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a b s t r a c t

Square matrices appear in many machine learning problems and models. Optimization over a large
square matrix is expensive in memory and in time. Therefore an economic approximation is needed.
Conventional approximation approaches factorize the square matrix into a number matrices of much
lower ranks. However, the low-rank constraint is a performance bottleneck if the approximated matrix
is intrinsically high-rank or close to full rank. In this paper, we propose to approximate a large square
matrix with a product of sparse full-rank matrices. In the approximation, our method needs only
N(logN)2 non-zero numbers for an N ×N full matrix. Our new method is especially useful for scalable
neural attention modeling. Different from the conventional scaled dot-product attention methods, we
train neural networks to map input data to the non-zero entries of the factorizing matrices. The sparse
factorization method is tested for various square matrices, and the experimental results demonstrate
that our method gives a better approximation when the approximated matrix is sparse and high-
rank. As an attention module, our new method defeats Transformer and its several variants for long
sequences in synthetic data sets and in the Long Range Arena benchmarks. Our code is publicly
available2.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Many machine learning models include one or more square
atrices, such as the kernel matrix in Support Vector Machines

Cortes & Vapnik, 1995) or Gaussian Process, the affinity matrix
n graph or network representation, and the attention matrix in
ransformers (Vaswani et al., 2017b). In many machine learning
roblems, the solution space is also over square matrices, for
xample, graph matching and network architecture optimization.
Obtaining a full N ×N matrix can cause infeasible storage and

computational cost if N is large. For example, a double-precision
kernel matrix of the typical MNIST handwritten digit data set
N = 70,000) requires about 36.5G memory. In another example,
e need to calculate eight quintillion float numbers to fill a full
ttention matrix of a human DNA sequence with about 3.2 billion
ase pairs.
Therefore we need economical surrogates to approximate the

ull square matrices at a large scale. Matrix factorization is a
idely used approach that approximately factorizes the square
atrix to some cheaper matrices. In conventional matrix factor-

zation, the factorizing matrices must be low-rank, for example,
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in Truncated Singular Value Decomposition (TSVD) and Nyström
approximation (Drineas & Mahoney, 2005; Williams & Seeger,
2001). However, these conventional approaches do not work well
if the square matrix in the approximation is not low-rank.

This paper proposes a novel approximation method called
Sparse Factorization (SF), where the approximated square matrix
is factorized into some full-rank sparse matrices. Using the Chord
protocol (Stoica, Morris, Karger, Kaashoek, & Balakrishnan, 2001)
to specify the non-zero entry positions,3 we can match an N ×N
full matrix with logN factorizing matrices, where each contains
N logN non-zero entries and thus in total N(logN)2 non-zeros.
Therefore the approximation is economical when N is large.

We tested the new approximation method on a variety of
synthetic and real-world square matrices, with comparison to the
most accurate low-rank approximation method, TSVD. We find
that given the number of non-zero entries, SF wins over TSVD for
approximating sparse square matrices with unknown non-zero
positions.

We exploit the above advantage of SF to design a novel neural
attention model. We parameterize the mapping from input data
to the non-zero entries in each factorizing matrix with neural net-
works. The parametric SF thus replaces the conventional scaled

3 Non-zero entries are those stored, including both non-zeros and explicit
eros.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Examples of low-rank matrix dense matrix factorization. Each small
square represents a matrix entry. Top is a two-factor factorization and the
bottom is a four-factor factorization. The trapezoids illustrate the ‘‘bottleneck’’,
i.e. grouping the factorizing matrices according the place with the smallest rank.

dot-product attention. We find that only one such block of SF
attention already defeats Transformer and its several state-of-
the-art variants on very long synthetic sequence classification and
on the public Long Range Arena benchmark tasks.

The remaining of the paper is organized as follows. We first
briefly review the matrix approximation based on low-rank fac-
torization in Section 2. In Section 3, we present the machine
learning formulation of sparse factorization of square matrices.
The parametric formulation using neural networks is proposed in
Section 4. In Section 5, we present the experimental settings and
results. Conclusion and future work are given in Section 6.

