
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Kevin Karlsholm
 Kaldvansvik

M
aster's thesis

Kevin Karlsholm Kaldvansvik

Spot, a mobile four-legged visual
asset tracking robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Professor Annette Stahl
Co-supervisor: Johan Hatleskog, Trygve Utstumo
December 2021

M
as

te
r’s

 th
es

is

Kevin Karlsholm Kaldvansvik

Spot, a mobile four-legged visual asset
tracking robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Professor Annette Stahl
Co-supervisor: Johan Hatleskog, Trygve Utstumo
December 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This master thesis concludes five years of studies in the Master of Science in
Cybernetics and Robotics at the Norwegian University of Science and Tech-
nology (NTNU). The work in this thesis was accomplished during the fall
semester of 2021 and utilized a wide variety of methods that were digested
through over five years of dedicated study. Thank you, NTNU, for the vibrant
environment that has nurtured immense personal growth.

I want to thank my supervisor, professor Annette Stahl for providing excellent
guidance and feedback along the way. I also want to thank my co-supervisors
Johan Hatleskog and Trygve Utstumo at Cognite AS, which provided the as-
set tracking case for this thesis and let me utilize the Boston Dynamics Spot
robot.

A very special thanks to my phenomenal significant other, Tine Mathilde
Benjaminsen, who has provided invaluable love and support throughout these
demanding years of studies.

1

Abstract

The motivation behind this work is to propose a novel visual asset tracking
pipeline with the objective of localizing, identifying, and counting the num-
ber of containers in an outdoor industrial environment. This is achieved by
using the four-legged robot Spot, capturing 360-images during inspections
which are processed in the pipeline utilizing methods from the field of com-
puter vision. Traditional asset tracking solutions rely on using RFID, GPS,
and BLE technology, which are recognized as expensive to scale and unfea-
sible for certain assets. This work aims at extending the research on asset
tracking by taking a visual approach to the problem. A custom data set
consisting of both images and videos of containers at industrial sites in dif-
ferent weather conditions was created to develop and evaluate the pipeline.
The proposed method first undistorts and detects containers in images uti-
lizing a trained EfficientDet detector. Tracks are then generated using the
prominent tracking-by-detection method SORT, which results in containers
being mostly- or partially tracked. The tracks are triangulated to yield con-
tainer point clouds that are fit to spherical container models using RANSAC,
where a greedy merging scheme is proposed to merge overlapping models.
The resulting pipeline localized 80% of the containers in sunny and overcast
weather, where 75% are localized correctly to ground truths. The identi-
fication is achieved by the detection of fiducial markers, where 50% of the
containers were identified. A consequence of triangulating each container
track is the possibility of duplicate models, where one such model was tri-
angulated for both weather conditions. Future work should improve the
underlying data set and the proposed asset tracking metrics, in addition to
components of the proposed pipeline. Hopefully, these initial results will
pave the way for improved- and new visual asset tracking solutions.

Keywords: Visual asset tracking, object detection, multiple object track-
ing, 3D reconstruction

2

Sammendrag

Motivasjonen bak dette arbeidet er å foreslå et nytt visuelt sporingssystem av
ressurser med målet om å lokalisere, identifisere og telle antallet konteinere i
et utendørs industrielt miljø. Dette oppnås ved å bruke den firbeinte roboten
Spot, som tar 360-bilder under inspeksjoner for å prosesseres i systemet ved
hjelp av teknikker i datasyn. Tradisjonelle sporingssystemer er avhengig
av å bruke RFID, GPS og BLE teknologi som er kjent for å være dyrt å
skalere og ikke gjennomførbart for enkelte ressurser. Dette arbeidet har som
mål å utvide forskningen på sporingssystem av ressurser ved å ta en visuell
tilnærming til problemet. Et skreddersydd datasett bestående av bilder og
videoer av konteinere på industrielle områder i forskjellig værforhold var
konstruert for å evaluere systemet. Den foreslåtte metoden starter med å
fjerne bildeforvrengninger og detekterer konteinere i bildene ved å utnytte
en trent EfficientDet detektor. Spor blir deretter skapt ved å bruke sporing-
ved-deteksjon metoden SORT, som resulterer i at konteinere blir for det
meste- og delvis sporet. Sporene blir triangulert for å skape konteiner punk-
tskyer som er tilpasset sfæriske konteiner-modeller ved RANSAC, hvor en
grådig sammenslåing er foreslått for å slå sammen overlappende modeller.
Det resulterende systemet lokaliserte 80% av konteinerne i solfullt og over-
skyet vær, hvor 75% er lokalisert riktig i forhold til fasiten. Identifiseringen
er oppnådd ved detekteringen av fiducial -markører, hvor 50% av kontein-
erne ble identifisert. En konsekvens av trianguleringen av hvert spor er
muligheten for duplikate modeller, hvor èn slik modell ble triangulert for
hver værtilstand. Videre arbeid burde forbedre det underliggende datasettet
og de foreslåtte ressurs-sporing metrikkene, i tillegg til komponentene av det
foreslåtte systemet. Disse initiale resultatene vil forhåpentligvis rydde banen
for forbedrede- og nye visuelle sporingssystem av ressurser.

Keywords: Visuelt sporingssystem av ressurser, objekt-deteksjon, sporing
av flere objekter, 3D rekonstruksjon

3

Contents

Nomenclature 7

List of Tables 10

List of Figures 11

1 Introduction 13
1.1 Background . 13
1.2 State of research . 16
1.3 Contributions . 21
1.4 Report structure . 22

2 Theory 23
2.1 Computer vision . 23

2.1.1 RGB representation of images 23
2.2 Homogeneous transformations 24

2.2.1 Rotation . 25
2.2.2 Translation . 25
2.2.3 The homogeneous transformation matrix 25
2.2.4 Properties of the transformation matrix 25
2.2.5 Coordinate transformations 26

2.3 Image formation . 27
2.3.1 The projective camera 27
2.3.2 Camera distortion . 29

2.4 Feature detection, description, and matching 31
2.4.1 Feature detection . 31
2.4.2 Feature description . 32
2.4.3 Feature matching . 33

2.5 Image homographies . 34
2.5.1 The Direct Linear Transformation algorithm 34

2.6 Structure computation . 35
2.6.1 Initial linear reconstruction 36
2.6.2 Optimal reconstruction 37

2.7 Random sample consensus . 38

4

2.8 Epipolar geometry . 39
2.8.1 The fundamental matrix 40

2.9 Deep learning in computer vision 41
2.9.1 Convolutional neural network 41
2.9.2 Training . 42
2.9.3 Hyperparameters . 43
2.9.4 The overfitting problem 45
2.9.5 Regularization . 46
2.9.6 Transfer learning . 47

2.10 Object detection . 48
2.10.1 Problem formulation 48
2.10.2 Modern object detector anatomy 49
2.10.3 Evaluation metrics . 51
2.10.4 EfficientDet detector 52

2.11 Multiple object tracking . 55
2.11.1 Problem formulation 55
2.11.2 The two main schemes 55
2.11.3 Evaluation Metrics . 56
2.11.4 Simple Online Realtime Tracking 57

2.12 Fiducial detection . 61
2.12.1 The AprilTag detector 61

3 Methods 63
3.1 Asset description . 63
3.2 The Spot platform . 64

3.2.1 Spot CAM+ . 64
3.2.2 Spot CORE . 64
3.2.3 Spot missions . 66
3.2.4 Spot frames . 66

3.3 The data set . 68
3.3.1 Data gathering . 68
3.3.2 Data set annotation 72
3.3.3 Summary . 73

3.4 The pipeline . 75
3.4.1 Undistortion of images 76
3.4.2 Detection of containers 77
3.4.3 Tracking of containers 79
3.4.4 Identification of containers 80
3.4.5 Reconstruction of container models 82
3.4.6 Merging of container models 88
3.4.7 Final localization, identification, and counting 91

5

4 Results and Discussions 93
4.1 Container detection . 93
4.2 Container tracking . 94
4.3 Container model estimation 97
4.4 Final pipeline metrics . 101
4.5 Accuracy of reconstruction . 102
4.6 Parameters and thresholds . 103
4.7 Sphere approximation and merging 103
4.8 Occlusions . 104
4.9 Weather . 105

5 Conclusion 106
5.1 Future work . 106

A Complete container detector performance tables 109

Bibliography 110

6

Nomenclature

Abbreviations

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional

BA Bundle Adjustment

BiFPN Bi-directional Feature Pyramid Network

BLE Bluetooth Low Energy

BRIEF Binary Robust Independent Elementary Features

CNN Convolutional Neural Network

COCO Common Objects in Context

CPU Central Processing Unit

DBT Detection Based Tracking

DCNN Deep Convolutional Neural Network

DFT Detection Free Tracking

DLT Direct Linear Transformation

FPN Feature Pyramid Network

GPS Global Positioning System

GPU Graphics Processing Unit

GTT Ground Truth Tracks

HOG Histogram of Oriented Gradients

ID Identification

7

IoU Intersection over Union

KF Kalman Filter

MOT Multiple Object Tracking

NNDR Nearest Neighbor Distance Ratio

ORB Oriented FAST and Rotated BRIEF

PTZ Pan-Tilt-Zoom

RCNN Region with CNN features

RFCN Region-based Fully Convolutional Networks

RFID Radio-Frequency Identification

RGB Red, Green, and Blue

SDK Software Development Kit

SGD Stochastic Gradient Descent

SIFT Scale-Invariant Feature Transform

SOBA Structure Only Bundle Adjustment

SORT Simple Online Realtime Tracking

SOTA State Of The Art

SURF Speeded Up Robust Features

YOLO You Only Look Once

Evaluation metrics

AP Average Precision

AR Average Recall

DM Duplicate Models

FN False Negative

FP False Positive

IDA Identified Assets

IDs Identity Switches

LA Localized Assets

8

LAGT Localized Assets correct with respect to Ground Truth

mAP mean Average Precision

ML Mostly Lost

MOTA Multiple Object Tracking Accuracy

MOTP Multiple Object Tracking Precision

MT Mostly Tracked

PT Partially Tracked

TP True Positive

9

List of Tables

2.1 EfficientDet models . 54

4.1 Container detection metrics 93
4.2 Container tracking metrics . 94
4.3 Final pipeline metrics . 101

A.1 Container detection precision metrics 109
A.2 Container detection recall metrics 109

10

List of Figures

1.1 The container asset . 15
1.2 The asset tracking problem 15

2.1 An RGB image . 24
2.2 The homogeneous transformation 24
2.3 The pinhole model geometry 27
2.4 Radial distortion . 29
2.5 Tangential distortion . 30
2.6 Image patches . 31
2.7 SIFT descriptor . 33
2.8 Non-intersecting rays . 36
2.9 Three view reconstruction . 37
2.10 RANSAC . 39
2.11 Epipolar geometry . 40
2.12 Typical convolutional neural network 41
2.13 The overfitting problem . 45
2.14 Early stopping regularization 46
2.15 The object detection problem 48
2.16 Feature pyramid networks . 50
2.17 EfficientDet benchmarking . 52
2.18 EfficientDet network architecture 53
2.19 The two MOT schemes . 55
2.20 MOT online- and offline tracking 56
2.21 The general Kalman filtering scheme 58
2.22 Common fiducial markers . 61

3.1 Containers at Kvaerner Stord 64
3.2 The Spot robotic platform . 65
3.3 The SpotCAM+ payload . 65
3.4 The SpotCORE payload . 66
3.5 The Spot body frame . 67
3.6 Configuration of ring camera frames 67
3.7 Robot trajectory in sunny conditions 69

11

3.8 Frames in sunny conditions 70
3.9 Frames in overcast conditions 71
3.10 The novel visual asset tracking pipeline 75
3.11 The view of the five ring fisheye cameras 76
3.12 The view of the five ring cameras after undistortion 76
3.13 Container detector training graphs 78
3.14 Container detections in ring cameras 78
3.15 Container tracks in ring cameras 80
3.16 AprilTag detections in ring cameras 81
3.17 SIFT features inside bounding box 82
3.18 Brute force matching of features 83
3.19 Epipolar constraint filtering 84
3.20 Homography filtering . 85
3.21 Initial triangulated container point clouds 86
3.22 Angle between rays . 87
3.23 Container model inliers . 88
3.24 Initial and desired sphere configuration 89
3.25 Intersecting spheres geometry 90
3.26 Resulting merged model inliers 91

4.1 Lost tracks due to angular acceleration 96
4.2 Angular acceleration in sunny conditions 96
4.3 Angular acceleration in overcast conditions 97
4.4 Final inliers in sunny conditions using ground truth tracks . . 98
4.5 Final inliers in sunny conditions using generated tracks 98
4.6 Final inliers in overcast conditions using ground truth tracks . 99
4.7 Final inliers in overcast conditions using generated tracks . . 100
4.8 Occluding car, sun glare- and flare 104

12

Chapter 1

Introduction

1.1 Background

The problem of tracking the position of items that a business owns and
uses repeatedly is known as asset tracking. For Kvaerner Stord shipping
yard, this has become an increasingly important problem due to valuable
items being lost or misplaced on a vast amount of area. These assets are
typically manually relocated, which can be laborious and stressful for the
workers and expensive for Kvaerner. Examples of such assets are shipping
containers, forklifts, concrete supports, and cars, where shipping containers
will be considered in this thesis due to the continuation of the asset tracking
case in collaboration with Cognite AS in the preliminary work. Figure 1.1
shows two such containers, where fig. 1.2 shows an example of how five
containers are spread on the shipping yard. A visual summary of this asset
tracking case is found in the video here1.

Traditional asset tracking solutions typically rely on mounting some ex-
ternal device to the asset which can be tracked. Common approaches are
based on Radio-Frequency Identification (RFID), WI-FI, Global Positioning
System (GPS), or Bluetooth Low Energy (BLE) [52]. In [66] the authors
utilize RFID to track medical equipment in a healthcare facility, where they
propose an optimal placement of RFID receivers to reduce the number of de-
vices. Asset tracking has also received attention in space, where [10] utilizes
RFID to track consumable items onboard the International Space Station.
A hybrid approach is found in [43], where WI-FI is utilized to determine a
course position of an asset. The exact position is determined by BLE as a
mobile device approaches the asset. For outdoor environments, the GPS is
one of the most successful approaches [52], where Differential GPS provides
better precision. The evident drawback of these approaches based on ex-
ternal devices is that they do not scale well. Additional devices will likely
introduce higher costs, increased maintenance, and new logistical problems.

1Video: https://www.youtube.com/watch?v=fkZYSjVNHFc&ab_channel=Cognite

13

https://www.youtube.com/watch?v=fkZYSjVNHFc&ab_channel=Cognite

Due to the drawbacks and limitations of the traditional approaches, uti-
lizing mobile robots for asset tracking has gained some research attention in
the last decades. The first identified asset tracking robot was introduced in
2005 [1], which utilized a wheeled BlueBot robot. The robot was equipped
with an RFID reader and periodically surveyed a pre-defined space and lo-
cated assets by utilizing a WI-FI positioning system. A similar approach
is found in [62], where assets inside a data center are tracked. In [63] the
authors equip a Roomba with cameras, to localize and identify assets with
pre-programmed light-emitting diodes.

In the last few years, mobile robotic platforms such as Spot2, Taurob3

and ANYmal4 [36] have become commercially available. These mobile robots
provide researchers and developers with a fully functional and robust plat-
form out of the box, enabling the users to focus on applications rather than
the platform’s development. Additionally, providers have seen the impor-
tance of developing payloads to extend the platform for commercial use.
The Spot platform currently features an additional Central Processing Unit
(CPU) and Graphics Processing Unit (GPU), light detection and ranging
sensor, Pan-Tilt-Zoom (PTZ), thermal- and 360 camera, and an arm for
interaction. In [37] the authors present an approach of using the ANYmal
robot in the Autonomous Robot for Gas and Oil Sites challenge. The robot
was able to navigate an outdoor industrial environment using light detec-
tion and ranging, where analog gauges were read utilizing a PTZ camera
and methods from the field of computer vision. In [8] the authors utilize
the Spot robot for autonomous exploration of extreme environments, where
the proposed solution won the 1st-place in the 2020 DARPA Subterranean
challenge.

Even though there have been proposed several solutions to the asset
tracking problem, all of them except [63] utilize either one or a combination
of traditional asset tracking approaches and robotic platforms, which are
not suitable for outdoor environments. The introduction of robust robotic
platforms calls for research on new asset tracking solutions utilizing these
recent robotic advancements.

The scope of this thesis is thus to propose a novel visual asset tracking
pipeline, with the primary objectives of localizing, counting, and identifying
containers in an outdoor industrial environment. This will be achieved by
utilizing the Spot robotic platform equipped with a 360 camera payload and
methods from the field of computer vision. Due to the time limitation of
this work, well-proven and simplistic methods are favored over State Of The
Art (SOTA) and intricate methods. However, SOTA and other promising
extensions will be considered in the discussions.

2Spot: https://www.bostondynamics.com/spot
3Taurob: https://www.taurob.com/taurob-inspector
4ANYmal: https://www.anybotics.com/anymal-legged-robot

14

https://www.bostondynamics.com/spot
https://www.taurob.com/taurob-inspector
https://www.anybotics.com/anymal-legged-robot

Figure 1.1: Two shipping containers at Kvaerner Stord.

Figure 1.2: An example of five container assets on the Kvaerner Stord ship-
ping yard which can be tracked utilizing asset tracking.

15

1.2 State of research

This section briefly introduces the reader to the research fields of feature
detection, object detection, and multiple object tracking, as these are essen-
tial components to the novel visual asset tracking pipeline. The research on
adverse weather conditions and object occlusions are also reviewed as these
are known to degrade the performance of vision algorithms.

The section below on object detection, adverse weather condi-
tions, and object occlusions are copied with a few modifications
from the preliminary work in the project thesis "Spot, a mo-
bile four-legged asset tracking robot in adverse weather conditions"
[42]. These sections are included due to the high relevance to this
work and to gather all the details of the pipeline in one single
document, with the intent of improving the reading flow.

Feature detection

Global features are a popular choice in research fields such as image retrieval,
where the entire image is described using techniques such as color histograms.
However, such features cannot separate foreground and background and are
not suitable for cluttered or occluded images. By contrast, local features
are image patterns that differ from their immediate neighborhood and are
prevalent in tasks such as Three-Dimensional (3D) reconstruction and cam-
era calibration. This is due to the tailoring of the detectors to accurately
locate the same set of features over time in a stable manner [83].

The literature on local feature detection goes as far back as 1954 when
the paper Some informational aspect of visual perception [3] was published.
This paper proposed that information on shape can be described by dominant
points with high curvature. In 1988 the well-known Harris corner detector
[26] was introduced, which detected corners in images based on intensity
variations.

The drawback of many methods is that they require the calculation of
derivatives or more complex measures such as the auto-correlation matrix
for the Harris detector. Consequently, in the last few decades, the research
has centered on developing detectors that achieve computational efficiency.
The Scale-Invariant Feature Transform (SIFT) [56] was published in 1999
and utilized the Difference of Gaussians to approximate the Laplacian, also
known as the trace of the intensity hessian matrix. Following the inherent
success of SIFT, other efficient detectors with different properties such as
Histogram of Oriented Gradients (HOG)(2005) [15], Speeded Up Robust
Features (SURF)(2007) [5], Binary Robust Independent Elementary Features
(BRIEF)(2010) [11] and Oriented FAST and Rotated BRIEF (ORB)(2011)
[72] emerged.

16

In [29] the authors evaluate the performance of BRIEF, ORB, SIFT,
and SURF in the task of Visual Simultaneous Localization and Mapping
(SLAM). Their analysis revealed that SIFT achieved a lower localization
error than the other methods at the cost of a higher computational load. In
[41] the authors evaluate the matching performance using SIFT, Principal
Component Analysis-SIFT, and SURF. This analysis suggested that SIFT
is preferred in situations of changing scale, rotation, and motion blur.

Object detection

The task of detecting objects in images has been around for decades. In the
paper The Representation and Matching of Pictorial Structures [18] pub-
lished in 1973, the authors solve the problem of finding specific objects in a
photograph by utilizing a template-based technique.

The publication of SIFT in 1999 marked the start of a new era for object
detection. The proposed way of extracting local features in an image for
classification was much more robust and efficient than previous methods.
Other descriptors such as HOG, SURF, BRIEF, and ORB gave rise to more
robust and efficient feature extraction in the following years.

