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Abstract

An approach for the implementation of real time digital twin (DT) based structural health

monitoring (SHM) of bicycle frames is presented in this thesis. The primary goal is to

establish an Informational Technology (IT) system that can support SHM via the use of

Internet of Things (IoT) technology, as well as to apply and develop DT methodologies.

When developing the server and client solutions, the authors utilized Mendix, a platform-

as-a-service solution, as the primary development tool. The authors used an Arduino to

digitize the real loads, accelerations, and strain time histories that the bicycle is experien-

cing. The smart phone is connected to the Arduino through Bluetooth, and the data from

the sensors is consumed before being uploaded to the cloud. Due to the fact that the DT

approaches are cloud-based and consume sensor data, they help to develop an Internet

of Things ecosystem with other devices such as the smart phone and Arduino, which all

produce and consume data from the same database. The digital twin is represented by

a 6x8 look-up table, which allows real-time strain calculations in 8 virtual strain gauges

to be performed during a bicycle ride. The 6x8 look-up table is precomputed using a

unit-load approach applied to a bicycle frame modelled in a Finite Element (FE) software.

On the basis of a single IMU sensor, an analytical inverse method for the determination of

dynamic bicycle loads is built. Each column in the ROM represents the stress distribution

in 8 gauges caused by one unit load. The real gauge stresses are calculated by multiplying

the 6x8 matrix with the 6 loads calculated by the inverse method. Noise reduction and

singularity removal are performed on the sensor outputs. For model calibration and val-

idation, additional strain gauges and temporary accelerometers were put to the bicycle.

The current technique is generic but linear and hence only applicable to undamped bi-

cycle frames. The findings imply that there is potential for improvement in both the IoT

system and inverse method. The list of possible enhancements is extensive, and the future

possibilities are intriguing.
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Chapter 1

Introduction

1.1 Background and Motivation

Different load cases with seemingly infinite data points influence structures in various in-

dustries worldwide. Predicting when to maintain these structures is beneficial concerning

both safety and cost. Currently, the maintenance is based on time-consuming manual

inspection procedures, and the processes do not account for what happens in real-time.

Structural Health Monitoring (SHM) procedures in maintenance and monitoring applica-

tions can assist with safety and serviceability through the use of real-time data.

It is crucial to understand how to manage the data when using digital transformation

strategies to create Internet of Things (IoT) / Industrial Internet of Things (IIoT) or

Digital Twin (DT) systems to support business processes. The end goal of a digital

transformation strategy is to create these solutions, which have the means to sew together

a piece of the business, or the entire business to become more responsive and work smarter.

If the data is not handled correctly, the resulting information will not be precise enough

and become less attractive to use. This means that it is essential to know what data is

needed, how the data is being stored and in which frequency, where and when the data is

needed, and how the applications access, process, and display the data. Raw data is not

always helpful information and must be processed to become beneficial information. Not

only does the information need to be processed, but it is also essential to know at which

layer of the system the processing happens. Additionally, processed data is also helpful in

generating new information. Therefore, technology such as Artificial Intelligence (AI) and

Machine Learning (ML) is suitable for predictive maintenance and analyzing trends over

a more extended period. With AI and ML technologies, the applications become smarter

due to their self-learning nature. Other ways to analyze structures are by using FEM

software, but it is very challenging to use in real-time because of the required processing

power and licensing costs; thus, it does not scale very well.

DT-based SHM is a critical tool for the shift from reactive to predictive maintenance
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in applications such as automobiles, cranes, bridges, aircraft, and offshore structures.

However, even the most sophisticated IoT cloud systems are not intended to operate in

real time at the requisite sample rate. Additionally, IoT suppliers do not enable quick,

complementary edge solutions nor do they give real-time decision assistance for engineers.

This may be a temporary issue, but we are attempting to design a hybrid solution that

utilizes a combination of cloud (server) and edge (local) technologies.

This thesis provides in-depth knowledge of SHM procedures. It is tailored for those with

interests in fields related to mechanical, electronics, Informational Technology (IT) and

mechatronics. The article showcases one way of creating an IT system to support various

data processing methods in close to real-time, with the use of one edge solution and one

solution on the cloud. This way, the system can be used for vehicles, cranes, bridges,

aerospace, and offshore structures as long as there is an internet connection.

1.2 Research Questions

The purpose of this assignment is to identify and quantify current state-of-the-art IoT/DT

systems, as well as to develop new features that allow real-time structural health mon-

itoring, failure prediction, and decision support. There are several accessible benchmark

apps, but candidates must always have full access to all data. As such, this paper will

answer the following four research questions (RQ):

1. Select locations and install sensors on the mountain bike for structural and perform-

ance monitoring based on a DT.

2. Implement an IoT / edge / application framework for collection, and processing of

physical and virtual sensors for bicycle monitoring and benchmarking.

3. Implement an inverse method for bicycle load detection in the generic framework

4. Benchmark the Digital twin solution with respect to performance, fatigue prediction

and other failure modes bicycle frames.

RQ1 is concerned with the physical asset, with the location of sensors on the bike that will

provide adequate performance monitoring of the bike’s structural health. This involves

hardware selection, installation on the bike, choosing sensors and calibrating them. To

make use of the sensor data, an IoT framework must be developed, which is what RQ2

will handle. Work during the spring established a foundation that will be reinforced more

when we address RQ2. Additionally, one of the primary challenges for RQ2 is enhancing

the system’s stability and performance in order to obtain a sufficient sample rate. In

RQ3, the sensors will be employed in the inverse method for bicycle load detection, using

algorithms considered as part of RQ2’s IoT framework. Finally, RQ4 is focused with testing

and demonstrating the effectiveness of the whole system as well as the DT methods.
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1.3 Thesis Structure

Chapter 2 will discuss the techniques and results of a literature review conducted to explain

critical concepts and terminology. The findings in Chapter 2 serve as the foundation for

the remainder of the research. Chapter 3 was written as part of the spring project assign-

ment and discusses thoughts on how to represent the DT and how software is produced.

The SHM system and its components are introduced in Chapter 4, with the purpose of

presenting an overview of a general system for structural health monitoring. Chapter 5

will detail the calibration and configuration of the various sensors. Chapter 6 presents the

results of the experiments conducted to evaluate the DT approaches and the IoT system’s

operation. Chapter 7 is a discussion in which the whole system is evaluated for correct-

ness, performance, and modifiability, as well as some areas for improvement. Chapter 8

concludes the study and briefly discusses critical topics for further research.

Chapter 2 will detail the methods and findings of a literature review conducted to clarify

key concepts and terminology. Chapter 2’s results provide the groundwork for the rest

of the research. Chapter 3 discusses the ideas that are employed to represent the digital

twin, as well as the development process. Chapter 4 introduces the SHM system and

its components with the goal of providing an overview of a generic system for structural

health monitoring. Chapter 5 discusses how to calibrate and configure the different sensors.

Chapter 6 summarizes the results of tests undertaken to assess the DT methods and the

performance of the IoT system. Chapter 7 provides a study of the whole system’s accuracy,

performance, and modifiability, as well as possible opportunities for development. Chapter

8 summarizes the study’s findings and suggests relevant areas for future research.

3



Chapter 2

Literature Review

To provide an additional context for the choices made throughout the creation of the SHM

system, a comprehensive review of the literature was conducted. This chapter will discuss

the process of collecting and analyzing publications, as well as the findings of the literature

review.

2.1 Collection and analysis of articles

This section will outline the process of literacy acquisition and literature evaluation. A

comprehensive review of the literature was conducted for this objective. Systematic re-

views of the literature vary from typical reviews in that they use a reproducible, scientific,

and transparent search strategy [1, 2, 3]. By following the phases of the systematic map-

ping process, the literature review is completed and enhanced [2, 3].

The modified systematic mapping of the literature is separated into five distinct pro-

cesses, each of which leads to a distinct outcome: (1) Research questions are defined, (2)

Structured search is conducted, (3) All articles are screened, (4) Semi-structured search

and new keywords is conducted using the abstracts, and (5) Data extraction and mapping

is conducted. [3]

To supplement the basis of articles previously employed, scientific databases were

consulted to compile all relevant papers pertaining to their search subject. The original

search strings included the terms IoT Framework, IoT Platform, IoT Protocol, IIoT, Di-

gital Transformation, REpresentational State Transfer (RESTful) HTTP, MQTT, IoT

Ecosystem, and Industry 4.0.

As part of the article screening process, the search was reduced down by removing items

that had little relation to the thesis’ RQs. Included articles advanced to the next round.

Abstracts of passed-through publications were evaluated in this step and were again re-

jected if they were not of high relevance to the study. The next stage, the semi-structured

search, included the development of new keywords based on the articles provided and the
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articles discovered through the structured search in order to identify secondary sources

from the primary sources [3]. While extracting data in the last stage, all basic information

about each article was gathered using a spreadsheet, including the title of the piece, the

author(s), the year, and the journal in which it was published. This methodical data

mapping is critical for developing an overview of the articles and subjects examined. It

aided the author’s efforts in arranging the articles according to their references while also

including comments and ratings.

2.2 Findings of the Literature Review

2.2.1 IoT and IIoT differences

IoT and IIoT are two buzzwords that refer to the concept of intelligent physical objects

that are linked to one another over the internet and capable of communicating seemlessly

[22]. Through the integration of machine sensors, middleware, software, and backend

cloud computation and storage systems, the Industrial Internet enables improved visibility

and insight into a business’s operations and assets. As a consequence, it enables the

transformation of corporate operational processes via the use of the findings obtained

through sophisticated analytics interrogation of big data sets[8]. The industrial internet

of things is defined as the ecosystem generated when businesses alter their operations

digitally via the use of Industry 4.0 technologies [10].

The primary distinction between IoT and IIoT is in their intended application, with IoT

technology often aimed at consumers, while IIoT technology is aimed at industrial users

such as manufacturers and supply chains. Accuracy and precision for IIoT applications

is higher than in IoT applications because industries need to have higher fault tolerant

systems because they deal with giant machines. IIoT systems work in spaces such as

aerospace, healthcare, etc. where the room for error is very low so the risk impact is very

high in comparison to consumer-based IoT applications. The respective focus of IoT and

IIoT demand specifications, determines the ground for two parameters: accuracy/precision

and risk impact. The accuracy and precision of industrial grade applications should be

higher because they sometimes deal with hazardous processes and impact many lives on

the factory shop floor. An error could cause a company millions or even billions of dollars

of losses. [17]

2.2.2 IoT Framework

IoT frameworks seek to simplify their internal networks by concealing the bulk of the

underlying complexity and exposing data, interfaces, and functions that enable interop-

erability. Frameworks take away the networking complexity using a higher-level message

transmission abstraction such as REST or publish-subscribe. [16]
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The current difficulty with the IoT framework is a lack of standardization, despite

the fact that numerous international bodies are striving to standardize it. The biggest

hurdle to standardizing the IoT framework at the moment is that the IoT demands a dif-

ferent approach than a traditional system, and these challenges are now emphasized. The

majority of standards either focus on broad themes or on their specific subjects. However,

it is projected that the likelihood of complete compliance in the sector for some time, even

after the standards are implemented, would be minimal. [16, Chapter 3]

IoT architectures in such frameworks have four key design objectives[16, Chapter 3]:

1. Reduce manufacturing time and accelerate the commercialization of IoT products.

2. Reduce the perceived complexity associated with IoT setup and operation.

3. Enhance application portability and interoperability.

4. Enhance modifiability, dependability, and maintainability.

2.2.3 IoT Platform

An IoT platform is a multi-layer technology that allows quick development of IoT applic-

ations by offering a set of pre-configured functions. It is an essential component of the

Internet of Things since it enables communication between objects. Platforms provide a

number of services, including the management of several hardware and software commu-

nication protocols, the security and authentication of devices and users, and the collection,

presentation, and analysis of sensor data. Thus, an IoT platform must perform two func-

tions. [20]

1. It is a platform for solving problems.

2. it is a platform that connects into an ecosystem of other technologies.

2.2.4 The IoT Ecosystem

When it comes to the IoT ecosystem, it is composed of so-called producers and consumers.

The producer generates data, such as sensor data, and the consumer consumes it in order

to generate additional information or provide context for the data to be used in real-

time decision-making systems [10]. Smart devices, the first of the IoT’s fundamental

components, gather data from their surroundings, communicate with other devices through

wired or wireless network technologies, and allow internet-based communication [12].

The primary components are devices, communication protocols, and server- and cloud-

based structures for storing the acquired data [9]. It is critical to process, store, and ana-

lyze the data stored in the cloud infrastructure. The data may be fed into SHM machine
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learning algorithms and included into the structural analysis model, hence increasing the

accuracy of the model-based approach. These technologies act as both consumers and pro-

ducers of data, first consuming, then processing, and producing new information [19]. The

choice of protocol is critical and challenging for manufacturers and customers, even while

there are several protocols based on the same principles, each with its own characteristics,

advantages and disadvantages, and not all are appropriate to all IoT applications[12].

2.2.5 IoT Protocols

IoT Network Protocols

A network protocol is a collection of communication rules and processes that all stations

that exchange data across a network must follow. There are several network protocols,

however they do not all serve the same purpose or operate in the same manner. WiFi

and Bluetooth both have a range of up to 100 meters. WiFi uses WPA and WPA2, while

Bluetooth may employ a shared secret through unique identifiers. Both protocols are

market-ready, but for very different uses. WiFi is intended for use with small to medium-

sized networks and with any device that has cellular connection. Bluetooth is intended

for use in smaller networks, such as those used to send audio to headsets. [12]

Application Protocols

One of the two most widely used communication protocols are MQTT, and RESTful

HTTP [15].

RESTful HTTP

HTTP is the most widely used message protocol on the web. It was created by the

Internet Engineering Task Force and the World Wide Web Consortium and was adopted

as a standard in 1997 [6]. HTTP is the foundation for data interchange in the RESTful

Web architecture, which is built on the request/response paradigm [18]. Unlike MQTT,

which utilizes topics to identify data communication between the client and the server,

HTTP employs a Universal Resource Identifier (URI) to identify data communication

between the client and the server [18]. HTTP is a text-based protocol that imposes no

size constraints on the header portion or the message payload. The data sharing process

begins with a semi-permanent session and supports both persistent and non-persistent

connections. HTTP is a TCP protocol that utilizes TLS/SSL for security and does not

support QoS (Quality of Service) [5]. HTTP is not primarily used for the IoT sector since

it is a network resource-intensive protocol.

MQTT

At its core, MQTT is a machine-to-machine, lightweight communication protocol. Every

message contains a topic, organized in a tree-like structure, to which the clients subscribe

7



or publish. The protocol was standardized by ISO/IEC 20922 and was further accepted

as part of OASIS. The MQTT protocol was designed for asynchronous communication.

The protocol’s open-source application, called Mosquitto, is able to provide most of the

standard features of the protocol. When compared to other protocols like HTTP, the

MQTT protocol has a considerably smaller footprint, making MQTT, as stated above,

much more suitable for resource-constrained environments. MQTT deployment are very

difficult with increases of devices, but is also, as mentioned, one of the best protocols for

communication.[21]

The LAMA and GIAN use cases demonstrate how the MQTT protocol may be used to

solve problems. LAMA (Location Aware Messaging for Accessibility) is a technology that

enables essential information to be shared between individuals and regions. GAIAN Data-

base is a distributed federated database developed in Java that minimizes maintenance

via the use of biologically inspired self-organization concepts. MQTT was chosen by the

corporation because to its tailored architecture for applications such as transmitting tele-

metry data to and from space probes, which needs less bandwidth and battery power.[21]

A MQTT client is any device (ranging from a microcontroller to a full-fledged server)

that runs a MQTT library and communicates to a MQTT broker across a network. The

MQTT client is a device that connects to a broker via a network over a wireless network.

Multiple clients may receive a single broker’s message (one to many capabilities). This

enables data sharing as well as device management and control. The broker acts like a

post office, sending messages simultaneously to a large number of customers (one to many).

The key advantages of using a MQTT broker are as follows: (1) Client connections are no

longer at risk of being compromised or unsecure. (2) Scalable from a single to hundreds of

systems. (3) All client connection statuses are handled and monitored, including security

credentials and certificates. (4) Decreased pressure on the network without jeopardizing

network security (cellular or satellite network)[21]
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Chapter 3

Theory

The theories and procedures that will be used to address the research questions given in

this master’s thesis encompass a variety of technical fields, including structural analysis,

software development, and mechatronics. An overview of these ideas will be provided.

Moreover, a set of new concepts are added to create a better context around the developed

system during this thesis in order to contextualize and corroborate the results.

In the first two sections, common bicycle failure modes and the DT methodologies, FEM,

ROM and inverse method will be explained. All of the information in these sections is

linked to RQ1, RQ3, and the benchmarking in RQ4. Second, three sections devoted to

RQ3 describe the Mendix low code environment, as well as important considerations in

software architecture, and the Bluetooth protocol.

3.1 Common bicycle failure modes to be detected by the

SHM framework

The primary goal of this research is to give a framework for determining frame loads

and stresses. Bicycle frames, according to the manufacturer, seldom break because they

are normally conservatively dimensioned. Although most cyclists seek strong and de-

pendable frames, the weight penalty is disliked by energetic and professional riders. As

a result, Hardrocx is looking for optimal designs that provide optimum frame integrity

while weighing the least amount of weight. The chosen bike (physical asset) is a Hardrocx

Super Motard M4 in size 19” 3.1. A 3D CAD model was also given by the manufacturer,

allowing for an exact digital twin replica. The bike features an undamped rigid aluminum

frame that may be represented and solved using a linear FE model and solver.

Cracks in frame joints caused by manufacturing flaws are the most prevalent failure mech-

anisms [23]. Fractures may also develop in the center of a pipe as a result of undersized

tubes used to save weight. However, overturning or collision creating strains over the yield
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Fig. 3.1. The Hardrocx Super Motard M4.

limit is the most typical cause of frame breaking on an aluminum frame.

Seat tube fractures caused by consumers positioning seat pins too high are another ex-

ample. If the seat pin does not extend far enough into the seat tube on the frame, the

frame may break due to back and forth flexing. By monitoring the applied frame loads

used in digital twin-based estimations of stress time histories and cumulative damage, the

risk associated with these failure types may be mitigated.

3.2 Digital Twin Theory

To precompute the Reduced Order Model (ROM) look-up table, unit-loads were applied

to the FE frame model in FEDEM (matrix). In real time, the ROM may be multiplied

by the predicted load vector to determine gauge stresses and strains. FEDEM is also

included in the cloud solution, allowing for further in-depth off-line stress measurement

of the frame. Because of the continuing software connection between SAP (FEDEM)

and SIEMENS, cloud calculations will be automated using Mendix. Despite the fact that

these FEDEM formulations provide real-time gage stress calculations, a static ROM is em-

ployed since Mendix does not support real-time co-simulation. FEDEM is a multidiscip-

linary simulation system that enables integrated digital twin modeling and simulation by

using a non-linear finite element formulation, CMS model reduction, and control system

simulati∆rk for time increment k. In the non-linear situation, Newton-Raphson iterations

must be employed to decrease the residual forces to attain equilibrium at the end of the

time increment:
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Mk∆r̈k +Ck∆ṙk +Kk∆rk = ∆Qk (3.1)

Mk, Ck, and Kk are the system mass, damping, and stiffness matrices at the start of

time increment k, respectively. The system mass and stiffness matrices Mk and Kk are

decreased using Component Mode Synthesis (CMS), which is the primary enabler for

real-time FE modeling of non-linear systems such as entire mountain bikes [14].

vfree =

[
ve

vi

]
=

[
I O

B Φ

][
ve

y

]
= Hvsup (3.2)

As stated in [13, 11], the same approach is applied to derive strain / stress time histories

at chosen hotspots based on super node displacements.

ϵrosette = [Tre B̃ T A L H]vsup (3.3)

H is the CMS matrix that maps exterior displacements vsup to interior displacements

vfree. Internal displacements from linear couplings (MPCs) are recovered using the L

matrix. The A matrix takes the complete displacement vector and extracts the nodal dis-

placements that define the strain gauge. T is converting the extracted nodal displacements

to strain gauge directions at the local level. The strain-displacement matrix provided by

the derivatives of the strain element shape functions is the B̃ matrix. The Tre matrix,

which is optional, translates the estimated rosette strains and stresses to user-specified

directions.