2. Low-rank matrix factorization

The conventional matrix approximation is to factorize the
large square matrix X into a few low-rank matrices, for example
X ≈ X̂ = WH or X ≈ WSH with W ∈ RN×r , S ∈ Rr×r , H ∈ Rr×N

and r ≪ N . There are different tri-factor kind decomposition,
for example, Nyström decomposition (Williams & Seeger, 2001),
where W and H are calculated using normal kernel function, and
S is learned, and CUR decomposition (Mahoney & Drineas, 2009),
where W contains r columns of X , H contains r rows of X , and S
is learned.

The approximation error can be measured by a certain diver-
gence, for example the squared Frobenius norm: D(X ∥ X̂) =

∥X−X̂∥
2
F =

∑
ij

(
Xij − X̂ij

)2
. According to Eckart and Young (1936),

minimization of ∥X − WH∥
2
F over W and H has a closed-form

solution using Truncated Singular Value Decomposition (TSVD).
Denote Λ the diagonal matrix with the largest r singular values.
The corresponding left and right singular vectors as columns form
matrices U and V , respectively. Then the minimum appears by
setting W = U and H = ΛV T , where we can move any scaling
from W to H or vice versa.

Matrix factorization with more than two factors cannot achieve
a lower approximation error than TSVD. In general, we write
X =

∏M
m=1 W

(m), where W (m)
∈ Rrm,rm+1 with r1 = rM+1 = N .

We can always reduce a multi-factor case to the two-factor form
by grouping L =

∏m′
−1

m=1 W (m) and R =
∏M

m=m′ W (m), where m′
=

argminm
(
{rm}

M
m=2

)
and X ≈ LR. It is required that rm′ ≪ N when

approximating large square matrices. Otherwise, the factorizing
matrices are still too large. The grouping at the bottleneck is
illustrated in Fig. 1 (bottom).

There are low-rank matrix factorization methods with certain
constraints on the factorizing matrices, for example, nonnega-

tive matrix factorization (Lee & Seung, 1999) and binary matrix
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factorization (Slawski, Hein, & Lutsik, 2013; Zhang, Li, Ding, &
Zhang, 2007). However, the constraints limit the solution space
and thus usually lead to a higher approximation error. Some other
methods employ some penalty terms on the factorizing matrices,
for instance, the Sparse Coding (Donoho, 2006) or Funk matrix
factorization (Funk, 2006). Despite their particular applications,
these methods generally give a higher approximation error than
TSVD (in terms of Frobenius norm) due to compromise to the
extra penalties.

3. Sparse factorization

As we have seen, the performance of LRMF is capped due to
the low-rank constraint. Its performance is poor if the approx-
imated square matrix is far from low-rank, i.e., the sum of the
few largest eigenvalues does not dominate the matrix trace.

Here we propose a new approximation method that is free of
the low-rank constraint. Our method implements the approxima-
tion with a number (M) of square and sparse factorizing matrices.
The approximation is still economical if the total number of
non-zero entries is much smaller than N2.

There are many ways to specify the sparse structure (i.e. the
non-zero positions). A good specification should guarantee that
the product of the factorizing matrices, X̂ , should be a full matrix.
The condition prevents that the approximating matrix contains
some always-zero entries. In addition, we consider a secondary
requirement that each factorizing matrix has the same sparse
structure, which provides better symmetry in the approximation.

We thus adopt a modified Chord protocol (Stoica et al., 2001)
which originates for peer-to-peer distributed hash tables. In the
protocol, the indices from 1 to N are organized in a circular graph,
where the ith node connects to itself and the ((i+ 2k) mod N)th
nodes with k = 0, . . . , K −2. We set K = log2 N in our work. The
Chord protocol is illustrated in Fig. 2 (top).

We use the Chord protocol to specify the non-zero positions
in each factorizing matrix, where each matrix row has log2 N
non-zero entries. That is, for m = 0, . . . ,M and k = 0, . . . , K − 2

W (m)
ij

{
̸= 0 if j = i or j = (i + 2k−2) mod N
= 0 otherwise.

(1)

Thus every factorizing matrix has N log2 N stored non-zero en-
tries.