Using these descriptive schemes and handcrafted features for object de-
tection has been the state of the art until a transition took place in 2012,
with the introduction of the Deep Convolutional Neural Network (DCNN)
AlexNet [45]. This DCNN achieved record-breaking results in the Large
Scale Visual Recognition Challenge. The authors utilized GPUs for train-
ing, making the computationally expensive model feasible.

Since then, the research in object detection has generally been divided
into one-stage detection frameworks and two-stage detection frameworks [50].
Two-stage detection frameworks first locate category-independent regions
of interest. Features are then extracted from these regions and sent to a
category-dependent classifier to classify the proposed regions. Examples of
such well known object detectors are Region with Convolutional Neural Net-
work features (RCNN) (2013) [22], Fast RCNN (2015) [21], Faster RCNN
(2015) [71], Region-based Fully Convolutional Networks (RFCN) (2016) [14]
and Mask RCNN (2017) [31]. Even though successive iterations of this family
of object detectors improved accuracy and efficiency, they could not compete
with the efficiency of one-stage detection frameworks. These one-stage detec-
tors consist of architectures that predict bounding boxes and corresponding
class labels in a single feed-forward DCNN. Such methods jointly learn the
important features for predicting bounding boxes and corresponding class
labels, which removes the need for separate processing stages. Examples of
such well known one-stage detectors are OverFeat (2014) [74], Single Shot
Multibox Detector (2015) [54], You Only Look Once (YOLO) (2016) [70],
YOLOv2 (2016) [68], YOLOv3 (2018) [69] and YOLOv4 (2020) [7].

In 2020 researchers from Google Brain published the revised paper Effi-

17

cientDet: Scalable and Efficient Object Detection [81], where they developed
a new family of one-stage detectors named EfficientDet D0-D7x. This work’s
main contributions were the introduction of a novel multi-scale feature-fusion
method and a scaling approach that scaled the entire network using a sin-
gle parameter. The resulting EfficientDet D7x achieved a SOTA score on
the Common Objects in Context (COCO) dataset with an average precision
(AP) of 55.1% using a Tesla V100 GPU. The competing YOLOv4 model
on the other hand, achieved a maximum AP of 43.5% at 62 FPS on the
same GPU. Comparable speed is achieved using the minimal EfficientDet-
D0 model, running at 62.5 FPS with an AP of 33.8%. This indicates that the
EfficientDet family provides accurate and flexible detectors, while YOLOv4
sacrifices accuracy for speed.

Since the publication of EfficientDet in 2020 and the preliminary project
thesis, a new SOTA method based on transformers has emerged. This
SwinV2-G [89] method developed by Microsoft achieves an AP score of 63.1%
on the COCO data set. The recent success of transformers for object de-
tection challenges the traditional CNN architecture and suggests that future
research in object detection might revolve around transformers.

Multiple Object Tracking

Multiple Object Tracking (MOT) has gained increased attention in recent
years due to its academic and commercial potential. This task of detecting
objects, maintaining their identities, and yielding a trajectory given a video
sequence, includes the four key challenges of object occlusions, initialization
and termination of tracks, similar object appearance, and interaction among
objects [58].

These challenges have traditionally been addressed by utilizing the follow-
ing MOT components: motion model, appearance model, interaction model,
exclusion model, occlusion handling, and inference. In [90] and [9], a lin-
ear motion model is assumed in a Data-Driven Markov Chain Monte Carlo
and particle filter framework, respectively. A constant linear velocity model
is utilized in the Simple Online Realtime Tracking (SORT) algorithm [6],
where a Kalman Filter (KF) is used for inference. An appearance model is
an essential component for comparing the appearance of tracked objects, and
in [79] the authors propose a clustering approach that groups trajectories of
image features that belong to the same object. The DeepSORT [88] algo-
rithm is an extension of the SORT algorithm, which includes a trained deep
association metric as an appearance model. A social force model is proposed
in [33] to model the movements of pedestrians, whereas an exclusion model
is proposed in [60] to avoid physical collisions of trajectories.

Due to recent developments of multi-task learning in deep learning, the
research on joint detection and tracking using a single network has attracted
more attention in the last few years [91]. Track-RCNN [77] adds a re-

18

identification head on top of Mask-RCNN to regress bounding boxes and
re-identification features, while Joint Detection and Embedding [86] simi-
larly builds on top of YOLOv3. In 2021 the TransCenter [89] method based
on transformers was published, which achieved SOTA results on the MOT20
benchmarking data set. Similar to the field of object detection, this might
mark the start of a new era in MOT, where transformers outcompete the
CNN methods.

An evident drawback of these learning-based methods is the need for
large-scale data sets. Due to approximately 70% of research in MOT target-
ing the tracking of pedestrians [58], the data sets publicly available reflect
this. The commonly used MOT20 pedestrian data set contains 3833 indi-
vidual tracks composed of over two million bounding boxes5 and is a result
of over five years of research and development. This is different from object
detection, where the data sets cover a wide range of categories that can be
utilized for transfer learning.

Adverse weather conditions

Robust vision algorithms are required to function well in adverse weather
conditions such as rain, snow, ice, shadows, sun glare, and different lighting
to be used in an outdoor setting. These conditions are known to degrade the
performance of vision algorithms [30][17], which are generally benchmarked
under clear weather conditions with favorable lighting. Prior research has
focused on switching strategies or methods to transform adverse weather
images into clear weather images.

In [67] the authors propose moving object detection of humans, which
switches between using an infrared camera and a Red, Green, and Blue
(RGB) camera depending on the weather conditions. The switching strat-
egy is based on previous work, where they developed a model to predict the
current weather conditions using supervised learning. In [46], the researchers
use the YOLO object detector trained on an infrared data set of 3000 labeled
images of humans. They achieve an AP50 score of 97.93% for all weather
conditions. Even though [67] and [46] achieve impressive results in the spe-
cific case of detecting humans, more research is needed in detecting other
objects with different emissive properties in adverse weather conditions.

Most research has focused on methods that transform adverse weather
images into clear weather images. De-fogging of images is found in [12] and
de-raining of images in [40]. Even though the papers showcase promising
results, [35] shows how de-raining approaches have a negative effect on the
detection precision score. The key finding in their work to achieve accu-
rate detections is the lack of labeled data capturing the diversity of rainy
conditions.

5https://motchallenge.net/data/MOT20/

19

https://motchallenge.net/data/MOT20/

In [30], the authors propose that adverse weather suffers from poor con-
trast due to scattering and absorption of light reaching the camera. An
attempt to address this is found in the highly cited paper [61], where the
authors propose a weather removal algorithm that restores the contrast of
images based on a physics model. Their experiments show how the algo-
rithm can restore contrast in foggy and rainy images. Another interesting
approach is found in [40], where a contrast enhancement step is performed
after removing visible droplets, fog, and snowflakes from the image.

Object occlusions

Once an object overlaps with another object in an image, it suffers from
occlusion. Object occlusions are common in real-life situations, particularly
in cluttered environments, where many objects are present in the scene.

An attempt to address this problem is found in [34], where they propose
a method to recover unoccluded portions in images. Their proposed method
uses a CNN to estimate the optical flow between two successive frames,
followed by matching occluded and unoccluded portions of the image to
restore the latter. However, the proposed method did not lead to satisfactory
results.

In [20], the authors argue that occlusions as image augmentation are
required for neural networks to achieve a holistic understanding of objects.
This is because neural networks are known to learn easy to recognize por-
tions of objects. They compare two such augmentations, Cutout [16], and
Hide-and-Seek [78] to different variations of Dropout regularization. Cutout
augmentation selects N patches randomly in the image of a predefined size
and zeros these pixels out. Hide-and-Seek divides the image into a grid and
randomly zeros those patches out with a predefined probability. Based on
experiments on the ImageNet [73] data set, Cutout augmentation achieves
the highest precision score and outperforms the other Dropout regularization
methods.

20

1.3 Contributions

The five main contributions from this thesis are given below.

Implementation of a novel visual asset tracking pipeline

A novel visual asset tracking pipeline has been implemented to challenge the
traditional asset tracking solutions. The proposed pipeline locates, counts,
and identifies containers in an outdoor industrial environment by utilizing
methods from the field of computer vision, where visual information is ac-
quired using the Spot robotic platform equipped with a 360 camera. Hope-
fully, this novel approach will pave the way for improved- and new visual
asset tracking solutions.

Creation of a custom data set

A custom data set of containers were created to evaluate the performance of
the pipeline. The data set is composed of two parts where the first contains
labeled images of containers used in the development of a container detector.
This set of 584 images was extended from the preliminary work to improve
detection accuracy on the images from the 360 camera. The second part in-
cludes two videos of containers in sunny- and overcast weather, synchronized
robot poses, and camera calibration parameters. Both videos are labeled in
widespread object detection- and tracking formats.

Developed an accurate container detector

The developed EfficientDet object detector from the preliminary work was
retrained using the extended image data set. The resulting container detector
achieves high detection accuracy in sunny- and overcast weather conditions.

Proposal of visual asset tracking metrics

The visual asset tracking evaluation metrics LA, LAGT, IDA, and DM, were
proposed due to the absence of existing metrics communicating the perfor-
mance of the localization, counting, and identification of assets. The pro-
posed metrics were constructed as simple as possible to serve as an initial
first step towards future versions of improved visual asset tracking metrics.

Conducted a literature overview

A literature overview in feature detection and multiple object tracking was
conducted to showcase some of the most notable developments in the fields
and to explore the different methods available for this work.

21

1.4 Report structure

The remainder of this thesis is structured as follows. Chapter 2 introduces
the theory of the various methods from the field of computer vision which
are utilized in this work. This chapter is lengthy, and readers which are fa-
miliar with computer vision concepts such as image formation, features, tri-
angulation, homographies, Random Sample Consensus (RANSAC), epipolar
geometry, and CNNs are welcome to start reading at section 2.10, where
the following sections will introduce the fields of object detection, multiple
object tracking, and fiducial detection.

In chapter 3 the methodical approach is presented. First, the container
asset is described in section 3.1, followed by a brief presentation of the Spot
robotic platform in section 3.2. Then the gathered custom data set is pre-
sented in section 3.3, which is composed of both images and videos for the
development and evaluation of the pipeline. Finally, the proposed pipeline
is presented in section 3.4.

The results are presented and discussed in chapter 4, based on the cus-
tom data set. Some of the essential components in the pipeline are evaluated
utilizing well-proven metrics from the respective fields, followed by a presen-
tation of the final pipeline performance metrics, which were constructed in
this work due to the absence of existing suitable metrics. These metrics rep-
resent the success of localizing, counting, and identifying the containers in a
scene.

Chapter 5 concludes the work in this thesis, where exciting findings and
the final pipeline performance are summarized. The thesis is outlined with
further work, which contains elements that are anticipated to improve the
performance of the pipeline.

22

Chapter 2

Theory

This chapter introduces the relevant theory and related methods utilized
in the proposed pipeline, starting with a brief section on the field of com-
puter vision and the general representation of RGB images. The following
sections introduce the concepts of image formation, features, triangulation,
homographies, RANSAC, epipolar geometry, and CNNs, which are essential
elements in the reconstruction of container models. The final three sections
2.10 through 2.12 presents the respective fields of object detection, multiple
object tracking, and fiducial detection.

2.1 Computer vision

The research field of computer vision studies how a high-level understanding
of a scene in the real world can be extracted from images. This field has
seen rapid advancements in the last decade due to the efficient processing of
visual information using GPUs. A commonly used sensor to gather visual
information is the RGB camera. This popular genre of cameras is described
shortly in section 2.1.1.

2.1.1 RGB representation of images

An RGB camera captures images by measuring the intensity of red, green,
and blue color, stored as pixels in a grid-like structure of width W, height
H, and depth of three. The intensity values take values in the range [0, 255],
depending on the intensity of the respective color. The resulting RGB image
and its composition is shown in fig. 2.1.

23

Figure 2.1: An RGB image is a brightness array of size W× H × 3, Source:
https://en.wikipedia.org/wiki/Grayscale#/media/File:Beyoglu_467
1_tricolor.png (retrieved 2020)

2.2 Homogeneous transformations

In this section, the aim is to mathematically formulate the relationship be-
tween coordinate systems defined in Euclidean space by using a homogeneous
transformation matrix TAB. This transformation matrix defines the relative
orientation and position of the B frame relative to the A frame. For simplic-
ity, we will use the term frame instead of coordinate systems in the remainder
of this thesis.

Figure 2.2: The homogeneous transformation TAB defines the relative ori-
entation and position of frame B relative to frame A.

24

https://en.wikipedia.org/wiki/Grayscale##/media/File:Beyoglu_4671_tricolor.png
https://en.wikipedia.org/wiki/Grayscale##/media/File:Beyoglu_4671_tricolor.png

2.2.1 Rotation

The first part of the homogeneous rigid body transformation matrix is the
rotational part R. This rotation matrix, as defined in eq. (2.1) defines the
relative orientation of a frame B relative to a frame A. The matrix columns
define the orientation of the x, y, and z axes of the B frame relative to the
A frame.

RAB =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2.1)

A unique property of this rotation matrix is that it is part of the special
orthogonal group, which is defined as shown in eq. (2.2).

SO(3) = {R ∈ R3×3|RTR = I, det(R) = 1} (2.2)

2.2.2 Translation

The second part of the transformation matrix is the translational part t.
This vector, as shown in eq. (2.3) defines the relative vector between the B
frame relative to the A frame.

tAB =

txty
tz

 ∈ R3 (2.3)

2.2.3 The homogeneous transformation matrix

The homogeneous transformation matrix as shown in eq. (2.4). This joint
transformation matrix defines the relative translation and rotation between
frames A and B.

TAB =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (2.4)

A unique property of this homogeneous transformation matrix is that it
is part of the special Euclidean group, which is defined in eq. (2.5).

SE(3) = {
[
R t
0 1

]
|R ∈ SO(3), t ∈ R3} (2.5)

2.2.4 Properties of the transformation matrix

The homogeneous transformation matrix has some essential properties, which
allows us to easily determine cumulative and inverse transformations.

25

Inverse

The inverse of a transformation matrix TAB is given by eq. (2.6) and allows
us to determine the orientation and position of frame A relative to frame B.

TBA = (TAB)−1 =

[
RT −RT t
0 1

]
(2.6)

Closure

Matrix multiplication of two or more transformation matrices T will remain
within SO(3) as shown in eq. (2.7).

T1T2 ∈ SO(3) (2.7)

Associative

The order of matrix multiplication is arbitrary and will yield the same final
transformation matrix, as seen in eq. (2.8).

(T1T2)T3 = T1(T2T3) (2.8)

Not commutative

Different order of transformation matrices during matrix multiplications
yields different results as shown in eq. (2.9).

T1T2 6= T2T1 (2.9)

2.2.5 Coordinate transformations

Using the homogeneous transformation matrix TAB, we can transform a
point p in frame A described by the homogeneous vector XA = [x, y, z, 1] to
frame B by using eq. (2.10).

XB = (TAB)−1XA = TBAXA (2.10)

If we also have the transformation matrix TBC , we can combine the
transformations as shown in eq. (2.11) to determine the position of p in the
C frame.

XC = (TBC)−1(TAB)−1XA = TCBTBAXA (2.11)

26

2.3 Image formation

Image formation studies how objects in the real world give rise to images
[59]. This is an essential step to develop an accurate model, relating 3D
points in the real world to Two-Dimensional (2D) coordinates in an image.
In the following section, the projective camera model is presented by a series
of generalizations of the simple pinhole camera model. In the end, radial-
and tangential distortion models are introduced to model the non-linearities
of the camera lens.

2.3.1 The projective camera

A projective camera model P, maps homogeneous 3D world points X =
[X, Y, Z, 1] to homogeneous 2D pixels x = [x, y, w] according to eq. (2.12).

x = PX (2.12)

In order to determine this camera model P, we start with the simplest
pinhole camera model, and through a series of generalizations, we end up
with the projective camera.

The geometry of the pinhole camera model is shown in fig. 2.3 where
the camera centre C is located a focal length f behind the image plane
with centre p. By similar triangles, the point (X, Y, Z)T is mapped to the
image plane with coordinates (fX/Z, fY/Z)T . This can be written as seen in
eq. (2.13), where the homogeneous coordinates x = fX, y = fY, and w = Z
are utilized. The left hand side matrix K is known as the camera intrinsic
parameter matrix, which describes the internal parameters of the camera.

Figure 2.3: The pinhole model geometry. The camera and image centre is
denoted by C and p respectively. Source: [28] (retrieved 2021)

xy
w

 =

f 0 0
0 f 0
0 0 1

︸ ︷︷ ︸

K

1 0 0 0
0 1 0 0
0 0 1 0

X
Y
Z
1

 (2.13)

27

The first customary enhancement of this model is to move the principal
point center p in the image by (px, py). This is achieved by modifying the
camera intrinsic matrix K as shown in eq. (2.14).

K =

f 0 px
0 f py
0 0 1

 (2.14)

The second generalization is to add the possibility of having non-square
pixels. By adding the scale factors sx and sy to the focal lengths in the x
and y direction, we end up with the following intrinsic parameters as shown
in eq. (2.15).

K =

fsx 0 px
0 fsy py
0 0 1

 (2.15)

The third generalization is to add a skew parameter s to the camera
intrinsic parameters. This parameter is often zero or very close to zero for
most cameras. The resulting camera matrix is shown in eq. (2.16).

K =

fsx s px
0 fsy py
0 0 1

 (2.16)

Finally, the last generalization is to add a Euclidean transformation be-
tween the world frame FW and the camera frame FC . This transforma-
tion is a homogeneous transformation which was described more in detail
in section 2.2. The transformation is also known as the camera extrinsic
parameters and is often referred to as the camera pose, which describes the
relative orientation and position of the camera relative to the world. The
resulting projective camera model is described by eq. (2.17), where we have
set fx = fsx and fy = fsy. If the camera intrinsic parameters are known,
the model can be used for Euclidean reconstruction, which will preserve the
correct Euclidean shape of the reconstructed scene or object [28].

xy
w

 =

fx s px
0 fy py
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

[R t
0 1

]
X
Y
Z
1

 (2.17)

28

2.3.2 Camera distortion

The projective model developed in the previous subsection has assumed lin-
ear relation between world- and image points. This will not hold for real
cameras due to the underlying pinhole model being too simplistic to capture
the non-linearities of different camera lenses. Fortunately, these lense non-
linearities can be modeled as radial- and tangential distortions to the pixel
coordinates.

Radial distortion

The standard model for radial distortion which transforms the normalized
distorted pixel coordinates (xd, yd) to ideal- or undistorted pixel coordinates
(x, y) is shown in eq. (2.18) [92]. In this equation, L(r) is commonly chosen
as the even Taylor expansion L(r) = 1+k1r

2+k2r
4+k2r

6, were r2 = x2+y2,
and k1, k2, k3 is the radial distortion parameters.[

xd
yd

]
= L(r)

[
x
y

]
(2.18)

In fig. 2.4, an un-distorted image with ideal coordinates is shown in (a),
whereas in (b) and (c), positive and negative radial distortion is displayed.

Figure 2.4: (a) No radial distortion, (b) Positive radial distortion, (c) Nega-
tive radial distortion Source: [24] (retrieved 2021)

Tangential distortion

Tangential distortion is another non-linearity that is essential to model to
achieve an improved linear relation between pixels and real-world coordi-
nates. This distortion is due to a misalignment between the lens and the
charge-coupled device image sensor, as shown in fig. 2.5. The tangential dis-
tortion model is shown in eq. (2.19) [32], where p1 and p2 is the tangential
distortion parameters.[

xd
yd

]
=

[
x+ 2p1xy + p2(r

2 + 2x2)
y + p1(r

2 + 2y2) + 2p2xy

]
(2.19)

29

Figure 2.5: Tangential distortion is due to a misalignment of the camera lens
and the charge-coupled device camera sensor. Ideally, the sensor should be
parallell to the camera lense. Source: https://aishack.in/tutorials/m
ajor-physical-defects-cameras/ (retrieved 2021)

30

https://aishack.in/tutorials/major-physical-defects-cameras/
https://aishack.in/tutorials/major-physical-defects-cameras/

2.4 Feature detection, description, and matching

The detection, description, and matching of features in images are essential
tasks in computer vision. This section introduces the notion of detecting
features, also referred to as interest points. The auto-correlation matrix
is introduced to give the reader an intuition on how intensity gradients of
image patches can be used to locate edges and corners. This is followed
by the description of features, which is a requirement for matching. The
popular SIFT detector and descriptor is briefly introduced followed by the
process of matching features.

