object by the
factorization properties of a model structure.

Lemma 10.13. If A is fibrant and pathA is a good path object for A, then the component
maps d0 and d1 are acyclic fibrations and so, in particular, pathA is fibrant.

Proof. The maps di are weak equivalences since we have the factorizations

A pathA A∼ di

in which two morphisms are already weak equivalences.
Since the projection maps, pr0 and pr1 make the following square a pullback

A ×A A

A 1

pr0

pr1

we have by Lemma 9.8 that they are fibrations. Hence since di is a composite of fibrations
di = pri ○ (d0 × d1), it is itself a fibration.

Definition 10.14 (Right and left homotopy). Two maps f, g ∶ A → B are said to be
right homotopic, written f ∼r g, if there exists a path object pathB and a map
H ∶ A→ pathB lifting (f, g)

pathB

A B ×B.

(d0,d1)H
(f,g)

The map H is called a right homotopy from f to g via pathB. Dually, the maps f and
g are left homotopic, written f ∼l g if there exists a cylinder object cylA and a left
homotopy H ′ ∶ cylA→ B extending (f, g)

A +A B.

cylA
(i0,i1)

(f,g)

H′

Moreover, the homotopy is said to be good or very good if the path/cylinder object
is.

61

As these notions are dual, every result about one again immediately dualizes to a
result about the other. Therefore, we now turn our attention solely to right homotopies
and path objects.

First, we establish a series of mechanical results about good and very good homotopies.

Lemma 10.15. If f and g are right homotopic, then we may construct a good right
homotopy.

Proof. We may construct the following diagram by factorizing d using (C ∩ W,F) and
observing that path′B is a path object of B

B path′B

pathB

A B ×B.

∼

∼

d′

d

∼

H
(f,g)

Now, the composition H ′ = (A pathB path′BH ∼) is our desired good right homotopy.

Lemma 10.16. If f is good right homotopic to g and their domain is cofibrant, then we
may construct a very good right homotopy.

Proof. Let H ′ be the good right homotopy via path′B. We may factorize the weak
equivalence B ∼Ð→ path′B via either factorization system and then apply the two-out-of-
three property to the other factor to get the square

B path′′B

path′B B ×B

∼

∼ ∽

d′

And observe that path′′B is a very good path object for B. Now if A is cofibrant we
may lift the following square

0 path′′B

A path′B

∼

H′′

H′

to obtain our desired very good right homotopy.

Using these two lemmas, we may in general assume that we have good right homotopies,
and when the codomain is fibrant that right homotopies are very good.

Moreover, when our path objects are sufficiently good, we may extend general maps
to them in a natural way:

62

Proposition 10.17 (Extension to path objects). Assume given objects A and B for
which we have respectively a very good path object pathA, and a good path object pathB.
Then any map f ∶ A→ B extends to a map path f ∶ pathA→ pathB.

Proof. We obtain path f as the following lift

A B pathB

pathA A ×A B ×B.

f

∽

∼

path f

f×f

Lemma 10.18 (Right homotopy equivalence relation). If B is fibrant, then right homo-
topy is an equivalence relation on A→ B.

Proof. See [DS95, Lemma 4.7].

Lemma 10.19. If B is fibrant and p ∶ A′ → A is an acyclic fibration, then two maps
f, g ∶ A→ B are right homotopic if and only if fp and gp are right homotopic.

Proof. See [DS95, Lemma 4.9].

Lemma 10.20 (Right homotopy ideal). Assume given very good right homotopic maps
f, g ∶ B → C and consider arbitrary maps p ∶ A→ B and q ∶ C →D and a good path object
pathD. Then we may construct a good right homotopy between qfp and qgp via pathD.

Proof. By Proposition 10.17 we have the lift path q:

C D

A B pathC pathD

C ×C D ×D.

∼

q

∼

p

(f,g)

H path q

d

q×q

And the composite d ○ path q ○H ○ p defines the desired homotopy.

These lemmas ensure that when we transport to fibrant objects, we may quotient
right homotopies to get a category hMf whose objects are the fibrant objects of M and
morphisms are right homotopy classes of morphisms in M. And dually for cofibrant
objects and left homotopies.

We may now relate these two notions with the following propositions.

Lemma 10.21. Given maps f, g ∶ A→ B we have the following dual implications.

(i) If A is cofibrant and f ∼l g then f ∼r g.

(ii) If B is fibrant and f ∼r g then f ∼l g.

63

Proof. See [DS95, Lemma 4.21] or [Rie20, Proposition 3.3.8].

Hence when the domain is cofibrant and the codomain is fibrant, the equivalence
relations coincide and we simply say that f and g are homotopic, denoted f ∼ g.

Proposition 10.22. A map f between bifibrant objects A and B has a homotopy inverse
if and only if it is a weak equivalence.

Proof. See [DS95, Lemma 4.24] or [Rie20, Proposition 3.3.10].

Using this, we may reframe the problem of localizing a model category in terms of
the well-structured homotopies.

Construction 10.23 (Homotopy category of (co)fibrant objects). Given a model category
M, we may define the full subcategories of respectively fibrant, cofibrant and bifibrant
objects Mf , Mc, and Mcf .

Furthermore, Lemmas 10.18 to 10.20 ensures that for each of these, we may quotient
by respectively left homotopy, right homotopy and lastly, by Lemma 10.21, just homotopy
to get categories hMf , hMc, and hMcf , and that we may define fibrant replacements
functors

F ∶ M → hMf C ∶ M → hMc CF ∶ M → hMcf .

All together we have the following diagram of categories

Mcf

Mf Mc

M

hMf hMc.

hMcf

CF

C F

Finally, applying the factorization property of the bijective-on-objects, fully faithful
orthogonal factorization system as mentioned in Example 9.12(iii) to CF ∶ M → hMcf ,
we get a category we denote as hM whose objects are the objects of M, but whose
hom-sets consist of homotopy classes of maps between bifibrant replacements

M hM hMcf .
CF

Theorem 10.24
The category hM is a localization of M at W.

Proof. It may be checked directly that hM carries the universal property of localizations
as stated in Definition 8.7. See for instance [DS95, Theorem 6.2] or [Rie20, Theorem 3.4.5].

64

This construction of the homotopy category of M is better behaved than the more
general calculus of fractions. It is a more tractable construction, and it allows us to
utilize the additional structure presented by the model structure. As an example of this,
we end this section by remarking on enrichment of model categories.

Remark 10.25 (Enriched model categories, [Rie20, Section 4.4]). We may speak of
model categories enriched in monoidal model categories. A monoidal model category
V is a simultaneous monoidal category and model category that satisfies additional
compatibility axioms between these two structures. A V-enriched model category
is a simultaneous V-enriched category and model category that satisfies appropriate
compatibility axioms between these structures. Our essential example of a monoidal
model category is the Kan–Quillen model in simplicial sets with the monoidal action
given by its cartesian closedness. We call a model category enriched in it a simplicial
model category.

Part of the power that comes with enriching a model category is that it offers an
enrichment of its homotopy category in the homotopy category of its basis of enrichment.
For instance, sSetKQ is enriched in itself and this gives rise to an enrichment of its
homotopy category in Kan complexes.

10.4 Reedy model structure

Given a model category M and any small index category J , there are two canonical
candidates for model structures on the presheaf category MJ called the projective and
injective model structures respectively.

Definition 10.26 (Projective and injective model structures). Given a model category
M and a small category J . The projective model structure on MJ is a model
structure (if it exists) whose weak equivalences and fibrations are the pointwise ones.
Dually, the injective model structure onMJ is a model structure (if it exists) whose
weak equivalences and cofibrations are the pointwise ones.

Particularly relevant to us, the category of simplicial sets endowed with the Kan–
Quillen model structure enjoys the property of being combinatorial20 which in particular
implies that these always exist [HKRS17, Theorem 3.4.1 and Corollary 3.1.7].

However, for our purposes, the consideration of general indexing-categories is not
necessary. We care particularly for a specific indexing-category, the simplex category
∆. This category carries a particularly nice structure which allows us to construct an
explicit model structure on M∆op

for any model category M.

Definition 10.27 (Reedy category). A Reedy category is a category R equipped with
a degree map deg ∶ ObR→ ω for some ordinal ω and two wide subcategories R+ and R−

satisfying the following axioms:

[R+] For any non-identity in HomR+(a, b) we have deg a < deg b.

20A combinatorial model category is locally presentable and cofibrantly generated model category.
Local presentability is a particular technical property, and we refer the curious reader to [nLabc].

65

[R−] For any non-identity in HomR−(a, b) we have deg a > deg b.

[R-Fac] Every morphism factorizes uniquely as a morphism inR− followed by a morphism
in R+.

Proposition 10.28. The simplex category ∆ is Reedy with degree map

deg [n] ∶= n ∶ Ob∆→ N

and the Reedy classes ∆+, ∆− given by the subcategories of injective and surjective maps
respectively.

Proof. The factorization property follows from Lemma 7.3. The rest is clear.

Some other examples are the following.

Example 10.29 (Examples of Reedy categories). The tautological examples of Reedy
categories are the ordinals themselves considered as total order categories. In particular
2 and N regarded as ordered sets are Reedy. Other examples are discrete categories and
the diagram categories (⋅ ⇉ ⋅), (⋅ ← ⋅ → ⋅) and (⋅ → ⋅ ← ⋅).
Definition 10.30 (Latching and matching objects). Given a diagram X ∶ R →M, then
for any object r ∈ ObR we define the latching object LrX to be the colimit

LrX ∶= colim
(s→r)∈R+/r

s≠r

X(s).

Dually, the matching object MrX is the limit

MrX ∶= lim
(r→s)∈r/R−

s≠r

X(s).

When they exist we have a canonical pair of maps

LrX →X(x) →MrX.

Example 10.31. In the case of simplicial sets, latching objects can be identified with
a collection of degenerate simplices of X, and matching objects can be identified with
a collection of faces of X. In particular, L[n]X ↪ X[n] is the inclusion of degenerate
n-simplices.

Theorem 10.32 (Reedy model structure)
Given a Reedy category R and a model category M, then we may construct a model
structure on the presheaf category MR for which the weak equivalences are the pointwise
ones. A morphism f ∶X → Y in MR is a cofibration if

LrY ⊔LrX Xr → Yr

is a cofibration in M for all r ∈ ObR. It is a fibration if

Xr →MrX ×MrY Yr

is a fibration in M for all r ∈ ObR.

66

Proof. See [RV14, Theorem 4.18].

Remark 10.33 ([BR13]). The simplex category ∆ enjoys a special property as a Reedy
category in that for every model categoryM the Reedy model structure onM∆ coincides
with the injective presheaf model structure.

Definition 10.34 (Proper model structure). A model category is said to be right
proper if weak equivalences are preserved by pullbacks along fibrations. Dually, a model
category is left proper if weak equivalences are preserved by pushouts along cofibrations.
A model category that is both right and left proper is said to be proper.

Example 10.35 ([GJ99]). The Kan–Quillen model structure on sSet is proper.

Proposition 10.36. Given a Reedy category R and a left (right) proper model category
M, then the Reedy model category MR is again left (right) proper.

Proof. We consider the case of left properness. So assume we have a pushout square

⋅ ⋅

⋅ ⋅

∼

w

in MR. As a colimit in a functor category taking values in a cocomplete category, this
is a pushout if and only if it is a pointwise pushout. Moreover, cofibrations and weak
equivalences inMR are in particular pointwise cofibrations and weak equivalences. Since
M is left proper, the pushout of w is a weak equivalence at each point. But every
pointwise weak equivalence is a weak equivalence in MR, so we are done.

Digression 10.37. Our definition of Reedy categories suffers from a certain deficiency.
They do not respect the principle of equivalence. Given two equivalent categories, there
is no way to transport the Reedy structure of one to the other. In fact, a Reedy category
cannot have any non-identity isomorphisms. Luckily, this may be redeemed, giving rise
to generalized Reedy categories as introduced by Clemens Berger and Ieke Moerdijk in
[BM10].

11 Models of type theory

Type theories are interesting objects of study by themselves, but their power amplifies
when interpreted in some context, enabling us to utilize theorems proven in the type
theory to make interesting statements about the context in which it is interpreted. This
we call the semantics of the type theory, and we call a particular interpretation a model.
There are in particular many categorical approaches to modeling type theories. See
[nLaba] for many such approaches and comparisons between them.

In this section, we take a brief look at how model categories may be used to develop
semantics of type theories. Although intensional type theories may be interpreted in less

67

structured categories, model categories nevertheless constitute an important family. In
particular, homotopy type theory admits a model in Kan–Quillen simplicial sets [KL18],
justifying the interpretation of types as ∞-groupoids and transferring homotopy-theoretic
results proven in the type theory to proofs of the corresponding statements in homotopy
theory.

It was due to a lack of understanding of the semantics of intensional type theory
that the homotopy-theoretic aspects went unnoticed for so long, and through admitting
semantics in the category of groupoids [HS98] that mathematicians were first able to
refute the principles of the uniqueness of equality proofs and equality reflection for
intensional type theory. Neither holds for groupoids, as the first would correspond to only
having identity paths and the second would correspond to only having a single object
per path component.

Remarkably, it turns out that extensional dependent type theory admits semantics
in all locally cartesian closed categories;21 we say extensional dependent type theory is
the internal language of locally cartesian closed categories. Correspondingly, intensional
type theory with higher inductive types is expected to be the internal language of
locally cartesian closed (∞,1)-categories! It had even been conjectured for some time
that homotopy type theory with a univalent universe was the internal language of
(∞,1)-toposes. This was recently proven by Shulman [Shu19].

What most models have in common (e.g. [HS98; AK11; KL18; RS17]) is the use of a
category whose objects are contexts of the type theory under study. A formation of types
in context Γ is an object over Γ, i.e. T → Γ, and an introduction of terms is a section of
this. With this modeling, substitutions are pullbacks

fAT T

Λ Γ.

fA

f

A non-dependent type is represented by a morphism A→ (), while a dependent type
x ∶ A ⊢ B type may be represented by a map B → A whose composability with A → ()
witnesses that we may form the Σ-type ∑x∶AB. We think of the morphism B → A as a
fibration (this can be made precise), with B[a/x] lying over a:

B[a/x] B

() A.a

To construct dependent products we require an additional property of the contextual
category. Given that all pullbacks along f exist, the base change functor fA ∶ C/Γ→ C/Λ

21A locally cartesian closed category is a category C such that all slice categories C/c are cartesian
closed.

68

has a left adjoint Σf given by composition with f , this forms the dependent sum along f .
If C is moreover locally cartesian closed, fA also admits a right-adjoint functor Πf :

C/Γ C/Λ.fA

Πf

Σf

⊢
⊢

This right-adjoint to the base change functor is precisely the categorical formulation
of dependent products along f and corresponds to the formation of Π-types along
f . For instance, in the case of a dependent type x ∶ A ⊢ B type as considered above,
a dependent product along A → () yields ∏x∶AB. This adjointness relation between
existential quantification, substitution, and universal quantification was first remarked
by Lawvere in [Law06].

Groupoid model. Hofmann–Streicher interpreted Martin–Löf dependent type theory
with a universe type in the category of groupoids [HS98]. In this model, types are
interpreted as groupoids and open terms, meaning terms judged in a non-empty context,
are interpreted as functors between groupoids.22 The functoriality of these maps represents
the preservation of identity terms. Dependent types require a notion of type families,
which conveniently corresponds to functors P ∶ A → Gpd. In particular, since all
morphisms in A are isomorphisms, fibers over an arrow a are isomorphic, witnessed by
the functorial action of P on a. Note that an internal universe must correspond to a
groupoid of small groupoids.

∞-groupoid model. Homotopy type theory with a univalent universe admits a model
in the Kan–Quillen model of simplicial sets [KL18; Str14] usually attributed to Voevodsky.
In this model, type families are fibrations, and so types correspond to Kan complexes.
This solidifies our understanding of types as ∞-groupoids, in addition to giving semantics
to the synthetic homotopy theory of the type theory. Through this model, a formalized
proof of some homotopy-theoretic result is also a proof of the homotopy-theoretic result
in the classical setting!

Digression 11.1 (The constructive Kan–Quillen model structure). There is a constructive
model structure on simplicial sets which under the assumption of the law of excluded
middle and axiom of choice coincides with the Kan–Quillen model structure, presented
in the paper [GSS19]. In the context of modeling intensional type theory, a constructive
model structure is desirable as it allows for internalization of the model, and hence, in
particular, reflection on it.

Complications arise in the constructive case. First of all, not all objects are cofibrant.
Luckily, this may be circumvented with a strong cofibrant replacement. Moreover, a
distinction is made between trivial and acyclic fibrations. The first is defined as having

22Closed terms are also functors, but only trivially as projections to the trivial groupoid.

69

the right lifting property with respect to all cofibrations, while the second is defined to
mean it is a weak equivalence and a fibration. Part of their work includes showing that
these two classes coincide, a non-trivial fact in the constructive setting.

There are some results on the classical formulation that simply aren’t provable
constructively, however. In [BCP15], they for instance show that this is the case for the
result that given two Kan complexes X and Y , their exponential Y X is again a Kan
complex.

12 Simplicial spaces

We now turn our attention to the category of simplicial spaces inside of which we
obtain Segal spaces and Rezk spaces also called complete Segal spaces. These
are respectively precategory and category objects in the category of Kan complexes and
model (∞,1)-categories. These objects are of particular interest to us as they form the
underlying objects in the motivating model of the simplicial type theory we present in
the next part.

We will apply the language of model categories to efficiently present their homotopy
theory. We start with the homotopy theory of Kan–Quillen simplicial sets and study their
simplicial objects. These are called simplicial spaces or bisimplicial sets and come
equipped with the Reedy model structure presenting the homotopy theory of simplicial
∞-groupoids. Hence they are objects with a spatial and a simplicial (later categorical)
direction. Assuming the Segal condition in the simplicial direction leads us to the study
of Segal spaces, which act like categories in the simplicial direction. These also admit
a homotopy theory presented by a model structure that may concisely be defined as the
left Bousfield localization of the Reedy model structure at the spine inclusions. With
Segal spaces we encounter the same issues as displayed by precategories in homotopy
type theory: The categorical structure of a Segal space does not sufficiently interact
with its homotopical structure to model (∞,1)-categories. This we may remedy by
adding a condition of local univalence, which leads us to the definition of Rezk spaces.
Their homotopy theory may again be presented by a model structure defined as the left
Bousfield localization of the Segal model structure at the terminal projection of (the
discrete nerve of) the free-standing isomorphism.