The product of the factorizing matrices corresponds to the
connections in the circular graph after multiple hops. We can
set the number of factorizing matrices to M = log2 N , which
corresponds to the number of hops, and the resulting matrix
product becomes a full matrix with high probability (see Stoica
et al., 2001, Theorem 2). In total, there are N(logN)2 non-zero
entries, still much smaller than N2 for a large N .

The (Chord) Sparse Factorization (SF) can thus be formulated
as the following optimization problem:

minimize
W (1),...,W (M)

X −

M∏
m=1

W (m)


2

F

(2)

where W (m)’s are sparse square matrices with non-zero positions
specified by the Chord protocol. The approximation scheme is
illustrated in Fig. 2 (bottom).

The minimization in Eq. (2) can be implemented by any ex-
isting solvers for unconstrained smooth optimization, where the
cost of computing the gradient is O(NMK ). Once the approxi-
mation error is minimized, we obtain the factorizing matrices
W (1), . . . ,W (M). We call the approach non-parametric SF as we

directly optimize over the factorizing matrices.
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Fig. 2. Illustration of (top) the Chord protocol and (bottom) sparse factorization of a square matrix for N = 16. Grayscale squares in the factorizing matrices represent
tored entries (non-zeros and explicit zeros), and completely white squares represent non-stored entries (implicit zeros).
Fig. 3. Illustration of (top) the parametric transformation from current embedding E to new embedding Enew based on Sparse Factorization and (bottom) setting of
MLP output to non-zero entries in the corresponding sparse factorizing matrix.
4. Parametric sparse factorization

Besides direct optimization over the factorizing matrices, we
can consider the mapping from vectorial input data to the fac-
torizing matrix entries because each node in the Chord protocol
has the same out-degree. The mapping as a component can en-
dow the model (1) generalization to newly coming data and (2)
representation learning by transforming the current embedding
representation to a new embedding.

We present a transformation model as a concrete example
to illustrate the idea. It is a transformer-like model (see Fig. 3
top), where we replace the scaled dot-product attention with a
product of sparse square matrices. The matrix product provides
an approximation to a full non-normalized attention matrix.
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One block of such Parametric Sparse Factorization Attention
(PSF-Attn) transforms data in the current embedding E to a new
embedding Enew

= PSF-Attn(E). There is a number of MLPs in
the block, where the MLP f (m) with parameters θm takes Ei: (the
ith row of E) as an input and returns the non-zeros in the ith
row of W (m), for i = 1, . . . ,N and m = 1, . . . ,M . That is, for
k = 2, . . . , K ,

W (m)
ij =

⎧⎨⎩
[
f (m)(Ei:; θm)

]
1 if j = i[

f (m)(Ei:; θm)
]
k if j = (i + 2k−2) mod N

0 otherwise.
(3)

Similar to transformers, we use another MLP g with parameters
ζ to convert an E row to the corresponding V row.
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The new model can work as a building block in representation
learning frameworks. For example, if we define an objective func-
tion J over Enew, the learning can be formulated as the following
optimization problem:

minimize
θ1,...,θM ,ζ

J (PSF-Attn(E; θ1, . . . , θM , ζ )), (4)

where the optimization can be implemented with back-
propagation and a gradient based algorithm such as Adam
(Kingma & Ba, 2014). It is also straightforward to stack multiple
PSF-Attn blocks to implement deeper learning.

The PSF-Attn method has two advantages. First, the original
transformer and many of its variants (e.g. Choromanski et al.,
2020; Katharopoulos, Vyas, Pappas, & Fleuret, 2020; Tay et al.,
2021; Wang, Li, Khabsa, Fang, & Ma, 2020) are built upon scaled
dot-product, which essentially employ low-rank matrix factoriza-
tion. They may not work well if the attention is intrinsically high
rank. In contrast, all factorizing matrices in our method are full-
rank, and so is their product. Therefore PSF-Attn does not suffer
from the low-rank bottleneck constraint. Second, our model does
not require softmax over a large square matrix, avoiding many
computational difficulties. Removing the softmax also endows
more freedom in mixing the V rows because the mixture can go
beyond the convex hull.