2.4.1 Feature detection

The process of extracting features in images is known as feature detection. A
feature is an interesting point in an image, such as an edge or corner that are
likely to be found and matched well in other images. Two of the essential
properties of a feature detector are compactness and efficiency. This can
be achieved by sliding a window over the image to find interesting patches.
In fig. 2.6, two images with three extracted patches are shown. From these
patches, notice how the second and third patch can be localized and matched
more accurately as it carries more texture than the first patch.

Figure 2.6: Two images with three extracted image patches. Notice how
the second and third patch can be localized and matched more accurately.
Source: [80], (retrieved 2021)

The traditional auto-correlation function EAC as given in eq. (2.20) can
be used to detect features based on the intensity values I0 of the pixels.
This function compares image patches against itself by applying a small
variation in the pixel position ∆u, where wi(xi) is a weighting function and
the summation i is over all the pixels in the patch.

31

EAC(∆u) =
∑
i

w(xi)[I0(xi + ∆u)− I0(xi)]
2 (2.20)

By utilizing the Taylor expansion I0(xi + ∆u) ≈ I0(xi) + ∆I0(xi), the
function can be written as seen in eq. (2.21), where A is known as the auto-
correlation matrix. The image gradients can be computed by using a variety
of techniques. The classic Harris detector uses a [-2, -1, 0, 1, 2] filter, but
more sophisticated approaches are also common.

EAC(∆u) = ∆uT w ∗
[
I2x IxIy
IxIy I2y

]
︸ ︷︷ ︸

A

∆u (2.21)

The eigenvalues (λ0, λ1) of the auto-correlation matrix identify the di-
rections of the largest and smallest change of the auto-correlation function.
The patch is typically an edge when either eigenvalue is much larger than the
other. Flat regions with little texture have small eigenvalues, while corners
have large values [75]. Thus the detection of features can be achieved by
choosing a criterion for the eigenvalues.

2.4.2 Feature description

After detecting the features, they have to be described to match them across
images. In most cases, the features are described using the local appearance
of the interesting point. This local appearance will often change in orien-
tation, scale, or undergo an affine deformation. Modern feature descriptors
address these issues by extracting a local scale, orientation, or affine frame
estimate from the feature image patch. A popular method utilized for both
feature detection and matching is SIFT, which will be very briefly introduced
below.

SIFT

The SIFT is invariant to scale, orientation, and affine deformations, as well
as robust to changes in illumination and noise [56]. This method detects
features by extracting the maxima and minima of the Difference of Gaus-
sians function in scale space. This function is applied to an image pyramid
consisting of re-sampled and smoothed layers at different scales. For each
detection, a 16 × 16 window at the corresponding scale in the Gaussian
pyramid is used to calculate the pixel gradients around the detection. The
magnitudes of the gradients are then down-weighted using a Gaussian fall-
off function to reduce the influence of gradients far from the center. The
patch is then divided into eight quadrants, where gradients are added to
one of eight histogram bins in the respective quadrant. These two steps are
showcased in fig. 2.7, where the illustration utilizes 8 × 8 patches and four

32

quadrants. Finally, the gradients are then added to 2× 2× 2 histogram bins
using trilinear interpolation to reduce the effect of location, and dominant
orientation misestimation [80]. This results in a vector of 128 non-negative
values used to describe the detected feature.

Figure 2.7: The left image shows the SIFT gradient orientations and mag-
nitudes at each pixel, where the blue circle shows the Gaussian fall-off func-
tion. The right image shows the weighted gradient orientation histogram
computed at each subregion. Note that this illustration utilizes a patch size
of 8× 8 and four quadrants. Source: [57] (retrieved 2021)

2.4.3 Feature matching

After extracting and describing features in a series of images, the next step
is to match the features. We will assume that the descriptors have been
designed such that the Euclidean distance between descriptors can be calcu-
lated. By calculating the distance between all descriptor pairs in two images,
the most straightforward matching strategy is to return the match with the
lowest distance above some pre-defined maximum distance threshold. How-
ever, setting this maximum distance threshold is difficult and will vary as
we move to different parts of the feature space [80]. A better strategy is to
utilize the Nearest Neighbor Distance Ratio (NNDR) given by d1

d2 , where d1
and d2 is the nearest and second nearest neighbor distance, respectively. The
closest match can be kept or discarded based on the calculated NNDR value,
where a lower value indicates a good match. As in the previous method, this
requires a maximum threshold value to be set. The creator of SIFT pro-
posed in [57] to reject all matches with an NNDR above 0.80. This resulted
in an elimination of 90 % of the false matches while discarding less than five
percent of the correct matches.

33

2.5 Image homographies

Two images of the same planar surface are related by a 2D image homogra-
phy H ∈ R3×3. This homography allows us to transform points xi on the
plane in the first image to the corresponding point x′i in the second image
as seen in eq. (2.22). This matrix has in total eight independent elements
which require to be determined [28]. Each point correspondence frees up
two degrees of freedom, which results in a minimum number of four points
required to estimate the homography. There have been proposed several
different algorithms for this estimation. However, the Direct Linear Trans-
formation (DLT) algorithm is arguably the most prominent and commonly
used algorithm for this purpose.

Hxi = x′i (2.22)

2.5.1 The Direct Linear Transformation algorithm

The DLT is a simple linear algorithm that estimates the homographyH given
four or more point correspondences xi ↔ x′i of a planar surface. These point
correspondences can be determined by matching of features across views as
introduced in section 2.4.3. The linear solution can be formed by the cross
product x′i×Hxi=0, resulting in three equations for each correspondence as
seen in eq. (2.23), where hT1 ,h

T
1 ,h

T
1 are the rows of H. 0T −w′ixTi y′ix

T
i

w′ix
T
i 0T −x′ixi

−y′ixTi x′ix
T
i 0T

h1

h2

h3

 = 0 (2.23)

The third row in this linear system can be omitted as it is linearly de-
pendent on the first and second rows. The resulting system takes the form
Aih = 0, where Ai is a 2 × 9 matrix, and h a 9 × 1 vector containing the
elements of H.

By assembling all Ai for the n ≥ 4 correspondences, a 2n × 9 matrix is
constructed. Due to noise in the measurement of correspondences, the linear
system will not have an exact solution other than the trivial zero solution.
Additionally, as n > 4, the system becomes over-determined. To address
these issues, the DLT algorithm utilizes the singular value decomposition.
This decomposition minimizes the norm ||Ah|| subject to the constraint
||h|| = 1, where the solution is the unit singular vector corresponding to the
smallest singular value of the decomposition. The resulting DLT algorithm
is given as:

1. For each image correspondence xi ↔ x′i, construct Ai.

2. Assemble A1, .., AN in to a single matrix A of size 2n× 9.

34

3. Obtain the singular value decomposition of A = UDVT .

4. The "best" linear estimate ĥ can then be extracted from the decom-
position as the last column of V. This is the unit singular vector
corresponding to the smallest singular value for the solution h.

Additionally, it is customary to normalize the point correspondences uti-
lizing a transformation such that the centroid of the points is at the origin
with an average distance to the origin of

√
2. This extension is known as the

normalized-DLT and is considered as a mandatory extension in the estima-
tion of the homography [28].

2.6 Structure computation

This section introduces the theory necessary to estimate the 3D position of
a point X imaged in two and up to M views. For each view, we require the
corresponding image point x1, ..,xM in order to utilize the projective camera
model as introduced in eq. (2.17), relating a 2D coordinate in an image to a
3D coordinate in the world frame. Thus the problem becomes:

Given image correspondences x1, ..,xM for a 3D point X and the projec-
tion matrices P1, ..,PM , estimate X̂.

In fig. 2.8 the problem is showcased for two cameras with image corre-
spondences x and x′. From the figure, it is evident that there is no exact
solution for X due to the non-intersecting rays. This is always the case,
explained by errors and noise in the camera model and the image correspon-
dences. Thus the best one can do is to estimate X̂, where the accuracy of this
estimate is governed by the method of triangulation used. A standard way
of achieving a good estimate is first to do an initial reconstruction using a
simple method such as linear triangulation, then use this estimate as a start-
ing point in a non-linear optimization scheme such as Bundle Adjustment
(BA).

35

Figure 2.8: Two point correspondences x and x′ forms two non-intersecting
rays. Source: [28] (retrieved 2021)

2.6.1 Initial linear reconstruction

Linear triangulation is a popular method used to estimate an initial set of
3D points due to the simplicity of the method and generalizing easily to M-
views. The goal of this method is to form a system AX = 0 which can be
solved for X by utilizing the DLT algorithm as introduced in section 2.5.1.
This minimizes an algebraic error, which has no statistical or geometric in-
terpretation but is shown to yield a good starting point for a non-linear
optimization procedure.

To form this A matrix we first utilize the cross product x×PX = 0 to
give rise to three equations for each image point xi as shown in eq. (2.24),
where P1T..3T

i are used to denote the columns of Pi. 0 −1 yi
1 0 −xi
−yi xi 0

P1T
i

P2T
i

P3T
i

X = 0 (2.24)

This gives rise to two linearly independent equations as shown in eq. (2.25)
where the number of unknowns is higher than the number of equations, and
the linear system is thus under-determined using only the equations for one
view. [

xiP
3T −P1T

yiP
3T −P2T

]
X = 0 (2.25)

The solution is to add the equations for the remaining M-1 views to make
the system over-determined instead. For M views, the resulting A matrix
takes the following form as shown in eq. (2.26), which can be solved for X
using the DLT.

36

x1P

3T
1 −P1T

1

y1P
3T
1 −P2T

1
...

xMP3T
M −P1T

M

yMP3T
M −P2T

M

X = 0 (2.26)

2.6.2 Optimal reconstruction

The initial reconstruction in the previous subsection minimized the algebraic
error using the homogeneous DLT. Though this reconstruction often yields
good results, a final polish using an iterative nonlinear optimization is often
desirable. This is achieved by minimization of a geometric reprojection er-
ror as shown in eq. (2.27), which iteratively calculates corrections in order
to align correspondences as shown in fig. 2.9, where d(·) is the euclidean
distance. In general, such methods are known as BA, which solves a nonlin-
ear least-squares minimization problem of the reprojection error by refining
over the both the 3D points Xj and the projection matrices Pi. In the case
of refining only over the 3D points Xj , the resulting method is known as
Structure Only Bundle Adjustment (SOBA).

min
∑
ij

d(xi, x̂i)
2 (2.27)

Figure 2.9: Three views Cj with correspondences uij and Xi the 3D points
in the world frame. The solid lines represent the projection, while the dotted
lines the reprojections. The reprojection error is thus this distance between
the projections and the reprojections. Source: [13] (retrieved 2021)

37

Structure Only Bundle Adjustment

SOBA is a special case of BA where we only refine the 3D pointsXj as shown
in eq. (2.28). This is a nonlinear least-squares problem [13] which requires
an iterative minimization method in order to find a satisfying solution. By
satisfying, it is implied that the found solution might be a local optimum
and thus not the global optimal solution [28].

min
Xi

n∑
i=1

m∑
j=1

(uij −PjXi)
2 (2.28)

It is customary to write the minimization problem above in a simpler
form as seen in eq. (2.29) using residuals rij = uij − PjXi. The resulting
vector r is known as a residual vector.

min rT r (2.29)

By performing a Taylor expansion of r, followed by taking the derivative
and setting this to zero, we obtain obtain the general Gauss-Newton equation
as shown in eq. (2.30) for finding the search direction δx, where the hessian
approximation H ≈ JTJ is utilized.

JTJδx = −JT r (2.30)

The Gauss-Newton method will always produce a descent direction as
long as JTJ is positive definite, but when this term is singular, this method
becomes unstable. The Levenberg-Marquardt algorithm solves this problem
by a modification of the Hessian approximation as seen in eq. (2.31), where
the parameter λ is added to avoid rank deficiency. This is known as a
trust-region approach, where the parameter λ is increased when a search
direction reduces the objective function and decreased otherwise. This is the
preferred method for solving the nonlinear least-squares problem in eq. (2.28)
[2], where the Jacobian is commonly approximated by finite-differencing [4].

(JTJ + λI)δx = −JT r (2.31)

2.7 Random sample consensus

RANSAC is an iterative method used to fit experimental data to a mathe-
matical model [19]. This is a popular method in robust estimation, where
data outliers need to be separated from the inliers. The algorithm randomly
draws the minimum number of data points required for each iteration, deter-
mines the number of inliers for this particular model, and updates the best
model parameters if there are more inliers in the current model.

38

An example where RANSAC is used to fit data points to a line described
by the equation y = ax+ b is shown in fig. 2.10. From the initial data points
shown in fig. 2.10a, two points are randomly sampled for each iteration, and
the number of inliers within a threshold of the model is counted. The final
model with the highest amount of inliers is shown in fig. 2.10b.

(a) Data points (b) Line estimate

Figure 2.10: (a): The initial set of data points. (b): The fitted line using
RANSAC. Source: https://en.wikipedia.org/wiki/Random_sample_con
sensus (retrieved 2021)

2.8 Epipolar geometry

Epipolar geometry is the projective geometry between two views that only
depends on the camera’s intrinsic and extrinsic parameters. Given point
correspondences x and x′ for two images, the relationship between these two
points satisfies what we call the epipolar constraint as seen in eq. (2.32). The
matrix F is known as the fundamental matrix and entails the relative motion
between the two frames as well as the internal parameters of the cameras.

x′TFx = 0 (2.32)

An important property for the epipolar constraint is that the correspon-
dences and the 3D points X all lies on an epipolar plane π as shown in
fig. 2.11(a). This epipolar plane intersects the epipoles e and e′ on the
baseline as shown in fig. 2.11(b).

39

https://en.wikipedia.org/wiki/Random_sample_consensus
https://en.wikipedia.org/wiki/Random_sample_consensus

(a) The correspondences and 3D
point lies on the epipolar plane

π.

(b) The epipolar lines l and l′
and the epipoles e and e′.

Figure 2.11: The epipolar geometry between two views. Source: [28] (re-
trieved 2021)

Another important property is that a point x forms an epipolar line in
the other view C ′ as shown in fig. 2.11(b). This means that given a point x,
we can determine a line in the other image where the correspondence should
lie on. This is a useful property that is often utilized when matching point
correspondences between views.

2.8.1 The fundamental matrix

The fundamental matrix F is defined according to eq. (2.33). Intrinsic pa-
rameters are given by K and K′ and the relative motion between the two
views as bR,Tc. The term

[
t
]
×R is also known as the essential matrix,

encoding the relative motion between the two views.

F = K′-T
[
t
]
×RK−1 (2.33)

The epipolar lines can be computed using the fundamental matrix using
the equations shown in eq. (2.34).

l′ = Fx

l = FTx′
(2.34)

If the relative motion between the two views and the internal parame-
ters are available, it is straightforward to calculate the fundamental matrix.
When these parameters are not known, a popular approach is to estimate
the matrix using the normalized 8-point algorithm [27].

40

2.9 Deep learning in computer vision

Deep learning has become an essential tool in computer vision due to the
inherent success of convolutional neural networks inspired by the structure
of the human visual system [84].

This particular section 2.9 is copied with a few modifications
from the preliminary work in the project thesis "Spot, a mobile
four-legged asset tracking robot in adverse weather conditions"[42].
These sections are included due to the high relevance to this work
and to gather all the details of the pipeline in one single document,
with the intent of improving the reading flow.

2.9.1 Convolutional neural network

A convolutional neural network mainly consists of three layers, convolutional
layers, pooling layers, and fully connected layers. Figure 2.12 shows the
typical structure of such a network. The input image is convolved using
convolutional layers resulting in feature maps of the same dimension as the
image. The feature maps are then down-sampled through pooling layers
before the same process is repeated multiple times. The last feature maps
are then connected to a fully connected layer.

Figure 2.12: The structure of a typical convolutional neural network. Feature
maps are generated using successive convolutional- and pooling layers. The
output from the network is generated using a fully connected layer. Source:
https://en.wikipedia.org/wiki/Convolutional_neural_network#/me
dia/File:Typical_cnn.png (retrieved 2020)

Convolutional layer

A convolutional layer consists of N kernels or filters of which the input is
convolved to produce the output feature maps. This results in a total of
N feature maps with the same spatial dimension as the layer’s input. Each
layer generates various feature maps that store essential information in the
prediction of new images.

41

https://en.wikipedia.org/wiki/Convolutional_neural_network##/media/File:Typical_cnn.png
https://en.wikipedia.org/wiki/Convolutional_neural_network##/media/File:Typical_cnn.png

Pooling layer

A pooling layer reduces the spatial dimension of the input feature maps.
The depth or number of feature maps remains fixed in the process. The
dimension reduction is achieved by using the concept of stride. Stride states
the number of activations to skip from one convolution to the next using
a square filter. Selecting a stride of one results in no dimension reduction,
while selecting a stride of two halves the dimension. Two popular pooling
techniques are max pooling and average pooling. Both techniques run a filter
of size M ×M on the input with a stride larger than one. Max pooling sets
the output activation value equal to the maximum activation value within
the filter. Average pooling sets the output activation value equal to the
average of the activations within the filter.

Reducing the spatial dimension is also known as downsampling. Despite
the loss of information in the process, pooling reduces the computational
overhead and serves as a regularizer against overfitting, which will be con-
sidered in section 2.9.4.

Fully connected layer

A fully connected layer reduces the 2D feature maps in the previous layer
to a One-Dimensional (1D) feature vector, which can be used directly for
classification or further processing. This is achieved by connecting each
neuron to all the activations in the previous layer, hence the name.

2.9.2 Training

Training a DCNN refers to the process of changing the weights within the
network such that we get the desired output given the input. This process is
also known as learning, as the network changes the weights within the net-
work to get better at the task it is given in a supervised-learning theme. To
achieve this, we need to introduce the concept of the loss function, Stochastic
Gradient Descent (SGD), and backpropagation.

Loss function

A loss- or cost function C(w) measures the difference between the predicted
values ŷi and the desired values yi. Mean squared error is one of the simplest
and most common loss functions given in eq. (2.35).

C(w)MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.35)

42

Stochastic gradient descent

The SGD algorithm used to optimize the loss function is a standard iterative
scheme. This algorithm uses an estimate of the loss function gradient to
update the weights in the network. The resulting iterative update scheme is
seen in eq. (2.36).

wi = wi−1 −
η

n

n∑
i=1

∇Ci(w) (2.36)

In this formula, the n states the number of samples passed through the
network and η the learning rate. In order to calculate the gradient, a common
concept of backpropagation is utilized. An extension to this method is to
add a momentum term α∆w. In this term, the α is a decay factor between
zero and one that determines the contribution of the ∆w term to the new
weights. This ∆w term is determined through a linear combination of the
previous update and the gradient.

Backpropagation

Backpropagation computes the gradient used to optimize the loss function
with respect to the weights efficiently. This is achieved by utilizing the chain
rule to calculate the gradient of the weights one layer at a time, starting
from the last layer. By iterating backward through the layers, intermediate
computations and redundant computations are avoided.

2.9.3 Hyperparameters

Hyperparameters refer to the parameters that must be determined outside
the learning algorithm itself [23]. These parameters must be chosen care-
fully, as they control the behavior of the learning process. Finding the most
optimal hyperparameters in deep learning is called hyperparameter opti-
mization. Conventional algorithms for this purpose are grid search, random
search, and Bayesian optimization. The simplest way of selecting these pa-
rameters is through manual search. Some important hyperparameters will
be introduced below.

Hidden layers

A neural network’s hidden layers refer to the layers between the input and
output layers. Adding hidden layers to the network generally improves the
network’s accuracy but increases computational cost as the number of pa-
rameters in the network increases.

43

Learning rate

A very important hyperparameter in deep learning is the learning rate. This
parameter ηt ∈ R in eq. (2.36) determines the step size for each update of
the model parameters by the SGD algorithm. Choosing a large step size
can cause instability in the optimization problem while choosing a small one
will result in slower convergence towards a local optimum. We are likely
to be far from the local optimum at the start of the learning process, and
large step size is therefore desirable. After some iterations, we would like
the optimizer to slow down to accurately navigate to the local optimum,
avoiding any zig-zagging instabilities. Dynamically adjusting this learning
rate is the status quo of addressing this problem. Restarting schemes such
as the function scheme restarts the learning rate whenever an increase in
the cost function is observed. In contrast, the gradient scheme utilizes a
more sophisticated scheme based on the angle between the momentum term
and the negative gradient to reset the learning rate. A popular choice for
dynamically adjusting the learning rate is cosine decay [55], which is given
by eq. (2.37).