Each strain gauge element’s [Tre B̃ T A L H] may be precomputed, allowing for

quick real-time computations of hot spot stresses during crane operations. As a result,

this formulation is relevant to digital twin / hardware in the loop applications.
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3.3 Software Development

During software development, there are benefits from picking suitable quality attributes

to focus on critical aspects of the system [4]. Regarding this system, there are two quality

attributes which are particularly interesting; performance and modifiability. [23]

3.3.1 Software Lifecycle

When developing complex software, having a well-considered software architecture[4] is

critical. A software architecture is composed of architectural- or design patterns that are

utilized to achieve business goals. Technology and project scope has to be evaluated as

well. Architectural patterns define how software will take shape and may evolve over

time. Enriching data and contextualizing it is a critical connection between machines and

companies, and the design must enable this as well to build a smart system. [23]

Selecting relevant patterns and thinking like a software developer is therefore critical for

supporting the company and making it possible to do more with less. Having architectural

documentation helps a developer to decide where extra functionality inside the framework

may be added, hence saving time and money. The ultimate aim is to minimize imple-

mentation time, to make modifications more affordable, to build more adaptable systems,

to make scaling more affordable, and to avoid delays in order to support business choices

both now and in the future. [23]

Fig. 3.2. Arrows denote the architecture’s flow. Each cycle begins with influences that

are weighed by the architect who designs the building. The system emerges from the

architecture, which in turn generates new influences. [4]
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3.3.2 Performance

In the software domain, performance is described as an event arriving at the system[4].

The event creates a response, thus, consumes time and resources. Throughout all of

this, the system may also service other events. A modern system for structural health

monitoring needs sufficiently low latency and a high throughput.[4]

Fig. 3.3. A variety of tactics that may be used to enhance the

system’s performance. [4]

Performance tactics, which

can be seen in Figure

3.3, may be implemented

to ensure that the sys-

tem meets time require-

ments. Meeting timing

requirements demands a

response to an event ar-

riving in the system in

a specific time span [4].

An example is when a

bicyclist starts logging

their trip and see the

logged data in a graph.

This scenario includes

several events such as listening for changes in a Bluetooth characteristic value, or re-

trieving a response from the server that an object has been created. There may also be

specific events only running on the server, for instance running a piece of java code every

time some data is committed to the server. When too many events occur at the same

time, the experience may be reduced drastically for the end user. [4]

Regarding system latency, latency is the time between event arrival and the granting of the

response. An event is either processed or blocked when it arrives at the system, resulting

in two main factors contributing to system latency - resource consumption and blocked

time. Resource consumption is the time the system takes to process the given information.

Blocked time is the time needed to re-send the data and then process it. For maximizing

performance, there are tactics called resource demand and resource management[4]

Resource demand is the frequency of events and how much resources each event

consumes. Implementing- or optimizing algorithms to minimize the resources required to

process each event will therefore reduce latency. However, this implies removing layers of

code and a decrease in modifiability, which is a common trade-off when optimizing[4].

It is possible to manage resources by increasing the processing time of an event or by

managing the resource and then sending it to the server. A reduction in the system latency

follows with the use of these tactics. Additionally, different ways to manage resources are

to increase available resources, cache data, distribute computations, or use concurrency

[4].
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3.3.3 Modifiability

Many studies shows that costs in typical software systems occurs after initial release[4].

Changes in software are made to fix bugs, improve performance or enhance user experience.

The interest in having a modifiable software centers around the cost and risk of making

changes, thus, it is important to consider the four questions from page 117 in [4].

• What can change?

• What is the likelyhood of the change?

• When is the change made and who makes it?

• What is the cost of the change?

Tactics concerning modifiability, as shown in Figure 3.4, aim to control the complexity of

making changes and the time and cost it would consume. The two main ideas for achieving

modifiability are increasing cohesion and decreasing coupling. This can be made by assert-

ing the binding time of modification, lowering the coupling between the different modules

of the system, increasing cohesion inside each module, and having well-documented code.

[4]

A notable tactic regarding this thesis is preparing software for late binding. Late bind-

ing reduces costs by a large margin but requires an upfront cost due to an increase in

development time. An example of taking advantage of late binding is setting the unique

Bluetooth characteristic identifier of a Bluetooth device in run time. In this case, binding

in run time reduces the high coupling caused by the Bluetooth architecture. However, this

also implies that the system must support reading any data type stored in a Bluetooth

characteristic of any device - which is an almost impossible task. Thus, the supported

data type must be pre-programmed by the system developer. [4]

Fig. 3.4. Modifiability tactics improves the system modifiability. [4]
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3.4 Mendix: Low-code Application Development Platform

Companies have invested in platforms to streamline development time. Mendix, which

is a PaaS is one of these services that allows faster software creation by abstracting and

automating parts of the development process. These services are ideal for organizations

who seek agility within IT. Many applications existing today follow the same pattern

called Model View Controller (MVC), which is very popular among todays websites and

applications[4]. The MVC pattern is the essence of the Mendix platform and allows

the developer to access solutions that support high modifiability and scalability. This

way, developers avoid the need to reinvent the wheel since PaaS reduces the costs and

complexity of managing infrastructure so that users can focus on improving the application

delivery process. MVC increases decoupling between the different parts of the system such

that they can be developed and tested individually without affecting one another. One

can observe this pattern in Mendix through its components called action, flow, and page.

Interoperating with other system is possible through the java or javascript actions. Mendix

enables users to model an application in a human-readable form, reducing the complexity

and turnaround time for custom development. Learning tools on their websites allow

Mendix developers to learn the system through different modules [34].

Figure 3.5 depicts the Mendix Studio Pro 9.5.0 desktop application for designing client and

server solutions. This tool enables full-stack software development by using pre-configured

components for page and database development. Additionally, the program offers an

effective error handling mechanism that presents potential error fixes. Additionally, there

is a marketplace where developers may share and install modules.

Fig. 3.5. The Mendix Studio Pro 9.5.0 PaaS desktop application for developing client

and server solutions.
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3.4.1 Cloud Foundry

Cloud Foundry is an open source cloud Platform as a Service (PaaS) designed specifically

for developers. Cloud Foundry, in contrast to other cloud platform services, is a self-

contained software package. Cloud Foundry is available on AWS, Azure, and Google

Cloud, as well as on-premises through OpenStack, HP’s Helion, or VMware’s vSphere.

Cloud Foundry includes routing, authentication, application lifecycle management, storage

and execution, service brokers, messaging, monitoring, and logging. [28]

Cloud Foundry can help developers manage their workloads and Linux application re-

sources more efficiently, hence saving operating expenses [28]. It supports DevOps work-

flows and multi-tenant computing. Cloud Foundry manages the lifetime of applications,

including their development, testing, and deployment, as well as their interface with cloud

providers. It is a free Platform as a Service (PaaS) that enables developers to create in a

variety of languages. This helps to avoid vendor lock-in. Cloud Foundry supports the fol-

lowing programming languages: Java, Node.js, Go, PHP, Python, Ruby, .NET Core, and

Staticfile. VMware invented Cloud Foundry, which is now owned by Dell Technologies’

Pivotal Software. The Cloud Foundry Foundation is a non-profit collaborative project of

the Linux Foundation and backed by companies such as IBM, SUSE, SAP, VMWARE,

Accenture, Huawei and more [29].

3.4.2 Amazon Web Services

When it comes to cloud ecosystems, Amazon Web Services (AWS) is the market leader in

both Infrastructure as a Service (IaaS) and Platform as a Service (PaaS), which can be

combined to create scalable cloud applications without having to worry about infrastruc-

ture provisioning (compute, storage, and network) or management delays. [24]

Through the usage of AWS, one may choose the precise solutions that are required and

pay only for the infrastructure that is really utilized, resulting in cheaper capital invest-

ment and quicker time to value without compromising application performance or user

experience. One of the reasons why many organizations utilize AWS is that it provides

a variety of storage options that are both affordable and quickly accessible. It may be

used for a variety of tasks like as data storage and file indexing, as well as to operate

mission-critical business applications. [24]

API-driven programming on AWS may allow businesses to construct uncompromisingly

scalable apps without the need for an operating system or other technologies. There are

so many firms all over the globe that use AWS to build, implement, and host applications,

whether they are technological giants, startups, the government, food producers, or retail

enterprises. In accordance with Amazon, the number of active AWS users has surpassed

one million. Netflix, Adobe, Airbnb, AOL, and Coinbase are just a few of the firms that

rely on AWS. [24]
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3.4.3 Application Programming Interface

An Application Programming Interface (API) allows businesses to expose the data and

functionality of their applications to external third-party developers, commercial partners,

and internal departments inside their organizations. Through a specified interface, this

enables services and products to interact with one another and exploit one other’s data

and capability. Developers do not need to understand how an API is developed; they

just connect with other products and services over the interface. API use has exploded

in popularity over the last decade, to the point that many of today’s most popular online

apps would not be feasible without them. [33]

3.5 Bluetooth Protocol

A common technology in everyday gadgets is the Bluetooth protocol. In modern times,

most individuals have gained familiarity with using gadgets with Bluetooth technology.

Bluetooth technology uses the publish and subscribe pattern[35]. The advantage of this

pattern is low power consumption, its suitability with graphical interfaces and its pop-

ularity. Downsides are lack of scalability, message predictability, increased latency, and

message delivery are not guaranteed[4].

Fig. 3.6. This figure taken from the Arduino bluetooth documentation[35] shows a dia-

gram of how the Bluetooth technology is built. An example of a central device is a

smartphone, and an example of a peripheral device is an Arduino. For instance, in the

Arduino script, it is possible to set up multiple services with characteristics that either

publish or connect central devices to write values to the characteristic. An everyday ex-

ample of writing values would be to change speaker volume or lights on or off using a

smartphone application.
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Chapter 4

Description of the Structural

Health Monitoring System

A comprehensive description of the whole SHM system, which was developed for the aim of

monitoring the structural health of mountain bikes, will be provided in this chapter. The

major goal of this study was to assess a digital twin system for Hardrocx bicycle frames

that was capable of sensing loads and conducting SHM on the bicycle frames. Because to

the need for a wide system bandwidth, comprehensive FEA or Functional Mockup Unit

(FMU) were ruled out due to the high bandwidth requirements. The hardware and power

supply available on a bicyle are also limited, and it was believed that a ROM would be the

only solution. Despite the fact that these methods are most applicable to linear problems,

bicycle frames are considered to react linearly to structural pressures until they collapse

or cause substantial damage. In terms of software development processes, the system

adheres to the theory given in sections 2.2, 3.3, 3.4, and 3.5 in order to implement the

methodologies mentioned in section 3.2.
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4.1 The Digital Twin FE Model

The manufacturer provided a physical and digital 3D model of a 19” Hardrocx SuperMo-

tard M4 bike. The 3D model is an exact replica of the actual bike. Prior to meshing, only

minor CAD elements that did not affect structural integrity were deleted. The bike model

was idealized and meshed in NX using Teth 10 elements with a thickness of 6 mm. The

FEM model comprises 154982 elements and 308957 nodes in total. Aluminum material

attributes were attributed to the tetrahedral elements. RBE2 and RBE3 parts represented

the seat and steering pin, as well as the wheel hubs. The meshed model was imported

into FEDEM, where correct boundary conditions were given to free joints representing the

front and rear wheel hubs. Following that, unit loads were applied at predetermined sites

and directions to produce the ROM.

(a) Unit x-Load(1) (b) Unit z-Load (2)

(c) Unit z-Load (3) (d) Strain gauge #4

Fig. 4.1. FE model of the bicycle frame
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4.2 The static ROM

Mendix presently does not enable co-simulation, and FE analysis of the whole frame is too

CPU intensive to perform in real time. Furthermore, only stresses in specific [7] hotspots

had to be computed. Because it provides a linear relationship between a few crucial

input loads and output hotspot stresses/strains, this trade-off has shown to be an efficient

strategy. [32]

Thus, a static ROM for the 19” Hardrocx bike was constructed by pre-computing

the stresses at eight specified frame positions in FEDEM. These places were previously

recognized as densely populated hotspots [23, 7]. Strain gauges on single legs placed in

hotspots might then give stress time records for fatigue calculations.

Because of this, the static ROM consists of an 8 x 6 matrix (look-up table) including

information on the load–stress relationship for the Hardrocx 19” frame. In order to get

the stress distribution in the eight strain gauges, the inverse method is used to calculate

the six structural loads, which are then multiplied by the 8x6 matrix.

In FEDEM, the graphic below depicts the stress contributions from each applied

unit load. These stress distributions are too time-consuming to compute in real time,

but they were utilized to determine the ideal strain gauge placements. The strain gauge

findings are then computed in real time by multiplying the ROM matrix by the load vector

determined by the inverse method.

Table 4.2 shows how the 8 gauge data corresponding to the 6 unique unit loads in Table

4.1 may be arranged into a matrix. Because the model is linear and solves for similar

boundary conditions, the gauge stresses caused by any combination of unit loads given

to the FEDEM model or multiplied by the ROM matrix provide identical results. As a

result, any inversely determined combination of actual loads may be multiplied by the

ROM matrix to estimate the real stress time histories. The static ROM is only useful

when the stresses are less than yield. The different physical loads’ stress contributions

may then be overlaid. Finally, stresses above yield will be detected by a smartphone app

trigger event.

Unit-Load Matrix

Stress-in

Gauge-ID
Unit Load 1 Unit Load 2 Unit Load 3 Unit Load 4 Unit Load 5 Unit Load 6

1 2,62E+02 -4.15E+03 -1,25E+03 9,88E+03 -7,31E+02 4,60E+02

2 1,08E+04 3,20E+03 -2,32E+03 -1,87E+04 -1,85E+03 -3,95E+03

3 -1,38E+04 -2.89E+04 -6,02E+03 8,45E+04 -8,59E+03 4,04E+01

4 1,56E+04 2,56E+04 1,18E+04 -7,83E+04 1,64E+04 -9,89E+01

5 1,90E+04 -8,74E+03 -3,03E+04 2,41E+03 -2,05E+04 8,46E+02

6 1,87E+04 -8,82E+03 -3,03E+04 2,86E+03 -2,04E+04 9,35E+02

7 1,51E+04 4,34E+03 -3,47E+03 -2,58E+04 -3,23E+03 -4,76E+03

8 1,02E+04 2,76E+03 -1,98E+03 -1,70E+04 -4,83E+03 -2,26E+02

Table 4.1: The Unit Load Matrix
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4.3 The Inverse method

Based on projected bicycle loads, many approaches may be used to compute bicycle

stresses. Covill & Al [7] provide a thorough summary of the methodologies used to determ-

ine stresses induced by different load scenarios. They also identified road bumps at the

front and rear wheels as the most crucial load instances, resulting in vertical accelerations.

Brake forces are less significant, but they are quick to calculate, thus they are included in

this research.

TrueLoads software [32] is a more current solution for capturing bicycle loads using strain

gauges. The strain gauge distribution is optimized using unit loads applied to specific loc-

ations and directions on a physical asset’s linear model. On TREK bikes, this technology

is utilized to collect loads for frame design and optimization [32]. The favored method in

this investigation was TrueLoads, however the hotspots were previously found in [23, 7],

as shown in Figure 4.2. For final Digital Twin certification, real and virtual strain gauges

were installed on these hotspots. TrueLoads would also need a costly Digital-to-Analog

Converter (DAC) and at least 12 additional strain gauges to identify the six most essential

loads illustrated in 4.3.

(a) Strain gauge 1, 2 & 7 (b) Strain gauge 3 & 4 (c) Strain gauge 5, 6 & 8

Fig. 4.2. Strain gauge distribution

As a result, the authors chose to estimate the frame inertia cyclist loads using data from

a single low-cost Arduino IMU mounted on the baggage rack. Based on the recorded

accelerations (ax, ay, az) and angular rates (α̇y, β̇y, γ̇y) around the global coordinate system

shown in Figure 3.1, the most essential frame loads during a bicycle ride may be computed

in real time, as shown in Table 4.1. As response forces in free joint springs, the vertical

loads operating in the front and rear hubs due to acceleration and braking are incorporated.

These are nonlinear compression springs that serve as tire models.

Because both front and rear wheel bumps contribute measurable vertical acceleration az,

a vertical load distribution is estimated based on the bicycle geometry, and angular bicycle

pitch acceleration β̈y is derived as the derivative of β̇y. When the pitch rate is negative,

the front wheel is passing over a bump(wheel lift), and vice versa when the pitch rate is

positive and the rear tire is travelling over a bump. Physical riding tests on the Hardrocx

bike were used to evaluate the rider mass distribution (20% handlebar, 50% seat, and
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Fig. 4.3. Frame loads that have been applied

30% crank). Because weight distribution varies depending on riding position, all physical

tests are conducted in the same sitting test position. Additional load cells on the seat

and handlebar tubes would be required to record the rider mass distribution during varied

sitting positions and offroad handling. This kind of force-driven digital twin arrangement

is more precise, but it contradicts the intended simplicity and present budget limits.

The accelerations during front and rear wheel bump passes are calculated using the ob-

served IMU pitch rate β̇yIMU and vertical acceleration azIMU :

Handlebar acceleration azH = Hβ̈yIMU + azIMU (4.1)

Crank acceleration azC = Cβ̈yIMU + azIMU (4.2)

Seat acceleration azS = Sβ̈yIMU + azIMU (4.3)

β̈y =
β̇y,t+1−β̇y,t−1

2dt (dt = sampling time increment) determines the pitch acceleration. These

accelerations are response inputs to an inverse method capturing the most significant dy-

namic loads operating during a bicycle ride, as illustrated in 4.1. Future implementations

will include inverse methods for collecting handling loads, however the existing hardware

(Arduino shells) and instrumentation (one IMU) are insufficient for real-time offroad hand-

ling load computations. The true inverse method implementation, on the other hand, is

more sophisticated and is tweaked by preliminary experiments.

The inverse method is based on simple yet rapid analytical calculations that estimate

the primary vertical stresses and weight transfer during a bicycle ride’s acceleration and

braking. This response-driven method might be expanded to include managing loads.

However, lightweight force transducers fitted on the handlebar and seat tubes can imme-

diately sense the biker’s sprung inertia loads, obviating the requirement for an inverse
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method. While the existing single IMU-based response-driven inverse method is rapid, it

is confined to straight-forward bicycle riding and not to general offroad handling. While a

force-driven digital twin is a more straightforward and accurate solution, the majority of

force transducers are excessively hefty (see Figure 6.3) and will compromise the suggested

SHM framework’s simplicity.

Inverse Method

ID Force Sensor Output Property Inertia Loads by Inverse Method Description

1
Handlebar

x-load
ax Mass max

Biker loads due to ax (mainly weight

transfer during breaking) (100%)

2
Handlebar

z-load
az Mass 0.2mazH

Biker loads due to gravity and a z

(20% weight distribution)

3 Seat z-load az Mass 0.5mazH
Biker loads due to gravity and a z

(50% weight distribution)

4 Front x-load ax Mass
maxIMU , (axIMU<0)

0.02mazIMU , (axIMU>0)

Front brake load (assume 100% of

total brake load) or 2% rolling resistance

5 Crank load z az Mass 0.3mazC
Biker loads due to gravity and az

(30% weight distribution)

6 Chain load Torque
Pedal

(radius)
Torque/radius

Applied compression load from

crank torque (in lower arm)

Table 4.2: The Inverse Method
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4.4 The Hardware

4.4.1 Arduino Microcontroller

Fig. 4.4. Arduino Uno WiFi Rev2

The Arduino Uno WiFi Rev2 microcontroller is used

to digitize the strains and accelerations that the bi-

cycle frame and bicyclist are experiencing, as well as

locally connect to a dedicated smart phone prefer-

ably attached on the bicycle handlebar. The code

for making this happen can be found in C.1. Re-

garding the sensors, the sensors interface with the

Arduino via two shields: the 9-axis motion shield[25]

and the Crowtail-Base Shield[27], both of which are

mounted on top of the microcontroller. It is neces-

sary for this project to get acceleration in the ax and

az axes using the accelerometer, and the pitch in the y direction included into the 9-axis

motion shield, which uses an BNO055 IMU. There is also an LSM6DS3 IMU installed dir-

ectly on the Arduino Uno WiFi Rev2 used for benchmark purposes. The crowtail shield is

used to connect the strain gauge sensor modules[26] without the need for solder; figure 4.11

illustrates this. All of the components in this system run at 5 volts, have an acceptable

bit resolution, and are well documented.