Our method also differs from the previous multi-layer sparse
attention approaches (e.g. Child, Gray, Radford, & Sutskever, 2019;
Correia, Niculae, & Martins, 2019; Li et al., 2019) because they
still use scaled dot-products. PSF-Attn can give full attention in
one block. For the ith element in the sequence, its attention to
other elements can directly be obtained by vector-matrix product
W (M)

i:
∏M−1

m=1 W (m).

5. Experiments

We have performed four groups of experiments. In the first
group, we studied which types of square matrices are more
suitable for our method. In the second group, we verified the
scalability of the new attention model PSF-Attn on synthetic se-
quences up to tens of thousands positions. Next, we compare our
method with several Transformer variants on a DNA sequences
classification task. Finally, we tested PSF-Attn for the Long Range
Arena benchmark data sets to see its performance in real-world
practice. The first group of experiments was run on a standard PC
with an Intel Core i9 CPU. The other groups were run on a Linux
server with one NVIDIA-Tesla V100 GPU with 32 GB of memory.

5.1. Exploring real-world matrices for SF

There are many types of square matrices. TSVD is the best for
approximating matrices close to low rank in terms of F-norm. For
non-parametric SF, we performed an empirical study (1) to show
that SF can supersede TSVD in F-norm by using the same number
of non-zeros and (2) to identify the types of square matrices
particularly suitable for SF.

Given a square matrix, we used the Matlab fminunc optimizer
to solve the problem in Eq. (2), where the non-zero entries in the
factorizing matrices are initialized to random numbers between
[K−1, K−1

+ 10−2
]. The total number of non-zero entries for SF

and TSVD are N(log2 N)2 and 2Nr + r . For a fair comparison, we
set the r = ⌈(log2 N)2/2⌉ in TSVD such that it has nearly the
same number and no fewer non-zeros than SF. We first used
256 × 256 grayscale images as approximated matrices because
we can directly see them. Fig. 4 (left) shows six typical square
images, where we provide the resulting TSVD and SF approxima-
tion errors in F-norm below each image (more examples in the
supplemental document).
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Table 1
Approximation errors in F-norm by using TSVD and SF for different types of
square matrices.
Data type Data name TSVD SF

Dense graph AuraSonar 8.54e+00 8.68e+00
Dense graph Protein 1.17e+01 1.09e+01
Dense graph Voting 8.07e−04 1.71e+01
Dense graph Yeast 3.72e+01 3.61e+01
Network Sawmill 3.24e+00 1.03e+00
Network Scotland 5.90e+00 3.76e+00
Network A99 m 1.47e+01 1.01e+01
Network Mexican Power 3.85e+00 1.71e+00
Network Strike 2.73e+00 1.04e+00
Network Webkb Cornell 6.98e+00 4.80e+00
Network Worldtrade 8.65e+04 4.47e+04
Surface mesh Mesh1e1 1.87e+01 9.82e+00
Surface mesh Mesh2e1 2.48e+02 3.47e+02
Surface mesh OrbitRaising 9.37e+01 8.35e+01
Surface mesh Shuttle Entry 2.73e+03 1.86e+03
Surface mesh AntiAngiogenesis 5.85e+01 3.29e+01
Covariance Phoneme 2.80e+01 5.27e+01
Covariance MiniBooNE 1.04e+00 6.36e+03
Covariance Covertype 8.22e−02 1.90e−02
Covariance Mfeat 1.11e+03 4.01e+05
Covariance OptDigits 3.28e+01 7.01e+01
Covariance PenDigits 4.00e+02 1.87e+02
Covariance Acoustic 1.36e−02 1.11e−02
Covariance IJCNN 5.24e−02 3.03e−02
Covariance Spam Ham 1.07e−01 4.97e−02
Covariance TIMIT 9.64e+01 1.56e+02
Covariance Votes 4.00e−01 1.70e−01

The chess image (matrix) is close to low-rank because the
black-and-white chessboard is two-rank. Therefore TSVD per-
forms better as expected. TSVD also works well for the Lena
and apple images because TSVD tends to preserve low-frequency
information in images. In contrast, TSVD is not as good as SF for
the other three images that contain rich high-frequency details
such as lines and corners, which indicates a matrix type where
SF can defeat LRMF.

