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Abstract: With the rapid development of urban traffic, accurate and up-to-date road maps are in
crucial demand for daily human life and urban traffic control. Recently, with the emergence of
crowdsourced mapping, a surge in academic attention has been paid to generating road networks
from spatio-temporal trajectory data. However, most existing methods do not explore changing
road patterns contained in multi-temporal trajectory data and it is still difficult to satisfy the
precision and efficiency demands of road information extraction. Hence, in this paper, we propose
a hybrid method to incrementally extract urban road networks from spatio-temporal trajectory data.
First, raw trajectory data were partitioned into K time slices and were used to initialize K-temporal
road networks by a mathematical morphology method. Then, the K-temporal road networks were
adjusted according to a gravitation force model so as to amend their geometric inconsistencies.
Finally, road networks were geometrically delineated using the k-segment fitting algorithm, and the
associated road attributes (e.g., road width and driving rule) were inferred. Several case studies were
examined to demonstrate that our method can effectively improve the efficiency and precision of
road extraction and can make a significant attempt to mine the incremental change patterns in road
networks from spatio-temporal trajectory data to help with road map renewal.

Keywords: road network extraction; changing pattern mining; K-temporal trajectory partition; spatial
adjustment; k-segment curve fitting

1. Introduction

With the ongoing rapid urbanization, road networks have become increasingly complicated and
heavily dense. Generating timely, detailed, and accurate road maps is the foundational demand of
intelligent transportation systems and smart city management. Traditional road data acquisition
methods, such as map digitization and field surveys, require expensive equipment and labor-intensive
indoor processing. Presently, some collaborative mapping programs (e.g., OpenStreetMap, Wikimapia)
have made a significant contribution to commercial road maps, but they also depend on the manual
processing work of volunteers and are confronted with submissions of varying quality [1]. Widely used
positioning devices (e.g., mobile phones) make it possible to create massive trajectory data for vehicles
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and people, which contain an abundance of information on road structures, traffic conditions, and
driving behaviours. Hence, a surge in academic attention has, in recent years, been paid to automatically
extracting road-related information from spatio-temporal trajectory data [2–4].

Due to the multipath effect of GNSS positioning and the inequality of human travelling activities,
spatial–temporal heterogeneities probably occur in vehicle trajectory data (especially low-frequency
data) [5]. On the one hand, the successive track points may pass through several street blocks due to a low
sample rate or even satellite signal loss. On the other hand, the track points are intensive in some traffic
hubs and high-level roads, but are sparse in other low-level roads. This brings about large challenges
for accurately and efficiently extracting highly detailed road networks from heterogeneous trajectory
data. Additionally, to the best of our knowledge, most existing studies are devoted to constructing
a road map version using all the gathered trajectory data [6–9]. The version-based methods may
ignore the road’s changing patterns, implied in multi-temporal trajectory data, and scarcely provide a
time-sustainable data update mechanism. Hence, in this paper we explored the crucial cue of changes
in road patterns in multi-temporal trajectory data and propose a hybrid method to incrementally
extract road networks.

The remainder of this paper is organized as follows. The related works about road extraction
from trajectory data are reviewed in Section 2. Section 3 presents the hybrid method for incrementally
extracting road networks from spatio-temporal trajectory data. The experimental results and evaluation
analysis are presented in Section 4 to demonstrate the efficiency and robustness of the proposed method.
Finally, the conclusions and future works are discussed at the end of the paper.

2. Literature Review

In general, the existing road extraction methods comprise three categories: image-based [10],
LiDAR-based [11], and trajectory-based methods [12]. Compared to trajectory-based methods,
LiDAR-based and image-based methods are probably more precise, but are costly [13].
Recently, ubiquitous track data have become a dominant and area-wide data resource to monitor
urban road environments [14]. On the one hand, the increasingly collected trajectory data can provide
a good geometric delineation of the road network structure [15,16]. On the other hand, the recorded
geographic information (e.g., time, position, direction, and speed) provides a valuable cue to infer
semantic rules associated with road networks (e.g., traffic mode, turning restrictions, and speed
limit) [17,18]. Moreover, continuously observed trajectory data can also be used for timely monitoring
of dynamic traffic flow and changing road patterns [19,20]. This paper mainly concentrates on
extracting structural road networks from trajectory data, and thus we undertake a brief review of
trajectory-based road extraction models.