An overview of the different states of the Arduino program is pictured in 4.7. The arduino

script is setup to read sensor values once every ten milliseconds, resulting in a sample

frequency of one hundred hertz. Accelerations, strain gauge and timer values are stored

in two data types, strain gauge and acc gyro, which are customized datatype created

specifically for sending the sensor data via Bluetooth to the phone. These data types are

16 and 10 bytes in length, respectively, which is inside the 20-byte payload limitations of

the Bluetooth version running on the Arduino. The code for the data type can be found

in appendix C.1. The union type allows for the storing of several data types, in this case

struct and byte, in a single data structure. An unsigned long of 4 bytes (32 bits) is used

to store the trip timer, and six short data types of 2 bytes (16 bits) each are used to store

sensor data from the IMU and strain gauges.

Fig. 4.5. Arduino shields: 9-axis left, crowtail right
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Fig. 4.6. Overview of the mechatronics system.

Fig. 4.7. Arduino state diagram to describe the Arduino script found in C.1.
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4.4.2 Strain gauge and instrumentation

The strain gauges used are of the type FLA-w-350-11-1L, a general-purpose metals strain

gauge developed by Tokyo Measuring Instruments Lab[36]. Each area for the strain gauges

was roughened using 220 grit sandpaper and cleaned with acetone. The strain gauge was

very carefully attached to the frame using a sheet of teflon, which is chemically resistant

to the specified adhesive. After the glue had dried, a squared piece of HBM’s ABM75

covering material was gently put on top of the strain gauge to establish a connection

between the gauge strain and the frame and to secure the strain gauge. A few further

efforts were taken to secure the area and eliminate as much noise as possible. Several

wires were attached to the frame near the covering material. A section next to the strain

gauge was bonded to the wires that were especially exposed. Additionally, the wires were

put into cable hoses and heat shrink tubes were added at entrance locations and where

the cable hoses needed to be stretched.

(a) Strain gauge #1 (b) Strain gauge #2 (c) Strain gauge #3

(d) Strain gauge #4 (e) Strain gauge #5 (f) Strain gauge #8

Fig. 4.8. Strain Gauge Physical Locations.
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Fig. 4.9. Strain Gauge Modules and 5V power supply with the system turned off.
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Fig. 4.10. Box closed with the system turned on.

Fig. 4.11. Box open showing the baseplate and arduino stack with the system turned on.
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4.5 The Software Solution

The architecture for the software solution follows the theory regarding the IoT and IIoT

differences, IoT framework, IoT platform, IoT protocols presented in chapter 2 in order

to create a system that is able to: Solve problems, interconnect with other technology,

create an ecosystem of producers and consumers, reduce complexity with IoT setup and

operation, enhance modifiability, dependability and maintainability, and accelerate the

commercialization of IoT products. The theory section 3.3 is also present.

Be assured that the system is still in its infancy, but the core of the system is

complete. The framework of the system is built upon the Mendix platform which utilizes

TCP connection to connect to any server using Transmission Control Protocol (TCP)and

HTTP, as well as Bluetooth network communication to communicate between nearby

devices. Since the whole solution is highly modifiable and can be interconnected with

other systems using various API’s suppored by Mendix, the solution can be labeled both

as an IoT framework, and also an IoT Platform.

The ecosystem developed using the Mendix platform is shown in figure 4.13. The Ardu-

ino microcontroller is the system’s producer, since it gathers raw sensor data. The raw

sensor data is sent over LAN to a linked smart phone through the Bluetooth protocol.

The smartphone consumes the data and sends it to the server over RESTful HTTP and

TCP. Once data is committed to the server, a Mendix task queue dedicated for doing

multi-threaded work, will be notified and thus consume the data as well as generate new

information using the inverse method and ROM described in sections 4.3 and 4.2.

To facilitate the setup and operation of the IoT asset, the system is designed in such

a manner that it requires little programming experience to maintain or support other

devices, standards, and so on. Additionally, adding new assets that the platform user

can monitor is a breeze. Mendix’s cloud is also exceptionally available due to its Cloud

Foundry and AWS architecture.

Figure 4.12 is created to exemplify the pipeline used to enrich the data. Note that

in the current system, there is no AI or ML applications running, but the system does

support it by using the Java virtual machine.

Fig. 4.12. The figure illustrates the steps required to turn raw data into valuable inform-

ation for decision-making processes. Take note that the data enrichment process is what

enables these decisions, and the intention of the process is to provide context.
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Fig. 4.13. The figure depicts the IoT ecosystem created by the technologies used in this

system. Local connection is shown by the green dotted boundary, whereas TCP client-

server connectivity is indicated by the red solid line. Numerous devices may be connected

to the system using the Mendix API’s. The diagram depicts a simplified version of the

whole system, notably the server solution, which is handled automatically by the Mendix

system and has various components that the author did not configure.
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4.5.1 The Mendix Client Application

In order to connect the bicycle instrumented with sensors to the ecosystem, the Mendix

client plays an essential role. Throughout the bicycle ride, the Mendix client is accessible

via a web browser on essentially any device, but is suggested to be used on a smart

phone during ride or computer during development and testing. During the ride, the

smart phone is supposed to be mounted to the handlebar of the bicycle. By logging in

and navigating the site, the user may create a bicycle riding event, delete existing assets,

configure existing assets, check the data, and save the data in Excel or Comma-Separated

Values (CSV) format. At the end of the document, appendix D presents a total of fourteen

pages which can be studied in order to get a glance of the whole system. The functionality

of the Mendix edge client varies depending on who uses the web site. For instance, an

administrator has added functionality since the role is essential to setup the whole system.

Moreover, other security measurements taken are restrictions put on each user’s ability

to create, modify, or delete particular data on the server. Using Mendix Studio Pro’s

built-in documentation features, which can be found in E, the author has documented

the whole solution. Mendix applications are completely reliant on the Mendix developer’s

ability. There are various difficulties in designing such an application, and the learning

curve is initially somewhat high, but the system is well documented, notifies the developer

of errors, and allows for debugging.

Database

Mendix Studio Pro 9.5.0’s domain model can be observed in figure 4.14. The Domain

Model is used to create the database for the Mendix application that the ecosystem and

IoT platform is all about. For NTNU students modeling databases, the process is akin to

building ER diagrams, which is a well-known approach for producing Entity Relationship

(ER) diagrams. The rounded blue squares in the figure represent entities. The arrows

that connects the blue squares symbolize one-to-one, one-to-many, and many-to-many

connections, depending on the situation. Mendix creates database tables for entities and

relations in a fully automated manner. The supported data types are seen to the right of

figure 4.14. All supported data types inherit from the Data entity. The DataType entity

is only possible to be deleted and created by an administrator.

In the database, the Asset is one of the most essential entities to understand. Each asset

necessitates the use of one or more Bluetooth-compatible devices (e.g., Arduino). Also,

every device should offer one or more Bluetooth services to locally connect the devices

together. Furthermore, each Bluetooth Service should have at least one Characteristic

that indicates a data type that corresponds to an entity in the domain model. There is no

limit to how many Bluetooth characteristics a Bluetooth service may have. A one-to-many

relationship exists between the Event and the Asset, Device, Service, Characteristic, and

EventBatch entities, which means that events may be associated with a variety of distinct
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Assets, Devices, Services, Characteristics, and EventBatch entities. The Data entity is also

connected with the Event, enabling other Bluetooth data entities (strain gauge, acc gyro,

inverse data, uint, or float32) to inherit the connection, leading in a simpler model, data-

base, and less associations necessary for any data types created in the future. It is possible

to cast the Data entity to one of the child entities in a microflow to check which datatype

that is associated to a given event. The red squares around the relationships show that

the database will cascade after deletion. In other words, when an Asset is removed, all

connected Devices, Services, and Characteristics, etc. are also erased, guaranteeing that

the database does not hold any unnecessary information.

User Interface

The User Interface (UI) is created in Mendix Studio 9.5.0 utilizing pages. In pages, the

user interface is developed using the What-you-see-is-what-you-get (WYSIWYG) manner,

which involves dragging and dropping widgets that add functionality to the page. These

functions include website navigation, data visualizations, data maps, and user login. The

application consists of fifteen pages in total. These sections enable users to add and update

assets, devices, and events, as well as see real-time sensor data. Additionally, the sites are

created with consistency in mind to ensure that graphical components and functionality

are consistent across all pages. The following pages in D provide designs for the pages and

a description of the implemented functionality.

4.5.2 System performance

Previously, there were several concerns with missing data owing to the high volume of

internet traffic produced by the use of 100 hertz. Now, when monitoring a single Bluetooth

feature, the software is capable of maintaining a continuous 100 hertz operating frequency.

The prior issue was fixed by reducing the number of server transactions by transmitting

data in chunks, which reduced the number of server transactions. To begin, the Mendix

edge client connects to the Arduino’s data through Bluetooth and subscribes to it. As a

response, Arduino publishes the data at a frequency of 100 hz to the subscribers. It is

then appended to a string in the Mendix Edge Client, which is sent to the server every

250 milliseconds. The data string is processed on the server side and then committed to

the database along with the sensor values and timestamps. See B.2 for the Java code run

on the server, and A.1, A.2, A.3 for the JavaScript code run on the client.
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4.5.3 System modifiability

The Mendix application is highly modifiable since it is developed using the Mendix PaaS.

The application is easily adjusted in the future by someone without any previous exper-

ience in Java or JavaScript. The development tools shown in Figure 4.15 were utilized

throughout the development stage and should be used in the future while developing on

the specified system.

Fig. 4.15. Overview of the tools used for development.
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Chapter 5

Recording Calibration and Setup

This chapter will detail the procedures for configuring the sensors. The system collects

data from two distinct types of sensors: an IMU sensor (BNO055) and six strain gauge

sensors. To produce useable data from the sensors, one procedure has to be performed for

each sensor. This chapter details these activities.

5.1 Strain Gauge Sensors

5.1.1 Step 1: Adjusting potentiometer

A total of six strain gauges have been installed on the bicycle. Each sensor is connected

to a separate module which can be seen in 5.3, which is used to ensure that it is properly

calibrated. The values that can be collected by the AD converter on the microcontroller are

limited to those that fall between 0 and 1000. Therefore, each sensor had to be calibrated

within this range, and thus the range of strain measured in the frame had to be within

this range as well, otherwise the system would fail. It was necessary to submit each sensor

to the largest load possible in order to get an adequate value for each sensor. As a result

of a high load, the different strain gauge sensor values were ranging between -100 to 200.

As an outcome of these observations, the value of each sensor was adjusted to a value of

500. In this case, the highest value is estimated to be around 700, and the lowest 400.

Fig. 5.1. Crowtail strain gauge module. The variable resistor is colored in blue.
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5.2 IMU

The system is currently equipped with two different IMU’s; BNO055 and LSM6DS3. This

section only concerns the calibration of the BNO055.

5.2.1 Adjusting the global x-y-z direction

Figure 5.2a exemplifies how the IMU sensor used in the system is mounted on the bicycle.

The BNO055 is spun clockwise by 90 degrees which makes the x-axis point in the opposite

direction when compared to the y-direction used in the inverse method coordinate system

as displayed in 5.2b. As a result, the value read from the gyroscope in the BNO055

will have the opposite sign. This has been accounted for while programming the inverse

method in java, as well as post-processing the data in excel. This is perfectly acceptable

and will have no influence on the values needed by the selected DT methods.

(a) IMU coordinate system. (b) Inverse method coordinate system.

Fig. 5.2. The different coordinate systems used in the IMU sensor and the inverse method

calculation.

Fig. 5.3. 9-axis motion shield coordinates.

36



Chapter 6

Test Results

The purpose of this chapter is to conduct a series of tests to determine whether or not the

concepts and methodologies chosen have been executed correctly. This series consists of

three exams. The initial step is to validate the digital twin methods’ correctness via the

collection of data from a load cell. The second test is focused with system performance and

is designed to determine the overall speed of the system. Test number three demonstrates

how easy it is to add and monitor a new device to the system. The fourth and final test

conerns the measurements taken from three bicycle rides

6.1 Digital Twin Validation

For the purpose of determining the relationship between strain and force acting on the

bicycle seat, a load cell was used as shown in 6.1. With this configuration, the aim is to

capture the most exact data possible in order to validate the ROM. The ROM presented in

Table 4.1 is valid only if the bicycle frame exhibits linear behavior. As a result, a physical

test was undertaken to compare the physical and digital bicycle models. Constructing a

connection between the load cell and a Spider 8[31] strain gauge measuring equipment

made it possible to record the data in catman software [30]. The weight was placed on

the load cell with the help of a forklift, as shown in 6.2. As indicated in Figure 6.3, the

seat tube was replaced with a force sensor installed on an equivalent aluminum tube and

200 kg was applied with the forklift.

As indicated in figure 6.4, the output stresses from the physical test were recorded and

compared to the simulated gauge stresses. Correlation is excellent, and the right graph

illustrates the linear relationship between simulated and observed stresses. This demon-

strates that the digital twin FEDEM model accurately predicts real-world physical stresses

and that, owing to the linear structural behavior, the FEDEM model can be represented

by a static ROM.
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Fig. 6.1. Load cell is located at the seat of the bike. The data from the load cell and

strain gauge sensors are read in catman.

Fig. 6.2. Placing weight onto the bicycle seat using a forklift.
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Fig. 6.3. Physical benchmark of the Digital Twin.

(a) Gauge stresses (b) Simulated gauge stress

Fig. 6.4. Simulated versus measured gauge stresses
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6.2 Testing the performance of the system

6.2.1 Monitoring single values

As shown in tables 6.1-6.4, the sensor data is monitored at approximately 100 hertz

sampling rate. Each characteristic were monitored in over three different time-spans,

15s, 30s, and 60s. One can observe that the LSM IMU sensor slightly outperforms the

BNO055 IMU sensor.

Event Name Hertz

SG 15 99,64

SG 30 99,61

SG 60 99,54

Averaged 99,60

Table 6.1: strain gauge

Event Name Hertz

BN 15 98,34

BN 30 98,97

BN 60 99,04

Averaged 98,78

Table 6.2: acc gyro using the BNO055.

Event Name Hertz

LSM 15 99,64

LSM 30 99,58

LSM 60 99,59

Averaged 99,60

Table 6.3: acc gyro using the LSM.

Event Name Hertz

GG 15 99,22

GG 30 99,14

GG 60 99,11

Averaged 99,16

Table 6.4: grav gyro using the LSM.

6.2.2 Monitoring Multiple Values

When monitoring several values at the same time, the sample frequency declines from a

constant 100 hertz to about 74 hertz, as seen in table 6.5 with two recorded characteristics,

and 60 hertz in table 6.6. The value indicates that a greater number of subscribed features

will result in a lower sample frequency.

Event Name Hertz (strain gauge) Hertz (acc gyro)

SG BN 15 74,05 73,86

SG BN 30 72,94 72,83

SG BN 60 73,69 73,78

Averaged 73,56 73,49

Table 6.5: Logging two characteristics: strain gauge and the acc gyro using the BNO055

IMU.
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Event Name Hertz (strain gauge) Hertz (acc gyro) Hertz (grav gyro)

SG BN 15 60,42 59,82 59,30

SG BN 30 59,90 60,48 60,22

SG BN 60 59,84 59,90 59,81

Averaged 60,05 60,06 59,77

Table 6.6: Logging three characteristics, the strain gauge, acc gyro and grav gyro using

the BNO055 IMU.

6.3 Testing the modifiability of the system

6.3.1 Introducing a new 32-bit float datatype into the system

This situation will arise if a user is unable to access a certain data type. For example, if

a brand-new sensor is used that necessitates the use of a distinct data type, it is possible

that this data type will not be supported by an existing data type. Therefore, this test

illustrates how the modifiability specified in 3.3 makes it straightforward and affordable

to add new data types to the set of supported data types. As shown in 6.7, the process of

adding a new data type took in total 4 minutes.

Introducing a new 32-bit float datatype into the system

Step Description Time

1 Updating the Domain Model 1 min

2 Updating the Javascript Code 1 min

3 Testing 2 min

Table 6.7: Process for adding a new 32-bit float datatype to the system.

41



6.3.2 Adding a new Bicycle asset

With this test, the goal is to show how late binding may be utilized to speed up the process

of adding a new asset to a project. According to 6.8, the total duration for creating a new

Asset was 200 seconds. The stages in this method presuppose that the Bluetooth service-

and characteristic has previously been identified and that the datatype is supported by

the system, as described in table 6.7.

It is crucial to recall that step 6 leverages late binding, which means that the datatype

for the characteristic is determined at this step. The administrator will create this data

type, which will be stored on the server and retrieved once the data string containing the

recorded sensor readings arrives. When the data arrives at the server, it is processed and

placed in the entity with the same name in the domain model 4.14. This again increases

usability since it requires fewer steps to select the data type for the characteristics when

existing data types will be reused.

Adding a new asset to the system and configuring it.

Step Description Time

1 Uploading Arduino Code to Microcontroller 60 s

2 Logging into the SHM Webpage 10 s

3 Create and configure the asset 20 s

4 Create and configure the device 20 s

5 Create and configure the Services 30 s

6 Create and configure the characteristics 60 s

Table 6.8: The process of setting up and adding a new asset to the system.
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6.4 Measurements taken from three bicycle rides

Fig. 6.5. Standard speed bump

Initial testing traveling over the conven-

tional speed bump shown in Figure 6.5 at

a speed of 20 [km/h] demonstrated that

a greater sample rate higher than 100

hertz was required to capture the dynamics

triggered by the combination of stiff tires

and transient impact loads upon striking

the hump. Due to the sample rate available

when recording all eight strain gauges and

IMU sensors, smoother test rides, as seen

in Figure 6.6, were chosen. The Bromst-

adekra road chosen has a rough surface and

one of Trondheim’s highest speed bumps.

Vertical a azIMU and longitudinal axIMU

accelerations in the range of 0-2.5G and pitch rates β̇yIMU up to 60 rad/sec were recorded

by the IMU sensors, which were utilized by the inverse method to compute handlebar

azH seat azS , and crank azC accelerations, as well as gyro pitch β̈y accelerations. Due

to the sensitivity of these data to numerical noise and sample rates, a 10 Hz low pass

filter was used to smooth out transient accelerations. Based on the estimated rider mass,

the observed accelerations are utilized to determine the applied inertia loads. This is a

very cautious technique, since the IMU is permanently linked to the bike frame, yet the

rider’s body is greatly damped and functions as a low pass filter for the transmitted bike

accelerations.

(a) Trip 1 (b) Trip 2

Fig. 6.6. The selected test rides
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In future implementations, the inverse method will be phased out in favor of force trans-

ducers mounted directly to the handlebar and seat tubes to directly sense applied inertia

loads. Force-driven digital twins are far more resilient than response-driven digital twins

that are impacted by numerical noise generated by accelerometers or strain gauges [14].

(a) ax and az trip 1 (b) ax and az trip 2

(c) Gyro Rate Trip 1 (d) Gyro Rate Trip 2

Fig. 6.7. IMU Outputs, trip 1 and trip 2

To determine the unsprung riders body mass that results in inertia loads, a mannequin

that properly replicates the rider body’s damping and flexibility when aroused by the

rigid body bicycle motion is required. This is a difficult problem that will be handled in

subsequent effort. Thus, the measured effective unsprung handlebar, seat, and crank rider

mass is compared to the physical strain gauge data in a simple test crossing the speed

bump depicted in Figure 6.5.

The rigid body handlebar (azH), seat (azH), and crank (azH) accelerations are de-

termined using Eqs. 4.1, 4.2, and 4.3. Figure 6.9 illustrates them. The inverse method

uses these estimated accelerations to determine Loads 1-6 in Figure 4.3.