To further verify this, we computed the gradient magnitudes
of the images (shown in Fig. 4 right). In this way, the intensities
in constant areas become zero, and the remaining non-zeros are
mainly high-frequency details. We can see that SF gives a lower
approximation error than TSVD for all such matrices, which con-
firms that SF is more advantageous for approximating matrices
with rich high-frequency details.

In summary, the results show that the TSVD performance
does not cap SF by using the same number of non-zeros for
approximating square matrices. The winning cases indicate that
SF is often better than LRMF when the approximated matrix
is (1) sparse, (2) intrinsically high-rank, or (3) containing rich
high-frequency details.

Besides square images, we have also compared TSVD and SF
on several other types of square matrices. Table 1 shows the
comparison results. The data types include affinity matrices of
dense graphs (dense graph), affinity matrix of sparse networks
(network), affinity matrix of surface mesh over 3D objects (sur-
face mesh), and covariance matrix of vectorial data (covariance).
We can see that for dense graph and covariance types, sometimes
TSVD is better while sometimes SF can win. SF wins for most
cases for surface mesh because the mesh networks probably do
not have a low-rank structure. SF wins all data sets in the network
type, which indicates that SF is more effective for approximating
sparse matrices. We give the details of the data sets in the
supplemental document.

5.2. Approximation to large attention matrices

Here we test whether PSF-Attn is scalable to approximate
large attention matrices. We have used two synthetic data sets
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Fig. 4. Example square matrices: (left) original images and (right) the gradient magnitude images (displayed after histogram equalization for better visibility).
Approximation errors by using TSVD and SF with the same number of non-zeros are shown below the images. Boldface font indicates the winner for each case.
composed of long sequences for supervised learning tasks. A sim-
ilar experimental setup was used by Hochreiter and Schmidhuber
(1997) for scalability tests. The details of the data sets and tasks
are given below:

• Adding Problem. This is a sequence regression task. Each
element of an input sequence is a pair of numbers (ai, bi),
where ai ∼ U(−1, 1), bi ∈ {0, 1}, i = 1, . . . ,N . We gen-
erated signals at two randomly selected positions t1 and t2
such that bt1 = bt2 = 1 and bi = 0 elsewhere. The learning

target is y = 0.5+
at1 + at2

4
. For example, an input sequence

[(0.1, 0), (−0.4, 1), (0.3, 0), (−0.2, 0), (0.7, 1)] will have the
learning target y = 0.575. Unlike Hochreiter and Schmidhu-
ber (1997), we do not restrict the t1 and t2 choice to make
the task more challenging. That is, the relevant signals can
appear either locally or at a great distance from each other.
In evaluation, a network prediction ŷ is considered correct
if |y − ŷ| < 0.04.

• Temporal Order. This is a sequence classification task. A
sequence consists of randomly chosen symbols from the
alphabet {a, b, c, d, X, Y }, where the first four are noise sym-
bols. Each sequence has two signal symbols, either X or
Y , which appear at two arbitrary positions. The four target
classes correspond to the ordered combinations of the signal
symbols (X, X), (X, Y ), (Y , X), and (Y , Y ). For example, an
input sequence [b, a, c, b, X, a, a, Y , b] should be classified
as Class 2.

We prepared data of different sequence lengths for each problem.
We started with N = 128 and gradually increased the length by
the factor of two, up to N = 214. For every sequence length, we
generated 200,000 training and 5000 testing instances.
 g
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We compared PSF-Attn with several popular methods based
on scaled dot-product attention (referred to as X-former archi-
tectures). The first two, Linformer (Wang et al., 2020) and Per-
former (Choromanski et al., 2020) have also claimed to be scalable
attention-based architectures. For completeness, we also included
the original Transformer (Vaswani et al., 2017a). We have used
their open-source PyTorch implementations.4

We followed standard cross-validation techniques to tune the
main hyperparameters, such as the number of layers and heads,
dimensionality of the token embedding, and query/key/value di-
mensions. For the Temporal Order problem, we directly fed the
data instances to the embedding layers. For the Adding problem,
the input data was only two-dimensional, and one of them was
real-valued. Directly using such a low-dimensional embedding
space would lead to poor attention. We augmented the dimen-
sionality with a linear layer to assure sufficient freedom for the
scaled dot-products in the X-former architectures. All the models
were optimized using the Adam optimizer (Kingma & Ba, 2014)
with the learning rate of 0.001 using batch size of 40.