Benefiting from ubiquitous track data, many targeted models have been proposed to extract
road networks from different levels, covering from low-detailed road information (central line,
incline value, and surface roughness) to high-detailed road structures (e.g., intersection models,
lane-level structure) [4,16,21,22]. In brief, the existing methods of trajectory-based road map
reconstruction can be divided into four categories: rasterization methods, clustering methods,
incremental methods, and other combined methods. The first rasterization methods convert vector
trajectories to raster images and then extract the road’s central lines based on morphological thinning
or skeletonization algorithms [23–25]. Rasterization methods can quickly obtain a road skeleton
map, but are confronted with two critical problems: one is the probability of missing the topological
relations between road segments, and the other is the difficulty in setting the optimal grid sizes in
vector-to-grid conversation. The second clustering methods aggregate similar trajectory points or
lines into different clusters associated with road lanes, segments, or intersections, and then delineate
their geometric structures and turning rules by shape fitting algorithms and statistical analysis [26–30].
The clustering methods can efficiently recognize the topological relations and turning rules but urgently
need to improve the insensitivity of handling abnormal trajectories and density disparities. The third
incremental methods mainly adopt an iterative strategy, which match all the obtained trajectories
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in some time period with a reference road network (or an empty map) and then iteratively merge
the target trajectories to renew the reference road networks [31–34]. The incremental methods make
a good attempt at continuously updating road networks, but it is fairly time consuming to process the
whole long-term observed trajectories [35]. Hence, some researchers proposed combined methods to
generate structural graph models of road networks, such as the divide-and-conquer method [36,37],
the structure learning method [38], the topological Morse theory [39], and the structure-aware filtering
method [40].

Generally, previous studies carried out important exploratory research but also engendered
some drawbacks to be solved, including vulnerability to spatio-temporal heterogeneities of
crowdsourcing trajectory data as well as not fully exploring the potentially changing patterns implied
in different temporal trajectories. Hence, the aim of this paper was to propose a time-sustainable
model to incrementally extract urban road networks from continuously observed trajectory data.
The contributions of this paper are mainly as follows: (1) the obtained trajectory data are separately
partitioned into K time series for initializing K-temporal road networks, decreasing the time
consumption of processing from all gathered trajectories; (2) the gravitational model was applied to
geometrically adjust the K-temporal road networks, providing a changing road pattern discovery
approach for road data renewal; and (3) curve fitting and rule mining models were developed to
generate a structural road graph, improving the robustness of our method to accurately delineate
various road shapes and topologies.

3. Method

According to the literature review in [12], traditional road inference methods directly deal with all
gathered trajectory data to achieve a complete road map, which may ignore the road changing patterns
implied in the trajectory data and may simultaneously require huge geometric computation to process
all trajectory data. This paper thus proposes a hybrid method to incrementally extract urban road
networks, which attempts to partition the original trajectory data into K temporal trajectory datasets and
analyses the spatial–semantic inconsistencies between different time series. Generally, the proposed
approach consists of three main steps, outlined as follows:

• Partitioning original trajectory data into K time series and initializing a road network version for
each time series trajectory data based on morphological rasterization operations;

• Adjusting the K-temporal road networks, initialized above, according to a gravitation force model
to amend the geometric deviations between different temporal road networks;

• Constructing urban road networks by a k-segment fitting algorithm and then, inferring the
associated road parameters with a statistical trend analysis.