After that, the stresses for the eight virtual gauge’s are determined by multiplying

the load vector (Load 1-6) by the precomputed FEM-based ROM presented in Table 1.

The ROM is confirmed physically, as seen in Figure 6.4. Figure 6.10 and 6.11 illustrates

the virtual and actual strain gauge stresses.

As can be seen from the graphs, the stress correlation is excellent for gauge 1 and 2

positioned on the crank tubes. The stresses in virtual gauges 3, 4, and 8 were too cautious

in comparison to the real gauges’ results. This is a direct result of the IMU accelerations

shown in Figure 6.9, which indicate the rigid body bicycle motion, rather than the sprung

/ damped acceleration of the rider’s body. In future development, a second IMU will be

mounted on the rider’s body to record the inertia loads delivered to the bicycle frame.
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(a) Calculated Accelerations Trip 1 (b) Calculated Accelerations Trip 2

(c) Gyro Accelerations Trip 1 (d) Gyro Accelerations Trip 2

Fig. 6.8. Calculated rigid body accelerations

(a) Calculated forces Trip 1 (b) Calculated Forces Trip 2

Fig. 6.9. Calculated Ride Loads

Additionally, this will establish the transfer function or dynamic amplification factor for

unsprung bike to sprung/damped rider body accelerations. By calibrating the recorded

IMU accelerations to achieve a match between virtual and physical strain gauge stresses,

the dynamic amplification factors for the handlebar mass, crank mass, and seat mass are

calculated to be 0.05-0.1, 0.2-0.4, and 0.5-0.6, respectively.

However, this strategy involves prior knowledge of future test results, which is not

acceptable. Before submitting a final paper to ICSID2022, physical testing with extra

body IMUs will be done to determine the sprung body mass and therefore more accurate

inertia forces.
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(a) Gauge 1 stresses - trip 1 (b) Gauge 1 stresses - trip 2

(c) Gauge 2 stresses - trip 1 (d) Gauge 2 stresses - trip 2

(e) Gauge 3 stresses - trip 1 (f) Gauge 3 stresses - trip 2

(g) Gauge 4 stresses - trip 1 (h) Gauge 4 stresses - trip 2

Fig. 6.10. Virtual and physical gauge stresses 1-4 for trip 1 and 2
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(a) Gauge 5 stresses - trip 1 (b) Gauge 5 stresses - trip 2

(c) Gauge 6 stresses - trip 1 (d) Gauge 6 stresses - trip 2

(e) Gauge 7 stresses - trip 1 (f) Gauge 7 stresses - trip 2

(g) Gauge 8 stresses - trip 1 (h) Gauge 8 stresses - trip 2

Fig. 6.11. Virtual and physical gauge stresses 5-8 for trip 1 and 2

47



Chapter 7

Discussion

7.1 Performance enhancements and encountered bottlenecks

The SHM system built as part of RQ2 is based on a free Mendix application plan that

runs on Amazon Web Services and Cloud Foundry. The mendix application enables the

customer to access a visual layer through a smartphone in order to gather data published by

an assets device, such as the Arduino microcontroller employed in this solution. Thus, the

smartphone becomes a critical component in connecting the edge to the cloud. Previously,

the inverse method and ROM were coded directly into the microcontroller, but are now

incorporated into the cloud. The bicycle is now equipped with six strain gauge sensors and

two distinct IMUs and is capable of publishing data at a rate of 100 Hz when monitoring a

single characteristic, 74 Hz when monitoring two values, and 60 Hz when monitoring three

values. While performance has improved significantly in comparison to last spring’s results,

it remains deficient as more variables are monitored. Changing from a single value to two

values decreases the system’s performance by 25%. A 25% decrease is insufficient since

the objective was to acquire raw data in real time with a 100 hertz sampling frequency,

upload it to the cloud, create a context, and use it for business decisions such as deciding

when to do maintenance. These results emphasize the disadvantages of the JavaScript

code operating on a single thread, as well as the Bluetooth protocol’s inability to reliably

transfer messages. According to the author, since JavaScript operates in a single thread

and is responsible for parsing data strings and sending messages to the server, a greater

amount of messages will be ignored due to the thread being busy. As a result, data will be

lost as a direct consequence of this condition, and exploring other methods of delivering

data to the server is strongly advised. For example, by uploading directly to the cloud

rather than going via the phone using the Bluetooth protocol. Which is possible by using

a different application protocol than RESTful HTTP, for instance MQTT.

Due to the smartphone’s essential position in this configuration, the system’s performance

became significantly dependent on the phone’s compatibility with the Bluetooth-enabled

microcontroller. As previously stated, this implies that additional steps are required to
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upload data to the cloud, which is now accomplished by connecting the phone to the

internet through a 4G connection. The phone, which executes JavaScript code in the

browser, becomes a bottleneck for the whole system, raising the issue of why Mendix and

Bluetooth were chosen in the first place. If more research on IoT protocols had been

conducted during the earlier phases, the architecture of the system may look substantially

different than it does now. The system is said to be adaptable enough to switch to a new

protocol fairly simply, highlighting once again the system’s adaptability. This IoT system

is constructed with the use of a very common protocol, the RESTful HTTP.

Bluetooth is a highly coupled technology that does not scale particularly well. This

makes the protocol seem out of place in an IoT environment where the aim is reliable

data transmission at high rates. However, Bluetooth retains usefulness in the existing

system, but not in the function it now serves. The results reveal that although Bluetooth

is capable of high-speed communication, the protocol is confined to local usage, implying

that IoT application protocols using TCP/DP can overtake its role and publish directly

to the cloud.

If the phone’s primary function of data transmission to the cloud is delegated to the

microcontroller, and the microcontroller instead runs an IoT protocol, the system may

become much more Plug-and-Play (PnP). The MQTT protocol, like Bluetooth, is based

on the publish and subscribe (pub-sub) pattern and hence provides a lot of advantages

and may be capable of overcoming many of the aforementioned difficulties. As a result,

MQTT is a promising technology for future systems. Additionally, the Rev2 is compatible

with the MQTT protocol and may be used for testing.

Arduino provides a wide variety of microcontrollers, and the one selected for this project

was the Arduino Uno WiFi Rev2 (Rev2). One of the factors that contributed to the

Rev2’s selection was its 5V operating voltage. The Rev2 performed somewhat slower than

expected during benchmarking. This fall, the decision was taken to replace the Arduino

MKR WiFi 1010 (MKR) with the Arduino Uno WiFi Rev2. The MKR featured a faster

CPU but required a voltage converter to operate due to its 3.3V working voltage. As

a result, the decision was made to continue with the Rev2. Two similar experiments

(not included in this thesis) comparing the speed of these two controllers revealed that the

Rev2’s loop method took around 10ms, but the MKR’s required just under 2ms, indicating

that the Rev2’s performance had reached its limit in this system. This suggests that while

constructing a system with the purpose of sampling sensors at 100 hz or more, a suitably

fast CPU must be considered.

7.2 Improvements in modifiability, cloud DT techniques,

and Bluetooth problems

The system’s strengths remain dependant upon its modifiability. Adding new features is an

easy process as long as the developer invests some time in mastering the Mendix platform
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and Mendix Studio Pro. With the new solution’s cloud-based integration of digital twin

methods, it becomes easier to reuse methods or algorithms, develop new ones, as well as

utilize the multi threaded functionality supported in Mendix. Another advantage is that

raw data is now accessible and can be downloaded and displayed from the cloud, while

before, data uploaded to the cloud was already processed. This culminates in a more

decoupled and thus modifiable system, because consumers using methods or algorithms

unrelated to the DT methods can now consume the raw data and produce completely new

information. Moreover, a newly developed ROM can be saved in the cloud and utilized to

compute new virtual stresses for comparison to older techniques, as well as actual strain

gauge data. Another significant advantage of shifting DT techniques to the cloud is the

elimination of the necessity for the system to include the Bluetooth protocol. Because the

DT methods only rely on raw data which is stored in the cloud, it is feasible to change the

role of the phone to only be used as a viewer. In this scenario, the microcontroller running

the highly coupled Bluetooth code that connects itself to the phone, can be removed.

The notion of removing the Bluetooth protocol, as previously said, will almost certainly

resolve the problem of data loss, given that the new communication protocol support

larger payloads in order to upload data in batches. Especially when considering that there

are different Bluetooth versions around which support maximum payloads of 20 bytes.

However, the author wishes to highlight that there are ways to tackle this issue using the

current data flow by using Bluetooth versions supporting higher payloads. Anyhow, if the

system were to remove the Bluetooth protocol altogether, there would simply be one point

of connection (the microcontroller), thus resulting in a far more streamlined process for

making the system upload raw data to the cloud by removing unnecessary steps.

The system continues to need user understanding of Bluetooth technology in order to func-

tion, which is probably one of the system’s primary shortcomings at the moment. To utilize

the system, the user must be acquainted of the device’s service and characteristic UUIDs.

Additionally, certain Bluetooth devices, such as the Thingy52, have various UUIDs asso-

ciated with their services and features, necessitating the study of their documentation in

order to configure the asset using the Thingy52. Thus, the Bluetooth standard becomes

a constraint, since unique values must be introduced into the system at some point. Due

to the aforementioned issues, the system’s server must be somewhat mindful of each and

every edge node, thus limiting the system’s potential to scale up because the server must

be modified to handle a new type of microcontroller. The author contends that a better

way would be to make it plug-and-play (PnP), which would imply that once a device is

connected and publishes to the cloud, the asset appears magically as a node inside the IoT

ecosystem. Because the process of uploading data to the cloud already involves parsing

data to and from strings, as demonstrated in the java code in B.2, there is a compelling

case to be made for protocols that include these approaches into their architecture. As

mentioned in section 2.2, MQTT is one of these technologies which are edge driven, and

secure, by only having an outbound port open. Considering that MQTT performs better

than RESTful HTTP as well, there is a clear argument for shifting towards a technology

such as MQTT if the system wishes to lean more towards IIoT, which can be a more
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natural approach since the goal is to monitor the health of structures.

7.3 Mendix’s capabilities and limitations

One of the alleged benefits of Mendix PaaS is the ability to rapidly design contemporary

user interfaces. As the application became more sophisticated, the platform demonstrated

its robustness, flexibility, scalability, and speed. There were no indications of server-side

bottlenecks throughout the tests made during the thesis, which is due to the restrictions

implemented by uploading data to the cloud every 250ms. When it comes to structural

health monitoring, one of the thesis’s objectives was to construct a dashboard and provide

real-time data to the user. Utilizing Mendix for this purpose found to be remarkably

difficult, since the Mendix is not pre-configured to produce such dashboards. This meant

that throughout development, trade-offs had to be made between adding capabilities to

the to allow such dashboards and improving the system’s performance. Due to the priority

placed on the latter, the UI built this fall is relatively similar to the one developed this

spring, with a few notable differences. There are fewer pages, which means that navigating

the page requires fewer steps. Additionally, several small improvements have been made

to the visuals.

Aside from the limitations of creating the dashboard, one final concern regarding

local VS live testing of the Mendix application must be addressed. The capability for

generating new users functioned while using a Mendix server hosted locally, but not when

using the cloud server. While Mendix has various advantages and disadvantages, this is

the one irritation directly tied to testing locally vs in the cloud.

7.4 The difficulties of the inverse method

An inverse method was devised to evaluate the biker-induced inertia loads occurring on

the rider throughout the trip. The inverse method’s objective is to forecast the distributed

dynamic loads delivered to the digital twin model in order to compute the distribution

of stresses and strains at the eight hot spots previously selected. While the single IMU

accurately captures bicycle movements, the sprung motion of the biker’s body is difficult

to confirm. Without load cells on the frame tubes, the initial problem was to determine

the biker’s mass distribution on the handlebars, seat, and crank. The following task was

to determine the transfer function or dynamic amplification factor between unsprung bike

and sprung/damped cyclist body accelerations. These two points will be addressed in

order to improve the estimation of applied inertia loads. The virtual strain gauge stresses

will be more accurate since they are a linear function of the anticipated inertia loads. The

ultimate objective is to remove the inverse method used by force transducers, resulting

in a more robust force-driven digital twin with improved performance. Due to the need

for a 100 Hz sampling frequency, simultaneous finite element analysis of a complete finite
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element model was not possible; rather, the unit-load approach was used on a FE model to

locate hotspots using a virtual brittle lacquer methodology in FEDEM. Then, a physical

test was used to construct, verify, and approve a ROM impact matrix mapping unit loads

to output stresses in the identified hot-spots. This ROM’s digital twin solution runs

quickly on Arduino, is straightforward to build in Mendix, and is entirely relevant to the

linear behavior of a rigid bicycle frame.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

The research questions addressed in the article were answered by building on the thoughts

and ideas developed in this spring’s project thesis, which served as a foundation for the

thesis. To have a better understanding of IoT, IIoT, IoT Framework, IoT Platforms,

IoT Ecosystem, and IoT protocols, a systematic review of the literature was undertaken.

It was via the use of RQs that additional information on the strengths and limitations

of the Mendix PaaS’s RESTful HTTP protocol, which was a vital component of the

IoT architecture, was made available. Findings from testing reveal that the system can

operate at 100 Hz while monitoring only one Bluetooth characteristic. This indicates that

the system is capable of connecting devices to an IoT ecosystem and addressing issues,

qualifying it as an IoT platform and thus deserving of the term ”Internet of Things”. In

addition, techniques for calibrating strain gauges and IMU’s are presented. While working

on this thesis, a generic IoT framework was created that can also be easily developed and

maintained in the future by someone with less programming experience. The adoption of

well-established software development processes allows for the successful implementation

of strategies. Anyone who is interested in contributing to the development of the system

will find documentation to be of assistance. This is possible since the author employed

the software lifecycle as one of his ways to solve the system’s difficulties. This is a realistic

expectation. Because of the system’s high adaptability, flexibility, and interoperability,

there are several chances to branch out and develop higher-performing nodes within the

ecosystem, which speaks well for the system’s long-term viability.

The inverse method was utilized to calculate the most essential inertia loads that

were experienced during bicycle rides in the mountains. The technique, on the other hand,

revealed substantial limits as a consequence of the low-cost equipment that was used. Rider

body accelerations recorded by the IMU are too cautious and do not adequately represent

the damped rider body accelerations. Consequently, the inertia loads and gauge stresses

that have been estimated are a little too conservative. A mannequin model or additional
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accelerometers mounted on the rider may be utilized to better forecast the sprung motion

and hence the cyclist inertia loads, but both options increase complexity to the system

and so reduce its bandwidth and performance.

A ROM was shown, and it was demonstrated how it could be utilized to correctly

represent the whole bike frame FE model while also giving gauge stress calculation. The

idea of future enhancements to the ROM is intriguing to consider.

The use of a digital twin to power SHM is still in its infancy. The authors looked at

a variety of IoT systems that claimed to be capable of delivering the speed and flexibility

required for real-time SHM. The vast majority of IoT technologies are designed to aid with

logistics, rather than to offer the high-speed edge solutions necessary for real-time SHM

operations. Accordingly, the authors plan to develop a customized SHM solution that is

not Bluetooth-enabled and is based on MQTT while keeping the Mendix app for display

of edge data that has been transferred to a cloud service provider in the background.

8.2 Future Work

Despite the fact that the solution represents a substantial advance, there is still room for

development, both in terms of the IT system and in terms of the DT approaches. Areas for

improvement are proposed in the following areas: (1) Getting rid of the smartphone’s role

as an intermediary for the microcontroller and the cloud, and instead using it as a basic

data reader for online or offline data. (2) Examine the viability of employing existing IoT

protocols, such as MQTT, for data upload to the cloud, therefore making the system PnP,

faster, and more secure. (3) Reduce the number of redundant operations and integration

between system nodes. (4) Create a dashboard using Mendix or an equivalent piece of

software for showing the data that has been provided. (5) To increase the precision of

the results, a mannequin model or extra accelerometers installed on the rider can be used.

(6) Increase the size of the ROM in order to account for the impact of bicycle off-road

handling loads.
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Appendix A

Javascript Code

A.1 BLECharacteristicSubscribe.js

1 // This file was generated by Mendix Studio Pro.

2 //

3 // WARNING: Only the following code will be retained when actions are

regenerated:

4 // - the import list

5 // - the code between BEGIN USER CODE and END USER CODE

6 // - the code between BEGIN EXTRA CODE and END EXTRA CODE

7 // Other code you write will be lost the next time you deploy the project.

8 import { Big } from "big.js";

9

10 // BEGIN EXTRA CODE

11

12 /**

13 * The functions below are required for reading specific datatypes. Each

function should have the same params and return the same object.

14 * Reads incoming data from an event and appends it to the datastring.

15 * @param Event event

16 * @param String datastring

17 * @returns String dataString

18 */

19

20 function GaugeData_Measured(event , ds) {

21 ds += (event.target.value.getUint32 (0, true)/1000).toFixed (2) + ",";

22 ds += event.target.value.getInt16(4, true)/100 + ",";

23 ds += event.target.value.getInt16(6, true)/100 + ",";

24 ds += event.target.value.getInt16(8, true) + ",";

25 ds += event.target.value.getInt16 (10, true) + ",";

26 ds += event.target.value.getInt16 (12, true) + ",";

27 ds += event.target.value.getInt16 (14, true) + ",";

28 ds += event.target.value.getInt16 (16, true) + ",";

29 ds += event.target.value.getInt16 (18, true) + ";";

30 return ds;

31 }
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32

33 function uint(event , ds) {

34 ds += event.target.value.getUint16 (0, true) + ";";

35 return ds

36 }

37 // END EXTRA CODE

38

39 /**

40 * Subscribes to a characteristic given a UUID and commits data to the

server on every notification retrieved from the peripheral device.

41 * @param {string} serviceUUID

42 * @param {string} characteristicUUID

43 * @param {MxObject} eventReference

44 * @param {MxObject} eventBatch

45 * @param {string} dataType

46 * @returns {Promise.<string >}

47 */

48 export async function BLECharacteristicSubscribe(serviceUUID ,

characteristicUUID , eventReference , eventBatch , dataType) {

49 // BEGIN USER CODE

50

51 var gattServer = window.gattServer;

52

53 let startTime = Date.now();

54 let dataString = new String(eventReference.getGuid () +":");

55

56 if(gattServer){

57 return new Promise ((resolve , reject) => {

58 gattServer.getPrimaryService(serviceUUID)

59 .then( (s) => {

60 return s.getCharacteristic( characteristicUUID );

61 })

62 .then(characteristic => {

63 characteristic.startNotifications ()

64 .then (() => {

65 eventBatch.set("IsLogging", true);

66 })

67 .then (() => {

68 characteristic.addEventListener(

69 'characteristicvaluechanged ',
70 (event) => {

71

72 switch (dataType) {

73 // Switch statement to decide which function to run to

parse the bluetooth data.

74 case "GaugeData_Measured": dataString = GaugeData_Measured(

event , dataString); break;

75 case "uint": dataString = uint(event , dataString); break;

76 }

77 var elapsedTime = Date.now() - startTime;

78

79 if(elapsedTime > 250){
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80 startTime = Date.now();

81 let newDataString = new String(dataString);

82

83 mx.data.create ({

84 entity: "SHM_Module.Data",

85 callback: function(obj) {

86 obj.set('data', newDataString);

87 mx.data.action ({

88 params: {

89 applyto: "selection",

90 actionname: "SHM_Module.SendDataToServer",

91 guids: [obj.getGuid ()],

92 async: false

93 },

94 callback: function(obj) {

95 resolve(obj);

96 },

97 error: function(error) {

98 alert(error.message);

99 },

100 onValidation: function(validations) {

101 alert("There were " + validation.length + "

validation errors");

102 }

103 });

104 },

105 error: function(e) {

106 console.error("Could not commit object:", e);

107 }

108 });

109 dataString = new String(eventReference.getGuid () +":");

110 }

111 }

112 );

113 resolve(true);

114 })

115 .catch(error => console.error(error.code , error.name , error.message

))

116 });

117 });

118 } else{

119 return Promise.reject("No gatt server found");

120 }

121 // END USER CODE

122 }
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A.2 BLEDeviceConnect.js

1 // This file was generated by Mendix Studio Pro.