ηt = ηimin +
1

2
(ηimax − ηimin)(1 + cos(

Tcur
Ti

π)) (2.37)

In this update scheme, Ti denotes the number of epochs to wait until
an update, while Tcur states the number of epochs since the last update.
The maximum- and the minimum learning rate is given by ηimax and ηimin
respectively.

Batch size

Updating the network parameters after passing through a single input is an
expensive operation and will considerably slow down the training process.
Minimizing the number of updates necessary is therefore important to speed
up the training process. One method to address this problem is to split the
data set into batches of constant size. Each batch will then be fed through
the network, and an update of the model parameters is executed once the
entire batch is processed. Larger batch sizes speed up the training process
but come at the cost of reducing the training’s accuracy. When multiplying
the batch size N with a factor k, the authors in [44] suggests using what they
refer to as a weird trick. This trick states that the learning rate η should be
multiplied by

√
k as seen in eq. (2.38).

η = ηprev
√
k (2.38)

44

Epoch

An epoch is when the entire data set is passed through the network once,
including backpropagation to adjust the weights. As the learning process is
iterative, there is no guarantee for the optimizer to locate a local optimum
in a single epoch. Passing the same data set through the network N times
is known as the epoch number, which has proven essential to maximize the
learning from the data set.

2.9.4 The overfitting problem

A central goal in deep learning is to develop a model that performs well on
new and unseen data, which is also known as generalization [23]. The labeled
training set is usually split into a training and validation set when training a
model. This allows us to compute an error measure on both data sets, called
training- and validation errors. Monitoring the change of these two metrics is
essential to obtain a good model. In an ideal training situation, both metrics
keep decreasing at the same rate. If the evaluation error starts diverging from
the training error, the model suffers from overfitting as illustrated in fig. 2.13.
This is when the model becomes overly dependent on the training data and
will likely fail on new unseen data. Methods to address this problem are
known as regularization techniques.

Figure 2.13: In two dimensions, the overfitted green model separates the two
classes in red and blue but is too dependent on the training data, which will
most likely fail on new unseen data. The regularized model is shown in black
and will likely perform much better. Source: https://commons.wikimedi
a.org/wiki/File:Overfitting.svg (retrieved 2020)

45

https://commons.wikimedia.org/wiki/File:Overfitting.svg
https://commons.wikimedia.org/wiki/File:Overfitting.svg

2.9.5 Regularization

Regularization is defined as any modification we make to a learning algorithm
to decrease the validation error, but not its training error. Some essential
regularization techniques will be introduced below.

Early stopping

Early stopping is the most common regularization technique, where the train-
ing process is stopped once the validation error starts diverging from the
training error. This technique is illustrated in fig. 2.14, where the blue arrow
indicates when the training process should stop to prevent overfitting.

Figure 2.14: Early stopping regularization suggests stopping the training
when the validation error starts diverging from the training error. Source:
https://towardsdatascience.com/a-practical-introduction-to-ear
ly-stopping-in-machine-learning-550ac88bc8fd (retrieved 2020)

L2 regularization

L2 regularization is a popular regularization technique known as weight de-
cay. This can be implemented by including the term Ω(w) in eq. (2.39) to
the loss function. The term α denotes the regularization rate, where a higher
rate encourages smaller weights.

Ω(w) =
α

2
||w||22 (2.39)

Batch normalization

Batch normalization refers to the method of normalizing the activations in
the network for each batch processed by the network [38]. This allows for
much higher learning rates and reduces the importance of network initializa-
tion.

46

https://towardsdatascience.com/a-practical-introduction-to-early-stopping-in-machine-learning-550ac88bc8fd
https://towardsdatascience.com/a-practical-introduction-to-early-stopping-in-machine-learning-550ac88bc8fd

Image augmentation

It is generally an accepted notion that more extensive data sets improve
the performance of deep learning models [25]. Image augmentation tech-
niques exploit this by assuming that there is more information to gather
from the original data set through augmentations [76]. This augmentation
of the data set is achieved by either image warping- or oversampling. Im-
age warping techniques perform augmentation directly on training instances
while preserving the label. Common image warping techniques are random
cropping, horizontal flipping, and color space augmentations. Oversampling
techniques adds synthetic instances to the training set, which are indepen-
dent of the original data set. This type of augmentation is typically used
when very limited or no real data is available. This is verified in [64] where
the researchers analyze the influence of increasing the amount of synthetic
data in a fixed-size training set of 13K images. By increasing the amount of
synthetic data and reducing the amount of real data, they observe a general
trend of a dramatic sacrifice in model performance.

2.9.6 Transfer learning

Transfer learning is a widely used method that reuses a model developed for
a specific task as the initial starting point for a new model on another task.
The most common transfer learning approach is to use a pre-trained model,
which is trained on an extensive data set such as COCO [51], ImageNet [73],
or Modified National Institute of Standards and Technology [49]. This model
is then fine-tuned to fit the task at hand by freezing all but the very last
layers during training.

47

2.10 Object detection

In this section, the object detection problem will be introduced, then the
general anatomy of a modern object detector will be investigated. Finally,
the EfficientDet object detector and evaluation metrics used in this thesis
are presented.

This particular section 2.10 is copied from the preliminary work
in the project thesis "Spot, a mobile four-legged asset tracking robot
in adverse weather conditions"[42]. These sections are included
due to the high relevance to this work and to gather all the details
of the pipeline in one single document, with the intent of improving
the reading flow.

2.10.1 Problem formulation

The object detection problem concerns both object localization and classifi-
cation in images and is formulated as follows [53].

Given an image, determine whether or not there are instances of objects
from predefined categories and, if present, return the spatial location and ex-
tent of each instance.

This problem is illustrated in fig. 2.15, where bounding boxes are used to
define each detected instance’s spatial location and extent. Each bounding
box is then labeled according to the predefined categories.

Figure 2.15: The general object detection problem. Pre-defined categories
are localized and classified using bounding boxes. Source: https://pjredd
ie.com/darknet/yolo/ (retrieved 2020)

48

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/

2.10.2 Modern object detector anatomy

A modern object detector based on deep learning includes three main parts,
a backbone, neck, and head, as shown in the list below, retrieved from [7].

• Input: Image, patches, Image Pyramid

• Backbones: VGG16, ResNet-50, SpineNet, EfficientNet-B0/B7, CSPRes-
NeXt50, CSPDarkNet53

• Neck:

– Additional blocks: SPP, ASPP, RFB, SAM

– Path-aggregation blocks: FPN, PAN, NAS-FPN, Fully-connected
FPN, BiFPN, ASFF, SFAM

• Heads:

– Dense prediction (one-stage): RPN, SDD, YOLO, RetinaNet,
CornetNet, CenterNet, MatrixNet, FCOS

– Spare prediction (two-stage): Faster R-CNN, R-FCN, Mask
R-CNN, RepPoints

Backbone

The backbone is a pre-trained network that extracts a general feature map
from the input image. These networks come in different sizes and differ in
speed and accuracy. VGG16 is a common backbone consisting of 16 layers,
where 13 are convolutional, and three are fully connected. This network
has much fewer parameters than ResNet-50, which has 50 layers, resulting
in higher speed at the cost of lower accuracy. EfficientNet is a family of
backbones addressing this trade-off between speed and accuracy. The B0
model serves as a baseline model with the least number of parameters and is
thus the fastest in the family. Succeeding models from B1 to B7 are scaled
using a single parameter φ, resulting in models of increasing size.

Neck

The neck includes layers between the backbone and head to collect feature
maps at different scales. This enables detections across scales and thus im-
proves the performance in detecting objects of different scales. Two stan-
dard methods to achieve this is a Feature Pyramid Network (FPN) or a
Bi-directional Feature Pyramid Network (BiFPN). FPN fuses features in a
top-down manner, as shown in fig. 2.16a. This is achieved by resizing the
lower resolution feature map and conducting a convolution between each
level’s two feature maps. BiFPN, as shown in fig. 2.16b is a top-down and

49

bottom-up approach that removes nodes with one input edge. Additional
edges are inserted between the input and output node of each level, and
finally, a bottom-up edge is added at the output node. This BiFPN neck
achieves approximately 2% higher AP score on the COCO test set [81] and
uses 12% fewer parameters than the standard FPN method.

(a) FPN (b) BiFPN

Figure 2.16: FPN and BiFPN collect feature maps at different scales. P3 to
P7 are feature maps down-sampled from the feature map provided by the
backbone. The edges show the feature maps fused at the nodes. Source: [81]
(retrieved 2020)

Head

The head is the final part of the object detector, which predicts bounding
boxes and the corresponding classes. Two-stage detection frameworks first
locate category-independent regions of interest. Features are then extracted
from these regions and sent to a category-dependent classifier to classify
the proposed regions. One-stage detectors consist of architectures that pre-
dict bounding boxes and corresponding class labels in a single feed-forward
DCNN. These methods jointly learn the important features for predicting
bounding boxes and corresponding class labels, which removes the need for
separate processing stages.

50

2.10.3 Evaluation metrics

The most popular metric for measuring an object detection model’s accuracy
is the AP metric or mean average precision (mAP) for multi-class detection
models. It is customary not to distinguish between these two in the literature
and assume the difference is clear from the context. A precision-recall curve
is a graphical alternative for visualizing the model’s accuracy. To define
these two concepts of AP and precision-recall curve, we start with defining
true positives (TP), false positives (FP), and false negatives (FN). True
positives are the number of correctly detected objects in an image. On the
other hand, false positives are the number of wrongly detected objects in an
image. False negatives are the number of objects in the image not detected.
The precision and recall metrics are then defined as shown in eq. (2.40) and
eq. (2.41) respectively.

Precision =
TP

TP + FP
(2.40)

Recall =
TP

TP + FN
(2.41)

To precisely define these metrics, the metric intersection over union (IoU),
which measures the overlap between the predicted- and the ground truth
bounding box, is defined as seen in eq. (2.42).

IoU =
Bp ∩Bgt
Bp ∪Bgt

=
area of intersection

area of union
(2.42)

IoU can then be set as a threshold to determine when we want to consider
a detection as a TP, where typical values for IoU ranges from 0.50 to 0.95. A
precision-recall curve can then be created by calculating the precision-recall
pairs for each image in the test set using the object detection model.

The area under the precision-recall curve is then defined as the average
precision, taking values from 0 to 1. A simple method for calculating this area
is using interpolation, where the precision values are sampled for N recall
values. The AP can then be calculated by summing these interpolated values
and taking the average. There exist several other methods for calculating
this metric. However, the latest research provides their results in the COCO
mAP metric only [7][81]. The COCO AP metric interpolates the precision-
recall curve with 101 points for IoU values between 0.50 and 0.95 [51]. Other
commonly used COCO metrics related to different IoU levels are AP50 and
AP75 which uses IoU=0.5 and IoU=0.75 respectively.

To provide a metric for how the detector performs on objects of different
scales, APsmall, APmedium and APlarge measures the COCO AP for objects of
different pixel sizes in the image. APsmall is used for objects with size < 322

pixels and APlarge is used for objects of size larger than > 962 pixels. The
objects which fall between these two sizes will be evaluated in APmedium.

51

Average recall (AR) is computed using the same method as AP but varies
the number of detections to consider in each image. There are three variants
used in the COCO evaluation metrics, AR1, AR10 and AR100 for 1, 10 and
100 detections respectively.

2.10.4 EfficientDet detector

The EfficientDet object detector introduced in section 1.2, is according to [81]
the current SOTA object detector. A comparison to other object detectors
is shown in fig. 2.17. The figure shows that this family of object detectors
outperforms other object detectors in precision and speed. This family of
object detectors scales the entire network using a compound scaling approach
through a single parameter φ. This results in the EfficientDet models D0-
D7x in increasing size. To fuse feature maps at different scales, a novel
BiFPN is utilized in combination with weights to learn the importance of
each scale during training.

Figure 2.17: EfficientDet models D0-D7x benchmarked on the COCO test
set compared to other detectors. Source: [81] (retrieved 2020)

Architecture

The architecture of the EfficientDet model is shown in fig. 2.18. EfficientNet
is used as the backbone for feature extraction. The feature map is then
down-scaled seven times by successive halving, resulting in feature maps
from P1 to P7 in decreasing resolution. Feature maps P3, P4, P5, P6, and
P7 are then passed to the neck consisting of multiple BiFPN layers before
a single stage Single Shot multibox Detector head predicts bounding boxes
and corresponding classes.

52

Figure 2.18: EfficientDet network architecture. Source: [81] (retrieved 2020)

Multi scale feature fusion

EfficientDet utilizes BiFPN in combination with fast normalized fusion to
add weights to the scales to achieve an efficient multi-scale feature fusion in
the neck. Adding weights to the fusion lets the network learn the importance
of the different scales. The output from a node O given input edges Ii is
then given as seen in section 2.10.4.

O =
∑
i

wi
ε+

∑
j wj

· Ii

The parameter ε = 0.0001 is added to avoid numerical instability, while
Relu is applied after each weight to ensure positive weights.

Compound scaling

A single parameter φ is proposed to uniformly scale the input image reso-
lution, backbone, neck, and head. The resulting family of object detectors
ranging from D0 to D7x is shown in table 2.1.

53

Table 2.1: Compound scaling of EfficientDet using a single parameter φ ∈
[0, 7], yielding the models in increasing size from D0 to D7x. Source: [81]
(retrieved 2020)

54

2.11 Multiple object tracking

In this section, the Multiple Object Tracking (MOT) problem will be intro-
duced, then the two main schemes and processing modes investigated. This
is followed by an introduction of MOT evaluation metrics and the Simple
Online Realtime Tracker (SORT).

2.11.1 Problem formulation

The MOT problem has been formulated differently in previous work in the
field. In [58] the authors propose the general formulation as follows:

The objective of MOT is to find the "optimal" sequential states of all the
objects, which can be generally modeled by performing Maximum a Posteriori
estimation from the conditional distribution of the sequential states given the
observations.

This formulation entails solving eq. (2.43) using different approaches,
either from a probabilistic inference- or deterministic optimization perspec-
tive. In this equation, S1:t denotes the states of all objects from time t = 1
to t = t, while O1:t denotes the observations.

Ŝ1:t = arg max
S1:t

P (S1:t|O1:t) (2.43)

2.11.2 The two main schemes

There are generally two main schemes in MOT, Detection Based Tracking
(DBT) or Detection Free Tracking (DFT). These two schemes are illustrated
in fig. 2.19, where the main difference between these two schemes is how
tracks are initiated. The former scheme-tracks are initiated by detections
from an object detector such as described in section 2.10.4 while the latter
required manual initialization of a fixed number of tracks in the first frame.

Figure 2.19: The two prominent MOT schemes with Detection Based Track-
ing to the left, and Detection Based Tracking to the right. Source: [58]
(retrieved 2021)

55

Processing mode

Additionally, it is customary to separate MOT methods into online- or offline
methods. The former is also known as sequential tracking, where tracks are
updated and produced on the fly as new frames arrive. The latter generally
has all frames available and will exploit this to process the frames jointly
in batches to estimate the final output. Hence, online tracking methods
only utilize past information up to the current frame, while offline methods
employ observations in the past and the future.

In fig. 2.20, both tracking modes are illustrated with online and offline
methods in the upper and bottom portion of the figure, respectively. The
tracked objects a, b, and c are illustrated with blue circles, while the green
arrows represent observations in the past. For offline tracking, the problem
can be split in to batches due to computational limitations.

Figure 2.20: The two MOT processing modes, with online methods on the
top, and offline methods on the bottom. Source: [58] (retrieved 2021)

2.11.3 Evaluation Metrics

As in object detection, there are many different metrics for measuring the
performance of a tracker. The most widely accepted metric is the Multi-
ple Object Tracking Accuracy (MOTA) metric which attempts to measure
the tracker’s accuracy. Two other vital metrics are Multiple Object Track-
ing Precision (MOTP) and Identity Switches (IDs). The former measures
how precisely objects are tracked utilizing bounding box IoU, and the lat-
ter counts the number of times a track switches identity. The quality of
tracks can be classified as Mostly Tracked (MT), Partially Tracked (PT),
and Mostly Lost (ML).

56

MOTA

The MOTA metric can be calculated as seen in eq. (2.44), where t is the
frame index. The terms FNt, FPt, IDst and GTt are the false negatives,
false positives, identity switches, and number of ground truths for frame t
respectively.

MOTA = 1−
∑

t(FNt + FPt + IDst)∑
tGTt

(2.44)

MOTP

The MOTP metric can be calculated as seen in eq. (2.45), where t is the
frame index and i is the track number. The terms ct, and dt,i are the
number of matches in frame t, and the IoU of target i for the assigned ground
truth. This metric formally calculates the average dissimilarity between true
positives and their corresponding ground truths. Simply put, it measures
the localization accuracy of the tracker.

MOTP =

∑
t,i dt,i∑
t ct

(2.45)

MT, PT, ML

A target is classified as MT if it is successfully tracked in over 80% of its
lifespan, ML if less than 20%, and PT otherwise. These metrics do not
account for identity switches but rather how much of a target’s trajectory is
recovered.

IDs

The IDs metric measures the number of times a reported identity of a ground
truth track changes identity. The metric is incremented if a ground truth
target i has formerly been associated to track j, while the most recent as-
signment to i is k 6= j.

2.11.4 Simple Online Realtime Tracking

SORT is a simple online DBT approach utilizing only the rudimental tech-
nique of Kalman Filtering for estimation and the Hungarian algorithm for as-
signment of detections to tracks. At the time of the publication of this paper
in 2017, the SORT algorithm achieved SOTA results on the MOT2015 [48]
benchmarking data set. Despite being outcompeted by newer algorithms uti-
lizing techniques of deep learning, SORT is still ranked 31 on the MOT2020
challenge1. For the remainder of this subsection, the model estimation using

1https://motchallenge.net/results/MOT20/

57

https://motchallenge.net/results/MOT20/

Kalman Filter (KF), the data association using the Hungarian Algorithm
and the creation and deletion of tracks is presented.

The Kalman Filter

For model estimation, SORT utilizes a discrete-time KF which solves the
MAP problem in eq. (2.43) in a probabilistic inference manner using a two-
step iterative process, consisting of a prediction step, followed by an update
step. The filtering problem can be modeled as seen in eq. (2.46) following
the conventions of [87]. In this system, A, B and H denotes the transition-,
input and observation model, respectively. The first carries the dynamics of
the state variable xk while the second defines how the input uk influences
the states, and the third defines which variables are observed.

xk+1 = Axk + Buk + wk

zk = Hxk + vk
(2.46)

The random variableswk and vk represent the process- and measurement
noise, respectively. These are assumed to be uncorrelated, zero-meaned, and
normally distributed as seen in eq. (2.47).

wk ∼ N (0,Q)

vk ∼ N (0,R)
(2.47)

Using this developed model, we can apply the general two-step iterative
KF correction and prediction scheme as seen in fig. 2.21 to estimate X̂k at
the current time t = k.

Figure 2.21: The general KF scheme: 1. The Kalman filter gain Kk is
computed and used to update the current estimate of Xk and the error
covariance matrix Pk. 2. The state estimated X̂k is projected ahead using
the state dynamics. Finally, the error covariance is projected ahead. Source:
[87] (retrieved 2021)

58

Bounding box prediction

The KF in SORT is used to predict bounding boxes from one frame to the
next frame utilizing the general linear constant velocity model x = x0 + v∆t
for the states of a bounding box as seen in eq. (2.48). The states uk, vk are
the coordinates of the center, sk the area, and rk the aspect ratio of the
bounding box.

xk =
[
uk vk sk rk u̇k v̇k ṡk

]
(2.48)

The linear constant velocity model yields the transition model F while
the bounding box detections yield the observation model as both seen in
eq. (2.49). The input uk to the system is omitted.

A =

1 0 0 0 ∆t 0 0
0 1 0 0 0 ∆t 0
0 0 1 0 0 0 ∆t
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

, H =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

 (2.49)

The covariance matrices Q and R are chosen as the identity matrix,
where higher uncertainty is put on the states sk, rk, u̇k, v̇k and ṡk by a factor
of 10, 10, 10, 10 and 100 respectively. For the process error covariance matrix
P, the matrix is initialized as identify, with an increased uncertainty by a
factor of 1000 for the initial velocities u̇k, v̇k and ṡk.

The Hungarian method

The Hungarian method as introduced in [47] tries to solve the following as-
signment problem:

Assuming that numerical scores are available for the performance of each
n persons of n jobs, the "assignment problem" is the quest for an assignment
of persons to jobs so that the sum of the n scores so obtained is as large as
possible.