In general, a trajectory point records a variety of information, such as longitude, latitude, time,
speed, heading, and license plate, which can be formally expressed as Pi = (loni, lati, timei, speedi, headi,
cari, . . . ). Compared to ordinary GPS data, DGPS data have the advantage of high-precision and dense
sampling, but they also have a high cost and a long cycle of data collection. Therefore, ordinary GPS
data are more conducive to rapid updates of urban road networks [32]. In view of the spatio-temporal
heterogeneities of raw trajectory data (Figure 1a), trajectory filtering pre-processing is implemented as
follows: (1) removing the track points with an abnormally large heading direction (e.g., 360º heading)
and breaking the track lines with a few nearly stationary points; (2) removing the track lines with
three or more large bending points (e.g., 50º turning); and (3) deleting the track lines with two or more
abnormal distance points (e.g., more than 1.3km). The GPS points after pro-processing are shown in
Figure 1b.
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the basic erosion and dilation operators in order with the same structuring element B2. As illustrated 
in Figure 3, Figure 3b is the result of directly performing an opening operator on the original 
trajectory image in Figure 3a, and Figure 3c is the result of performing the opening operator after a 
dilation operator on the original image. It can be seen that compared to directly performing the 
opening operator (Figure 3b), the geometric characteristics of the road segments are better preserved 
by adopting the dilation–opening operators (Figure 3c). 
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Figure 1. Pre-processing of abnormal trajectory filtering: (a) raw GPS points and (b) GPS points
after pre-processing.

3.1. Initialization of K-temporal Road Networks Based on Morphological Rasterization

Spatio-temporal trajectory data provide a tireless and detailed perception of urban road networks.
To mine the road change patterns implied in spatio-temporal trajectory data, we aggregated the entire
trajectories into K temporal cliques and then extracted K-temporal road features from these trajectory
cliques based on the morphological rasterization method.

In theory, morphological operations contain two basic operators (dilation and erosion), as well as
some other derived operators (e.g., opening, closing, and thinning) [41]. As illustrated in Figure 2a, the
dilation operator of binary image A by structuring element B1 is defined as A⊕B1 = {x, y|(B1)x, y∩A ,
∅}. Like that shown in Figure 2b, the erosion operator of binary image A by structuring element B2 is
defined as AΘB2 = {x, y|(B2)x, y⊆A}. It can be seen that the dilation operator aims to expand the shapes
of binary image A, and, conversely, the erosion operator aims to thin the shapes of binary image A and
remove the crack edges.
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Figure 2. Morphological dilation (a) and erosion operators of binary image A (b) by structuring
elements B1 and B2.

The vector trajectory data in each temporal clique were first converted into binary raster images
with two specified grid and density thresholds. After that, road features were then extracted by
a dilation–opening–thinning operator strategy. First, to decrease the impact of coarse sampling,
a dilation operation of structuring element B1 was necessarily performed to expand the shape of the
road regions and to connect the fractured road segments. Then, we executed an opening operator on
the binary trajectory image after dilation. The opening operator is a derived operator which executes
the basic erosion and dilation operators in order with the same structuring element B2. As illustrated
in Figure 3, Figure 3b is the result of directly performing an opening operator on the original trajectory
image in Figure 3a, and Figure 3c is the result of performing the opening operator after a dilation
operator on the original image. It can be seen that compared to directly performing the opening
operator (Figure 3b), the geometric characteristics of the road segments are better preserved by adopting
the dilation–opening operators (Figure 3c).
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Figure 3. Comparison results of performing the morphological opening operator with and without the
dilation operator (a–c).

After that, a sophisticated thinning algorithm was utilized to generate road central lines from
the trajectory images processed by the above dilation and opening operations. Image thinning,
or skeletonization, is the process of obtaining the skeleton graph of objects from binary raster images.
There are two representative thinning methods, i.e., iterative methods and non-iterative methods.
In view of image noise immunity and preserving road completeness, we adopted the sophisticated
iterative method, based on mathematical morphology in this paper. In detail, the target image
A was iteratively thinned by a set of structuring elements {B1, . . . ,BN} according to Equation (1).
The morphological thinning operator was to set the pixel values as 0 when they are hit by the structuring
elements B1, . . . ,BN. The single-temporal road network can be obtained by inversely converting the
thinned images to the vector skeleton map. Other temporal road networks are similarly extracted by
the above mathematical morphology method.

A⊗ {B1...N} = (. . . ((A⊗ B1) ⊗ B2) . . .) ⊗ BN (1)

3.2. Adjustment of K-temporal Road Networks Based on a Gravitation Force Model

Due to unstable fluctuations in positional accuracy and sampling rate, the road networks obtained
from different temporal trajectory data show uncertain geometric deviations and potential road change
information. This paper applied the gravitation force model to adjust the geometric deviation between
the K-temporal road networks to achieve a complete and up-to-date road structure. The key idea of
the gravitation force model is to iteratively compute the positional adjustment values by balancing
the gravitation forces between K-temporal road central lines and the spring forces of moving road
central lines.