We focus on definitions and examples, skimming over technical details and leaving
out proofs entirely. We will treat the homotopy and category theory of these objects in
more detail in the context of the type theory they interpret, which is the subject of the
next part.

Remark 12.1. There are many models presenting the homotopy theory of (∞,1)-
categories. We have model categories themselves, presenting bicomplete (∞, 1)-categories.
Since general (∞, 1)-categories need not be bicomplete, model categories are not sufficient
for the presentation of all (∞, 1)-categories. For this, we can take multiple, appropriately
equivalent, approaches.

The subject of this section is one such model, namely the theory of Rezk spaces.
Another model is the model of simplicially enriched categories. Indeed, we have already

70

seen an instance of this model with the hammock localization of homotopical categories
as outlined in Remark 8.11.

The best-established model of (∞,1)-categories, however, is the theory of quasi-
categories as defined by Boardman and Vogt. These admit a rather simple description as
simplicial sets satisfying a simultaneous relaxation of the (inner horn formulation of the)
Segal condition and the Kan condition: all inner horns have fillers. Hence quasi-categories
are also referred to as inner Kan complexes. Their treatment is much due to Joyal [Joy08]
and Lurie [Lur09]. In fact, quasi-categories even form the basis of enrichment for the
model-independent approach to (∞,1)-category theory taken by Riehl–Verity [RV21].

Definition 12.2. A simplicial space or bisimplicial set is a sSet-valued presheaf on
the simplex category, meaning it is a functor

∆op → sSet,

and we define the category of simplicial spaces to be ssSet ∶= sSet∆op

.

Some authors take simplicial spaces to more generally mean preshaves on the simplex
category taking values in any category modeling the homotopy theory of topological
spaces and so the terminology bisimplicial set, using the product-hom adjunction

(Set∆op

)∆op

≅ Set∆op×∆op

,

may be considered more specific. We will however not consider any other such model.

From the viewpoint of simplicial spaces as bisimplicial sets we may visualize a simplicial
spaceX as a grid of sets related by face and degeneracy maps in two independent directions.
The first argument varies vertically, and the second argument varies horizontally:

⋮ ⋮ ⋮ . .
.

X2,0 X2,1 X2,2 ⋯

X1,0 X1,1 X1,2 ⋯

X0,0 X0,1 X0,2 ⋯

where we take Xn,m to correspond to (Xn)m under the product-hom adjunction. As a
natural construction we may build a bisimplicial set from two simplicial sets in this way:

71

Definition 12.3 (External product). We have a bifunctor from simplicial sets to bisim-
plicial sets defined on objects as

− ⊠ − ∶ sSet × sSet→ ssSet (A ⊠B)n,m ∶= An ×Bm
and with the obvious action on maps.

In particular, we have the represented functors

∆n ⊠∆m = Hom∆×∆(−, ([n], [m])).

We also have a horizontal embedding of simplicial sets into bisimplicial sets given by
∆0 ⊠ (−), and a vertical embedding (−) ⊠∆0.

Just as sSet, the category ssSet enjoys many nice categorical properties.

Proposition 12.4. The category ssSet is bicomplete and cartesian closed.

And we have explicit characterizations of products and internal homs:

Definition 12.5 (Product and internal hom). Given simplicial spaces X and Y , we may
define X × Y and Y X degreewise as

(X × Y)n,m =Xn,m × Yn,m and (Y X)n,m = HomssSet((∆n ⊠∆m) ×X,Y).

In particular we consider ssSet as enriched in simplicial sets by projecting the simplicial
space Y X onto its 0’th horizontal complex (Y X)0 = (Y X)0,●.

Proposition 12.6 (Reedy model structure on simplicial spaces sSetReedy). Using
the Reedy model structure on ∆ and the Kan–Quillen model structure on simplicial
sets sSetKQ, we endow the category of simplicial spaces with a Reedy model structure
ssSetReedy. Its weak equivalences are hence pointwise weak equivalences, cofibrations
are just monomorphisms since the model structure is injective, and fibrations are maps
f ∶X → Y such that for all n ∈ N the induced dashed arrow

X∆n⊠∆0
X∂∆n⊠∆0

⋅

Y ∆n⊠∆0
Y ∂∆n⊠∆0

,

f∆n⊠∆0
f∂∆n⊠∆0

called the Leibniz cotensor of the inclusion ∂∆n⊠∆0 ↪ ∆n⊠∆0 with f , is a Kan fibration.
All simplicial spaces are thus cofibrant, and the fibrant objects are simplicial spaces X

such that each restriction map

(X∆n⊠∆0

)
0
→ (X∂∆n⊠∆0

)
0

is a fibration of spaces. In particular, this implies that each Xn,● is a Kan complex.
Since the underlying model category is proper this model structure is also proper.

With the Reedy model structure, we recover a homotopy theory of spaces in the
horizontal direction, hence the Reedy model structure gives a homotopy theory of
simplicial ∞-groupoids.

72

12.1 Segal spaces

Definition 12.7 (Segal space). A Segal space is a Reedy fibrant simplicial space X
satisfying the Segal condition in the categorical direction. By which we mean that the
canonical maps

(X∆n⊠∆0

)
0
→ (XSpn⊠∆0

)
0

are Kan equivalences. We say X is local with respect to the inclusions

Spn ⊠∆0 ↪∆n ⊠∆0.

Using the techniques of Bousfield localization, we may construct a model structure
presenting the homotopy theory of Segal spaces. The class of cofibrations is kept fixed,
while the class of fibrations is adjusted to accommodate an enlarged class of weak
equivalences.

Theorem 12.8 (Model of Segal spaces ssSetSegal, [Rez01, Theorem 7.1])
Segal spaces form the fibrant objects of the left Bousfield localization of ssSetReedy at

the inclusions

Spn ⊠∆0 ↪∆n ⊠∆0.

We may characterize its model structure classes as follows.

[C] The cofibrations are the monomorphisms.

[F] The fibrant objects are the Segal spaces, and a map between Segal spaces is a Segal
fibration if and only if it is a Reedy fibration.

[W] Weak equivalences are the maps f such that HomssSet(f,X)0 is a Kan equivalence
for every Segal space X. I.e. weak equivalences are the maps which are seen
to induce equivalences of mapping spaces by Segal spaces. We note that Reedy
equivalences are Segal equivalences, and that Segal equivalences between Segal spaces
are Reedy equivalences.

Moreover, this model structure is cofibrantly generated, left proper, and may be enriched
in sSetKQ.

With the Segal space model, we get a homotopy theory in the horizontal direction
and a category theory in the vertical direction.

Example 12.9. The simplicial spaces ∆n⊠∆0, N(I)⊠∆0 and more generally the discrete
nerves N(C) ⊠∆0 for any small category C are Segal spaces.

The following example demonstrates that the model of Segal spaces is not right
proper.

73

Example 12.10 (Counterexample to right properness). We have the pullback square

∂∆1 ⊠∆0 ∆1 ⊠∆0

Sp2 ⊠∆0 ∆2 ⊠∆0

d1⊠id

∼

The right-hand vertical map is a Segal fibration since it is a Reedy fibration between Segal
spaces. Moreover, the bottom inclusion is a Segal equivalence by definition. However, its
pullback is not a Segal equivalence, as ∂∆1 ⊠∆0 is not Segal equivalent to ∆1 ⊠∆0.

12.2 Rezk spaces

Segal spaces have a category theory and a homotopy theory, however, these do not
sufficiently interact to model (∞,1)-categories. To demonstrate this, consider the
following example:

Example 12.11. The category I is equivalent to 1, and the simplicial set N(I) is Kan
equivalent to ∆0. However, the Segal space N(I) ⊠ ∆0 is not Segal equivalent to the
terminal object 1. In the homotopical direction, we observe that (N(I) ⊠ ∆0)0,m =
N(I)0 × ∆0

m = {0,1} × {sm0 (0)} which has cardinality 2: homotopically the simplicial
space is seen as having two unrelated vertices although categorically they are equivalent.

We expect (∞,1)-categories to satisfy an additional completeness criterion in this
regard: that every isomorphism also reflects to a path. We expect the homotopy theory
in (∞,1)-categories to also capture the homotopy theory in 1-categories. This leads us
to the definition of Rezk spaces.

Definition 12.12 (Rezk space). A Rezk space is a Segal space which is local with respect
to the terminal projection N(I) ⊠ ∆0 → 1. I.e. Rezk spaces see this projection as an
equivalence of mapping spaces.

Theorem 12.13 (Model of Rezk spaces ssSetRezk, [Rez01, Theorem 7.2])
Rezk spaces form the fibrant objects of the left Bousfield localization of ssSetSegal at the
terminal projection N(I) ⊠∆0 → 1.

[C] The cofibrations are the monomorphisms.

[F] The fibrant objects are precisely the Rezk spaces, and a map between Rezk spaces is
a Rezk fibration if and only if it is a Reedy fibration.

[W] Weak equivalences are the maps f such that HomssSet(f,X)0 is a Kan equivalence
of spaces for every Rezk space X. We note that Reedy equivalences are Rezk
equivalences, and that Rezk equivalences between Rezk spaces are Reedy equivalences.

Moreover this model structure is cofibrantly generated, left proper and may be enriched in
sSetKQ.

74

Considering the failure of the discrete nerve of categories to be a Rezk space, the
following alternative construction is proposed.

Example 12.14 (Classification diagram). Given a small category C, then we may define
its classification diagram N(C) as a simplicial space such that

N(C)n,m ∶= HomCat([n] × I(m),C)

where I(m) is the indiscrete category on m objects, which we may define to be the
groupoidal localization Loc[m] in which case we immediately have induced face and
degeneracy maps.

This simplicial space is a Rezk space [Rez01]. As the description makes apparent, the
categorical direction reflects the categorical structure of C directly, while the homotopical
structure restricts to the core of C. In particular, we recover N(CoreC) as N(C)0.

75

76

Part III

Simplicial Homotopy Type Theory

Homotopy type theory, whose objects form ∞-groupoids via identity proofs and higher
inductive types, may be understood as a theory of homotopy types. The utility of
the homotopy invariance of all internal constructions in this type theory can not be
exaggerated. We would like to extend this utility to the context of higher categories.
However, it is an open problem to formulate the notion of a (∞, 1)-category internally to
homotopy type theory, although many attempts are being made [Kra21]. The problem
seems to boil down to the fact that all known formulations of (∞,1)-categories require
an infinite amount of coherence axioms.

Although there does not seem to be any intuition among mathematicians for why
such a construction would be impossible, a solution remains elusive. Moreover, it may
happen that even if such a construction is possible, that it is just too complicated to
be practical in application. As an alternative approach, we may extend homotopy type
theory in a multitude of ways to enable reasoning about these objects. One approach
adds a notion of directed shapes as a basis for the geometry of (∞,1)-categories. This
leads us to the simplicial homotopy type theory as presented by Riehl–Shulman in [RS17],
which extends Martin–Löf dependent type theory with additional layers supporting a
fundamental theory of strict directed shapes.

This type theory expresses a synthetic theory of simplicial ∞-groupoids, motivated
by the Reedy model structure on simplicial spaces. In it, we recover a notion of (∞,1)-
precategories, named Segal types due to their correspondence with Segal spaces in the
motivating model. These objects are characterized internally in terms of one singular
axiom; namely that compositions of arrows exist and are homotopy unique. Due to this
axiom being formulated internally to the theory, it is stronger than it may seem at first
glance. It in fact formulates that the restriction map B∆2 → BΛ2

1 is an equivalence of
simplicial spaces. Moreover, when specializing to Segal spaces all internal constructions
are automatically functorial due to the simplicial underpinnings.

We further recover (∞,1)-categories, named Rezk types due to their correspondence
with Rezk spaces in the motivating model. These are Segal types satisfying the local
univalence condition: the type of isomorphisms between terms are equivalent to the type
of homotopies between them. Notably, for the reader familiar with the theory of Rezk
spaces, we will see that Segal types without a local univalence condition are sufficient
for many (∞,1)-categorical results. In fact, many of the “categorical” constructions we
discuss have meaning for arbitrary types in the theory.

The homotopy invariance of constructions makes arguments so pain-free in this type
theory that one could even argue that working with ∞-categories homotopy invariantly
is easier than working with 1-category theory in classical set theory. Although of
course, it limits us from using some of the expressive tools of classical mathematics, it
ensures the absence of “evil” constructions and enables us to make efficient arguments
without transporting to homotopy-truncated objects like Riehl and Verity do in their

77

model-independent approach to (∞, 1)-category theory [RV21] from which we take much
inspiration.

The type theory is still in early development, with the first paper published in 2017
by Emily Riehl and Mike Shulman [RS17]. However, it has gathered some interest
and investigations are being done into among others a directed analog of univalence
by Emily Riehl, Evan Cavallo and Christian Sattler [RCS18], a cubical formulation of
this by Matthew Weaver and Dan Licata [WL20], and Ulrik Buchholtz and Jonathan
Weinberger’s development of the synthetic theory of fibered (∞,1)-category theory in
[BW21].

We start in Section 13 with defining the simplicial type theory layer by layer. We
present it formally as a deductive system like in Section 2. Then in Section 14 we
investigate the simplicial nature of types as well as the properties of relative extension
types. In Section 15 we define Segal and Rezk types, and establish their basic category and
homotopy theory, before looking at a few categorical constructions. Finally, in Section 16
we discuss the notions of families, fibrations, and lifting properties, working towards
cocartesian fibrations and families. Most notably, we formulate the notion of absolute
lifting diagrams and establish basic properties for these. In particular, we prove a comma
representability theorem, which can be used to give a new internal characterization of
cocartesian fibrations. This internal characterization was suggested by Emily Riehl,
and we base our work mostly on work done by Buchholtz–Weinberger [BW21] and
Riehl–Verity [RV21].

Cocartesian families can concisely be summarized as functorial type families with cat-
egorical fibers. Like the Grothendieck construction of Theorem 6.9, we have straightened
and unstraightened equivalents of cocartesian fibrations, hence they are tools allowing
us to switch between these two viewpoints. In particular, there is an internal Yoneda
lemma for (co)cartesian fibrations[BW21, Section 7] which can be seen as a principle of
directed arrow induction for functorial families of Rezk types.

13 Defining simplicial type theory

The type theory is implemented using multiple layers, meaning we have multiple classes
of type-like objects, each class building on the previous one. In this simplicial type
theory, the bottom two levels express an intuitionistic first-order logic of strict directed
shapes. There is a sense in which the axioms given are precisely the axioms needed to
produce an intuitionistic theory of strict directed shapes. On top of this layer, we place
a bare-bones Martin–Löf dependent type theory without an internal universe as defined
in Section 3.1. It may be remarked that on this layer, every result from Part I still
applies. From shapes to types we assert a type of relative functions and assume an axiom
of relative function extensionality. These relative functions express shape inclusions as
cofibrations. In particular, we may formulate a homotopy extension property for them
internally.

This fact is crucial to the homotopy invariance of the type theory. In the presence
of strict equality, which is semantically interpreted as the (not generally a fibration)

78

diagonal map A→ A ×A, care has to be taken to ensure that all types remain fibrant so
that all type constructions stay homotopy invariant.

The type theory as defined by Riehl and Shulman does not assume the existence of a
universe type nor univalence. This is not due to incompatibility with these axioms, but
as these are needed for the results the authors present, this allows them to maintain a
higher level of generality. In our second source [BW21], Buchholtz and Weinberger do
assume a universe type as well as univalence. Moreover, they coerce the directed shapes
to also be types, allowing one, in particular, to construct maps from types into shapes
internally.

We will avoid assuming the existence of a universe type in the first half, where we
discuss the basic type theory and category theory. However, in the second half, we turn
our attention to ideas of fibrations as previously treated in the context of homotopy
type theory in Section 6.2. In this context, we introduce a univalent universe again,
in particular, to make use of the straightening-unstraightening constructions. It may
be noted that the universe type is not a Rezk or Segal type itself in our type theory,
but merely a simplicial ∞-groupoid. The coercion of shapes to types on the other hand
seems to be more of a convenience than a necessity, as shape inclusions are still definable
syntactically which is sufficient for our purposes. Hence we do not assume this kind of
coercion.

We now begin the presentation of the type theory, building on the syntax as presented
in Section 2.

Context. A context is as before a finite list of variables. However, now variables will be
different things at each level of the type theory. In the cube-layer, we have cube-variables,
hypothesized terms of finite-dimensional directed cubes. In the next layer up, we find
tope-variables which are hypotheses that a formula expressed by a tope is satisfied. For
instance, it is valid to hypothesize that �, the trivial falsity, holds though this is never
true. Another way of stating this is that (�) is a well-formed context. In general, a
variable is an assumption that some well-formed object is inhabited. We use the syntax
Γ ctx for the judgment that Γ is a well-formed context. The notation Γ,Λ is taken to
mean the juxtaposition of Γ followed by Λ, where Γ and Λ are well-formed contexts
and Λ may depend on Γ. If the contexts Γ and Λ live in different layers of a multi-level
type theory we may separate them by a vertical bar instead. We will usually assume
ctx-judgments implicitly, as they should be self-evident from the environment. Given a
variable-judgment γ we will say that Γ contains γ, denoted γ ∈ Γ, when Γ is of the form
Γ′, γ,Γ′′.

Notational quantification. We will be using a notation for implicit quantification
in our inference rules with the intension of making them somewhat more readable. We
introduce indexing variables i, j which we implicitly quantify over. Subscript-indexing
means universal quantification and parenthesis-indexing meaning existential quantification
as long as we’re not quantifying over anything that could make this ambiguous (e.g.

79

function terms). For instance

Γ ⊢ φi
Γ ⊢ φ1 ∧ φ2

means
Γ ⊢ φ1 Γ ⊢ φ2

Γ ⊢ φ1 ∧ φ2

,

while
Γ ⊢ φ(i)

Γ ⊢ φ(1) ∨ φ(2)
means

Γ ⊢ φ(1)
Γ ⊢ φ(1) ∨ φ(2)

and
Γ ⊢ φ(2)

Γ ⊢ φ(1) ∨ φ(2)
.