The results are shown in Fig. 5. For the Adding problem, we
see that all models work fine for short sequences (100% for N ≤

256). The X-former methods, however, turn worse or even useless
when the sequences are longer. Linformer has an error rate of
0.48% for N = 512 and 86.18% for N = 1024, which is nearly as
bad as random guessing (92%). Transformer becomes problematic
(84.48% error) when N ≥ 2048. Performer starts to get wrong
when N = 4096, giving only 71.76% accuracy, and when N =

4 Available at https://github.com/lucidrains/performer-pytorch and https://
ithub.com/lucidrains/linformer.

https://github.com/lucidrains/performer-pytorch
https://github.com/lucidrains/linformer
https://github.com/lucidrains/linformer
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Fig. 5. Error percentage of PSF-Attn and the X-formers for (top) the Adding
problem and (bottom) the Temporal Order problem with increasing sequence
lengths.

Table 2
Area under the ROC curve (ROC-AUC) for the
compared methods on the genome classification
task.
Model ROC-AUC

Transformer 85.42%
Linformer 86.30%
Performer 85.40%

PSF 90.04%

8192, its prediction becomes almost random guessing. In contrast,
PSF-Attn achieves 100% accuracy for all the tested lengths.

A similar pattern holds for the Temporal Order problem. When
≤ 512, all compared models give perfect or nearly perfect

redictions. With longer sequences, for example when N = 4096,
he error rates of Transformer, Performer, and Linformer become
.06%, 1.76%, and 4.02%, respectively. When N = 16,324, their

error rates become 8.38%, 8.60%, and 64.22%, respectively. In
contrast, PSF-Attn achieves 100% accuracy for N ≤ 8192, and
99.89% accuracy for N = 16,324.

In summary, our method has better scalability than the three
attention models based on scaled dot-products in terms of lower
learning errors. PSF-Attn can still achieve nearly 100% prediction
accuracy for an attention matrix size up to tens of thousands.

5.3. Genome classification

It is known that long-range interaction commonly exists in
genome sequences (Avsec et al., 2021). Here we used a genome
data set DDcDNA containing Complementary DNA (cDNA) se-
quences of dogs and donkeys5 Each sample is composed of a
set of four symbols: A, C, G, T. The task is to classify each
cDNA sequence to its organism (dog or donkey). We removed the
sequences shorter than 5k and thus got 6251 sequences for dogs

5 Downloaded from the Ensembl genome browser https://www.ensembl.org/.
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and 2335 for donkeys. The mean length for all sequences is 6985.
All the sequences are padded or truncated to a fixed length of
16,384. We used ROC-AUC as the comparison metric due to the
class imbalance.

We compare the performance of PSF-Attn with Transformer,
Linformer, and Performer on this task. The model hyperparame-
ters were chosen according to the same procedure in Section 5.2.
The results are shown in Table 2. We can see that Transformer
and its variants show a similar mediocre performance. In con-
trast, PSF-Attn scores 90.04% ROC-AUC on DDcDNA, much better
than the runner-up (Linformer) by 3.7 percentage points, which
suggests that PSF-Attn can classify long DNA sequences more
accurately.

5.4. Long range arena public benchmark

Next we provide the experimental results on Long Range
Arena (LRA), a publicly available benchmark for modeling long
sequential data (Tay et al., 2020). We select four tasks from
LRA that cover various data types and demand flexible reasoning
abilities of tested models.