We first utilized a simple buffering analysis to recognize similar road segments that are matched
to an identical road entity, which are called K-temporal corresponding road segments. For example,
in Figure 4.
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R1 . . . Ri . . . Rj . . . RK is one representative set of K-temporal corresponding road segments.
According to the physical gravitation force model, the gravitation force of other road segments {R1 . . .
Rj . . . RK} (j , i) to one road segment Ri at its vertex t, i.e., f 1(t, Rj), is defined by the following formula:

F1(t) =
K∑

j=1, j,i

−
M ∗ (K − 1)

δ3
√

2π
· exp

−
∣∣∣t−R j

∣∣∣2
2δ2

(t−R j
)
, t ∈ Ri (2)

where (t−Rj) indicates the projecting vector consisting of the vertex t and the closest point of Rj to
t, and |t−Rj| measures the norm of the projecting vector (t−Rj). K is the total number of K-temporal
corresponding road segments, and M and σ are the predefined parameters, set as M = 1 and σ = 10,
respectively, according to [36].

In addition, the spring force of the moving the vertex t to a new position x is defined as Equation (3),
where µ is the predefined spring force coefficient, set to 0.005 by default.

F2(t) = µ · (x− t) (3)

According to the physical gravitation force model, the optimal new position of each vertex t in
one road segment Ri is calculated and updated iteratively by making the sum of the gravitation forces
of other road segments {R1 . . . Rj . . . RN} (j , i) equal to the spring force of moving the vertex t to a new
position x, i.e., F1(t) = F2(t). The positional adjustment process of that road segment Ri will terminate
when the positional differences of all vertices between two iterations are smaller than a specified value.
All K-temporal corresponding road segments are spatially adjusted by the same gravitation-force-based
fusion process. Figure 5a shows some examples of K-temporal corresponding road segments extracted
from K partitioned trajectory datasets, and Figure 5b shows those road segments after positional
adjustment, which indicates that the geometric deviation between different temporal road segments is
efficiently improved to generate a geometry-consistent road network.
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3.3. Construction of Urban Road Networks Based on k-segment Fitting and Statistical Analysis

3.3.1. Geometry Construction of Urban Road Networks Based on the K-segment Fitting Algorithm

After the positional adjustment of K-temporal corresponding road networks, the same road entity
still has multiple geometric representations. These K-temporal road geometries should be fitted as
a principal curve to construct a final geometry representation for each road entity. The principal curve
is defined as a smooth and self-consistent curve that passes through the distribution centre of all the
observed points [42]. We developed a k-segment principal curve fitting algorithm to generate the final
road networks in order for it to have a good performance in delineating various point distributions [4].
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The k-segment fitting algorithm was designed to iteratively partition all observed points into different
Voronoi sets and to find a smooth curve of k segments that satisfy the objective function in Equation (4):

argmin
f={s1...sk}

G( f ) =
∑

i=1...k
∑

p∈Vi

d(p, si)


s.t. Vi =

p ∈ Pn|i = argmin
j=1...k

d
(
p, s j

)
(4)

where Pn is a set of n observed points, p ∈ Pn. In this paper, Pn indicates all the vertex points of one
K-temporal corresponding road segment set. The curve f, consisting of k segments s1 . . . sk, is the
principal curve fitted by Pn. Additionally, d(p, sj) indicates the minimum distance from point p to
any points in the segment sj. V1 . . . Vi . . . Vk denote the Voronoi partitions of the observed points,
which means that the points in Vi must be closer to si than they are to any other segment.

It can be seen from Equation (4) that a minimum sum of distances is achieved between the observed
points and the fitted curve f. As described in detail in the literature [4], a first principal line is initialized
as f = {s1}, k = 1; then, a new segment is iteratively inserted into f with k = k + 1, based on Equation (4),
until the sum of the distances between observed point set Pn and the k segments reaches a steady
value and finally, the k segments are linked as a smooth curve by the greedy Hamiltonian path search
strategy. In this paper, the K-temporal road segments after positional adjustment were reclassified to
different road entities and the vertex points in each K-temporal corresponding road segment set were
regarded as an independent observed point set to fit a principal curve for geometrically delineating the
corresponding road entity. It should be noted that the k in the principal curve fitting (Equation (4))
is different from the former K. K is the total number of trajectory cliques and k is the total segment
number of the principal curve for delineating one road geometry.