13.1 Cubes

The bottom layer expresses a non-dependent intuitionistic type theory of finite products
of the directed interval 2. We achieve this by stipulating two basic cubes, the directed
interval itself, and a one-term cube 1 playing the role of the empty product. We
then define a binary product operation with the expected formation, introduction, and
elimination rules. Hence a general cube is (up to reparenthesization) just a finite power
of the directed interval 2.

I cube

(t ∶ I) ctx
(cube-exten)

(t ∶ I) ∈ Ξ

Ξ ⊢ t ∶ I
(cube-var)

() ⊢ 1 cube
(1-form)

Ξ ⊢ ⟨⟩ ∶ 1
(1-intro)

() ⊢ 2 cube
(2-form)

Ξ ⊢ 0 ∶ 2 Ξ ⊢ 1 ∶ 2
(2-intro)

() ⊢ Ii cube

() ⊢ I1 × I2 cube
(×-form)

Ξ ⊢ ti ∶ Ii
Ξ ⊢ ⟨t1, t2⟩ ∶ I1 × I2

(×-intro)
Ξ ⊢ t ∶ I1 × I2

Ξ ⊢ pri t ∶ Ii
(×-elim)

Figure 10: The cube layer

We will continue to use Ξ to mean a well-formed context of cube-variables, which we
call a cube context. These rules comprise all the inference rules on the cube layer. Hence
we may conclude that a general cube is a finite power (including 0) of 2

I = 2m

and a general cube context is a finite list of cube-variables

Ξ = (t1 ∶ 2i1 , . . . , tn ∶ 2in).

Of course, the cube (2×2)×2 is not judgmentally equal to the cube 2×(2×2), hence
the notation 23 is ambiguous. However, just as one would expect, there are meta-theoretic
inverse maps between them which essentially reparenthesises the expressions

t↦ ⟨pr2
0 t, ⟨pr0 pr1 t,pr1 t⟩⟩ and s↦ ⟨⟨pr0 s,pr1 pr0 s⟩,pr2

1 s⟩.

80

The same goes for all parenthesizations of 2n for any n. For definiteness, when we
refer to a cube 2n without relation to another cube, we will mean the right-associated
cube 2 × (2 × (⋅ ⋅ ⋅ × 2) . . .). However, in accordance with [RS17] we will continue to be
indifferent to the exact parenthesizations when making statements like 2n × 2m = 2n+m
and will write a general term of either without internal parentheses, ⟨t1, . . . , tn+m⟩, as
this will have no effect on our arguments.

Remark 13.1. Since our bottom layer never references judgments from the above layers,
cubes and cube-variables may never depend on tope or type variables. So we may always
place cube-variables before all others in a context. The same also goes for variables of
the second and top layers. Hence we may always decompose a general context into a
cube context followed by a tope context followed by a type context

Ξ ∣ Φ ∣ Γ.

13.2 Topes

On top of the simple intuitionistic theory of finite cubes, we place an intuitionistic
first-order logic of topes, which we interpret as polytopes living inside cubes. We have
four basic topes, the empty tope �, the full tope ⊺, the strict equality tope ≡ expressing
the bottom layer as an intuitionistic theory of strict cubes. Note that although this uses
the same symbol as judgmental equality, they are different things. Finally, we have the
inequality tope ≤ expressing the generating cube 2 as a directed interval.

To take an example, the tope s ≤ t inside the directed 2-cube ⟨t, s⟩ ∶ 2×2 is interpreted
as the filled directed lower triangle

⟨0,1⟩ ⟨1,1⟩

⟨0,0⟩ ⟨1,0⟩.

s≡1

s≡0

s≡tt≡0 t≡1

In addition to the basic topes, we have two basic operations on topes, intuitionistic
disjunction23 ∨ and conjunction ∧. We do not postulate operations of negation, implica-
tion, existential quantification, or universal quantification. Note in particular that an
operation of negation in conjunction with the inequality tope would give us an operation
of path reversal, which we do not want as this would make all arrows invertible.

23We say the disjunction is intuitionistic because a proof of this kind of disjunction contains enough
information to recover which case was true to begin with.

81

Ξ ⊢ φ tope

Ξ, φ ctx
(tope-exten)

φ ∈ Φ

Ξ ∣ Φ ⊢ φ
(tope-var)

Ξ ⊢ � tope
(�-form)

Ξ ∣ Φ ⊢ �
Ξ ∣ Φ ⊢ φ

(�-elim)
Ξ ⊢ ⊺ tope

(⊺-form)
Ξ ∣ Φ ⊢ ⊺

(⊺-intro)

Ξ ⊢ φi tope

Ξ ⊢ (φ1 ∧ φ2) tope
(∧-form)

Ξ ∣ Φ ⊢ φi
Ξ ∣ Φ ⊢ φ1 ∧ φ2

(∧-intro)
Ξ ∣ Φ ⊢ φ1 ∧ φ2

Ξ ∣ Φ ⊢ φi
(∧-elim)

Ξ ⊢ φi tope

Ξ ⊢ (φ1 ∨ φ2) tope
(∨-form)

Ξ ∣ Φ ⊢ φ(i)
Ξ ∣ Φ ⊢ φ(1) ∨ φ(2)

(∨-intro)

Ξ ∣ Φ, φi ⊢ χ Ξ ∣ Φ ⊢ φ1 ∨ φ2

Ξ ∣ Φ ⊢ χ
(∨-elim)

Figure 11: Tope logic

Ξ ⊢ ti ∶ I cube

Ξ ⊢ (t1 ≡ t2) tope
(≡-form)

Ξ ⊢ t ∶ I cube

Ξ ⊢ t ≡ t
(≡-refl)

Ξ ∣ Φ ⊢ s ≡ t
Ξ ∣ Φ ⊢ t ≡ s

(≡-sym)

Ξ ∣ Φ ⊢ r ≡ s Ξ ∣ Φ ⊢ s ≡ t
Ξ ∣ Φ ⊢ r ≡ t

(≡-trans)

Ξ, x ∶ I ⊢ φ tope Ξ, x ∶ I ∣ Φ ⊢ φ[s/x] Ξ, x ∶ I ∣ Φ ⊢ s ≡ t
Ξ, x ∶ I ∣ Φ ⊢ φ[t/x]

(≡-subst)

Ξ ⊢ t ∶ 1
Ξ ∣ Φ ⊢ t ≡ ⋆

(1-uniq)
Ξ ∣ Φ ⊢ 0 ≡ 1

Ξ ∣ Φ ⊢ �
(2-uniq)

Ξ ⊢ ti ∶ Ii
Ξ ∣ Φ ⊢ pri ⟨t1, t2⟩ ≡ ti

(×-comp)

Ξ ⊢ t ∶ I1 × I2

Ξ ∣ Φ ⊢ t ≡ ⟨pr1 t,pr2 t⟩
(×-uniq)

Figure 12: Strict equality rules

For our strict equality tope the reflexivity, symmetry, and transitivity rules are
introduction rules while the substitution law is an elimination rule.

82

Ξ ⊢ ti ∶ 2
Ξ ⊢ (t1 ≤ t2) tope

(≤-form)
Ξ ⊢ t ∶ 2

Ξ ∣ Φ ⊢ t ≤ t
(≤-refl)

Ξ ⊢ ti ∶ 2 Ξ ∣ Φ ⊢ t1 ≤ t2 Ξ ∣ Φ ⊢ t2 ≤ t3
Ξ ∣ Φ ⊢ t1 ≤ t3

(≤-trans)

Ξ ⊢ ti ∶ 2 Ξ ∣ Φ ⊢ t1 ≤ t2 Ξ ∣ Φ ⊢ t2 ≤ t1
Ξ ∣ Φ ⊢ t1 ≡ t2

(≤-antisym)

Ξ ⊢ ti ∶ 2
Ξ ∣ Φ ⊢ (t1 ≤ t2) ∨ (t2 ≤ t1)

(≤-totl)
Ξ ⊢ t ∶ 2

Ξ ∣ Φ ⊢ 0 ≤ t
(≤-min)

Ξ ⊢ t ∶ 2
Ξ ∣ Φ ⊢ t ≤ 1

(≤-max)

Figure 13: Inequality rules

As we can see, the inequality tope has four basic constructors, two expressing 0 and
1 as the minimal and maximal terms, one expressing reflexivity, and one expressing
the totality of the relation. In addition, we have one inductive introduction principle
expressing transitivity. Finally, we have a new introduction rule for strict equality
expressing strict anti-symmetry for the inequality tope.

Conventions for tope-notation. The operators ≤ and ≡ bind closer than ∨ and ∧.
We will take compound relations like a ≤ b ≡ c to mean the conjunction of the individual
relations, in this case (a ≤ b) ∧ (b ≡ c), and b ≥ a is the same as a ≤ b. We also extend our
disjunction and conjunction operations to the n-ary case using larger symbols ⋁ and ⋀
respectively. As per convention, we define empty disjunctions to be trivially false � and
empty conjunctions to be trivially true ⊺.

We also have admissible rules of weakening, contraction, substitution, and cut for
topes.

To produce maps from shapes to types and to ensure that the types cohere to the
underlying tope logic strictly, we must also require strict type elimination rules on topes.
The natural elimination rules for the “negative” topes ⊺ and ∧ are already admissible
by weakening and cut. However, we also require type elimination rules for the “positive”
tope constructors, � and ∨. In particular, these express the disjunction φ1 ∨φ2 as a strict
pushout of φ1 ∧ φ2 ⊢ φ1, φ2.

83

Ξ ∣ Φ ⊢ �
Ξ ∣ Φ ∣ Γ ⊢ rec� ∶ A

(�-elim)
Ξ ∣ Φ ⊢ � Ξ ∣ Φ ⊢ a ∶ A

Ξ ∣ Φ ∣ Γ ⊢ rec� ≡ a
(�-comp)

Ξ ∣ Φ ⊢ φ1 ∨ φ2

Ξ ∣ Φ ∣ Γ ⊢ A type Ξ ∣ Φ, φi ∣ Γ ⊢ ai ∶ A Ξ ∣ Φ, φ1 ∧ φ2 ∣ Γ ⊢ a1 ≡ a2

Ξ ∣ Φ ∣ Γ ⊢ recφ1,φ2
∨ (a1, a2) ∶ A

(∨-elim)

Ξ ∣ Φ ⊢ φ1 ∨ φ2

Ξ ∣ Φ ∣ Γ ⊢ A type Ξ ∣ Φ, φi ∣ Γ ⊢ ai ∶ A Ξ ∣ Φ, φ1 ∧ φ2 ∣ Γ ⊢ a1 ≡ a2

Ξ ∣ Φ, φi ∣ Γ ⊢ recφ1,φ2
∨ (a1, a2) ≡ ai

(∨-comp)

Ξ ∣ Φ ⊢ φ1 ∨ φ2 Ξ ∣ Φ ∣ Γ ⊢ a ∶ A
Ξ ∣ Φ ∣ Γ ⊢ recφ1,φ2

∨ (a, a) ≡ a
(∨-uniq)

Ξ ∣ Φ ⊢ s ≡ t Ξ, x ∶ I ∣ Φ ∣ Γ ⊢ a ∶ A
Ξ ∣ Φ ∣ Γ[s/x] ⊢ a[s/x] ≡ a[t/x]

(≡-≡-compat)24

Figure 14: Strict type elimination for tope logic

13.3 Shapes

By a shape we mean nothing more than a tope in the singleton context of a cube. This
may be formalized as

I cube t ∶ I ⊢ φ tope

Ξ, t ∶ I ∣ Φ ⊢ {t ∶ I ∣φ} shape
(shape-form)

Ξ ⊢ s ∶ I Ξ ∣ Φ ⊢ φ[s/t]
Ξ, t ∶ I ∣ Φ ⊢ s ∶ {t ∶ I ∣φ}

(shape-intro)

Figure 15: Shape rules

These mainly serve as a useful abstraction to the human reader. We could equivalently
assume topes in singleton contexts of cubes anywhere we assume shapes, and so we
consider shapes to live on the same layer as topes.

[Φ/φ] Given a shape Φ we will take the lower case symbol φ to mean the shape’s tope
Φ ≡ {t ∶ I ∣φ}. Note that we cannot in general go the other way as a shape is not
uniquely determined by its tope. For instance, given any other cube J then both
{t ∶ I ∣φ} and {⟨t, s⟩ ∶ I × J ∣φ} are determined by the same tope.

24Note that the expression in the hypothesis is using tope-equality while the conclusion is a judgmental
equality.

84

[x ∶ Φ] We take the notation x ∶ Φ to be synonymous with x ∶ I ⊢ φ.

[⊆] We take the relation Φ0 ⊆ Φ1 to be synonymous with t ∶ I ∣ φ0 ⊢ φ1. For subshape
inclusions we will prefer to start indexing at 0.

[∅] We define the empty shapes ∅ as ∅I ∶≡ {t ∶ I ∣ �} usually omitting the subscript.

[∩] The intersection of two shapes in I is {t ∶ I ∣φ} ∩ {t ∶ I ∣ψ} ∶≡ {t ∶ I ∣φ ∧ ψ}.

[∪] The union of two shapes in I is {t ∶ I ∣φ} ∪ {t ∶ I ∣ψ} ∶≡ {t ∶ I ∣φ ∨ ψ}.

[×] The product of two shapes where φ is independent of s ∶ J and ψ is independent of
t ∶ I is {t ∶ I ∣φ} × {s ∶ J ∣ψ} ∶≡ {⟨t, s⟩ ∶ I × J ∣φ ∧ ψ}.

Let us give some content to the ideas by constructing a few examples. The following
have their clear counterparts in simplicial sets.

Definition 13.2 (Standard shapes). We define the standard n-simplex shape, its bound-
ary and its horns for 0 ≤ k ≤ n as follows

∆n ∶≡ {⟨x1, . . . , xn⟩ ∶ 2n ∣xn ≤ ⋅ ⋅ ⋅ ≤ x1}
∂∆n ∶≡ {⟨x1, . . . , xn⟩ ∶ 2n ∣⋁0≤i≤n(0 ≤ xn ≤ ⋅ ⋅ ⋅ ≤ xi+1 ≡ xi ≤ ⋅ ⋅ ⋅ ≤ x1 ≤ 1)}

Λnk ∶≡ {⟨x1, . . . , xn⟩ ∶ 2n ∣⋁0≤i≤n, i≠k(0 ≤ xn ≤ ⋅ ⋅ ⋅ ≤ xi+1 ≡ xi ≤ ⋅ ⋅ ⋅ ≤ x1 ≤ 1)}

where the formulas at i = 0 and i = n are the obvious extrapolations. In particular we
have inclusions Λnk ⊆ ∂∆n ⊆ ∆n. To be pedantic, here are the definitions instantiated for
dimensions 0, 1 and 2:

∆0 ≡ {⟨⟩ ∶ 1 ∣ ⊺} ∆1 ≡ {⟨x⟩ ∶ 2 ∣ ⊺} ∆2 ≡ {⟨x1, x2⟩ ∶ 22 ∣x2 ≤ x1} ∂∆0 ≡ {⟨⟩ ∶ 1 ∣ �}

∂∆1 ≡ {⟨x⟩ ∶ 2 ∣x ≡ 1 ∨ 0 ≡ x} ∂∆2 ≡ {⟨x1, x2⟩ ∶ 22 ∣0 ≡ x2 ≤ x1 ∨ x2 ≡ x1 ∨ x2 ≤ x1 ≡ 1}

Λ0
0 ≡ {⟨⟩ ∶ 1 ∣ �} Λ1

0 ≡ {⟨x⟩ ∶ 2 ∣0 ≡ x} Λ1
1 ≡ {⟨x⟩ ∶ 2 ∣x ≡ 1}

Λ2
0 ≡ {⟨x1, x2⟩ ∶ 22 ∣0 ≡ x2 ≤ x1 ∨ x2 ≡ x1} Λ2

1 ≡ {⟨x1, x2⟩ ∶ 22 ∣0 ≡ x2 ≤ x1 ∨ x2 ≤ x1 ≡ 1}

Λ2
2 ≡ {⟨x1, x2⟩ ∶ 22 ∣x2 ≡ x1 ∨ x2 ≤ x1 ≡ 1} .

13.4 Extensions

Extension types describe types of relative functions from shapes to types. An extension
type is specified by an inclusion of shapes Φ0 ⊆ Φ1, a family of types Γ, t ∶ Φ1 ⊢ A type
and a partial section Γ, t ∶ Φ0 ⊢ a0 ∶ A. The terms of the extension type are then the
total sections Γ, t ∶ Φ1 ⊢ a1 ∶ A which restrict judgmentally on Φ0 to the partial section

85

{t ∶ I ∣φi} shape t ∶ I ∣ φ0 ⊢ φ1

Ξ ∣ Φ ⊢ Γ ctx25 Ξ, t ∶ I ∣ Φ, φ1 ∣ Γ ⊢ A type Ξ, t ∶ I ∣ Φ, φ0 ∣ Γ ⊢ a ∶ A
Ξ ∣ Φ ∣ Γ ⊢ ⟨∏t∶I ∣φ1

A∣φ0
a ⟩ type

(exten-form)

{t ∶ I ∣φi} shape t ∶ I ∣ φ0 ⊢ φ1 Ξ ∣ Ψ ⊢ Γ ctx
Ξ, t ∶ I ∣ Φ, φ1 ∣ Γ ⊢ A type Ξ, t ∶ I ∣ Φ, φi ∣ Γ ⊢ ai ∶ A Ξ, t ∶ I ∣ Φ, φ0 ∣ Γ ⊢ a1 ≡ a0

Ξ ∣ Ψ ∣ Γ ⊢ (t ∶ I ∣ φ1) ↦ a1 ∶ ⟨∏t∶I ∣φ1
A∣φ0
a0

⟩
(exten-intro)

{t ∶ I ∣φi} shape

t ∶ I ∣ φ0 ⊢ φ1 Ξ ∣ Φ ∣ Γ ⊢ f ∶ ⟨∏t∶I ∣φ1
A∣φ0
a ⟩ Ξ ⊢ s ∶ I Ξ ∣ Φ ⊢ φ0[s/t]

Ξ ∣ Φ ∣ Γ ⊢ f(s) ∶ A
(exten-elim)

{t ∶ I ∣φi} shape

t ∶ I ∣ φ0 ⊢ φ1 Ξ ∣ Φ ∣ Γ ⊢ f ∶ ⟨∏t∶I ∣φ1
A∣φ0
a ⟩ Ξ ⊢ s ∶ I Ξ ∣ Φ ⊢ φ0[s/t]

Ξ ∣ Φ ∣ Γ ⊢ f(s) ≡ a[s/t]
(exten-comp0)

{t ∶ I ∣φi} shape t ∶ I ∣ φ0 ⊢ φ1 Ξ ∣ Ψ ⊢ Γ ctx Ξ, t ∶ I ∣ Φ, φ1 ∣ Γ ⊢ A type
Ξ, t ∶ I ∣ Φ, φi ∣ Γ ⊢ ai ∶ A Ξ, t ∶ I ∣ Φ, φ0 ∣ Γ ⊢ a1 ≡ a0 Ξ ⊢ s ∶ I Ξ ∣ Φ ⊢ φ1[s/t]

Ξ ∣ Ψ ∣ Γ ⊢ ((t ∶ I ∣ φ1) ↦ a1)(s) ≡ a1[s/t]
(exten-comp1)

{t ∶ I ∣φi} shape t ∶ I ∣ φ0 ⊢ φ1 Ξ ∣ Φ ∣ Γ ⊢ f ∶ ⟨∏t∶I ∣φ1
A∣φ0
a ⟩

Ξ ∣ Φ ∣ Γ ⊢ f ≡ (t ∶ I ∣ φ1) ↦ f(t)
(exten-uniq)

Figure 16: Extension types

a0. Hence, informally they are strictly commuting triangles

Φ0

A.