A naive approach to solve this problem is to compute the n! scores, but
this is very inefficient for large-scale problems of large n. The Hungarian
method solves this problem in polynomial time. This is achieved by first
creating a qualification matrix Q where each entry (i,j) in the matrix cor-
responds to the cost of assigning a person in row i to the job at column

59

j. Then through sequential steps working on this matrix, it can find the
optimal assignment.

Assigning detections to tracks

To assign detections to existing tracks, a qualification matrix Q is computed
as the IoU between all the detections and all predicted bounding boxes for
each track. This is solved by utilizing the Hungarian Method where as-
signments with IoU less than IOUmin are rejected. Assigned detections are
treated as updates through the observation model in the KF of the assigned
tracks.

Creation and deletion of tracks

Detections with an IoU to existing tracks less than IOUmin are assigned
to new tracks where the initial velocity of the track is set to zero. If the
new track has not been associated with a new detection within Tmin frames,
the track is terminated to prevent tracking of false positives. Additionally,
tracks are terminated if no detection is associated with the track within Tlost
frames.

60

2.12 Fiducial detection

Fiducials are artificially created landmarks designed to be easily recognizable
and distinguishable from another. By encoding information in a bit-like
fashion as seen in fig. 2.22, vision algorithms can extract useful information
such as the identity and the pose of the tag relative to the camera. A popular
algorithm for the detection of AprilTag markers is the AprilTag detector.

Figure 2.22: Four common fiducial markers. The AprilTag marker is used
in the AprilTag detection system. Source: https://en.wikipedia.org/w
iki/Fiducial_marker (retrieved 2021)

2.12.1 The AprilTag detector

The AprilTag detector is composed of several phases to localize and identify
AprilTags in an image. The first phase is to construct line segments based on
the gradient calculation at each pixel. These gradients are clustered based
on the gradient magnitude and direction and then used in a regular least
squares approach to fit connected components into line segments. Once the
line segments have been constructed, the next phase is to join line segments
into four-sided quads. This is achieved by a recursive depth-first-search with
a depth of four. Each level in the search tree adds a line, where all lines
are considered for the first depth entry. For the remaining depths, only
close enough line segments to where the last segment ended are considered,
obeying a counter-clockwise order. Once four connected lines are found, a

61

https://en.wikipedia.org/wiki/Fiducial_marker
https://en.wikipedia.org/wiki/Fiducial_marker

quad candidate has been detected [65].
The third phase involves the estimation of the tag pose relative to the

camera. First, the homography, which estimates the projection of points in
the tag’s coordinate system to the camera coordinate system, is estimated
utilizing DLT. This homography matrix H can be written as the product of
an unknown scale factor s, the camera matrix P, and the truncated extrinsic
matrix E as seen in eq. (2.50). This truncated extrinsic matrix results from
setting z = 0 for the planar surface in the tag’s coordinate system. In order
to estimate the homography, the physical tag size is required.

H =

h00 h01 h02
h10 h11 h12
h20 h21 h22

 = s

fx 0 0 0
0 fy 0 0
0 0 1 0

︸ ︷︷ ︸

P

R00 R01 Tx
R10 R11 Ty
R20 R21 Tz
0 0 1

︸ ︷︷ ︸

E

(2.50)

The entries of H can be used to solve for Rij and Tx, Ty, Tz as seen in
eq. (2.51), as the scale factor can be recovered by utilizing that the columns
of the rotation matrix must have unit magnitude. First, the magnitude of s
is calculated as the geometric average of the first two columns. The sign is
determined by requiring that the tag should be in front of the camera, such
that Tz ≥ 0. The third and final column of the rotation matrix is determined
by the cross product of the two first columns as these must be orthonormal.

h00 = sR00fx

h01 = sR01fx

h02 = sTxfx
...

(2.51)

The final phase is to determine the tag’s identity by a payload decoding
scheme. This is achieved by computation of the tag-relative coordinates for
each bit in the tag, and then they are transformed to the image coordinate
system utilizing the estimated homography. The resulting pixels are thresh-
olded using two spatially-varying models for black and white pixels. These
models are learned from the border of the tag, which contains known exam-
ples of white and black pixels. The resulting thresholded image bits can then
be used to determine the tag’s identity by the use of a modified lexicode.
This lexicode is parameterized by the number of n bits in the code-words
and the minimum distance d between any two words. The commonly used
36h10 tag has a 36-bit encoding with a minimum Hamming distance of 10.

62

Chapter 3

Methods

This chapter aims to establish the methodical approach used to obtain the
results. Section 3.1 describes the container asset and assumptions made
regarding the asset. The robotic Spot platform utilized in this work is briefly
introduced in section 3.2, followed by section 3.3 which presents the gathered
data set and the labeling process. Finally, the proposed novel visual asset
tracking pipeline is introduced in section 3.4.

3.1 Asset description

Following the preliminary work in the project thesis, the asset of interest in
this work is shipping containers. Two examples of such assets are showcased
in fig. 3.1, where important attributes of the asset are presented below.

Geometrical shape

The geometrical shape of the container is a cuboid with dimensions width×
height × length. These dimensions differ as there are a variety of different
standards used. The most common dimensions used are a width of approx-
imately 2.44 m, height of either 2.59 m or 2.90 m, and lengths typically
ranging from 6.10 m to 12.19 m.

Color

Shipping containers come in a wide variety of colors, and no assumption is
thus made on the color of the containers.

Static

All shipping containers are assumed to be static during the pipeline process-
ing. This minimizes the effect of motion blur and simplifies the analysis.

63

Occlusions

A common problem at industrial sites such as Kvaerner Stord is the presence
of object occlusions. An example of such occlusion is shown in the image
below, where a red box partially occludes the blue container. Different and
more severe occlusions are also typical, and thus there will be no assumptions
made regarding occlusions in this work.

Figure 3.1: Two shipping containers found at Kvaerner Stord

3.2 The Spot platform

The robotic platform used in this work is the four-legged Spot robot from
Boston Dynamics1. The robotic platform is ready to operate, right out of the
box, where the platform can be extended by utilizing payloads. In fig. 3.2,
the Spot platform used in this work is showcased with the Spot Cam+, and
Spot CORE payloads equipped.

3.2.1 Spot CAM+

The SpotCAM+ payload, as seen in fig. 3.3 features a Pan-Tilt-Zoom (PTZ)
camera on the top and a 360 ring camera on the bottom, where the latter is
composed of five RGB fisheye cameras. The 360 ring camera is the primary
sensor used, while the PTZ camera is not used in this work. Each camera in
the ring has a resolution of 1080× 1920.

3.2.2 Spot CORE

The Spot CORE payload provides developers with an additional processor
to run code locally on the robot. This payload comes with an Ubuntu 18.04

1https://www.bostondynamics.com/products/spot

64

https://www.bostondynamics.com/products/spot

Figure 3.2: The Spot robotic platform was used in this work. The
SpotCAM+ payload on the front and the SpotCORE on the robot’s rear.

Figure 3.3: The SpotCAM+ payload features a PTZ camera on the top and
a set of 5 fisheye ring cameras on the bottom. Source: https://shop.bos
tondynamics.com/spot-cam-ptz?cclcl=en_US (retrieved 2021)

operating system and is connected to the internals of the robot by Ethernet.
Programming the robot is achieved by using the Spot Software Development
Kit (SDK)2.

2https://github.com/boston-dynamics/spot-sdk

65

https://shop.bostondynamics.com/spot-cam-ptz?cclcl=en_US
https://shop.bostondynamics.com/spot-cam-ptz?cclcl=en_US
https://github.com/boston-dynamics/spot-sdk

Figure 3.4: The SpotCORE payload features an additional processor which
comes with an Ubuntu 18.04 OS. Source: https://shop.bostondynamics.
com/spot-core?cclcl=en_US (retrieved 2021)

3.2.3 Spot missions

An essential concept when using Spot is the recording and execution of mis-
sions. The recording of a mission is achieved by manually controlling the
robot using the Spot Tablet through the desired route while adding actions
along the way. Examples of such actions are gauge readings or 360 scans. In
the end, the mission can be saved to execute this specific mission at a later
time. Throughout the mission, the robot navigates the scene by utilizing
visual information and robot kinematics. An AprilTag at the start location
is required where additional tags are recommended for better visual naviga-
tion within the estimated map of the scene. Unfortunately, there is limited
information on the inner workings of the navigation system, but this is at
least a brief summary of what the documentation reveals.

3.2.4 Spot frames

Spot has two inertial frames, odom and vision. The former is a fixed location
in the world that is determined by using the kinematics of the robot. The
latter also utilizes visual analysis of the world to determine this fixed point.
The visual inertial frame will be used in this work as it provides a "better"
and more accurate navigation in the world, according to Boston Dynamics.

Figure 3.5 shows the configuration of the Spot body frame. This frame
follows the robot as it is fixed in the robot’s center of gravity. The internal
state estimation of the robot estimates the relative transform Tinertial,body

which we will refer to as the pose of the robot.

66

https://shop.bostondynamics.com/spot-core?cclcl=en_US
https://shop.bostondynamics.com/spot-core?cclcl=en_US

In order to triangulate points in the inertial frame, the relative transforms
Tbody,c0, .., and Tbody,c4 are required. These are acquired through the Spot
SDK and visualized in fig. 3.6.

Figure 3.5: The Spot body frame. Source: https://dev.bostondynamics
.com/docs/concepts/geometry_and_frames (retrieved 2021)

X

0.0
0.1

0.2
0.3

0.4
0.5

Y
0.2

0.1
0.0

0.1
0.2

Z

0.0
0.1
0.2
0.3
0.4
0.5

c1

c0
c3

body

c2

c4

Figure 3.6: The configuration of the five ring camera frames c0, c1, c2, c3,
and c4 relative to the Spot body frame.

67

https://dev.bostondynamics.com/docs/concepts/geometry_and_frames
https://dev.bostondynamics.com/docs/concepts/geometry_and_frames

3.3 The data set

In this section, the developed data set in this work is introduced. This
data set is composed of two parts, the first being the images used for the
development of the container detector, while the second consists of two videos
which is used for testing and evaluation of the asset tracking pipeline.

3.3.1 Data gathering

The location of the data gathering in this work was at the H3 arena in
Fornebu. This industrial location was chosen as it was close to the Cognite
offices and had several containers in the area. In total, two gatherings were
performed. The first in sunny conditions and the last in overcast condi-
tions. A simple route mimicking what an autonomous inspection might look
like was constructed. This route contained no loops and as little rotational
movement as possible, making the robot primarily move in forward motion.

First, AprilTags were set up both along the chosen route and on contain-
ers. The non-container tags are used to aid the robot navigation, where the
tags on the containers will also aid the robot, but more importantly, function
as ground truths for the Identification (ID) and location of the containers in
the analysis. The containers which were mounted with tags were the first
blue (B1), the first red (R1), the second blue (B2), and the final yellow con-
tainer (Y1). The gray (G1) container was not equipped with a tag. The
respective AprilTag IDs for sunny conditions were 1, 2, 8, and 10, and for
overcast conditions 1, 3, 4, and 18.

Then a mission without actions was recorded by manually walking the
robot through the route using the Spot Tablet. A new mission had to be
created for the overcast conditions, as the AprilTags had to be removed
between the gatherings. As the mission was replayed, a custom-made data
gathering script running on the Spot CORE logged and synchronized the
360 images, and the robot poses at a maximum frame rate of 1.7 FPS. The
resulting robot trajectory for the sunny weather video is showcased in blue
in fig. 3.7, where the robot starts at the orange triangle. The irregular gaps
between the trajectory data points are due to the failure to acquire log-points
from the SpotCAM+. This logging of robot poses and log-points from the
camera and the acquisition of the intrinsic parameters of the ring cameras
was achieved using the Spot SDK.

Figure 3.8 and fig. 3.9 show five frames from each gathered video for
sunny and overcast weather, respectively, where the B1, R1, G1, B2, and
Y1 container is shown. Each row in the images corresponds to frame 0, 10,
20, 30, and 40. The recorded robot trajectory is visualized as red circles by
projecting the trajectory onto c2.

68

10 5 0
Y [m]

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

X
[m

]
Positions in inertial frame

Robot trajectory

Figure 3.7: The robot trajectory in sunny conditions. The robot starts at
the orange triangle and continues on the blue trajectory. Notice the irregular
gaps between the data points.

69

Figure 3.8: Frame 0, 10, 20, 30, and 40 of the sunny condition’s video. The
red circles showcase the robot’s trajectory. The B1 and R1 containers are
visible in the first frame, while G1, B2, and Y1 are visible in the fourth
frame.

70

Figure 3.9: Frame 0, 10, 20, 30, and 40 of the overcast condition’s video.
The red circles showcase the robot’s trajectory. The B1 and R1 containers
are visible in the first frame, while G1, B2, and Y1 are visible in the fifth
frame.

71

3.3.2 Data set annotation

During the data gathering process, in total, nine videos were recorded. Two
of those, one for each weather condition, have been chosen to test and val-
idate the visual asset tracking pipeline. The remaining seven videos have
been sampled for images to extend the container detection data set. This
was done as the detector developed in the project thesis did not generalize
to the new image data. This might be due to the aspect ratio of the iPhone
X images being 4:3, while the aspect ratio of the ring cameras is 9:16. This
is a common problem in object detection, where models tend to generalize
poorly to different aspect ratios.

The annotation tool chosen for labeling the images and videos in this work
is the computer vision annotation tool3. This was found to be a satisfactory
annotation tool in the project thesis, supporting both the PASCAL VOC
and MOT4 format for the images and videos, respectively.

The VOC annotation guidelines were used to label both the images and
videos. These guidelines are summarized below:

• What to label: All objects of the predefined categories, unless:

– you are not sure what the object is

– the object is very small

– less than 20% of the object is observable, such that it is not ob-
vious what the object is

• Bounding box: Draw a bounding box around the visible area of the
object, not the estimated area.

• Occlusion: If more than 5% of the area of the object is covered by
another object, mark it as occluded.

Images

The images are used to train, evaluate, and test the container detector. A
split of 80−10−10 has been chosen for the training, evaluation, and test set,
respectively, as this was found to be a commonly used split in the project
thesis. The seven videos that were not used for testing and evaluation of the
pipeline were sampled to extend this data set. This was achieved by sampling
every tenth frame in each video, where images without any containers were
discarded. This resulted in an additional 187 images labeled in PASCAL
VOC format.

3https://github.com/openvinotoolkit/cvat
4https://motchallenge.net/instructions/

72

https://github.com/openvinotoolkit/cvat
https://motchallenge.net/instructions/

Videos

The two chosen videos are not sampled for images and are solely used to test
and evaluate the asset tracking pipeline. The video in sunny conditions is
composed of 59 frames, while the video in overcast conditions has 61 frames,
where five frames from each video are showcased in fig. 3.8 and fig. 3.9. This
results in a total of 295 and 305 images for the respective conditions, which
have been labeled according to the MOT format.

3.3.3 Summary

The resulting data set can be summarized as follows:

Images

The detection data is labeled in PASCAL VOC format, and a split of 80 −
10− 10 has been chosen for the train, evaluation, and test set, respectively.

• Train set size: 466

– 145 ring camera images

– 321 iPhone X images

• Evaluation set size: 59

– 22 ring camera images

– 37 iPhone X images

• Test set size: 59

– 20 ring camera images

– 39 iPhone X images

Videos

The two videos have been labeled in MOT format and are used solely to test
and evaluate the asset tracking pipeline. Both videos are synchronized with
the recorded robot poses.

• Sunny conditions

– weather: Sunny

– Number of frames: 59

– Number of robot poses: 59

– Number of images: 295

– AprilTags IDs visible: 1, 2, 4, 6, 8, 10

73

– AprilTags IDs on containers: 1, 2, 8, 10

– Ring camera intrinsic parameters

• Overcast conditions

– weather: Overcast

– Number of frames: 61

– Number of robot poses: 61

– Number of images: 305

– AprilTags IDs visible: 1, 3, 4, 10, 14, 16, 18

– AprilTags IDs on containers: 1, 3, 4, 18

– Ring camera intrinsic parameters

74

3.4 The pipeline

The proposed novel visual asset tracking pipeline is shown in fig. 3.10. The
input to the pipeline is the 360 ring camera frames from the SpotCAM+.
These images are first undistorted using the retrieved camera intrinsic pa-
rameters. Then the container detector detects containers in all the images.
These detections are provided to the container tracker, generating separate
tracks for each of the five cameras. A fiducial detector is then run within the
track bounding boxes to determine the tracked container’s ID. The remain-
ing non-identified containers will be localized by creating separate container
models for each track. This is achieved by first extracting interest points
inside the interior of the bounding box tracks, followed by matching across
three consecutive frames. Initial reconstruction of a container point cloud
is constructed before being optimized to reduce reprojection errors. The
optimized point clouds are then fit to spherical models using RANSAC. As
several models for the same container might exist, a final merging of con-
tainer models is performed at the end. The location and potential ID and
the number of containers can then be determined and uploaded to the cloud.
These steps will be explained further in the following subsections.

Detections
Container
detector

Update tracked
container

 location &
ID

Yes

TriangulationFit to container
models

Fiducial
detector

Object tracker

All images
processed?

No

Yes

Extract features
from track

bounding boxes

No

Undistort
images

Feature
matchingOptimization

Detection?

Merge
overlapping

models

Tracks

360 images

Figure 3.10: The novel visual asset tracking pipeline.

75

3.4.1 Undistortion of images

In fig. 3.11 the view from the five fisheye cameras which forms the 360-view
is showcased. These fisheye cameras suffer from extreme radial distortion.
Both the radial- and tangential distortion is removed by using the techniques
of undistortion introduced in section 2.3.2. The resulting undistortion as
seen in fig. 3.12 has been achieved by utilizing the OpenCV function fish-
eye.undistortImage().

Figure 3.11: The view of the five fisheye cameras. Notice the severe radial
distortion effect in the images.

Figure 3.12: The view after undistortion of the five cameras.

76

3.4.2 Detection of containers

The detection of containers in the undistorted images is accomplished by
utilizing the EfficientDet-D1 detector. The developed model in the project
thesis did not generalize to the new image data and thus had to be retrained
using the additional data as described in section 3.3.

Training and evaluation

Following the conventions of the project thesis, a pre-trained EfficientDet-
D1 model was retrieved from the TensorFlow object detection model zoo5.
Smooth L1- and Focal loss is used for localization- and classification loss, re-
spectively, with equal weighting between the two. For optimization, the SGD
with a momentum term of α = 0.9 was used, where a batch size of 2 was used
due to memory limitations. The learning rate was chosen as 0.000999 and
annealed down using cosine decay. Batch- and L2 normalization was used to
reduce the effect of overfitting. During training, the image augmentations
utilized were random horizontal flip, random scale, crop and pad to square,
and random cutout. This combination of augmentations in the preliminary
work resulted in the highest AP and AR metrics for the validation set.

In fig. 3.13 the training of the new EfficentDet-D1 container detector is
shown. The evaluation metrics AP and AR are shown in 3.13a and 3.13b,
while the classification- and localization losses are shown in 3.13c and 3.13d,
respectively. The final model was exported at 716 epochs, as this was the
point in the training process which resulted in the highest AP and AR scores
and the lowest classification- and localization evaluation losses.

5https://github.com/tensorflow/models/blob/master/research/object_detecti
on/g3doc/tf2_detection_zoo.md

77

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

0 100 200 300 400 500 600 700

Epoch

0

0.2

0.4

0.6

0.8

1

A
P

(a) AP on the validation set

0 100 200 300 400 500 600 700

Epoch

0

0.2

0.4

0.6

0.8

1

A
R

(b) AR on the validation set

0 100 200 300 400 500 600 700

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
la

s
s
if
ic

a
ti
o
n
 l
o
s
s

(c) Classification loss

0 100 200 300 400 500 600 700

Epoch

0

0.02

0.04

0.06

0.08

0.1

L
o

c
a

liz
a

ti
o

n
 l
o

s
s

(d) Localization loss

Figure 3.13: The training of the new EfficientDet-D1 model where the AP,
AR, classification- and localization losses are plotted against the epoch num-
ber.

Detections

In fig. 3.14 below, four detections are shown with the confidence scores in the
upper right corner of the respective bounding boxes. The output bounding
boxes from the detector are scaled from the model resolution 640 × 640 to
the original resolution of the images before down-scaling. All detections with
confidence scores below 0.30 are discarded.