• ListOps. This is a sequence classification task for measuring
the ability of models to identify and parse hierarchically
constructed data (Nangia & Bowman, 2018). We used an en-
larged version of the original ListOps, with a max sequence
length up to 2000 and tree depth up to 10 (Tay et al., 2020).
Each element in a sequence can be an operator, a digit, and
a left or right bracket. The brackets define lists of items.
Each operator, MAX, MIN, MED, and SUM_MOD, takes the
items in a list as input and returns a digit, where MED
means median and SUM_MOD means summation followed
by modulo 10. An example sequence [MAX 6 [MED 3 2 2]
8 5 [MIN 8 6 2]] has ground truth answer 8. A prediction
is correct if an output value of a neural network matches
the ground truth label. For good predictions, a model should
access all sequence elements and identify the proper parsing
structure.

• Text Classification. This is a binary sentiment classification
task constructed from the IMDb reviews (Maas et al., 2011).
Given a review as a sequence of characters, the goal is to
classify it as positive or negative. Due to the character-level
representation, the sequences are much longer than the
word-level version used in conventional language modeling.
We truncated or padded every sequence to a fixed length
(N = 4000).

• Image Classification. This task is to classify images into one
of ten classes. The images and class labels come from the
grayscale version of CIFAR10. Each image is flattened to form
a sequence of length 1024. Unlike conventional computer
vision, the task requires the predictors to treat the grayscale
levels (0–255) as categorical values. That is, each image
becomes a sequence of symbols with an alphabet size of
256. Two example images and their class labels are shown
in Fig. 6.

• Pathfinder. This is a binary classification task on synthetic
images, which is motivated by cognitive psychology (Linsley,
Kim, Veerabadran, Windolf, & Serre, 2018). Each image (size
32 × 32) contains two highlighted endpoints and some
path-like patterns. Similar to the Image Classification task,
the predictors must treat the pixels as categorical values and
flatten the image to a sequence of length 1024. The task
is to classify whether there is a path consisting of dashes
between two highlighted points. Two example images and

their classes are shown in Fig. 6.

https://www.ensembl.org/
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Table 3
Classification accuracies by the compared methods for the four LRA tasks. A dash (‘‘-’’) means the result is absent
in the corresponding paper. For PSF-Attn, we present the mean (µ) and standard deviation (σ ) across multiple runs
in the µ ± σ format.
Model ListOps Text Image Pathfinder

N = 2000 N = 4000 N = 1024 N = 1024

Transformer (Tay et al., 2020) 36.37 64.27 42.44 71.40
Transformer (Zhu et al., 2021) 37.13 65.35 – –
Transformer (Xiong et al., 2021) 37.10 65.02 38.20 74.16

Sparse transformer (Tay et al., 2020) 17.07 63.58 44.24 71.71

Longformer (Tay et al., 2020) 35.63 62.58 42.22 69.71

Linformer (Tay et al., 2020) 37.70 53.94 38.56 76.34
Linformer (Zhu et al., 2021) 37.38 56.12 – –
Linformer (Xiong et al., 2021) 37.25 55.91 37.84 67.60

Reformer (Tay et al., 2020) 37.27 56.10 38.07 68.50
Reformer (Zhu et al., 2021) 36.44 64.88 – –
Reformer (Xiong et al., 2021) 19.05 64.88 43.29 69.36

Performer (Tay et al., 2020) 18.01 65.40 42.77 77.05
Performer (Zhu et al., 2021) 32.78 65.21 – –
Performer (Xiong et al., 2021) 18.80 63.81 37.07 69.87

BigBird (Tay et al., 2020) 36.06 64.02 40.83 74.87

Linear transformer (Tay et al., 2020) 16.13 65.90 42.34 75.30

Transformer-LS (Zhu et al., 2021) 38.36 68.40 – –

RFA-Gaussian (Peng et al., 2021) 36.80 66.00 – –

Nyströmformer (Zhu et al., 2021) 37.34 65.75 – –
Nyströmformer (Xiong et al., 2021) 37.15 65.52 41.58 70.94

PSF-Attn 38.85±0.1 77.32±0.3 45.01±0.2 80.49±0.1
X̂
a
r
h
t

t

Fig. 6. Example matrices: (top two) from the Image Classification and (bottom
wo) from the Pathfinder tasks.