Φ1

a0

a1

We denote this extension type by ⟨∏t∶Φ1
A∣Φ0
a0

⟩ which is thus determined by the solid
part of the above diagram. Their inference rules are described in Fig. 16.

In the case that A does not depend on t ∶ I in ⟨∏t∶I ∣φ1
A(t)∣φ0

a ⟩ we may use a non-

dependent notation ⟨{t ∶ I ∣φ1} → A∣φ0
a ⟩. Furthermore, in the case that φ0 ≡ � we simplify

25This hypothesis expresses the assumption that Γ is independent of t ∶ I and φi.

86

to ∏t∶I ∣φ1
A or even {t ∶ I ∣φ1} → A in the non-dependent case. These we will simply call

functions or maps from shapes to types, since they are only relative in a trivial sense.
Note that the way A and a are hypothesized in our inference rules precisely make them
into terms of the extension types A ∶ {t ∶ I ∣φ1} → U (in the presence of a universe) and
a ∶ ∏t∶I ∣φ0

A(t), hence in particular our type elimination rules become basic constructors
for extension terms.

87

14 Relating shapes and types

Having defined the type theory at hand, we now wish to develop its basics as a type
theory before getting into the categorical and homotopical aspects. We separate this
into three parts. First, we develop a theory of extension types and their interplay with
Π- and Σ-types from Martin–Löf type theory. Then we postulate extensionality axioms
for them and prove a homotopy extension property for shape inclusions. The results of
these two sections are entirely due to Riehl and Shulman. Finally, we inspect the basic
simplicial structure of types.

14.1 Properties of extension types

Theorem 14.1 ([RS17, Theorem 4.1])
Given a type A and a shape inclusion Φ0 ⊆ Φ1 with a type family C ∶ Φ1 → A→ U and a
partial section c ∶ ∏t∶Φ0∏a∶AC(t, a), then

⟨∏
t∶Φ1

(∏
a∶A
C(t, a))

RRRRRRRRRRR
Φ0
c ⟩ ≃ ∏

a∶A
⟨∏
t∶Φ1

C(t, a)
RRRRRRRRRRR
Φ0

t↦c(t,a)⟩ .

Moreover the inverses compose judgmentally to identities.

Do not be intimidated by the theorem statement. As is not uncommon in type theory,
the type of the theorem constitutes a larger portion of the data than the proof itself.
As we will see, the proof is just a simple elimination and re-introduction, with some
computation to verify that the new terms restrict on the subshape to the specified partial
section. We will certainly see more of this in this section.

Proof. From left to right we have the mapping f, a, t ↦ f(t, a) and from right to left
we have g, t, a ↦ g(a, t). Since f(t) ≡ c(t) on the subshape Φ0, we have in particular
f(t, a) ≡ c(t, a). Conversely, since g(a, t) ≡ c(t, a) on the subshape Φ0, we have t, a ↦
g(a, t) ≡ t, a↦ c(t, a) on Φ0 by exten-uniq. Hence our maps are well-defined. Composing
left-right-left we compute

(g, t, a↦ g(a, t)) ○ (f, a, t↦ f(t, a)) ≡ (f, t, a↦ f(t, a)) (exten-comp1)

≡ (f ↦ f) ≡ id (exten-uniq)

and right-left-right

(f, a, t↦ f(t, a)) ○ (g, t, a↦ g(a, t)) ≡ (g, a, t↦ g(a, t)) (exten-comp1)

≡ (g ↦ g) ≡ id . (exten-uniq)

So the maps compose to identities judgmentally in both directions.

Theorem 14.2 ([RS17, Theorem 4.2])
Given independent shape inclusions Φ0 ⊆ Φ1 and Ψ0 ⊆ Ψ1 and a type family C ∶ Φ1 → Ψ1 → U

88

with a section c on the subshape (Φ1 × Ψ0) ∪ (Φ0 × Ψ1) ⊆ Φ1 × Ψ1 called the pushout
product of the inclusions, then we have an equivalence

⟨∏
t∶Φ1

⟨∏
s∶Ψ1

C(t, s)
RRRRRRRRRRR
Ψ0

s↦c⟨t,s⟩⟩
RRRRRRRRRRR
Φ0

t,s↦c⟨t,s⟩⟩ ≃ ⟨ ∏
⟨t,s⟩∶Φ1×Ψ1

C(t, s)
RRRRRRRRRRRR

(Φ1×Ψ0)∪(Φ0×Ψ1)
c ⟩ .

Moreover the inverses compose judgmentally to identities.

The pushout product of shapes may be understood as the strict pushout in the
following diagram

Φ0 ×Ψ0 Φ0 ×Ψ1

(Φ1 ×Ψ0) ∪ (Φ0 ×Ψ1)

Φ1 ×Ψ0 Φ1 ×Ψ1,

and we call the inclusion of the pushout product into Φ1 × Ψ1 the Leibniz tensor.
Although this map is a metatheoretic thing, we will see its dual as a prominent internal
construction in a later section.

Proof. We begin by showing that these types are indeed formable. That the right-hand
side is well-formed is immediate, so let’s consider the left-hand side. Whenever t ∶ Φ1, we
have for each s ∶ Ψ0 a term c⟨t, s⟩ ∶ C(t, s), defining a function s↦ c⟨t, s⟩ ∶ ∏s∶Ψ0

C(t, s);
thus we can form ⟨∏s∶Ψ1

C(t, s)∣Ψ0

s↦c⟨t,s⟩⟩. Now, whenever t ∶ Φ0, we have for each s ∶ Ψ1 a

term c⟨t, s⟩ ∶ C(t, s), which of course equals the first c⟨t, s⟩ if ψ0 holds, so we have the

function t, s ↦ c⟨t, s⟩ ∶ ∏t∶Φ0
⟨∏s∶Ψ1

C(t, s)∣Ψ0

s↦c⟨t,s⟩⟩. Thus the type on the left-hand side

is formable.
The inverse equivalences are constructed similarly as in the previous theorem. From

left to right we have the map f, ⟨t, s⟩ ↦ f(t, s) and from right to left we have the map
g, t, s↦ g⟨t, s⟩. Composing left-right-left we compute

(g, t, s↦ g⟨t, s⟩) ○ (f, ⟨t, s⟩ ↦ f(t, s)) ≡ (f, t, s↦ f(t, s)) (exten-comp1)

≡ (f ↦ f) ≡ id (exten-uniq)

and right-left-right

(f, ⟨t, s⟩ ↦ f(t, s)) ○ (g, t, s↦ g⟨t, s⟩) ≡ (g, ⟨t, s⟩ ↦ g⟨t, s⟩) (exten-comp1)

≡ (g ↦ g) ≡ id. (exten-uniq)

Hence the maps compose to identities judgmentally in both directions.

Corollary 14.3. If X is either a shape or a type and Φ0 ⊆ Φ1 is a shape inclusion with
a type family C ∶ Φ1 →X → U with partial section c ∶ ∏t∶Φ0 ∏x∶X C(t, x) then we have the
equivalence

⟨∏
t∶Φ1

(∏
x∶X

C(t, x))
RRRRRRRRRRR
Φ0
c ⟩ ≃ ∏

x∶X
⟨∏
t∶Φ1

C(t, x)
RRRRRRRRRRR
Φ0
c ⟩ .

89

Proof. If X is a type then this is the exact statement of Theorem 14.1, and if X is a
shape we may apply Theorem 14.2 twice to the inclusion ∅ ⊆X to get the equivalences

⟨∏
t∶Φ1

(∏
x∶X

C(t, x))
RRRRRRRRRRR
Φ0
c ⟩ ≃ ⟨ ∏

⟨t,s⟩∶Φ1×X
C(t, s)

RRRRRRRRRRRR

Φ0×X
⟨t,s⟩↦c(t,s)⟩ ≃ ∏

x∶X
⟨∏
t∶Φ1

C(t, x)
RRRRRRRRRRR
Φ0

t↦c(t,x)⟩ .

Theorem 14.4 (Type-theoretic axiom of relative choice, [RS17, Theorem 4.3])
Given a shape inclusion Φ0 ⊆ Φ1 and a type family C ∶ Φ1 → U with partial sec-
tion c ∶ ∏t∶Φ0

C(t) and further a family D ∶ ∏t∶Φ1
(C(t) → U) with partial section

d ∶ ∏t∶Φ0
D(t, c(t)), then we have the following equivalence

⟨∏
t∶Φ1

(∑x∶C(t)D(t, x))
RRRRRRRRRRR
Φ0

(c,d)⟩ ≃ ∑f ∶⟨∏t∶Φ1
C(t)∣Φ0

c ⟩⟨∏
t∶Φ1

D(t, f(t))
RRRRRRRRRRR
Φ0

d ⟩ .

Moreover, the inverses compose judgmentally to identities.

This theorem is a straightforward adaptation of the type-theoretic theorem of choice
as seen in Theorem 3.3 to extension types. In the case that Φ0 ≡ ∅ we recover the
reading: “The existence of terms x ∶ C(t) such that D(t, x) over all of Φ1 is equivalent to
the existence of a choice function f ∶ ∏t∶Φ1

C(t) such that D(t, f(t)) over all of Φ1.”

∏
t∶Φ1

⎛
⎝ ∑
x∶C(t)

D(t, x)
⎞
⎠
≃ ∑
f ∶∏t∶Φ1

C(t)

⎛
⎝∏t∶Φ1

D(t, f(t))
⎞
⎠

Now in the general case, we additionally have that we may fix partial sections c and d
such that the choice function restricts to the partial sections judgmentally.

Proof. From left to right we have the map h↦ (t↦ pr1 h(t), t↦ pr2 h(t)) and from right
to left we have the map (f, g), t↦ (f(t), g(t)). Their compositions yield

((f, g), t↦ (f(t), g(t))) ○ (h↦ (t↦ pr1 h(t), t↦ pr2 h(t)))
≡ (h, s↦ ((t↦ pr1 h(t))(s), (t↦ pr2 h(t))(s))) (Π-comp)

≡ (h, s↦ (pr1 h(s),pr2 h(s))) (exten-comp1)

≡ (h, s↦ h(s)) (Σ-uniq)

≡ (h↦ h) ≡ id (Π-uniq)

and

(h↦ (t↦ pr1 h(t), t↦ pr2 h(t))) ○ ((f, g), t↦ (f(t), g(t)))
≡ ((f, g) ↦ (s↦ pr1(t↦ (f(t), g(t)))(s), s↦ pr2(t↦ (f(t), g(t)))(s))) (Π-comp)

≡ ((f, g) ↦ (s↦ f(s), s↦ g(s))) (Σ-comp)

≡ ((f, g) ↦ (f, g)) ≡ id. (exten-uniq)

90

We state two more properties without proof.

Theorem 14.5 ([RS17, Theorem 4.4])
Given the double shape inclusion Φ0 ⊆ Φ1 ⊆ Φ2 with a type family C ∶ Φ2 → U and partial
section c ∶ ∏t∶Φ0

C(t), then

⟨∏
t∶Φ2

C(t)
RRRRRRRRRRR
Φ0
c ⟩ ≃ ∑

f ∶⟨∏t∶Φ1
C(t)∣Φ0

c ⟩⟨∏
t∶Φ2

C(t)
RRRRRRRRRRR
Φ1

f ⟩ .

Theorem 14.6 ([RS17, Theorem 4.5])
Given two shapes in the same cube t ∶ I ⊢ φ tope and t ∶ I ⊢ ψ tope and a type family over
their union C ∶ {t ∶ I ∣φ ∨ ψ} → U with a section over ψ, c ∶ ∏t∶I ∣ψ C(t), then

⟨ ∏
t∶I ∣φ∨ψ

C(t)
RRRRRRRRRRRR

ψ
c ⟩ ≃ ⟨∏

t∶I ∣φ
C(t)

RRRRRRRRRRRR

φ∧ψ
c ⟩ .

14.2 Extensionality of extensions

We also require an extensionality principle for extension types. This principle plays a
particularly important role as it implies the homotopy extension property for extensions.
There are multiple ways to formulate an extensionality principle for relative functions
inspired by equivalent principles for functions of types. However, it is not currently
known if they are equivalent for relative functions. We look at a weak formulation and
then the formulation we assume for the rest of the text.

Assume given an extension term f ∶ ⟨∏t∶Φ1
A(t)∣Φ0

a ⟩, then we have the diagonal term

t↦ reflf(t) ∶ ⟨∏
t∶Φ1

f(t) = f(t)
RRRRRRRRRRR
Φ0

t↦refla(t)
⟩ ,

so by path induction we obtain the following map from identity to relative homotopy

id-to-rel-htp ∶ ∏
f,g∶⟨∏t∶Φ1

A(t)∣Φ0
a ⟩

(f = g) → ⟨∏
t∶Φ1

f(t) = g(t)
RRRRRRRRRRR
Φ0

t↦refla(t)
⟩ id-to-rel-htp(reflf) ∶≡ t↦ reflf(t).

Axiom 6 (Weak relative function extensionality). The map id-to-rel-htp is an equivalence.

Axiom 7 (Relative function extensionality). Given a type family A ∶ Φ1 → U such that
each fiber A(t) is contractible, then every extension type ⟨∏t∶Φ1

A(t)∣Φ0
a ⟩ is contractible.

Theorem 14.7 ([RS17, Proposition 4.8(i)])
Relative function extensionality implies weak relative function extensionality.

Proof. To prove id-to-rel-htp is an equivalence it suffices to show that the induced map
on total spaces

⎛
⎜⎜
⎝

∑
g∶⟨∏t∶Φ1

A(t)∣Φ0
a ⟩

f = g
⎞
⎟⎟
⎠
→ ∑
g∶⟨∏t∶Φ1

A(t)∣Φ0
a ⟩

⟨∏
t∶Φ1

f(t) = g(t)
RRRRRRRRRRR
Φ0

t↦refla(t)
⟩

91

is an equivalence. But the left-hand side is a based path space and hence contractible, so
it remains to show that the codomain is contractible. By Theorem 14.4 it is equivalent to

⟨∏t∶Φ1∑y∶A(t)(f(t) = y)∣Φ0

t↦(a(t),refla(t))
⟩. But each ∑y∶A(t)(f(t) = y) is contractible since it

is a based path space, so by relative function extensionality we have our result.

From now on we assume the strong formulation of relative function extensionality.
From it, we may in particular establish the homotopy extension property.

Proposition 14.8 (Homotopy extension property (HEP), [RS17, Proposition 4.10]).
Assuming relative function extensionality, given a shape inclusion Φ0 ⊆ Φ1 and a type
family A ∶ Φ1 → U with a total section b ∶ ∏t∶Φ1

A(t) and a partial section a ∶ ∏t∶Φ0
A(t)

and a homotopy on the subdomain H ∶ ∏t∶Φ0
a(t) = b(t), then we have extensions of a

and H to the whole of Φ1: a′ ∶ ⟨∏t∶Φ1
A(t)∣Φ0

a ⟩ and H ′ ∶ ⟨∏t∶Φ1
a′(t) = b(t)∣Φ0

t↦H(t)⟩.

The homotopy extension property may be encoded informally fiberwise in the following
left-hand diagram. The strict commutativity properties are encoded in the two right-hand
diagrams. Note that the maps a and a′ are already determined up to homotopy from the
other maps.

Φ0 AI

Φ1 A

a

H

ev0H′

b

a′

Φ0 AI

Φ1 A

a

H

ev0H′

a′

Φ0 AI

Φ1 A

H

ev1H′

b

Proof. The extension type ⟨∏t∶Φ1∑y∶A(t) y = b(t)∣Φ0

t↦(a(t),e(t))⟩ is contractible by relative

function extensionality, and so in particular it is inhabited. Applying the type-theoretic
axiom of choice we obtain a′ and H ′.

14.3 Arrows

Since types are simplicial ∞-groupoids, they already come equipped with quite a bit
of structure out of the box. In this section, we take a look at their simplicial structure
without adding assumptions on the types under consideration. In particular, we define
the n-cells and see that they are preserved by functions by definition, as with types and
identity terms in homotopy type theory. We may also define higher-order arrows, i.e.
natural transformations, and define a horizontal composition operation on them. Hence,
without introducing the internal notion of categories in the type theory, the Segal or
Rezk types, there are already many categorical notions that are well-defined and have
meaningful interpretations. We start our considerations with non-dependent simplices
but will return to the dependent case later.

Definition 14.9 (Hom-types). Given two terms x, y ∶ A, the type of arrows or directed
edges or (homo-)morphisms or 1-cells from x to y in A is

homA(x, y) ∶≡ ⟨∆1 → A∣∂∆1

[x,y]⟩ ≡ ⟨x y⟩A

92

where [x, y] ∶≡ rect≡0,t≡1
∨ (x, y). As an alternative notation, we will also use x →A y for

the hom-type homA(x, y). Observe that a hom-term f acts like a function ∆1 → A with
strict endpoints f(0) ≡ x and f(1) ≡ y (due to exten-comp1).

This notion generalizes to the n-dimensional case as follows.