3.3.2. Attribute Inferencing of Urban Road Networks Based on a Statistical Analysis

In addition to road geometries, road attributes, such as road width and turning directions, are also
indispensable information for navigation and route planning applications. We reconstructed the
linkage relations between target trajectory points and the fitted road segments by an adaptive buffer
analysis, and further determined the road width and one-/two-way driving rules, according to the
point distributions and heading direction statistics of the associated trajectory points. The semantic
inference process consists of the following three steps.

Road Width Computation: For each road segment, we started to build its buffer region with
a radius of ε0 and compute the ratio r0 of the trajectory points that fall in the buffer region buffer (ε0);
then, we rebuild the buffer region with an increasing radius of εi = ε0 + i*s (where i is the iterative
number and s = 0.1 m is the iterative step) to compute a new ratio ri of trajectory points falling in the
buffer (εi); the above buffer analysis continues until the trajectory point ratio ri reaches 96%, and the
buffer radius after iteratively buffering is inferred as the road width W (shown in Figure 6).
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Driving rule identification: For each road segment, we computed the angles between the road
segment and the associated trajectory lines in the buffer (W), which were used to classify all trajectory
lines into three types according to Equation (5); then, the ratios of Type = 1 or 2 were calculated
to judge the driving rules of that road segment. In this paper, when more than 90%, or less than
10%, of associated trajectory lines belong to Type = 1 or Type = 2, the road segment was regarded as
a one-way road; otherwise, it was regarded as a two-way road.

Type =


1 (same direction),θ ∈ [0, Φ]

2 (opposite direction), θ ∈ [180−Φ, 180 + Φ]

0 (abnormal direction), otherwise
(5)

Two-way road reconstruction: For the identified two-way roads, the geometry representations of
dual carriageways are computed according to Equation (6):

P′i = Pi ±

→

W
6

(6)

where Pi = (xi, yi) is the vertex coordinates of road central lines;
→

W is a vector, of which the length
equals the road width W and the direction is perpendicular to the road segment; and Pi

′ = (xi
′, yi

′) is
the corresponding vertex coordinates of the dual-carriageway representation.

Due to coarse sampling or two-way-road reconstruction, some generated roads may be
disconnected or misconnected with other roads. In view of preserving road connectivity,
a post-processing of topology reconstruction was necessarily implemented. First, to distinguish the
dead-end roads that are generally far from other roads, we used a very small search radius (e.g., 1 m)
to find the connected-end roads and to repair their topological relations with their neighbouring roads.
As illustrated in Figure 7a, if only one neighbouring road at one node is found, the road node of L1

will be extended straight to the unique neighbouring road (Figure 7b); otherwise, that road node of
L2 will be extended by inserting a new segment consisting of the nearest node and the road node
itself (Figure 7b). Certainly, a fixed search radius may not be enough to judge dead-end roads and
connected-end roads. It could be better to combine the spatial proximity of road segments and the
topological connectivity of the associated trajectory lines to deal with these singleton segments.
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4. Results

In the experimental analysis, one taxi trajectory dataset in Shenzhen, China, from the 1st to
21st January 2012, was used to verify our proposed method. The trajectory dataset has a sample
rate of about 60–100 s, has a positional precision of about 10–15 m, and contains about 1.2 million
trajectory points and 16,000 trajectories per day. The parameter settings for incrementally extracting
road networks from the trajectory data are listed in Table 1. The structuring elements B1 and B2

in road network initialization (Section 3.1) and the buffering parameters ε0 and s in road attribute
inference (Section 3.3.2) were empirically determined for good performance to approach different
temporal trajectory data. The parameters M, δ, and µ in the gravitation force model (Section 3.2)
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and kmax in k-segment fitting (Section 3.3.1) were uniformly set by referring to the literature in [36]
and [4], respectively.

Table 1. Parameter settings for incrementally extracting urban road networks from trajectory data.