2 //

3 // WARNING: Only the following code will be retained when actions are

regenerated:

4 // - the import list

5 // - the code between BEGIN USER CODE and END USER CODE

6 // - the code between BEGIN EXTRA CODE and END EXTRA CODE

7 // Other code you write will be lost the next time you deploy the project.

8 import { Big } from "big.js";

9

10 // BEGIN EXTRA CODE

11 // END EXTRA CODE

12

13 /**

14 * Pairs with a Bluetooth device with a given UUID.

15 * @param {string} primaryServiceUUID

16 * @param {MxObject} eventBatch

17 * @returns {Promise.<void >}

18 */

19 export async function BLEDeviceConnect(primaryServiceUUID , eventBatch) {

20 // BEGIN USER CODE

21 var bluetoothDevice = window.bluetoothDevice;

22

23 try{

24 if(! navigator.bluetooth){

25 alert("This device does not support bluetooth.")

26 return;

27 }

28 let encoder = new TextEncoder('utf -8');
29

30 return new Promise ((resolve , reject) => {

31 var gattServer = window.gattServer;

32 if(gattServer && gattServer.connected){

33

34 resolve(true);

35 } else{

36 navigator.bluetooth.requestDevice ({

37 filters: [{ services: [primaryServiceUUID] }]

38 // optionalServices: [optionalServiceUUID]

39 })

40 .then(( device) => {

41 return device.gatt.connect ()

42 })

43 .then(( server) => {

44 console.log(server);

45 window.gattServer = server;

46 eventBatch.set("IsDeviceConnected", true);

47 console.log("Connected to new server");

48 resolve(true);

49 });
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50 }

51 })

52 } catch (error) {

53 console.log(error);

54 return Promise.resolve(false);

55 }

56 // END USER CODE

57 }

A.3 BLEDeviceDisconnect.js

1 // This file was generated by Mendix Studio Pro.

2 //

3 // WARNING: Only the following code will be retained when actions are

regenerated:

4 // - the import list

5 // - the code between BEGIN USER CODE and END USER CODE

6 // - the code between BEGIN EXTRA CODE and END EXTRA CODE

7 // Other code you write will be lost the next time you deploy the project.

8 import { Big } from "big.js";

9 // BEGIN EXTRA CODE

10 // END EXTRA CODE

11

12 /**

13 * Disconnect from all Bluetooth devices.

14 * @param {string} serviceUUID

15 * @param {string} characteristicUUID

16 * @param {MxObject} eventBatch

17 * @returns {Promise.<string >}

18 */

19 export async function BLEDeviceDisconnect(serviceUUID , characteristicUUID ,

eventBatch){

20 // BEGIN USER CODE

21 var gattServer = window.gattServer;

22 if (gattServer) {

23 gattServer.disconnect ();

24 console.log('Bluetooth Device is disconnected ');
25 eventBatch.set("IsDeviceConnected", false);

26 eventBatch.set("IsLogging", false);

27 return;

28 }

29 else {

30 console.log('Bluetooth Device is already disconnected ');
31 }

32 // END USER CODE

33 }
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Appendix B

Java Code

B.1 computeInverseData.java

1 // This file was generated by Mendix Studio Pro.

2 //

3 // WARNING: Only the following code will be retained when actions are

regenerated:

4 // - the import list

5 // - the code between BEGIN USER CODE and END USER CODE

6 // - the code between BEGIN EXTRA CODE and END EXTRA CODE

7 // Other code you write will be lost the next time you deploy the project.

8 // Special characters , e.g., , , , etc. are supported in

comments.

9

10 package shm_module.actions;

11

12 import java.math.BigDecimal;

13 import java.util.Iterator;

14 import com.mendix.core.Core;

15 import com.mendix.systemwideinterfaces.core.IContext;

16 import com.mendix.webui.CustomJavaAction;

17 import com.mendix.systemwideinterfaces.core.IMendixObject;

18

19 public class computeInverseData extends CustomJavaAction <java.lang.Void >

20 {

21 private java.util.List <IMendixObject > __acc_gyro_list;

22 private java.util.List <shm_module.proxies.acc_gyro > acc_gyro_list;

23 private java.math.BigDecimal mass;

24

25 public computeInverseData(IContext context , java.util.List <IMendixObject >

acc_gyro_list , java.math.BigDecimal mass)

26 {

27 super(context);

28 this.__acc_gyro_list = acc_gyro_list;

29 this.mass = mass;

30 }
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31

32 @java.lang.Override

33 public java.lang.Void executeAction () throws Exception

34 {

35 this.acc_gyro_list = new java.util.ArrayList <shm_module.proxies.

acc_gyro >();

36 if (__acc_gyro_list != null)

37 for (IMendixObject __acc_gyro_listElement : __acc_gyro_list)

38 this.acc_gyro_list.add(shm_module.proxies.acc_gyro.initialize(

getContext (), __acc_gyro_listElement));

39

40 // BEGIN USER CODE

41

42

43 // We dont want to do anything unless the list is of size 3 or higher.

44 if(__acc_gyro_list.size() <3) {

45 return null;

46 }

47

48 // torque and radius is not yet supported.

49 float torque = 0;

50 float radius = 1;

51

52

53 // We ignore the first and last element of the list.

54 for (int i = 1; i < __acc_gyro_list.size() -2; i++) {

55

56 //Timer values for calculating the dt

57 java.math.BigDecimal t0 = (BigDecimal) __acc_gyro_list.get(i-1).

getMember(getContext (), "Timer");

58 java.math.BigDecimal t2 = (BigDecimal) __acc_gyro_list.get(i+1).

getMember(getContext (), "Timer");

59

60 // IMU accelerations for the inverse method

61 java.math.BigDecimal ax = (BigDecimal) __acc_gyro_list.get(i-1).

getMember(getContext (), "acc_x");

62 java.math.BigDecimal az = (BigDecimal) __acc_gyro_list.get(i-1).

getMember(getContext (), "acc_z");

63

64 // IMU pitch rate for the handlebar , crank , and seat acceleration

calculations.

65 java.math.BigDecimal dBeta0 = (BigDecimal) __acc_gyro_list.get(i-1).

getMember(getContext (), "Timer");

66 java.math.BigDecimal dBeta2 = (BigDecimal) __acc_gyro_list.get(i+1).

getMember(getContext (), "Timer");

67

68 float dt = t2.floatValue () - t0.floatValue ();

69

70 float ddBeta1 = (dBeta2.floatValue () - dBeta0.floatValue ()) / (2*dt);

71

72 // Calculating the handlebar , crank and seat accelerations

73 float az_H = 0.9f * dBeta0.floatValue () + az.floatValue ();
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74 float az_C = 0.38f * dBeta0.floatValue () + az.floatValue ();

75 float az_S = 0.15f * dBeta0.floatValue () + az.floatValue ();

76

77 // The list containing the final input loads

78 float[] inputLoads = {

79 mass.floatValue ()*ax.floatValue (),//Input load 1

80 0.2f*mass.floatValue ()*az_H , // Input load 2

81 0.5f*mass.floatValue ()*az_S , // Input load 3

82 0, // Input load 4 is calculated later..

83 0.3f*mass.floatValue ()*az_C , // Input load 5

84 torque/radius //Input load 6

85 };

86

87 //Input load 4 is calculated here.

88 if(ax.floatValue () < 0) {

89 inputLoads [3] = mass.floatValue ()*ax.floatValue ();

90 }

91 else {

92 inputLoads [3] = 0.02f*mass.floatValue ()*az.floatValue ();

93 }

94

95

96 float[] outputLoads = {0, 0, 0, 0, 0, 0, 0, 0};

97

98 // "Matrix multiplication" to get the output loads

99 for (int k = 0; k < 8; k++) {

100 for (int j = 0; j < 6; j++) {

101 outputLoads[k] += unitLoadMatrix[k][j]* inputLoads[j]/1000000;

102 }

103 }

104

105 // Creating inverse data on the server

106 IMendixObject inverseData = Core.instantiate(getContext (), "

SHM_Module.inverse_data");

107

108 // Setting the inverseData member to the corresponding output value.

109 inverseData.setValue(getContext (), "gauge1", BigDecimal.valueOf(

outputLoads [0]));

110 inverseData.setValue(getContext (), "gauge2", BigDecimal.valueOf(

outputLoads [1]));

111 inverseData.setValue(getContext (), "gauge3", BigDecimal.valueOf(

outputLoads [2]));

112 inverseData.setValue(getContext (), "gauge4", BigDecimal.valueOf(

outputLoads [3]));

113 inverseData.setValue(getContext (), "gauge5", BigDecimal.valueOf(

outputLoads [4]));

114 inverseData.setValue(getContext (), "gauge8", BigDecimal.valueOf(

outputLoads [7]));

115

116 // Setting the acc gyro associativity

117 inverseData.setValue(getContext (), "SHM_Module.inverse_data_acc_gyro"

, __acc_gyro_list.get(i).getId ());
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118

119 // Commiting the changes made to the inverse data.

120 Core.commit(getContext (), inverseData);

121 }

122 return null;

123 // END USER CODE

124 }

125

126 /**

127 * Returns a string representation of this action

128 */

129 @java.lang.Override

130 public java.lang.String toString ()

131 {

132 return "computeInverseData";

133 }

134

135 // BEGIN EXTRA CODE

136 private static float [][] unitLoadMatrix = {

137 {262.002f, -4145.12f, -1245.9f, 9881.25f, -730.562f, 459.998f},

138 {10845.7f, 3200.66f, -2324.07f, -18718f, -1853.65f, -3949.82f},

139 { -13811.4f, -28905.200f, -6017.640f, 84544.000f, -8588.380f,

40.441f},

140 {15628.700f, 25590.600f, 11752.200f, -78251.400f, 16393.400f,

-98.947f},

141 {18988.300f, -8742.240f, -30341.600f, 2405.160f, -20489.200f,

845.881f},

142 {18719.700f, -8818.380f, -30318.700f, 2856.210f, -20426.000f,

935.281f},

143 {15079.400f, 4344.640f, -3474.600f, -25773.100f, -3227.950f,

-4762.280f},

144 {10230.400f, 2761.440f, -1975.270f, -16989.900f, -4828.810f,

-226.252f}

145 };

146 // END EXTRA CODE

147 }

B.2 dataParseCommit.java

1 // This file was generated by Mendix Studio Pro.

2 //

3 // WARNING: Only the following code will be retained when actions are

regenerated:

4 // - the import list

5 // - the code between BEGIN USER CODE and END USER CODE

6 // - the code between BEGIN EXTRA CODE and END EXTRA CODE

7 // Other code you write will be lost the next time you deploy the project.
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8 // Special characters , e.g., , , , etc. are supported in

comments.

9

10 package shm_module.actions;

11

12 import java.math.BigDecimal;

13 import java.util.ArrayList;

14 import java.util.Collection;

15 import java.util.HashMap;

16 import java.util.Iterator;

17 import java.util.List;

18 import java.util.Map;

19 import java.util.Set;

20 import com.mendix.core.Core;

21 import com.mendix.core.objectmanagement.member.MendixObjectReference;

22 import com.mendix.systemwideinterfaces.core.IContext;

23 import com.mendix.systemwideinterfaces.core.IMendixIdentifier;

24 import com.mendix.systemwideinterfaces.core.IMendixObject;

25 import com.mendix.systemwideinterfaces.core.IMendixObjectMember;

26 import com.mendix.systemwideinterfaces.core.meta.IMetaPrimitive;

27 import com.mendix.webui.CustomJavaAction;

28 import com.mendix.logging.ILogNode;

29

30 public class dataParseCommit extends CustomJavaAction <java.lang.Void >

31 {

32 private java.lang.String dataString;

33

34 public dataParseCommit(IContext context , java.lang.String dataString)

35 {

36 super(context);

37 this.dataString = dataString;

38 }

39

40 @java.lang.Override

41 public java.lang.Void executeAction () throws Exception

42 {

43 // BEGIN USER CODE

44 if(dataString == null) {

45 LOG.info("Payload is null.");

46 return null;

47 }

48

49 String [] dataStringSplit = dataString.split(":");

50

51 if(dataStringSplit.length == 1) {

52 LOG.info("Payload comes with no data.");

53 return null;

54 }

55

56 IMendixIdentifier eventIdentifier = Core.createMendixIdentifier(

dataStringSplit [0]);

57 IMendixObject event = Core.retrieveId(getContext (), eventIdentifier);
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58 String dataTypeString = "SHM_Module.";

59

60 IMendixObjectMember eventCharacteristicMember = event.getMember(

getContext (), "SHM_Module.Event_Characteristic");

61 IMendixIdentifier characteristicId = (IMendixIdentifier)

eventCharacteristicMember.getValue(getContext ());

62 IMendixObject characteristic = Core.retrieveId(getContext (),

characteristicId);

63 IMendixObjectMember characteristicDataTypeMember = characteristic.

getMember(getContext (), "SHM_Module.Characteristic_DataType");

64 IMendixIdentifier dataTypeId = (IMendixIdentifier)

characteristicDataTypeMember.getValue(getContext ());

65 IMendixObject dataType = Core.retrieveId(getContext (), dataTypeId);

66

67 dataTypeString += dataType.getValue(getContext (), "Name");

68

69 String [] data = dataStringSplit [1]. split(";");

70 IMendixObject objEntry = Core.instantiate(getContext (), dataTypeString)

;

71

72 Collection <? extends IMetaPrimitive > metaPrimitives = objEntry.

getMetaObject ().getMetaPrimitives ();

73

74 if(data [0]. split(",").length != metaPrimitives.size()) {

75 LOG.info("Payload data is not compatible with the selected datatype."

);

76 LOG.info(data [0]. split(",").length + " != " + metaPrimitives.size()

+ " ,\tDataType: " + dataTypeString );

77 return null;

78 }

79

80 for (int i = 0; i < data.length; i++) {

81 String [] entry = data[i].split(",");

82

83 IMendixObject gageDataEntry = Core.instantiate(getContext (),

dataTypeString);

84

85 int j = 0;

86 for(IMetaPrimitive metaPrimitive : metaPrimitives) {

87 gageDataEntry.getMember(getContext (), metaPrimitive.getName ()).

parseValueFromString(getContext (), entry[j]);

88 j++;

89 }

90 gageDataEntry.setValue(getContext (), "SHM_Module.Data_Event", event.

getId ()); // dataTypeString +" _Event"

91

92 Core.commit(getContext (), gageDataEntry);

93 }

94 return null;

95 // END USER CODE

96 }

97
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98 /**

99 * Returns a string representation of this action

100 */

101 @java.lang.Override

102 public java.lang.String toString ()

103 {

104 return "dataParseCommit";

105 }

106

107 // BEGIN EXTRA CODE

108

109 public static ILogNode LOG = Core.getLogger("RobTest");

110 // END EXTRA CODE

111 }
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Appendix C

Arduino Code

C.1 UNO Wifi BLE.ino

1 #include <ArduinoBLE.h>

2 #include "Arduino_NineAxesMotion.h"

3 #include <Wire.h>

4 #include <Arduino_LSM6DS3.h>

5

6 /* This program uses two libraries: ArduinoBLE and Arduino_NineAxesMotion.

7 These libraries are important for understanding this program.

8 Examples located in the github repos are great for learnings.

9 https ://www.arduino.cc/en/Reference/ArduinoBLE ,

10 https :// github.com/arduino -libraries/ArduinoBLE

11 https :// github.com/arduino -libraries/Arduino_NineAxesMotion

12 https ://www.arduino.cc/en/Reference/ArduinoLSM6DS3

13 */

14

15 // Holds the values read from the strain gauge sensor

16 union strain_gauge {

17 struct __attribute__ (( packed)) {

18 unsigned long timer;

19 short gauge1;

20 short gauge2;

21 short gauge3;

22 short gauge4;

23 short gauge5;

24 short gauge8;

25 };

26 byte bytes [16];

27 };

28

29 // Holds the values read from the IMU sensor

30 union acc_gyro {

31 struct __attribute__ (( packed)) {

32 unsigned long timer;

33 short acc_x;
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34 short acc_z;

35 short gyro_y;

36 };

37 byte bytes [10];

38 };

39

40 union strain_gauge strain_gauge_data; // Stores strain gauge values

41 union acc_gyro acc_gyro_data; // Stores IMU values

42 union acc_gyro grav_gyro_data; // Stores IMU values

43

44 NineAxesMotion IMUSensor; // The IMUSensor object for reading and updating

the 9-axis motion shield mounted on the Arduino.

45 BLEService structural_health_data_Service("19b10000 -e8f2 -537e-4f6c -

d104768a1214"); // Creating the bluetooth service

46

47 // Creating the bluetooth characteristics

48 BLECharacteristic strain_gauge_data_characteristic("19b10001 -e8f2 -537e-4f6c

-d104768a1214", BLERead | BLENotify , sizeof(strain_gauge_data));

49 BLECharacteristic acc_gyro_data_characteristic("19b10002 -e8f2 -537e-4f6c -

d104768a1214", BLERead | BLENotify , sizeof(acc_gyro_data));

50 BLECharacteristic grav_gyro_data_characteristic("19b10003 -e8f2 -537e-4f6c -

d104768a1214", BLERead | BLENotify , sizeof(grav_gyro_data));

51

52 //Pins used for the LED

53 int redLEDPin = 5;

54 int greenLEDPin = 4;

55 int blueLEDPin = 3;

56

57 // Timer values for the LED blink functionality

58 long blinkTimer = 0;

59 long previousMillis = 0;

60

61 // Sample hold time in milliseconds. Value of 10 gives 1000/10 = 100 Hz

sample frequency.

62 unsigned long sampleAndHoldTime = 10; //

63

64 void setup () {

65 // Serial.begin (9600); //Un-comment if you wish to read value from the

serial monitor.

66

67 // Setting output pin modes for the LEDs.

68 pinMode(redLEDPin , OUTPUT);

69 pinMode(greenLEDPin , OUTPUT);

70 pinMode(blueLEDPin , OUTPUT);

71

72 // Setting input pin modes.

73 pinMode(A0 , INPUT);

74 pinMode(A1 , INPUT);

75 pinMode(A2 , INPUT);

76 pinMode(A3 , INPUT);

77 pinMode(A4 , INPUT);

78 pinMode(A5 , INPUT);
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79

80 Wire.begin (); // Initialize I2C communication to the let the library

communicate with the sensor.

81 // Sensor Initialization

82 IMUSensor.initSensor (); //The I2C Address can be changed here inside this

function in the library

83 IMUSensor.setOperationMode(OPERATION_MODE_NDOF); //Can be configured to

other operation modes as desired

84 IMUSensor.setUpdateMode(MANUAL); //The default is AUTO. Changing to

manual requires calling the relevant update functions prior to calling

the read functions

85 // Setting to MANUAL requires lesser reads to the sensor

86 IMUSensor.updateAccelConfig ();

87

88 if (!BLE.begin ()) {

89 // Serial.println ("BLE initialization failed !"); // Un-comment if using

serial.

90 while (1);

91 }

92

93 if (!IMU.begin ()) {

94 // Serial.println ("BLE initialization failed !"); // Un-comment if using

serial.

95 while (1);

96 }

97

98 // Serial.println ("BLE Central - Peripheral Explorer "); Un-comment if

using serial.

99 // Bluetooth Setup

100 BLE.setLocalName("SHM - UNO_WIFI");

101 BLE.setAdvertisedService(structural_health_data_Service);

102 structural_health_data_Service.addCharacteristic(

acc_gyro_data_characteristic);

103 structural_health_data_Service.addCharacteristic(

strain_gauge_data_characteristic);

104 structural_health_data_Service.addCharacteristic(

grav_gyro_data_characteristic);

105 BLE.addService(structural_health_data_Service);

106

107 BLE.advertise ();

108 // Serial.println (" Bluetooth device active , waiting for connections ...");

// Un-comment if using serial.

109

110 blinkTimer = millis ();

111 digitalWrite(redLEDPin , HIGH);

112 }

113

114 long startTime = -1;

115 /* The Loop method runs after the setup is complete.

116 Method listens for BLE peripherals , and updates the values only if one

is connected.