Definition 14.10 (n-cells). Given a boundary diagram δ ∶ ∂∆n → A we define the type
of n-cells with boundary δ to be

homn
A δ ∶≡ ⟨∆n → A∣∂∆n

δ ⟩ .

These are the n-dimensional simplices in the categorical direction. For categories they
may be interpreted as n-dimensional coherences and can diagramatically be depicted
as an n-dimensional “filler.” For instance we will admit associativity of composition
in Segal types as a 3-dimensional coherence, and will see that identity in Segal types
coincide with a degenerate family of 2-cells.

Due to the frequent occurence of 2-cells, we also introduce a notation for their
boundaries. Given a triangle of arrows f ∶ x→A y, g ∶ y →A z and h ∶ x→A z, then

[f, g;h] ∶≡ rec0≡s≤t,s≤t≡1,s≡t
∨ (f, g, h) ∶ ∂∆2 → A

taking the ternary recursor to mean either choice of iterated recursion. We note that f
and g are written in diagramatic order. For instance, a term of hom2

A[f, g;h], usually
denoted hom2

A(f, g;h), witnesses h as a composite of g after f .

Definition 14.11 (Identity arrows). For every type we have a map from paths to arrows
defined by path induction given on reflexivities by the constant arrows

id-to-arrA ∶ ∏
x,y∶A

(x =A y) → (x→A y) id-to-arrA(reflx) ∶≡ (t↦ x) ≡∶ idx .

These are called the identity arrows.

Given any arrow f in a type, we may form the following degenerate 2-cells,

x

x y

f

f

and
y

x y.

f

f

witnessing the unit laws when a composition operation is defined. These are constructed
from f using the following lambda abstractions

⟨s, t⟩ ↦ f(t) and ⟨s, t⟩ ↦ f(s).

Remark 14.12 (Functions preserve simplicial structure). Let us demonstrate that any
function defined in this type theory preserves the simplicial structure of the types.

Assume given a shape inclusion Φ0 ⊆ Φ1, type families A,B ∶ Φ1 → U and a partial
section a ∶ ∏t∶Φ0

A(t). Then given any fibered mapping f ∶ ∏t∶Φ1
(A(t) → B(t)) we may

93

apply exten-elim and exten-intro to construct a mapping of extension types given by
postcomposing with f :

f ○ − ∶≡ g, t↦ f(g(t)) ∶ ⟨∏
t∶Φ1

A(t)
RRRRRRRRRRR
Φ0
a ⟩ → ⟨∏

t∶Φ1

B(t)
RRRRRRRRRRR
Φ0

t↦f(a(t))⟩ .

This demonstrates the important fact that functions preserve simplicial structure. In
particular, f ○ − maps n-cells in A to n-cells in B. It also sends constant arrows to
constant arrows definitionally which we can see by the following computation:

f ○ idx ≡ t↦ f((s↦ x)(t)) ≡ t↦ f(x) ≡ idf(x) .

Since function types and extension types are types on the same level as other types,
they are also simplicial ∞-groupoids. This reflects the fact that simplicial ∞-groupoids
exponentiate or “admit internal homs.” When taking this viewpoint (or in case we are at
a shortage for space) we may denote the function/extension type X → A as AX .

Arrows in function types form a particularly important example. We call these arrows
natural transformations.

Definition 14.13 (Natural transformation). Given functions f, g ∶X → B where X is
either a shape or a type, we refer to terms of the type f ⇒ g ∶≡ homX→B(f, g) as natural
transformations from f to g. Given such a natural transformation we say its domain
is X, its codomain is B, its source is f and its target is g.

From a natural transformation α we may recover its component at x ∶X as

αx ∶≡ t↦ α(t, x) ∶ homB(f(x), g(x))

and moreover the total component mapping α(−) is an equivalence.

Proposition 14.14 (Natural transformation extensionality, [RS17, Proposition 6.3]).
Natural transformations are determined by their components. Given functions f, g ∶X → B
where X is either a shape or a type, then

homX→B(f, g) ≃ ∏
x∶X

homB(f(x), g(x)).

Proof. By expanding definitions we obtain the following type signature of the component
mapping

⟨∆1 → (X → B)∣∂∆1

[f,g]⟩ → ∏
x∶X

⟨∆1 → B∣∂∆1

[f(x),g(x)]⟩

At which point we may apply Corollary 14.3 to get our result.

Hence we may decide to define natural transformations componentwise, in which case
we implicitly apply the inverse of this equivalence.

We do not recover 2-cells as a special case of natural transformations as when
the arrows f, g ∶ x→B y are considered as terms of ∆1 → B the end-points are free;
natural transformations do not, in general, stay fixed at them. There is however a
way of constructing natural transformations from 2-cells, as we will see in the proof of
Theorem 15.8.

94

Construction 14.15 (Horizontal composites). Given a diagram of types where X may
be a shape

X A B

f

f ′

g

g′

α β

Then there is a natural transformation β ○h α ∶ g ○ f ⇒ g′ ○ f ′ called the horizontal
composite of α and β. We define it componentwise as

(β ○h α)x ∶≡ βαx ≡ (t↦ β(t, α(t, x))) ∶ (g ○ f)(x) →B (g′ ○ f ′)(x).

We abusively use juxtaposition βα for horizontal composition, and reserve β ○ α for the
to-be-defined vertical composite. As special cases of horizontal composition we recover
the whiskering operations βf ∶≡ β ○h idf and gα ∶≡ idg ○h α.

The horizontal composite is identified with the diagonal edge in the Gray interchanger
diagram

g ○ f g ○ f ′

g′ ○ f g′ ○ f ′
βα

gα

βf βf ′

g′α

abstracted as ⟨t, s⟩, x↦ β(s,α(t, x))

witnessing βα as both a composite of gα with βf ′ and a composite of βf with g′α.

15 Category theory in simplicial homotopy type theory

15.1 Segal types

We now move on to introduce the internal precategories of our theory (in terminology
consistent with [UF13]). This is in the sense that the system of identification of terms of
the type may be weaker than isomorphism, and so these types may also be thought of as
flagged categories. We call them Segal types since they semantically correspond to the
Segal spaces in the motivating model of bisimplicial sets. The Segal types are internally
characterized by having homotopy unique composites. Surprisingly, from this, all other
coherence laws follow.

We begin by defining yet another type of simplices:

Definition 15.1 (Composition of arrows). The type of compositions of arrows

x
f
→ y

g
→ z is the extension type

compA(f, g) ∶≡ ⟨∆2 → A∣Λ
2
1

[f,g]⟩ ≡ ⟨ y

x z

gf ⟩
A

.

From a composition term we may recover an arrow x → z by restricting along the
meta-theoretic embedding t↦ ⟨t, t⟩ ∶ ∆1 ↪∆2. We call this arrow a composite of f and

95

g. Given such an arrow h we may additionally recover a witness of composition, meaning
a term of hom2

A(f, g;h). Given a composition φ ∶ compA(f, g), using application and

reabstraction we may consider it as a term of the extension type ⟨∆2 → A∣∂∆2

[f,g,t↦φ⟨t,t⟩]⟩.
Remember, since an arbitrary type in our theory is just a simplicial ∞-groupoid we may
have many non-homotopic candidates for a composite.

Remark 15.2. In Riehl and Shulman’s original paper [RS17], they define the type of
compositions as the dependent sum

∑
h∶homA(x,z)

hom2
A (y

x z

gf

h
)

and prove it to be equivalent to the type we use as definition. It is not hard to see
that the maps constructing the composite and witness of composition give rise to an
equivalence of types. However, we have a shorter route without the need to compute
inverses:

⟨∆2 → A∣Λ
2
1

[f,g]⟩ ≃ ∑
δ∶⟨∂∆2→A∣

Λ2
1

[f,g]
⟩
⟨∆2 → A∣∂∆2

δ ⟩ (Theorem 14.5)

≃ ∑
h∶⟨∆1→A∣∂∆1

[x,z]
⟩ ⟨∆

2 → A∣∂∆2

[f,g,h]⟩ (Theorem 14.4)

≡ ∑
h∶homA(x,z)

hom2
A (y

x z

gf

h
) .

The choice of definition is mostly a matter of taste, and we stick with the extension type
formulation.

Definition 15.3 (Segal type). A Segal type is a type B such that the type of com-
positions compB(f, g) is contractible for every pair of composable arrows f, g in B. We
denote their composite arrow by g ○ f and their witness of composition by compf,g which
thus is unique up to homotopy.

isSegalB ∶≡ ∏
x,y,z∶B

∏
f ∶x→By,
g∶y→Bz

isContr (compB(f, g))

At first glance, it may seem like our Segal condition semantically corresponds to the
Segal map

B2 → B1 ×B0 B1

being an equivalence of simplicial sets. However, since our condition is defined internally
to the theory it instead corresponds to the bisimplicial map

B∆2

→ B∆1

×
B∆0B∆1

≃ BΛ2
1

being an equivalence of bisimplicial sets. This condition was conjectured by Joyal to
be equivalent to the usual Segal condition, and this was proven true by Riehl and
Shulman [RS17, Proposition A.21].

96

Theorem 15.4 ([RS17, Theorem 5.5])
A type B is Segal iff the restriction map (∆2 → B) → (Λ2

1 → B) is an equivalence.

Proof. the type B is Segal iff each ⟨∆2 → A∣Λ
2
1

δ ⟩ is contractible. Moreover, we have the

equivalence

(∆2 → A) ≃ ∑
δ∶Λ2

1→A
⟨∆2 → A∣Λ

2
1

δ ⟩ (Theorem 14.5)

Now, since the projection from a total space is an equivalence exactly when all the fibers
are contractible, the result follows.

Corollary 15.5 ([RS17, Corollary 5.6]). Given a type or shape X and a type family
B ∶X → U such that each B(x) is Segal, then the dependent function type ∏x∶XB(x) is
Segal. In particular, when B is independent of X, the type BX is Segal.

Proof. We may apply Corollary 14.3 to rearrange arguments and get

(∆2 → ∏
x∶X

B(x)) ≃ ∏
x∶X

(∆2 → B(x)) and (Λ2
1 → ∏

x∶X
B(x)) ≃ ∏

x∶X
(Λ2

1 → B(x)).

Since dependent products preserve fiberwise equivalences (using function extensionalty)
the result follows from Theorem 15.4.

Remark 15.6 (Vertical composition). For a Segal type B and any shape or type X,
composition on BX is a vertical composition operation on natural transformations

X B.

f

g

h

α

β

In particular, the components of β ○ α may be identified with the composite of their
respective components

(β ○ α)x = βx ○ αx.

Proposition 15.7 ([RS17, Proposition 5.8]). In a Segal type B, identity arrows are
units: given any f ∶ x→B y, then f ○ idx = f and idy ○f = f .

Proof. For the left unit law we have the canonical witness

⟨t, s⟩ ↦ f(s) ∶ compB(idx, f).

To see that it has the correct boundary, observe that

(⟨s, r⟩ ↦ f(r)) ○ (t↦ ⟨t,0⟩) ≡ t↦ ((⟨s, r⟩ ↦ f(r))⟨t,0⟩) ≡ t↦ f(0) ≡ t↦ x ≡ idx

and
(⟨s, r⟩ ↦ f(r)) ○ (t↦ ⟨1, t⟩) ≡ t↦ ((⟨s, r⟩ ↦ f(r))⟨1, t⟩) ≡ t↦ f(t) ≡ f

97

and finally, their composite arrow is

(⟨s, r⟩ ↦ f(r)) ○ (t↦ ⟨t, t⟩) ≡ t↦ ((⟨s, r⟩ ↦ f(r))⟨t, t⟩) ≡ t↦ f(t) ≡ f .

By a similar computation we conclude that ⟨t, s⟩ ↦ f(s) witnesses the right unit law.

Theorem 15.8 (Associativity for Segal types, [RS17, Proposition 5.9])

Given a diagram x y z w
f g h in a Segal type B, then (h ○ g) ○ f = h ○ (g ○ f).

Proof. Assume given cube variables t, s ∶ 2. By totality of the simplicial relation, we have
the entailments ⊺ ⊢ (t ≤ s) ∨ (s ≤ t) ⊢ ⊺. Hence we may observe that the shapes ∆1 ×∆1

and ∆2 ∪∆1
1

∆2 are equivalent.
Using this, we may consider the following square as a natural transformation

x y

y z

f g○f

f

g

g

compf,g

compf,g

i.e. as an arrow compf,g ∶ f →B∆1 g. Similarly we have an arrow compg,h ∶ g →B∆1 h.

By Corollary 15.5 we have that B∆1
is Segal, and so by Remark 15.2 the type

∑
p∶hom

B∆1(f,h)
hom2

B∆1 (compf,g, compg,h;p)

is contractible. In particular this means it is inhabited by some pair (p, q) where q is
some function ∆2 ×∆1 → B. There is a function that picks out the “middle shuffle”

⟨t1, t2, t3⟩ ↦ ⟨⟨t1, t3⟩, t2⟩ ∶ ∆3 →∆2 ×∆1.

This gives us a 3-simplex in B,

z w

x y

h

f

g○f

g h○g

The top and bottom faces are parametrized by the restrictions

⟨t1, t2⟩ ↦ ⟨t1, t1, t2⟩ ∶ ∆2 →∆3 and ⟨t1, t2⟩ ↦ ⟨t1, t2, t2⟩ ∶ ∆2 →∆3

with common edge, the diagonal,

t↦ ⟨t, t, t⟩ ∶ ∆1 →∆3.

This edge defines an arrow x→B w for which the restrictions along the two faces yield
witnesses that it is the composite h○(g ○f) and the composite (h○g)○f respectively.

98

Digression 15.9. We could in even more general terms speak about types equipped
with some binary operation −●− ∶ ∏(x,y,z∶A)∏(f ∶x→Ay)∏(g∶y→Az) compA(f, g). This would

correspond to generalizing from having an equivalence induced by Λ2
1 ⊆ ∆2 to only

admitting a section. For such an operation we still maintain the unit laws, but associativity
is no longer clear. This would allow us to speak of types with multiple composition
operations on their arrows.

Proposition 15.10 (Functions are functors, [RS17, Proposition 6.1]). Given a function
between Segal types F ∶ A→ B and any two composable arrows f and g in A, then

F (g ○ f) = Fg ○ Ff .

Proof. Since functions are simplicial morphisms we have F (g ○ f) ∶ compB(Ff,Fg), and
by contractibilty of this type we have F (g ○ f) = Fg ○ Ff .

Homotopy. In simplicial types we have two competing notions of sameness for arrows.
We have paths between arrows f =(x→Ay) g and we have 2-simplices between them

x

x y

f

g

or
y

x y.

f

g

Luckily for us, these notions are equivalent in Segal types.

Proposition 15.11 (Homotopy is homotopy, [RS17, Proposition 5.10]). Let f, g ∶ x→B y
in a Segal type B. Then we have the following equivalences via natural maps

hom2
B

⎛
⎜
⎝

x

x y

f

g

⎞
⎟
⎠
⋍ (f =(x→By) g) ≃ hom2

B

⎛
⎜
⎝

y

x y

f

g

⎞
⎟
⎠

.

Proof. By duality we only consider the right-side case. We may define the following map
by path induction for any type B

id-to-2-cellf,g ∶ (f =(x→By) g) → hom2
B

⎛
⎜
⎝

y

x y

f

g

⎞
⎟
⎠

, id-to-2-cellf,f(reflf) ∶≡ (⟨t, s⟩ ↦ f(t)).

To prove it is a fiberwise equivalence is equivalent [UF13, Theorem 4.7.7] to proving the
induced map on total spaces is an equivalence

⎛
⎝ ∑
g∶x→By

f = g
⎞
⎠
→ ∑

g∶x→By
hom2

B

⎛
⎜
⎝

y

x y

f

g

⎞
⎟
⎠

.

The left-hand side is contractible by definition, and the right-hand side is equivalent to
the type of compositions compB(f, idy) by Remark 15.2, hence it is contractible by the
Segal condition.

99

This property easily extends to general triangles.

Proposition 15.12. Given a triangle of arrows f, g, h in a Segal type B, then

(g ○ f = h) ≃ hom2
B(f, g;h).

Proof. We may construct a map from left to right via path induction: in the case that
h is g ○ f , we have the canonical witness of composition compf,g. For equivalence, we
translate to a map of total spaces in which case both sides become contractible.

Adjunctions In 1-category theory, we have two common and equivalent ways of defining
adjunctions. Given functors L ∶ A ⇄ B ∶ R, we may define them to be an adjoint pair
L ⊣ R if they induce natural bijections on hom-sets

HomB(La, b) ≅Set HomA(a,Rb)

for all a and b. Let us call this a transposing adjunction, because of their symbolic
analogy to transpose linear operators.

Alternatively, one may define adjunctions in terms of a unit η ∶ idA⇒RL and a counit
ε ∶ LR⇒ idB, such that we have higher order coherences

RLR

R R

RεηR and
LRL

L L

εLLη

We call this notion of adjunction a diagramatic adjunction, due to its use of diagram-
matic coherences.

When one attempts to formulate adjunctions for higher categories, these notions fail to
be equivalent, however, and issues similar to the ones for equivalences replay themselves.
In essence, this manifests itself in the fact that the coherences of a diagrammatic
adjunction may fail to satisfy even higher-order coherences. Hence its formulation in
type theory we dub quasi-diagramatic adjunction.

This situation may be redeemed in multiple ways as treated by Riehl and Shulman
based on earlier work by Riehl and Verity [RV16]. One method is by appending additional
coherences until higher homotopies are killed off. A minimal such example includes one
additional two-dimensional coherence and two three-dimensional coherences, yielding the
notion of half-adjoint adjunctions.

Another way is by separating the two roles played by either the unit or the counit.
This yields bi-diagramatic adjunctions, in which one asks for a left and a right
(co)unit, each satisfying one of the coherence laws stated earlier.

However, it turns out that the naive formulation of transposing adjunctions transfers
without issues, as long as we use a coherent notion of equivalence. And so to keep things
simple, this is the notion we will have in mind when speaking of adjunctions.

100

Definition 15.13 (Transposing adjunction). The maps between types L ∶ A⇄ B ∶ R
define a transposing adjunction between A and B, where L is left adjoint to R, and
R is right adjoint to L, written L ⊣ R, if we have a family of equivalences of hom-types

TL,R ∶ ∏
a∶A,b∶B

(homB(La, b) ≃ homA(a,Rb)) .