Parameter B1 B2 M δ µ kmax ε0 s Φ

Value

 0 0 0
0 1 0
0 1 1


 0 1 0

1 1 1
0 1 0

 1.0 10.0 0.005 24 6 m 0.1 m 30◦

4.1. Experimental Results

Figure 8 illustrates the results of road network initialization, based on the morphological
rasterization method. Figure 8a–c shows the binary images converted from three-temporal
trajectory data and Figure 8d–f shows the road networks roughly extracted from the aforementioned
three-temporal binary images. It can be seen from the red ellipses in Figure 8 that spatial
inconsistencies and complementarities coexist in different temporal road networks because of
spatio-temporal heterogeneities between trajectory data. The proposed K-temporal extraction
strategy can efficiently discover the spatio-temporal road change characteristics that are implied
in continuously observed trajectory data, providing significant clues for road change detection and
self-updating. Moreover, the K-temporal road network initialization method can cause efficiency
promotion, in comparison to directly extracting the road network from the whole trajectory dataset. In
practice, it is a feasible solution to utilize parallel computation to further decrease the time consumption
of K-temporal road network initialization.
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Figure 8. Rough extraction of three-temporal road networks based on the rasterization method (a–f).

Figure 9a,c depicts the results of overlaying the K-temporal road networks extracted by the
rasterization method, and Figure 9b,d elaborates on the spatial adjustment results based on the
gravitation force model. As shown in the blue rectangles in Figure 9, the geometric deviations
between different temporal road networks are efficiently improved by the force-based fusion model,
improving the geometric accuracy of the generated road networks.
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Figure 9. Positional adjustment of K-temporal road networks based on the gravitation force model:
(a,c) K-temporal road networks before adjustment; (b,d) K-temporal road networks after adjustment.

After that, all K-temporal road segments were reclassified by a simple buffer search to make sure
that each road segment cluster was associated with its identical road entity. As shown in Figure 10a,
the road segments dotted in the same colour belong to one road segment cluster and are associated
with the same road entity. It can be seen that each road segment cluster is one similarly shaped but
data-compressed version of the raw trajectories, and the vertex points in each cluster are also one
similar-shaped, but data-compressed, version of the raw trajectory points. In this way, we utilized the
vertex points of each road segment cluster to generate the corresponding road central lines, based on
the k-segment fitting algorithm. As shown in Figure 10b, the fitted road segments (especially some
curve road segments) are structure-complete and geometry-consistent, providing a good delineation
of the whole road skeleton. This demonstrates the good performance of our method in generating
a detailed and up-to-date road map.
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(a) clustering of K-temporal corresponding road segments; (b) k-segment fitting of K-temporal
corresponding road segments.

Based on the heading distribution of the associated trajectory points, the driving rule of each
individual road segment can be identified as of two types, i.e., one-way and two-way. Figure 11a
displays the identified one-way (grey line) and two-way (black line) road segments, indicating that
a large proportion of road segments are two-way roads, and the one-way roads are mostly low-level
streets or road intersection segments. Figure 11b shows the results of two-way road reconstruction.
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The experimental results illustrate that the trajectory data provide a rich and timely source to mine
both the geometry and semantic information of urban road networks.
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identification; (b) two-way road reconstruction.

4.2. Result Analysis and Evaluation

To qualitatively evaluate the extraction precision of the proposed method, we overlaid the road
networks extracted by our method and another three methods from Davies, Ahmed, and Wang
together [27,34,39]. As depicted in the enlarged views of rectangles A and B in Figure 12, compared to
the blue, green, and yellow road networks extracted by Davies, Ahmed, and Wang, higher spatial
consistencies are clearly seen between our extracted road networks (red lines) and the background
image. In particular, a geometric deviation of about 2–15 m can be seen between our extracted road
segments and the reference remote sensing image (Google Earth).
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Figure 12. Overlaying the road networks extracted by our method and another three methods
from [27,34,39].