Figure 3.14: Four detections with confidence scores of 1.0, 0.41, 0.96, and
0.78 for the bounding boxes left to right in the five cameras.

78

3.4.3 Tracking of containers

The tracking of containers in the five cameras is accomplished by utilizing the
tracking by detection algorithm SORT6. Each camera is processed separately,
generating and sustaining tracks using the corresponding bounding boxes
from the detector. Thus the tracking in each camera has no knowledge of
the tracking in the other cameras. Extending this to track across all the
cameras is discussed briefly in chapter 4.

Using SORT is highly motivated by the fact that this algorithm is very
simple, yet provides an elegant solution to the tracking problem by utilizing
the rudimentary techniques of Kalman Filtering and Hungarian Algorithm.
In addition to being very simple, according to the MOT2020 challenge bench-
mark statistics7, SORT is, at the best of my knowledge, the best performing
algorithm which is open-sourced, not learning-based, and considered a track-
ing by detection approach. The first and second criteria are important due
to this project’s time limit, while the third criteria is a consequence of the
continuation of the preliminary work.

The hyperparameters are the same parameters as the authors, except
increasing the maximum number of frames to keep a track alive without
detections from Tlost = 1 to Tlost = 3. This was found by manually tuning
to yield higher MOT metric scores during implementation. The remaining
default hyperparameters are IoUmin = 0.30 and Tmin = 3.

Tracks

In fig. 3.15, the first, fifth, and tenth frame is shown with the generated
tracks using SORT. The identity of the tracked bounding boxes is displayed
in the upper right corner of the respective boxes. From the figure, IDs are
carried across frames for each camera, but the IDs are not carried across
cameras.

6https://github.com/abewley/sort
7https://motchallenge.net/results/MOT20/

79

https://github.com/abewley/sort
https://motchallenge.net/results/MOT20/

Figure 3.15: Five unique tracks for the first, fifth and tenth frame in a video
sequence. Track IDs are found in the top right corner of the bounding boxes.

3.4.4 Identification of containers

The identification of containers is achieved by utilizing AprilTags of the
tag36h11 family, and the AprilTag 3-detector8. As these tags are commonly
used for navigation and other tasks, only detections inside bounding boxes
are kept. This is to ensure that the tag is correctly associated with a con-
tainer.

The primary motivation for using AprilTags for identification is that the
Spot platform is already dependent on these tags to operate autonomously.
By using the same system for the identification of containers, the number of

8https://github.com/AprilRobotics/apriltag

80

https://github.com/AprilRobotics/apriltag

fiducials in the scene increases. This will most likely have the advantageous
side-effect of increased quality of the robot pose estimation. In addition to
providing a unique ID for each container, the tag also yields the tag’s position
relative to the camera. These detections will therefore also serve as ground
truths in locating containers in the pipeline.

Detections

Two detections are shown in fig. 3.16, which yields the spatial location in the
image, the ID, and the relative pose of the AprilTag relative to the camera
of which the detection was made. This relative pose can be transformed to
the inertial frame as seen in eq. (3.1) to yield the pose of the tag relative to
the inertial frame.

Tinertial, apriltag = Tinertial, bodyTbody, cameraTcamera, apriltag (3.1)

An essential element in acquiring an accurate pose estimate is that the
physical size of the tag is known. The printed tags were measured to have a
size of 0.167m and updated accordingly in the software.

Figure 3.16: Two AprilTag fiducials are detected and visualized using green
bounding boxes. Both detections are in the second camera for two consecu-
tive frames.

81

3.4.5 Reconstruction of container models

The following section describes the 3D Euclidean reconstruction of the tracked
containers. This reconstruction processes each track separately, where SIFT
is applied to all bounding boxes in the track for feature extraction and de-
scription. This is followed by an initial matching between every three consec-
utive frames in the video. The epipolar constraint and the estimation of two
homographies, one for each side of the container, are utilized to ensure good
matches. A three-view reconstruction of the tracked container is achieved
by an initial triangulation followed by a final refining bundle adjustment.
Finally, container models are estimated and merged using RANSAC. Note
that only two views are used to illustrate the feature detection and matching.

Feature extraction

The first step in the reconstruction process is to extract and describe the
interior features of bounding boxes. The SIFT feature detector is chosen for
this purpose as the research suggests that this detector should work best as
there is no computational limit. In fig. 3.17 this process is shown, where
SIFT features are shown in red and the bounding box in green.

Figure 3.17: A SIFT detector is run on the image to the left. Only the
features within the green bounding box in the image to the left are kept for
further processing, as shown in the right image.

82

Feature matching

The second step is to match features between frames to find correspondences
for the structure computation. First, each descriptor is compared to all the
other descriptors in the set using brute force. The two closest matches for
each descriptor are then evaluated against each other using the ratio test to
determine the final match for each descriptor, where an NNDR ratio of 0.80
was utilized based on section 2.4.3. The choice of brute force is motivated by
no computational limit, and brute force will generally yield the best initial
set of matches.

In fig. 3.18 an initial set of matches between two frames is showcased.
From the image, it is evident that there are quite a few bad matches that
we need to remove in order to achieve a good reconstruction. These poor
matches can be explained by the feature detector describing the features in
a local manner, and thus global consistency is not guaranteed.

Figure 3.18: The brute force matching approach combined with the NNDR
ratio test yields the following initial matches for two consecutive frames.
Notice the evident mismatches.

Epipolar constraint filtering

The epipolar geometry between two views has the important property that
given the fundamental matrix, a point in the first view should lie on the
corresponding line in the second view as shown in eq. (2.32). However, this
epipolar constraint will rarely be satisfied, as there is noise and uncertainties
in the point correspondences, camera intrinsic parameters, and the motion
between the two frames. Thus the best we can do is to check that each point
lies within a neighborhood of the epipolar line. This neighborhood is chosen
as 5 pixels, where the distance to the line is calculated using eq. (3.2).

d(ax+ by + c = 0, (x0, y0)) =
|ax0 + by0 + c|√

a2 + b2
(3.2)

83

In fig. 3.19 the upper image shows the epipolar lines for the point corre-
spondences. After removing epipolar constraint violations, we end up with
the matches shown in the bottom image. Notice how there still are mis-
matches that need to be removed.

Figure 3.19: The upper image shows the epipolar lines of the correspon-
dences. The bottom image shows the epipolar lines after the removal of
constraint violations.

Homography filtering

By estimating two homographies between the two views, one for each visible
side, correspondences are validated by checking that the reprojection error
is below some threshold. This threshold is set to three pixels, lower than the
epipolar filtering threshold. The estimation is performed inside a RANSAC
scheme, where each homography is iteratively estimated by randomly using
4 point correspondences in each iteration. In fig. 3.20 the correspondences
from the epipolar filtering, which also satisfies the estimated homographies
are visualized. There are no remaining evident mismatches that need to be
filtered out. This estimation has been carried out by utilizing the OpenCV
function findHomography().

84

Figure 3.20: The final matches after homography filtering. There are no
evident mismatches in these two images.

Point cloud generation of tracks

For each track, all matches across three consecutive frames in the track are
triangulated using DLT to yield an initial reconstruction of the tracked con-
tainer. This linear triangulation often provides good results with acceptable
reprojection errors but will occasionally fail and produce poor estimates of
the 3D points. Therefore, a refining SOBA was implemented to perform
a nonlinear least-squares optimization of the reprojection errors. This op-
timization was carried out by utilizing the SciPy function least_squares()9

part of the optimize library. The Levenberg Marquardt method was chosen
to perform the optimization, as this is the standard optimizer for BA tasks.
The resulting track point clouds for sunny conditions, using ground truth
tracks, are visualized in fig. 3.21. The robot trajectory is shown in blue in
this plot and starts at the orange triangle. The detected AprilTags are vi-
sualized as squares and the point clouds as circles of different colors. From
this plot, it is clear that there are quite a few outliers and overlapping point
clouds.

9https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leas
t_squares.html

85

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

20 15 10 5 0
Y [m]

20

15

10

5

0

X
[m

]

Positions in inertial frame
Robot trajectory
Track id: 1
Track id: 2
Track id: 3
Track id: 4
Track id: 5
Track id: 6
Track id: 7
Track id: 8
Track id: 9
Track id: 10
Track id: 11
Track id: 12
AprilTag id: 1
AprilTag id: 2

Figure 3.21: The resulting track point clouds in sunny conditions using
ground truth tracks. The robot trajectory is shown in blue, starting at
the orange triangle and displaying AprilTags as squares.

Reducing the reconstruction uncertainty

A two-view reconstruction of a point for three different configurations is
shown in fig. 3.22. The shaded region in each case illustrates the uncer-
tainty of the estimated 3D point. The angle which forms between these rays
is known as the parallax, and an increasing parallax generally reduces the
uncertainty. In the case of forward motion, as seen in the right image, the
uncertainty of reconstruction increases. This parallax can easily be deter-
mined using the dot product between the rays and solving for the angle.
Another concept to address this problem is by utilizing a large enough effec-
tive baseline, which is the distance along the camera Y axis from the first
frame to the second frame.

The 1:30 rule is a proposed method to calculate the baseline for a specific
3D depth. For a 3D point located 12 meters from the camera, the suggested
required baseline is 0.40m. This baseline is used as the effective baseline
for the three views. Then a minimum parallax of 5 degrees is imposed on
the estimated 3D points. This parallax value is inspired by ORB-SLAM310,
where they utilize a minimum parallax of 1.15 degrees.

10https://github.com/UZ-SLAMLab/ORB_SLAM3

86

https://github.com/UZ-SLAMLab/ORB_SLAM3

Figure 3.22: The angle between the rays determines the uncertainty region
shaded in gray for the estimated point. A larger angle reduces the uncer-
tainty. Source: [28] p. 321 (retrieved 2021)

Estimation of container models

The container models are robustly estimated using RANSAC, fitting each
point cloud track to spherical models given by eq. (3.3). This simplification,
approximating the container cuboids into spheres, is highly motivated by
spherical models being simpler to estimate and apply. A preciser approach
would have been to estimate cuboid models instead. However, this is out of
the scope of this thesis, as both the estimation process and working with the
model are substantially more tedious. This is discussed in chapter 4.

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2 (3.3)

A maximum radius of 1.8 m is imposed, which was determined by uti-
lizing Pythagoras’s theorem and the width and height of the container. A
minimum radius of 1.0 m was imposed to neglect questionable point clouds
that can be triangulated container occlusions such as cars, scaffolding, or
pallets.

The resulting inliers of the estimated spherical models are shown in
fig. 3.23. This plot shows that outliers are removed, and some track point
clouds are overlapping. Spherical models with fever than 20 inliers are dis-
carded.

87

20 15 10 5 0
Y [m]

15

10

5

0

X
[m

]

Positions in inertial frame
Robot trajectory
Track id: 4
Track id: 5
Track id: 8
Track id: 9
Track id: 11
Track id: 12
AprilTag id: 1
AprilTag id: 2

Figure 3.23: The resulting model inliers in sunny conditions using ground
truth tracks. Notice how outliers are removed, some models overlap, and
models with too few inliers are discarded.

3.4.6 Merging of container models

A consequence of creating a container model for each track is that there
will be several models of the same container. Thus it would be favorable to
merge all these into one single model. By utilizing the estimated container
models, two models intersect if the sum of the two model radii is larger
than the distance between the centers. Merging models based solely on if
the models are intersecting is naive. An addition to this is to compute the
intersection volume and determine the factor of which this volume makes up
for the smallest model volume. If this factor is greater than some threshold,
we merge the two models.

In fig. 3.24a, two intersecting spheres are shown of which can be described
by the two mathematical formulas as seen in eq. (3.4). This intersection
forms two spherical caps which entails the volume of intersection VI = Vc1 +
Vc2.

(x− x1)2 + (y − y1)2 + (z − z1)2 = r21

(x− x2)2 + (y − y2)2 + (z − z2)2 = r22
(3.4)

In order to determine the volume of the caps, we transform the spheres
such that the first sphere is centered at the origin and the second sphere
above the first sphere aligned with the z-axis as seen in fig. 3.24b. This is
achieved by subtraction of the first sphere center coordinates followed by
a calculation of the distance between the centers d and moving the second
sphere center such that the center is at Z = d. The resulting transformed
models are seen in eq. (3.5).

88

x2 + y2 + z2 = r21

x2 + y2 + (z − d)2 = r22
(3.5)

(a) Two intersecting spheres (b) The desired configuration

Figure 3.24: The spheres before transformation are shown in (a), while (b)
showcases the desired transformed configuration.

The resulting geometry of the two intersecting spheres are shown in
fig. 3.25. In fig. 3.25a the intersection in the X-Z plane is showcased. The
two spherical caps are denoted as c1, c2 and the intersection height as zi.
The intersection forms a circle of radius ri in the X-Y plane as shown in
fig. 3.25b. By equating the equations in eq. (3.5) the intersection height as
shown in eq. (3.6) is determined. Inserting zi in to one of the equations in
eq. (3.5) yields ri as given in eq. (3.7).

zi =
r21 − r22 + d2

2d
(3.6)

ri =
√
r21 − z2i (3.7)

89

Z

X

(a) The intersection in the X-Z plane
with the two spherical caps c1, c2 and
the intersection height zi.

Y

X

(b) The intersection forms a circle in
the X-Y plane of radius ri.

Figure 3.25: The geometry of the two intersecting spheres in the X-Z and
X-Y planes for (a) and (b), respectively.

The resulting volume of the first spherical cap Vc1 can then be determined
by the volume integral as shown in eq. (3.8), where cylindrical coordinates
are utilized. The upper limit in the inner integral is determined by solving
the first equation in eq. (3.5) for z.

Vc1 =

∫ 2π

0

∫ ri

0

∫ √r21−r2
zi

r dz dr dθ (3.8)

The final closed-form solution to this integral is given by eq. (3.9). By
symmetry, the volume of the second spherical cap is given by eq. (3.10).

Vc1 = π

(
z3i
3
− r21

(
zi −

2r1
3

))
(3.9)

Vc2 = π

(
(d− zi)3

3
− r22

(
(d− zi)−

2r2
3

))
(3.10)

The portion P of this volume for the smallest sphere is then determined
as shown in eq. (3.11), where V1, V2 is the volumes of the two spheres.

P =
Vc1 + Vc2

min{V 1, V 2}
(3.11)

The merging of M container models follows a greedy scheme, where
model pairs with the highest calculated P are merged by utilizing RANSAC
to estimate a new spherical model. Once a model is merged, we have M − 1

90

models remaining, of which we repeat this merging procedure. The merging
terminates once there are no sphere pairs with a factor of volume intersection
for the smallest sphere, above a threshold of 0.20. This threshold was found
to be a good choice empirically by testing different thresholds.

The resulting inliers of the merged spherical models are shown in fig. 3.26.
The overlapping tracks have been merged, and the final container locations
can be determined as the center of the estimated spheres.

20 15 10 5 0
Y [m]

15

10

5

0

X
[m

]

Positions in inertial frame
Robot trajectory
Track id: 4
Track id: 5
Track id: 11
Track id: 12
AprilTag id: 1
AprilTag id: 2

Figure 3.26: The resulting merged model inliers in sunny conditions using
ground truth tracks. Notice how overlapping models are merged.

3.4.7 Final localization, identification, and counting

The last step in the pipeline is determining the final container locations,
identity, and the number of containers present in the scene. In order to
quantify the success of the pipeline, the metrics Localized Assets (LA), Lo-
calized Assets correct with respect to the Ground Truth (LAGT), Identified
Assets (IDA), and Duplicate Models (DM) are introduced. These metrics are
constructed as simple as possible to lighten the interpretation of the results.

Localization

From the estimated models of the containers, the final container locations
are determined as the center of the respective models. For sunny conditions
using ground truth tracks as seen in fig. 3.26, this results in a total of four
container locations. The LA metric is introduced to measure the fraction of
assets in the scene which is localized. The calculation of this metric is shown
in eq. (3.12), where DM are not included in the numerator. The resulting LA

91

metric for sunny conditions using ground truth tracks becomes 4
5 , as there

are a total of five containers in the scene.

LC =
number of localized assets

total number of assets in the scene
(3.12)

In order to measure the correctness of the localization of the containers,
the detected container AprilTags are utilized as ground truths. A container
is said to be correctly localized if the estimated model contains the correct
ground truth tag. The LAGT metric is then defined as seen in eq. (3.13).
The resulting LAGT metric for sunny conditions using ground truth tracks
becomes 2

2 , as there are only two detected ground truth container tags.

LCGT =
number of correctly localized assets

total number of assets with ground truth location
(3.13)

Identification

The identification of containers is achieved by the detection of container
AprilTags. The IDA metric as shown in eq. (3.14) is introduced to measure
the fraction of assets that are identified in the scene. Only assets equipped
with an AprilTag are considered in the calculation of the metric. The result-
ing LA metric for sunny conditions using ground truth tracks becomes 2

4 , as
only two out of the four containers with AprilTags are identified.

IDC =
number of identified assets

number of assets with tags in the scene
(3.14)

Counting

The counting of containers is achieved by counting the number of models
estimated, including duplicate models. In fig. 3.26 this would count to a
total of four containers. The DM metric as shown in eq. (3.15) measures the
number of duplicate models.

DM = number of duplicate models (3.15)

92

Chapter 4

Results and Discussions

This chapter will present and discuss the results from the implemented visual
asset tracking pipeline. All results presented in this chapter are primarily
based on the two videos gathered in sunny and overcast weather. Section 4.1
presents the EfficientDet-D1 detection metrics, while section 4.2 presents the
SORT tracking metrics and discusses why the tracking is better for overcast
conditions. In section 4.3, the estimated container models using both ground
truth- and generated tracks from the SORT tracker are presented. Finally, in
section 4.4 the final pipeline metrics are presented. For the remainder of this
chapter, section 4.5 discusses the reconstruction accuracy, section 4.6 the pa-
rameters and threshold in the pipeline, section 4.7 the sphere approximation,
and section 4.8 discusses object occlusions.

4.1 Container detection

The retrained container detector achieved a final test AP and AR of 69.1%
and 74.4%, respectively. In table 4.1 the metrics for sunny- and overcast
conditions are shown. These are used to summarize the 12 COCO metrics,
which are given in appendix A. The highest metric scores are given in the
bold text in this table. It is clear that the developed model performs better
for overcast weather. This might be explained by an imbalance in the data
set used during training, where approximately 70% of the images are in
overcast- or rainy weather. Despite this, the AP and AR for both conditions
are impressive.

Table 4.1: Container detection metrics

Weather AP AR AP50 APS APM APL

Sunny 0.632 0.706 0.922 - 0.149 0.660

Overcast 0.672 0.735 0.982 - 0.383 0.680

93

4.2 Container tracking

Table 4.2 shows the resulting MOT metrics for each ring camera c0, c1, c2, c3,
and c4 in sunny and overcast conditions, where the highest metrics are given
in bold. Like in the detection of containers, the tracking metrics are better
in overcast weather. The MOTP scores are quite similar, while the MOTA
scores in sunny- and overcast weather are 58.3% and 83.1%, respectively.
Additionally, the sunny conditions have ten identity switches, while there is
only one identity switch in overcast conditions. These notable differences
can be partially explained by that SORT is a DBT approach, where the
detections in sunny conditions were worse than in overcast conditions. This
is a known drawback of tracking-by-detection trackers, where the tracking
quality is heavily dependent on the quality of the detections.

Despite the large difference in the MOTA score and IDs for sunny and
overcast weather, the containers are generally mostly tracked or partially
tracked. This is reflected in the overall scores, where the MT and PT scores
are 45.5% and 50.0%, respectively. The MOT metrics were calculated using
py-motmetrics1.