In particular, from a transposing adjunction we may recover the unit and counit
componentwise as

ηa = T(a,La, ida) and εb = T−1(Rb, b, idb).

15.2 Isomorphisms and Rezk types

We define the type of isomorphisms exactly analogously to equivalences of types. Again
we use the notion of bi-invertibility to ensure homotopy uniqueness of isomorphism proofs
for Segal types [RS17, Proposition 10.2].

Definition 15.14 (Isomorphism). Given an arrow f ∶ x→A y in any type A, we define it
to be an isomorphism if it is bi-invertible:

isIso f ∶≡
⎛
⎝ ∑
g∶y→Ax

hom2
A(g, f ; idy)

⎞
⎠
×
⎛
⎝ ∑
h∶y→Ax

hom2
A(f, h; idx)

⎞
⎠

.

We define the type of isomorphisms between two terms as

(x ≅A y) ∶≡ ∑
f ∶x→Ay

isIso f .

Just as we saw in Section 5.1 that the interval type I covariantly represents the type
of paths in a type, we may characterize the type of isomorphisms with a representing
object:

Construction 15.15 (The free-standing bi-invertible arrow, [BW21, 4.2.1]). The free-
standing bi-invertible arrow type E may be formally defined as the colimit of the following
diagram of shapes

∆1 ∆1 ∆1

∆0 ∆2 ∆2 ∆0.

d1 d0 d2 d1

Hence it may be depicted as the following simplicial type with fillers

⋅ ⋅

⋅ ⋅
This type covariantly represents the type of isomorphisms

⎛
⎝ ∑x,y∶A

x ≅A y
⎞
⎠
≃ (E→ B).

101

Proposition 15.16. Given a morphism f ∶ x→B y in a Segal type B, then the covariant
and contravariant composition operations induced by f give equivalences of hom-types for
all z if and only if f is an isomorphism

(z →B x)
f○−
≃ (z →B y) and (y →B z)

−○f
≃ (x→B z).

Proof. By duality, it suffices to consider the covariant case. Assume f is an isomorphism
and let g be its right-inverse, then we claim that g ○ − is a right-inverse of f ○ −. So let us
verify this, using Proposition 15.11 at the second step:

(f ○ −) ○ (g ○ −) ≡ (f ○ (g ○ −)) assoc= ((f ○ g) ○ −) r-inv= (idy ○ −)
l-unit= id

The argument is similar for the left-inverse of f .
Conversely, assume that f ○ − is an equivalence for all z and let r be its right-inverse.

Then in particular we have an equivalence (y →B x) ≃ (y →B y) from which we may
define an arrow g ∶≡ r(idy) ∶ y →B x which by the following computation is a right-inverse
of f :

f ○ g ≡ f ○ (r(idy))
Π-comp
≡ (f ○ −)(r(idy))

Π-comp
≡ ((f ○ −) ○ r)(idy)

r-inv= idy .

The argument is similar for the left-inverse.

Definition 15.17 (Rezk type). A Segal type B is a Rezk type if the canonical
comparison map

id-to-isoB ∶ ∏
x,y∶B

((x =B y) → (x ≅B y)) id-to-isoB(reflx) ∶≡ idx

is an equivalence,
isRezkB ∶≡ isSegalB × isEquiv(id-to-isoB).

Remark 15.18. Analogously to the definition of Rezk spaces in Definition 12.12, Rezk
types may equivalently be characterized as Segal types which are local with respect to
the terminal projection E → 1. Conversely, Rezk spaces may be characterized by an
analogous map X0 →X∼

1 assigning each vertex x to its identity morphism in the subspace
of X1 generated by the weak equivalences [Rez01, Section 6].

We would also like to characterize the types which are only categories in a trivial sense,
mimicking the relationship between sets and 1-categories in classical mathematics. These
are types whose types of arrows and types of paths coincide, at least up to equivalence.
Hence, the following natural definition follows:

Definition 15.19 (Discrete type). A type A is a discrete type if the canonical
comparison map

id-to-arrA ∶ ∏
x,y∶A

((x =A y) → (x→A y)) id-to-arrA(reflx) ∶≡ idx

is an equivalence,
isDiscreteA ∶≡ isEquiv(id-to-arrA).

102

Proposition 15.20 ([RS17, Proposition 10.10]). Discrete types are precisely Rezk types
in which all arrows are invertible.

Proof. Observe that id-to-arr may be factored as the composite

(x =A y) (x ≅A y) (x→A y),id-to-iso

Since being an isomorphism is a proposition, the inclusion (x ≅A y) ↪ (x →A y) is an
embedding. And so by [UF13, Theorem 4.6.3] it is an equivalence iff it is a surjection. Now,
being Rezk and having all invertible arrows implies that both factors are equivalences,
and so id-to-arr is a composite of equivalences and hence an equivalence itself. Conversely,
if id-to-arr is an equivalence, then in particular its second factor is surjective. Hence by
the 2-out-of-3 property for equivalences, id-to-iso is an equivalence as well.

This means that the discrete types are the internal ∞-groupoids.

Proposition 15.21 ([RS17, Proposition 8.29]). Given a Segal type B, then for any
b, b′ ∶ B, the hom-type homB(b, b′) is discrete.

In fact, even more is true. The type family homB ∶ B → B → U is a two-sided discrete
fibration, meaning it varies contravariantly over its first argument, and covariantly over
its second argument.

Proof. See [RS17, Proposition 8.29].

15.3 Some categorical constructions

Let us now visit a couple of common categorical constructions. We discuss them here
to continue the theme of categorical constructions, although we will soon find use for
them all. We go into some detail with each construction, but no surprises will show up.
It is worth reiterating that since our type theory is homotopy invariant, every universal
property is weak in the sense that composition and uniqueness is always up to homotopy.

To begin we consider pullbacks of types. In our type theory, as with homotopy type
theory, every pullback of types exists and admits an explicit internal description in terms
of Σ- and identity types.

Theorem 15.22 (Pullback of types)
Given a cospan of types f ∶ B → A← C ∶ g, the type

S ∶≡ ∑
b∶B,c∶C

(f(b) = g(c))
S C

B A.

pr0

pr1

g

f

satisfies the universal property of being the pullback of this cospan among both types and
shapes. By this we mean that for any type or shape X, we have an equivalence

(X → S) ≃
⎛
⎜⎜
⎝
∑

b∶X→B,
c∶X→C

f ○ b = g ○ c
⎞
⎟⎟
⎠

103

Proof. Depending on whether X is a type or a shape, we apply either the type-theoretic
axiom of choice for types twice or the type-theoretic axiom of relative choice for shapes
on the inclusion ∅ ⊆X twice to get the equivalences

⎛
⎝
X→∑

b∶B,c∶C
f(b) = g(c)

⎞
⎠
≃
⎛
⎝ ∑
(b∶X→B)

∏
(x∶X)

∑
(c∶C)

f(b(x)) = g(c)
⎞
⎠
≃
⎛
⎜⎜
⎝
∑

b∶X→B,
c∶X→C

∏
(x∶X)

f(b(x)) = g(c(x))
⎞
⎟⎟
⎠

at which point we may apply function extensionality if X is a type, or weak relative
function extensionality on the inclusion ∅ ⊆X if X is a shape

⎛
⎜⎜
⎝
∑

b∶X→B,
c∶X→C

∏
(x∶X)

f(b(x)) = g(c(x))
⎞
⎟⎟
⎠
≃
⎛
⎜⎜
⎝
∑

b∶X→B,
c∶X→C

f ○ b = g ○ c
⎞
⎟⎟
⎠

.

Note that while we apply the function extensionality axioms in this proof, they are not
strictly necessary for the Σ-type to satisfy an appropriate universal property. Without
function extensionality, however, we would need to weaken our notion of uniqueness to
that of pointwise uniqueness.

Example 15.23 (Type of fiberwise maps). Given a map or shape inclusion j ∶ Y →X
and a map π ∶ E → B we define the type of fiberwise maps between j and π, j ⇉ π.
This type consists of commutative square whose left leg is j and right leg is π. It may
also be characterized by the following pullback

j ⇉ π ∶≡ ∑
f ∶Y→E,
g∶X→B

π ○ f = g ○ j or ∑
f ∶Y→E

⟨X → B∣Yπ○f ⟩
j ⇉ π EY

BX BY .

πY

Bj

A note on terminology here, to us a fiberwise map consists of both a map of total
spaces and a map of base spaces. This is in contrast to fibered maps, which stay constant
at the base.

Warning 15.24. Some care must be taken when we conflate shapes and types in this
way. Firstly, there are three cases to consider when j is a map or a shape inclusion since
if j is a map it may either be a map from a type to another type or it may be a map from
a shape to a type. Due to our abuse of notation, these types are denoted equivalently.
Secondly, the strictness of identities varies among these. However, thanks to the results
of Section 14.1, we have many analogous results between shapes and types which makes
treatments of these conflations smoother.

Definition 15.25 (Leibniz cotensor). Given maps j ∶ Y → X and π ∶ E → B as just
discussed, i.e. j may be an inclusion of shapes, the Leibniz cotensor or Leibniz

104

exponential or pullback hom j ⋔̂ π is the canonically induced map in the following
diagram

EX EY

j ⇉ π

BX BY .

Ej

πX

j⋔̂π

πY

Bj

This map can be interpreted as taking lifts between j and π to the lifting problem they
solve

⟨
Y E

X B

j π ⟩
j⋔̂π
Ð→ ⟨

Y E

X B

j π ⟩ .

This interpretation allows us to give a second characterization of lifting properties
which is more algebraic in flavour. A proof of a lifting property between j and π
corresponds to a section of the Leibniz cotensor, while orthogonality corresponds to j ⋔̂ π
being an equivalence.

In the degenerate case that π is the unique map to the terminal type ! ∶ E → 1, the
type of fiberwise maps j ⇉ ! degenerates to EY and the Leibniz cotensor to Ej via the
equivalences 1X ≃ 1 ≃ 1Y .

There is much more that can be said about Leibniz cotensors. However, we focus on
a single property that we need for a later argument.

Proposition 15.26 (Composition factorization property of leibniz cotensors). Given

a map π ∶ E → B and two composable maps Z
i→ Y

j
→ X where i and j may be shape

inclusions, then (j ○ i) ⋔̂ π factorizes as j ⋔̂ π followed by a pullback of i ⋔̂ π,

(j ○ i) ⋔̂ π = (i ⋔̂ π)A ○ (j ⋔̂ π).

Proof. We begin by constructing a big commutative diagram, enumerating two squares
for further reference,

EX

j ⇉ π EY

(j ○ i) ⇉ π i⇉ π EZ

BX BY BZ .

(j○i)⋔̂π

j⋔̂π Ej

(ii)
i⋔̂π Ei

(i)
πZ

Bj Bi

105

The dashed arrows are induced by the commutative squares

(j ○ i) ⇉ π EZ

BX BZ

and

j ⇉ π EY

BX BY .

Moreover, since these are pullback squares we get by left-cancelation that (i) and then (ii)
are pullback squares. Hence we have obtained the desired factorization of (j ○ i) ⋔̂ π.

Definition 15.27 (Comma type). Given a cospan of types f ∶ B → A ← C ∶ g, the
comma type or comma construction f ↓ g is defined as the pullback

f ↓ g A∆1

B ×C A∂∆1

µ

(pr0,pr1) (pr0,pr1)

f×g

or the terminal cone of

B f ↓ g C

A A∆1
A.

f

pr0 pr1

g

pr0 pr1

The comma type f ↓ g admits a particularly simple internal description thanks to the
strictness of extension types

f ↓ g ≃ ∑
b∶B,c∶C

(f(b) →A g(c)).

As we can see clearly from this description, the comma type f ↓ g consists of arrows
in A whose domain and codomain are parameterized by the functions f and g. The
comma type also comes equipped with a canonical natural transformation µ given by the
pullback of f × g, called the comma cone of f ↓ g:

f ↓ g

B C

A.

pr0 pr1

f

µ

g

The comma types f ↓idA and idA↓g, usually denoted f ↓A and A↓g, admit particularly
simple diagrammatic descriptions as the following:

f ↓A

B A

pr1pr0

f

A ↓ g

A C.

pr1pr0

g

As a special case of comma constructions we recover the (co)slice constructions:

106

Definition 15.28 ((Co)slice type, [RV21, Warning 4.2.10]). Let A be a type and ∆ be
the diagonal map ∆ ∶ A→ AJ . Given an X-indexed family of J-shaped diagrams in A,
ψ ∶X → AJ , we define the coslice type ψ/A as the comma construction

ψ/A ∶≡ ψ ↓∆ of the cospan X
ψ
→ AJ

∆← A.

Dually, the slice type is A/ψ ∶≡ ∆ ↓ ψ. In particular, given a term a ∶ A we have the over
and under types a/A ≃ a ↓A and A/a ≃ A ↓ a.

ψ/A ≃ ∑
x∶X,a∶A

ψ(x)⇒∆(a) ≃ ∑
(x∶X,a∶A)

∏
(j∶J)

(ψ(x, j) →A a)
ψ/A (AJ)∆1

X ×A AJ ×AJψ×∆

Given a cospan of types f ∶ B → A← C ∶ g the pullback property of f ↓ g states that
to construct a unique map X → f ↓ g it suffices to provide maps b ∶ X → B, c ∶ X → C
and α ∶ X → A∆1

such that prX0 α = f ○ b and prX1 α = g ○ c. Interpreting α as a natural
transformation yields a second formulation of the pullback property of the comma type.

Remark 15.29 (Universal property of comma type). Given a natural transformation
over the cospan of types f ∶ B → A← C ∶ g as below-left, then there exists a unique map
a ∶X → f ↓ g such that the below-right diagram commutes

X

B C

A

cb

f

α

g

=

X

B f ↓ g C

A

cb a

f

pr0 pr1

gµ

and moreover, whiskering with the comma cone µ gives an inverse to this correspondence.

16 Fibrations and families

Moving to the context of fibrations and families, we again have use of the existence of a
universe type and the straightening-unstraightening construction as in Section 6. This
may be done precisely as before, although now we also require the universe to be closed
under the formation of extension types.

Using the straightening-unstraightening equivalence we may treat fibrations and type
families interchangably. Accordingly, given a predicate on families P ∶ Fam U → Prop U ,
we may say that the map π ∶ E → B satisfies P if its straightening does, and conversely.
In this vein, given families P ∶ B → U and Q ∶ (∑b∶BP (b)) → U we define their composite
family

Q ○ P ∶≡ b↦
⎛
⎝ ∑
e∶P (b)

Q(b, e)
⎞
⎠
∶ B → U .

107

When working with type families, we may define types of dependent arrows.

Definition 16.1 (Dependent arrow). Suppose given a type family P ∶ B → U and an
arrow in the base space u ∶ b →B b′. Then given terms e and e′ lying over b and b′

respectively, we define the type of dependent arrows

homP
u (e, e′) ∶≡ ⟨∏

t∶∆1

P (u(t))
RRRRRRRRRRR
∂∆1

[b,b′]⟩ .

And of course we can repeat the constructions like n-cells, compositions and so on in the
dependent case. From now on, we will take these constructions for granted, and trust
that the reader may find the right definitions by themselves if need be.

Of course dependent arrows also correspond precisely to non-dependent arrows in the
total space of a type family.

16.1 The lifting problem

In this section, we revisit the idea of lifting problems as was done in the context of model
categories in Section 9, but now in the context of the type theory. As we will see, lifting
properties are efficient abstractions for many different concepts in the theory. Moreover,
with the help of the Leibniz cotensor as defined in the previous section, we have a second
way of characterizing lifting properties which lends itself well to the current discussion.

Definition 16.2 (Lifting property). Given a function or shape inclusion j ∶ Y →X and
a function π ∶ E → B we say j has the left lifting property with respect to π and π has
the right lifting property with respect to j, denoted j ⧄ π, if any commutative square as
follows admits a lifting map as marked with a dashed arrow preserving commutativity

Y E

X B.

j π

If such liftings are unique the morphisms are said to be orthogonal, written j � π. In
addition, we will say that π is j-orthogonal. We will say that a type or shape X has the
left lifting property with respect to π if the unique inclusion of the empty type or shape
0↪X has this left lifting property, and we will say E has the right lifting property with
respect to j if the unique map E → 1 does. We define the types

j ⧄ π ∶≡ ∏
f ∶Y→E,
g∶X→B

((π ○ f = g ○ j) → ∑
h∶X→E

(h ○ j = f) × (π ○ h = g))

j ⊥ π ∶≡ ∏
f ∶Y→E,
g∶X→B

((π ○ f = g ○ j) → isContr(∑
h∶X→E

(h ○ j = f) × (π ○ h = g)))

108

or if j is a shape inclusion

j ⧄ π ∶≡ ∏
f ∶Y→E

⎛
⎜⎜
⎝

∏
g∶⟨X→B∣Y

π○f
⟩

∑
h∶⟨X→E∣Y

f
⟩

π ○ h = g
⎞
⎟⎟
⎠

j ⊥ π ∶≡ ∏
f ∶Y→E

⎛
⎜⎜
⎝

∏
g∶⟨X→B∣Y

π○f
⟩

isContr

⎛
⎜⎜
⎝

∑
h∶⟨X→E∣Y

f
⟩

π ○ h = g
⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

.

Lemma 16.3. The morphism j lifts against π if and only if j ⋔̂ π admits a section.
Moreover j is orthogonal to π if and only if j ⋔̂ π is an equivalence.

Proof. This is just a reformulation of their defining properties, noting that we always
have a map in the opposite direction given by precomposing with j and postcomposing
with π.

Corollary 16.4. Orthogonality is a proposition.

Let us give a few examples/definitions in terms of lifting properties.

Example 16.5 (Examples of lifting properties).

(i) A type is Segal iff it is (Λ2
1 ↪∆2)-orthogonal.

(ii) A type is Rezk iff it is Segal and (E→ 1)-orthogonal.

(iii) A type is discrete iff it is (∆1 → 1)-orthogonal.26

(iv) A map is surjective iff it has the right lifting property with respect to 0↪ 1.

(v) A map is bijective iff it is (0↪ 1)-orthogonal.

(vi) A map is full iff it has the right lifting property with respect to ∂∆1 ↪∆1.

(vii) A map is fully faithful iff it is (∂∆1 ↪∆1)-orthogonal.

(viii) A map is conservative iff it has the right lifting property with respect to the middle
inclusion ∆1 ↪ E.