We have tested PSF-Attn in the above LRA learning tasks,
here the hyperparameters in PSF-Attn were again tuned by
ross-validation. No external data was used for pre-training. We
an PSF-Attn four times with a different random seed for each
ask. The mean and standard deviation across the multiple runs
re reported in Table 3.
For comparison, we quote the prediction accuracies reported

or many X-former methods in the literature, including Trans-
ormer (Vaswani et al., 2017b), Sparse Transformer (Child et al.,
019), Longformer (Beltagy, Peters, & Cohan, 2020), Linformer
166
(Wang et al., 2020), Reformer (Kitaev, Kaiser, & Levskaya, 2020),
Performer (Choromanski et al., 2020), Linear transformer
(Katharopoulos et al., 2020), BigBird (Zaheer et al., 2020),
Transformer-LS (Zhu et al., 2021), RFA-Gaussian (Peng et al.,
2021), and Nyströmformer (Xiong et al., 2021). If a method has
different implementations, we quote all variants and their results.
We exclude results that rely on external data for pre-training.

We see that PSF-Attn wins all tasks by giving the best clas-
sification accuracy among all compared methods. Such strong
cross-task wins suggest that our method usually provides better
attention approximation than those based on scaled dot-products.

Remarkably, our method has substantially improved the state-
of-the-art in the Text and Pathfinder tasks. For Text, PSF-Attn
achieves 77.32% accuracy, compared to the runner-up 68.4% by
Transformer-LS. Our method wins by 80.49% accuracy for
Pathfinder, which gains about 5% higher than the best X-former
(Linear Transformer 75.3%). The significant improvement brought
by PSF-Attn is probably because the two tasks involve sparse
attention matrices.

We also investigated whether the approximating attention
=

∏
m W (m) is meaningful by visualization. Fig. 7 shows an

ttention vector (absolute values) of token [‘‘CLS’’]. Tokens in the
eview having more weight are highlighted. We see that PSF-Attn
as a good performance in capturing sparse attention and identify
he relevant words.

Next, we visualize the attention values for four instances from
he Pathfinder task. We extracted the attention matrix X̂ at test
time and applied the following visualization procedure. We de-
fine the attention vector of the ith point as the ith row in X̂ . We
averaged the attention vectors of the endpoints and their direct
neighbors and then reshaped the average vector to 32 × 32 for
visualization.

The resulting visualizations are shown in Fig. 8. Good attention
towards correct classification should trace the path between the
endpoints and neglect non-relevant high intensities in the origi-
nal image. It is clear PSF-Attn performs pretty well in this respect,
where its attention values highlight mostly the relevant parts of
the connecting path. In contrast, Transformer mainly highlights
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Fig. 7. Attention vector visualization of a positive review in Text Classification. Darker cells have larger absolute values.
Fig. 8. Comparison of the attention maps in the Pathfinder task by using PSF-Attn, Transformer, Linformer, and Performer. The first column of images shows the
original instances, and the other columns are heat maps of the attention values of the corresponding models. The procedure for visualization is the same for all the
methods.
the area around the endpoints without the path connecting them.
For Linformer and Performer, sometimes their attention maps
basically smooth the original image intensities, including the
irrelevant parts, and sometimes there is simply no pattern. More
instances are provided in the supplemental material.

6. Conclusion

We have proposed a new approximation method called Sparse
actorization for square matrices by using a product of sparse ma-
rices. Given the same budget of non-zero numbers, our method
as shown superior performance over conventional low-rank
atrix factorization approaches, especially in cases where the ap-
roximated matrix is sparse, high-rank, or contains high-frequency
etails. We have also given parametric design and performed an
mpirical study on the classification of long sequential data. As
he critical attention component, our method has demonstrated
lear wins over the conventional scaled dot-product transformer
nd its several variants in terms of scalability and accuracy.
We have employed the Chord protocol to fix the non-zero

ositions in the sparse factorizing matrices. Later we could con-
ider the other predefined protocols or even adaptively learned
167
protocols for the sparse structure. In this work, we have consid-
ered approximating unconstrained square matrices. In the future,
we could investigate the approximation to more specific matri-
ces such as non-negative, stochastic, symmetric, or semi-definite
matrices. As a result, we could extend the method for further ap-
plications such as large-scale graph matching, Gaussian Process,
or network structure identification.
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