Table 4.2: Container tracking metrics

Weather Camera MOTA MOTP MT PT ML IDs

Sunny c0 0.628 0.789 0.250 0.500 0.250 2
c1 0.450 0.780 0.000 1.000 0.000 5
c2 0.671 0.795 0.333 0.666 0.000 3
c3 - - 0 0 0 0
c4 - - 0 0 0 0

Overcast c0 0.886 0.778 1.000 0.000 0.000 0
c1 0.677 0.780 0.600 0.400 0.000 1
c2 0.929 0.820 1.000 0.000 0.000 0
c3 - - 0 0 0 0
c4 - - 0 0 0 0

Overall - 0.681 0.790 0.455 0.500 0.045 11

1https://github.com/cheind/py-motmetrics

94

https://github.com/cheind/py-motmetrics

Linear constant velocity model

The SORT algorithm uses linear constant velocity to model the dynamics
of the bounding boxes in the Kalman Filter. For this specific data set, the
robot is mainly moving at the preset nominal walking speed, making this
approximation justifiable. However, as rotation movement is introduced to
the system, a linear acceleration will be induced. Additionally, as we saw
in section 3.3, the data is not gathered at equal time intervals due to the
failure of log-point acquisitions, resulting in additional linear accelerations.
In fig. 4.1 the issue of rotational movement is showcased for frame 46 and 47
in sunny conditions. All tracks are lost in the next frame as the robot turns
clockwise. This resulted in new track IDs once the robot stopped rotating.
Figure 4.2 and fig. 4.3 shows the angular acceleration of the robot body Z-axis
αz between consecutive frames in the sunny and overcast videos respectively.
The red circles indicate when tracks are lost in the video, while the green
circles at which the previous frames were skipped. The failure to acquire
log points can amplify the acceleration and cause the tracks to be lost, as
shown by the overlapping red and green circles. However, causation is not
possible to determine from these plots. The only thing for certain is that the
acceleration is nonzero, violating the linear constant velocity assumption.

Additionally, the calculated mean acceleration for sunny conditions is ap-
proximately four times the mean acceleration in overcast conditions, while
the variance is 12% higher for overcast conditions. This suggests that the
sunny conditioned video is exposed to additional rotational movement com-
pared to the overcast video, which might explain why the tracking metrics
are worse for sunny conditions.

Using SORT is therefore limited to inspections where the robot is mainly
moving in constant forward motion. If this is not the case, then more eminent
trackers such as DeepSORT [88], or TransCenter [89] should be considered.

95

Figure 4.1: The tracks are lost in the two consecutive frames 46 and 47 due
to the rotation of the robot.

10 20 30 40 50
Frame

0.6

0.4

0.2

0.0

0.2

0.4

An
gu

la
r a

cc
el

er
at

io
n

[ra
d/

s2]

z

Figure 4.2: The angular acceleration of the robot body Z-axis between frames
in the sunny conditions video. The red circles indicate at which angular
accelerations tracks are lost, while the green circles at which frames the
previous frame were skipped.

96

10 20 30 40 50 60
Frame

0.6

0.4

0.2

0.0

0.2

0.4
An

gu
la

r a
cc

el
er

at
io

n
[ra

d/
s2]

z

Figure 4.3: The angular acceleration of the robot body Z-axis between frames
in the overcast conditions video. The red circles indicate at which angular
accelerations tracks are lost, while the green circles at which frames the
previous frame were skipped.

4.3 Container model estimation

This section will present the resulting estimated container models in sunny-
and overcast conditions using ground truth- and generated tracks from SORT.
As explained in section 3.3, the containers are given the names B1, R1, G1,
B2, and Y1 in order to separate them more conveniently in the analysis.

Sunny conditions

In fig. 4.4 the estimated container model inliers are shown, where ground
truth tracks have been utilized. This is the same plot as we saw in chapter 3,
which shows that there are an estimated four containers in the scene. The
B1, R1, G1, and B2 containers are modeled with track identities 4, 5, 12,
and 11, respectively. The Y1 container is not localized. This is due to this
container only being tracked in the forward-facing c2 camera, which due
to forward motion are generally not considered as the baseline between the
frames is too small. The noticeable gap between the inliers for tracks 4 and
5 is due to merging two or more overlapping models.

The resulting model inliers using the generated tracks are shown in
fig. 4.5. The B1, R1, G1, and B2 containers are modeled with track iden-
tities 19, 18, 14, and 12, respectively. In contrast to using ground truth
tracks, there are an estimated number of five containers. The R1 container

97

is modeled as two containers with track identities 18 and 22. Even though
the models seem to overlap, this is not the case as the 2D plot does not
account for the placement of the spheres in the Z-direction. The two quite
different models of the same container are a consequence of the triangulation
of an occluding car for track id 22, which is discussed in section 4.8.

20 15 10 5 0
Y [m]

15

10

5

0

X
[m

]

Positions in inertial frame
Robot trajectory
Track id: 4
Track id: 5
Track id: 11
Track id: 12
AprilTag id: 1
AprilTag id: 2

Figure 4.4: The estimated container model inliers in sunny conditions using
ground truth tracks.

20 15 10 5 0
Y [m]

15

10

5

0

X
[m

]

Positions in inertial frame
Robot trajectory
Track id: 12
Track id: 14
Track id: 18
Track id: 19
Track id: 22
AprilTag id: 1
AprilTag id: 2

Figure 4.5: The estimated container model inliers in sunny conditions using
generated tracks.

98

Overcast conditions

In fig. 4.6 the estimated container model inliers are shown, where ground
truth tracks have been utilized. This plot shows an estimated four containers
in the scene with track identities 3, 4, 8, and 9 for B1, R1, G1, and B2,
respectively. Like in sunny conditions, the Y1 container is not localized. A
notable difference from sunny conditions is the localized position of the G1
container, which by visual inspection of the plot looks to be very close to the
R1 container. This is not the case and suggests that the estimated depth of
the G1 container is not satisfactory. Reasons for this poor reconstruction is
discussed in section 4.5.

The resulting model inliers using the generated tracks are shown in
fig. 4.7. The R1, B1, G1, and B2 containers are modeled with the track
identities 13, 10, 8, and 6, respectively. From this plot, we observe the same
issue as in sunny conditions, and the R1 container is modeled twice with the
track identities 10 and 15. The Y1 container is not localized, and the depth
of the G1 container is arguable of higher quality than using ground truth
tracks.

010
Y [m]

0

5

10

15

20

25

30

35

X
[m

]

Positions in inertial frame
Robot trajectory
Track id: 3
Track id: 4
Track id: 8
Track id: 9
AprilTag id: 4
AprilTag id: 18

Figure 4.6: The estimated container model inliers in overcast conditions
using ground truth tracks.

99

010
Y [m]

0

5

10

15

20

25

30

35

X
[m

]

Positions in inertial frame
Robot trajectory
Track id: 6
Track id: 8
Track id: 10
Track id: 13
Track id: 15
AprilTag id: 4
AprilTag id: 18

Figure 4.7: The estimated container model inliers in overcast conditions
using generated tracks.

Summary

From the plots showcased in this section it is clear that the pipeline does an
excellent job localizing four out of the five containers in the scene. However, it
is impossible to determine the estimated models’ correctness with no ground
truth AprilTag. For the models with ground truths, such as B1 and R1 in
sunny conditions, and B1 in overcast conditions, the AprilTag is contained
within the estimated models. The Y1 container is not localized in any of
the cases due to poor baseline in the forward-facing camera, and the G1
container’s depth is likely very uncertain.

100

4.4 Final pipeline metrics

Table 4.3 shows the final pipeline metrics as introduced in section 3.4.7,
for both sunny and overcast conditions. The column GTT states whether
or not Ground Truth Tracks (GTT) are utilized. The fraction of localized
containers is 80% for all four cases in the table. The LAGT is 100% and 50%
for sunny and overcast conditions, respectively, while the IDA is 50% for all
four cases. There is an additional duplicated model for both conditions when
using generated tracks. This results in the final average LA, LAGT, IDA,
and DM when using the generated SORT tracks of 80%, 75%, 50%, and 1,
respectively.

The arguably high LA and LAGT metrics show that the pipeline does
a good job locating the containers in the scene. The low IDA metric is ex-
plained by the poor performance of the AprilTag detector. This is surprising,
as in the paper [85] they claim an approximately 100% detection accuracy
for tags 7 m or closer to the camera. This is the case for all the tags in the
scene as the robot traverses the route. A possible reason this fails is that
the conducted experiments in the paper are inside a laboratory and not out-
side in the weather. The sunny weather and overcast conditions introduce
several challenges such as sun glare, contrast, and brightness degradation.
These are well-known issues in computer vision that are known to degrade
the performance of vision algorithms.

It is worth noting that the LA, LAGT, IDA, and DM metrics were pro-
posed in this thesis due to the lack of existing metrics for this novel ap-
proach. The metrics were constructed as simple as possible and are by no
means perfect compared to the thoroughly researched object detection and
MOT metrics.

Table 4.3: Final pipeline metrics.

Weather GTT LA LAGT IDA DM

Sunny yes 4
5

2
2

2
4 0

no 4
5

2
2

2
4 1

Overcast yes 4
5

1
2

2
4 0

no 4
5

1
2

2
4 1

Average yes 0.800 0.750 0.500 0
no 0.800 0.750 0.500 1

101

4.5 Accuracy of reconstruction

The accuracy of the reconstruction process depends on multiple factors,
which contributes to the overall reprojection errors of the 3D points. For
the four cases, as shown in table 4.3, the overall average reprojection error is
7.266 pixels. This is conceivably a high reprojection error, as it is common to
achieve substantially smaller reprojection errors during camera calibration,
though this is a much simpler process than 3D reconstruction. Four critical
factors contributing to this reprojection error are the camera parameters,
robot poses, feature matches, and the distance to the 3D point.

Camera parameters

The camera parameters are composed of the camera intrinsic- and extrinsic
parameters. These parameters were retrieved using the Spot SDK and were
verified by Boston Dynamics to be the factory calibration of the cameras.
Camera parameters are in general dynamic, which makes acquiring and sus-
taining the correct camera parameters impossible. This is partly because the
parameters are sensitive to movement and temperature changes. The quality
of the reconstruction could thus have been improved by conducting a camera
calibration during the two data gatherings or by including the parameters
in the bundle adjustment. This would have resulted in more accurate cam-
era parameters and thus increased the quality of the estimated euclidean
reconstruction.

Robot poses

The robot poses utilized in this work were acquired through the Spot SDK
during the data gathering. The drawback of this is that it is not possible to
assess the accuracy of these poses. Thus the high reprojection error might be
due to poor state estimation of the Spot platform. A solution to this problem
is to utilize these poses as an initial starting point in a global full bundle
adjustment scheme, refining both structure and motion. However, this was
out of the scope of this thesis, as taking such an approach essentially is the
task of photogrammetry.

Feature mismatches

When matching features it is usually simple to obtain a set of good matches.
However, it is arguably impossible to guarantee a set of correct matches.
This is a result of noise in the images, which becomes evident in the estima-
tion of the homography between two images. In this process, a maximum
reprojection error threshold is set to accept inliers in the RANSAC estima-
tion scheme. Thus in the process of feature matching, we are essentially

102

accepting good matches, not the correct matches. As a consequence of this,
the accuracy of the reconstruction is reduced.

Distance to point

A common notion in computer vision is that as the distance to a 3D point
increases, the reconstruction uncertainty of the point increases. Two well-
known approaches to address this issue are ensuring a sufficient baseline or
parallax between the views. Determining the baseline or parallax depends
on the application, where a higher baseline and parallax generally reduce the
uncertainty of the reconstruction. However, choosing too large baselines or
parallax is not practical.

4.6 Parameters and thresholds

Almost every component in the pipeline, as shown in fig. 3.10 require pa-
rameters or thresholds to be set. Finding the best set of parameters is a
demanding task and arguably impossible for this pipeline. In this thesis,
satisfactory parameters have been found empirically by first using the de-
fault or suggested parameters by the literature as a starting point. The
parameters have then been tuned to provide satisfactory results, where the
elements in the pipeline are tuned according to the flow of the data. The
container detector’s parameters are set before the container tracker and so
on. As these parameters are tuned to produce satisfactory results for the
two videos, this does not guarantee that these will yield similar results for
new data.

4.7 Sphere approximation and merging

The containers in this work are approximated as spheres, which yielded sat-
isfactory results for the gathered data. This approximation was motivated
by that spheres are mathematically more pleasing to work with. A cubic
model can be described by six individual plane equations, whereas a single
equation describes a spherical model. The parameters subject to tuning are
the radius for the spheres and the width, height, and length for the cubic
models.

Each container in the scene can be modeled several times during the
tracking. This can be due to the disappearance of a tracked container in one
camera that appears in another or simply due to the track being lost and
later created with a new identity. A greedy merging scheme was proposed
to address the issue of duplicate models. This scheme incrementally merged
the most overlapping models until no overlapping models remained above a
minimum threshold overlap. This approach successfully merged the multiple

103

models for this given data set. However, in this data set, the containers are
well separated. This is seldom the case as containers are typically placed as
tight as possible to utilize the space efficiently. As the data set does not cap-
ture any closely placed containers, it is impossible to determine the pipeline
performance in such scenarios. This issue can be mitigated by improving the
tracking performance and extending the tracking to sustain track identities
across the five ring cameras. These improvements will reduce the number
of duplicate models and thus reduce the number of potential candidates for
merging. Assuming perfect tracking across the cameras, there will be no
candidates and thus no need for merging.

4.8 Occlusions

An issue with utilizing bounding boxes for the extraction of interest points
is that the bounding box may contain occluding objects. This results in
a triangulation of non-container points and, consequently, duplicate models
as we saw in section 4.3 for the R1 container might appear. In fig. 4.8,
matches between three consecutive frames are shown. The SIFT feature
detector finds the occluding car more interesting, which results in 70% of
the matches being non-container points. A solution to this issue would have
been to replace the bounding boxes with segmentation masks. This would
have reduced the number of triangulated non-container points substantially
and likely reduced the number of duplicate models in the pipeline. According
to the EfficientDet paper [81], the EfficientDet model can be adjusted to also
work for tasks such as semantic segmentation.

Figure 4.8: 70% of the matches between three frames are from an occluding
car. Notice the sun glare (top) and flare (bottom) in the images.

104

4.9 Weather

During this thesis, we have analyzed the performance of the pipeline in sunny
and overcast weather. The container detector and tracker achieve higher
metrics in overcast conditions, while the overall pipeline metrics are higher
for sunny weather. This higher pipeline metric is explained by the higher
LAGT score, which measured the factor of models associated with the correct
ground truth AprilTag. The Y1 model was not modeled for both weather
conditions, but the ground truth was detected in overcast conditions. This
resulted in an unfair comparison of the pipeline performance of these two
weather conditions, as the LAGT metric was reduced in overcast weather
due to the failure of associating the AprilTag with the Y1 model. Thus it
is not correct to say that the pipeline performs better for either weather
condition using the constructed metrics.

The poor performance of the AprilTag detector might be explained by a
combination of weather degradation and the distance to the tags from the
cameras. Prominent effects such as sun glare or flare, as seen in fig. 4.8,
as well as more common brightness and contrast degradation, are known to
degrade the quality of vision algorithms. According to the AprilTag paper,
the detector should detect all tags as long as the distance to the tag is less
than 7 m. However, it appears that these tags are placed in front of the
camera with little to zero relative orientation. This is seldom the case as the
robot traverses the route.

As we saw in section 4.1 and section 4.2, the detection and tracking
metrics were higher for overcast conditions. This is most likely explained
by a weather imbalance in the images used during training. Approximately
70 % of the images are in overcast or rainy weather. A way to improve the
performance would have been to include more container images in sunny
conditions.

105

Chapter 5

Conclusion

This thesis aimed to implement a novel visual asset tracking pipeline to local-
ize, identify, and count the number of containers in an outdoor industrial en-
vironment. The pipeline detects containers with high accuracy in both sunny
and overcast weather, where the resulting AP scores are 63.2% and 67.2%,
respectively. The notable difference in the detection metrics is likely due to
an imbalance in the training data, where approximately 70% of the images
are in rainy- or overcast weather. Consequently, the tracking-by-detection
algorithm SORT achieved higher MOT metrics in overcast conditions, where
the average MOTA score in sunny- and overcast conditions were 58.3% and
83.1% respectively. Despite the significant difference in the MOTA score,
the tracks are generally mostly tracked or partially tracked, with respective
average- MT and PT scores of 45.5% and 50.0%. The tracked containers are
triangulated and modeled using spherical models, where the proposed asset
tracking metrics are utilized to evaluate the performance of the pipeline. The
pipeline achieves a final average LA, LAGT, IDA, and DM scores of 80%,
75%, 50%, and 1, respectively, where the LAGT score was better in sunny
conditions. This was determined to be a consequence of poor ground truth
detections, which can be addressed by improving- the proposed metrics or
the data set. Hopefully, these initial results will pave the way for improved-
and new visual asset tracking solutions.

5.1 Future work

This section discusses some elements of this thesis that can be improved
in future work. First, improvements of the data set are discussed, followed
by discussions on how the tracking and reconstruction can be upgraded to
increase the pipeline performance. The last subsection discusses improving
the constructed asset tracking metrics.

106

Data set

The gathered data set utilized to evaluate the performance of the pipeline
can be improved in multiple ways. Below, four essential elements are dis-
cussed. The first improvement is the lack of adversity of weather conditions
in the data set. Interesting extensions would have included snowy and rainy
conditions to the data set, which are known to introduce several challenges
for vision systems. Apart from introducing different brightness and contrast,
these conditions will result in moving occlusions in the form of raindrops and
snowflakes visible in the camera frames.

The second improvement is ensuring high-quality ground truths for the
container locations. Only two out of the five containers in the data sets
had ground truths due to the poor performance of the AprilTag detector.
A proposal to address this issue is to manually walk the robot through the
scene while logging and ensuring that all tags are detected. As long as the
same Spot mission is uploaded to the robot, the same coordinate system will
be used to gather new data for the pipeline.

The third improvement is to perform a camera calibration during the data
gathering. This will improve the reconstruction accuracy and the AprilTag
detection performance. Additionally, a calibration in different weather will
most likely result in better performance during inspections where the current
calibration is unknown.

The final improvement is to include data sets where the containers are
closely placed. Due to the lack of closely placed containers in the current
data set, it is impossible to determine the model’s merging behavior in such
scenarios. The current configuration will likely merge closely placed contain-
ers, which is undesirable.

Tracking

The tracking in this work was limited to tracking the containers separately
in each camera. This resulted in duplicate models for the containers in
the scene, which had to be merged. By extending the system to sustain
track identities across the five ring cameras, duplicate models will likely be
reduced, and the DM metric will be improved. It turns out that this is a
common problem in video surveillance, and approaches such as [39] and [82]
appears promising for tracking in non-overlapping cameras.

One can also improve the tracking in each view by utilizing more emi-
nent open-sourced trackers such as DeepSort [88], or TransCenter [89]. The
former is a well-known supervised tracker commonly used in MOT, but like
TransCenter, it requires a large-scale re-identification data set for the ob-
ject to track. Thus a customized data set has to be created to utilize these
trackers.

107

Identification

The identification of containers in this work was limited to the association of
detected AprilTag’s to container tracks. An interesting extension would be
to apply optical character recognition to the interior of container bounding
boxes for the potential extraction of the container number. This standard-
ized container number uniquely identifies containers and is typically printed
on the front of the containers. In fig. 1.1, the red container is identified with
the container number PGRU 232371 0, while the blue container number is
covered and thus not possible to extract. Even though optical character
recognition introduces additional challenges such as covered or partially cov-
ered container numbers, the quality of the identification of containers will
likely improve.

Visual asset tracking metrics

The visual asset tracking metrics LA, LAGT, IDA, and DM, were proposed
in this thesis due to the absence of existing visual asset tracking metrics.
The metrics were constructed as simple as possible and are by no means
perfect compared to the object detection and MOT metrics which have been
thoroughly researched. Thus further research is required to develop a high-
quality set of metrics to measure the performance of new visual asset tracking
solutions.

Reconstruction

The reconstruction of container point clouds resulted in relatively high repro-
jection errors. The accuracy of the reconstruction is an essential element in
achieving accurate models that can reduce the number of duplicate models.
A way to improve the reconstruction is to replace the SOBA with a full BA.
This full BA will optimize both the camera extrinsic- and intrinsic param-
eters and the scene structure. Additionally, extending the optimization to
optimize across as many views as possible makes the effective baseline larger
and the resulting reconstruction better. However, this requires the features
to be matched across multiple views, which is a challenging problem. This
approach is what Photogrammetry does to create photo-realistic 3D mod-
els of a scene from images. Thus, creating a customized photogrammetry
pipeline might be a good direction for the continuation of this work.

108

Appendix A

Complete container detector
performance tables

Table A.1: Container detection precision metrics

Weather AP AP50 AP75 APS APM APL

Sunny 0.632 0.922 0.741 - 0.149 0.660

Overcast 0.672 0.982 0.755 - 0.383 0.680

Table A.2: Container detection recall metrics

Weather AR1 AR10 AR ARS ARM ARL

Sunny 0.419 0.684 0.706 - 0.306 0.730

Overcast 0.535 0.727 0.735 - 0.562 0.741

109

Bibliography

[1] Abhishek Patil et al. “BlueBot: asset tracking via robotic location
crawling.” In: ICPS ’05. Proceedings. International Conference on Per-
vasive Services, 2005. 2005, pp. 117–126.