(ix) A family is covariant iff it is orthogonal with respect to the initial vertex inclusion
i0 ∶ 1↪ ∆1 and contravariant iff it is orthogonal with respect to the terminal vertex
inclusion i1 ∶ 1↪∆1.

(x) A family is inner iff it is (Λ2
1 ↪∆2)-orthogonal, generalizing Segal types.

26Although this is not a definable map, the example may still be translated to something meaningful
by elaborating on the types involved.

109

(xi) A family is isoinner iff it is inner and (E → 1)-orthogonal,27 generalizing Rezk
types.

The closure properties of left and right lifting properties as proven in Section 9 still
apply with analogous proofs in our current setting. Let us however prove a couple of
closedness properties for orthogonality.

Proposition 16.6 (Closed under dependent product, [BW21, Proposition 3.1.4]). Given
a map j ∶ Y → X and a family of fibrations π(−) ∶ I → Fib U for some indexing type or
shape I such that for each i ∶ I the fibration πi is j-orthogonal, then the dependent product

∏i∶I πi is j-orthogonal.

Proof. By hypothesis we have pullback-squares

EYi EXi

BY
i BX

i .

πYi

Eji

πXi

Bji

It may be shown that taking dependent products preserves pullbacks

∏i∶I E
Y
i ∏i∶I E

X
i

∏i∶I B
Y
i ∏i∶I B

X
i ,

∏i∶I πYi

∏i∶I E
j
i

∏i∶I πXi

∏i∶I B
j
i

and by Corollary 14.3, dependent products commute with exponents

(∏i∶I Ei)
Y (∏i∶I Ei)

X

(∏i∶I Bi)
Y (∏i∶I Bi)

X .

(∏i∶I πi)
Y

(∏i∶I Ei)
j

(∏i∶I πi)
X

(∏i∶I Bi)
j

Proposition 16.7 (Closed under dependent sums, [BW21, Proposition 3.1.15]). Let
j ∶ Y →X be a map or shape inclusion and π ∶ E → B be a map such that B is j-orthogonal.
Then E is j-orthogonal if and only if π is.

Proof. We have the diagram

EX EY

j ⇉ π

BX BY

πX

j⋔̂π
Ej

πY

≃

Bj
≃

27This is compatible with the definition of Buchholtz and Weinberger thanks to [BW21, Corollary 4.2.5].

110

in which Bj and its pullback are equivalences since B is j-orthogonal. Now if π is j-
orthogonal, then their leibniz cotensor j ⋔̂π is an equivalence, and so Ej as a composition
of equivalences is an equivalence as well. Conversely, if E is j-orthogonal, then Ej is an
equivalence, and so j ⋔̂ π is an equivalence by the 2-out-of-3 property.

Remark 16.8. From these two propositions, we have that Segal types, Rezk types, and
discrete types are all closed under dependent products, in particular binary products and
exponents. Moreover, they are also closed under dependent sums over indexing-types
with the same property. In particular, they are closed under binary sums.

LARI liftings. For some uses, right orthogonality is too strict and the right lifting
property too lax. However, using the Leibniz cotensor construction we have a convenient
framing for phrasing lifting properties.

Definition 16.9 (Left adjoint right inverse (LARI)). A map L ∶ A→ B is a left adjoint
right inverse (LARI) if it is a left adjoint such that the unit of the adjunction is a
natural isomorphism η ∶ RL ≅ idA. Hence it acts as a right inverse to its adjoint. Dually,
we have the notions of LALI, RALI, and RARI maps. If L is a left adjoint right inverse,
then its adjoint R is a right adjoint left inverse.

Remark 16.10. A left adjoint is LARI if and only if it is fully faithful. If it is LARI, we
have the right-hand equivalence

homB(L(a), L(a′)) LA≃ homA(a,R(L(a′))) RI≃ homA(a, a′),

and conversely if it is fully faithful we have an equivalence of the left-most and right-most
types.

Example 16.11. The diagonal map is left adjoint right inverse to the domain projection
map

E E∆1

.

∆

pr0

⊢

The following notion serves as an intermediate step between the lifting property and
orthogonality by applying the idea of LARI maps to the equivalence of Lemma 16.3:

Definition 16.12 (LARI lifting). Given a map or shape inclusion j ∶ Y → X and a
fibration π ∶ E → B, then π is said to be j-LARI if the leibniz cotensor j ⋔̂ π has a left
adjoint right inverse.

Cocartesian fibrations can for instance be characterized through the formalism of
LARI lifting properties. This is the approach taken by Buchholtz and Weinberger [BW21].

111

16.2 Absolute lifting

In this section, we introduce the notion of an absolute left lifting diagram and prove a
few basic properties for them. Of course, everyting in this section can be codualized to
yield the notion of absolute right liftings.

Definition 16.13 (Absolute lifting diagram). Given a cospan X
f
→ B

π← E over a Segal
type B then an absolute left lifting of f along π is a map ` ∶ X → E along with a

natural transformation λ ∶ f ⇒ π` universal in the sense that any span X
j
← Y

h→ E with
a natural transformation α ∶ fj⇒ πh factorizes uniquely through λ:

Y E

X B

h

j π

f

α =
Y E

X B.

h

j π

f

`
λ

β !

We may define the type of proofs that (`, λ) is an absolute left lifting as follows

isALLπ,f(`, λ) ∶≡ ∏
(Y ∶U)

∏
(X←

j
Y→
h
E)

∏
(α∶fj⇒πh)

isContr
⎛
⎝ ∑
(β∶`j⇒h)

α = πβ ○ λj
⎞
⎠

noting that the composites πβ ○ λj are well-defined (in fact homotopy unique) since B is
Segal. Moreover, we can see that isALL is a family of propositions since contractibility
proofs always are [UF13, Lemma 3.11.4] and propositions are closed under dependent
products [UF13, Example 3.6.2]. We define the type of absolute left liftings of f along π
as the type

hasALL(π, f) ∶≡ ∑
(`∶X→E)

∑
(λ∶f⇒π`)

isALLπ,f(`, λ).

An equivalent characterization of absolute left liftings is given by the following lemma.

Lemma 16.14. A natural transformation λ ∶ f⇒π` with a Segal codomain is an absolute
left lifting along π if and only if the following transposing map is an equivalence

β ↦ πβ ○ λj ∶ ∏
(Y ∶U)

∏
(X←

j
Y→
h
E)

((`j⇒ h) → (fj⇒ πh)) .

And in fact these types are equivalent propositions.

Proof. This is just a reformulation of the defining property.

Corollary 16.15. A natural transformation η ∶ idA⇒gf is the unit of an adjunction
f ⊣ g if and only if (f, η) is an absolute left lifting of idA along g.

Lemma 16.16. The type of absolute left liftings of f along π is a proposition when E is
Rezk.28

28It would in fact suffice to have the implication ∏g,h∶EY∏α,β∶g⇒h(α ≅ β) → (α = β) and Segalness.

112

Proof. Assume given two absolute left liftings (`, λ) and (`′, λ′). Then each factorizes
through the other, meaning we have natural transformations χ ∶ `⇒ `′ and χ′ ∶ `′⇒ ` such
that λ′ = πχ ○ λ and λ = πχ′ ○ λ′. In particular we have λ = πχ′ ○ (πχ ○ λ) = π(χ′ ○ χ) ○ λ,
but another factorization of λ against itself is id`, hence by uniqueness of factorizations
χ′ ○ χ = id`, and similarly χ ○ χ′ = id′`. So χ and χ′ form a quasi-isomorphism29 in EY ,
and so by Rezk completeness [RS17, Proposition 10.9] we have λ = λ′.

Lemma 16.17 (Absolute liftings are absolute / closed under restriction). Given an
absolute left lifting (`, λ) of f along π and a function or shape inclusion i ∶ Z →X into
the domain of f , then (`i, λi) is an absolute left lifting of fi along π

isALLπ,f(`, λ) → isALLπ,fi(`i, λi).

Proof. Given the lifting problem with boundary the outer square of the diagram

Y E

Z X B,

j ij

h

π

i

β ! `

f

then by the left lifting property of the original diagram we receive a natural transformation
β ∶ `(ij)⇒h which by associativity solves our original lifting problem. Now assume given
any other factorization β′ ∶ (`i)j⇒ h, then it is clearly also a factorization of the lifting
problem over λ, hence by contractibility it is equal to β.

Remark 16.18. In particular, absolute left liftings are absolute left Kan lifts, meaning
that they admit unique lifts of the spans X =X → E.

Lemma 16.19 (Composition and left cancellation, [RV21, Lemma 2.4.1]). Given a
diagram as below where (`′, λ′) is an absolute left lifting of ` along π′,

F E

X B

π′

π`′

f

`
λ

λ′

then (`, λ) is an absolute left lifting of f along π if and only if (`′, πλ′ ○ λ) is an absolute
left lifting of f along ππ′.

Proof. Rereading the statement of the lemma we see that one direction means that
absolute left liftings compose, while the other means that they cancel from the left.

So first let us prove that absolute left liftings compose. Assume (`, λ) is an absolute
lifting of f along π and that we are given the left-hand square as follows. The argument

29This is in the terminology of [UF13] and means that they inhabit the type of mutual inverses.

113

works best visually, hence we display the diagrams first, then follow up with a brief
argument

Y F

E

X B

j

h

π′

π

f

α =

Y F

E

X B

j

h

π′

π

f

`
λ

α′ =

Y F

E

X B.

j

h

π′

π

f

`

`′

λ

λ′
α′′

Given a natural transformation α ∶ fj ⇒ ππ′h, we may factorize through (`, λ) to
obtain a unique natural transformation α′ ∶ `j ⇒ π′h. This transformation may be
uniquely factorized through (`′, λ′) to get a natural transformation α′′ ∶ `′j⇒ h. Since
this operation preserves commutativity of our diagram, it solves the originally posed
factorization problem and it is unique.

Conversely, to show absolute left liftings cancel from the left, assume that (`′, πλ′ ○λ)
is an absolute left lifting of f along ππ′, then we want to prove that (`, λ) is an absolute
left lifting of f along π. So assume given the left-hand square as follows

Y F

E

X B

j

h

π′

π

f

α =

Y F

E

X B

j

h

π′

π

f

`′

πλ′○λ

α′

=

Y F

E

X B.

j

h

π′

π

f

`
λ

π′α′○λ′j

The natural transformation α may be uniquely factorized through πλ′ ○λ to get a natural
transformation α′ ∶ `′j ⇒ h. This we may compose with λ′ to get a solution to the
factorization problem.

For uniqueness, assume given another solution to the factorization problem β ∶ `j⇒π′h
such that πβ ○ λj = α. Then in particular its factorization through πλ′ ○ λ is equal to α′,
hence by commutativity β = π′α′ ○ λ′j.

To end the section, we mention one other useful application of absolute lifting diagrams,
their usage in defining limits.

Definition 16.20 (Colimit). A colimit of an X-indexed family of diagrams d ∶X → AJ

of shape J in A is an absolute left lifting diagram

A

X AJ .

∆

d

colimd

η

Example 16.21. An initial element of A may be defined as a colimit of the empty
diagram

A

1 1 .

!
colimd

114

Equivalently, initial elements of A may be identified via the following contractibility
criterion: An element a ∶ A is initial if for all x ∶ A, homA(a, x) is contractible.

16.3 Comma representability

Definition 16.22 (Comma representability). Given a cospan f ∶ B → A← C ∶ g of types,
the comma type f ↓ g is left representable if there exists a map ` ∶ B → C such that
the following comma types are fibered equivalent

f ↓ g ≃B×C ` ↓C.

As you might’ve expected, comma representable types have a tight connection with
absolute liftings.

Theorem 16.23 ([RV21, Theorem 3.5.3 codual])
Given a Segal type A, the triangle

C

B A

g

f

`

λ

defines an absolute left lifting diagram if and only if the following dashed map y induced
by the universal property of the comma type is a fibered equivalence y ∶ ` ↓C ≃B×C f ↓ g

` ↓C

B C

A

pr1pr0

`

f gλ

η

=

` ↓C

B f ↓ g C.

A

pr1pr0 y

f

pr0 pr1

gµ

Proof adapted. Suppose that (`, λ) is an absolute left lifting of f along g, and consider
the unique factorization µ′ of the comma cone µ of f ↓ g through λ as depicted below
center-left. By the universal property of comma types (15.29), there is a unique map
z ∶ f ↓ g → ` ↓C such that pri ○z = pri as depicted below center-right. Now by substituting
in the commutative diagram for y, we see that y ○ z ∶ f ↓ g → f ↓ g is a map that factors
the comma cone for f ↓ g through itself. But idf↓g is also, so by the universal property of
comma types we have y ○ z = idf↓g.

f ↓ g

B C

A
f

µ

g

=

f ↓ g

B C

A

`

f gλ

µ′

=

f ↓ g

` ↓C

B C

A

z

`

f gλ

η =

f ↓ g

` ↓C

B f ↓ g C.

A

z

y

f gµ

115

To show z ○ y = id`↓C we may argue similarly that the comma cone of ` restricts along
z ○ y to itself. Since (`, λ) is an absolute left lifting it suffices to verify ηyz = η. To verify
this we start by pasting λ to get the below leftmost diagram. whiskering η with z we get
the left-center diagram, and composing λ and µ′ we get the right-center one. Now, the
final equality is by the construction of y.

` ↓C

f ↓ g

` ↓C

B C

A

y

z

`

f gλ

η

=

` ↓C

f ↓ g

B C

A

y

`

f gλ

µ′ =

` ↓C

B f ↓ g C

A

y

f gµ

=

` ↓C

B C.

A

`

f gλ

η

Hence y and z define a fibered quasi equivalence and so in particular y is a fibered
equivalence ` ↓C ≃B×C f ↓ g.

Now conversely, suppose y is a fibered equivalence and let us argue that (`, λ) is an
absolute left lifting of f along g. Again we argue through a series of diagrams:

X

B C

A
f

α

g

=

X

B f ↓ g C

A

a

f gµ

=

X

` ↓C

B C

A

y−1a

`

f gλ

η =

X

B C

A

`

f gλ

α′

We start with a square as above-left which we wish to uniquely factorize through λ.
Applying the universal property of the comma type f ↓ g yields the center-left square.
From center-left to center-right we use the inverse of the equivalence y, noting that the
diagram remains commutative since y is fibered over B ×C, lastly, we whisker with the
comma cone of ` ↓ C, giving α′ ∶≡ η pr0 y

−1a. Since each step preserves commutativity,
this gives us a factorization of α through λ. Moreover, each step in this process was
performed by an equivalence, first by the universal property of f ↓ g, then by the fibered
equivalence y, and finally by the universal property of ` ↓C. Hence this factorization is
unique and so (`, λ) must be an absolute left lifting.

16.4 Cocartesian families

Definition 16.24 (Cocartesian arrow, [BW21, Definition 5.1.1]). Let π ∶ E → B be an
inner fibration of types. A π-cocartesian arrow ψ is an arrow e →E e′ such that all

116

diagrams of the following form admit a unique lift

∆1

Λ2
0 E

∆2 B.

t↦⟨t,0⟩ ψ

π

Let P denote the straightening of π, then this may be typed as

isCocartArrπ ψ ∶≡ ∏
(σ∶⟨∆2→B∣s≡0

π○ψ
⟩)

∏
(h∶∏t∶∆1P (σ⟨t,t⟩))

isContr ⟨ ∏
⟨t,s⟩∶∆2

P (σ⟨t, s⟩)
RRRRRRRRRRRR

Λ2
0

[ψ,h]⟩

Alternatively, cocartesian arrows may be characterized by the following equivalence
condition.

Remark 16.25 ([RV21, Definition 5.4.1]). An X-shaped arrow ψ ∶ X → E∆1
is an

X-shaped π-cocartesian arrow if the induced dashed arrow in the following diagram is
an equivalence, where j is the shape inclusion Λ2

0 ⊆ ∆2 and i is the inclusion t↦ ⟨t,0⟩ i.e.
s ≡ 0 ⊢ s ≤ t,

ψ/E E∆2

Q i⇉ π

X E∆1

pr0

i⋔̂π

Ei2

ψ

hence Q ≃ ∑
x∶X

∑
f ∶⟨Λ2

0→E∣s≡0
ψ(x)

⟩

⟨∆2 → B∣Λ
2
0

π○f⟩ .

Definition 16.26 (Cocartesian fibrations and families, [BW21, Definition 5.2.1 and 5.2.2]).
We say a fibration π ∶ E → B with corresponding straightening P ∶ B → U has cocartesial
lifts if we have a section

hasCocartLiftsπ ∶≡ ∏
(b,b′∶B)

∏
(u∶b→Bb′)

∏
(e∶P (b))

∑
(e′∶P (b′))

∑
(ψ∶e→Pu e′)

isCocartArrπ ψ,

and we define a cocartesian fibration to be an isoinner fibration with this property

isCocartFibπ ∶= isIsoInnerπ × hasCocartLiftsπ.

We introduce a series of glyphs for common 2-shapes for the purpose of the next
proof.

Definition 16.27 (Glyphs for specific shapes). We imagine the glyphs as miniatures for
the shapes they represent with the s-axis pointing downward and centered dots reflecting

117

an appropriate filler.

I ∶≡ {⟨t, s⟩ ∶ 2 × 2 ∣ (t ≡ 0) ∨ (s ≡ 0)} (≃ Λ2
0)

G ∶≡ {⟨t, s⟩ ∶ 2 × 2 ∣ (t ≡ 1) ∨ (s ≡ 0)} (≃ Λ2
1)

A ∶≡ {⟨t, s⟩ ∶ 2 × 2 ∣ (t ≡ 1) ∨ (s ≡ 1)} (≃ Λ2
2)∠

∶≡ {⟨t, s⟩ ∶ 2 × 2 ∣ (t ≡ 0) ∨ (t ≡ s)} (≃ Λ2
0)

H ∶≡ {⟨t, s⟩ ∶ 2 × 2 ∣ (t ≡ 0) ∨ (t ≡ 1) ∨ (s ≡ 0)}

P ∶≡ {⟨t, s⟩ ∶ 2 × 2 ∣ s ≤ t} (≃ ∆2)

L ∶≡ {⟨t, s⟩ ∶ 2 × 2 ∣ t ≤ s} (≃ ∆2)
N ∶≡ {⟨t, s⟩ ∶ 2 × 2 ∣ ⊺}
Q ∶≡ {⟨t, s⟩ ∶ 2 × 2 ∣ (s ≤ t) ∨ (t ≡ 0)}

In particular we have the strict pushout squares

G P

H Q

and

∠

L

Q N.