117 Values are updated every 10 ms.
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118 */

119 void loop() {

120 BLEDevice central = BLE.central ();

121

122 if (central) {

123 // Serial.print (" Connected to central: ");

124 // Serial.println(central.address ());

125

126 digitalWrite(blueLEDPin , HIGH); // Turn on blue LED

127

128 while (central.connected ()) {

129

130 unsigned long currentMillis = millis ();

131

132 // Check for any characteristic subscribers

133 if(strain_gauge_data_characteristic.subscribed () or

acc_gyro_data_characteristic.subscribed () or

grav_gyro_data_characteristic.subscribed ()){

134 if(startTime == -1){

135 startTime = millis ();

136 }

137

138 // Update sensor values when difference is larger than the

sample hold time

139 if (currentMillis - previousMillis >= sampleAndHoldTime) {

140 previousMillis = currentMillis;

141 ledBlink(greenLEDPin , 1); // Blink green LED

142

143 if(strain_gauge_data_characteristic.subscribed ()){

144 updateStrainGaugeValues(currentMillis - startTime);

145 }

146 if(acc_gyro_data_characteristic.subscribed ()){

147 updateAccGyroValuesBNO(currentMillis - startTime);

148 // updateAccGyroValuesLSM(currentMillis - startTime);

149 }

150

151 if(grav_gyro_data_characteristic.subscribed ()){

152 updateGravGyroValues(currentMillis - startTime);

153 }

154 }

155 }

156 }

157

158 startTime = -1; // Reset the timer

159 digitalWrite(greenLEDPin , LOW); // Turn off green LED

160 digitalWrite(blueLEDPin , LOW); // Turn off blue LED

161 }

162 }

163

164 /* Turns LED on and off every 1000 ms.

165 ledPin: LED output pin , timer in milliseconds.

166 timer : timer in milliseconds.
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167 scalar: scalar for adjusting frequency multiplicatively.

168 */

169 void ledBlink(int ledPin , float scalar) {

170 if (millis () - blinkTimer > 2000 * scalar) {

171 digitalWrite(ledPin , HIGH);

172 blinkTimer = millis ();

173 }

174 else if (millis () - blinkTimer > 1000 * scalar) {

175 digitalWrite(ledPin , LOW);

176 }

177 }

178

179 // Reads the strain gauge sensors , stores them , and writes them to the

Bluetooth characteristic.

180 // The bluetooth characteristic publishes on write.

181 void updateStrainGaugeValues(float timeStamp) {

182 strain_gauge_data.timer = timeStamp;

183 strain_gauge_data.gauge1 = analogRead(A0);

184 strain_gauge_data.gauge2 = analogRead(A1);

185 strain_gauge_data.gauge3 = analogRead(A2);

186 strain_gauge_data.gauge4 = analogRead(A3);

187 strain_gauge_data.gauge5 = analogRead(A4);

188 strain_gauge_data.gauge8 = analogRead(A5);

189 strain_gauge_data_characteristic.writeValue(strain_gauge_data.bytes , 16);

// sizeof(strain_gauge_data)

190 }

191

192

193 // Reads the acceleration and gyroscope of the BNO055 IMU , stores them , and

writes them to the Bluetooth characteristic.

194 // The bluetooth characteristic publishes on write.

195 void updateGravGyroValues(float timeStamp) {

196 IMUSensor.updateGyro ();

197 IMUSensor.updateGravAccel (); // Update the Gravity Acceleration

data

198 IMUSensor.updateCalibStatus ();

199 grav_gyro_data.timer = timeStamp;

200 grav_gyro_data.gyro_y = IMUSensor.readGyroX () * 100;

201 grav_gyro_data.acc_x = IMUSensor.readGravAcceleration(X_AXIS) * 100;

202 grav_gyro_data.acc_z = IMUSensor.readGravAcceleration(Z_AXIS) * 100;

203 grav_gyro_data_characteristic.writeValue(grav_gyro_data.bytes , 10); //

sizeof(grav_gyro_data)

204 }

205

206

207 float ax ,ay ,az;

208 float gyx ,gyy ,gyz;

209 // Reads the acceleration and gyroscope of the LSM IMU , stores them , and

writes them to the Bluetooth characteristic.

210 // The bluetooth characteristic publishes on write.

211 void updateAccGyroValuesLSM(float timeStamp) {

212 IMU.readGyroscope(gyx , gyy , gyz);
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213 IMU.readAcceleration(ax , ay , az);

214 acc_gyro_data.timer = timeStamp;

215 acc_gyro_data.acc_x = short(ax *100);

216 acc_gyro_data.acc_z = short(az *100);

217 acc_gyro_data.gyro_y = short(gyy *100);

218 acc_gyro_data_characteristic.writeValue(acc_gyro_data.bytes , 10); //

sizeof(grav_gyro_data)

219 }

220

221 // Updates the IMUs , reads the acceleration and gyroscope of the BNO055 IMU

, stores them , and writes them to the Bluetooth characteristic.

222 // The bluetooth characteristic publishes on write.

223 void updateAccGyroValuesBNO(float timeStamp) {

224 IMUSensor.updateGyro ();

225 IMUSensor.updateAccel (); // Update the Gravity Acceleration

data

226 IMUSensor.updateCalibStatus ();

227 acc_gyro_data.timer = timeStamp;

228 acc_gyro_data.gyro_y = IMUSensor.readGyroX () * 100;

229 acc_gyro_data.acc_x = IMUSensor.readAccelerometer(X_AXIS) * 100;

230 acc_gyro_data.acc_z = IMUSensor.readAccelerometer(Z_AXIS) * 100;

231 acc_gyro_data_characteristic.writeValue(acc_gyro_data.bytes , 10); //

sizeof(grav_gyro_data)

232 }

233 }
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Mendix Pages
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Fig. D.1. Event history page for seeing

events that are logged.

Fig. D.2. Event history page overlay for

deleting event.
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Fig. D.3. Asset page. Fig. D.4. Asset configuration.
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Fig. D.5. Device configuration. Fig. D.6. Service configuration.
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Fig. D.7. Event Setup. Fig. D.8. Event Setup Overlay.
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Fig. D.9. Event Start Page. Fig. D.10. Event Start Bluetooth.
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Fig. D.11. Event Setup. Fig. D.12. Event Setup Overlay.
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Fig. D.13. Event Setup. Fig. D.14. Event Setup Overlay.
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Fig. D.15. Admin Page
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Fig. D.16. Admin Page 2
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Mendix Documentation
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App
Module 'SHM_Module'
Domain model
Entities

Name Generalization Documentation

acc_gyro SHM_Module.Data Holds acc_gyro data coming from the Arduino
Uno Wifi Rev 2 microcontroller.

Asset An asset is considered as the physical asset
which is to be monitored in the system.

Characteristic The entity represents a Bluetooth characteristic.
It holds information about the name and UUID of
the characteristic.

ClientData The ClientData entity holds a data string of
unlimited length for sending sensor data from
the devices to the server.

Data The data Entity is the super entity for other data
types that the database supports. It is possible
for other data types to generalize (inherit) from
this object and be connected with an Event. This
object should have no data of any kind and
should always be inherited.

DataType The DataType entity is used to store the names
of the data kinds that are present in the system.
The key-sensitive name attribute refers to a
specific entity in the domain model for triggering
certain functionalities at runtime. This is a
required component for the system and must be
utilized correctly for the system to be deployed
effectively. DataTypes can only be created by
the administrator through the admin page. For
further insight, see the Javascript or Java code.

Device The Device entity represents a Bluetooth
device, such as an Arduino microcontroller. It
holds information about the name of the device.
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Event One Event entity is created for each logged
characteristic.

EventBatch One EventBatch entity is created for keeping
track of the logged Events. The EventBatch can
be associated with multiple Events.

EventSettings The EventSettings is used to enter custom
settings for the user. Currently, it holds the value
of the biker's mass in order to use it as a part of
the inverse method.

float32 SHM_Module.Data Holds 4 byte float data coming from the Arduino
Uno Wifi Rev 2 microcontroller.

grav_gyro SHM_Module.Data Holds acc_gyro data coming from the Arduino
Uno Wifi Rev 2 microcontroller.

inverse_data Holds the inverse data which is associated to a
specific acc_gyro.

Login The Login Entity is used for storing user
credentials when the user attemps to login.

Service The Service entity represents a Bluetooth
service. It holds information about the bluetooth
service name and UUID.

strain_gauge SHM_Module.Data Holds strain gauge data coming from the
Arduino Uno Wifi Rev 2 microcontroller.

uint SHM_Module.Data Holds 2 byte uint data coming from the Arduino
Uno Wifi Rev 2 microcontroller.

Entity 'acc_gyro'
Holds acc_gyro data coming from the Arduino Uno Wifi Rev 2 microcontroller.

Generalization

SHM_Module.Data

Attributes

Name Type Default value Documentation

Timer Decimal 0 The timestamp of when the
sensor is read.
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acc_x Decimal 0 Acceleration read from IMU in x
direction.

acc_z Decimal 0 Acceleration read from IMU in z
direction.

gyro_y Decimal 0 Pitch rate read from IMU in y
direction.

Associations

Name Connected to Multiplicity Documentation

inverse_data_acc_gyro SHM_Module.inverse_data One-to-one The association
keeps track of
the inverse data
that corresponds
with a given
acc_gyro entity.
One
inverse_data
should refer to a
single acc_gyro
entity.

Entity 'Asset'
An asset is considered as the physical asset which is to be monitored in the system.

Attributes

Name Type Default value Documentation

Name String (100) The name of the asset.

Associations

Name Connected to Multiplicity Documentation

Asset_User System.User One-to-many This association is put in so that
the user can only retrieve assets
that themselves created. A user
can be associated with multiple
assets.

Entity 'Characterisic'
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The entity represents a Bluetooth characteristic. It holds information about the name and
UUID of the characteristic.

Attributes

Name Type Default value Documentation

Name String (32) The name of the bluetooth
characteristic.

UUID String (36) The unique identifier for the
characteristic.

Associations

Name Connected to Multiplicity Documentation

Characteristic_DataType SHM_Module.DataType One-to-
many

The association
keeps track of a
characteristic's
data type.

Characteristic_Service SHM_Module.Service One-to-
many

A characteristic
can only be linked
to one Service.

A Service can
have many
Characteristics.

Entity 'ClientData'
The ClientData entity holds a data string of unlimited length for sending sensor data from
the devices to the server.

Attributes

Name Type Default value Documentation

data String
(unlimited)

Keeps hold of the data string
which is being sent to the server.
The data string holds the sensor
values read by the
microcontroller.

Associations

xxxiii



Entity 'ClientData' does not own any associations.

Entity 'Data'
The data Entity is the super entity for other data types that the database supports. It is
possible for other data types to generalize (inherit) from this object and be connected with
an Event. This object should have no data of any kind and should always be inherited.

Attributes

Entity 'Data' has no attributes.

Associations

Name Connected to Multiplicity Documentation

Data_Event SHM_Module.Event One-to-many The association is used to
retrieve different data types
from an Event. The
association is inherited by the
Data child entities, which
results in a cleaner database.

Entity 'DataType'
The DataType entity is used to store the names of the data kinds that are present in the
system. The key-sensitive name attribute refers to a specific entity in the domain model for
triggering certain functionalities at runtime. This is a required component for the system and
must be utilized correctly for the system to be deployed effectively. DataTypes can only be
created by the administrator through the admin page. For further insight, see the Javascript
or Java code.

Attributes

Name Type Default value Documentation

Name String (50)

Associations

Entity 'DataType' does not own any associations.

Entity 'Device'
The Device entity represents a Bluetooth device, such as an Arduino microcontroller. It
holds information about the name of the device.

Attributes

Name Type Default value Documentation
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Name String (100) The name of the device.

Associations

Name Connected to Multiplicity Documentation

Device_Asset SHM_Module.Asset One-to-many A device can only be linked to
one asset.

An Asset can have many
devices.

Entity 'Event'
One Event entity is created for each logged characteristic.

Attributes

Name Type Default value Documentation

Name String (20) The name of the event.

Associations

Name Connected to Multiplicity Documentation

Event_Asset SHM_Module.Asset One-to-
many

An arbitrary
amount of Assets
can be logged in
an event.

Event_Characteristic SHM_Module.Characteristic One-to-
many

Event_Device SHM_Module.Device One-to-
many

An arbitrary
amount of devices
can be logged in
an event.

Event_EventBatch SHM_Module.EventBatch One-to-
many

Event_Service SHM_Module.Service One-to-
many

An arbitrary
amount of
Services can be
logged in an
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event.

Entity 'EventBatch'
One EventBatch entity is created for keeping track of the logged Events. The EventBatch
can be associated with multiple Events.

Attributes

Name Type Default value Documentation

Name String (200) EventName The name of the event

IsLogging Boolean false Value to keep track of when
the event is logged by the
rider. When this is true, there is
an ongoing event where the
rider is logging sensor values
from the bike.

IsDeviceConnected Boolean false

Associations

Name Connected to Multiplicity Documentation

EventSettings_EventBatch SHM_Module.EventSettings One-to-one Settings for the
eventbatch.

Entity 'EventSettings'
The EventSettings is used to enter custom settings for the user. Currently, it holds the
value of the biker's mass in order to use it as a part of the inverse method.

Attributes

Name Type Default value Documentation

Mass Decimal 0 The mass of the bicycle rider

Associations

Name Connected to Multiplicity Documentation

EventSettings_EventBatch SHM_Module.EventBatch One-to-one Settings for the
eventbatch.
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Entity 'foat32'
Holds 4 byte float data coming from the Arduino Uno Wifi Rev 2 microcontroller.

Generalization

SHM_Module.Data

Attributes

Name Type Default value Documentation

Value Decimal 0 Holds the value of the float 32.

Associations

Entity 'float32' does not own any associations.

Entity 'grav_gyro'
Holds acc_gyro data coming from the Arduino Uno Wifi Rev 2 microcontroller.

Generalization

SHM_Module.Data

Attributes

Name Type Default value Documentation

Timer Decimal 0 The timestamp of when the
sensor is read.

grav_x Decimal 0 Gravitational acceleration in x
direction read from IMU.

grav_z Decimal 0 Gravitational acceleration in z
direction read from IMU.

gyro_y Decimal 0 Pitch rate read from IMU in y
direction.

Associations

Entity 'grav_gyro' does not own any associations.

Entity 'inverse_data'
Holds the inverse data which is associated to a specific acc_gyro.

Attributes
xxxvii



Name Type Default value Documentation

gauge1 Decimal 0

gauge2 Decimal 0

gauge3 Decimal 0

gauge4 Decimal 0

gauge5 Decimal 0

gauge8 Decimal 0

Associations

Name Connected to Multiplicity Documentation

inverse_data_acc_gyro SHM_Module.acc_gyro One-to-one The association
keeps track of the
inverse data that
corresponds with a
given acc_gyro
entity. One
inverse_data should
refer to a single
acc_gyro entity.

Entity 'Login'
The Login Entity is used for storing user credentials when the user attemps to login.

Attributes

Name Type Default value Documentation

Username String (200) Holds the username of the user
who is attempting to login.

Password String (200) Holds the password of the user
who is attempting to login.

ValidationMessage String
(unlimited)

Validation message to inform
the user of login errors.

Associations
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Entity 'Login' does not own any associations.

Entity 'Service'
The Service entity represents a Bluetooth service. It holds information about the bluetooth
service name and UUID.

Attributes

Name Type Default value Documentation

Name String (100) The name of the service.

UUID String (200) The unique identifier for the
bluetooth service.

Associations

Name Connected to Multiplicity Documentation

Service_Device SHM_Module.Device One-to-many A service can only be linked
to one device.

A device can have many
services.

Entity 'srain_gauge'
Holds strain gauge data coming from the Arduino Uno Wifi Rev 2 microcontroller.

Generalization

SHM_Module.Data

Attributes

Name Type Default value Documentation

Timer Decimal 0 The timestamp of when the
sensor is read.

gauge1 Integer 0 Value of strain gauge 1 mounted
on the Hardrocx bicycle.

gauge2 Integer 0 Value of strain gauge 2 mounted
on the Hardrocx bicycle.

gauge3 Integer 0 Value of strain gauge 3 mounted
on the Hardrocx bicycle.
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gauge4 Integer 0 Value of strain gauge 4 mounted
on the Hardrocx bicycle.

gauge5 Integer 0 Value of strain gauge 5 mounted
on the Hardrocx bicycle.

gauge8 Integer 0 Value of strain gauge 8 mounted
on the Hardrocx bicycle.

Associations

Entity 'strain_gauge' does not own any associations.

Entity 'uint'
Holds 2 byte uint data coming from the Arduino Uno Wifi Rev 2 microcontroller.

Generalization

SHM_Module.Data

Attributes

Name Type Default value Documentation

Value Integer 0 Holds the value of the uint.

Associations

Entity 'uint' does not own any associations.

Enumerations
The module has no enumerations.

Microfows

Name Return type Documentation

AddDevice Creates a new device and associates it to
the input asset. The device is commited
and refreshed for the client.

AddEvent Creates a new Event and associates it to
the input EventBatch. The new Event is
commited and refreshed for the client.

AddService Creates a new Service and associates it
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to the input Device. The new Service is
commited and refreshed for the client.

CalculateInverseData Each time an acc gyro object is
committed to the database, the microflow
is executed. It performs the inverse
method on the gathered data every four
seconds.

CreateAsset Creates an Asset, commits the Asset and
updates the client.

CreateCharacteristic Creates and returns a Characteristic
Entity.

CreateEventBatch Creates an EventBatch, an Event and
returns the EventBatch.

ExitSetupEvent Exits the event setup page by opening the
home page and deleting the Event Batch.

GetAccGyroData Returns a list of acc_gyro data.

GetAccGyroDataSorted Returns a list of sorted acc_gyro data.

GetEvent Gets the head of the events associated to
an EventBatch.

GetEventSetting Gets or creates the EventSettings from an
EventBatch.

GetEventsReversed Returns a list of events sorted by
createdDate in descending order.

GetGravGyroDataSorted Returns a list of sorted acc_gyro data.

GetInverseDataSorted Returns a list of sorted inverse data in
ascending order of the timer..

GetStrainGaugeData Returns a list of strain gauge data.

GetStrainGaugeDataSorted Returns a list of sorted strain gauge data.

GetUserAssets Retrieves a list of the Assets associated
to the current user.

OpenEventStartPage Opens the event start page.

OpenHomepage This is the first microflow which is run as
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the client enters the web site. It executes
a deep link and opens the sign in page
whether the deeplink is executed or not.

RegisterUser_m Registers a user.

SelectableCharacteristics Retrieves a list of selectable
characteristics given an event.

SelectableDevices Retrieves a list of selectable devices
given an event.

SelectableServices Retrieves a list of selectable services
given an event.

SendDataToServer Sends a datastring to the server, parses,
commits, and deletes the data.

SetAssetOwner Sets the current user as the owner of the
given Asset.

Microfow 'AddDevice'
Creates a new device and associates it to the input asset. The device is commited and
refreshed for the client.

Parameters

Name Type Documentation

Asset SHM_Module.Asset The asset which will be associated with the new
device.

Return type

Nothing

Microfow 'AddEvent'
Creates a new Event and associates it to the input EventBatch. The new Event is commited
and refreshed for the client.

Parameters

Name Type Documentation

EventBatch SHM_Module.EventBatch The EventBatch which will be associated
with the new Event.

xlii



Return type

Nothing

Microfow 'AddService'
Creates a new Service and associates it to the input Device. The new Service is commited
and refreshed for the client.

Parameters

Name Type Documentation

Device SHM_Module.Device The Device which will be associated with the
new Service.

Return type

Nothing

Microfow 'CalculateInverseData'
Each time an acc gyro object is committed to the database, the microflow is executed. It
performs the inverse method on the gathered data every four seconds.

Parameters

Name Type Documentation

acc_gyro SHM_Module.acc_gyro The acc_gyro entity which holds the timer
value to check whether 4 seconds of data is
accumulated.

Return type

Nothing

Microfow 'CreateAsset'
Creates an Asset, commits the Asset and updates the client.

Parameters

This microflow has no parameters.