[2] Sameer Agarwal et al. “Building Rome in a day.” In: 2009 IEEE 12th
International Conference on Computer Vision. 2009, pp. 72–79.

[3] Fred Attneave. “Some informational aspects of visual perception.” In:
Psychological review 61 3 (1954), pp. 183–93.

[4] Adam Baumberg. “Reliable feature matching across widely separated
views.” In: Proceedings IEEE Conference on Computer Vision and Pat-
tern Recognition. CVPR 2000 (Cat. No. PR00662). Vol. 1. IEEE. 2000,
pp. 774–781.

[5] Herbert Bay et al. “Speeded-Up Robust Features (SURF).” In: Com-
puter Vision and Image Understanding 110.3 (2008). Similarity Match-
ing in Computer Vision and Multimedia, pp. 346 –359. url: http://w
ww.sciencedirect.com/science/article/pii/S1077314207001555.

[6] Alex Bewley et al. “Simple online and realtime tracking.” In: 2016
IEEE International Conference on Image Processing (ICIP) (2016).
url: http://dx.doi.org/10.1109/ICIP.2016.7533003.

[7] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
YOLOv4: Optimal Speed and Accuracy of Object Detection. 2020. arXiv:
2004.10934 [cs.CV].

[8] Amanda Bouman et al. “Autonomous Spot: Long-Range Autonomous
Exploration of Extreme Environments with Legged Locomotion.” In:
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2020, pp. 2518–2525.

[9] Michael D. Breitenstein et al. “Robust tracking-by-detection using a
detector confidence particle filter.” In: 2009 IEEE 12th International
Conference on Computer Vision. 2009, pp. 1515–1522.

[10] P. Brown et al. “2E-3 Asset Tracking on the International Space Station
Using Global SAW Tag RFID Technology.” In: 2007 IEEE Ultrasonics
Symposium Proceedings. 2007, pp. 72–75.

110

http://www.sciencedirect.com/science/article/pii/S1077314207001555
http://www.sciencedirect.com/science/article/pii/S1077314207001555
http://dx.doi.org/10.1109/ICIP.2016.7533003
https://arxiv.org/abs/2004.10934

[11] Michael Calonder et al. “BRIEF: Binary Robust Independent Elemen-
tary Features.” In: Computer Vision – ECCV 2010. Ed. by Kostas
Daniilidis, Petros Maragos, and Nikos Paragios. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 778–792.

[12] G. Chen, H. Zhou, and J. Yan. “A Novel Method for Moving Object
Detection in Foggy Day.” In: Eighth ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking, and Par-
allel/Distributed Computing (SNPD 2007). Vol. 2. 2007, pp. 53–58.

[13] Yu Chen, Yisong Chen, and Guoping Wang. Bundle Adjustment Re-
visited. 2019. arXiv: 1912.03858 [cs.CV].

[14] Jifeng Dai et al. R-FCN: Object Detection via Region-based Fully Con-
volutional Networks. 2016. arXiv: 1605.06409 [cs.CV].

[15] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for
human detection.” In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR 2005) 2 (June 2005).

[16] Terrance DeVries and Graham Taylor. “Improved Regularization of
Convolutional Neural Networks with Cutout.” In: (Aug. 2017).

[17] Pierre Duthon et al. “Methodology Used to Evaluate Computer Vi-
sion Algorithms in Adverse Weather Conditions.” In: Transportation
Research Procedia 14 (2016). Transport Research Arena TRA2016,
pp. 2178 –2187. url: http : / / www . sciencedirect . com / science
/article/pii/S2352146516302368.

[18] M. A. Fischler and R. A. Elschlager. “The Representation and Match-
ing of Pictorial Structures.” In: IEEE Transactions on Computers C-
22.1 (1973), pp. 67–92.

[19] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartography.” In: Commun. ACM 24.6 (June 1981),
381–395. url: https://doi.org/10.1145/358669.358692.

[20] Ruth Fong and Andrea Vedaldi. Occlusions for Effective Data Aug-
mentation in Image Classification. 2019. arXiv: 1910.10651 [cs.CV].

[21] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV].

[22] Ross Girshick et al. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. 2013. arXiv: 1311.2524 [cs.CV].

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[24] Banglei Guan et al. “Self-calibration approach to stereo cameras with
radial distortion based on epipolar constraint.” In: Appl. Opt. 58.31
(2019), pp. 8511–8521. url: http://www.osapublishing.org/ao/ab
stract.cfm?URI=ao-58-31-8511.

111

https://arxiv.org/abs/1912.03858
https://arxiv.org/abs/1605.06409
http://www.sciencedirect.com/science/article/pii/S2352146516302368
http://www.sciencedirect.com/science/article/pii/S2352146516302368
https://doi.org/10.1145/358669.358692
https://arxiv.org/abs/1910.10651
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1311.2524
http://www.deeplearningbook.org
http://www.osapublishing.org/ao/abstract.cfm?URI=ao-58-31-8511
http://www.osapublishing.org/ao/abstract.cfm?URI=ao-58-31-8511

[25] Alon Halevy, Peter Norvig, and Fernando Pereira. “The Unreasonable
Effectiveness of Data.” In: IEEE Intelligent Systems 24 (2009), pp. 8–
12. url: http://www.computer.org/portal/cms_docs_intelligent
/intelligent/homepage/2009/x2exp.pdf.

[26] Chris Harris, Mike Stephens, et al. “A combined corner and edge de-
tector.” In: Alvey vision conference. Vol. 15. 50. Citeseer. 1988, pp. 10–
5244.

[27] R.I. Hartley. “In defense of the eight-point algorithm.” In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 19.6 (1997),
pp. 580–593.

[28] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. 2nd ed. USA: Cambridge University Press, 2003.

[29] Jan Hartmann, Jan Helge Klüssendorff, and Erik Maehle. “A com-
parison of feature descriptors for visual SLAM.” In: 2013 European
Conference on Mobile Robots. 2013, pp. 56–61.

[30] Sinan Hasirlioglu and Andreas Riener. “Challenges in Object Detec-
tion Under Rainy Weather Conditions.” In: Intelligent Transport Sys-
tems, From Research and Development to the Market Uptake. Ed. by
Joao Carlos Ferreira, Ana Lúcia Martins, and Vitor Monteiro. Cham:
Springer International Publishing, 2019, pp. 53–65.

[31] Kaiming He et al. Mask R-CNN. 2017. arXiv: 1703.06870 [cs.CV].

[32] J. Heikkila and O. Silven. “A four-step camera calibration procedure
with implicit image correction.” In: Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. 1997,
pp. 1106–1112.

[33] Dirk Helbing and Péter Molnár. “Social force model for pedestrian
dynamics.” In: Physical Review E 51.5 (1995), 4282–4286. url: http:
//dx.doi.org/10.1103/PhysRevE.51.4282.

[34] Y. Hirohashi et al. “Removal of Image Obstacles for Vehicle-mounted
Surrounding Monitoring Cameras by Real-time Video Inpainting.” In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW). 2020, pp. 857–866.

[35] Mazin Hnewa and Hayder Radha. Object Detection under Rainy Con-
ditions for Autonomous Vehicles. 2020. arXiv: 2006.16471 [cs.CV].

[36] Marco Hutter et al. “ANYmal - a highly mobile and dynamic quadrupedal
robot.” In: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2016, pp. 38–44.

112

http://www.computer.org/portal/cms_docs_intelligent/intelligent/homepage/2009/x2exp.pdf
http://www.computer.org/portal/cms_docs_intelligent/intelligent/homepage/2009/x2exp.pdf
https://arxiv.org/abs/1703.06870
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1103/PhysRevE.51.4282
https://arxiv.org/abs/2006.16471

[37] Marco Hutter et al. “Towards a Generic Solution for Inspection of In-
dustrial Sites.” en. In: (2017-09). 11th Conference on Field and Service
Robotics (FSR) 2017; Conference Location: Zurich, Switzerland; Con-
ference Date: September 12-15, 2017.

[38] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. 2015.
arXiv: 1502.03167 [cs.LG].

[39] Omar Javed et al. “Tracking Across Multiple Cameras With Disjoint
Views.” In: vol. 2. Nov. 2003, 952–957 vol.2.

[40] Z. Jia et al. “A two-step approach to see-through bad weather for
surveillance video quality enhancement.” In: 2011 IEEE International
Conference on Robotics and Automation. 2011, pp. 5309–5314.

[41] Luo Juan and Oubong Gwun. “A comparison of sift, pca-sift and
surf.” In: International Journal of Image Processing (IJIP) 3.4 (2009),
pp. 143–152.

[42] Kevin Kaldvansvik. “Spot, a mobile four-legged visual asset tracking
robot.” In: (2020).

[43] C. Kao et al. “A hybrid indoor positioning for asset tracking using
Bluetooth low energy and Wi-Fi.” In: 2017 IEEE International Con-
ference on Consumer Electronics - Taiwan (ICCE-TW). 2017, pp. 63–
64.

[44] Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks. 2014. arXiv: 1404.5997 [cs.NE].

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks.” In: Neural In-
formation Processing Systems 25 (Jan. 2012).

[46] M. Krišto, M. Ivasic-Kos, and M. Pobar. “Thermal Object Detection in
Difficult Weather Conditions Using YOLO.” In: IEEE Access 8 (2020),
pp. 125459–125476.

[47] Harold W Kuhn. “The Hungarian method for the assignment problem.”
In: Naval research logistics quarterly 2.1-2 (1955), pp. 83–97.

[48] Laura Leal-Taixé et al. MOTChallenge 2015: Towards a Benchmark
for Multi-Target Tracking. 2015. arXiv: 1504.01942 [cs.CV].

[49] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database.”
In: (2010). url: http://yann.lecun.com/exdb/mnist/.

[50] Liu Li, Ouyang Wanli, and Wang Xiaogang. “Deep Learning.” In:
(2019). https://doi.org/10.1007/s11263-019-01247-4.

[51] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context.
2015. arXiv: 1405.0312 [cs.CV].

113

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1504.01942
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/s11263-019-01247-4
https://arxiv.org/abs/1405.0312

[52] H. Liu et al. “Survey of Wireless Indoor Positioning Techniques and
Systems.” In: IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 37.6 (2007), pp. 1067–1080.

[53] Li Liu et al. Deep Learning for Generic Object Detection: A Survey.
2019. arXiv: 1809.02165 [cs.CV].

[54] Wei Liu et al. “SSD: Single Shot MultiBox Detector.” In: Lecture Notes
in Computer Science (2016), 21–37. url: http://dx.doi.org/10.10
07/978-3-319-46448-0_2.

[55] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent
with Warm Restarts. 2017. arXiv: 1608.03983 [cs.LG].

[56] D. G. Lowe. “Object recognition from local scale-invariant features.”
In: Proceedings of the Seventh IEEE International Conference on Com-
puter Vision. Vol. 2. 1999, 1150–1157 vol.2.

[57] David G. Lowe. “Distinctive Image Features from Scale-Invariant Key-
points.” In: Int. J. Comput. Vision 60.2 (2004), 91–110. url: https:
//doi.org/10.1023/B:VISI.0000029664.99615.94.

[58] Wenhan Luo et al.Multiple Object Tracking: A Literature Review. 2017.
arXiv: 1409.7618 [cs.CV].

[59] Yi Ma et al. An Invitation to 3-D Vision: From Images to Geometric
Models. SpringerVerlag, 2003.

[60] Anton Milan, Konrad Schindler, and Stefan Roth. “Detection- and
Trajectory-Level Exclusion in Multiple Object Tracking.” In: 2013 IEEE
Conference on Computer Vision and Pattern Recognition. 2013, pp. 3682–
3689.

[61] S. G. Narasimhan and S. K. Nayar. “Contrast restoration of weather
degraded images.” In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 25.6 (2003), pp. 713–724.

[62] J. C. Nelson et al. “Locating and tracking data center assets using
active RFID tags and a mobile robot.” In: 2013 10th International
Conference and Expo on Emerging Technologies for a Smarter World
(CEWIT). 2013, pp. 1–6.

[63] John C. Nelson et al. “Data Center Asset Tracking Using a Mobile
Robot.” In: SIGMETRICS ’13 (2013), 339–340. url: https://doi.o
rg/10.1145/2465529.2466584.

[64] Farzan Erlik Nowruzi et al. How much real data do we actually need:
Analyzing object detection performance using synthetic and real data.
2019. arXiv: 1907.07061 [cs.CV].

[65] Edwin Olson. “AprilTag: A robust and flexible visual fiducial system.”
In: 2011 IEEE International Conference on Robotics and Automation.
IEEE. 2011, pp. 3400–3407.

114

https://arxiv.org/abs/1809.02165
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1608.03983
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://arxiv.org/abs/1409.7618
https://doi.org/10.1145/2465529.2466584
https://doi.org/10.1145/2465529.2466584
https://arxiv.org/abs/1907.07061

[66] Asil Oztekin et al. “An RFID network design methodology for as-
set tracking in healthcare.” In: Decision Support Systems 49.1 (2010),
pp. 100 –109. url: http://www.sciencedirect.com/science/artic
le/pii/S0167923610000205.

[67] Rania Rebai Boukhriss, Emna Fendri, and Mohamed Hammami. “Mov-
ing object detection under different weather conditions using full-spectrum
light sources.” In: Pattern Recognition Letters 129 (2020), pp. 205 –212.
url: http://www.sciencedirect.com/science/article/pii/S0167
865519303186.

[68] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger.
2016. arXiv: 1612.08242 [cs.CV].

[69] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improve-
ment. 2018. arXiv: 1804.02767 [cs.CV].

[70] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Ob-
ject Detection.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016.

[71] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks. 2015. arXiv: 1506.01497 [cs.CV].

[72] E. Rublee et al. “ORB: An efficient alternative to SIFT or SURF.” In:
2011 International Conference on Computer Vision. 2011, pp. 2564–
2571.

[73] Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Chal-
lenge. 2015. arXiv: 1409.0575 [cs.CV].

[74] Pierre Sermanet et al. OverFeat: Integrated Recognition, Localization
and Detection using Convolutional Networks. 2013. arXiv: 1312.6229
[cs.CV].

[75] Jianbo Shi and Tomasi. “Good features to track.” In: 1994 Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition.
1994, pp. 593–600.

[76] Connor Shorten and T. Khoshgoftaar. “A survey on Image Data Aug-
mentation for Deep Learning.” In: Journal of Big Data 6 (2019), pp. 1–
48.

[77] Bing Shuai et al. Multi-Object Tracking with Siamese Track-RCNN.
2020. arXiv: 2004.07786 [cs.CV].

[78] Krishna Kumar Singh and Yong Jae Lee. Hide-and-Seek: Forcing a
Network to be Meticulous for Weakly-supervised Object and Action Lo-
calization. 2017. arXiv: 1704.04232 [cs.CV].

115

http://www.sciencedirect.com/science/article/pii/S0167923610000205
http://www.sciencedirect.com/science/article/pii/S0167923610000205
http://www.sciencedirect.com/science/article/pii/S0167865519303186
http://www.sciencedirect.com/science/article/pii/S0167865519303186
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1312.6229
https://arxiv.org/abs/1312.6229
https://arxiv.org/abs/2004.07786
https://arxiv.org/abs/1704.04232

[79] Daisuke Sugimura et al. “Using individuality to track individuals: Clus-
tering individual trajectories in crowds using local appearance and fre-
quency trait.” In: 2009 IEEE 12th International Conference on Com-
puter Vision. 2009, pp. 1467–1474.

[80] Richard Szeliski. Computer vision algorithms and applications. 2011.
url: http://dx.doi.org/10.1007/978-1-84882-935-0.

[81] Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable
and Efficient Object Detection. 2019. arXiv: 1911.09070 [cs.CV].

[82] Yonatan Tariku Tesfaye et al. “Multi-Target Tracking in Multiple Non-
Overlapping Cameras using Constrained Dominant Sets.” In: CoRR
abs/1706.06196 (2017). arXiv: 1706.06196. url: http://arxiv.org
/abs/1706.06196.

[83] Tinne Tuytelaars and Krystian Mikolajczyk. Local invariant feature
detectors: a survey. Now Publishers Inc, 2008.

[84] Athanasios Voulodimos et al. “Deep Learning for Computer Vision: A
Brief Review.” In: Computational Intelligence and Neuroscience 2018
(Feb. 2018), pp. 1–13.

[85] J. Wang and E. Olson. “AprilTag 2: Efficient and robust fiducial de-
tection.” In: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2016, pp. 4193–4198.

[86] Zhongdao Wang et al. Towards Real-Time Multi-Object Tracking. 2020.
arXiv: 1909.12605 [cs.CV].

[87] Greg Welch, Gary Bishop, et al. “An introduction to the Kalman filter.”
In: (1995).

[88] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. “Simple Online and
Realtime Tracking with a Deep Association Metric.” In: CoRR abs/1703.07402
(2017). arXiv: 1703.07402. url: http://arxiv.org/abs/1703.0740
2.

[89] Yihong Xu et al. TransCenter: Transformers with Dense Queries for
Multiple-Object Tracking. 2021. arXiv: 2103.15145 [cs.CV].

[90] Qian Yu, Gerard Medioni, and Isaac Cohen. “Multiple Target Tracking
Using Spatio-Temporal Markov Chain Monte Carlo Data Association.”
In: 2007 IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2007, pp. 1–8.

[91] Yifu Zhang et al. “FairMOT: On the Fairness of Detection and Re-
identification in Multiple Object Tracking.” In: International Journal
of Computer Vision 129.11 (2021), 3069–3087. url: http://dx.doi
.org/10.1007/s11263-021-01513-4.

116

http://dx.doi.org/10.1007/978-1-84882-935-0
https://arxiv.org/abs/1911.09070
https://arxiv.org/abs/1706.06196
http://arxiv.org/abs/1706.06196
http://arxiv.org/abs/1706.06196
https://arxiv.org/abs/1909.12605
https://arxiv.org/abs/1703.07402
http://arxiv.org/abs/1703.07402
http://arxiv.org/abs/1703.07402
https://arxiv.org/abs/2103.15145
http://dx.doi.org/10.1007/s11263-021-01513-4
http://dx.doi.org/10.1007/s11263-021-01513-4

[92] Z. Zhang. “A flexible new technique for camera calibration.” In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 22.11 (2000),
pp. 1330–1334.

117

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Kevin Karlsholm
 Kaldvansvik

M
aster's thesis

Kevin Karlsholm Kaldvansvik

Spot, a mobile four-legged visual
asset tracking robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Professor Annette Stahl
Co-supervisor: Johan Hatleskog, Trygve Utstumo
December 2021

M
as

te
r’s

 th
es

is

	Nomenclature
	List of Tables
	List of Figures
	Introduction
	Background
	State of research
	Contributions
	Report structure

	Theory
	Computer vision
	RGB representation of images

	Homogeneous transformations
	Rotation
	Translation
	The homogeneous transformation matrix
	Properties of the transformation matrix
	Coordinate transformations

	Image formation
	The projective camera
	Camera distortion

	Feature detection, description, and matching
	Feature detection
	Feature description
	Feature matching

	Image homographies
	The Direct Linear Transformation algorithm

	Structure computation
	Initial linear reconstruction
	Optimal reconstruction

	Random sample consensus
	Epipolar geometry
	The fundamental matrix

	Deep learning in computer vision
	Convolutional neural network
	Training
	Hyperparameters
	The overfitting problem
	Regularization
	Transfer learning

	Object detection
	Problem formulation
	Modern object detector anatomy
	Evaluation metrics
	EfficientDet detector

	Multiple object tracking
	Problem formulation
	The two main schemes
	Evaluation Metrics
	Simple Online Realtime Tracking

	Fiducial detection
	The AprilTag detector

	Methods
	Asset description
	The Spot platform
	Spot CAM+
	Spot CORE
	Spot missions
	Spot frames

	The data set
	Data gathering
	Data set annotation
	Summary

	The pipeline
	Undistortion of images
	Detection of containers
	Tracking of containers
	Identification of containers
	Reconstruction of container models
	Merging of container models
	Final localization, identification, and counting

	Results and Discussions
	Container detection
	Container tracking
	Container model estimation
	Final pipeline metrics
	Accuracy of reconstruction
	Parameters and thresholds
	Sphere approximation and merging
	Occlusions
	Weather

	Conclusion
	Future work

	Complete container detector performance tables
	Bibliography