In addition, an authorized road network was used as benchmark data to quantitatively evaluate
the spatial consistency of the extracted road networks. In detail, a set of buffer regions of the benchmark
roads was constructed using different buffer distances (e.g., 1–15 m). The respective length percentages
of extracted roads that fell in the different buffer regions were calculated. As listed in Table 2, more than
50% of the roads extracted by our method fell in the 4 m buffer regions of the reference roads, whereas
only 43.93%, 22%, and 19.78% of the roads extracted by the methods in [27,34,39] fell in the same
buffer regions. It can be seen that almost all roads extracted (96%) by our method are very close to the
benchmark roads, within 15 m, showing a high spatial consistency with the ground truth.
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Table 2. Length percentage of extracted roads falling in different buffer regions of the reference
road network.

Buffer
Distance
(Meters)

1 2 4 6 8 10 12 15

The proposed
method 15.11% 30.02% 54.92% 70.61% 80.66% 87.32% 91.71% 96.32%

Davies’s
Method [27] 23.26% 30.66% 43.93% 51.78% 56.08% 58.09% 59.08% 60.18%

Ahmed’s
method [34] 05.89% 11.81% 22.26% 30.70% 37.46% 43.11% 47.94% 54.03%

Wang’s
Method [39] 14.46% 16.26% 19.78% 23.16% 25.87% 28.42% 30.99% 35.71%

Furthermore, to quantitively evaluate the precision of driving rules inferences, we cross-checked
between the driving rules inferred by our method and the driving rules provided by official or
commercial map providers (e.g., Google Maps and Baidu Maps). For the experimental case,
we extracted 450 roads in total, of which 361 roads were inferred as two-way roads and only 89
roads were inferred as one-way roads. By comparing with the professional map services, 327 of the 361
extracted two-way roads were correctly defined as two-way roads and 65 of the 89 extracted one-way
roads were correctly defined as one-way roads. The results indicate that 87.11% of the extracted roads
are consistent with professional map services, demonstrating high robustness and accuracy of road
detection and semantic extraction achieved by the proposed method.

In order to verify the efficiency increase of the K-temporal road extraction strategy, we calculated
the elapsed time of both the force-based adjustment and k segment curve fitting based on raw trajectory
data and K-temporal road networks initialized by the rasterization method. As listed in Table 3, it took
more than 5 h to accomplish the spatial adjustment of raw trajectory data, but 6.02 s was enough for the
K-temporal road network adjustment. An obvious efficiency increase was also found in the k-segment
curve fitting of different temporal road networks. This demonstrates that the extraction method based
on K-temporal trajectory partitioning achieves a higher time efficiency than directly dealing with all
trajectory data.

Table 3. Elapsed time statistics of force-based adjustment and k segment curve fitting based on raw
trajectory data and multi-temporal road networks.

Force-Based Adjustment k-Segment Curve Fitting

Raw trajectory data 6.02 s 1.48 s
K-temporal road networks >5 h 7.68 s

5. Conclusions

Ubiquitous trajectory data are a dominant and area-wide resource for road network extraction
and updating. Presently, spatio-temporal heterogeneities in trajectory data are a significant obstacle to
generating highly precise road maps. Since existing research has often ignored the potential road change
patterns implied in different time-series trajectories, in this paper, we proposed a hybrid method to
incrementally extract urban road networks from spatio-temporal trajectory data. The proposed method
partitioned raw trajectory data into K time series and initially extracted K-temporal road networks
from different trajectory cliques based on the rasterization method. The geometrical inconsistencies
between the K-temporal road networks were then adjusted by a gravitation force model. After that,
the final geometry delineation and associated road attributes were constructed by k-segment fitting and
statistical analysis, respectively. The experimental results show that the proposed method can effectively
process spatio-temporally heterogeneous trajectory data in order to generate a geometry-accurate and
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semantic-rich road network. Moreover, all trajectory data were partitioned into multiple time slices,
which is a useful attempt at exploring road change patterns from area-wide and time-continuous
trajectory data.

However, due to the large sampling heterogeneity, the proposed method still has some limitations
in discovering low-level streets and complicated intersections. Secondly, the proposed method possibly
detects some fake change information because of traffic flow fluctuations. Hence, future works will
focus on improving the reliabilities of parameter settings to adaptively extract various road structures
(e.g., low-level streets and road junctions). More significantly, a road fusion model incorporating traffic
flow analysis and multi-temporal change validation needs to be developed to automatically filter fake
change information and incrementally update road networks.
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