Return type

Nothing

Microfow 'CreateCharacterisic'
Creates and returns a Characteristic Entity.
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Parameters

Name Type Documentation

Service SHM_Module.Service The Service which will be associated with the
new Characteristic.

Return type

SHM_Module.Characteristic

Microfow 'CreateEventBatch'
Creates an EventBatch, an Event and returns the EventBatch.

Parameters

This microflow has no parameters.

Return type

SHM_Module.EventBatch

Microfow 'ExitSetupEvent'
Exits the event setup page by opening the home page and deleting the Event Batch.

Parameters

Name Type Documentation

EventBatch SHM_Module.EventBatch EventBatch to be deleted.

Return type

Nothing

Microfow 'GetAccGyroData'
Returns a list of acc_gyro data.

Parameters

Name Type Documentation

Event SHM_Module.Event Event used to get all associated acc_gyro
entities.

Return type

List of SHM_Module.acc_gyro
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Microfow 'GetAccGyroDataSorted'
Returns a list of sorted acc_gyro data.

Parameters

Name Type Documentation

Event SHM_Module.Event Event used to get all associated acc_gyro
entities.

Return type

List of SHM_Module.acc_gyro

Microfow 'GetEvent'
Gets the head of the events associated to an EventBatch.

Parameters

Name Type Documentation

EventBatch SHM_Module.EventBatch EventBatch used to get the assciated
events.

Return type

SHM_Module.Event

Microfow 'GetEventSetting'
Gets or creates the EventSettings from an EventBatch.

Parameters

Name Type Documentation

EventBatch SHM_Module.EventBatch EventBatch used to get the associated
EventSetting

Return type

SHM_Module.EventSettings

Microfow 'GetEventsReversed'
Returns a list of events sorted by createdDate in descending order.

Parameters
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This microflow has no parameters.

Return type

List of SHM_Module.EventBatch

Microfow 'GetGravGyroDataSorted'
Returns a list of sorted acc_gyro data.

Parameters

Name Type Documentation

Event SHM_Module.Event Used to get all associated grav_gyro entities.

Return type

List of SHM_Module.grav_gyro

Microfow 'GetInverseDataSorted'
Returns a list of sorted inverse data in ascending order of the timer..

Parameters

Name Type Documentation

Event SHM_Module.Event Used to get all associated acc_gyro entities.

Return type

List of SHM_Module.inverse_data

Microfow 'GetStrainGaugeData'
Returns a list of strain gauge data.

Parameters

Name Type Documentation

Event SHM_Module.Event Used to get all associated strain_gauge entities.

Return type

List of SHM_Module.strain_gauge

Microfow 'GetStrainGaugeDataSorted'
Returns a list of sorted strain gauge data.
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Parameters

Name Type Documentation

Event SHM_Module.Event Used to get all associated strain_gauge entities.

Return type

List of SHM_Module.strain_gauge

Microfow 'GetUserAssets'
Retrieves a list of the Assets associated to the current user.

Parameters

This microflow has no parameters.

Return type

List of SHM_Module.Asset

Microfow 'OpenEventStartPage'
Opens the event start page.

Parameters

Name Type Documentation

EventBatch SHM_Module.EventBatch Used to get the associated events.

Return type

Nothing

Microfow 'OpenHomepage'
This is the first microflow which is run as the client enters the web site. It executes a deep
link and opens the sign in page whether the deeplink is executed or not.

Parameters

This microflow has no parameters.

Return type

Nothing

Microfow 'RegiserUser_m'
Registers a user.
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Parameters

Name Type Documentation

Login SHM_Module.Login The login object with the login information.

Return type

Nothing

Microfow 'SelectableCharacterisics'
Retrieves a list of selectable characteristics given an event.

Parameters

Name Type Documentation

Event SHM_Module.Event The event that will be associated to the
selected characteristic.

EventBatch SHM_Module.EventBatch Used to retrieve the associated Events.

Return type

List of SHM_Module.Characteristic

Microfow 'SelectableDevices'
Retrieves a list of selectable devices given an event.

Parameters

Name Type Documentation

Event SHM_Module.Event The Event used to get the associated
(selectable) devices.

Return type

List of SHM_Module.Device

Microfow 'SelectableServices'
Retrieves a list of selectable services given an event.

Parameters

Name Type Documentation

Event SHM_Module.Event The Event used to get the associated
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(selectable) services.

Return type

List of SHM_Module.Service

Microfow 'SendDataToServer'
Sends a datastring to the server, parses, commits, and deletes the data.

Parameters

Name Type Documentation

data SHM_Module.ClientData The data containing the datastring which will
be stored at the server.

Return type

Nothing

Microfow 'SetAssetOwner'
Sets the current user as the owner of the given Asset.

Parameters

Name Type Documentation

Asset SHM_Module.Asset The targeted asset which will have the current
user as the owner.

Return type

Nothing

Nanofows

Name
Return
type Documentation

ACT_SignInUser

ConnectToCharacteristic Connects to all devices associated
with an event.

ConnectToDevice Either connects or disconnects to all
services associated with a given
event depending on whether the
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event IsLogging attribute is true or
false. If false, the event starts
logging, otherwise, the device is
disconnected, and the event stops.

DSS_CreateLoginContext

DSS_CreateLoginContext_web

DSS_CreateRegisterContext

DSS_CreateRegisterContext_web

GetDeviceServices

GetEventAssets

GetEventCharacteristic

GetEventDevice

GetEventsByBatch

GetEventService

GetServiceCharacteristics

nfGetEventsReversed

RegisterUser

RegisterUser_web

Nanofow 'ACT_SignInUser'

Parameters

Name Type Documentation

Login SHM_Module.Login

Return type

Nothing

Nanofow 'ConnectToCharacterisic'
Connects to all devices associated with an event.

l



Parameters

Name Type Documentation

EventBatch SHM_Module.EventBatch Context

Return type

Nothing

Nanofow 'ConnectToDevice'
Either connects or disconnects to all services associated with a given event depending on
whether the event IsLogging attribute is true or false. If false, the event starts logging,
otherwise, the device is disconnected, and the event stops.

Parameters

Name Type Documentation

eventBatch SHM_Module.EventBatch

Return type

Nothing

Nanofow 'DSS_CreateLoginContext'

Parameters

This nanoflow has no parameters.

Return type

SHM_Module.Login

Nanofow 'DSS_CreateLoginContext_web'

Parameters

This nanoflow has no parameters.

Return type

SHM_Module.Login

Nanofow 'DSS_CreateRegiserContext'

Parameters

This nanoflow has no parameters.
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Return type

SHM_Module.Login

Nanofow 'DSS_CreateRegiserContext_web'

Parameters

This nanoflow has no parameters.

Return type

SHM_Module.Login

Nanofow 'GetDeviceServices'

Parameters

Name Type Documentation

Device SHM_Module.Device

Return type

List of SHM_Module.Service

Nanofow 'GetEventAssets'

Parameters

Name Type Documentation

Event SHM_Module.Event

Return type

List of SHM_Module.Asset

Nanofow 'GetEventCharacterisic'

Parameters

Name Type Documentation

Event SHM_Module.Event

Return type

List of SHM_Module.Characteristic

Nanofow 'GetEventDevice'
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Parameters

Name Type Documentation

Event SHM_Module.Event

Return type

List of SHM_Module.Device

Nanofow 'GetEventsByBatch'

Parameters

Name Type Documentation

EventBatch SHM_Module.EventBatch

Return type

List of SHM_Module.Event

Nanofow 'GetEventService'

Parameters

Name Type Documentation

Event SHM_Module.Event

Return type

List of SHM_Module.Service

Nanofow 'GetServiceCharacterisics'

Parameters

Name Type Documentation

Service SHM_Module.Service

Return type

List of SHM_Module.Characteristic

Nanofow 'nfGetEventsReversed'

Parameters
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This nanoflow has no parameters.

Return type

List of SHM_Module.EventBatch

Nanofow 'RegiserUser'

Parameters

Name Type Documentation

Login SHM_Module.Login

Return type

String

Nanofow 'RegiserUser_web'

Parameters

Name Type Documentation

Login SHM_Module.Login

Return type

String

Java actions

Name Return type Documentation

computeInverseData

dataParseCommit

Java action 'computeInverseData'

Type parameters

This Java action has no type parameters.

Parameters

Name Type Documentation

acc_gyro_list List of
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SHM_Module.acc_gyro

mass Decimal

Return type

Nothing

Java action 'dataParseCommit'

Type parameters

This Java action has no type parameters.

Parameters

Name Type Documentation

dataString String

Return type

Nothing

JavaScript actions

Name Return type Documentation

BLECharacteristicSubscribe Subscribes to a characteristic given a
UUID and commits data to the server on
every notification retrieved from the
peripheral device.

BLEDeviceConnect Pairs with a Bluetooth device with a given
UUID.

BLEDeviceDisconnect Disconnect from all Bluetooth devices.

JavaScript action 'BLECharacterisicSubscribe'
Subscribes to a characteristic given a UUID and commits data to the server on every
notification retrieved from the peripheral device.

Type parameters

This JavaScript action has no type parameters.

Parameters
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Name Type Documentation

characteristicUUID String

dataType String

eventBatch SHM_Module.EventBatch

eventReference SHM_Module.Event

serviceUUID String

Return type

String

JavaScript action 'BLEDeviceConnect'
Pairs with a Bluetooth device with a given UUID.

Type parameters

This JavaScript action has no type parameters.

Parameters

Name Type Documentation

eventBatch SHM_Module.EventBatch

primaryServiceUUID String

Return type

Nothing

JavaScript action 'BLEDeviceDisconnect'
Disconnect from all Bluetooth devices.

Type parameters

This JavaScript action has no type parameters.

Parameters

Name Type Documentation

characteristicUUID String

eventBatch SHM_Module.EventBatch
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serviceUUID String
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Appendix F

Scientific Paper

The following appendix comprises the scientific paper that was written as a result of the

master’s thesis.
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Abstract: This paper presents a generic approach for implementation of real time digital twin based 

structural health monitoring of bicycle frames. The main purpose is to develop and benchmark 

a framework for identification of structural loads and stresses acting on bicycle frames in real 

time. The authors use a cloud-based solution to track and store applied bicycle loads, while an 

edge solution is used to display live loads, accelerations and strain time histories on a smart 

phone mounted on the handlebars. The digital twin is represented by 6x8 look-up table which 

enables real time strain calculations in 8 virtual strain gages when random combinations of 6 

bicycle loads are acting during bicycle ride. The 6x8 look-up table is precomputed by a unit-

load method applied to the bicycle frame modelled in a finite element (FE) program. An ana-

lytical inverse method for estimation of dynamic bicycle loads is implemented based on a 

single IMU sensor. The sensor outputs are processed for noise reduction and singularity re-

moval. Additional strain gauges and temporary accelerometers were mounted on the bicycle 

for model calibration and validation. The presented approach is described in a general manner 

and is applicable for undamped bicycle frames. 

Keywords: Digital Twin (DT), Structural Health Monitoring (SHM), Reduced Order Model (ROM) 

 

1. Introduction 

The structural integrity of bicycle frames is critical in off-road ride and handling. The integrity is de-

pendent on the chosen frame material and design. While the materials are either aluminum or composites 

for high-end off-road bikes, the design variations and dimensions seem to be almost infinite. Contrary 

to most platform based automotive solutions, bicycle frames are not optimized by well-known design 

and load constraints. Fashion driven bike designs also contradict frame standardization and integrity 

optimization. 

Hence, the authors decided to benchmark a generic and low-cost digital twin solution for Structural 

Health Monitoring (SHM) of bicycle frames. The intention was initially to identify dynamic loads ap-

plicable to future frame optimization based on smartphone sensors and apps. Most smartphones have 

embedded IMUs and free apps sampling angular rates and accelerations in 3D at 100 Hz. Simple tests 

with an iPhone11 Pro running the SensorLog app [1] proved that 100 Hz sampling of IMU data captured 

most excitations when riding on various city and off-road paths.  

Based on such a simple instrumentation most frame loads can be calculated except the applied input 

torque from the biker causing chain reaction forces. The smartphone sensors can neither identify the 

distribution of biker weight on the seat, crank and handlebar during ride and handling. The authors 

therefore wanted to develop a more scalable IoT framework compatible with low-cost hardware and 

most sensor types applied in SHM. 

To detect the input torque the authors installed a StagesPower crank sensor [2]. This sensor is com-

municating with Bluetooth to an embedded smartphone app. Unfortunately, the StagesPower app cannot 

be customized to read data from the smartphone sensors. The authors therefore decided to develop an 

Arduino hardware solution and a new app based on the Mendix low-code development suite [4]. The 

Mendix software has an open architecture enabling Bluetooth sensor communication, data processing 

and dashboard development for data visualization. The Mendix system also embed tools for edge and 

cloud communication. 
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To estimate the size, direction, and distribution of dynamic bicycle loads, an inverse method also had 

to be embedded. The purpose of the inverse method is to predict the distributed inertia loads applied on 

the bicycle twin model to calculate the distribution of stresses and strains at preselected hot spots. The 

demand for a 100 Hz sampling frequency did not allow simultaneously finite element analysis of a full 

finite element model.  

The hot spots were identified by a virtual brittle lacquer technique and critical load cases in FEDEM 

[3]. The selected FEDEM solver supports FMU export and real time calculation of strain and stress time 

histories. However, due to compatibility and cost considerations, the authors decided to replace a FMU 

based co-simulation with a precomputed static look-up table. This Reduced Order Model (ROM) digital 

twin solution is also faster to run on Arduino, easier to implement in Mendix, and fully applicable to the 

linear behavior of the stiff bicycle frame (no dampers). 

Hence, this SHM framework will combine a fast edge (Arduino/smartphone) and a slower but more 

scalable cloud solution implemented as a back-end service in Mendix. On Arduino, the edge solution is 

configured to operate at 100 Hz in real time, while the cloud solution collects data from the edge four 

times per second, or 4 Hz. The edge results are displayed on the Mendix WebApp running on a 

smartphone mounted on the handlebars.  

The real time edge solution shall provide operational decision support to the biker during critical 

bicycle ride and handling. Safety margins with respect to measured accelerations and calculated struc-

tural loads are continuously visualized on a dashboard on the smartphone. The edge solution is also 

embedding real time stress computations and visualization from both physical and virtual strain gages. 

These stress results are used to benchmark and validate the digital twin model 

The cloud solution must enable more comprehensive off-line structural stress and fatigue life compu-

tations. Both physical sensor data and digital twin simulation results are simultaneously displayed on a 

cloud-based dashboard and smartphone App. 

The paper is organized in the Digital Twin asset (bicycle), failure modes, model, theory, validation, 

results and Inverse methods sections. The Digital Twin method section documents the unit load method 

applied to generate a Reduced Order Model (ROM) of the physical asset (bike). The theory section 

addresses the applied FEA formulations, basic fatigue modeling, simulation and post processing tools 

implemented in the SHM framework. The validation and results section demonstrates the capabilities of 

the SHM framework with respect to load and stress prediction.  

2. Common bicycle failure modes to be detected by the SHM framework 

The main purpose of this paper is to present a framework for identification of frame loads and stresses. 

According to the manufacturer, bicycle frames rarely brake since they are generally conservative di-

mensioned. Although most bikers want solid and reliable frames, the weight penalty is not appreciated 

by active or professional riders.  Hardrocx is therefore searching for optimal designs offering maximum 

frame integrity at minimum weight.  

The selected bike (physical asset) is a 19” 

Hardrocx Super Motard M4 provided by 

Hardrocx. The manufacturer also provided a 

3D CAD model, enabling an accurate digital 

twin model. The bike has a rigid undamped 

aluminum frame possible to represent and 

solve by a linear FE model and solver. 

The most common failure modes are 

cracks in frame joints due to manufacturing 

defects [5]. Fractures may also occur in the 

middle of a pipe due to under dimensioned 

tubes in the pursuit of weight saving. How-

ever, the most common cause of frame break-

age on an aluminum frame is overturning or 

collision causing stresses above the yield 

limit.  

Figure 1 The Hardrocx Super Motard M4 
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Other cases include seat tube cracks caused by seat pins positioned to high by the customers. If the 

seat pin does not protrude deep enough into the seat tube on the frame, the frame might break due to 

flexing back and forth. 

The risk associated with these failure modes can be reduced by monitoring the applied frame loads 

applied in digital twin-based calculations of stress time histories and accumulated damage.  

 

3. The Digital Twin theory 

Unit-loads were applied to the FE frame model in FEDEM to precompute the Reduced Order Model 

(ROM) look-up table (matrix). The ROM can then be multiplied with the estimated load vector in real 

time to compute gage stresses and strains. FEDEM is also embedded in the cloud solution enabling more 

comprehensive off-line stress analysis of the frame. The cloud computations will be automated because 

of the ongoing software integration between SAP (FEDEM) and SIEMENS (Mendix). Although these 

FEDEM formulations support real time gage stress computations, a static ROM is used since Mendix is 

not enabling real time co-simulation. 

FEDEM is a multidisciplinary simulation system based on a non-linear finite element formulation, 

CMS model reduction, and control system simulation enabling integrated digital twin modeling and 

simulation [3,6,7,8]. The nonlinear dynamic FEDEM solver is written on incremental form and solved 

by the Newmark- time integration algorithm with respect to the displacement increments ∆𝐫k for time 

increment k. To achieve equilibrium at the end of the time increment, in the non-linear case, Newton-

Raphson iterations must be used to minimize the residual forces: 

 

 𝐌k∆𝐫̈k + 𝐂k∆𝐫̇k + 𝐊k∆𝐫k =  ∆𝐐k (1) 

 

where Mk, Ck, and Kk are the system mass, damping and stiffness matrices respectively at the begin-

ning of time increment k. The system mass and stiffness matrices Mk and Kk are Component Mode 

Synthesis (CMS) reduced, which is the main enabler for real time FE simulation of non-linear systems 

like complete mountain bikes [6].  

 

𝐯𝑓𝑟𝑒𝑒 =  [
𝐯e

𝐯i
] =  [

𝐈 𝟎
𝐁 𝚽

] [
𝐯e

𝐲 ] = 𝐇 𝐯𝒔𝒖𝒑 (2) 

  

The same technique is basically used to calculate the strain / stress time histories at selected hotspots 

based on super node displacements as described in [7,Error! Reference source not found.].  

 

𝛆𝑟𝑜𝑠𝑒𝑡𝑡𝑒 =  [𝐓𝒓𝒆𝐁̃ 𝐓 𝐀 𝐋 𝐇] 𝐯𝒔𝒖𝒑    (3) 

𝐇 is the CMS matrix mapping external 𝐯𝒔𝒖𝒑 to internal displacements 𝐯𝑓𝑟𝑒𝑒. The L matrix recover 

the internal displacements from linear couplings (MPCs). The A matrix extracts nodal displacements 

defining the strain gage from the full displacement vector. T is transferring the extracted nodal displace-

ments to local strain gage directions. The 𝐁 ̃matrix is the strain-displacement matrix given by the deriv-

atives of the strain element shape functions. The optional 𝐓𝒓𝒆 matrix transforms the calculated rosette 

strains and stresses to user defined directions.   

The [𝐓𝒓𝒆𝐁̃ 𝐓 𝐀 𝐋 𝐇] can be precomputed for each strain gauge element which allows fast real time 

calculations of hot spot strains during crane operations. This formulation is therefore applicable to digital 

twin / hardware in the loop applications. 
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4. The Digital Twin FE model 

A physical and a digital 3D model of a 19” Hardrocx SuperMotard M4 bike was received from the 

manufacturer. The 3D model is an accurate representation of the physical bike. Only minor CAD fea-

tures not influencing the structural integrity was removed prior to meshing. The bike model was ideal-

ized and meshed in NX with 6 mm Teth 10 elements. The FEM model has a total of 154982 elements 

and 308957 nodes. The tetrahedral elements were assigned specified Aluminum material properties. The 

seat and steering pin as well as the wheel hubs were represented by RBE2 and RBE3 elements. The 

meshed model was imported to FEDEM and applied proper boundary conditions in free joints repre-

senting the front and rear wheel hubs. Unit loads were later applied at preselected points and directions 

to generate the Reduced Order Model (ROM) 

 

 
 

 
Figure 2 FE model of frame joints 

5. The static ROM 

FE analysis of the whole frame is too CPU demanding to run real time, and co-simulation is currently 

not supported by Mendix. Besides, only stresses in hotspots identified by [9] had to be calculated. This 

trade-off has proven to be an efficient approach since it establishes a linear relationship between a few 

critical input loads and output hotspot stresses/strains [10] 

A static ROM was therefore developed for the 19" Hardrocx bike, by pre-computing the stresses at 

eight selected frame locations in FEDEM. These locations were highly loaded hotspots previously iden-

tified by [5,9]. Single leg strain gages located in the hotspots could then provide stress time histories for 

fatigue calculations.  