This is inspired by the notation of [RV21], although the meaning of our glyphs correspond
only in part to theirs.

Theorem 16.28 ([RV21, Theorem 5.1.7(dual)])

Given an isoinner fibration π ∶ E → B and an X-shaped arrow ψ ∶ X → E∆1
, then the

following are equivalent:

(i) The arrow ψ is π-cocartesian.

(ii) The following commutative triangle defines an absolute left lifting diagram

E∆1

X π ↓B

ψ

πψ

i0⋔̂π

(iii) There is an absolute left lifting diagram with pr0 ε = ψ and pr1 ε = idπe

E

X π ↓B

e

πψ

∆π

ε

Proof. We prove (i)⇒(ii)⇒(iii) leaving out (iii)⇒(i) due to time constraints, although
we do believe that this last case may straightforwardly be adapted from [RV21] like the
other cases. We note that this last case is also by far the most involved one.

118

(i)⇒(ii): By Theorem 16.23 it suffices to show the induced map y in the following
diagram is an equivalence

ψ ↓E∆1

X E∆1

B

pr1pr0

ψ

πψ i0⋔̂π

=

ψ ↓E∆1

X πψ ↓ (i0 ⋔̂ π) E∆1
.

B

pr1pr0 y

πψ i0⋔̂π

In this case, the desired map displayed below-left is a pullback of the Leibniz cotensor
of π with the inclusion ι ∶ H ⊆ N.

ψ ↓E∆1
EN

πψ ↓ (i0 ⋔̂ π) ι⇉ π

X E∆1

pr0

y
ι⋔̂π

pr0

ψ

The inclusion ι may be factorized as the composite of the inclusions i ∶ H ⊆ Q and
j ∶ Q ⊆ N. Hence we may apply Proposition 15.26 to get the following factorization of
ι ⋔̂ π:

EN

j ⇉ π ι⇉ π

EQ i⇉ π.

j⋔̂π
ι⋔̂π

≃

≃
i⋔̂π

Since i is a strict pushout of an inner horn inclusion and π is inner, the map
(j ⇉ π) → (ι⇉ π) must be an equivalence. Moreover, since j is a strict pushout of the
inclusion δ ∶

∠

⊆ L, the leibniz cotensor j ⋔̂ π is a pullback of δ ⋔̂ π. By hypothesis, we
know that δ ⋔̂ π pulls back along ψ to an equivalence, thus j ⋔̂ π does as well. Now, by
composability of equivalences this proves that ι ⋔̂ π is an equivalence, hence y is as well.

(ii)⇒(iii): The unit of the adjunction pr1 ⊣ ∆ is an absolute left lifting by Corol-
lary 16.15, and absolute left liftings compose by Lemma 16.19. Hence by observing that

119

the following diagram is commutative we are done

E

E∆1

E∆1

X π ↓B.

∆
∆π

pr1

i0⋔̂π

e

ψ

πψ

120

References

[AK11] Peter Arndt and Krzysztof Kapulkin. “Homotopy-Theoretic Models of Type Theory”.
In: Typed Lambda Calculi and Applications (2011), pp. 45–60. issn: 1611-3349.
doi: 10.1007/978-3-642-21691-6_7. arXiv: 1208.5683 [math.LO].

[Bau13] Andrej Bauer. Five Stages of Accepting Constructive Mathematics. Institute
for Advanced Study. Mar. 18, 2013. url: https://www.ias.edu/video/members/
1213/0318-AndrejBauer.

[BCP15] Marc Bezem, Thierry Coquand, and Erik Parmann. “Non-constructivity in Kan
simplicial sets”. In: 13th International Conference on Typed Lambda Calculi
and Applications. Vol. 38. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2015, pp. 92–106.

[BM10] Clemens Berger and Ieke Moerdijk. “On an extension of the notion of Reedy category”.
In: Mathematische Zeitschrift 269.3-4 (Sept. 2010), pp. 977–1004. issn: 1432-
1823. doi: 10.1007/s00209- 010- 0770- x. arXiv: 0809.3341 [math.AT]. url:
http://dx.doi.org/10.1007/s00209-010-0770-x.

[BR13] Julia E. Bergner and Charles Rezk. “Reedy categories and the Θ-construction”. In:
Math. Z. 274.1-2 (2013), pp. 499–514. issn: 0025-5874. doi: 10.1007/s00209-012-
1082-0. arXiv: 1110.1066 [math.AT].

[Buc18] Ulrik Buchholtz. Higher Structures in Homotopy Type Theory. 2018. arXiv:
1807.02177 [math.LO].

[BW21] Ulrik Buchholtz and Jonathan Weinberger. Synthetic fibered (∞,1)-category
theory. TU Darmstadt, 2021. arXiv: 2105.01724 [math.CT].

[DK80] W. G. Dwyer and D. M. Kan. “Function complexes in homotopical algebra”. In:
Topology 19.4 (1980), pp. 427–440. issn: 0040-9383. doi: 10.1016/0040-9383(80)
90025-7.

[DS95] William G. Dwyer and Jan Spaliński. “Homotopy theories and model categories”. In:
Handbook of algebraic topology. North-Holland, Amsterdam, 1995, pp. 73–126.
doi: 10.1016/B978-044481779-2/50003-1.

[Fri08] Greg Friedman. “Survey article: An elementary illustrated introduction to simplicial
sets”. In: Rocky Mountain J. Math. 42.2 (2008), pp. 353–423. issn: 0035-7596.
doi: 10.1216/RMJ-2012-42-2-353. arXiv: 0809.4221 [math.AT].

[GJ99] Paul G. Goerss and John F. Jardine. Simplicial homotopy theory. Vol. 174.
Progress in Mathematics. Birkhäuser Verlag, Basel, 1999, pp. xvi+510. isbn: 3-7643-
6064-X. doi: 10.1007/978-3-0348-8707-6.

[GSS19] Nicola Gambino, Christian Sattler, and Karol Szumi lo. The constructive Kan–
Quillen model structure: two new proofs. 2019. arXiv: 1907.05394 [math.AT].

[GZ67] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York,
Inc., New York, 1967, pp. x+168.

[HKRS17] Kathryn Hess et al. “A necessary and sufficient condition for induced model struc-
tures”. In: Journal of Topology 10.2 (Apr. 2017), pp. 324–369. issn: 1753-8424.
doi: 10.1112/topo.12011. arXiv: 1509.08154 [math.AT].

121

https://doi.org/10.1007/978-3-642-21691-6_7
https://arxiv.org/abs/1208.5683
https://www.ias.edu/video/members/1213/0318-AndrejBauer
https://www.ias.edu/video/members/1213/0318-AndrejBauer
https://doi.org/10.1007/s00209-010-0770-x
https://arxiv.org/abs/0809.3341
http://dx.doi.org/10.1007/s00209-010-0770-x
https://doi.org/10.1007/s00209-012-1082-0
https://doi.org/10.1007/s00209-012-1082-0
https://arxiv.org/abs/1110.1066
https://arxiv.org/abs/1807.02177
https://arxiv.org/abs/2105.01724
https://doi.org/10.1016/0040-9383(80)90025-7
https://doi.org/10.1016/0040-9383(80)90025-7
https://doi.org/10.1016/B978-044481779-2/50003-1
https://doi.org/10.1216/RMJ-2012-42-2-353
https://arxiv.org/abs/0809.4221
https://doi.org/10.1007/978-3-0348-8707-6
https://arxiv.org/abs/1907.05394
https://doi.org/10.1112/topo.12011
https://arxiv.org/abs/1509.08154

[HS98] Martin Hofmann and Thomas Streicher. “The groupoid interpretation of type theory”.
In: Twenty-five years of constructive type theory (Venice, 1995). Vol. 36.
Oxford Logic Guides. New York: Oxford Univ. Press, 1998, pp. 83–111.

[Joy08] André Joyal. The theory of quasi-categories and its applications. Cen-
tre de Recerca Matemática, 2008. url: https://ncatlab.org/nlab/files/

JoyalTheoryOfQuasiCategories.pdf.

[Joy21] André Joyal. Model categories. Dec. 2021. url: https://ncatlab.org/joyalscatlab/
show/Model+categories.

[KL18] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of
Univalent Foundations (after Voevodsky). 2018. arXiv: 1211.2851 [math.LO].

[Kra21] Nicolai Kraus. Internal ∞-Categorical Models of Dependent Type Theory:
Towards 2LTT Eating HoTT. 2021. arXiv: 2009.01883 [cs.LO].

[Law06] F. William Lawvere. “Adjointness in foundations”. In: Repr. Theory Appl. Categ.
16 (2006). Reprinted from Dialectica 23 (1969), pp. 1–16.

[Lur09] Jacob Lurie. Higher topos theory. Vol. 170. Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 2009, pp. xviii+925. isbn: 978-0-691-
14049-0; 0-691-14049-9. doi: 10.1515/9781400830558. url: https://www.math.
ias.edu/~lurie/papers/HTT.pdf.

[nLaba] nLab authors. categorical model of dependent types. Oct. 2021. url: http:
//ncatlab.org/nlab/show/categorical%20model%20of%20dependent%20types.

[nLabb] nLab authors. weak factorization system. Oct. 2021. url: http://ncatlab.org/
nlab/show/weak%20factorization%20system.

[nLabc] nLab authors. locally presentable category. Oct. 2021. url: http://ncatlab.
org/nlab/show/locally%20presentable%20category.

[nLabd] nLab authors. canonical model structure on Cat. Nov. 2021. url: http://
ncatlab.org/nlab/show/canonical%20model%20structure%20on%20Cat.

[Qui67] Daniel G. Quillen. Homotopical algebra. Lecture Notes in Mathematics, No. 43.
Springer-Verlag, Berlin-New York, 1967, iv+156 pp. (not consecutively paged).

[Ras18] Nima Rasekh. Introduction to Complete Segal Spaces. 2018. arXiv: 1805.03131
[math.CT].

[RCS18] Emily Riehl, Evan Cavallo, and Christian Sattler. On the directed univalence
axiom. Talk at the AMS Special Session on Homotopy Type Theory, Joint Math-
ematics Meetings. AMS, 2018. url: https://math.jhu.edu/~eriehl/JMM2018-
directed-univalence.pdf.

[Rez01] Charles Rezk. “A model for the homotopy theory of homotopy theory”. In: Trans.
Amer. Math. Soc. 353.3 (2001), pp. 973–1007. issn: 0002-9947. doi: 10.1090/
S0002-9947-00-02653-2. arXiv: 9811037 [math.AT].

[Rie09] Emily Riehl. A concise definition of a model category. Sept. 3, 2009. url:
https://math.jhu.edu/~eriehl/modelcat.pdf.

[Rie20] Emily Riehl. Homotopical categories: from model categories to (∞,1)-
categories. 2020. arXiv: 1904.00886 [math.AT]. url: https://math.jhu.edu/

~eriehl/homotopical.pdf.

122

https://ncatlab.org/nlab/files/JoyalTheoryOfQuasiCategories.pdf
https://ncatlab.org/nlab/files/JoyalTheoryOfQuasiCategories.pdf
https://ncatlab.org/joyalscatlab/show/Model+categories
https://ncatlab.org/joyalscatlab/show/Model+categories
https://arxiv.org/abs/1211.2851
https://arxiv.org/abs/2009.01883
https://doi.org/10.1515/9781400830558
https://www.math.ias.edu/~lurie/papers/HTT.pdf
https://www.math.ias.edu/~lurie/papers/HTT.pdf
http://ncatlab.org/nlab/show/categorical%20model%20of%20dependent%20types
http://ncatlab.org/nlab/show/categorical%20model%20of%20dependent%20types
http://ncatlab.org/nlab/show/weak%20factorization%20system
http://ncatlab.org/nlab/show/weak%20factorization%20system
http://ncatlab.org/nlab/show/locally%20presentable%20category
http://ncatlab.org/nlab/show/locally%20presentable%20category
http://ncatlab.org/nlab/show/canonical%20model%20structure%20on%20Cat
http://ncatlab.org/nlab/show/canonical%20model%20structure%20on%20Cat
https://arxiv.org/abs/1805.03131
https://arxiv.org/abs/1805.03131
https://math.jhu.edu/~eriehl/JMM2018-directed-univalence.pdf
https://math.jhu.edu/~eriehl/JMM2018-directed-univalence.pdf
https://doi.org/10.1090/S0002-9947-00-02653-2
https://doi.org/10.1090/S0002-9947-00-02653-2
https://arxiv.org/abs/9811037
https://math.jhu.edu/~eriehl/modelcat.pdf
https://arxiv.org/abs/1904.00886
https://math.jhu.edu/~eriehl/homotopical.pdf
https://math.jhu.edu/~eriehl/homotopical.pdf

[RS17] Emily Riehl and Michael Shulman. “A type theory for synthetic ∞-categories”. In:
High. Struct. 1.1 (2017), pp. 147–224. doi: 10.1007/s42001-017-0005-6. arXiv:
1705.07442 [math.CT]. url: https://math.jhu.edu/~eriehl/synthetic.pdf.

[RV14] Emily Riehl and Dominic Verity. “The theory and practice of Reedy categories”. In:
Theory Appl. Categ. 29 (2014), pp. 256–301. arXiv: 1304.6871 [math.CT].

[RV16] Emily Riehl and Dominic Verity. “Homotopy coherent adjunctions and the formal
theory of monads”. In: Adv. Math. 286 (2016), pp. 802–888. issn: 0001-8708. doi:
10.1016/j.aim.2015.09.011. arXiv: 1310.8279 [math.CT].

[RV21] Emily Riehl and Dominic Verity. Elements of ∞-Category Theory. Cambridge
University Press, 2021. url: https://math.jhu.edu/~eriehl/elements.pdf.

[Shu19] Michael Shulman. All (∞,1)-toposes have strict univalent universes. 2019.
arXiv: 1904.07004 [math.AT].

[Soj21] Kristina Sojakova. Syllepsis in Homotopy Type Theory. 2021. arXiv: 2107.
14283 [cs.LO].

[Str14] Thomas Streicher. “A model of type theory in simplicial sets: a brief introduction
to Voevodsky’s homotopy type theory”. In: J. Appl. Log. 12.1 (2014), pp. 45–49.
issn: 1570-8683. doi: 10.1016/j.jal.2013.04.001.

[SU06] Morten Heine B. Sørensen and Pawe l Urzyczyn. Lectures on the Curry-Howard
Isomorphism. Vol. 149. Studies in Logic and the Foundations of Mathematics.
Elsevier B. V., July 4, 2006. isbn: 978-0-444-52077-7. url: https://disi.unitn.
it/~bernardi/RSISE11/Papers/curry-howard.pdf.

[UF13] The Univalent Foundations Program. Homotopy type theory—univalent foun-
dations of mathematics. The Univalent Foundations Program, Princeton, NJ;
Institute for Advanced Study (IAS), Princeton, NJ, 2013, pp. xiv+589. url: https:
//homotopytypetheory.org/book.

[Voe14] Vladimir Voevodsky. The Origins and Motivation of Univalent Foundations.
2014. url: https://www.ias.edu/ideas/2014/voevodsky-origins.

[Wer97] Benjamin Werner. “Sets in types, types in sets”. In: Theoretical aspects of
computer software (Sendai, 1997). Vol. 1281. Lecture Notes in Comput. Sci.
Springer, Berlin, 1997, pp. 530–546. doi: 10.1007/BFb0014566.

[WL20] Matthew Z. Weaver and Daniel R. Licata. “A constructive model of directed uni-
valence in bicubical sets”. In: Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2020). ACM, New York,
July 2020, pp. 915–928. doi: 10.1145/3373718.3394794. url: https://dlicata.
wescreates.wesleyan.edu/pubs/wl20bicubical/wl20bicubical.pdf.

123

https://doi.org/10.1007/s42001-017-0005-6
https://arxiv.org/abs/1705.07442
https://math.jhu.edu/~eriehl/synthetic.pdf
https://arxiv.org/abs/1304.6871
https://doi.org/10.1016/j.aim.2015.09.011
https://arxiv.org/abs/1310.8279
https://math.jhu.edu/~eriehl/elements.pdf
https://arxiv.org/abs/1904.07004
https://arxiv.org/abs/2107.14283
https://arxiv.org/abs/2107.14283
https://doi.org/10.1016/j.jal.2013.04.001
https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf
https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://www.ias.edu/ideas/2014/voevodsky-origins
https://doi.org/10.1007/BFb0014566
https://doi.org/10.1145/3373718.3394794
https://dlicata.wescreates.wesleyan.edu/pubs/wl20bicubical/wl20bicubical.pdf
https://dlicata.wescreates.wesleyan.edu/pubs/wl20bicubical/wl20bicubical.pdf

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Fredrik Bakke
Segal Spaces in H

om
otopy Type Theory

Fredrik Bakke

Segal Spaces in
Homotopy Type Theory

Master’s thesis in Mathematical Sciences
Supervisor: Rune Haugseng
December 2021

M
as

te
r’s

 th
es

is

	Introduction
	I Homotopy Type Theory
	Proof relevance and constructivity
	Syntax
	Martin–Löf type theory
	Type construction
	Π-types
	Σ-types
	The empty, unit and boolean type
	Identity types

	Extensions of Martin–Löf type theory

	Types are ∞-groupoids
	Functions are functors

	Higher inductive types
	The interval type
	Function extensionality
	The circle type

	The universe type and univalence
	Univalence
	Functions are fibrations

	II Simplicial Homotopy Theory
	Simplicial sets
	Directed simplices
	Simplicial sets
	The nerve construction
	Kan complexes

	Homotopical categories
	The lifting problem
	Weak factorization systems

	Model categories
	The model structure
	Fibrancy
	Homotopies
	Reedy model structure

	Models of type theory
	Simplicial spaces
	Segal spaces
	Rezk spaces

	III Simplicial Homotopy Type Theory
	Defining simplicial type theory
	Cubes
	Topes
	Shapes
	Extensions

	Relating shapes and types
	Properties of extension types
	Extensionality of extensions
	Arrows

	Category theory in simplicial homotopy type theory
	Segal types
	Isomorphisms and Rezk types
	Some categorical constructions

	Fibrations and families
	The lifting problem
	Absolute lifting
	Comma representability
	Cocartesian families

	References