Therefore, the static ROM is an 8 x 6 matrix (look-up table) representing the load–stress relationship 

for the Hardrocx 19" frame. Hence, the six structural loads computed by the inverse method are multi-

plied by the 8x6 matrix to get the stress distribution in the eight strain gages.  

The figure below shows the stress contributions from each applied unit load in FEDEM. These stress 

distributions are too time-consuming to calculate in real-time, but they were used to find the best strain 

gage locations. The strain gage results are then calculated in real-time by multiplying the ROM matrix 

and the load vector estimated by the inverse method. 
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Figure 3 The selected strain gauge locations 

 

The 8 gage results corresponding to the 6 individual unit loads can be assembled in a matrix as shown 

in Table 1. Since the model is linear and solved for identical boundary conditions, the gage stresses due 

to any combination of unit loads applied on the FEDEM model or multiplied by the ROM matrix, gives 

identical results. Hence, any combination of real loads calculated by an inverse method, can be multi-

plied by the ROM matrix to estimate the real stress time histories. The static ROM is only applicable 

when the stresses are below yield. Then stress contributions from the various physical loads can be 

superimposed. Finally, stresses above yield will be captured by a trigger event in the smartphone app.  

 

Table 1: The Unit-Load Matrix calculated by FEDEM for the 19" Hardrocx frame. 

Stress [Pa]- 

in Gage-id 

Unit-Load 

1 

Unit-Load 

2 

Unit-Load 

3 

Unit-Load 

4 

Unit-Load 

5 

Unit-Load 

6 

1 2,62E+02 -4,15E+03 -1,25E+03 9,88E+03 -7,31E+02 4,60E+02 

2 1,08E+04 3,20E+03 -2,32E+03 -1,87E+04 -1,85E+03 -3,95E+03 

3 -1,38E+04 -2,89E+04 -6,02E+03 8,45E+04 -8,59E+03 4,04E+01 

4 1,56E+04 2,56E+04 1,18E+04 -7,83E+04 1,64E+04 -9,89E+01 

5 1,90E+04 -8,74E+03 -3,03E+04 2,41E+03 -2,05E+04 8,46E+02 

6 1,87E+04 -8,82E+03 -3,03E+04 2,86E+03 -2,04E+04 9,35E+02 

7 1,51E+04 4,34E+03 -3,47E+03 -2,58E+04 -3,23E+03 -4,76E+03 

8 1,02E+04 2,76E+03 -1,98E+03 -1,70E+04 -4,83E+03 -2,26E+02 

 

6. Inverse Method for bicycle ride load prediction 

Several methods can be used to calculate bicycle stresses based on estimated bicycle loads. Covill &Al 

[9] gives a comprehensive overview of methods used to calculate stresses caused by various load cases. 

They also identified the most critical load cases to be road bumps at the front and rear wheel causing 

vertical accelerations. Brake forces are less critical but fast to compute and hence included in this study. 

lxiii



The TrueLoads software [10] is a more recent approach used to capture bicycle loads from physical 

strain gages. The strain gage distribution is optimized based on unit loads applied to defined points and 

directions on a linear FE model of the physical asset. This method is applied on TREK bikes to capture 

loads used in frame design and optimization [10]. TrueLoads was the preferred tool in this study, but 

the hot-spots were already identified in [5,9] as shown in Figure 4. Both physical and virtual strain gages 

were located on these hot spots for final Digital Twin validation. TrueLoads would also require an ex-

pensive DAC and minimum 12 extra strain gages for the identification of the 6 most critical loads shown 

in Figure 5.  

 

 

Figure 4  Strain gage distribution 

 

 
Figure 5 Applied frame loads (vertical hub loads are reaction forces in free joint springs) 

The authors therefore decided to estimate the frame inertia biker loads based on outputs from a single 

low-cost Arduino IMU located on the luggage rack. Based on the measured accelerations (𝑎𝑥 , 𝑎𝑦, 𝑎𝑧) 

and angular rates (𝛼̇𝑥, 𝛽̇𝑦, 𝛾̇𝑧 ) about the global coordinate system shown in Figure 1, the most critical 

frame loads during bicycle ride can be estimated in real time as shown in Table 2. The vertical loads 

acting in the front and rear hub due to acceleration and braking are included as reaction forces in free 

joint springs. These are non-linear compressions springs acting as tire models.  

Since measured vertical acceleration 𝑎𝑧 is introduced by both front and rear wheel bumps, a vertical 

load distribution is calculated based on the bicycle geometry and angular bicycle pitch acceleration 𝛽̈𝑦 

calculated as the derivative of 𝛽̇𝑦. When the pitch rate is negative, the front wheel is passing a bump 

(wheel lift) and vice versa for positive pitch rates and rear wheel bumps.  

The estimated rider mass distribution (20% handlebar, 50% seat and 30% crank) is based on physical 

ride tests on the Hardrocx bike. The weight distribution is obviously depending on the riding position, 

so all physical tests are performed in the same seated test position. Identification of bicycle loads acting 
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during various seating positions and offroad handling would require additional load cells on the seat and 

handlebar tubes to capture the rider mass distribution. Such a force driven digital twin setup is more 

accurate but also contradicts the desired simplicity and current budget constraints. 

 
Figure 6 Bicycle geometry used in acceleration calculations 

The measured IMU pitch rate 𝛽̇𝑦𝐼𝑀𝑈 and vertical acceleration 𝑎𝑧𝐼𝑀𝑈, are used to calculate the accel-

erations during front and rear wheel bump passes: 

 

Handlebar acceleration 𝑎𝑧𝐻= 𝐻𝛽̈𝑦𝐼𝑀𝑈 + 𝑎𝑧𝐼𝑀𝑈  (4) 

Crank acceleration 𝑎𝑧𝐶= 𝐶𝛽̈𝑦𝐼𝑀𝑈 + 𝑎𝑧𝐼𝑀𝑈  (5) 

Seat acceleration 𝑎𝑧𝑆= 𝑆𝛽̈𝑦𝐼𝑀𝑈 + 𝑎𝑧𝐼𝑀𝑈  (6) 

Where the pitch acceleration is given by 𝛽̈𝑦 =  
𝛽̇𝑦,𝑡+1−𝛽̇𝑦,𝑡−1

2∗𝑑𝑡
 (dt = sampling time increment). These ac-

celerations are response inputs to an inverse method shown in Table 2 capturing the most important 

dynamic loads acting during bicycle ride. Inverse methods capturing handling loads will be developed 

in future implementations, but the current hardware (Arduino shells) and instrumentation (one IMU) is 

too limited for real time offroad handling loads calculations. However, the real inverse method imple-

mentation is more complex and tuned by initial tests. 

 

Table 2 Load calculations / Inverse method 

ID Force Sen-

sor Out-

put 

Prop-

erty 

Inertia Loads by 

Inverse Method 

Description 

1 Handlebar x-

load 

axIMU Mass 𝑚𝑎𝑥 Biker loads due to ax (mainly weight trans-

fer during breaking) (100%) 

2 Handlebar z-

load 

azIMU Mass 0.2𝑚𝑎𝑧𝐻 Biker loads due to gravity and 𝑎𝑧  (20% 

weight distribution) 

3 Seat 

z-loads 

azIMU Mass 0.5𝑚𝑎𝑧𝑆  

 

Biker loads due to gravity and 𝑎𝑧 (50% 

weight distribution) 

4 Front x-load axIMU Mass 𝑚𝑎𝑥𝐼𝑀𝑈        (axIMU < 0) 

0,02𝑚𝑎𝑧𝐼𝑀𝑈 (axIMU > 0) 

Front brake load (assume 100% of total 

brake load) or 2% rolling resistance) 

5 Crank load z azIMU Mass 0.3𝑚𝑎𝑧𝐶 Biker loads due to gravity and 𝑎𝑧 (30% 

weight distribution) 

6 Chain load Torque Pedal 

(radius) 

Torque/crank radius Applied compression load from crank 

torque (in lower arm) 

 

This analytical inverse method for load estimation based on IMU response data, and the static ROM 

for hot spot stress calculations can both run in real-time with a 100 Hz sampling frequency. However, 
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in practical benchmarks, the sampling frequency dropped to 70Hz when the 8 strain gages and IMU 

were sampled simultaneously. The inverse method is based on simplified but fast analytical calculations 

that estimate the main vertical loads and weight transfer during acceleration and braking during bicycle 

ride. This response driven method may be further developed to capture handling loads. However, light 

weight force transducers mounted on the handlebar and seat tubes can capture the sprung inertia loads 

from the biker directly and eliminate the need for an inverse method. The current single IMU based 

response driven inverse method is fast but limited to straight forward bicycle ride and not general offroad 

handling. A force driven digital twin is a simpler and more accurate solution but most force transducers 

are too heavy (see Error! Reference source not found.) and will sacrifice the simplicity of the proposed 

SHM framework. 

Digital Twin Validation 

The proposed static Reduced Order 

Model (ROM) shown in Table 1 is 

only valid if the bicycle frame has a 

linear behavior. A physical test was 

therefore conducted to benchmark the 

physical and digital bicycle model. 

The seat tube was replaced with a 

force sensor mounted on an equivalent 

aluminum tube and 200 kg was ap-

plied by a forklift as shown in Error! 

Reference source not found.. The 

force sensor and stresses in 4 gauges, 

limited by the available hardware, 

were recorded simultaneously.   

Output stresses from the physical 

test was recorded and compared with 

the simulated gage stresses as shown in the left graph in Figure 8. The correlation is very good, and the 

right graph shows the linear relation between the simulated versus the measured stresses. This proves 

that the digital twin FEDEM model predicts the real physical stresses and proves that the FEDEM model 

can be represented by a static ROM due to the linear structural behavior. 

 

    
 

Figure 8 Simulated versus measured gage stresses 

  

Figure 7 Physical benchmark of Digital Twin 
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7. Digital Twin Test Results 

The main objective with this study was to implement and benchmark a generic and low-cost digital 

twin based SHM system applicable to bicycle frame optimization.  

To achieve this, the authors used Arduino hardware a cloud-based solution to track and store applied 

bicycle loads, and a Mendix app to display live loads, accelerations and strain time histories on a smart 

phone mounted on the handlebars. These general-purpose tools offered low code software solutions easy 

to develop and maintain.  

However, they also represented performance restrictions 

due to the applied Bluetooth technology and JavaScript lim-

iting the sampling rate to 100-200 Hz depending on the num-

ber of channels. When sampling both the IMU and 8 gage 

sensors, the sampling rate dropped to 70 Hz.  

Initial tests passing the standard speed bump shown in Fig-

ure 9 at 20 [km/h], proved that a higher sampling rate was 

needed to capture the dynamics initiated by the combination 

of stiff tires and transient impact loads when hitting the 

bump. 

Due to the limited sampling rate when logging all 8 strain 

gages and IMU sensors, smoother test rides were selected 

as shown in Figure 10. However, the selected Bromstad-

ekra road has a rough surface and the highest speed bumps 

in Trondheim, famous for crushing front spoilers! 

 

    

Figure 10 Selected test rides (Trip 1 left and Trip 2 right) 

  The IMU sensors recorded vertical 𝑎𝑧𝐼𝑀𝑈 and longitudinal 𝑎𝑥𝐼𝑀𝑈 accelerations in the range of 0-

2.5G and pitch rates 𝛽̇𝑦𝐼𝑀𝑈 up to 60 rad/sec, used by the inverse method to calculate the handlebar 𝑎𝑧𝐻, 

seat 𝑎𝑧𝑆 and crank 𝑎𝑧𝐶 , and gyro pitch 𝛽̈𝑦 accelerations. These measurements are sensitive to numerical 

noise and sample rates and a 10 Hz low pass filter was applied to smoothen the transient accelerations. 

The measured accelerations are used to calculate the applied inertia loads based on the estimated rider 

mass. This is a very conservative approach since the IMU is rigidly attached to the bike frame while the 

rider's body is highly damped and acts like a low pass filter on the transmitted bike accelerations.  

In future implementations, the inverse method will be replaced by force transducers fixed to the han-

dlebar and seat tubes to capture the applied inertia loads directly. Force driven digital twins are much 

more robust than response driven twins influenced by numerical noise from accelerometers or strain 

gages [6]. 

Figure 9 Standard speed bump 
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Figure 11 IMU Outputs (𝑎𝑥𝐼𝑀𝑈, 𝑎𝑧𝐼𝑀𝑈 𝑎𝑛𝑑 𝛽̇𝑦𝐼𝑀𝑈) 

To estimate the un-sprung riders body mass causing inertia loads, a mannequin is needed that accu-

rately replicate the damping and flexibility of the rider body when excited by the rigid body bicycle 

motion. This is a complex task which will be addressed in future work. The observed effective un-sprung 

handlebar, seat and crank rider mass are therefore tuned against the physical strain gage measurements 

in a simple test passing the speed bump shown in Figure 9. 

Based on the physical IMU sensor outputs the rigid body handlebar (𝑎𝑧𝐻), seat (𝑎𝑧𝐻) and crank 

(𝑎𝑧𝐻) accelerations are calculated by Eq. 4, 5 and 6. These are shown in Figure 12. 

 

   

  
Figure 12 Calculated rigid body accelerations 

These computed accelerations are used by the inverse method to calculate Load 1-6 shown in Figure 5.  
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Figure 13 Calculated Ride Loads 

The stresses for the 8 virtual gages are then computed by multiplying the load vector (Load 1-6) with 

the precomputed FEM based ROM shown in Table 1. The ROM is validated by the physical test as 

shown in Figure 8. The virtual and physical strain gage stresses are shown in Figure 14.  

As seen from the graphs, the stress correlation is good for gage 1 and 2 located on the tubes in 

the crank region. The stresses in virtual gages 3, 4 and 8 were too conservative compared to the outputs 

from the physical gages. This is a direct consequence of the IMU accelerations seen in Figure 11 which 

are representing the rigid body bicycle motion and not the sprung / damped acceleration of the biker's 

body. In future work, an additional IMU will be located on the biker's body to capture the real biker 

inertia loads applied to the bicycle frame.  

This will also identify the transfer function or dynamic amplification factor of un-sprung bike 

to sprung/damped biker body accelerations. By tuning the recorded IMU accelerations until match be-

tween virtual and physical strain gage stresses the dynamic amplification factors are estimated to be in 

the range of 0.05-0.1 for the handlebar mass, 0.2-0.4 for the crank mass and 0.5-0.6 for the seat mass.  

However, this requires up-front knowledge of future test results and is not an acceptable ap-

proach. Physical tests with additional body IMUs will therefore be conducted to identify the sprung 

body mass and hence more correct inertia forces before a final paper will be submitted to ICSID2022. 
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Figure 14 Virtual and physical gage stresses for trip 1 and 2 

8. Summary 

The main purpose of this paper was to present a framework for real time identification of frame loads 

and stresses used in in future bicycle designs. Hence, the authors decided to benchmark a simple but fast 

digital twin solution for Structural Health Monitoring (SHM) of bicycle frames.  

Based on a single IMU most frame loads acting during bicycle rides can be calculated except the 

applied input torque from the biker causing chain reaction forces. The authors therefore wanted to de-

velop a more scalable IoT framework embedding local edge computing and results visualization as well 

as long term cloud storage. 

The authors therefore decided to develop an Arduino hardware solution and a new app based on the 

Mendix low-code development suite. The Mendix software has an open architecture enabling Bluetooth 

sensor communication, data processing and dashboard development for data visualization. The Mendix 

system also embed tools for edge and cloud communication. This framework is scalable but physical 

tests proved that the expected sampling frequency dropped from 100-200 Hz to 70 Hz in average when 

both strain gages and IMU data were sampled simultaneously. 

To estimate the biker induced inertia loads acting on the biker during ride, an inverse method was 

developed. The purpose of the inverse method is to predict the distributed dynamic loads applied on the 

digital twin model to calculate the distribution of stresses and strains at the preselected 8 hot spots. While 

the bicycle motions are well captured by the single IMU, the sprung motion of the biker's body is hard 

to validate. The first challenge was to estimate the biker mass distribution on the handlebars, seat and 

crank without load cells on the frame tubes. The next challenge was to identify the transfer function or 

dynamic amplification factor of un-sprung bike to sprung/damped biker body accelerations. These two 

issues will be addressed to better estimate the applied inertia loads before a final paper is submitted. The 

virtual strain gage stresses are a linear function of the estimated inertia loads and will hence be more 

correct. The ultimate goal is to eliminate the inverse method by force transducers and hence obtain a 

robust force driven digital twin with faster performance. 

The demand for a 100 Hz sampling frequency did not allow simultaneously finite element analysis of 

a full finite element model and the unit-load method was applied on a FE model to identify the hot-spots 

based on a virtual brittle lacquer technique in FEDEM. Then a Reduced Order Model (ROM) influence 

matrix mapping the unit loads to output stresses in the selected hot-spots was established, verified and 

approved by a physical test. This Reduced Order Model (ROM) digital twin solution is fast to run on 

Arduino, easier to implement in Mendix, and fully applicable to the linear behavior of the stiff bicycle 

frame. 

Hence, this SHM framework is combining a fast edge (Arduino/smartphone) and a slower but more 

scalable cloud solution implemented as a back-end service in Mendix. The edge solution runs real time 

at 100 Hz on Arduino, while the cloud solution is running at 4 Hz. When both IMU and strain gage 

sensors are sampled, the bandwidth is reduced to 70 Hz due to Bluetooth and JavaScript limitations. In 

future implementations all processing will be moved to the cloud where nodes will consume and produce 

data using an MQTT broker. The broker will be linked to a database that will contain the user's historical 

data, which the client will be able to access on a smartphone attached on the handlebars. The sampling 

frequency can then be increased to more than 200 Hz, while also becoming more secure. The app visu-

alization refresh rate will also improve by a large margin. 
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9. Conclusion 

This paper presents a fast and simple digital twin based SHM solution for bicycle frames. The 

framework is combining edge and cloud solutions that performs well but not as fast as expected due to 

Bluetooth limitations when both IMU and strain gage sensors are sampled. In future versions the Blue-

tooth solution will be replaced by local edge processing to support a more scalable framework and faster 

sampling rates capturing more transient dynamic loads and stresses. 

The inverse method is calculating the most critical inertia loads during bicycle rides, but the 

method has several limitations due to the desired simple and low-budget instrumentation. The rigid body 

bike accelerations measured by the IMU are too conservative and not representing the damped biker 

body accelerations. The resulting inertia loads, and gage stresses are therefore very conservative. The 

sprung motion and hence the biker inertia loads can be better estimated by a mannequin model or addi-

tional accelerometers mounted on the biker, but both solutions will increase the complexity and hence 

reduce the system bandwidth. Both options will be explored in future tests. 

Physical tests proved that the digital twin ROM matrix could replace the full bike frame FE 

model without sacrificing precision while offering real time gage stress calculations. In future frame-

work versions, this ROM matrix will therefore be augmented to capture the influence of bicycle off-

road handling loads. This will require force transducers mounted on the frame tubes. Such a load driven 

digital twin is more robust and accurate than a response driven approach based on IMU or strain gage 

measurements. 

Digital Twin driven SHM is still in its infancy. The authors explored several IoT platforms 

supposed to deliver the speed and flexibility required to perform real time SHM. Most IoT platforms are 

designed to support logistics and not high-speed edge solutions needed in real time SHM. The authors 

will therefore develop a Bluetooth free proprietary SHM solution based on MQTT while keeping the 

Mendix app for off-line visualization of edge data uploaded to a cloud provider. 
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